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Abstract 

T. T. Rogers and K. Patterson [Rogers, T. T., & Patterson, K. (2007). Object 

Categorization: Reversals and Explanations of the Basic-Level Advantage. Journal of 

Experimental Psychology: General, 136, 451-469] reported an impressive set of 

results demonstrating a reversal of the highly robust basic level advantage in both 

patients with semantic dementia and in healthy individuals engaged in a speeded 

categorisation task.  To explain their results, as well as the usual basic level advantage 

seen in healthy individuals, the authors employed a parallel distributed processing 

theory of conceptual knowledge.  In this paper, we introduce an alternative way of 

explaining the results of Rogers and Patterson, which is premised on a more restricted 

set of assumptions born from standard categorisation theory.  Specifically, we provide 

evidence that their results can be accounted for based on the predictions of the 

simplicity model of unsupervised categorisation. 
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Rogers and Patterson (2007): a Parallel Distributed Processing account 

Human categorisation can take place at a number of different levels of abstraction:  

people may classify a set of objects at the superordinate level (e.g., animal, furniture), 

at the basic level (e.g., dog, chair), and/ or at the subordinate level (e.g., Labrador, 

armchair).  In a seminal paper by Rosch, Mervis, Gray, Johnson and Boyes-Braem 

(1976), these authors reported a robust preference in humans for classification at the 

basic level, establishing that this level of abstraction has a ‘special status’ in human 

categorisation. 

For patients with the neurological disorder semantic dementia (SD), however, 

basic level and subordinate level conceptual knowledge is found to degrade, leaving 

only superordinate level knowledge relatively intact (see Warrington, 1975).  In an 

intriguing paper by Rogers and Patterson (2007), these authors first replicated the 

robust basic level superiority effect in a healthy population (e.g., Hoffmann & 

Ziessler, 1983; Murphy & Brownell, 1985; Rosch et al., 1976; Tanaka & Taylor, 

1991; see also Malt, 1995, for a cross-cultural perspective) and then demonstrated a 

reversal of the basic level advantage in four patients with severe SD:  that is, 

superordinate level categorisation was found to be superior to that of basic level 

categorisation (henceforth, we refer to this as a superordinate level > basic level 

advantage; see also Hodges, Graham, & Patterson, 1995; Patterson & Hodges, 2000).  

Rogers and Patterson (2007) explained their results based on a parallel distributed 

processing (PDP) theory of conceptual knowledge (see also Rogers et al., 2004; 

Rogers & McClelland, 2004).  One novel prediction born from this explanation was 

that the usual basic level advantage found in healthy individuals should actually 

reverse under conditions of speeded categorisation.  Testing this prediction using a 

tempo-matching experimental procedure adapted from Kello (2004), Rogers and 
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Patterson (2007) observed the anticipated superordinate level > basic level advantage 

in healthy individuals. 

According to PDP theory, “knowledge about the meanings of words and 

objects emerges from the interactive activation of perceptual, motor, and linguistic 

representations across different modalities of reception and expression” (Rogers & 

Patterson, 2007, p. 456).  It has been argued that these different kinds of sensory-

motor information are coded in neuroanatomically distinct cortical regions, which 

converge in the anterior temporal cortex (the focus of the neuropathology in SD; e.g., 

Nestor, Fryer, & Hodges, 2006).  That is, the anterior temporal lobes are seen to 

function as a kind of cross-modal “hub” for the interaction between these different 

types of representations.  Semantic representations, then, are considered not to encode 

any explicit or directly interpretable content per se.  Rather, the combination of our 

perceptual, motor, and linguistic representations give rise to the content of our 

semantic memory (Barsalou, Simmons, Barbey, & Wilson, 2003; Rogers & Patterson, 

2007). 

 

A PDP account of the basic level advantage 

The similarity structure of the patterns of activation generated by any single modality 

of perception or expression may be considerably different from those arising after 

cross-modal matching (Rogers & Patterson, 2007).  Akin to differentiation theory 

(see, e.g., Murphy & Brownell, 1985), Rogers and Patterson (2007) argue that 

exemplars that are members of the same basic level category will be represented by 

similar patterns of activation within the “hub” – as they will share many attribute 

matches across modalities – while exemplars from different basic level categories will 

be represented by rather different patterns of activation within the “hub” – as they will 
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share fewer attribute matches across modalities.  With respect to the different levels of 

categorisation, therefore, while basic level categories will correspond to relatively 

tight and widely separated clusters in representational space, subordinate categories 

will correspond to smaller and less well-separated clusters, and superordinate 

categories will correspond to more inclusive but sparsely populated clusters.  As a 

direct consequence of the similarity-based generalisation that is assumed to occur 

during name acquisition and retrieval, a basic level categorisation advantage is 

predicted (Rogers & Patterson, 2007).  

  More specifically, members of one subordinate level cluster within a basic 

level category will share a very similar pattern of cross-modal activation to members 

of a second subordinate level cluster within the same basic level category.  For 

example, while humans may treat a Robin as distinct from a Blue Tit, these two birds 

share many similarities with each other.  This high degree of cross-category similarity 

(and associated cross-category similarity-based generalisation) will create 

interference, which will slow subordinate level name acquisition and retrieval.  In 

contrast, superordinate clusters (e.g., animal) will be formed from the representations 

of many, relatively diverse category members (e.g., birds, cats, cows, dogs, horses, 

etc.), and therefore, from many relatively different patterns of cross-modal activation.  

Consequently, similarity-based generalisation of the associated superordinate level 

name will proceed poorly between category members at this level of abstraction.  

Again, this will create interference, which will slow superordinate level name 

acquisition and retrieval.  At the basic level of abstraction, however, the within 

category similarity of cross-modal patterns of activation will be high, allowing for 

effective name generalisation within categories, while the between category similarity 

of cross-modal patterns of activation will be low, limiting cross-category 
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generalisation and interference.  As such, while superordinate level structures (e.g., 

animal) are assumed to be activated before basic level ones, due to the influence of 

similarity-based generalisation, the name of basic level structures (e.g., bird) will 

become fully activated more quickly.  Accordingly, this situation will allow for fastest 

name acquisition and retrieval at the basic level, resulting in a basic level > 

superordinate level advantage. 

