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Simple and complex modelling of timber-framed 

masonry walls in Pombalino buildings 

L.A.S. Kouris1, H. Meireles2, R. Bento2, A.J. Kappos1,3 

 

Abstract 

Timber-framed masonry has been developed as an effective lateral-load resisting system in 

regions of high seismicity such as Southern Europe. A salient feature of the ‘last generation’ of 

timber-framed (TF) buildings is the presence of diagonal members that may consist of two 

diagonal braces. The present study focusses on alternative modelling procedures, ranging from 

simple to rather complex, for this interesting type of traditional structure. All models are applied 

to study the behaviour of full-scale specimens of diagonally-braced TF panels. The complex 

model is based on plasticity with contact surfaces for the connection between timber diagonals 

and masonry infills. A parametric analysis using this model shows that masonry infills affect only 

slightly the lateral force carried by this TF panel configuration. Furthermore, two simple 

modelling techniques are put forward for application in the analysis of large, realistic structures 

incorporating TF walls. The first one is directly connected to the complex modelling and is 

based on substructuring. A nine-step procedure is developed and is found to properly reproduce 

the response of the test specimens. The second simple model is a phenomenological one, 

developed on the basis of observed behaviour during tests and is a complete hysteretic model; 

however, for comparison purposes, all models are evaluated here with respect to the prediction 

of the envelope (pushover) curve for the walls tested under lateral loads. 

 

Keywords: timber-framed masonry, non-linear static analysis, pushover curve, microscopic 
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1. Introduction 

1.1. General 

For thousands of years traditional structures were built in mainly four materials. These were 

earth (from which bricks come from, for instance), stone, wood, and natural plant fibres. Using 

these four elements impressive structures were built, some of which are still standing today.  

For example, in Lisbon, Portugal, Pre-Pombalino (pre-1755) buildings, Pombalino buildings 

(1755-1870), Gaioleiro buildings (1880-1990) and to some extent Placa buildings (1940-1960) 

were built using such materials. Some of these buildings are more than 250 years old, and are 

still used, mainly for housing. In these buildings, masonry (constructed with the available stone 

material and lime mortar) was used mainly for the exterior walls (façades and gable walls), while 

wood was used for the roof and floors.  

As unreinforced masonry suffers from both low tensile strength and low ductility, 

strengthening of masonry structures by means of wood elements was introduced in Portugal 

after the 1755 Lisbon earthquake. In fact, this type of reinforcement dates far back in time, even 

the Bronze Age in Greece, and the early Roman Times (Kouris and Kappos, 2012; Kouris 

2012).  

This type of construction, known as timber-framed (TF) masonry, can be found around the 

world with several different configurations, all with timber-framed masonry panels in the exterior 

and/or interior walls of the building. TF masonry generally consists of masonry walls reinforced 

with timber elements, including horizontal, vertical elements, and diagonal braces.  

1.2. The Pombalino construction 

The mixed wood-masonry XVIII century Pombalino buildings of downtown Lisbon have a 

recognized patrimonial value both nationally and internationally. They were introduced after the 

1755 catastrophic earthquake as a structural solution that would provide the required seismic 

resistance. Based on the know-how of that time and on the empirical knowledge gathered from 

the buildings that survived the earthquake a new construction type was proposed, this being 

generally referred to as Pombalino construction nowadays. The buildings were designed with a 

three-dimensional wood truss that provides resistance to horizontal forces in any direction. The 

wood truss, called Gaiola (cage), is a characteristic of these buildings, and was widely used 

during the reconstruction of Lisbon. It was arguably the first case in history of an entire town 

built with the purpose of providing seismic resistance to its buildings. 

