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Abstract—Current depth capturing devices show serious 

drawbacks in certain applications, for example ego-centric 

depth recovery: they are cumbersome, have a high power 

requirement, and do not portray high resolution at near 

distance. Stereo-matching techniques are a suitable 

alternative, but whilst the idea behind these techniques is 

simple it is well known that recovery of an accurate disparity 

map by stereo-matching requires overcoming three main 

problems: occluded regions causing absence of corresponding 

pixels; existence of noise in the image capturing sensor and 

inconsistent color and brightness in the captured images.  

We propose a modified version of the Census-Hamming 

cost function which allows more robust matching with an 

emphasis on improving performance under radiometric 

variations of the input images. 

I. INTRODUCTION 

 

Stereo-matching for disparity recovery has been used in 

a wide range of applications,  including object recognition, 

object tracking, robotic navigation and even recovery of 

landscape topography from aerial photography [11]. This 

broadness of scope implies that a good correspondence 

matching system has an inherent need to be adaptive to 

different illumination conditions. Basic stereo-matching 

systems utilise a simple matching cost function to identify 

corresponding points in images taken from multiple 

perspectives (often two) with the assumption of identical 

intensity level at points of corresponding image locations. 

We will refer to this as the Consistency Assumption. As a 

result of different illumination conditions, amongst other 

factors, the consistency assumption rarely holds and more 

complex cost functions are required to account for 

radiometric differences.   

As mentioned above, several conditions breach the 

consistency assumption. The illuminating conditions are a 

major issue as they can seldom be controlled. This is as a 

result of non-Lambertian surfaces and specular reflection 

[5]. The difference in illumination to the light sensor 

component of the cameras will result in the same point in 

3D space being perceived at different intensity levels. 

Another cause of radiometric differences is the 

Figure 1. Quantized Census 
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inconsistency of the image capturing devices themselves. 

Properties such a salt and pepper noise, Gaussian noise, 

vignetting, gain setting (linear and non-linear) etc. will 

generally be inconsistent in multiple devices hence 

resulting in radiometric differences. Whilst pre-calibration 

is a good remedy to these problems, it could be quite 

tedious and the solution would only be partial. Hence 

developing accurate cameras for stereo-matching often 

requires expensive techniques and resources.  

The above discussion, establishes that the requirement 

for robustness against radiometric differences is essential 

for a stereo-matching system to be used in real application. 

In this paper we propose an improved Census cost function 

[3]. It is important to note that we have focused on the cost 

function rather than on the matching algorithm. Hence a 

basic window to window search is carried out and no 

further optimizations are integrated. Our key contribution in 

this paper is that we have generalized the Census cost 

function by incorporating a quantization term that improves 

its robustness to radiometric changes that do not preserve 

the relative ordering of pixel values whilst still handling 

gain or bias radiometric changes. As a result the proposed 

cost function (Quantized Census) is robust against different 

types of radiometric distortions. The rest of the paper is 

structured as follows: in the next section a survey of region-

based matching cost functions is presented; section 3 

introduces the proposed cost function; section 4 describes 

the dataset and experiments carried out; and section 5 

discusses the results of the experiments. The paper is 

concluded and future work is discussed in section 6.  

II. RELATED WORK 

Generally, region-based matching cost functions are of 

three categories, namely: Parametric, Non-Parametric and 

Mutual Information [6]. Common parametric matching cost 

functions include: Sum of Absolute Differences (SAD), and 

Sum of Squared Differences (SSD) each with a Locally-

scaled and Zero-mean version - Locally-scaled Sum of 

Absolute Differences (LSAD), Zero-mean Sum of Absolute 

Differences (ZSAD), Locally-scaled Sum of Squared 

Differences (LSSD) and Zero-mean Sum of Squared 

Differences (ZSSD). Another type of parametric matching-

cost is Normalized-Cross Correlation (NCC), (with a Zero-

mean version- ZNCC) [6]. Each of the cost function 

assumes an already rectified image pair with corresponding 

matching pixel only horizontally displaced in the other 

image. 

SAD is arguably the simplest of the window-based cost 

functions. SAD relies heavily on the consistency 

assumption and is calculated by taking the sum of the 

absolute difference of all intensity levels between the pixels 

within a neighbourhood in the first image and those in a 

potentially matching neighbourhood in the second image.  