 

A PDP account of the superordinate level advantage in patients with SD 

To explain the superordinate > basic level advantage found in patients with SD, 

Rogers and Patterson (2007) argue that, when considering the similarity structure of 

semantic representations, superordinate information will simply be more robust 

against the brain damage associated with SD.  This brain damage involves a 

deterioration of the anterior temporal cortex, which is the region of the brain that is 

assumed to represent the “hub” for cross-modal interactive activation.  The reason for 

this, they argue, is that damage to the anterior temporal cortex will result in distortion 

of the patterns of activation that arise in response to the presentation of different 

stimuli: this distortion in a given stimulus’ pattern of activity results from the disease 

having “destroyed some of the neurons that coded the healthy pattern” (Rogers & 

Patterson, 2007, p. 460).  As a consequence of these small distortions in stimulus 

representation, the spread of activation (i.e., generalisation) through the semantic 

network will become less specific, meaning that very specific properties of a stimulus 

will be less likely to be activated. 

 Taking the example used by Rogers and Patterson (2007, p. 460), what 

happens when a healthy network tries to name a picture of a canary, for example?  

Critically, such subordinate level categorisation requires that the hub produce an 
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almost veridical pattern of activation of a canary.  The reason for this is that the 

patterns of activation for the category birds will all be quite similar, but of course, the 

name canary does not apply to all birds.  Given such similar representations, small 

distortions of the canary pattern will disturb the network’s ability to generate the 

name canary as output.  Subordinate level naming is, therefore, highly specific.  

Naming at the basic level, however, can tolerate the instantiation of less exact patterns 

of activation in the hub, as the name bird applies to all birds, meaning any bird-like 

pattern of activity will allow for the name bird to be generated as output.  By 

extension, if the pattern of activation that is instantiated in the hub for a canary is so 

heavily distorted that its representation falls closer to a different species of animal, 

then where basic level naming will now fail, naming at the superordinate level (i.e., 

animal) will be successful.  In summary, superordinate level naming in the network 

can tolerate the highest levels of distortion to stimulus representations.  Such 

distortions can be brought about by SD, which causes neuronal loss in the anterior 

temporal cortex.  When SD is severe, therefore, more specific (i.e., subordinate and 

basic) level naming will be heavily disrupted, leading to a superordinate level > basic 

level advantage. 

 

A PDP account of the superordinate level advantage in healthy individuals engaged in 

speeded categorisation 

As stated above, one novel prediction of Rogers and Patterson’s (2007) PDP theory is 

that if a healthy individual were to engage in a speeded version of the standard basic 

level categorisation task, then a reversal of the usual basic level > superordinate level 

advantage should be found.  This prediction sits in contrast to other theories of basic 

level categorisation.  For example, based on the entry-level account of the basic level 
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advantage (Jolicoeur, Gluck, & Kosslyn, 1984), the speed of categorisation should 

have no impact on the basic level advantage, as the first category representations to 

become activated by a stimulus are always those at the basic level.  Equally, 

differentiation theory (Murphy & Brownell, 1985) offers no obvious insight into why 

speeded categorisation should impact on the usual basic level > superordinate level 

advantage; its aim is simply to explain what has been regarded as the ubiquitous basic 

level advantage under standard task (time) constraints (Rogers & Patterson, 2007).  

As noted earlier, this novel prediction of PDP theory was empirically confirmed by 

Rogers and Patterson (2007). 

According to Rogers and Patterson, a reversal of the standard basic level > 

superordinate level advantage during speeded categorisation in healthy individuals 

occurs because the network has to produce “a “best guess” proportional to the 

activation of the name unit” (2007, p. 461).  As noted earlier, a critical assumption of 

Rogers and Patterson’s (2007) model is that because subordinate level structures are 

encompassed fully within superordinate level structures in representational space, the 

network will necessarily start to activate the superordinate (e.g., animal) region of 

space – and consequently the name animal in the output – before it starts activating 

the basic (e.g., bird) region of space – and consequently the name bird in the output.  

While subsequent activation of the name bird will proceed more rapidly than the 

name animal – due to similarity-based generalisation – at very short response 

latencies, threshold levels for naming will not be exceeded, resulting in the model 

having to make a “best guess”.  At very short response latencies, therefore, the animal 

(superordinate level) name unit will have a greater level of activation than any basic 

level name unit encompassed within its structure (e.g., bird), because the animal 

region of space was activated before the bird region of space.  As a consequence of 



Reversals of the Basic-Level Advantage    9 

the greater level of activation of superordinate level names at this early stage in 

stimulus representation, rapid responding will lead to the network favouring a 

superordinate level category response, resulting in a superordinate level > basic level 

advantage (Rogers & Patterson, 2007). 

 

Comments on Rogers and Patterson (2007) 

Through employing a PDP theory of conceptual knowledge, Rogers and Patterson 

(2007) provide compelling accounts of the standard basic level advantage, the 

superordinate level advantage found in patients with SD and the superordinate level 

advantage found in healthy individuals engaged in a speeded classification task.  

Moreover, with regard to the PDP model presented, a number of contentious 

assumptions made in other spreading-activation approaches are not present.  For 

example, while some spreading-activation networks assume that category structures 

are hierarchical (i.e., taxonomically organised), with activation spreading in a top-

down fashion from superordinate, through basic, to subordinate levels (Collins & 

Loftus, 1975; Collins & Quillian, 1969), the PDP approach is not constrained in this 

manner (Rogers & McClelland, 2004).  This is a clear strength of the PDP approach.  

Furthermore, the PDP model contains elements of biological plausibility, mapping its 

assumptions to specific areas of the brain:  the “hub” (where representational 

information from different modalities is integrated), for example, is mapped directly 

to the anterior temporal lobes. 

In the present paper, our goal is not to question the general validity of Rogers 

and Patterson’s (2007) assumptions; they are all well motivated and psychologically 

plausible.  Rather, we wish to explore the extent to which standard categorisation 

theory can offer an alternative way of explaining their results. Why is this important? 
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First, the PDP model is primarily a process model, emphasising the particular 

algorithms which are involved in basic level categorisation. By contrast, most 

categorisation theories are specified at the computational level. In general, a 

computational level theory may be compatible with an algorithmic level one, even if 

superficially the two theories are very different (indeed, eventually we would want to 

converge our best algorithmic theory with the best computational one; Marr, 1982). 

