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Large networked systems are constantly exposed to local damages and failures that can alter their
functionality. The knowledge of the structure of these systems is however often derived through
sampling strategies whose effectiveness at damage detection has not been thoroughly investigated
so far. Here we study the performance of shortest path sampling for damage detection in large
scale networks. We define appropriate metrics to characterize the sampling process before and
after the damage, providing statistical estimates for the status of nodes (damaged, not-damaged).
The proposed methodology is flexible and allows tuning the trade-off between the accuracy of the
damage detection and the number of probes used to sample the network. We test and measure
the efficiency of our approach considering both synthetic and real networks data. Remarkably, in
all the systems studied the number of correctly identified damaged nodes exceeds the number false
positives allowing to uncover precisely the damage.

PACS numbers: 89.75.-k,89.75.Hc,89.20.Hh

Real world networks are often the result of a self-
organized evolution without central control [1–3]. The
physical Internet and the World Wide Web are two pro-
totypical examples where the interplay of local and non-
local evolution mechanisms defines the global structure
of the network. In absence of defined blueprints, the
only way to characterize the global structure of self-
organizing systems is by devising sampling experiments,
like traceroute probing for the physical Internet [4–9] and
web crawlers for the WWW [10–12], that try to infer
the properties and connectivity patterns of these struc-
tures [13–19]. However, sampling processes are limited
by time and physical constraints, and in general guaran-
tee access only to a part of the network. In this context,
the detection of network damage is a difficult task. The
lack of information on the exact structure of the sys-
tem makes it extremely difficult to identify what damage
has been actually suffered and discriminate damaged el-
ements from those that have been simply not yet probed
by the sampling process.

Here we study numerically the effectiveness of shortest
path sampling strategies for damage detection in large-
scale networks. Shortest path sampling strategies are ac-
tually used in Internet probing [1, 20–24] including fail-
ure detection, via traceroute like tools and end-to end
measurements. We consider different attack strategies,
namely random or connectivity based and introduce a
global measure, M , that allows to quickly identify dam-
ages that induce large variations in the routing patterns
of networks. We then propose a statistical method able
to classify nodes as damaged or functioning in the case of
partial network sampling. In our analysis, we first sam-
ple a given network structure via shortest path probes
[1, 20–24] obtaining a partial representation of its nodes
and connectivity patterns. Then we damage the net-

work by removing nodes according to different strategies
and sample again the damaged network supposing not to
know the location and magnitude of the damage. Dur-
ing this sampling, we constantly monitor whether the
probability not to have seen a node exceeds the expected
value calculated on the basis of the sampling of the un-
damaged graph. We define a statistical criterion to asses
which nodes of the network can be considered damaged,
and we test the performance of the method by looking at
the number of true and false positives it identifies.

We perform numerical experiments on synthetic net-
works, either heterogeneous, generated with the un-
correlated configurational model (UCM) [25], or ho-
mogeneous, obtained through the Erdös-Rèny model
(ER) [26]. Remarkably, the magnitude and location of
the damage can be detected with fairly good confidence.
The accuracy improves for nodes that play a central role
in network’s connectivity. Namely, the detection of dam-
aged hubs is more reliable than the one of peripheral
nodes. As a practical application, we consider the dam-
age detection on the physical Internet at the level of Au-
tonomous System (AS). We use the AS topology pro-
vided by the Dimes project [14]. In this case, to sim-
ulate realistic damages, we remove nodes according to
their geographical position. In doing so we simulate crit-
ical events such as large-scale power outages, deliberate
servers switch offs [27] or other major localized catas-
trophic events [28]. Interestingly, also in this case our
methodology allows to statistically identify the extent
and location of the damage with reasonable accuracy.

The paper is organized as follows: in the section I
we present the sampling method used. In section II we
introduce a measure that provides a general estimation
of the damage extension in sampled networks. In section
III we provide a method to infer if a single node is
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damaged or not using a p-value test. In section IV
we validate this method by applying it to the physical
Internet network. Finally in section V we present our
conclusions and final remarks.

