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Abstract

Segmentation of ultrasound images is often a very chal-
lenging task due to speckle noise that contaminates the
image. It is well known that speckle noise exhibits an
asymmetric distribution as well as significant spatial cor-
relation. Since these attributes can be difficult to model,
many previous ultrasound segmentation methods oversim-
plify the problem by assuming that the noise is white and/or
Gaussian, resulting in generic approaches that are actually
more suitable to MR and X-ray segmentation than ultra-
sound. Unlike these methods, in this paper we present an
ultrasound-specific segmentation approach that first decor-
relates the image, and then performs segmentation on the
whitened result using statistical region-based active con-
tours. In particular, we design a gradient ascent flow that
evolves the active contours to maximize a log likelihood
functional based on the Fisher-Tippett distribution. We
present experimental results that demonstrate the effective-
ness of our method.

1 Introduction

Ultrasound is one of the most commonly used medical
imaging modalities. Compared to other modalities such as
X-ray, MR, and PET, ultrasound scanning has many advan-
tages, as it is fast, portable, relatively low cost, and presents
virtually no risk to the patient.

However, the primary limitation of ultrasound is image
quality. Ultrasound images are corrupted by speckle noise,
an interference pattern resulting from the coherent accumu-
lation of random scattering in a resolution cell of the ul-
trasound beam. While the texture of the speckle does not
correspond to any underlying structure, the local brightness
of the speckle pattern is related to the local echogenicity of
the underlying scatterers. The speckle appears as a spatially

correlated noise pattern and has a detrimental effect on the
image quality and interpretability.

Since the speckle obfuscates the structures of interest,
it also poses a difficult challenge to segmentation algo-
rithms. While several authors in the past have presented
ultrasound segmentation methods [2, 3, 10, 14, 18], pre-
vious approaches have not fully considered the statistical
nature of the speckle noise [20]. Many methods assume
that the pixels in an ultrasound image are spatially uncor-
related and the intensities follow a Gaussian distribution.
Such assumptions render the problem more tractable, but
are oversimplifications that result in generic segmentation
approaches that are actually more suitable to other imag-
ing modalities than ultrasound. Exceptions to this Gaussian
assumption include [1], which presents a method to seg-
ment SAR images using Gamma distributions, [18], which
considers Rayleigh distributions, and [13, 19], which utilize
non-parametric densities in an information theoretic frame-
work. However, none of these methods addresses the corre-
lation of the noise.

This work is inspired by Chesnaud et al. [5], who present
an algorithm for segmentation of images whose intensity
can be described by an exponential distribution that evolves
a deformable polygon. Recently, [18] extended this work,
for the case of Rayleigh distributions, to a continuous curve
representation modeled with level sets. However, neither
of these methods considers the spatial correlation of the
data. Furthermore, it appears that these techniques apply
the Rayleigh distribution segmentation approach to the log
magnitude image.

1.1 Our Contribution

In this paper we present an ultrasound-specific segmen-
tation approach that address both the spatial correlation of
the speckle data as well as its intensity distribution. The
approach relies on two steps. First, we decorrelate the ul-
trasound image by applying a whitening filter. This filter-



ing operation is designed to remove the spatial correlation
of the data, while maintaining its diagnostic information.
Then, we apply a statistical region-based flow based on
the Fisher-Tippett (FT) distribution, proposed [16, 8] as a
model for image intensities observed in the log-compressed
ultrasound image, for evolution of an active contour to rele-
vant structures. This flow propagates the active contour us-
ing statistical measures of the data inside and outside the
active contour. To our knowledge, this is the first paper
to address the segmentation of decorrelated images. An-
other original contribution is the derivation and use of an ac-
tive contour to segment images modeled by Fisher-Tippett
distributions, which we argue are appropriate for the log-
compressed image. We model the curve using a level set
approach, which provides sub-pixel resolution and easily
handles topological changes. Experimental results demon-
strate that this more accurate modeling of the speckle noise,
both in terms of its spatial correlation and intensity distri-
bution, produces better segmentation results. The overall
system block diagram is shown in Figure 1.

