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A bstr act | W e presen t a new metho d of surface recon-

struction that generates smo oth and seamless mo dels from

sparse, noisy , non-uniform, and lo w resolution range data.

Data acquisition tec hniques from computer vision, suc h as

stereo range images and space carving, pro duce 3D p oin t

sets that are imprecise and non-uniform when compared to

laser or optical range scanners. T raditional reconstruction

algorithms designed for dense and precise data do not pro-

duce smo oth reconstructions when applied to vision-based

data sets. Our metho d constructs a 3D implicit surface,

form ulated as a sum of w eigh ted radial basis functions. W e

ac hiev e three primary adv an tages o v er existing algorithms:

(1) the implicit functions w e construct estimate the sur-

face w ell in regions where there is little data; (2) the recon-

structed surface is insensitiv e to noise in data acquisition

b ecause w e can allo w the surface to appro ximate, rather

than exactly in terp olate, the data; and (3) the reconstructed

surface is lo cally detailed, y et globally smo oth, b ecause w e

use radial basis functions that ac hiev e m ultiple orders of

smo othness.

Index terms : regularization, surface �tting, implicit func-

tions, noisy range data

I. Intr oduction

The computer vision comm unit y has dev elop ed n umer-

ous metho ds of acquiring three dimensional data from im-

ages. Some of these tec hniques include shap e from shading,

depth appro ximation from a pair of stereo images, and v ol-

umetric reconstruction from images at m ultiple viewp oin ts.

The adv an tage of these tec hniques is that they use cam-

eras, whic h are inexp ensiv e resources when compared to

laser and optical scanners. Because of the a�ordabilit y of

cameras, these vision-based tec hniques ha v e the p oten tial

to enable the creation of digital mo dels b y home computer

users who ma y not ha v e professional CAD training. On

the other hand, mo dels in p opular use in the en tertain-

men t industry (animation and gaming applications), video

and image editing, and computer graphics researc h come

from dense laser scans or medical scans, not from vision-

based tec hniques. There are signi�can t di�erences in terms

of qualit y and accuracy b et w een data sets obtained from

activ e scanning tec hnology (e.g. optical, laser, and time-

of-igh t range scanners) and passiv e scanning tec hnology

(e.g. shap e from shading, v o xel coloring) that use only im-

ages and camera calibration to obtain 3D p oin t sets. Man y

of the w ell-kno wn and often used reconstruction algorithms

w ere designed to generate surfaces from dense and precise

data suc h as those obtained from activ e scanners. These

metho ds are not robust to the c hallenges p osed b y data ob-

tained from passiv e scanning tec hnology . The aim of our

metho d is to b e able to reconstruct smo oth and con tin uous

surfaces from the more c hallenging vision-based data sets.

The new approac h presen ted in this pap er constructs a

3D implicit function from vision-based range data. W e use

an analytical implicit represen tation that can smo othly in-

terp olate the surface where there is little or no data, that

is compact when compared to discrete v olumetric distance

functions, and that can either appro ximate or in terp olate

the data. The resulting surfaces are inheren tly manifold,

smo oth, and seamless. Implicit surfaces are w ell-suited for

op erations suc h as collision detection, morphing, blend-

ing, and mo deling with constructiv e solid geometry b ecause

they are form ulated as a single analytical function, as op-

p osed to a piecewise represen tation suc h as a p olygonal

mo del or a dense v olumetric data set. Implicit surfaces

can also accurately mo del soft and organic ob jects and can

easily b e con v erted to a p olygonal mo del b y iso-surface ex-

traction.

W e construct an implicit surface using v olumetric regu-

larization. This approac h is based on the v ariational im-

plicit surfaces of T urk and O'Brien [48]. Our implicit func-

tion consists of a sum of w eigh ted radial basis functions

that are placed at surface and exterior constrain t p oin ts

de�ned b y the data set. The w eigh ts of the basis functions

are determined b y solving a linear system of equations. W e

can appro ximate the data set b y relaxing the linear system

through v olumetric regularization. The abilit y to c ho ose

whether to appro ximate or in terp olate the data is esp e-

cially adv an tageous in the presence of noise. Surface detail

and smo othness are obtained b y using basis functions that

ac hiev e m ultiple orders of smo othness.

Our main con tributions are: (1) in tro ducing the use of

v ariational implicit surfaces for surface reconstruction from

vision-based range data, (2) the application of a new radial

basis function that ac hiev es m ultiple orders of smo othness,

(3) enhancemen t of �ne detail and sharp features that are

often smo othed-o v er b y the v ariational implicit surfaces,

and (4) construction of appro ximating, rather than in ter-

p olating surfaces to o v ercome noisy data.

The remainder of the pap er is organized as follo ws: in

Section I I, w e review related w ork in surface represen tation

and reconstruction. W e giv e an o v erview of our approac h in

I I I. In Section IV, w e in tro duce v olumetric regularization

and describ e our approac h to constructing appro ximating

surfaces using the v ariational implicit surface represen ta-

tion. In Section V, w e in tro duce a radial basis function that

ac hiev es m ultiple orders of smo othness. In Section VI, w e

discuss sampling issues and the preserv ation of top ology in
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our framew ork. Results from syn thetic range images and

from real space carv ed data sets are sho wn in Section VI I.

I I. Rela ted W ork

Our approac h to surface reconstruction can b e compared

to previous w orks in the areas of shap e represen tation, re-

construction, smo othing, and surface regularization. The

large n um b er of published metho ds in these areas mak es

it nearly imp ossible to p erform a comprehensiv e surv ey .

Instead, w e describ e some of the more w ell-kno wn ap-

proac hes, with a bias to w ards those more closely related

to our o wn approac h. T able I summarizes the comparison

b et w een related reconstruction algorithms and our o wn.

A. Surfac e R epr esentation

Three general classes of surface represen tations include

discrete, parametric, and implicit approac hes. Discrete

forms, suc h as a collection of p olygons and p oin t samples,

are the most widely used represen tations. The primary dis-

adv an tages asso ciated with them are that they are v erb ose,

that they can only appro ximate smo oth surfaces, and that

they ha v e �xed resolution. In con trast, parametric sur-

faces, suc h as B-splines and Bezier patc hes, ma y b e sam-

pled at arbitrary resolution and can b e used to represen t

smo oth surfaces. The main dra wbac k of param teric sur-

faces is that sev eral parametric patc hes need to b e com-

bined to form a closed surface, resulting in seams b et w een

the patc hes. Implicit represen tations, on the other hand,

do not require seams to represen t a closed surface. Implicit

represen tations come in b oth analytical and discrete sam-

pled forms. Analytical represen tations, suc h as our o wn,

are more compact than sampled represen tations. Exam-

ples of sampled implicit functions include gridded v olumes

and o ctree represen tations suc h as those used b y Szeliski

et al. [39], F risk en et al. [18], and Curless and Lev o y [12].

B. Surfac e R e c onstruction

In this section, w e discuss the more p opular reconstruc-

tion algorithms. The shap e reconstruction metho ds w e de-

scrib e include range data merging and mesh reconstruction,

region gro wing, algorithms based on computational geom-

etry , and algebraic �tting.

Although our w ork do es not fo cus on reconstructing

surfaces from dense and precise range data, metho ds

that merge m ultiple range images and reconstruct smo oth

meshes address issues similar to our o wn. Issues that arise

in suc h w ork include merging m ultiple range images, clos-

ing of gaps in the reconstruction, and handling of outliers.

Curless and Lev o y [12] and Hilton et al. [20] construct

signed distance functions from the range images and ob-

tain a manifold surface b y iso-surface extraction. Soucy

and Laurendeau [37] and T urk and Lev o y [47] merge tri-

angulations of the range p oin ts. Note that all of these

metho ds require range data using structured ligh t that is

m uc h more accurate than can b e measured passiv ely using

photographs alone.

Another approac h is region gro wing, and examples in-

clude Hopp e's w ork on surface reconstruction [21] and Lee,

T ang and Medioni's w ork on tensor v oting [26,40]. Hopp e

uses a plane is �tted to a neigh b orho o d around eac h data

p oin t, pro viding an estimate of the surface normal for the

p oin t. The surface normals are propagated using a mini-

mal spanning tree, and then a signed distance function is

con tructed in small neigh b orho o ds around the data p oin ts.