SHORTEST PATH SAMPLING OF
UNDAMAGED NETWORKS

The sampling of networks via shortest paths consists
in sending probes from a set of nodes that have been de-
fined as sources toward another set of nodes chosen to be
targets. Each probe travels through the network follow-
ing a shortest path and records each node and link visited
returning a path. This is, to a first approximation, what
is executed by Internet mapping projects that use the
traceroute tool [8] as probing method. This methodology
infers paths by transmitting a sequence of limited-time-
to-live TCP/IP packets from a source node to a specified
target on the Internet. The nodes visited along the way
send their IP addresses as a response and create the path.
The union of all the paths returned by the probes creates
the sampled picture of the network. However, mapping
the real physical Internet is complicated and existing ap-
proaches have major limitations [4]. For example, visited
nodes can fail to provide their IP address, and wrong or
outdated forwarding routes registries can result in not
optimal forwarding route indications. Our study is in-
spired by the traceroute tool although we assume that
our probes follow shortest paths in the network neglect-
ing the real world limitations aforementioned.

Here we focus on undirected and unweighted networks
constituted of N nodes and M edges G(N,M). We fix
a set of sources S = (s1, s2, . . . , sNS

) and a set of target
T = (t1, t2, . . . , tNT

) among the N nodes, being NS and
NT the total number of sources and targets respectively.
For each pair of nodes, taken in the two sets, a shortest
path probe is sent. After all of the NS ×NT probes are
executed, all the resulting paths are merged in a sampled
network that we denote as G∗(N∗,M∗). Here and in
the rest of the paper the star symbol indicates sampled
quantities, so N∗ is the number of discovered nodes and
M∗ the number of discovered links via to the shortest
path sampling.

In general, for each source-destination pair we can have
two or more equivalent shortest paths. More precisely,
there could be different strategies to numerically simulate
the shortest path probing:

• Unique shortest path (USP). The shortest path be-
tween a node i and a target T is always the same
independently of the source S. Each shortest path
is selected initially and they will never change.

• Random shortest path (RSP). Each shortest path is
selected every time randomly among the equivalent

FIG. 1: Probability distribution function (pdf) of node visit
probability for undamaged UCM (blue solid line) and ER (or-
ange dashed line) networks. The two peaks that deviate from
the overall heavy-tailed behavior occurs at pi = 1/NS and
pi = 1/NT , and represent the visit probability of sources and
target respectively. The curves are the average over 100 in-
dependent simulations.

ones.

• All shortest path (ASP). All possible, equivalent,
shortest path between shortest path are discovered.

In the following we will use the RSP probing strategy [20,
29–31]. Both sources and targets are chosen randomly
among all the nodes. Inspired by real Internet probing
we investigate scenarios in which the order of magnitude
of sources is NS = O(10), while the order of magnitude
of density of targets, ρT , is O(10−1). Along with the raw
number of discovered nodes, we also keep track of the
visit probability pi for each visited node i, defined as the
ratio between the number of shortest path probes passed
through the node i and the total number of probes sent
NS ×NT :

pi =

NS×NT∑
j=1

δi,j

NSNT
, (1)

where δi,j is equal to 1 if the node i is seen by the probe
j. In the limit in which both NS and NT approach N ,
the probability p become the betweenness [20]. Instead,
in more realistic cases in which the number of sources
and targets is small the nodes visit probability is just
an approximation of this quantity [20]. Considering this
limit, we show the distribution of p in Figure 1 in both
UCM and ER networks with 105 nodes. The number of
sources is 15 and the target density is 0.2. The curves
show a power law behavior except for the presence of two
peaks, representing the visit probability of sources and
targets. The peak for large values of pi is the consequence
of the visit of sources, and appears in correspondence of
pi = psource = 1/NS , ∀i ∈ S. The other peak is due to
targets and occurs for pi = ptargets = 1/NT , ∀i ∈ T [37].
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DAMAGE DETECTION

In order to introduce damage in the network, we con-
sider that ND nodes are not functional, i.e. a fraction
ρD = ND/N , of nodes and all their links are removed
from the network G. We define the damaged network
GD(ND,MD) where the subscript D denotes damage.
Damaged nodes are selected either randomly or accord-
ing to a degree based strategy in which nodes are re-
moved according to their position in the degree ranking
(hubs first or leafs first). Although probes target nodes
can be damaged, we assume that no sources are dam-
aged. In these settings we aim at inferring the damage
using shortest path sampling by looking at the number
of nodes discovered before and after the damage occurs.