2 Statistical Modeling of Ultrasound Speckle

Before describing our decorrelation and segmentation
method, it is worthwhile to review the statistics of speckle
in an ultrasound image. Due to space limitations this review
is very brief; further details can be found in [20, 8, 16, 11].

As shown in Figure 1, in-phase/quadrature (IQ) images
are obtained by applying frequency demodulation to stan-
dard radio-frequency (RF) data from the transducer. This
B-mode IQ image is complex and is the input to our ap-
proach.

2.1 Intensity Distribution

Speckle noise is an interference pattern resulting from
the coherent accumulation of random scattering in a res-
olution cell of the ultrasound beam. In the case of fully
formed speckle, which is typically assumed when the num-
ber of scatters per cell is greater than ten [8], it is assumed
that each scatterer contributes an independent random com-
plex component, resulting in a random walk in the complex
plane. If one applies the central limit theorem to the random
walk, one observes that the distribution is a Gaussian pdf in
the complex plane, i.e.,

pZ(z) =
1

2πσ2
e−|z|

2/(2σ2) (1)

where z is complex. This PDF models the data in the IQ
image. To produce a real image for display, envelope detec-
tion is performed by taking the magnitude of the IQ im-
age. It is fairly straightforward to show that under this

transformation, the distribution in the magnitude image is
Rayleigh [11], i.e.,

pX(x) =
x

σ2
e−x2/(2σ2), (2)

where x is real. Typically, the magnitude image has a
large dynamic range, and therefore the standard is to log-
compress the image to produce an image suitable for dis-
play. Taking the log, i.e., Y = log(X), one can derive the
distribution in the log image,

pY (y) = pX(x)
∣∣∣∣dy

dx

∣∣∣∣−1

, (3)

using dy/dx = 1/x = e−y , to get

pY (y) = 2 exp([2y− ln(2σ2)]−exp([2y− ln(2σ2)]), (4)

which is a doubly exponential distribution that has the form
of a Fisher-Tippett distribution. This distribution therefore
is the theoretical model for the image intensities for fully
formed speckle in the log-compressed IQ image.

To verify these theoretical models, we analyzed a real ul-
trasound image taken of a lesion phantom (ATS Laborato-
ries Inc, Model 539), shown in Figure 2. We selected an im-
age region (indicated by a white box) corresponding to the
“soft tissue,” where primary variation in the image intensity
is due the speckle. The magnitude of the IQ image is shown
in (a); notice the dark appearance resulting from the large
dynamic range of the intensities. We show the histogram of
the magnitude IQ image in (b), and fit the histogram to a
Gaussian distribution, which does not accurately represent
the distribution, with a mean square error (MSE) of 13,120.
In (c) we fit the histogram of the magnitude IQ image to a
Rayleigh distribution, which is a much more accurate repre-
sentation, resulting in a MSE of 3961, which is 69.8% less
than that of the Gaussian fit.

The log-compressed image is shown in (d) of Figure 2,
which is a typical presentation of an ultrasound image. As
before, we selected a region of pixels in the image and fit a
Gaussian distribution to the histogram as shown in (e). No-
tice that a Gaussian distribution is similarly inaccurate for
modeling this asymmetric histogram, with a MSE for this
fit of 14,770. In contrast, in (f) we fit a Fisher-Tippett dis-
tribution, which very accurately models the intensity distri-
bution, with a MSE of 3938, which is 73.3% less than that
of the Gaussian fit. All distributions in this paper were opti-
mally fit using analytic methods. Similar results were found
for other soft tissue regions in the image.