The cost function can be mathematically described as 

follow: 

       𝐶𝑆𝐴𝐷(𝐩, 𝐝) = ∑ |𝐼𝐿(𝐪) − 𝐼𝑅(𝐪 − 𝐝)|  𝐪 𝜖 𝑁𝒑
                (1) 

where a corresponding search is made for pixel, p in the left 

image; d denotes the number of pixel-shifts away from the 

pixel, p in the horizontal line; and q denotes a pixel within 

a neighbourhood around p, called Np.  

SSD is similar to SAD except that the differences are 

squared before summation within the window. This 

additional step means that it requires slightly more 

computation than SAD. Formally, 

            𝐶𝑆𝑆𝐷(𝐩, 𝐝) = ∑ {𝐼𝐿(𝐪) − 𝐼𝑅(𝐪 − 𝐝)}2
  𝐪 𝜖 𝑁𝒑

        (2) 

The locally-scaled variants of SAD and SSD attempt to 

compensate for bias gain by multiplying each pixel value in 

one of the two neighbourhoods to be compared by the ratios 

of the mean intensity value of both regions. The equations 

are as follows. 

     𝐶𝐿𝑆𝐴𝐷(𝐩, 𝐝) = ∑ {|𝐼𝐿(𝐪) −
𝐼𝑁𝑃,𝐿̅̅ ̅̅ ̅̅ ̅̅

𝐼𝑁𝑃,𝑅̅̅ ̅̅ ̅̅ ̅̅
𝐼𝑅(𝐪 − 𝐝)|}  𝐪 𝜖 𝑁𝒑

    (3) 

      𝐶𝐿𝑆𝑆𝐷(𝐩, 𝐝) = ∑ {𝐼𝐿(𝐪) −
𝐼𝑁𝑃,𝐿̅̅ ̅̅ ̅̅ ̅̅

𝐼𝑁𝑃,𝑅̅̅ ̅̅ ̅̅ ̅̅
𝐼𝑅(𝐪 − 𝐝)}

2

  𝐪 𝜖 𝑁𝒑
    (4) 

where the overbar denotes the mean.  

NCC is the most computationally expensive of the 

parametric cost functions considered in this paper. The 

NCC derived from cross-correlation which is effectively 

the integration of the product of two signals. These signals 

would have an amplitude distribution about the zero level. 

The NCC employs normalization before to the Cross-

Correlation step to ensure that the image intensity values 

(which are always positive) are distributed about the zero 

level. Formally,  

𝐶𝑁𝐶𝐶(𝐩, 𝐝) =
∑ {𝐼𝑳(𝐪) ∗ 𝐼𝑹(𝐪 − 𝐝)}  𝐪 𝜖 𝑁𝒑

√∑ {𝐼𝑳(𝐪)2 } ∗ ∑ {𝐼𝑹(𝐪 − 𝐝)2
 𝐪 𝜖 𝑁𝒑

} 𝐪 𝜖 𝑁𝒑

 

 (5) 

The zero mean variants, ZSAD, ZSSD and ZNCC, also 

attempt to account for a constant bias gain radiometric 

difference. They achieve this by subtracting the intensity 

value of each pixel within the window of interest by the 

mean of the window. Hence the transformation is as 

follows: 

       IT (p) = I (p) -  𝐼(̅𝐩)  (6)                                                    

                           𝐼(̅𝐩) =
1

𝑛(𝑁𝐩)
∑ 𝐼(𝒒)  𝐪 𝜖 𝑁𝒑

                     (7) 

where n() denote number of pixels in the neighbourhood.  

This transformation is applied before the respective 

correspondence cost is carried out. There are other variants 



   

 

 
 

 
 

of parametric matching cost function for example MNCC 

which is an approximation of the NCC but with faster 

computation [13].  

Non-parametric matching-costs are invariant to 

monotonic gray value changes. They rely solely on the 

relative intensity levels of pixels within region. This allows 

them to tolerate a large class of local and global radiometric 

changes [4]. The Rank function and Census function are 

two major types of non-parametric matching-cost functions. 

The Rank matching cost transforms the intensity level of 

each pixel to its intensity ranking within the neighborhood. 