Shortest path probes are sent between each pair of
source-target nodes. The sampled network after the dam-
age G∗D differs in general from the sampled view G∗ of
the original undamaged network because of the changed
topology due to the missing nodes. To quantify the dam-
age we introduce the quantity

M = 1− N∗
D

N∗ (2)

where N∗ and N∗
D are the number of discovered nodes in

the undamaged and damaged network respectively. If no
damage occurs, the number of nodes discovered in GD is
similar to the one discovered in G so that N∗ ' N∗

D and
M ' 0 [38]. If less nodes are seen in GD than in G then
M > 0, with M = 1 representing the extreme case in
which no nodes are discovered in the damaged network.
Interestingly, the quantity M can assume also negative
values. Indeed, it is possible to see more nodes in GD
respect to G. Although this case may sound counterin-
tuitive at first, a closer look to the effect in the topology
induced by removing nodes, clearly explain its meaning.
Indeed, by removing some central nodes in the network
(in the next section we discuss this point in details) the
length of the shortest paths might increase on average as
well as the number of discovered nodes.

Numerical simulations

We measure the quantity M in damaged homogenous
and uncorrelated heterogenous networks [1–3, 32], gen-
erated through the ER and the UCM algorithm, respec-
tively. The network size is fixed at N = 105 nodes, and
the number of sources and target density are NS = 15,
and ρT = 0.2, respectively. The average degree is k̄ = 8
for both the topologies. The exponent γ for UCM is
2.5. As mentioned above, sources and targets are ran-
domly selected. We consider different damage strategies
in which the removed nodes are selected at random or
considering their degree. We further divide the latter

FIG. 2: The behavior of M is shown for three different
damage strategies: random (red squares), small degree nodes
first (green diamonds) hubs first (blue circles). (A) UCM
scale-free graph. Inset: the behavior of M when high degree
nodes are removed first is compared to the quantity 〈l〉ρav as
a function of ρD. (B) ER random graph. For UCM network
the minimum indicates the enhanced discovery given by the
lack of hubs. Each plot is the median among 10 independent
assignment of sources and targets.

strategy considering two cases in which nodes are re-
moved in increasing (hubs first) or decreasing order of
degree.

Figure 2 shows M as a function of ρD for the three
different attack mechanisms, for the two different types
of network. The top panel presents data for UCM net-
work. The random nodes removal strategy gives the same
qualitative behavior as the one in which the small degree
nodes are attacked first. This is not surprising, since
the probability that a randomly selected node has small
degree is extremely high due to the power-law degree dis-
tribution of the network. The two strategies select, on
average, the same category of nodes. A big difference can
be noted when nodes are attacked in decreasing order of
degree (high degree nodes, hubs, are attacked first). For
small values of ρD the value of M assumes negative val-
ues, meaning that more nodes are discovered in the dam-
aged network than in the undamaged one. Indeed, hubs
act as shortcuts for network connectivity. Their failure
causes the rerouting of probes toward lower degree nodes
and the consequent growth of the average length of the
shortest paths 〈l〉. As ρD increases, this trend is con-
trasted by the progressive fragmentation of the network
in many disconnected components.