From this analysis we conclude that the Rayleigh distri-
bution is a good choice for the magnitude image, and the
Fisher-Tippett distribution is preferred for the log magni-
tude image. We also note that application of the Rayleigh
distribution to the log-compressed IQ image is not ideal,



Figure 1. Block diagram. The ultrasound imaging system produces an IQ image, which is the input
provided to our approach, which appears within the dotted rectangle.

(a) (b) (c)

(d) (e) (f)

Figure 2. Using Rayleigh and Fisher-Tippett distributions to model ultrasound image intensities in
the magnitude IQ (top row) and log magnitude IQ images (bottom row), respectively.

as the Rayleigh and Fisher-Tippett distributions are notably
different. Among other differences, the long tail of the
Rayleigh distribution is located to the right of the peak,
while in the Fisher-Tippett distribution, the long tail is
found on the left side of the peak. In Section 4 we will de-
rive a variational flow for region-based segmentation based
on the Fisher-Tippett distribution.

We should note that non-Rayleigh scattering can occur in
the magnitude image when the number of scatterers is low,
their spatial locations are not independent, or the scatter-
ing is not diffuse. In these cases, numerous distributions
for modeling the ultrasound image intensities have been
proposed, including the Homodyned K, Rice, Nakagami,
Weibull, Generalized Gaussian, and Rician-Inverse Gaus-
sian (RiIG) distributions [9, 17]. It is beyond the scope of
this paper to consider all these cases, and how these distri-
butions transform upon taking the log of the image. How-

ever, in [17], the authors argue that the Fisher-Tippett dis-
tribution is appropriate for fully formed speckle and is a
reasonable approximation in these other cases.

2.2 Spatial Correlation

At this point we have characterized the image intensity
distribution, but we have not yet addressed its spatial cor-
relation, which renders ultrasound as arguably one of the
more challenging medical imaging modalities with which
to work. To understand this spatial correlation, we assume
a standard image formation model where the backscattered
signal and the tissue reflectivity function obey a simple rela-
tionship based on linear systems theory. Under the assump-
tion of linear wave propagation and weak scattering, the IQ
image is considered to be the result of the convolution of
the point spread function (PSF) of the imaging system with



the tissue reflectivity function, i.e.,

g(x, y) = f(x, y) ∗ h(x, y) + u(x, y) (5)

where g(x, y), f(x, y), and h(x, y) denote the IQ image,
the tissue reflectivity function, and the PSF, respectively.
The additive term u(x, y) describes measurement noise and
physical phenomena that are not covered by the convolu-
tion model. In the equation above, the received IQ image
g(x, y) is considered to be a filtered version of the true re-
flectivity function f(x, y). The spatial extent of the PSF
is dependent upon the size of the aperture as well as the
frequency of the ultrasound imaging. Since the PSF is es-
sentially a finite bandwidth low-pass filter, it imparts non-
negligible spatial correlation to the IQ image. The corre-
lation can be measured experimentally by calculating the
half-bandwidth of the autocorrelation function of the log
magnitude IQ image, as shown in Figure 3. This function
has a notable bandwidth indicating the spatial correlation of
the data; estimated half-bandwidth sizes are 2.76 and 4.49
pixels, respectively. Clearly, speckle noise in any real imag-
ing situation has significant spatial correlation that should
be addressed by an ultrasound segmentation method. Thus,
we can improve upon previous algorithms that assume that
the speckle is a white noise process. To address the spatial
correlation, we first transform the IQ image using a whiten-
ing filter that decorrelates the data, resulting in another IQ
image with pixels that correlate less than the original image.
This procedure is described next.

(a) (b)

Figure 3. The autocorrelation function of the
selected region from Figure 2 is shown in the
lateral (horizontal) dimension in (a) and the
range (vertical) direction (b).

3 Decorrelation using outlier-resistent
wavelet denoising

We perform whitening of speckled images [12] by the
use of a decorrelation procedure proposed in [17], which
we briefly review in this section.

It is possible to suppress the correlation by “undoing”
the effect of the PSF through the process of deconvolution.