Lee and Medioni's tensor v oting metho d is similar in that

neigh b oring p oin ts are used to estimate the orien tations of

data p oin ts. The tensor is the co v ariance matrix of the

normal v ectors of a neigh b orho o d of p oin ts. Eac h data

p oin t v otes for the orien tation of other p oin ts in its neigh-

b orho o d using its tensor �eld. In [40], the surface is re-

constructed b y gro wing planar, edge, and p oin t features

un til they encoun ter neigh b oring features. Both metho ds

describ ed ab o v e are sensitiv e to noise in the data b ecause

they rely on go o d estimates for the normal v ector at eac h

data p oin t.

Sev eral algorithms based on computational geometry

construct a collection of simplexes that form the shap e or

surface from a set of unorganized p oin ts. These metho ds

exactly in terp olate the data | the v ertices of the simplexes

consist of the giv en data p oin ts. A consequence of this is

that noise and aliasing in the data b ecome em b edded in the

reconstructed surface. Of suc h metho ds, three of the most

successful are Alpha Shap es [15], the Crust algorithm [1],

and the Ball- Piv oting algorithm [4]. In Alpha shap es, the

shap e is carv ed out b y remo ving simplexes of the Delauna y

triangulation of the p oin t set. A simplex is remo v ed if its

circumscribing sphere is larger than the alpha ball. In the

Crust algorithm, Delauna y triangulation is p erformed on

the original set of p oin ts along with V oronoi v ertices that

appro ximate the medial axis of the shap e. The resulting

triangulation distinguishes triangles that are part of the

ob ject surface from those that are on the in terior b ecause

in terior triangles ha v e a V oronoi v ertex as one of their v er-

tices. Both the Alpha Shap es and Crust algorithms need

no other information than the lo cations of the data p oin ts

and p erform w ell on dense and precise data sets. The ob ject

mo del that these approac hes generate, ho w ev er, consists of

simplexes that o ccur close to the surface. The collection of

simplexes is not a manifold surface, and extraction of suc h

a surface is a non-trivial p ost-pro cessing task. The Ball-

Piv oting algorithm is a related metho d that a v oids non-

manifold constructions b y gro wing a mesh from an initial

seed triangle that is correctly orien ted. Starting with the

seed triangle, a ball of sp eci�ed radius is piv oted across

edges of eac h triangle b ounding the gro wing mesh. If the

piv oted ball hits v ertices that are not y et part of the mesh,

a new triangle is instan tiated and added to the gro wing

mesh. In Figure 1 (righ t panel), the Crust algorithm is

applied to real range data obtained from the generalized

v o xel coloring metho d of [11]. Although the general shap e

of the to y dinosaur is recognizable, the surface is rough due

to the noisy nature of the real range data.

Man y algebraic metho ds a v oid creating noisy surfaces

b y �tting a smo oth function to the data p oin ts, and b y not

requiring that the function pass through all data p oin ts.

The reconstructed surface ma y consist of a single global
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T ABLE I

Comp arison of Rela ted W orks

Metho ds Shap e Arbitrary Complex Robust Fills Gaps

Represen tation T op ology Mo dels to Noise

Distance Fields discrete y es y es no no

Region Gro wing piecewise con tin uous y es y es no no

Computational piecewise con tin uous y es y es no no

Geometry

Algebraic Metho ds analytical y es no y es y es

Deformable analytical no no y es y es

Sup erquadrics

V olumetric analytical y es y es y es y es

Regularization

function or man y functions that are pieced together. Ex-

amples of reconstruction b y global algebraic �tting are the

w orks of T aubin [41, 42], Gotsman and Keren [22, 23], and

Blane et al. [5]. T aubin �ts a p olynomial implicit func-

tion to a p oin t set b y minimizing the distance b et w een the

p oin t set and the implicit surface. In [41], T aubin dev elops

a �rst order appro ximation of the Euclidean distance and

impro v es the appro ximation in [42]. Gotsman and Keren

create parameterized families of p olynomials that satisfy

desirable prop erties, suc h as �tness to the data or con ti-

n uit y preserv ation. Suc h a family m ust b e large so that it

can include as man y functions as p ossible. This tec hnique

leads to an o v er- represen tation of the subset, in that the

resulting p olynomial will often ha v e more co e�cien ts for

whic h to solv e than the simpler p olynomials included in

the subset, th us requiring additional computation. Blane

et al. p erforms p olynomial �tting of p oin ts on a zero lev el

set and (for stabilit y) �ts p oin ts on t w o additional lev el sets

close to the zero lev el set | one in ternal and one external

lev el set. The primary limitation of global algebraic meth-

o ds is their inabilit y to reconstruct complex mo dels. The

highest degree p olynomials that ha v e b een demonstrated

are around degree 12, and this is far to o small to represen t

complex shap es.

In [3], Ba ja j o v ercomes the complexit y limitation b y con-

structing piecewise p olynomial patc hes (called A-patc hes )

that com bine to form one surface. Ba ja j uses Delauna y tri-

angulation to divide the p oin t set in to groups delineated b y

tetrahedrons. An A-patc h is formed b y �tting a Bernstein

p olynomial to the data p oin ts within eac h tetrahedron. By

constructing a piecewise surface, Ba ja j's approac h loses the

compact c haracteristic of a global represen tation, and op er-

ations suc h as collision detection, morphing, blending, and

mo deling with constructiv e solid geometry b ecome more

di�cult to p erform since the represen tation is no longer a

single analytical function.

Examples of algebraic metho ds dev elop ed earlier in the

vision comm unit y that pro vide b oth smo oth global �tting

and accurate lo cal re�nemen t include the w orks of T er-

zop oulos and Metaxas on deformable sup erquadrics [46]

and P en tland and Sclaro� on generalized implicit func-

tions [32,34]. Both metho ds use sup erquadric ellipsoids

as the global shap e and add lo cal deformations to �t the

data p oin ts. T erzop oulos and Metaxas separate the re-

constructed mo del in to global parameters de�ned b y the

sup erquadric co e�cien ts, and lo cal displacemen ts de�ned

as a linear com bination of basis functions. The global and

lo cal deformation parameters are solv ed using dynamics.

P en tland and Sclaro� de�ne a generalized implicit mo del

that consists of a sup erquadric ellipsoid and a mo dal de-

formation matrix. The mo dal deformation parameters are

found b y iterativ ely �nding the minim um RMS error to the

data p oin ts. The residual error after the deformation pa-

rameters ha v e b een found are incorp orated in to a displace-

men t map to b etter �t the data. As with most algebraic

metho ds, the dra wbac k of these tec hniques is their inabilit y

to handle arbitrary top ology .

Our approac h is similar to global algebraic �tting in that

w e construct one global implicit function, although our ba-

sis functions are not p olynomials. Previous w ork that is

most closely related to our o wn are metho ds based on r e g-

ularization whic h w e describ e next.

C. Surfac e R e gularization

Surface reconstruction is an ill-p osed in v erse problem b e-

cause there are in�nitely man y surfaces whic h ma y pass

through a giv en set of p oin ts. Surfac e r e gularization re-

stricts the class of p ermissible surfaces to those whic h

minimize a giv en energy functional. T erzop oulos pio-

neered �nite-di�erencing tec hniques to compute appro x-

imate deriv ativ es used in minimizing the thin-plate en-

ergy functional of a heigh t-�eld. He dev elop ed computa-

tional molecules from the discrete form ulations of the par-

tial deriv ativ es and uses a m ulti-resolution metho d to solv e

for the surface. Boult and Kender compare classes of p er-

missible functions and discuss the use of basis functions to

minimize the energy functional asso ciated with eac h class.

Using syn thetic data, they sho w examples of o v ersho ot-

ing surfaces that are often encoun tered in surface regular-

ization. As exempli�ed b y these t w o metho ds, man y ap-

proac hes based on surface regularization are restricted to

heigh t �elds.