This transformation is used as a correspondence match by 

computing the absolute difference. This is known to be 

sensitive to noise in textureless regions [10]. The Census 

function is discussed in Section 3.A.  

 

The final category of matching cost function is mutual 

information. Statistically, mutual information measures the 

strength of association between two random variables. It 

conveys the amounts of instances in which two events are 

observed together in comparison to when not observed 

together. In terms of stereo image correspondence, the 

random variables are the pair of potentially matching pixels 

points. Egnal [9] proposed the method of using mutual 

information for local stereo correspondence. At each pair of 

neighborhoods a histogram is generated and used to 

compute the joint probability of the intensity levels in both 

neighborhoods. Another common variance of MI is HMI 

(hierarchical mutual information) [14].  This uses a coarse-

to-fine technique, by scaling down the images and then 

gradually scaling up. Starting with a randomly allocated 

disparity map, the images are displaced and the cost is 

computed.  

III. DEVELOPING THE PROPOSED METHOD 

A. Census-Hamming Distance 

The Census cost function is implemented as a non-

parametric local transformation to the window of interest 

whilst the Hamming Distance is the similarity measure that 

utilizes the result of this transformation. Consider a local 

neighborhood Np with a center pixel p and intensity I (p). 

Assuming a rectified stereo pair, with a pixel, p in the left 

image, the corresponding pixel in the right image is p-d. 

For a single image(left or right) the intensity level of the 

center pixel is compared to that of surrounding pixels 

(denoted with q) within the considered neighborhood to 

generate “a bit string representing the set of neighboring 

pixels whose intensity is less than” or greater than I (p) [3]. 

Formally, 

                           𝐼𝐶 (𝐩) = 𝐹{𝐼(𝐪) > 𝐼(𝐩)}                          (8) 

where F{ } is a Boolean function that returns ‘1’ if the 

input is true and ‘0’ otherwise. The binary result from (8) is 

concatenated across all the pixels in the neighborhood.  The 

Hamming distance between the transformed neighborhoods 

in both corresponding images is then computed. This is the 

number of bit-positions that are different in two bit strings 

[3]. The larger this value the more dissimilar the two 

neighborhoods in question. Whilst the Census-Hamming 

combination is a strong cost function against some 

radiometric changes, it has one major flaw in that it is not 

invariant to non-monotonic radiometric distortions. 

Consider a 1D, image region with 5 pixels shown in Fig. 

2a. 

 

53 99 100 102 135 
(a) 

53 101 100 99 135 
(b) 

Figure 2.  Intensity levels of a 1D Image region before (a) and after (b) 
non-monotonic distortion  

Here the Census transform for this region would be: [0 

0 1 1]. If the image is distorted non-monotonically, the 

relative ordering of intensity level is lost, for example, as 

shown in Fig. 2b.  This would result in a different Census 

transform of [0 1 0 1]. Even though the distortion was 

slight, this results in a 50% error.  

Other variances of the Census cost function are [16] and 

[15]. The first utilizes the mean intensity of the window 

instead of the intensity of the center pixel in the 

neighborhood while the latter adds a relatively small 

number to the mean intensity before comparing with 

neighboring pixels. 

 

B. Quantized Census (QC) 

We proposed Quantized Census in an attempt to 

compensate for the deficiency in the Census matching cost. 

QC applies a less rigid system that accommodates for non-

monotonic distortions to the ordered level of intensity.  

Just like in the Census case, QC utilizes the comparative 

intensity of the middle pixel and the neighboring pixels, but 

is also sensitive to intensity gradient. It transforms the 

intensity level at each pixel within the neighborhood of 

interest to a quantized equivalent of the difference in the 

intensity value of the middle pixel to that of the 

surrounding ones. This does not only provide information 

on the order of relative intensity but also, to some extent the 

magnitude. Continuing with our previous notation, the 

transformation is as follows: 

                            𝐷(𝐪) = 𝑄𝑁{𝐼(𝐪) − 𝐼(𝐩)}                   (9) 

where QN{ } denotes N bins of quantization. It is important 

to note that the subtraction operation that precedes the 

quantization could yield values that range from negative to 

positive. Hence quantization is applied in the range of -255 



   

 

 
 

 
 

and +255 (intensity color range). For example if 16 bins 

were used, then the quantized value would range from -7 to 

0 in the negative range and 0 to 7 in the positive domain. 