As the PSF usually is not available a priori when dealing
with tissue images, the deconvolution must be blind. Trans-
ferring the image formation model above to the frequency
domain and applying log-transformation to the magnitudes
of its components, one obtains

G(ω1, ω2) = H(ω1, ω2) + F (ω1, ω2) (6)

where G(ω1, ω2), F (ω1, ω2), and H(ω1, ω2) denote the
log-magnitude of the Fourier transforms of the IQ image,
the tissue reflectivity function, and the complex PSF, re-
spectively. For simplicity, the additive noise term from (5) is
ignored. The log-spectrum of H(ω1, ω2) can be calculated
by first removing the outliers from G(ω1, ω2), in effect re-
ducing the tail of the distribution, and by then estimating
the PSF by means of wavelet denoising.

H is estimated as follows. First, an outlier shrinkage step
computes the robust residuals R of G, with

R(x, y) = sign (∆G(x, y)) · (|∆G(x, y)| − λ)+ , (7)

where ∆G is the difference between G and its median-
filtered version and λ is a predefined threshold, and the op-
erator (x)+ returns x if x > 0 and 0 otherwise. The median
filter used is of size 3× 3 and λ is dynamically adapted to a
level such that a certain percentage (95%) of the differences
∆G is preserved. Next, the signal G − R can be filtered to
get an estimation of the PSF log spectrum H(ω1, ω2). For
this purpose, wavelet denoising [7] with a separable wavelet
transform [15] based on the nearly symmetric wavelet of
Daubechies [6] having six vanishing moments is used.

Once an estimate of H(ω1, ω2) is computed, the PSF
spectrum magnitude is given by S(ω1, ω2) = eH(ω1,ω2).
An equalized IQ image g̃ is then obtained by applying the
classical deconvolution filter as in [12]:

g̃(x, y) = DFT−1

{
DFT{g(x, y)}

[|S(ω1, ω2)|2 + ε]1/2

}
,

with 0 < ε � 1.
The noise in the decorrelated image has significantly

less spatial correlation, as depicted in Figure 4; the half-
bandwidth size has decreased to 1.4 pixels in the lateral
dimension and 2.5 in the range dimension. Visually, this
decorrelated image appears to have a higher spatial resolu-
tion as finer details become apparent.

It is natural to wonder if the decorrelation affects the in-
tensity distributions, i.e., if the Rayleigh and Fisher-Tippett
distribution models still apply to magnitude and log magni-
tude decorrelated IQ images, respectively. To check, we
repeated the previous experiment of fitting Rayleigh and
Fisher-Tippett distributions to histograms formed over the
same soft tissue region in the phantom image. As demon-
strated in Figure 5, the decorrelation does not significantly
affect the distribution, so we infer that the models still hold.



(a)

(b)

Figure 4. Decorrelation decreases speckle
size. Original image (a) and decorrelated im-
age (b).

4 Maximum Likelihood Fisher-Tippett Seg-
mentation

We now derive a flow for maximum likelihood region-
based segmentation of an image described by Fisher-Tippett
distributions, which we will apply to the log magnitude IQ
image. In a spirit similar to [4], we will evolve a contour
embedded as the zero level set of a higher dimensional func-
tion based on statistical measures computed both inside and
outside the contour. We begin by deriving the maximum
likelihood Fisher-Tippett estimator for a collection of sam-
ples.

4.1 Maximum likelihood Fisher-Tippett
estimator

Let I(x, y) denote a pixel intensity in the decorrelated
log magnitude IQ image at the location (x, y). As stated
previously, the Fisher-Tippett PDF for a pixel’s intensity
can be written as

p(I(x, y)) = 2e

(
2I(x,y)−ln(2σ2)−e2I(x,y)−ln(2σ2)

)
, (8)

(a) (b)

Figure 5. Previous distributions apply to the
decorrelated image. The Rayleigh fit to the
magnitude IQ decorrelated image is shown in
(a), and the Fisher-Tippett fit to the log mag-
nitude decorrelated IQ image is shown in (b).

where σ2 denotes the Fisher-Tippett parameter of the reflec-
tivity samples. For a region Ω in the image, the log likeli-
hood can then be expressed as

` =
∫

Ω

(
ln 2 + 2I(x, y)− ln(2σ2)− e2I(x,y)−ln(2σ2)

)
dxdy.