 This construction type can be summarized as follows (for more detailed descriptions see 

Mascarenhas 2005; Cardoso et al. 2005): Buildings were built in quarters, each block 

comprising an average of 10 buildings. The foundation system was ingenious, consisting of a 

system of wooden piles over the alluvium layers. The piles are similar and repetitive, on 

average 15 cm in diameter and 1.5 m in length. These form two parallel rows in the direction of 

the main walls, which were linked at the top by horizontal cross-members attached by thick iron 

nails.  
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 The construction between the ground and first floors consisted of solid walls and piers linked 

by a system of arches. In more elaborate cases, thick-groined vaults spanned between the 

arches, which protected the upper floors from the spread of any fire that might start at ground 

floor level.  

 From the first floor up this building system has the aforementioned three-dimensional timber 

Gaiola structure, thought to be an improved system based on prior traditional wooden houses. 

Gaiola is composed of traditional timber floors and new mixed timber-framed masonry panels 

(“frontal” walls) that would support not only the vertical loads but also horizontal seismic loading. 

These TF walls are one of the key characteristics of these buildings, and a paradigm of the 

abovementioned TF masonry structures. They are made up of a wooden truss system with X-

type diagonal braces, filled with a weak mortar masonry in the empty spaces. Figure 1b shows 

these walls with no masonry fillings yet. It is important to point out also that, based on recent 

studies (e.g. Meireles, 2012; Meireles et al., 2012), these walls would have a beneficial effect on 

the out-of-plane failure of the façade walls since they were connected to them through the floor.  

 

(a) 

 

(b) 

Figure 1 A “Pombalino” building: a) Interior view of; b) “Frontal” panel inside the building. 

Figure 2 shows typical connections of TF wall timber members. It can be seen that the vertical 

and horizontal members are cut (grooved) at their mid-sections for them to be connected. In 

Figure 2b one can see how two diagonal elements are attached together; these are also 

grooved at half their thickness to be attached to each other.  
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(a) (b) 

Figure 2 Details of timber connections: (a) Members framing into a middle central connection; 

(b) diagonal elements. [Meireles, 2012] 

 

1.3. Overview of existing models  

Modelling of these challenging structures has received little attention in the past. Depending on 

the scope of the analysis different approaches are in order. For instance, if a single wall or 

panel is analysed, sophisticated models accounting for material and boundary condition 

nonlinearity can be used; e.g. Kouris & Kappos (2012) focused more on the nonlinear response 

of the timber braces, while Doudoumis (2010) focussed on the varying boundary conditions, i.e. 

the separation of the masonry infill from the surrounding timber fame. On the other hand, if 

entire actual buildings are studied, more macroscopic approaches have to be adopted, and 

nonlinearities can be treated in a more indirect or approximate way; e.g. Cardoso et al. (2005) 

have analysed an actual Pombalino building using a series of elastic analyses, wherein 

members that were predicted to fail were removed from the model and elastic analysis was 

resumed. Whether a model is complex or simple, a prerequisite is that it should capture at least 

the salient features of the structure studied, and this can only be assessed if prediction of 

experimentally observed behaviour is attempted. This paper presents for the first time a 

comparative assessment of available simple and complex models for nonlinear static 

(pushover) analysis of timber-framed masonry walls, carried out in the light of available 

experimental results. In this respect, its findings could assist the analyst in selecting proper 

models, taking into account the size of the problem at hand. Moreover, some of the existing 

models are extended here to increase their range of applicability. 

 

2. Overview of tests on TF masonry walls of Pombalino 

buildings 

2.1. Tests at IST  

Very few tests on TF masonry walls are available in the literature. Tests on three identical TF 

walls under static horizontal cyclic loading with imposed displacements were carried out at the 

laboratory of IST (Instituto Superior Técnico), Lisbon (Meireles et al. 2012); only the results 

provided by the last two tests were taken into account here since the first test had a different 

failure mode which does not occur in real Pombalino walls. The walls had 4 crossed braces in 

an arrangement of 2x2 modules (each module comprising one cross brace). They were 