In [16], F ang and Gossard reconstruct piecewise con tin u-

ous parametric curv es. The adv an tage of parametric curv es

and surfaces o v er heigh t-�elds is the abilit y to represen t

closed curv es and surfaces. Eac h curv e in their piecewise re-

construction minimizes a com bination of �rst, second, and

third order energies. Unlik e previous examples, the deriv a-
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tiv e of the curv e in this metho d is ev aluated with resp ect

to the parametric v ariable. Eac h curv e is form ulated as a

sum of w eigh ted basis functions. F ang and Gossard sho w

examples using Hermite basis. The approac h w e presen t in

this pap er has similar elemen ts. W e also use basis functions

to reconstruct a closed surface whic h minimizes a com bi-

nation of �rst, second, and third order energies. W e di�er

from the previous w ork in that w e reconstruct complex

3D ob jects using a single implicit function; w e p erform

v olumetric rather than surface regularization; and w e use

energy-minimizing basis functions as primitiv es.

Because our metho d of reconstruction applies regular-

ization, comparisons can also b e made to other classes of

stabilizers (or priors) and other energy-minimizing basis

functions. W e p ostp one the discussion of other prior as-

sumptions and resulting basis functions to Section V where

w e in tro duce the m ulti-order basis function that w e use to

reconstruct implicit surfaces. The use of radial basis func-

tions for graphical mo delling w as in tro duced b y Blinn[6].

Since then, metho ds ha v e b een published that use this

surface represen tation for surface reconstruction, includ-

ing Muraki[29] and Sa v c henk o[33]. Our w ork di�ers from

these metho ds in that w e use a basis function that min-

imizes m ultiple energies in 3D, including thin-plate and

mem brane. Comparison with reconstructions using Gaus-

sian and thin-plate basis functions will b e addressed in Sec-

tion V-A.

D. Surfac e Smo othing

A closely related topic is that of mesh smo othing, where

a lo w-pass �lter is applied to a mesh to reduce noise. Exam-

ples of this metho d include the w orks of T aubin et al. [43]

and Desbrun et al. [13]. The primary dra wbac k of mesh

smo othing metho ds is that they require an initial mesh.

Our approac h creates and smo othes a surface in one step.

Regularization and smo othing are closely tied. The re-

lationship b et w een regularization and smo othing has b een

studied b y man y , including Girosi et al. [19], T erzop ou-

los [44], and Nielson et al [30]. In Section V-A, w e use a

v olumetric data set to demonstrate the similarit y b et w een

regularization and spatial smo othing. Our reconstruction

of the data set (whic h uses no information ab out the grid-

ded structure of the v olume) comes v ery close to a mo del

obtained b y spatially smo othing the 3D data set prior to

iso-surface extraction. The adv an tage of our reconstruction

algorithm is that it ma y b e applied to data sets that are

unstructured and non-uniform. Spatial smo othing cannot

easily b e applied to suc h data.

E. A ctive versus Passive Sc anning T e chnolo gy

Man y of the metho ds describ ed ab o v e reconstruct sur-

faces from dense and precise data obtained from activ e

scanning. In this pap er, w e address the problem of re-

constructing smo oth and seamless surfaces using data ob-

tained from passiv e scanning. In passiv e scanning, only

images and camera calibration information are used to ob-

tain 3D p oin t sets. Activ e scanning tec hnology (e.g. ligh t

strip e and time-of-igh t range scanners) di�er from passiv e

Fig. 1. Left: Stanford Bunn y data set from cyb erw are scanner.

Righ t: The to y dinosaur data set from v o xel coloring. Both re-

constructions w ere generated using the Crust algorithm. The

dinosaur data set obtained from passiv e scanning is noisier and

lo w er in resolution.

scanning tec hnology (e.g. shap e from shading, v o xel col-

oring) in terms of qualit y , accuracy , and cost. The t ypical

scanning resolution of cyb erw are scanners is 0.5 mm, while

that of the v o xel coloring data sets w e use as examples in

this pap er are appro ximately 1.25 mm. Data from passiv e

scanning is comparativ ely more noisy , more non-uniform,

and more sparse than data from activ e scanners. In par-

ticular, surface reconstruction metho ds suc h as [12, 20, 47,

37] are not suited for creating mo dels from data captured

using passiv e scanning tec hniques.

Figure 1 is a comparison b et w een data sets obtained from

laser scanners and that obtained from v o xel coloring. Both

data sets w ere reconstructed using the Crust algorithm of

Amen ta et al. whic h exactly in terp olates all data p oin ts.

The to y dinosaur data set obtained from v o xel coloring

is signi�can tly lo w er in resolution and accuracy than the

Stanford Bunn y obtained using a cyb erw are scanner. The

primary adv an tage of passiv e scanning metho ds is the lo w

cost of digital cameras (less than $1000) that are used to

capture the images. Camera calibration is obtained using a

calibration grid that is captured in the images. In con trast,

the curren t cost of activ e range scanners is from $10,000 to

o v er $100,000.

I I I. O ver view of the Appr o a ch

Our approac h to surface reconstruction is based on cre-

ating a single implicit function f ( x ) b y summing together

a collection of w eigh ted radial basis functions. W e adopt

the con v en tion that the implicit function is p ositiv e inside

the surface, zero on the surface, and negativ e outside the

surface. The nature of the radial basis functions that are

used is imp ortan t to the qualit y of the reconstructions, and

w e discuss the basis function selection in detail in Section

V. As input to implicit function creation, our metho d re-

quires a collection of constrain t p oin ts c

i

that sp ecify where

the function should tak e on particular v alues. Most of the

constrain t p oin ts come directly from the input data, and

these are p oin ts where the implicit function should tak e

on the v alue zero. W e call these 3D lo cations surfac e c on-

str aints . In addition, our metho d requires that some 3D
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p oin ts b e explicitly iden ti�ed as b eing outside the surface,

and w e call these exterior c onstr aints . Scattered data ap-

pro ximation of the surface and exterior constrain ts is then

used to construct the implicit function. In Section IV-B

w e describ e the details of the implicit form ulation, and in

Section VI w e discuss the sampling of surface and exterior

constrain ts from the measured data of an ob ject.

IV. V olumetric Regulariza tion

The surface reconstruction tec hnique that w e presen t in

this pap er is an extension of the v ariational implicit sur-

faces of [48]. This approac h is based on the calculus of

v ariation and is similar to surface regularization in that it

minimizes an energy functional to obtain the desired sur-

face. Unlik e surface regularization, ho w ev er, the energy

functional is de�ned in R

3

rather than R

2

. Hence, the func-

tional do es not act on the space of surfaces, but rather, on

the space of 3D functions. W e call this volumetric r e gu-

larization . W e use v olumetric regularization to obtain a

smo oth 3D implicit function whose zero lev el set is our re-

constructed surface. By Sard's theorem [8, 17], the set of

nonregular v alues of suc h a smo oth implicit function is a

n ull set. Hence, the surface describ ed b y the zero lev el

set of our implicit function do es not con tain pathological,

or non-di�eren tiable, p oin ts. In this section, w e describ e

ho w w e construct an appro ximating surface and obtain the

implicit function represen ting the surface using v olumetric

regularization.

A. Appr oximation vs. Interp olation

Sc atter e d data interp olation is the pro cess of estimat-

ing previously unkno wn data v alues using neigh b oring data

v alues that are kno wn. In the case of surface reconstruc-

tion, the surface passes exactly through the kno wn data

p oin ts and is in terp olated b et w een the data p oin ts. Data

in terp olation is appropriate when the data v alues are pre-

cise. In vision-based data, ho w ev er, there is some uncer-

tain t y in the v alidit y of the data p oin ts. Using data in-

terp olation to construct the surface is no longer ideal b e-

cause the surface ma y not actually pass exactly through the

giv en data p oin ts. This is precisely the problem with algo-

rithms from computational geometry that generate p olyg-

onal meshes using data p oin ts as the v ertices of the mesh.

If the uncertain t y of the data p oin ts is kno wn, a surface

that b etter represen ts the data w ould pass close to the

data p oin ts rather than through them. Constructing suc h

a surface is kno wn as data appr oximation . Man y vision-

based tec hniques for capturing 3D surface p oin ts ha v e an

asso ciated error distribution for the data p oin ts. In this

section, w e discuss ho w data appro ximation is ac hiev ed in

our framew ork using v olumetric regularization.