In order to estimate how much the network has been
fragmented by the damaging process we define the quan-
tity ρav as the average of the ratio between the nodes
of the components in which each source is located, and
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the total number of nodes N of the undamaged network.
After a certain amount of nodes are removed, the graph
undergoes disconnection and more than one component
appears. At this point a shortest path probe can reach
only the nodes belonging to the component where the
source is located. Components with no sources will be
no longer accessible. ρav is a decreasing function of ρD
assuming the value 1 when there is no damage, whereas it
becomes ρav = NS/N in the limit of ρD ' 1, when only
the sources survive and each of them constitutes one com-
ponent. Neither 〈l〉 or ρav alone explains the presence of
the minimum of the quantity M in the plots. Instead the
product of the two 〈l〉ρav does: it represents the average
number of nodes discovered by each shortest path probe
rescaled by the number of nodes effectively available to
be discovered. The relation of this quantity with the
minimum for M is shown in the inset of Figure 2A. The
argument above is confirmed by the behavior of M in ER
graphs. Here, removing the nodes with higher degree has
a much smaller impact on the topology, and consequently
there is no increase in the amount of nodes discovered in
the damaged graph GD with respect to the original one
G. The plot of M for hubs removal in the ER network
does not show a minimum and substantially the damage
detection works similarly for all damage strategies.

SINGLE NODE DAMAGE DETECTION

While the measure M quantifies the damage at the
global level, it does not provide any information about
specific nodes of the network. In this section we address
the damage of individual nodes by assuming that the
information gathered during the exploration of the un-
damaged network constitutes the null hypothesis of our
measure, namely that no one of the nodes is damaged.
We start by monitoring the network G assuming that it is
not damaged. Every time we send a shortest path probe
we obtain a better approximation of the sampled network
G∗ with increasing number of discovered nodes N∗. At
the same time we collect information about how many
times a probe passes through a node i resulting on visit
probability pi defined in Eq. 1. The network is then dam-
aged according to one of the strategies discussed above,
and sampled via shortest path probes. By definition, any
node that is discovered during the sampling is not dam-
aged. However, the situation is less clear for nodes that
have not been discovered. Indeed, the reason why a node
is not seen can be either that it is actually damaged or
that the sampling has missed it because the damage has
altered the shortest path routing.

In order to infer the state of undiscovered nodes we
use a p-value test [33] applied to the visit probability pi.
More precisely, we calculate the probability (1 − pi)τ of
not seeing the node i after a number τ of shortest path
probes. τ can assume any integer value from 1 to NS ×

FIG. 3: Precision α as a function of C for (A) hubs removal
with fraction of removed nodes ρD = 0.001 and (B) random
nodes removal with fraction of removed nodes ρD = 0.01. The
black dashed line indicate α = 0.9. Dots represent the average
over 100 independent simulations and error bars illustrate the
95% confidence interval.

NT . The p-value test consist in imposing the equality
between this quantity and an arbitrary confidence level
C:

C = (1− pi)τi (3)

Note that after imposing the equality, τi has the index
i as for pi. This is because τi is different for each node.
By taking the logarithm on both side of the equation we
obtain:

τi =
lnC

ln(1− pi)
(4)

If the node i has not been seen at least once before τi
probes have been sent then we can state that i is damaged
with statistical confidence C. Here we are assuming that
the visit probability of nodes does not change after the
damage. This holds when the damage is a relatively small
perturbation and does not change the connectivity of the
network or its dynamical properties [3, 34, 35]. After
the pi values have been determined for all the nodes,
the value of C tunes the number of probes to be sent
before declaring a node damaged. If C is selected to be
large, nodes will be considered as damaged much earlier
but with a small statistical confidence, leading to a large
number of false positive (FP ) detections. Conversely, if
C is set to be small, more probes are needed to state
if a node is damaged or not. The accuracy improves
and the final response will eventually return only actually
damaged nodes, the true positive damaged nodes (TP ).
On the other hand the number of probes needed to reach
this level of statistical confidence will be much higher
resulting in a longer sampling process.