2.6x2.64 m
2
 in height and length, respectively. The masonry infill consisted of hydraulic lime 

with layers of broken bricks or tiles, in an attempt to reproduce what exists in actual Pombalino 

buildings. The amount of vertical loading, applied by steel rods and 4 hydraulic jacks, was 

based assuming that the wall was situated at the first storey. The nails used (Figure 3 and 

Figure 4) were all pyramidal, 12.5 cm long and a section of 10x6 mm
2
 at the base. 
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Exceptionally, the nails used to connect the diagonals to each other are smaller, of 7.5 cm in 

length with a base section of 5x5 mm
2
. The layout of the setup, in the laboratory, can be seen in 

Fig. 5. 

 

          

(a) (b) 

Figure 3 Nailed connections: a) central nodes; b) corner nodes. 

 

 

Figure 4 Nails used in the experimental testing at IST. 

 

The loading protocol used was that of CUREE (Krawinkler et al. 2000) for ordinary ground 

motions, tailored specifically to wood structural components. In Figure 5a one can see the load 

cell on the left to measure forces and the linear variable displacement transducer (LVDT) on the 

right to measure displacements at the top. Figure 5a also indicates that the wall is fixed to the 

yellow horizontal reaction beam by the lower wood horizontal beam through omega shaped 

plates. The hysteretic behaviour of the TF walls subjected to cyclic loading is shown in Figure 

5b. More information about the test and its results can be found in Meireles et al. (2012), 

Meireles (2012).  
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(a) (b) 

Figure 5 IST tests: a) Final layout of the experiment with load cell, LVDT and jacks (2×2 panel); 
b) recorded hysteresis loops. 

2.2. Tests at LNEC 

Another experimental test (Santos 1997) was performed back in 1997 at LNEC (Portuguese 

National Laboratory for Civil Engineering), on specimens extracted from an actual Pombalino 

building in downtown Lisbon. Three TF walls (G1, G2 and G3) were tested under static 

horizontal cyclic loading with imposed displacements. Nevertheless, in this case, no specific 

loading protocol was used and no vertical loading was applied. More details of the tests are 

found in Santos (1997) and Meireles (2012). Figure 6a is a photograph of one of the walls (G2) 

at the end of the test, while Figure 6b summarises the results of all tests. 

It is noted that specimens G1, G2 and G3 tested at LNEC were all 3×2 panel modules, while 

those tested at IST were 2×2 modules. 

 

 

(a) (b) 

Figure 6 LNEC tests: a) Wall G2 while being tested; b) test results (Santos 1997). 
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3. Microscopic modelling 

A previously developed micro - model based on a Hill-type plasticity law (Kouris and Kappos 

2012) is extended and evaluated here in the light of the aforementioned experimental results. 

Hence the model is applied to both specimens from a building subjected to the decaying action 

of the long-time exposure to the environment, as well as to specimens with new materials 

fabricated in the laboratory. It is noted that this rather complex model can be applied to virtually 

any structural configuration, since it does not involve phenomenologically derived empirical 

coefficients.  

3.1. Overview of existing model 

A detailed description of the original model can be found in Kouris and Kappos (2012) and 

Kouris (2012); its basic features are: 

 Gradual stiffness degradation in timber elements is modelled using a Hill-type yield 

criterion (Hill 1948; Shih and Lee 1978). The plasticity model adopted herein considers 

wood as a material with isotropic expansion of its yield surface, which under axial 

compressive load responds following a trilinear stress-strain curve; the second branch 

has a slope 0.1E (E is the modulus of elasticity of wood) while the third branch is 

horizontal (plastic behaviour). 

 The well-known (especially for old structures) inadequate connection between the 

wooden braces and the surrounding frame is modelled using a cohesionless contact 

model based on the Mohr-Coulomb friction law. Hence the braces can separate from, 

and/or slide along, the wooden frame and at their junction.  