With regard to the basic level categorisation results considered here, if particular 

standard categorisation models can accommodate them, then it becomes meaningful 

to consider further their relation to the PDP account. Second, and relatedly, even 

though most standard categorisation models offer some account of basic level 

categorisation, they have not been explored in terms of the particular results of Rogers 

and Patterson (2007). Thus, these results present a potential challenge to standard 

categorisation theory. Conversely, the PDP model makes a range of assumptions, 

which are, as far as we can tell, all neurologically plausible. However, from a 

modelling point of view, it is important to ask whether these assumptions are essential 

in accounting for the SD and speeded categorisation results. Considering this issue 

will partly determine the extent to which the assumptions made by PDP theory can be 

justified on the basis of just the SD/ speeded categorisation results, or whether further 

justification needs to be sought.  

For our demonstration, we selected the simplicity model of unsupervised 

categorisation (Pothos & Chater, 2002).  To foreshadow our results, we demonstrate 

that the simplicity model readily predicts both the usual basic level > superordinate 

level advantage in healthy individuals engaged in a standard classification task, and 

the superordinate level > basic level advantage in patients with SD and in healthy 

individuals engaged in a speeded classification task. 
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Rogers and Patterson (2007):  a simplicity approach 

In explaining Rogers and Patterson’s (2007) results, a promising candidate model 

would initially be required to offer an account of the basic level advantage under 

standard task constraints.  While a number of models provide an explanation for this 

basic level advantage (e.g., Corter & Gluck, 1992; Gosselin & Schyns, 2001; Jones, 

1983), the model we have chosen to employ stems from research into unsupervised 

categorisation, namely, the simplicity model of unsupervised categorisation (Pothos & 

Chater, 2002).  Our reasoning for this choice was two-fold:  First, the simplicity 

model was directly motivated from the proposal for basic level categorisation put 

forward by Rosch and Mervis (1975) – this is not the case with other influential 

models of unsupervised categorisation (e.g., SUSTAIN, Love, Medin, & Gureckis, 

2004; or the Rational Model, Anderson, 1991).  That is, the simplicity model is 

premised on the suggestion that categories should maximise within-category 

similarity and minimise between-category similarity (this suggestion generalises the 

definition for basic level categories Rosch and colleagues adopted; e.g., Rosch & 

Mervis, 1975).  Second, the simplicity model provides a straightforward 

quantification of the ‘intuitiveness’ of different classifications. As will shortly be 

shown, this property of the simplicity model is particularly useful in the examination 

of Rogers and Patterson’s (2007) findings.  While other models of unsupervised 

categorisation can often be modified to produce estimates of category intuitiveness, 

this computation is particularly straightforward with the simplicity model (models of 

unsupervised categorisation can typically predict the classification that should be most 

intuitive for a set of stimuli, though predictions of category intuitiveness are more 

challenging; Pothos et al., 2011). 
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The simplicity model of unsupervised categorisation 

For a given stimulus set, the simplicity model computes the codelength required to 

describe all the information in the similarity relations between the items (call this 

information S).  That is, codelength(S) effectively corresponds to the ‘raw’ 

information in the data, before any attempt to look for category structures has been 

made.  The second step in the simplicity model is to examine whether codelength(S) 

can be reduced by imposing categories, C.  Categories are defined as postulating that 

all within category similarities are greater than all between category similarities.  

Therefore, if a classification for the stimuli is identified that specifies numerous and 

accurate constraints in the aforementioned manner, codelength (S|C) is going to be 

small.  When there are incorrect constraints, the codelength required to correct these 

needs to be taken into account.  If there are u constraints in total and e errors, then 

since there are uCe 
u!

e!(u  e)!
 ways to select e items out of u, the codelength 

required to correct the erroneous constraints is given by log2 (u1) log2 uCe  (this 

function is slightly modified so that it is monotonically increasing).  Finally, the 

chosen classification needs to be specified as well.  This is done by considering all 

possible classifications of r items into n categories, which is given by Stirling’s 

number, (  1 )
v ( n  v ) r

( n  v ) ! v !v  0

n

 .  The contribution from this term is typically very small.  

To sum up, the simplicity model predicts that a classification will be psychologically 

obvious to the extent that codelength(S) – codelength (S|C) is large.  In general, 

simplicity model predictions are typically specified as the ratio of codelength (with 

categories) / codelength (without categories), expressed as a percentage; therefore, the 

lower this percentage, the greater the ‘simplification’ of the code achieved by 

imposing a classification, and the more psychologically intuitive (obvious) the 
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classification is predicted to be.  For brevity, this percentage is referred to as 

‘codelength’. 

Classification codelengths typically vary between 50% and 100% (as noted, 

lower values indicate a more psychologically intuitive classification).  The 

computation of the different codelength terms specified above is effectively an 

application of the formal simplicity framework of Minimum Description Length 

(Rissanen, 1989).  The simplicity model is run in a straightforward way:  its input is 

the coordinates of a set of stimuli when represented in an assumed psychological 

space, out of which the model generates information about pairs of similarities 

(typically using the Euclidean metric).  The model employs a search algorithm to 

identify the best possible classification for the set of items.  The algorithm is akin to 

agglomerative clustering ones, which initially assume that all items belong to separate 

categories, and then gradually combine items to try to improve this classification.  

Unlike many prominent models of categorisation (whether they model supervised or 

unsupervised categorisation), the simplicity model is parameter free (for a more 

detailed description of the simplicity model, see Pothos & Chater, 2002). 