The effect of this equation is that subtle non-monotonic 

distortions, that do not preserve the order of pixel intensity, 

will not be detected by the cost function. This is significant 

as imaging devices would not perfectly capture subtle 

intensity changes in a scene. The 1D intensity row plot of a 

pair of stereo images shown in Fig. 3 illustrates this. It 

shows how the intensity of the pixels in the left image (red 

plot) and right image (blue plot) varies along an arbitrary 

row. 

 
Figure 3. A 1D intensity row plot of the pair of the Tsukuba stereo image 

from the Middlebury dataset. [7] 

 

Looking at the plot we can partially identify where some of 

the pairs of corresponding points are. However, we would 

also note that the relative ordering of intensity is not 

consistent especially in the low textured region. This will 

also be the case in the presence of distortions like Gaussian 

noise. Subtle intensity distortion due to Gaussian noise with 

low signal to noise ratio would be ignored as a result of 

quantization. For example, looking back at Fig. 2, if a 

quantized difference (with 16 bins) is applied then the 

resulting transform for both region A and B will be [-1 0 0 

1]. Hence, it permits for the subtle non-monotonic 

distortion. 

Whilst the modification in (9) has improved robustness, 

it immediately poses a problem. A key strength of the 

Census cost function is that it is robust to distortions like 

salt and pepper noise. It achieves this by not using an 

aggregative costing technique (in terms of intensity levels) 

like in SAD or NCC. Each erroneous pixel contributes 

equally to the cost, making it insensitive to outliers. With 

our modification, the intuitive cost would have been to 

acquire the sum of absolute or square differences. Of course 

this would be to the detriment of how well the cost function 

performs against outliers. This is because outliers that 

instigate huge quantized difference would influence the 

sum of absolute difference. Taking inspiration from the 

RANSAC algorithm [8], we used the number of outliers as 

opposed to summing the cost at each pixel. This has made 

the cost function invariant to radiometric changes that do 

not preserve the relative ordering of pixel values. Formally, 

we define the Quantized Census stereo-matching cost as 

       𝐶𝑄𝐶(𝐩) = ∑ 𝐹{|𝐷𝐿(𝐪) − 𝐷𝑅(𝐪 − 𝐝)| > 𝑇}

  𝒒 𝜖 𝑁𝒑

  10) 

where T is a threshold value. This cost is applied to the 

transformed neighborhood pair that is tested for 

correspondence. Here DL and DR refers to the quantized 

pixel differences acquired by (10). To illustrate how (10) 

tolerates salt and pepper noise, consider a 3-by-3 region in 

a first image (region A in Fig. 4), and two potentially 

matching 3-by-3 regions in a second image (regions B and 

C in Fig. 4. These regions have been chosen to illustrate a 

linear gain scenario where the ground truth matching region 

is in fact region B with a bias of 30. 

 
Figure 4. Intensity value of neighborhood 

The resulting transformation (with 32 bins of quantization) 

for regions A, B and C will be. 

 

Figure 5. Transformed values of neighborhood using (9) 

First, note the invariance of the cost function to radiometric 

differences, while the relative pixel values are preserved.  

Next let us assume that the shaded pixel in region A is a 

randomly altered pixel value as a result of noise.  

 
Figure 6.  Resulting Cost when sum of the absolute difference of the 

transformed regions is used to compare Region A to Region B and C.  

Fig. 6 illustrates the effect of the intensity level on the cost 

function had the sum of absolute difference been used 

instead of a threshold, as in (10). A significant degree of 

distortion in a single pixel is enough to affect the result of 

the cost function. If the intensity was distorted to less than 

185, region C would wrongly be chosen as the best match. 

Instead, by considering the number of pixels pairs with 

absolute differences less than a particular threshold, this is 

rectified. In the above scenario, regardless of the intensity 

of the shaded pixel, the number of outliers will be the same.  

Fig. 1 gives a general flow diagram of Quantized 

Census. For a region in the first image and another 

potentially matching region in the second, the difference 
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between the intensity of the middle pixel and that of 

neighborhood pixels are acquired respectively. These 

differences are then quantized into an experimentally 

determined number of bins. In the case of Fig. 1, 16 bins 

were used. The absolute difference of the both transformed 

region is taking and the result is compared to a threshold 

(that is also experimentally determined) to generate a 

binary region. The sum of the binary region is to be 

minimized across all potentially matching regions. 