In regularization, the unkno wn function is found b y min-

imizing a cost functional, H , of the follo wing form:

H [ f ] = � [ f ] +

1

�

n

X

i =1

( y

i

� f ( x

i

))

2

(1)

In the ab o v e equation, f is the unkno wn implicit surface

l =2.0l =0.0 l =0.001 l =0.03

Fig. 2. Reconstruction of a syn thetic range image of a cub e corner

using v arious v alues of � .

function; � [ f ] is the smo othness functional, suc h as thin-

plate; n is the n um b er of constrain ts, or observ ed data

p oin ts; y

i

are the observ ed v alues of the data p oin ts at

lo cations x

i

; and � is a parameter (often called the r e gu-

larization p ar ameter ) to w eigh b et w een �tness to the data

p oin ts and smo othness of the surface. W e can allo w the

surface to pass close to, but not necessarily through, the

kno wn data p oin ts b y setting � > 0. When � = 0, the

function in terp olates the data p oin ts. The � v alues ma y b e

assigned according to the noise distribution of the data ac-

quisition tec hnique. Figure 2 sho ws the results of applying

di�eren t � v alues on the same data set. As � approac hes

zero, the surface b ecomes rougher b ecause it is constrained

to pass closer to the data p oin ts. A t � = 0, the surface in-

terp olates the data, and o v ersho ots are m uc h more eviden t.

A t larger v alues of � , the reconstructed mo del is smo other

and approac hes an amorphous bubble.

B. A Solution to the R e gularizing Cost F unctional

Deriv ations presen ted in [19, 49] sho w that the cost

functional giv en in Equation 1 is minimized b y a sum of

w eigh ted radial basis functions as sho wn b elo w:

f ( x ) = P ( x ) +

n

X

i =1

w

i

� ( j x � c

i

j ) (2)

In the ab o v e equation, f ( x ) is an implicit function that

ev aluates to zero on the surface, negativ ely outside, and

p ositiv ely inside; � is the radially symmetric basis function;

n is the n um b er of basis; c

i

are the lo cations of the cen ters

of the basis; and w

i

are the w eigh ts for the basis. In [48],

T urk and O'Brien cen ter a basis function at eac h constrain t

p oin t. W e do the same in this w ork. The constrain ts ma y

b e p oin ts on the surface of the ob ject to b e reconstructed or

p oin ts external to the ob ject. The p olynomial term, P ( x ),

spans the n ull space of the basis function. F or thin-plate

energy , the p olynomial term consists of linear and constan t

terms b ecause thin-plate energy consists of second order

deriv ativ es. In 3D where x = ( x; y ; z ), the p olynomial term

for thin-plate is P ( x ) = p

0

+ p

1

x + p

2

y + p

3

z . The unique

implicit function is found b y solving for the w eigh ts, w

i

, of

the radial basis functions and for the co e�cien ts, p

0

, p

1

, p

2

,

and p

3

, of P ( x ). The unkno wns are solv ed b y constructing

the follo wing linear system, formed b y applying Equation

2 to eac h constrain t, c

i

.
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In the ab o v e equation, p

0

and p = ( p

1

; p

2

; p

3

) are co-

e�cien ts of P ( x ). The function v alue, f ( c

i

), at eac h

constrain t p oin t is kno wn since w e ha v e de�ned the con-

strain t p oin ts to b e on the surface or external to the ob ject.

f ( c

i

) = 0 for all c

i

on the surface. All exterior constrain ts

are placed at the same distance a w a y from the surface con-

strain ts and are assigned a function v alue of -1.0 (more

details will b e giv en in Section VI-A on selection of exte-

rior constrain ts). Notice that in the ab o v e system matrix,

� app ears on the diagonal. By increasing the v alue of � ,

the system matrix b ecomes b etter conditioned b ecause it

b ecomes more diagonally dominan t. The addition of � do es

not in v alidate Equation 2 b ecause �

P

n

i =1

w

i

= 0 (as seen

in ro w n + 1 of the matrix). The use of � for trading o� in-

terp olation and appro ximation is found in n umerous other

publications, including those of Girosi et al. [19], Y uille et

al. [51], and W ah ba [49] where a detailed deriv ation can b e

found.

It is p ossible to assign distinct � v alues to individual con-

strain ts. In this case,

P

n

i =1

�

i

w

i

6= 0, but instead, b ecomes

part of the constan t in the n ull space term, P ( x ). This

exibilit y is esp ecially imp ortan t when w e use exterior con-

strain ts b ecause they are added only to pro vide orien tation

to the surface but do not represen t real data. In practice,

w e ha v e found that � w orks w ell as a semi-global regular-

izing parameter, where one � v alue is used for all surface

constrain ts, and another for all exterior constrain ts. Using

one � v alue for all surface constrain ts is appropriate when

the spatial distribution of noise is isotropic. This is a rea-

sonable mo del for man y vision-based data sets including

the v o xel-coloring data set that w e later use as examples.

With other noise mo dels, it ma y b e more appropriate to

use � as a lo cal �tting parameter b y assigning a � v alue for

eac h surface constrain t based on the con�dence measure-

men t of the p oin t. A large � v alue suc h as 2.0 is often used

for exterior constrain ts, while small v alues suc h as 0.001

is often used for surface constrain ts. This c hoice of � for

surface constrain ts w as found through measures of �tness

and curv ature applied to the v o xel coloring data set of a

to y dinosaur. W e found that a practical upp er b ound for

� for surface constrain ts from these t yp es of data sets is

0.003. A detailed description of the �tness measures and

results for v arious v alues of � can b e found in our tec hnical

rep ort [14].

The implicit form ulation describ ed b y Equation 2 has

b een used in a n um b er of previous w ork, including those

[6, 9, 28, 29, 31, 33, 48, 50, 51]. In [6, 29, 51], the basis

function, � , w as a Gaussian, while in [9, 31, 33, 48, 50], �

inheren tly minimized thin-plate energy . In [6, 29], the ba-

sis functions w ere not cen tered at surface data p oin ts and

regularization w as not applied to obtain the w eigh ts for the

implicit function. Instead, Muraki iterativ ely added Gaus-

sian basis functions un til a su�cien tly close �t is obtained.

In [28, 48, 50], reconstructions w ere p erformed on accurate,

dense cyb erw are scanned data. Hence, regularization w as

not necessary and simply using basis functions whic h min-

imize a desired energy w as su�cien t. In the next section,

w e compare the v arious c hoices of � and discuss our selec-

tion of a basis function that minimizes m ultiple orders of

energy .

Figure 3 is a comparison of reconstructions of a to y di-

nosaur. The Crust algorithm w as used to reconstruct the

surface sho wn in (a) whic h exactly in terp olates all 20,120

data p oin ts; thin-plate basis functions w ere used to con-

struct the in terp olating implicit surface sho wn in (b); and

in (c), thin-plate basis functions w ere used to construct the

appro ximating implicit surface with � set to 0.001. Only

3000 surface and 264 exterior constrain ts w ere used to re-

construct the implicit mo dels. The appro ximating thin-

plate surface is m uc h smo other than either of the other

t w o surfaces. The o v ersho ots are less apparen t, and there

are few er protruding bumps and few er small p o c k ets em-

b edded in the surface. Unfortunately , the to y dinosaur's

features are blobb y and amorphous, esp ecially at the feet

and hands. Distinct lim bs, suc h as the feet and tail, are

fused together. It is apparen t from this result that the

thin-plate basis function used b y T urk and O'Brien gener-

ates mo dels whic h are to o blobb y .

V. A Radial Basis Function f or Mul tiple Orders

of Smoothness

The results in Figures 3(a), (b), and (c) sho w that a bal-

ance is needed b et w een a tigh tly �tting, or shrink- wr app e d ,

surface, and a smo oth surface. A tigh tly �tting surface

separates the features of the mo del but is prone to jagged

artifacts. F or example, the Crust reconstruction, sho wn in

Figure 3(a), is an exact �t to the data with no smo oth-

ness constrain t. On the other hand, a smo oth surface ma y

b ecome to o blobb y as seen in Figures 3(b) and (c), whic h

sho w that minimizing the thin-plate energy alone is not

su�cien t to pro duce a surface that separates features w ell

and is lo cally detailed.