(9)
Next, we find an expression for σ2 that is the maximum

likelihood estimator of the FT distribution, by taking the
derivative of ` and setting the expression equal to zero,

∂`

∂σ
=

∫
Ω

(
− 4σ

2σ2
+

(
e2I(x,y)−ln(2σ2)

) 4σ

2σ2

)
dxdy = 0.

(10)
Solving for σ2 gives

σ2 =
1
2

∫
Ω

e2I(x,y)dxdy∫
Ω

dxdy
. (11)

Thus, given a region Ω with area given by
∫
Ω

dxdy, we
can compute the maximum likelihood value of the Fisher-
Tippett distribution from the image intensities in the region.
We will do this to estimate the Fisher-Tippett parameter σ2

both inside and outside the active contour.

4.2 Fisher-Tippett flow

We would like to deform a curve C in order to achieve
a maximum likelihood segmentation of the data. Since the
log function is monotonic, we can equivalently maximize
the log likelihood [5, 18], using the probability inside and
outside the curve, Pi and Po, respectively, as

E = log Pi + log Po + regularization (12)

= Ai log
(

1
2Ai

∫
Ωi

e2I(x,y)dxdy

)
(13)



+Ao log
(

1
2Ao

∫
Ωi

e2I(x,y)dxdy

)
+ α

∫
C

ds,

where Ωi and Ωo are a regions inside and outside the curve,
respectively, and Ai =

∫
Ωi

dxdy and Ao =
∫
Ωo

dxdy are
the areas inside and outside the curve, respectively, and the
last term is a penalty on arc length designed to keep the
curve smooth.

Next, we take the first variation of this energy functional
E in order to derive the minimizing flow. Due to page con-
straints we do not provide the full derivation here; however,
the derivation takes a similar form to that of the Rayleigh
distribution that appears in [18]. The Euler-Lagrange equa-
tions result in the curve evolution,

∂C

∂t
=

(
log σ2

i − log σ2
o+

1
2e2I − σ2

i

σ2
i

−
1
2e2I − σ2

o

σ2
o

+ ακ

)
N, (14)

where κ is the curvature and N is the normal to the curve.

4.3 Implementation

The curve evolution in Equation 14 is totally general in
that it applies to any closed contour representation, be it a
spline, polygon, etc. The method requires an initial contour,
which in this paper is a small square positioned by the user.
Then, we compute the maximum likelihood FT parameters
σ2

i and σ2
o inside and outside the contour using the method

described in Section 4.1. Then, we move each point on the
contour along its normal direction using Equation 14. We
choose to implement the technique using level set methods,
which provide subpixel resolution and easily accommodate
topological changes of the contour.

5 Results

In this section we present results demonstrating segmen-
tations of quite challenging images.

In Figure 6 we present segmentation results using syn-
thetically generated data consisting of darker targets on a
lighter background. In each experiment we seed the seg-
mentation with a small square in the upper left part of the
right lower circular target. In (a) and (b), we show the
Rayleigh and Fisher-Tippett flows, respectively, applied to
the log magnitude IQ data. The Rayleigh flow does not
perform well, getting trapped in an undesirable local mini-
mum. The Fisher-Tippett flow performs much better, but the
speckle correlation prevents the segmentation from reach-
ing all parts of the circle. In (c) and (d), we show the
Rayleigh and Fisher-Tippett flows, respectively, applied to
the decorrelated image. Here, the best results are observed
for the Fisher-Tippett flow, which successfully segments the

target. For this synthetic data, we have the ground truth
area, which is 7854 units. The areas inside the contours
computed from the segmentations were 763 for (a), 6393
for (b), 7548 for (c), and 7815 for (d). Similar results we
obtained for the other shapes in the image. We can conclude
that for this experiment, the Fisher-Tippett flow applied to
the decorrelated image produces the best result, both visu-
ally and quantitatively.