The value of C is an input of the method and it can
be chosen by opportunely tuning the trade-off between
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FIG. 4: Probability distribution function (pdf) of nodes visit
probability in the undamaged UCM (A) and ER (B) networks
restricted to nodes that will be later damaged with two dif-
ferent strategies.Curves are the average over 100 independent
simulations.

a poor but fast sampling that produces high number of
FP s and an accurate but slow sampling that generates
more TP s. We evaluate the performances of the damage
detection strategy measuring its precision and recall. In
particular, the precision, α, is defined as

α =
TP

TP + FP
. (5)

The recall, r, is instead

r =
TP

TP + FN
, (6)

where FN indicates the number of false negatives, i.e.
nodes damaged but not detected. In a given network
precision and recall are functions of the parameter C.
In Figure 3 we plot α for different values of C in both
UCM and ER networks. In the top panel we remove
top degree nodes and set ρD = 10−3. As expected α
increases as C decreases. Interestingly, in the case of
UCM topologies the increase is slower. Indeed, we can
notice that α reaches an arbitrary level of 90% (dashed
line) for C = 10−10 while in the case of ER networks the
same level is reached for C = 10−5. The extremely low
values of C, above all in the case of the UCM network, is
justified by the presence of the logarithm function at the
numerator of Eq. 4. Considering the big absolute value
of the denominator for big pi, very low values of C are
required to have values of τi that possibly ranges from 0
to NS × NT . The quite different value of C in the two
networks for top degree nodes removal can be explained
considering the distribution of pi of the damaged nodes
in case of hubs removal as shown in Figure 4. In the
UCM network top degree nodes have much higher visit
probability respect to the rest of the nodes. In the ER
network, instead, the role of high degree nodes is not

FIG. 5: Recall r as a function of C for (A) hubs removal
with fraction of removed nodes ρD = 0.001 and (B) random
nodes removal with fraction of removed nodes ρD = 0.01.
Dots represent the average over 100 independent simulations
and error bars illustrate the 95% confidence interval.

so determinant and the visit probability of high degree
nodes is almost indistinguishable from the one of random
nodes. For the same value of C in Eq. 4 the difference
in p between UCM and ER translates in smaller values
of τi for the UCM network. This leads to higher number
of FPs and hence smaller precision. In Figure 3B we
show the same curve for the random damaging strategy
setting ρD = 10−2. In this case the behavior of α in
the two topologies is very similar. Such behavior is due
to the p distributions that in both networks span the
entire range of possible visit probabilities irrespective of
the topology reproducing the same behavior shown in
Figure 1.

In Figure 5 we study the recall r as a function of C.
In this case we can see that r reaches 1 for all the values
of C investigated when damaging hubs in an UCM net-
work. All damaged nodes are detected during the sam-
pling. This is consequence of the very large visit proba-
bilities for high degree nodes in the UCM network. In-
deed, large pis combined with C via Eq. 4, produce small
values of τi, allowing all removed nodes to be promptly
declared damaged. The downside of this effect is the lack
of precision for large values of C (see Figure 3). In the
ER network, instead, the presence of low visit probabil-
ity nodes among the ones in the top degree ranks makes
their discovery more lengthy. Indeed, in this case larger
values of C are required to produce τis small enough to
allow the algorithm to declare the nodes damaged. It is
crucial to stress that τmax = NS × NT . Any node that
for a given C is characterized by τi > τmax will not be
evaluated by the algorithm. In the bottom panel we see
the recall for random nodes removal in both topologies.
Here the behavior of r is similar for both UCM and ER



6

FIG. 6: Recall r (blu circles) and normalized number of false
positive fp (orange squares) for high degree nodes removal as
a function of number of probes in UCM (A) and ER (B)
networks. The fraction of removed nodes is ρD = 0.001. The
values of confidence level C are 10−10 and 10−5 for UCM
and ER networks respectively. Points are the median among
100 realization with independent choice of sources and target.
Error bars illustrate the 95% confidence interval.

networks as consequence of the similar visit probability
distributions.

Numerical simulations in synthetic networks

We apply the statistical criterion developed in the pre-
vious section to the two types of synthetic networks,
UCM and ER, with 105 nodes and two damaging strate-
gies, high degree and random nodes removal. We send
shortest path probes from 15 sources to a number of tar-
gets equal to a fraction ρT = 0.2 of total nodes. In order
to compare the results of this part of the study for differ-
ent topologies and damage strategies we arbitrarily fixed
the C value to the one correspondent to a precision of
α = 0.9 in each system.