In [10], Chen and Suter deriv e radial basis functions for

the family of Laplacian splines. The basis functions are

comprised of j r j

k

, j r j

k

l og j r j , exp onen tial, and Bessel func-

tion terms, where r is the distance from the cen ter of the

radially symmetric basis. The v alue of k dep ends on the

dimension and order of smo othness. T urk and O'Brien

use � ( r ) = j r j

2

l og j r j for 2D thin-plate in terp olation, and

� ( r ) = j r j

3

for 3D thin-plate in terp olation. Figure 4(a)

sho ws that these functions exhibit global inuence b ecause

the v alue of the function tends to w ard in�nit y as the dis-

tance from its cen ter increases. The system matrix, whic h

consists of the ev aluation of the basis function at distances

b et w een pairs of constrain ts, is dense b ecause constrain t

p oin ts are uniformly spread across the region of in terest.

First, second, and third order energy-minimizing splines

are also mem b ers of the family of Laplacian splines. Thin-
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(b) (c) (d) (e)(a)

Fig. 3. Reconstructions of the to y dinosaur. (a) Crust reconstruction. (b) Exact in terp olation using thin-plate basis function. (c) Surface

appro ximation using thin-plate basis function. (d) Surface appro ximation using Gaussian basis function. (e) Surface appro ximation using

m ulti-order basis function.
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Fig. 4. (a) Cross sections of radially symmetric basis functions for j r j

2

l og j r j and j r j

3

. (b) and (c) Cross sections of basis functions for a

com bination of �rst, second, and third order smo othness for v arious v alues of � and � . (d) Comparison of running times to solv e for

w eigh ts for the thin-plate and and for the m ulti-order basis functions.

plate energy is equiv alen t to second order energy , and mem-

brane to �rst order energy . Surprisingly , a radial basis

function that minimizes a com bination of �rst, second, and

third order energies quic kly falls to w ard zero, yielding a

b etter conditioned system matrix than one that minimizes

thin-plate energy alone. In [38], Suter and Chen used ba-

sis functions that minimize m ultiple orders of smo othness

(b ey ond the �rst and second order) to reconstruct h uman

cardiac motion. They found that a mo del minimizing third

and fourth order energy resulted in the smallest RMS er-

ror. They concluded that basis functions that minimize

more than just the �rst and/or second order energy gen-

erate more accurate reconstructions. In addition, as the

space dimension increases, the order of con tin uit y of the

thin-plate spline at data p oin ts decrease. Suter and Chen

sho w that in 3D, the thin-plate spline basis has discon tin-

uous �rst order deriv ativ es at the data p oin ts. W e c hose

to use a basis that ac hiev es �rst, second, and third order

smo othness b ecause, unlik e motion, ob ject surfaces ma y

con tain sharp features that are C

1

discon tin uous. The re-

sulting implicit function has con tin uous deriv ativ es due to

the additional third order smo othness (although, the iso-

surface ma y not ha v e con tin uous deriv ativ es). The geomet-

ric analogy to minimizing third order energy is curv ature

con tin uit y . It has b een sho wn in previous w ork b y F ang and

Gossard [16] that including curv ature con tin uit y results in

impro v ed curv e and surface �tting. T erzop oulos also sp ec-

ulates on the use of curv ature con tin uous stabilizers in [44].

In [10], Chen and Suter deriv e suc h a basis, using a

smo othness functional comprised of the �rst, second, and

third order Laplacian op erator. The asso ciated partial dif-

feren tial equation is similar to Laplace's equation � � f =

0, but also has higher order terms:

� � � f + �

2

f � � �

3

f = 0 (4)

In the ab o v e equation the Laplacian op erator � in 3D is:

� f =

@

2

f

@ x

2

+

@

2

f

@ y

2

+

@

2

f

@ z

2

(5)

In Equation 4, � con trols the amoun t of �rst order

smo othness, and � con trols the amoun t of third order

smo othness. The balance b et w een � and � con trols the
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amoun t of second order smo othness. The radial basis func-

tion that inheren tly minimizes the ab o v e energy functional

in 3D as deriv ed in [10] is:

� ( r ) =

1

4 � �

2

r

(1 +

w e

�

p

v r

v � w

�

v e

�

p

w r

v � w

)

v =

1+

p

1 � 4 �

2

�

2

2 �

2

w =

1 �

p

1 � 4 �

2

�

2

2 �

2

(6)

In the ab o v e equations, r is the distance from the cen ter

of the radial basis function. The p olynomial term spanning

the n ull space of the m ulti-order basis function is simply a

constan t, P ( x ) = p

0

. Figures 4(b) and (c) sho w plots of

the ab o v e function for v arious v alues of � and � . Unlik e

the plot for � ( r ) = j r j

3

, these plots sho w that the v alue of

the basis function quic kly falls to w ard zero as the distance

from its cen ter increases.

A. Comp arison with Gaussian, Thin-Plate R adial Basis

F unctions, and Sp atial Smo othing

The m ulti-order basis function describ ed b y Equation 6

has sev eral adv an tages o v er the thin-plate and Gaussian

basis functions used b y Blinn, Muraki, Y uille, and others

[6, 51, 29]. The system matrix formed b y the thin-plate

basis function is dense, and non-zero v alues gro w larger

a w a y from the diagonal. Computation time increases sig-

ni�can tly as more constrain ts are sp eci�ed. In con trast,

the system matrix formed b y the m ulti-order basis func-

tion is diagonally dominan t and is esp ecially amenable to

the biconjugate gradien t metho d of solving linear equa-

tions. Ev en though the matrix formed b y the m ulti-order

basis is dense, non-zero v alues diminish a w a y from the di-

agonal. Timing results sho w that the unkno wn w eigh ts of

Equation 2 w ere solv ed in 1.5 min utes using the m ulti-order

basis function with � = 10 and � = 0 : 01, while the system

matrix generated for the same set of 3264 constrain ts using

the thin-plate basis function required 7.9 min utes to solv e

on an SGI Origin with 195 MHz MIPS R10000 pro cessor.

Figure 4(d) is a comparison of running times v ersus n um-

b er of constrain ts for the thin-plate and m ulti-order basis

functions. The increase in running time as the n um b er

of constrain ts increase is fairly linear for the m ulti-order

basis function as opp osed to the thin-plate basis. The sys-

tem matrix formed using Gaussian basis functions (with

� = 0 : 01) is sparse, requiring only 2.6 min utes to solv e.

The system matrix is solv ed ev en more quic kly with smaller

v alues of � , but at the cost of w orse reconstructions.

In terms of reconstruction qualit y , the m ulti-order basis

function is able to reconstruct more lo cally detailed mo d-

els while still retaining global smo othness. Both the thin-

plate and the Gaussian basis functions result in mo dels

with o v ersho oting surfaces. The Gaussian basis actually

forms holes em b edded in the surface. The thin-plate basis

creates p o orer reconstructions than the m ulti-order basis

b ecause the thin-plate basis forces the surface to b e to o

smo oth, resulting in blobb y mo dels. The Gaussian basis is

an in�nite mixture of Tikhono v stabilizers, also resulting

in surfaces that are to o smo oth. Figure 3 is a comparison

of reconstructions of the to y dinosaur using the thin-plate

(c), the Gaussian (d), and the m ulti-order (e) basis func-

tions. Note that the round protrusion b eneath the arm is

the wind-up k ey for the to y and that the bumps on the

bac k are the scales and spines of the actual to y dinosaur

(see Figure 9 for t w o of the original images).

Another di�erence b et w een reconstruction using the

m ulti-order and the thin-plate basis is in use of non-zero

in terior and exterior constrain ts. Reconstruction using the

thin-plate basis is m uc h more dep enden t on the dense

placemen t of exterior constrain ts to prev en t the surface

from o v ersho oting in to regions where the mo del should not

exist and on the placemen t of in terior constrain ts to de�ne

the orien tation of the surface. In [48], T urk and O'Brien

pair eac h surface constrain t with a normal c onstr aint that

is in terior to the surface and has a function v alue of 1.0.