What is the psychological intuition behind the model?  If a lot of 

simplification can be achieved by a specific categorisation, then this means that there 

is a lot of classification ‘structure’ in the similarity relations of the stimuli (that is, 

there are well-separated categories).  Such structure would be in the form of certain 

similarity relations consistently being less than other similarity relations.  With real 

life categories, for example, a child may note that a Labrador and a Rottweiler are 

consistently more similar to each other than a Labrador and all kinds of cats.  For the 

simplicity model, this is a clue that certain items should be in the same category (i.e., 

the Labrador and the Rottweiler, as opposed to the Labrador and a cat), with the end 
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result being that categories are organised on the basis of exemplar similarity.  This is 

exactly Rosch and Mervis’s (1975) proposal for basic level categorisation; the 

simplicity model is just a formal way to computationally implement their idea.   

Evidence showing that simplicity can provide a suitable framework for 

cognitive modelling has come from a number of sources (e.g., Chater, 1999; Feldman, 

2000; Pothos & Wolff, 2006).  Moreover, simplicity inference is analogous to 

Bayesian inference under particular choices of priors (Chater, 1996; Tenenbaum, 

Griffiths, & Kemp, 2006).  It is important to note here, though, that category 

intuitiveness is potentially influenced by other considerations as well, such as 

consistency with general knowledge (Heit, 1997; Murphy & Allopenna, 1994; 

Murphy & Medin, 1985; Wisniewski, 1995).  In principle, the simplicity model could 

be modified to take general knowledge factors into account, but, as many authors 

have discovered, computationally incorporating effects of general knowledge is 

extremely hard, if not logically impossible (see, e.g., Fodor, 1983; Heit, 1997; 

Lewandowsky, Roberts, & Yang, 2006; Murphy, 2002; Pickering & Chater, 1995).  

Therefore, in all modelling work employing the simplicity model to-date, we have 

examined the scope of the model in its form based solely on similarity, and this 

approach is adopted in the present paper. 

 

A simplicity account of the basic level advantage 

With respect to explaining the basic level advantage using the simplicity model, the 

situation is rather straightforward: we suggest that, given a hierarchy of 

classifications, the basic level will correspond to the classification that is ‘most 

intuitive’ (according to the model).  Such a statement readily follows both by analogy 

from Rosch and Mervis’s (1975) early formulation of basic level categorisation, and 
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from the several subsequent proposals for understanding basic level categorisation 

(e.g., Corter & Gluck, 1992; Gosselin & Schyns, 2001; Jones, 1983). 

As an example, consider the stimulus structure presented in Figure 1 (in these 

and all subsequent examples, we assume that both dimensions are equally salient; see 

Lamberts, 2002; Milton, Longmore, & Wills, 2008; Pothos & Close, 2008).  The 

codelength for the classification predicted by the simplicity model to be most intuitive 

(optimal) is 68.92%; we assume this to be the basic level of categorisation.  The 

codelength associated with a more general (superordinate) level of classification is 

93.05% and the codelength associated with a more specific (subordinate) level of 

classification is 88.05%.  Therefore, the basic level of classification is readily 

predicted to be most intuitive by the simplicity model.   

Why is this the case?  First, classification at the superordinate level is 

prejudiced:  although the larger categories generate more constraints (that is, there are 

a greater number of comparisons required between both within-category and between-

category similarities), the categories are not very coherent (cf. Murphy & Medin, 

1985).  Therefore, there are many erroneous constraints that need to be corrected.  As 

a consequence of this, the overall codelength for classification at this level is high, 

reflecting the fact that using superordinate categories provides only a minor 

simplification in the description of the ‘raw’ similarity information.  Classification at 

the subordinate level is also prejudiced:  while in this case most constraints are 

correct, there are (relatively) few of them, as the clusters are generally smaller.  Basic 

level categorisation, on the other hand, achieves the right balance between numerous 

and correct constraints; hence, classification at this level is favoured (i.e., predicted as 

most intuitive by the simplicity model).  At the conceptual level, the simplicity 

formulation of the basic level advantage closely mirrors previous discussions in terms 
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of category specificity and informativeness (e.g., Komatsu, 1992; Medin, 1986; 

Murphy & Brownell, 1985; Murphy & Smith, 1982). 

How do the predictions of the simplicity model map onto the standard 

empirical finding that people are generally faster and more accurate to categorise a 

presented stimulus at the basic level (e.g., bird) than at either the superordinate (e.g., 

animal) or subordinate (e.g., Robin) levels (Rogers & Patterson, 2007; Rosch et al., 

1976)?  The assumption is that, given their high level of intuitiveness, the category 

structures that represent classification at the basic level will simply be more readily 

accessible than the category structures that represent classification at the 

superordinate and subordinate levels (which are not very intuitive):  that is, 

superordinate and subordinate level categorisations will be cognitively more effortful 

and time-consuming to perceive.  Consequently, under standard task constraints, 

people will be best able to assess a presented stimulus in terms of basic level category 

structures.  This will mean that, in general, basic level classification will be fastest 

and most accurate, and this will be reflected in people’s response behaviour.  In terms 

of the predictions of the simplicity model, therefore, the smaller the codelength 

associated with a specific category structure, the faster and more accurate stimulus 

classification should proceed with respect to that structure. Note, however, an 

important qualification: while we can assume a general association between 

intuitiveness and speed of categorisation, the simplicity model is not a process model 

and therefore cannot make as detailed predictions concerning categorisation speed as 

the PDP model. 

 

----------Figure 1 about here---------- 
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A simplicity account of the superordinate level advantage in patients with SD 

A common assumption when modelling a range of neurological disorders is that there 

exists an increased amount of noise within patients’ encoded memory signal, and their 

assessment of this memory signal.  Indeed, the introduction of noise in this manner 

has proven to be an effective tool for modelling amnesia (e.g., Berry, Shanks & 

Henson, 2008; Malmberg, Zeelenberg, & Shiffrin, 2004).  In the present paper, we 

also assume that a larger degree of noise will be associated with the storage and 

processing of exemplars in patients with SD, relative to healthy individuals.  As we 

will show, this increased level of representational noise in patients with SD leads 

naturally to the prediction of a superordinate level classification advantage by the 

simplicity model. 