It is seen that the nonlinearities accounted for in this model are related to the wooden members 

and their connections. Masonry is assumed to disconnect from the surrounding frame at an 

early stage and does not contribute substantially to the lateral load resistance of the TF panel. 

This is a reasonable assumption for X-braced frames, but in other configurations with less 

effective bracing, the masonry infill can play a more significant role. Hence, the model is 

extended here, to account also for nonlinear behaviour of the masonry infill.  

3.2. Extensions of the model 

3.2.1. Plasticity model for masonry 

Masonry, which is a non-homogenous, anisotropic and discontinuous (as soon as it cracks) 

quasi-brittle material, does not actually present a yielding behaviour such as that implied by 

plasticity theory. However, if masonry is treated macroscopically, a plastic-like behaviour can be 

determined with yielding, hardening, and finally failure, accounting for all cracks observed at a 

meso-scale. Regarding the yield criterion, simple ones have been used, such as the Drucker-

Prager one (Addessi et al.     ; Pallar s et al. 2008) or others more specific to masonry 

materials ( ourenc o 2000; Syrmakezis and Asteris 2001). For plane stress conditions (σ3 = σ23 

= σ13 =0) and for principal stresses, the Drucker-Prager (1952) yield criterion can be simplified to  
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 (1) 

where σΥ is the width of the Drucker-Prager surface and α a coefficient of the masonry 

material. Rearranging terms in the above Equation, the criterion can be expressed as an ellipse 

with inclined axes (Figure 7): 

 
(2) 

Equation (2) for σ1 =0 and σ2 = fm
 
(the compressive strength of masonry) and for σ1 = σ2 = β fm

 
(β 

being a fraction of uniaxial strength) results in a system of linear equations, from which α and σY 

can be calculated. A comparison of the Drucker-Prager criterion against the well-known 

experimental results by Page (1981) on biaxial stress of masonry wallets is illustrated in Figure 

7 (for σΥ = -1 MPa, α = 1.34). These and other comparisons clearly show that the Drucker-

Prager criterion cannot be simultaneously accurate in all four regions in the stress space (i.e. in 

compression (-,-), tension (+,+), compression-tension (-,+) and tension-compression (+,-)). 

Depending in which region is the most important for the problem at hand, the criterion could be 

tailored accordingly.  

 

 

 

Figure 7 Drucker-Prager criterion against experimental results for biaxial stress. 

 

A better simulation of the biaxial masonry behaviour is achieved by the power-law form of the 

Drucker-Prager criterion, which for plane stress conditions is given by: 
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 (3) 

where  is the mean plastic strain.  It is noted that two terms of the Drucker-Prager criterion 

have an exponent b. Obviously, for b = 1 Equation (3) results in the classical Drucker-Prager 

criterion of Equation (1). The favourable effect of the index b in the Drucker-Prager criterion 

appears from two applications in Figure 8 (drawn for σΥ = 3.33 MPa, α = 4, b = 1.57). Parameter 

σΥ increases the width of the secondary axis of the ellipse and the coefficient α displaces the 

centre of the ellipse downwards along the inclined axis. The coefficient b increases the width of 

the primary axis and hence a better fit to the experimental data can be achieved. It can be seen 

that the modified Drucker-Prager criterion captures well the compression area of the stress 

space but rather poorly the tension-compression area. 

 

Figure 8 Modified Drucker-Prager law against experimental results for biaxial stress 

 

Like most other materials, masonry undergoes work hardening i.e. increase in the yield stress 

with increasing strain. Among the different empirical expressions that have been proposed for 

the hardening of masonry, an elliptical hardening equation originally derived for concrete is 

adopted herein: 

 (4) 

In Equation (4) fm is the mean compressive strength of masonry, σo corresponds to the ‘yield’ 

stress (i.e. the initiation of plastic non-reversible strain) taken equal to one third of the uniaxial 

strength, and ε
p
eq,t is the equivalent plastic strain at maximum compressive stress, assumed 
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equal to 8×10
-4
 ( ourenc o et al. 1997). With these values the hardening law (in terms of plastic 

stresses) is illustrated in Figure 9. 