The m ulti-order basis do es not o v ersho ot as m uc h as the

thin-plate basis. Hence, a sparse, uniform spread of exte-

rior constrain ts are enough to orien t the implicit surface.

W e ha v e found in practice, that appro ximately one exterior

constrain t for ev ery ten surface constrain ts is su�cien t and

that in terior constrain ts are unnecessary . More details are

pro vided in Section VI-A on ho w exterior constrain ts are

obtained.

The real v o xel coloring data sets w e use, describ ed in

Section VI I, are em b edded in a global grid structure. In

suc h cases, it is p ossible to spatially smo oth the data in

3D and obtain a smo oth reconstruction through iso-surface

extraction. Note that this is not true in the general case

where the input data set ma y b e unstructured. As it turns

out, the m ulti-order prior w e use can giv e reconstructions

that are v ery similar to spatial smo othing when � and �

are appropriately set to b e smo oth. Figure 5 compares the

reconstruction of the to y dinosaur using spatial smo oth-

ing and using the m ulti-order basis. The similarit y of

these reconstructions sho w that the m ulti-order basis is

indeed closely related to spatial smo othing. As noted in

[43], spatial smo othing tends to shrink features (suc h as

the pa ws of the dinosaur), while v olumen tric regularization

do es not. An added adv an tage of using energy-minimizing

basis functions is that it can create smo oth reconstruc-

tions of unstructured and non-uniform data, to whic h spa-

tially smo othing cannot easily b e applied. Uniform spatial

smo othing of unstructured data w ould require a resampling

step to in tegrate all data p oin ts in to a structured grid, as

w as done in [12]. In addition, the parameters, � and � ,

asso ciated with the m ulti-order basis allo ws �ner con trol

o v er ho w m uc h smo othing is applied. F or example, in Fig-

ure 3(e), � and � w ere set to preserv e the scales and spines

on the bac k of the to y dinosaur whic h is lost b y to o m uc h

smo othing in Figure 5.

VI. Constraint Specifica tion

As describ ed in Section IV-B, the implicit function w e

reconstruct ev aluates to zero on the surface, p ositiv ely in-

side the surface, and negativ ely outside. The data sets

w e use to p erform the reconstruction is from passiv e range

scanning. Suc h data sets are noisy , lo w in resolution, and

more sparse than data sets from activ e range scanning. W e

describ e the data sets in more detail in Section VI I. In this
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(a) (b)

Fig. 5. (a) Iso-surface extraction of v olumetric data after spatial smo othing using a Gaussian �lter with a radius of four v o xels. (b)

Reconstruction using the m ulti-order basis function with 3000 surface constrain ts and � = 10 : 0 and � = 0 : 025.

section, w e describ e the metho d b y whic h w e obtain surface

and exterior (negativ e) constrain ts used in the reconstruc-

tion. W e also address the sampling required to guaran tee

that the top ology of the ob ject is correctly reconstructed

and ho w this sampling densit y is mapp ed to the selected

v alues for the parameters, � and � , con trolling the amoun t

of �rst and third order smo othness resp ectiv ely .

A. Exterior Constr aints

The computer vision comm unit y has dev elop ed man y

metho ds to acquire 3D p ositional information from pho-

tographic images tak en b y cameras. The goal of all these

metho ds is to determine a collection of 3D p oin ts that lie on

a giv en ob ject's surface. When suc h a collection of p oin ts is

acquired using cameras, the camera p osition and direction

pro vide additional information that can b e used for surface

reconstruction. If a surface p oin t is seen from a particular

camera, there are no other surfaces b et w een the camera

and the p oin t. W e call the region b et w een the camera and

the surface fr e e sp ac e . Other approac hes to surface recon-

struction mak e use of this information as w ell [12]. W e can

use this a priori kno wledge ab out the ob ject surface lo ca-

tions and the free space to de�ne constrain ts that lie on or

outside of the ob ject, as seen in Figure 6.

Recall that the exterior constrain ts are those lo cations

where w e w an t our implicit function to b e negativ e, and the

surface constrain ts are where the implicit function should

ev aluate to zero. In practice, w e place exterior constrain ts

at the same distance a w a y from the surface constrain ts to-

w ards the camera viewp oin ts and assign them a function

v alue of -1.0 . As men tioned in Section IV-B, exterior con-

strain ts do not represen t actual data, but rather, are hin ts

to the surface orien tation. Hence, a sparse sampling of

exterior constrain ts is su�cien t to prop erly orien t the sur-

face, and a large v alue of � , suc h as 2.0, indicates that

the negativ e data p oin t should b e highly appro ximated.

W e ha v e found that one exterior constrain t p er ten surface

constrain ts w orks w ell in practice. An additional sparse

set (ab out 16 p oin ts) of exterior constrain ts on a b ounding

*

-
free space **

**
*

-
-- -- -

---
- -
-

Fig. 6. F ree space is carv ed out b y ra ys pro jecting from the camera

to the ob ject surface. Surface (*) and exterior (-) constrain ts are

de�ned b y the free space.

sphere around the ob ject helps to constrain the surface,

and alone, is often su�cien t to de�ne the surface orien ta-

tion. Next, w e discuss ho w w e subsample b oth the exterior

and surface constrain ts.

B. Subsampling Surfac e Constr aints

Because our metho d of reconstruction requires the solu-

tion of a linear system, it is computationally limited in the

n um b er of constrain ts that can b e used to construct the

surface. Examples sho wn in this pap er ha v e used around

3000 surface p oin ts, sampled from a set of around 20,000

surface p oin ts. Using the en tire data set w ould not only b e

in tractable, but w ould also result in an implicit function

that is equal in size to the original discrete data set. In

this case, the represen tation w ould no longer b e compact.

The sampling densit y of a reduced data set m ust b e suc h

that the features in the data are w ell sampled. Since this

information is not kno wn a priori, our approac h is to uni-

formly sample the data and then map this sampling densit y

to appropriate � and � parameters. Surface p oin ts from the

full data set are randomly selected. Eac h time a sample

is selected, the neigh b oring samples within a small radius

are eliminated from p ossible selection in the next round.

The elimination pro cess prev en ts clusters of closely placed

constrain t p oin ts, and resem bles a 3D v ersion of P oisson

disc sampling. W e ha v e applied this metho d to uniformly



T o app e ar in IEEE Pattern A nalysis and Machine Intel ligenc e 10

Fig. 7. Reconstructions of the head of the to y dinosaur. Left: recon-

struction using full data set (3173 surface p oin ts). Righ t: recon-

struction using a subset of a v ailable data (477 surface p oin ts).

subsample the v o xel coloring data and exterior constrain ts

previously describ ed.

Exp erimen ts sho w that the reduced data set is su�cien t

to capture the details presen t in the noisy data. Figure 7 is

a comparison b et w een reconstructions from the en tire data

set and from a sampled subset. The full data set consists

of 3173 surface p oin ts, while the reduced set consists of 477

p oin ts. The total distance, or error, b et w een the original

3173 surface p oin ts and the surface reconstructed from the

full data set w as 0.008, while the total error b et w een the

3173 surface p oin ts and the surface reconstructed from the

reduced set w as 0.009. The mo del itself w as constrained to

b e within a 2 � 2 � 2 b o x.

Adaptiv ely increasing the sampling in highly detailed re-

gions is not appropriate in man y vision-based data sets.

Detailed regions are often synon ymous with areas of high

curv ature and small area. In a vision-based system, these

small areas map to few pixels in the acquired images, result-

ing in lo w con�dence for suc h regions. Increasing the sam-

pling densit y in these small, detailed regions w ould tain t

the reduced data set with man y lo w con�dence p oin ts.