Let us first consider UCM networks subject to the re-
moval of the top hundred nodes ranked according to the
degree (ρD = 10−3). In Figure 6 we plot the recall, r, and
the normalized number of FPs, fp = FP/(TP + FN)
as a function of τ . Interestingly, the recall reaches 1
quickly. The absence of the hubs is promptly detected
by the method. In Figure 7 we show the behavior of the
same quantities in the case of random removal of nodes
considering ρD = 10−2. In this case the recall increase
slowly while fp remains constant after an initial increase.
An interesting feature of the r curve is the presence of a
jump. This jump is the consequence of the peak in the
distribution of pi that is mapped into τi via Eq. 4. It oc-
curs at the value of τ corresponding to ptargets = 1/NT
and is caused by the enhanced visit probability of tar-
get nodes. Since targets are assigned randomly, in UCM
networks they are most probably small degree nodes that
are visited just if they are set to be targets. This imply

FIG. 7: Recall r (blu circles) and normalized number of
false positive fp (orange squares) for random nodes removal
as a function of number of probes in UCM (A) and ER (B)
networks. The fraction of removed nodes is ρD = 0.01. The
value of confidence level C is 10−3 for both the UCM and ER
network. Points are the median among 100 realization with
independent choice of sources and target. Error bars illustrate
the 95% confidence interval.

that a specific number of probes equal to

τtargets =
lnC

ln(1− ptargets)
=

lnC

ln(1− 1/NT )
(7)

is necessary to be able calling targets as damaged or
not. Since targets are 20% of the nodes, once τtargets is
reached a conspicuous amount of nodes is characterized
by the p-value test. It is worth noting that only the num-
ber of TP s increases in correspondence with the jump,
and fp do not exhibit any discontinuity. This means that
we have a better view of the damage without affecting the
accuracy.
Let us now consider ER networks subject to removal of
nodes in decreasing order of degree. In Figure 6B we
plot r and fp as a function of τ . As for the case of UCM
network, the recall increases, even if slower, and reaches
the maximum values at 0.9. Similar behavior for both
the topologies is observed in the case of random removal
of nodes (see Figure 7).

NUMERICAL DAMAGE DETECTION IN
GEOLOCALIZED NETWORKS

In this section we consider a sample of the real In-
ternet topology network at the level of ASs where each
node is an autonomous system of known geographical lo-
cation [13, 21, 36], and links represent the physical con-
nections among them. Topologies are available for down-
loads in the DIMES project webpage [14]. We focus on
the largest connected component of ASs that is made by
32852 nodes.

We test damage detection in two relevant classes of
realistic attacks: all nodes in the same country are at-
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FIG. 8: Europe map showing the detected Italian damaged
nodes in the real AS network. Each circle represent one AS
and its size is proportional to the degree. Green circles are
the working nodes, blue ones are the TPs while orange ones
are the FPs. Nodes located at sea are effect of finite accuracy
of geographical coordinates provided.

tacked, and all nodes inside a radius ξ with epicenter E
are attacked. Both of these strategies are geography-
based but they provide different scenarios. The first
represents a deliberate shut down, for instance as al-
legedly happened in several countries during the Arab
spring [27]. The second one is referred to localized event
such as blackouts, earthquakes, or others catastrophic
events [28]. Also in this case we fix the number of sources
NS = 15 and the density of targets ρT = 0.2. According
to one of the two geographic based strategies we remove
ND nodes from the original AS network. The main differ-
ence between this case and those discussed in the previous
sections is that the networks here have geographical at-
tributes. The measure of damage detection should then
be able to return not only the entity of the damage as a
whole, but also tell us where the damage is localized.