  To recapitulate, the simplicity model predicts that the most intuitive level of 

categorisation for a healthy individual is the basic one.  Let us assume that the brain 

damage associated with the anterior temporal cortex of patients with SD (Garrard & 

Hodges, 2000; Mummery et al., 2000; Nestor et al., 2006) results in noise being 

introduced into these patients’ underlying stored exemplar representations.  Noisy 

exemplar representations result in random distortion of the category structures that 

were in place before the onset of dementia.  Therefore, if one starts with well-defined, 

well-separated categories and a noise signal is introduced into the corresponding 

exemplar representations, the resulting categories start encompassing less similar 

items (that is, in psychological space, categories could be seen as covering a greater 

surface area or volume).  In other words, introducing noise into pre-existing category 

structures makes categories less specific, and as we will show, this can lead to a shift 

from favouring basic level categories to superordinate level ones.  As the pathology 

worsens and becomes more acute, so too does the amount of noise present in SD 
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patients’ stored category representations, resulting in category structures losing 

specificity.  Again, the loss of representational specificity would be associated with a 

preference for categorisation at a more general level, culminating in a superordinate 

level > basic level advantage in patients with severe SD (e.g., Hodges et al., 1995; 

Rogers, Lambon Ralph, Garrard, et al., 2004; Rogers, Lambon Ralph, Hodges, & 

Patterson, 2003, 2004; Warrington, 1975). 

  To assess the above predictions, we generated 50 random stimulus structures 

using MATLAB (Mathworks, 2007) that all resulted in an initial optimal 

classification of six clusters being identified by the simplicity model.
1
  Each randomly 

generated stimulus structure was composed of 12 stimulus points. Computationally, 

six cluster stimulus structures were chosen so as to create a situation where, in 

principle at least, distortion of these structures could equally lead to an increase or 

decrease in the number of clusters that are subsequently considered optimal by the 

simplicity model.  In contrast, if, for example, the initial optimal classifications were 

composed of only two clusters, then intuitively any distorted classification would be 

more likely to have more than two clusters – in the simple sense that there are more 

possible classifications with more than two clusters than ones with fewer. Of course, 

real life category structures would be consistent with a range of classifications at the 

basic level. Nonetheless, we felt that the particular choice of stimulus sets with 12 

items, consistent of six cluster classifications, was a reasonable choice that balanced 

the realism of the simulation with the constraints of the computational procedure.   

Finally, the coordinates of each stimulus could vary along two arbitrary dimensions, 

                                                
1 Initially, the only substantive requirement for the stimulus structures was that their optimal 
classification consisted of at least five clusters prior to the application of noise.  In practice, 

the vast majority of stimulus structures identified in this way were associated with optimal 

classifications of six clusters.  To standardise our analyses, therefore, we chose to further 
analyse only those stimulus structures that were associated with a six cluster optimal 

classification. 
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from 0 – 10.  The randomisation of the coordinates for each stimulus point was based 

on MATLAB’s ‘rand’ function, and a simple linear transformation was employed 

(separately for each stimulus set) to stretch the dimensional coordinates to a range of 

0 to 10.  

  For each of our 50 stimulus structures, we separately applied a random amount 

of noise to each coordinate.  This random noise could vary between 0% of the 

coordinate range and a specified maximum noise level of 5%, 15% or 30% of the 

coordinate range.  Noise level was manipulated over three separate simulations to 

explore the effect of increasing noise on stimulus classification, which under our 

analysis, is analogous to worsening SD.  For example, for a given stimulus structure 

subjected to the highest level of noise, each coordinate of each stimulus point would 

be distorted by a number between -30% and 30% of the range of the coordinate.  

Following the introduction of a specified level of noise into our 50, six cluster base 

stimulus structures, we reassessed the optimal classification of these ‘noisy’ stimulus 

structures using the simplicity model. 

The question of primary interest is whether increased noise implies that the 

original optimal classification becomes less specific (so that it is composed of fewer 

clusters), thereby leading to a shift from a basic level advantage to a superordinate 

level advantage.  Accordingly, the predictions of the simplicity model are considered 

only in terms of the number of clusters that the optimal classification consists of.  Our 

results clearly show that the application of noise leads to a shift in category 

intuitiveness away from the original six cluster classifications to classifications 

consisting of fewer clusters (see Figure 2).  More specifically, following the 

introduction of a 5% level of noise into our base stimulus structures, the optimal 

classification identified by the simplicity model consisted of an average of 4.86 
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clusters.  With increasing levels of noise (i.e., 15% and 30%), the classifications 

identified as optimal by the simplicity model consisted of even fewer numbers of 

clusters:  the introduction of a 15% level of noise resulted in an average of 4.34 

clusters in the optimal classification, while the introduction of a 30% level of noise 

resulted in an average of 3.82 clusters in the optimal classification.  Relative to the 

original 6 cluster classifications, these reductions in the number of clusters in the 

classifications identified as optimal were highly significant (5% noise level: t(49) = -

7.82, p < .001; 15% noise level t(49) = -13.85, p < .001; 30% noise level: t(49) = -

16.78, p < .001; all these t-tests were single sample tests against 6).   

In summary, following the introduction of noise, the simplicity model 

identified as optimal classifications with fewer clusters, a finding which we interpret 

as a bias for favouring category structures that are superordinate to the original 6 

cluster classifications.  Moreover, this bias to identify fewer clusters as optimal in the 

‘noisy’ stimulus structures became more pronounced with increasing levels of noise 

(at least up to a maximum noise level of 30%; though note that the psychological 

meaning of higher degrees of noise is unclear).  Overall, we interpret the above results 

as demonstrating a clear shift from a basic level advantage to a superordinate level 

advantage, as has been extensively documented in patients with SD (e.g., Hodges et 

al., 1995; Rogers, Lambon Ralph, Garrard, et al., 2004; Rogers, Lambon Ralph, 

Hodges, & Patterson, 2003, 2004; Rogers & Patterson, 2007; Warrington, 1975).  It is 

worth noting that in a number of cases following the introduction of a 5% or 15% 

level of noise into a base stimulus structure, the original 6 cluster classification was 

still identified as optimal by the simplicity model.  This finding fits well with the data 

provided by Rogers and Patterson (2007; Figure 2, ‘More severe’), since it is not the 
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case that accuracy for basic level categorisation was completely suppressed in their 

severe SD patients. 