IV. DATASET & EXPERIMENT 

 In the following experiment we compare the 

performance of QC and other cost functions in context of 

radiometric differences. We have not augmented cost 

functions with any smoothness, occlusion detection factors 

or any additional filtering. Hence we only evaluate the 

direct performance our cost against others. Both parametric 

cost and non-parametric cost functions were used. These 

included: SAD, LSAD, ZSAD, SSD, LSSD, ZSSD, NCC 

and Census. We use a simple window to window search 

algorithm on all of the cost functions. The search span of all 

cost functions was set to 10 pixels above the maximum 

disparity in the known ground truth.  

Both synthetic and non-synthetic data sets were used in 

the experiment. The synthetic scene was generated using 

OpenGL. Here image pairs were captured from two 

perspectives by displacing the synthetic camera 

horizontally. This was particularly useful as it allowed the 

absolute disparity at each pixel to be computed from the 

baseline, FOV of the synthetic camera and the proximity of 

the scene to the camera by reversing the parallax equation. 

The non-synthetic dataset used were Teddy, Reindeer, 

Laundry, Art, Flowerpots and Cones from the Middlebury 

dataset [7] (Fig. 8). Each of the cost functions were trained 

using the synthetic data to determine the values of the 

parameters (such as window size, the threshold value and 

the quantization bin) that best optimized their performance. 

This ensured that the results indicated how well the cost 

functions were able to generalize, which is the key 

motivation for using Quantized Census. The data sets were 

altered to model five radiometric changes and the cost 

functions tested against these radiometric changes using 

implementation from [17]. These included a linear and non-

linear distortion to the global intensity of the dataset; 

synthetized vignetting effect; Gaussian noise; and salt and 

pepper noise. Different levels of each distortion were used 

in the test. The linear and non-linear global intensity 

distortion; and the vignetting effect were applied to only 

one of the stereo image pairs while the Gaussian and salt 

and pepper noise were applied to both images in the pair.  

All the tests and trainings were carried out on grayscale 

images. However the proposed cost method can easily be 

implemented for RGB data by, for example, applying the 

transformation at each color channel and then 

marginalizing to get the best match. For the evaluation, the 

resulting disparity maps were compared against the ground 

truth by taking an absolute difference. A disparity value 

with an absolute difference error less than 1 pixel is 

considered to be right and vice versa. The Quantitative 

results are shown in Fig. 7, portraying the average 

percentage of rightly recovered disparity values over all six 

datasets. Occluded and non-occluded regions were not 

considered in the test as we only aim to compare relative 

performance. The resulting disparity for the Cone stereo 

pair is shown in Fig. 9.  

V. RESULT & DISCUSSION 

Based on the training results, QC’s performance was 

optimized with 16 bins of quantization at a threshold value 

of 2.These parameters, as well as a 3-by-3 window size 

were used in the previously described testing that followed. 

The results (Fig. 7) demonstrate how different cost 

functions are suited to specific radiometric differences. The 

locally scaled variants are theoretically suited for linear 

gain global distortion as the mean ratio explicitly counters 

this distortion. The same applies in the cases of: the NCC 

cost function in compensating for Gaussian; and Census in 

compensating salt and pepper noise. Quantized Census is 

able to generalize and be invariant to different types of 

radiometric changes. Although it does not outperform all 

other cost functions, it maintains a good performance 

across the different range of distortions. This makes it 

invaluable to the scenario where various radiometric 

distortions can exist - as is the case in most real-world 

applications. To illustrate the consistency of QC, an overall 

performance index has been computed across all the test 

results. This is shown in the table shown in Table 1. Here, 

for each radiometric distortion, the percentages of rightly 

recovered pixels are averaged and then normalized across 

each cost function. This provides an indication of the 

relative effectiveness of each cost function against the 

radiometric distortions. The overall performance index (in 

the bottom row of the table) is the sum of relative 

performance of each cost function across all the radiometric 

distortions. The performance index does not only indicate 

the superiority of QC over the other cost functions (in terms 

of consistency and generalization) but also the vast 

improvement that the proposed modification has made to 

the Census cost.  