We use the same method already discussed for syn-
thetic networks. As an example of entire country switch
off we decided to damage all the AS nodes in Italy. This
translates in removing ND = 1246 nodes, equal to a frac-
tion ρD = 0.038 of total nodes. Figure 8 shows the out-
come of our analysis. We want to stress that the algo-
rithm does not have any a priori information about the
location of the damage. Despite that, the method clearly
returns Italy as affected country. Few other nodes are
wrongly classified as damaged. The reason for the pres-
ence of FPs can be just statistical fluctuations or, more
interesting, that some FP nodes turn out to be strongly
linked to the Italian TPs, so that the deletion of the lat-
ter prevents them to be visited. For the second type
of geographical damage we decide to switch off all the
ASs within a radius of 50 km around the city of Boston,
MA, in the USA. This corresponds to ND = 176 and
ρD = 0.0054. Also in this case the method is able to
detect correct location of the damage as shown in Fig-

FIG. 9: Map of part of the United States east coast showing
the outcome after damaging nodes around the city of Boston
within a radius of 50 km in the real AS network. Each circle
represent one AS and its size is proportional to the degree.
Green circles are the working nodes, blue ones are the TPs
while orange ones are the FPs.

ure 9. In both cases of geographical damaging the recall
is almost constant and close to the value 0.2 as shown
in Figure 10. Indeed, the algorithm is detecting almost
only the fraction of damaged nodes that are also target.
Because of the homogeneous distribution of target nodes,
this fraction corresponds to ρT = 0.2. The choice for the
statistical confidence affects more the measures related
to local damaging (Figure 10B). Here, for big values of
C the precision drops while the recall slightly increases.
This means that a less strict choice of C allows the dis-
covery of more nodes. However the FPs grow more than
the TPs. So a little gain in recall is contrasted by big loss
in precision. As for the artificial networks, in the case of
entire country damaging we choose C to achieve a pre-
cision of 0.9 (C = 10−2). In the case of local damaging
there is no value of C that allow to reach such a preci-
sion. For this reason and considering the diverse nature
of the two strategies we fix the arbitrary value to α = 0.75
(C = 10−5). Despite the recall never exceeds 0.3 in both
damage detections this is a good result considering the
small number of damaged nodes, the completely random
displacement of source and target nodes and the lack of
any ad-hoc search strategy.

CONCLUSIONS

In this paper we addressed the problem of damage de-
tection in large-scale networks. We assessed the effec-
tiveness of shortest path probing for damage detection
in the case of incomplete network sampling. We consid-
ered different network topologies, damage strategies and
defined basic metrics for the measurement of damage.
We provided a statistical criterion for the classification
(damage/undamaged) of single nodes based on the p-
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FIG. 10: Precision α (blu circles) and recall r (orange
squares) as a function of C for Italian nodes removal (A) and
damaging of nodes around the city of Boston within a radius
of 50 km (B) in the real AS network.

value test. Although this criterion allows false positives,
i.e nodes wrongly considered as damaged, it is possible to
fine tune the statistical confidence level in order to opti-
mize the trade-off between precision and probing load in
the system. The numerical investigation according to this
criterion allows the study of damage in partially sampled
networks with tunable precision. In the case of real-world
network such as the Internet AS graph, we damaged the
network according to geographical features that simulate
critical events on specific areas or deliberate shutdown of
an entire country, as for political reasons. Also in this
cases, our methodology is able to identify the entity of
the damage and, more importantly, its location.

The method we have proposed can represent a first step
towards a strategy for the continuous monitoring of large-
scale, self-organizing networks. Possible variations of the
shortest path sampling can be envisioned and combined
with more elaborate diffusive walkers strategies that op-
timizes network discovery. Furthermore, we have stud-
ied only the random displacement of sources and targets.
Detection of damages could be improved by opportune
choice of sources and targets or by different schedule of
probes delivery. This points remain to be addressed in
future works.
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[25] M. Catanzaro, M. Boguñá, and R. Pastor-Satorras, Phys.

Rev. E 71, 027103 (2005), URL http://link.aps.org/

doi/10.1103/PhysRevE.71.027103.
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