One potential criticism of the above results, however, regards whether the 

simplicity model is simply identifying large but strange categories as optimal 

following the introduction of noise into our base stimulus structures.  This would 

contrast sharply with what superordinate categories actually represent, which are 

agglomerates of basic level categories.  That is, if one has the basic level categories 

Dogs, Cats, Cars and Motorbikes, then having a superordinate category in which dogs 

and cars are grouped together and another superordinate category in which cats and 

motorbikes are grouped together is, of course, nonsensical.
 2

  To assess whether the 

simplicity model is identifying large, nonsensical categories as optimal in our ‘noisy’ 

stimulus structures, we adopted the following approach:  First, we computed the 

similarity between the original optimal classification of a given stimulus set and its 

subsequent optimal classification following the introduction of noise.  Second, we 

computed the similarity between the original optimal classification of a given 

stimulus set and a random classification that was composed of the same number of 

clusters as the optimal classification for the associated noise-distorted stimulus set.  In 

this way, we were able to infer whether or not the optimal classifications for the 

‘noisy’ stimulus sets were sensible and not just random, nonsensical structures.  We 

measured the similarity between two stimulus classifications using the Rand Index 

(Rand, 1971).  The Rand Index can be used to compare two classifications by 

determining the ratio of pairs of stimulus items that are both in different clusters, or 

both in the same cluster, in the two classifications, divided by all pairs of stimulus 

                                                
2
 We thank Tim Rogers for noting this possibility. 
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items.  A Rand Index of 0 denotes totally different classifications, whereas a Rand 

Index of 1 denotes identical classifications. 

Overall, a higher degree of Rand similarity was found between the original 

optimal classifications of our base stimulus sets and the optimal classifications of our 

‘noisy’ stimulus sets, than between the original optimal classifications and the random 

(as described above) classifications (see Table 1). Specifically, following the 

introduction of a 5% level of noise, the average Rand similarity between the optimal 

classifications for the original stimulus sets and the optimal classifications for the 

‘noisy’ stimulus sets was 0.88.  In contrast, the average Rand similarity between the 

optimal classifications for the original stimulus sets and the random classifications 

was 0.66 (this difference was significant, t(49) = 17.75, p < .001).  A similar pattern 

of results was obtained with increasing levels of noise:  following the introduction of 

the 15% level of noise, the corresponding Rand similarities were 0.81 and 0.64, 

respectively, (t(49) = 12.81, p < .001), and following the 30% level of noise, they 

were 0.72 and 0.62, respectively, (t(49) = 8.43, p < .001). 

 

----------Table 1 about here---------- 

 

Therefore, the superordinate classifications identified by the simplicity model 

in our ‘noisy’ stimulus sets appear to be sensible generalisations, sharing a high 

degree of classification similarity with the classifications identified as optimal in the 

original stimulus sets.  Given the similarity-based nature of the simplicity model, this 

makes sense: categories that are similar in kind (e.g., are composed of, say, mammals) 

will be situated closer together in representational space than categories that are not 

similar in kind (e.g., mammals versus automobiles).  The probability that it will be 
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basic level categories of a similar kind that will (partly) combine together following 

the introduction of noise is, therefore, much greater. 

 

       ----------Figure 2 about here---------- 

 

A simplicity account of the superordinate level advantage in healthy individuals 

engaged in speeded categorisation 

In the previous section, we showed how the introduction of noise into stored stimulus 

representations can lead to a superordinate level categorisation advantage.  If we 

accept this explanation for superordinate level classification superiority in patients 

with SD, one can reasonably ask what the role of noise would be in a speeded 

categorisation task.  A critic might claim that, for healthy individuals, internal 

representations will always be wholly intact (indeed, we would agree with this 

position) and that a speeded categorisation task could not undermine this intactness.  

However, speeded processing can influence exemplar representation in a different 

way.  Specifically, when engaged in a speeded categorisation task, we propose that 

exemplar representations will be distorted at the time of initial processing, and that 

this distortion will produce the same effect on classification as the noise present in SD 

patients’ stored stimulus representations. 

In what way will a speeded categorisation task lead to distortion in healthy 

individuals’ internal representations?  A number of authors have proposed feature-

sampling to be a key aspect of the time-course of categorisation (e.g., Lamberts, 1995, 

1998, 2000, 2002; Lamberts & Freeman, 1999; see also Nosofsky & Palmeri, 1997).  

Intuitively, if the sampling of the features of a presented stimulus is interrupted, then 

only a reduced representation of that stimulus will be available for any further 
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processing.  Theorists examining the time course of categorisation have proposed 

three components to this process:  First, features of a stimulus must be processed and 

then integrated into a coherent representation; second, this stimulus representation 

must be assessed in relation to retrieved information about categories and category 

members; and finally, category membership must be decided (Lamberts, 2002).  

There are slight variations on this theme; for example, some authors have argued for 

sequential ordering effects when assessing the dimensions of a stimulus during a 

categorisation task (i.e., processing dimension 1, followed by dimension 2, followed 

by dimension 3, etc.; see Schyns, Petro, & Smith, 2007).  The key insight, though, is 

that when there are constraints which limit an observer’s ability to fully assess a 

stimulus, sampling of the stimulus’ dimensions or features will be interrupted, and a 

reduced stimulus representation will be formed. This may simply mean a reduction in 

the number of dimensions sampled, or equally a sampling-related bias that reflects the 

weighting of the stimulus’ dimensions (e.g., Lamberts, 1995).  Such possibilities have 

been observed for categorisation judgments at RT latencies which are consistent with 

those considered in Rogers and Patterson’s (2007) Experiment 3 ‘Fast’ condition (i.e., 

around 450 ms; e.g., Lamberts, 1995). 