It is p ossible to partition the data set, construct a sepa-

rate implicit surface for eac h partition, and then com bine

the surfaces. Ho w ev er, the resulting represen tation w ould

not b e compact. W e opted not to tak e this approac h since

the di�erence in the �tness errors b et w een the full and the

reduced data sets w as minimal. Yngv e and T urk [50] and

Carr et al. [9] ha v e also sho wn that it is unnecessary to

ha v e a basis function for eac h surface p oin t. Their approac h

w as to iterativ ely add basis functions un til the �tness error

w as su�cien tly lo w. W e a v oid an iterativ e solution b y uni-

formly sampling the data set. One dra wbac k of the uniform

sampling approac h is that noise at the scale of features can-

not b e remo v ed. Some examples of this e�ect are sho wn in

the to y dinosaur's c hest area.

C. Mapping Surfac e Sampling Density to � and � V alues

Recall from Section V that � con trols the amoun t of �rst

order smo othness, while � con trols the amoun t of third or-

der smo othness. The v alues of � and � that corresp ond

to the b est reconstruction of a surface is dep enden t on the

sampling densit y of the surface and the desired smo othing.

In our w ork, w e main tain consisten t a v erage sampling den-

sit y across all mo dels b y constraining the size of the mo del

and b y using nearly the same n um b er of surface constrain ts

to co v er the data set. W e scale all the mo dels to lie within a

2 � 2 � 2 b o x. By applying this normalization, the feature

size, a v erage sampling densit y , and c hoice of � and � are

consisten t across all mo dels. This normalization is appro-

priate b ecause all our input data sets ha v e appro ximately

the same resolution. One measure of this normalization is

the a v erage minimal distance b et w een sample p oin ts. W e

compute this distance b y a v eraging the distances b et w een

eac h sample p oin t and its closest neigh b oring sample p oin t.

W e sho w later in Section VI I where w e discuss the data sets

in more detail that this a v erage minimal distance is similar

across all data sets after normalization and sampling.

W e c hose appropriate v alues for � and � b y comparing

mo dels that ha v e b een reconstructed at v arious v alues of �

and � . W e ha v e t w o metho ds of v alidation and comparison

b et w een the reconstructed mo dels. These metho ds are a

measure of �tness error and a measure of a v erage curv ature.

W e de�ne �tness error to b e the aggregate distance b et w een

the original data p oin ts and the reconstructed surface. T o

measure the a v erage curv ature of a surface, w e �rst extract

a p olygonal mo del from the implicit function. W e measure

curv ature at eac h v ertex of the p olygonal mo del using an

appro ximation that w as dev elop ed for the smo othing op er-

ator in [13]. The a v erage curv ature is obtained b y dividing

the aggregate curv ature b y the n um b er of v ertices in the

p olygonal mo del. High curv ature is asso ciated with sharp

features in the surface, while lo w curv ature is asso ciated

with o v ersho ots and blobb y surfaces.

W e applied the measures of �tness and curv ature to the

to y dinosaur data set to guide selection of appropriate v al-

ues for � , � , and � . F or details on the selection of these

v alues, see our tec hnical rep ort [14]. W e ha v e found in

practice that v alues of � b et w een 0.001 to 0.003, � b et w een

5.0 to 40.0 and � b et w een 0.005 to 0.025 can b e used to pro-

duce lo cally detailed, y et globally smo oth, reconstructions

with minimal error on a v ariet y of data sets.

D. Hand ling Outliers

Outliers are handled b y a prepro cessing step that �nds

the largest connected comp onen t in the data set. F or the

v o xel coloring data set, w e tra v erse the v olume of surface

p oin ts and group together v o xels that are within the 26-

neigh b orho o d of eac h other. The single, largest connected

comp onen t is k ept, and all other surface p oin ts are elimi-

nated. If n comp onen ts exist (where n > 1), then w e can

sort the comp onen ts in the data set according to their size,

and k eep only the �rst n largest comp onen ts.

E. T op olo gy A daptation

One of the main adv an tages of the v ariational implicit

surface tec hnique is its abilit y to reconstruct mo dels of ar-

bitrary top ology without explicit kno wledge of the top ology

of the mo del b eforehand. The resulting top ology is, ho w-

ev er, dep enden t on the data samples used to reconstruct

the mo del. It is necessary to su�cien tly sp ecify surface

and exterior constrain ts to de�ne the top ology . F or ex-

ample, if a torus is to b e reconstructed, then at least one
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exterior constrain t is needed near the torus hole to force the

existence of the hole in the middle of the torus. As long as

the surface and exterior space are uniformly sampled, the

top ology is correctly reconstructed. Ho w ev er, since w e are

using data from vision-based metho ds, view o cclusion or a

lac k of reference views ma y prev en t correct sampling of the

space. F or example, if no views of the torus sho wing the

hole in the cen ter are a v ailable, then the hole ma y not b e

correctly reconstructed. W e argue, that in suc h a case, the

top ology of the reconstructed mo del is consisten t with the

am biguit y of the top ology in the data set.

VI I. Resul ts

W e no w sho w that v olumetric regularization generates

globally smo oth, y et detailed, surfaces and discuss the ad-

dition of color to the mo dels. W e reconstructed surfaces

using the m ulti-order basis on t w o t yp es of data { syn thetic

range data and real v o xel coloring data. Our metho d of re-

construction can generate smo oth surfaces from data sets

that are globally unstructured and noisy . Although neither

t yp es of data sets w e use ha v e b oth these features, eac h is

an example of one feature. The syn thetic range data is not

em b edded in a global grid, while the v o xel coloring data is

quite noisy in comparison to activ e range scanning data.

A. Synthetic R ange Data

W e use a mo di�ed ra y-tracer [24] to generate syn thetic

range images as one test of our approac h. W e used the

Stanford Bunn y as our test mo del, and created three syn-

thetic range images from p ositions separated b y 120 de-

grees on a circle surrounding the mo del. F or eac h range

image, surface constrain ts are created b y uniformly do wn-

sampling the range image to reduce the size of the data

set. F or ev ery ten surface constrain ts, one exterior nega-

tiv e constrain t is created within the free space describ ed in

Section VI. Additional exterior constrain ts are de�ned on

a sphere surrounding the b ounding b o x of the ob ject at a

distance farther a w a y from the ob ject. Figure 8(a) sho ws

the original Stanford Bunn y mo del consisting of 69,451 tri-

angles, while (b), (c), and (d) sho w the implicit surface re-

constructed from 2168 surface and 193 exterior constrain ts

using the m ulti-order basis function. Figures 8(c) and (d)

also sho w the distribution of the constrain ts o v erla y ed on

top of the reconstruction. The a v erage minim um distance

b et w een surface samples used in the reconstruction is 0.051.

V alues of � = 0 : 001, � = 10, and � = 0 : 01 w ere used to re-

construct the surface. The implicit surface is quite similar

to the ground truth. Our metho d of reconstruction pro-

duces plausible surfaces ev en in lo cations where the data is

sparse. The mo del is closed on the top and b ottom of the

Bunn y ev en though few constrain t p oin ts w ere placed there.

The mo del is closed at these places due to the inheren tly

manifold nature of implicit surfaces, and it is smo oth at

these lo cations b y virtue of minimizing the cost functional.

B. R e al V olume-Carve d Data

Syn thetic data do es not ha v e the noisy c haracteristic of

real data. W e no w describ e the real space carv ed data

that w e use and ho w w e de�ne the surface and exterior

constrain ts. W e use three data sets of real ob jects ob-

tained through v o xel coloring [35, 11] { a to y dinosaur

(from Stev e Seitz [35]), a bro ccoli stalk, and a stac k of to y

tori (from Bruce Culb ertson and T om Malzb ender [36] and

referred to as the towers data set). Both data sets w ere ob-

tained b y taking ab out 20 images appro ximately on a circle

around eac h ob ject. Thin-shelled, v o xelized surfaces w ere

then constructed using the generalized v o xel coloring algo-

rithm [11]. The space is carv ed b y splatting eac h visible

v o xel to w ards eac h calibrated camera and determining the

consistency of the color across the images. If the v ariance

in color in tensit y is b elo w a sp eci�ed threshold, the v o xel

is k ept as part of the ob ject surface. Otherwise, it is cast

out and assigned a zero opacit y v alue. The data consists of

red, green, and blue c hannels. Non-empt y v o xels represen t

the presence of a surface, as deduced b y the v o xel coloring

algorithm. Figure 10 sho ws the real v o xel coloring data

sets.