 

 

Figure 9 Hardening law in terms of plastic stresses. 

3.2.2. Parametric investigation on the friction coefficient 

It is first noted that in actual old buildings the diagonal braces are usually unable to provide any 

noticeable resistance to tension; hence, in the present model any such resistance is neglected 

while compression forces are accounted for by friction connection between the brace and the 

surrounding timber frame. In order to quantify the influence of the friction coefficient μf between 

the frame and the diagonals, a parametric analysis was carried out and the model was 

implemented in ANSYS (2011). As a sensitivity analysis, five different friction coefficients were 

considered, varying from zero up to full connection; the intermediate values that have been 

used in several analytical models (Doudoumis 2010; Parisi and Piazza 2000; Patton-Mallory et 

al. 1997) were μf = 0.1, 0.4, 0.5, while 0.6 and 1.0 apply for the (unrealistic) case of increased 

friction around the metal nails, to investigate the transition from relative sliding to full connection. 

It is noted that the static and the dynamic coefficients are assumed to coincide. For this 

sensitivity analysis a TF wall was considered with standard dimensions 2.0×1.7 m (Figure 10). 

The mechanical properties of the materials are presented in Table 1 (elastic properties) and 

Table 2 (inelastic properties) and correspond to pine wood usually used in these structures as 

well as in the experimental investigation (§2.1 and 3.3). Vertical loading was also considered; 

axial loading in both timber posts is equal to 4.25 kN and uniformly distributed load on the beam 

is equal to 0.5 kN/m (plus the self-weight of the materials) which correspond to the vertical load 

applied in the tests (§2.1). For timber the plastic behaviour is described by the Hill yield criterion 

and for masonry by the modified Drucker-Prager yield criterion which better captures the 

compression area since masonry is mainly stressed in compression and shear due to the 
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friction forces (§3.2.1). Nevertheless, it will be seen that the state of stress in masonry infills is 

far from their yield locus. 

 

 

 

 

 

Table 1. Elastic properties of materials of TF wall (in GPa). 

Element Modulus of Elasticity Εx 

Modulus of Elasticity 

Εy 

Shear Modulus G 

Masonry 1.5 0.63 

Timber 11 0.37 0.69 

 

 

Table 2. Material strengths (in MPa). 

Element 
Compressive 

strength fc,x
a 

Compressive 

strength fc,y
a

 

Tensile strength 

ft,x
a
 

Tensile strength 

ft,y
a
 

Masonry 1.5 0.15 

Timber 23.1 5.8 15.4 0.4 

a 
x, y denote the directions parallel and perpendicular to the fibres, respectively. 

 

 

 

(a) 
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(b) 

Figure 10 TF panel with masonry infills: (a) simulation with FE (in light blue timber elements 

and in magenta masonry elements) and (b) the contact surfaces in solid red lines. 

 

Plastic stresses for the TF walls without infills are displayed in Figure 11 where it is seen that 

significant plastic stresses have developed only at the extremities of the diagonal in 

compression, and some in the connection of timber braces and posts. A similar trend is noted in 

Figure 12 (case μf = 0.5) where for the TF wall with masonry infills not connected to the 

surrounding timber frame, concentration of maximum stresses occurs in the edges of the 

diagonals. In this TF wall, masonry infills are not substantially loaded; in fact, they remain 

almost intact, as expected since the discontinuities transmit only shear stress and some 

compression. The main stress path of the compressive stresses resulting from horizontal 

loading is obviously through the diagonals.  

 

 

Figure 11 Plastic stresses for the ‘bare’ TF wall in kPa. 
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(a) 

 

(b) 

Figure 12 TF walls horizontally loaded: (a) deformed shape and (b) stress field (in kPa) at the 

final step of the nonlinear analysis. 