In summary, there is extensive theoretical and empirical work suggesting that 

under speeded categorisation conditions the representations formed of stimuli are 

reduced.  Accordingly, when a stored stimulus is invoked for comparison with a 

presented one, this comparison will presumably have to take place in terms of the 

reduced dimensionality of the presented one.  For example, for items normally 

represented in N dimensions in psychological space, a speeded categorisation task 

might lead to a new stimulus being represented in M < N dimensions.  As a 

consequence of this dimensional impoverishment, the comparison of the new stimulus 



Reversals of the Basic-Level Advantage    25 

with stored stimuli would have to take place with respect to the reduced M-

dimensional subspace of the full psychological space, resulting in distortion of 

stimulus representations. We propose that, as a result of this process, corresponding 

categorisations would become less specific, with an associated shift from a basic level 

advantage to a superordinate level one.  While the cognitive processes outlined here 

may be viewed as qualitatively different from those outlined in the previous section, 

at the root of each account is a distortion of stimulus representations (of course, where 

the distortion process comes from differs between the two approaches). 

The simplicity model can be utilised in conjunction with the assumption of 

reduced dimensionality to explore the plausibility of our proposal:  We randomly 

constructed a new set of initial, base stimulus structures in nearly the same way as that 

described above.  Specifically, we once again requested that a 6 cluster classification 

should be identified as optimal by the simplicity model in our initial, base stimulus 

structures (each composed of 12 stimuli).  However, while in our previous 

demonstration the stimuli were composed of two dimensions of variation, in the 

present case, the stimuli were composed of 10 dimensions of variation, each ranging 

from 0 – 10. The reason for this is that, as we are now interested in examining 

classification predictions within dimensionally reduced representations, the initial 

stimulus structures needed to provide the scope for dimensional loss. 

In the present demonstration, we assessed the impact of eliminating 1, 3, 5, 

and 7 of the 10 initial dimensions of variation on the optimal categorisation.  For each 

set of analyses, we randomly generated 50, 10 dimensional stimulus structures and 

specified a ‘knock-out’ level.  This ‘knock-out’ level specified the number of 

dimensions of variation that were to be eliminated.  For example, a ‘knock-out’ level 

of 3 would mean that only 7 of the original 10 dimensions of variation would be 
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available for categorising the stimulus set of reduced dimensionality.  The manner in 

which the dimensions of variation were selected for elimination was determined 

randomly. 

Overall, a reduction in the number of dimensions from which the stimuli were 

represented resulted in the simplicity model identifying optimal classifications with 

fewer clusters than previously identified when all 10 dimensions were available.  

Moreover, this pattern became more pronounced as the stimulus structures became 

more dimensionally impoverished.  At a ‘knock-out’ level of 1, the optimal 

classification consisted of an average number of clusters of 5.16; at a ‘knock-out’ 

level of 3, 4.64 clusters; at a ‘knock-out’ level of 5, 4.52 clusters; and at a ‘knock-out’ 

level of 7, 4.10 clusters (see Figure 3).  The number of clusters identified as making 

up the optimal classifications of the dimensionally reduced representations was 

consistently significantly lower than the number of clusters identified as making up 

the optimal classifications of the initial stimulus structures (smallest t(49) = -6.86, p < 

.001; all single sample t-tests against 6).  One interesting point to note here is that out 

of the 200 simulations that made up our modelling work at all levels of dimensional 

‘knock-out’, we found only two instances of an increase in the number of clusters in 

the classification identified as optimal by the simplicity model (in these two cases, a 

classification of 7 clusters was identified as optimal).  It is clear, therefore, that when 

a stimulus representation is impoverished, the subsequent optimal classification 

identified by the simplicity model will typically consist of fewer clusters, relative to 

the optimal classification identified by the simplicity model when the same stimuli are 

fully represented. 

 

----------Figure 3 about here---------- 
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As for the ‘noisy’ stimulus structures in the previous section, we further 

assessed whether the optimal classifications identified for the impoverished stimulus 

structures ‘made sense’.  To do so, we again computed the Rand similarity between 

the optimal classifications for the original stimulus structures and the corresponding 

reduced dimensionality ones.  Furthermore, we also computed the Rand similarity 

between the optimal classifications for the original stimulus structures and random 

classifications, which contained the same number of clusters as the optimal 

classifications for the corresponding reduced dimensionality stimulus sets.  At all 

levels of ‘knock-out’, the Rand similarity between the optimal classifications for the 

original stimulus structures and the optimal classifications for the corresponding 

reduced dimensionality stimulus structures was significantly higher than the Rand 

similarity between the original classifications and the random (as described above) 

ones (smallest t(49) = 4.81, p < .001; all t-tests were paired samples t-tests; see Table 

1).  As one would expect, as more dimensions are eliminated, there is a monotonic 

decrease in the similarity between the optimal classifications for the original stimulus 

structures and the optimal classifications for the dimensionally impoverished stimulus 

structures.  Critically though, Rand similarity was high at all levels of ‘knock out’, 

suggesting that these more general (superordinate) classifications were consistent with 

the original, more specific (subordinate) ones. 

In summary, the present results show that when the representation of a given 

stimulus structure is impoverished due to a reduction in the number of dimensions 

being sampled, this leads to the identification of optimal classifications that are 

superordinate to the classifications identified with complete representations.  Our 

demonstration is based on well-established accounts of the time course of object 

categorisation and the influence of interruption in feature-sampling during speeded 
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perception (e.g., Lamberts, 1995, 1998, 2000).  In conclusion, the somewhat 

counterintuitive finding that healthy individuals show a superordinate level > basic 

level advantage during speeded categorisation (Rogers & Patterson, 2007) can be 

predicted by the simplicity model with  straightforward assumptions concerning the 

influence of time constraints in feature-sampling during speeded categorisation (see 

Lamberts, 2002). 

 

----------Table 2 about here---------- 

 

General Discussion 

The purpose of the present paper was to assess whether the findings of Rogers and 

Patterson (2007) could be explained using a standard, computational-level model of 

categorisation.  Specifically, we utilised the simplicity model of Pothos and Chater 

(2002; Pothos & Close, 2008) to show that there is a shift to more general 

(superordinate) categories under conditions that we propose simulate SD and speeded 

categorisation.  In both cases, this superordinate level shift was assumed to result 

from the distortion of an individual’s original stored stimulus representations.  