W e apply the tec hnique describ ed in Section VI to ob-

tain surface and exterior constrain ts for the v o xel coloring

data set. Non-empt y v o xels are surface lo cations. Exterior

constrain ts are found b y pro jecting eac h surface v o xel in

the v olume to the image plane of eac h camera. If the ra y

from the surface v o xel to a camera in tersects other surface

v o xels, then the view of the v o xel is blo c k ed. Otherwise,

the camera has an unobscured view, and an exterior con-

strain t can b e placed at a small distance a w a y from the

surface v o xel along the ra y to w ards the camera, as de-

picted in Figure 6. Note that for eac h surface v o xel, an

exterior constrain t is created for eac h camera that has an

unobscured view of the surface v o xel. Again, only a subset

of the surface and exterior constrain ts are selected b y the

P oisson disc sampling tec hnique in Section VI-B. Once a

sp eci�ed n um b er of constrain ts ha v e b een collected, they

are giv en to the reconstruction algorithm. In this pap er,

w e ha v e used from 2000 to 3000 surface constrain ts. W e

ha v e found that 100 to 300 exterior constrain ts su�ce to

de�ne the orien tation of the surface. Figure 10 sho ws ex-

amples of our reconstructions from space carv ed data. The

a v erage minim um distance b et w een surface samples used in

the reconstruction for the to y dinosaur, bro ccoli, and to w-

ers data sets are 0.035, 0.041, and 0.042, resp ectiv ely . Note

that the bumps on the bac k of the dinosaur are the scales

and spines of the actual to y . The small protrusion near the

base of the bro ccoli stalk is an actual leaf that has b een ac-

curately detected b y the v o xel coloring algorithm and has

b een correctly sampled and reconstructed b y the metho d

w e describ e in this pap er. The running time for Marc hing

Cub es [27] to extract an iso-surface is dep enden t on the de-

sired resolution of the mo del and the n um b er of terms (or

constrain ts) in the implicit function. Surface extraction of

the to y dinosaur at the resolution sho wn in Figure 10 to ok

14.5 min utes.

C. Mo del Coloring

In order to create a color v ersion of the surface, w e b e-

gin with a p olygonal mo del that w as obtained through iso-
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(a) (b) (c) (d)

Fig. 8. P art (a) is the original Stanford Bunn y consisting of 69,451 triangles. P arts (b), (c), and (d) sho w the reconstructed surface using

the m ulti-order basis reconstruction metho d of this pap er. P arts (c) and (d) sho w the surface constrain ts (blue squares) and the exterior

constrain ts (green squares) used in the reconstruction o v erla y ed on top of the reconstructed surface. Note that the reconstructed surface

is closed on the top and b ottom ev en though few constrain ts are presen t.

Fig. 9. Eac h pair of images is a comparison of the original input image used to generate the v o xel coloring data set (left) and the reconstructed

implicit mo del rendered from the same camera viewp oin t (righ t). A no v el viewp oin t of the implicit mo del is sho wn in Figure 10

surface extraction using Marc hing Cub es [27]. W e assign a

color to eac h triangle of the p olygonal mo del b y repro ject-

ing the triangles bac k to the original input images. Eac h

triangle in the p olygonal mo del is sub divided un til its pro-

jected fo otprin t in the images is subpixel in size, so that

it can simply tak e on the color of the pixel to whic h it

pro jects. In most cases, a triangle is visible in sev eral of

the original images. W e com bine the colors from the di�er-

en t images using a w eigh ted a v erage. The w eigh t of eac h

color con tribution is calculated b y taking the dot pro duct

b et w een the triangle normal and the view direction of the

camera that captured the particular image. Cameras with

viewing directions that are nearly p erp endicular to the tri-

angle normal con tribute less than those with viewing direc-

tions that are nearly parallel to the triangle normal. W e

use z-bu�ering to ensure that only cameras with an unob-

scured view of the triangle can con tribute to the triangle

color. Figure 10 sho ws the �nal mo dels of the to y dinosaur,

bro ccoli, and to w ers from no v el viewp oin ts after color has

b een applied. Figure 9 is a comparison of t w o of the origi-

nal input images of the to y dinosaur with rendered images

of the reconstructed implicit surface from the same camera

viewp oin ts.

D. Limitations of V olumetric R e gularization

Surface reconstruction using v olumetric regularization

do es not generate surfaces with b oundaries. Instead, our

metho d closes o v er gaps in the data set to construct a man-

ifold surface. Op en surfaces can b e generated b y placing

limits on the iso-surface extraction.

As noted in Section VI, the features and top ology of the

reconstructed mo del is dep enden t on the densit y of the in-

put data set. F eatures that are not inheren t in the data will

not b e reconstructed. Con v ersely , noise that is the size of

features will b ecome em b edded in the reconstruction. This

limitation is common to most metho ds of reconstruction

and smo othing.

Our metho d of reconstruction requires the solution of

a matrix system. This requiremen t constrains the size of

the data sets that w e can reconstruct due to sp eed and

memory limitations. Recen tly published w ork b y Carr et

al. [9] on reconstructing surfaces from dense, precise data
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88679 voxels d = 5, t  = 0.025

29882 voxels d = 5, t  = 0.025

20120 voxels d = 25, t  = 0.01

Fig. 10. F rom left to righ t: original v o xel data sets from v o xel coloring, our new implicit surface reconstructions using the m ulti-order radial

basis function, and textured v ersions of our reconstructions. F rom top to b ottom: to y dinosaur, bro ccoli, and to w ers data sets. 3000

surface constrain ts w ere used to construct the implicit surfaces.
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sets using the thin-plate spline o�ers an e�cien t solution

to the v ariational implicit metho d. W e b eliev e that their

w ork using the F ast Multip ole Metho d can also b e applied

here with the m ulti-order basis.

VI I I. Conclusion and Future W ork

The reconstruction algorithm w e ha v e presen ted in this

pap er generates mo dels that are smo oth, seamless, and

manifold. Our metho d is able to address c hallenges found

in real data sets, including noise, non-uniformit y , lo w res-

olution, and gaps in the data set. W e ha v e compared our

tec hnique to an exact in terp olation algorithm (Crust), to

thin-plate and Gaussian v ariational implicits, and to the

original v olumetric reconstruction using the to y dinosaur

as a running example. Ob vious adv an tages to the mo d-

els generated b y v olumetric regularization are that there

are no discretization artifacts as found in v olumetric mo d-

els, and the surface is not jagged as in the Crust recon-

struction. V olumetric regularization can generate appro x-

imating, rather than in terp olating, surfaces, and is most

closely related to the thin-plate v ariational implicit sur-

faces. It compares fa v orably to the thin-plate v ariational

implicit surfaces in computation time as w ell as in the sur-

faces that are generated. Using the m ulti-order radial ba-

sis function, v olumetric regularization generates lo cally de-

tailed, y et globally smo oth surfaces that prop erly separate

the features of the mo del.

W e ha v e adapted the v ariational implicit surfaces ap-

proac h to real range data b y dev eloping metho ds to de�ne

surface and exterior constrain ts. Although surface p oin ts

are directly supplied b y the range data, w e ha v e in tro duced

new metho ds for creating exterior constrain ts using infor-

mation ab out the camera p ositions used in capturing the

data. W e ha v e applied this tec hnique to space carv ed v ol-

umetric data and syn thetic range images.

W e plan to lo ok at sev eral p oten tial impro v emen ts to

our approac h, including use of con�dence measuremen ts

and mo difying the basis functions lo cally . F or eac h 3D

surface p oin t obtained from the generalized v o xel coloring

algorithm, the regularization parameter, � , can b e assigned

based on the v ariance of the colors to whic h the surface

v o xel pro jects in the input images. Another alternativ e is

to assign di�eren t � and � v alues for the m ulti-order basis

according to the curv ature measure at constrain t p oin ts.

These future directions hold promise of further re�ning the

sharp features of reconstructed surfaces of real w orld ob-

jects.
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