 

A different performance is observed for the TF wall with full connections of the diagonals, 

the frame and the masonry infills as displayed in Figure 13. In this case the wall sustains much 

higher loads. A substantial part of the timber frame and the diagonals has reached its maximum 

strength (σ/fm = 1). Plastic stresses have also been spread over a small part of masonry infills. It 

should be recalled here that such full connections barely ever exist in actual buildings.  
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Figure 13 TF wall with full connections of masonry infills: stress ratios (σ/fm). 

 

Pushover curves for the examined TF walls are presented in Figure 14, where the walls reach 

the ultimate state before any numerical instability due to excessive plastic strain. TF wall with 

masonry infills in full contact with the surrounding frame exhibits about twice the stiffness of all 

other cases (2.08 on average). This should be mainly attributed to the contribution of the 

diagonal in tension to the lateral resistance rather than to the masonry infills themselves. The 

stiffness of the bare frame does not substantially differ (less than 10%) from that of TF walls 

with discontinuities. This is in line with the expected performance since the discontinuities allow 

relative sliding. Note that the experimental results indicate an early separation and relative 

sliding and detachment of the masonry infills. Differences in the initial elastic stiffness among 

the TF walls having various friction coefficients μf do not exceed 6% but the effective stiffnesses 

at yielding (i.e. Fy/δy) differ only 3%. Regarding maximum displacements, there is a gradual 

decrease of the displacement capacity with increasing friction coefficient, though considerably 

notable only for the TF wall with full contact. Moreover, its maximum base shear is much higher 

(on average 94%) than the maximum base shears in the other TF walls. Finally, parametric 

analysis shows that a global friction coefficient μf =0.1 to 0.4 around timber and masonry 

surfaces is matching very well both in terms of ductility and stiffness with the friction coefficient 

μf =0.5 when masonry infills are neglected. 
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Figure 14 Pushover curves of TF walls with various friction coefficients. 

 

In a nutshell, the experimental and analytical results show that in a TF wall with two diagonal 

braces early separation of the diagonal in tension occurs, as well as relative sliding of the 

masonry infills with respect to the timber frame. This behaviour can be more accurately 

simulated by introducing discontinuities, whereas the assumption of full contact does not reflect 

the actual response. Differences among masonry-infilled walls with various friction coefficients 

and the bare TF wall are not significant and imply that a bare TF wall with diagonals activated 

only in compression with a friction coefficient μf=0.5 can provide a good approximation of the 

actual behaviour. 

 

3.3. Verification using experimental data 

The model is used for the nonlinear (NL) static analysis of the specimens tested at IST. The 

geometry of the specimens that consist of four TF panels is given in section 2 and in more detail 

in Meireles (2012). Maritime pine (Pinus pinaster, Ait), used in the specimens, is a species of 

wood found widely in South-western Europe whose mechanical characteristics vary from one 

region to the next. Studies on Portuguese Pinus pinaster specimens gave a range of 

mechanical characteristics; values of the compressive strength in the direction of the fibres 

varied from fc,0,k
min

= 18 MPa to fc,0,k
max

= 25 MPa (Cruz et al. 1998).  The compressive strength of 

Pinus Pinaster Pinho Bravo in the direction perpendicular to the fibres varies from fc,90,k
min

 = 6.9 

MPa to fc,90,k
max

= 7.3 MPa. The modulus of elasticity in the direction of the fibres varies from 

Ε0,mean
min

= 12 GPa to Ε0,mean
max

= 14 GPa and perpendicular to the fibres from Ε90,mean
min

= 4 GPa 

to Ε90,mean
max

= 4.6 GPa. Analysis using the model illustrated in Figure 15 is therefore performed 

for ten different material property sets, bounded by the aforementioned limits. In Figure 16 the 

lateral capacity (pushover) curve of the detailed model using the varying wood mechanical 
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characteristics are plotted against the envelope curves of IST. In bold solid line are plotted the 

average values from the entire set of analyses; this curve is mirrored also in the negative values 

range. It is seen that the application of the micro - model to the IST specimens provides a good 

match. Similarly satisfactory results, using the same model, were found by Kouris & Kappos 

(2012) and will not be repeated here, for the economy of the paper. 