However, the manner in which this distortion came about was different:  in SD 

patients, distortion was assumed to result from noisy stimulus representations, in 

terms of random perturbations in the position of stimulus items in psychological 

space.  In healthy individuals observing stimuli under speeded conditions, distortion 

was manifested in terms of reducing the dimensionality of the stimulus 

representations, relative to those representations under conditions of unlimited 

observation time. 
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In explaining Rogers and Patterson’s (2007) data, a number of similarities can 

be identified between the PDP account and the simplicity account.  For example, both 

accounts assume that categories should maximise within-category similarity and 

minimise between-category similarity, and that basic level categories provide the 

optimal balance between these two factors.  Moreover, in the case of speeded 

categorisation, both the PDP account and the simplicity model similarly assume that 

speeded categorisation results in classifications based on an impoverished/ 

incompletely-specified stimulus representation.  While noting these similarities, the 

account we offer for Rogers and Patterson’s (2007) findings – in terms of the 

simplicity framework – allows a consideration of the assumptions made in their 

modelling approach.  First, the simplicity model requires no assumption to be made 

about how different modal elements of a stimulus are combined within the human 

brain, but this is a major component of Rogers and Patterson’s (2007) model.  While 

the assumptions Rogers and Patterson (2007) make appear highly plausible, the 

question we raised here is whether they are essential to explain the superordinate level 

> basic level advantage in SD patients, and in healthy individuals engaged in speeded 

categorisation.  Second, the PDP model of Rogers and Patterson (2007) involves 

various free parameters or architectural choices (e.g., activation levels, or the way 

such activation generalises to other, proximal concepts).  The simplicity model 

account we provide is parameter free and is based on only two assumptions:  1) that 

stimulus exemplars are stored in representational space; and 2) that representations 

can be distorted, either by introducing noise or by reducing their dimensionality. 

  The fact that the simplicity model can reproduce the two key empirical 

findings of Rogers and Patterson (2007) suggests there is room to examine the 

possible convergence between standard, computational-level categorisation theory 
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and the PDP process model of Rogers and Patterson (2007). Note that the simplicity 

model is not a process model and so its coverage of the data is not as detailed as that 

of the PDP model.  As presently implemented, when given a specific classification, 

the simplicity model provides no ready means for assessing the probability of 

generating a yes/no response in a categorisation experiment.  This contrasts with the 

PDP model which has been designed to readily provide a measure of participants’ 

likelihood of producing yes/no responses, given a specific classification scheme.  In 

Rogers and Patterson’s (2007) paper, for example, d’ scores are reported as a measure 

of the likelihood of discriminating between category members and distractors.  One 

further important weakness of the simplicity model (and of standard categorisation 

theory in general) is that it links poorly with the known pathology of SD; in other 

words, there are no assumptions in the simplicity model that can associate increased 

distortion due to noise with damage of the anterior temporal lobe.  Of course, a key 

feature of Rogers and Patterson’s (2007) model is its specification in terms of a 

proposal for the neuroscience of categorisation.   

  Within the categorisation literature, only a handful of computational models 

have risen to the challenge of including assumptions about the processes that underlie 

categorisation at the neural level (e.g., Ashby & Maddox, 2005; Ashby, Alfonso-

Reese, Turken, & Waldron, 1998).  However, such models are typically models of 

supervised categorisation and so can offer relatively little insight regarding basic level 

categorisation.  Very provisionally, the process of spontaneous categorisation possibly 

reflects the spontaneous reorganisation of perceptual information in later visual areas 

(such as the lateral occipital cortex; Op de Beek, Torfs, & Wagemans, 2008).  If so, 

this raises the question of how the particular pathology of SD (i.e., damage to the 

anterior temporal cortex) can affect the categorisation process.  Exploring this 
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possibility will clearly require extensive additional research. Our general point is that 

by appreciating that the superordinate level > basic level advantage can be understood 

with respect to a standard model of categorisation, new possibilities can emerge for 

understanding the corresponding neuroscience of SD deficits as well.   

  Experimentally, the present application of the simplicity model has a number 

of intriguing implications.  For example, according to the simplicity model, not all 

superordinate level category structures should be resistant to the pathology of SD.  

Specifically, those superordinate level category structures that contain a large amount 

of variability, and are therefore not especially intuitive from the outset, should be less 

resistant to SD than those superordinate level category structures that are associated 

with little variability, and are therefore rather intuitive from the outset. With future 

research we hope to address this issue, noting, however, the difficulty of quantifying 

the intuitiveness of real-life categories. 

  In conclusion, we have shown that a standard model of categorisation, the 

simplicity model, which is theoretically more restricted than PDP theory, predicts the 

main findings of Rogers and Patterson (2007).  It is important to note, however, that 

the empirical coverage that the simplicity model provides is not as detailed as that of 

the PDP model.  The account we offer is premised on the notion of category 

intuitiveness, which is embodied in the simplicity model (and most models of 

unsupervised categorisation), and on the way distorting a representation (either by 

noise or by reducing dimensionality) can disrupt this intuitiveness.  Our results may 

motivate a possible re-examination of which assumptions in the PDP model are 

strictly necessary for explaining the superordinate level > basic level advantage when 

it occurs.  More generally, our findings provide some novel perspectives on the 

neuroscience of SD. 
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Figure Captions 

 

Figure 1. A stimulus structure for which the simplicity model predicts a 5 cluster 

classification as most intuitive when classification is undertaken assuming the stimuli 

are represented in terms of both dimensions, and without noise.  This classification 

represents the basic level, with a codelength of 68.92%. 

 

Figure 2. Overall clustering results following the introduction of different levels of 

noise into the original, base stimulus structures. 

 

Figure 3. Overall clustering results following different levels of dimensional ‘knock-

out’ to the original, base stimulus structures. 
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Figure 2. 
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Figure 3. 
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Table 1 

Rand similarities between the optimal classifications of the original stimulus 

structures and the corresponding noisy ones and random ones. 

 

5% 15% 30%

Noisy Structure 0.88 0.81 0.72

Random Structure 0.66 0.63 0.61

Noise Level
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Table 2 

Rand similarities between the optimal classifications of the original stimulus 

structures and the corresponding dimensionally impoverished ones and random ones. 

 

1 3 5 7

Impoverished Structure 0.88 0.81 0.78 0.73

Random Structure 0.69 0.67 0.66 0.67

 'Knock-out' Level

 
 