In Figure 7 we show a result for the segmentation of the
lesion phantom for the rightmost faint circular structure that
simulates a tumor. In (a) we show the result of applying the
Rayleigh flow to the original log magnitude IQ image. This
segmentation gets stuck due to the speckle and the inaccu-
rate intensity model. In (b) we show the result of applying
the Fisher-Tippett flow to the decorrelated log magnitude
image. This segmentation results in a more circular shape
that covers the entire area of the object. Thus, as with the
synthetic data, the best results occur for the Fisher-Tippett
flow on the decorrelated log magnitude image.

In Figure 8 we present segmentation results using the
Rayleigh and Fisher-Tippett flows applied to a log magni-
tude IQ image and a decorrelated log magnitude IQ image
of a human carotid artery. In each example we initialized
the segmentation with a small rectangular seed on the left
side of the artery. In (a) and (b), we show the result of the
Rayleigh flow and Fisher-Tippett flow, respectively. Nei-
ther achieves a successful result due to the correlation of the
speckle, as well as the difficulty due to poor separation of
the statistics inside and outside the contour resulting from
the dark pixels in the lower half of the image. In (c) and
(d) we show the Rayleigh and Fisher-Tippett flows applied
to the decorrelated image. Due to an inaccurate modeling
of the intensity distribution, Rayleigh flow still is unable
to propagate the length of the artery. However, the Fisher-
Tippett flow significantly outperforms the Rayleigh flow, as
the former propagates the entire length of the artery, pro-
ducing the best result. In (e) - (i) we repeat the previous
experiment, this time cropping the image to its upper half.
In this case, the statistics inside and outside the contour are
better separated, so in this case all segmentations propagate
the length of the artery. In (e) and (f), the correlation of
the speckle results in an irregular shape that does not prop-
erly match the artery borders. In (g) and (h), better results
are achieved for the decorrelated image, and due to its bet-
ter modeling of the intensity distributions, the result for the
Fisher-Tippett flow in (h) produces the best result.

6 Conclusion

In this paper we present ultrasound-specific methods for
image segmentation. Speckle noise can be difficult to han-
dle since it exhibits significant spatial correlation and does
not generally follow a Gaussian distribution. Our method



(a) (b)

(c) (d)

Figure 6. Segmentation of synthetically gen-
erated data. Top row: Rayleigh (a) and
Fisher-Tippett flows applied to original log
magnitude image. Bottom row: Rayleigh (c)
and Fisher-Tippett flows (d) applied to decor-
related image.

first decorrelates the ultrasound image using a whitening
filter. We then perform maximum likelihood segmentation
using region-based active contours and the Fisher-Tippett
distribution model. In all our experiments, we observed the
best results when we applied the Fisher-Tippett flow on the
decorrelated images.

While more comprehensive validation of the algorithm
is required, from our experimental results we conclude that
the combined decorrelation and statistical region-based ac-
tive contour results in improved segmentation results. For
future work we are interested in validating the method with
more IQ ultrasound data, and applying the method to clini-
cal applications like tumor segmentation. Furthermore, we
believe the theory underlying this paper will be useful in
other applications, such as filtering, tracking, and registra-
tion; we plan on investigating these topics in the future.
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Figure 7. Segmentation of a lesion phantom.
In (a), the Rayleigh flow is applied to the origi-
nal magnitude IQ image, and in (b) the Fisher-
Tippett flow is applied to the log magnitude
IQ image.
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