It is worth noting that QC maintains a good 

performance initially and then drops quite abruptly as the 

level of distortion increases. This is a positive factor as 

most distortions in real-life applications would not be as 

severe as those applied in the extremes of the tests carried 

out. Another feature of QC noted during testing was that, 

unlike other region-based costs, its performance was 

independent of the neighborhood window size. This is 

another positive factor as small window size could be used, 

so as to reduce computation without any detriment to 

performance.  



   

 

 
 

 
 

  

    
 

(a) Salt & Pepper Noise                

   (b) Global Linear gain 
 

 

     
 

(c) Gaussian (White) Noise               
   (d) Non-Linear global gain 

 

 
(e) Global Linear gain 

 
Figure 7. Performance of the compared cost functions on Teddy, Laundry, Reindeer, Art, Flowerpots and Cones dataset. All plots show the 

percentage of rightly recovered disparity values by each cost function as different radiometric distortions are applied. 
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     (a)    (b)          (c)                           (d)                                       (e)     

 

         
     (f)                    (g)         (h)                    (i)           (j)   

 
Figure 9.  Recovered disparity for the Cone pair without radiometric distortion applied: (a) SAD (b) LSAD (c) ZSAD (d) SSD  (e) LSSD (f) ZSSD

    (g)NCC (h)QC  (i) Census  (j) Ground Truth   

 

 

TABLE 1.  TABLE OF OVERALL PERFORMANCE INDEX 

 SAD LSAD ZSAD SSD LSSD ZSSD NCC QC Census 

Gaussian 0.14915 0.08350 0.11086 0.09335 0.08612 0.11762 0.15675 0.12066 0.08194 

S & P 0.11415 0.12094 0.09128 0.09229 0.0587 0.06790 0.06274 0.18777 0.20420 

Vignetting 0.06113 0.14109 0.133958 0.070519 0.139875 0.139629 0.139901 0.13181 0.04207 

Gamma 0.0428 0.099 0.19421 0.05204 0.09893 0.19477 0.10542 0.16757 0.04518 

Gain 0.04423 0.15011 0.13969 0.05348 0.14874 0.14785 0.14877 0.13592 0.03117 

Total 0.41154 0.59466 0.67001 0.36169 0.53237 0.66779 0.61360 0.74374 0.40457 

 

A. Threshold value Effect 

In this section we explored how the performance of the QC 

cost function reacts to different levels of radiometric noise, 

as the threshold value chosen is altered. There was no 

significant relationship in the case of the linear and non-

linear gain; vignetting; and the salt & pepper noise. 

However, the Gaussian noise showed some correlation. Fig. 

10 illustrates this relationship and in turn explains how the 

Quantized Census was able to compensate for Gaussian 

noise. As the standard deviation increases so does the 

optimum threshold value that produced the best result.   

 

Figure 8.  The left images of the Synthetic scene (used for training); and the Reindeer, Cones, Art, Flowerpots Teddy, and Laundry (used for 
testing) 



   

 

 
 

 
 

 
 

Figure 10. Performance of different threshold values for QC against 

different standard deviations of Gaussian noise 

The threshold value implicitly determines the level of error 

the cost permits for when deciding what is conceded as a 

correct match. Subsequently, as the standard deviation 

(Signal-to-Noise) of the Gaussian noise increases the 

threshold value would need to increase to accommodate the 

increased error level.    

VI. CONCLUSIONS 

We have proposed, developed and evaluated an 

improved variant to the Census cost function, Quantized 

Census.  A comparison has been made both experimentally 

and theoretically with other cost functions. The proposed 

cost function has been shown to have significantly improved 

performance of the Census cost function against different 

radiometric differences. Although Quantized Census does 

not outperform other cost functions against all distortions, it 

has proved to be the most consistent. This makes it more 

robust and more suited for real-world applications where 

different radiometric distortions appear.  

As with every technique that employs some form of 

threshold or weighting there is an inherent disadvantage in 

having to decide the right threshold or weight to use. This is 

indeed the case with Quantized Census, with particular 

sensitivity to the threshold value. In future work we aim to 

propose and develop a technique of automatically selecting 

threshold values based on the intensity distribution in the 

scene. One approach would be to detect the level of noise in 

texture-less regions and alter the threshold accordingly. 
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