The response of the ten models with varied mechanical properties for wood shows that 

maximum base shear increases, almost proportionally, with increasing wood strength. The 

mean maximum base shear from the analyses is 42.6 kN, with a coefficient of variation 16%. 

Compared to the experimentally derived strengths, the analytical model is more conservative as 

the mean analytical value of peak base shear is 15% lower than the experimental one. 

Nevertheless, the difference of the analytical estimation using "maximum" properties is higher 

than the mean experimental one and within the standard deviation range. Specimen SC1 is the 

only one to have maximum base shear lower in one direction than the average analytical one.  

 

 

Figure 15 Simulation of the TF specimens of the LERM laboratory. 
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Figure 16 Comparison of the detailed model (solid line) against IST specimens (dotted lines). 

 

 With regard to displacements, comparison between test and analysis shows a good match. 

The difference of the maximum displacement predicted by the analytical model from the 

average maximum experimental one is only 3%. However, individual differences up to 19 % are 

found, but this concerns only one specimen, for a cycle with substantially degraded base shear. 

It is noted that prediction of displacements is even more important than that of base shears as 

they control the ductility and energy dissipation capacity under reversed cyclic loading. Of 

course, particular care must be taken in analytically predicting ultimate displacements, since, as 

is evident from Figure 16 microscopic analysis cannot capture strength degradation and is 

terminated when it fails to converge. 

Another interesting feature is the degree of penetration of the diagonals braces into the 

surrounding frame, a feature that can only be captured by such a sophisticated analysis. 

Penetration is found to reach up to 1 mm for the lower left panel. Moreover the sliding of the 

diagonals in compression has a maximum value 0.25 mm for the same diagonal (Figure 17). It 

is interesting to note that due to excessive local plastic strain at the ultimate state of the 

diagonal at the bottom right corner of the TF wall, the penetration and relative sliding due to 

friction phenomena appears to be very small. Other critical results are the compressive stress 

between the sliding interfaces with a maximum value reaching about 10 MPa. It is clear that 

strongly localised quantities can result from this refined analysis, offering a very detailed picture 

of the state of the frame at various loading stages. Having said this, experimental results for 

fully verifying such local quantities are generally not available; in a quantitative sense, though, 

values of the predicted penetration of the braces were in line with observed behaviour of the IST 

specimens. 
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Figure 17  Sliding of the diagonals (in mm). 

 

4. Macroscopic modelling 

4.1. Simple model with beam-column elements 

Notwithstanding the fact that the complex model of section 3 can give detailed and generally 

reliable results, the computational effort to analyse actual buildings is a major drawback that 

limits its applicability. For this reason a simple model has been developed using the familiar 

beam-column elements and NL axial hinges on the diagonals to accommodate all plastic 

deformation developing in TF walls (Kouris and Kappos 2012). This model is further verified 

here using the new experimental results. A modification to the existing model introduced herein 

is the different procedure for calculating the vertical loading in the posts. In the original model 

the vertical loads that were included in the TF wall were extracted from the last step of the 

analysis. In this way, they reflected not only the vertical load applied during the tests, but also 

the axial loads in the vertical posts to balance the overturning moment at the final state of the 

TF wall. However, this presents two drawbacks: (i) the vertical loads are calculated using elastic 

models, (ii) the final base shear should be known a priori. For a TF wall with a limited number of 

panels these drawbacks can be overcome with some iterative analyses, whereas for an entire 

real building this iterative procedure is hardly feasible. However, in view of the cyclic nature of 

the seismic loads a rather simple and practical estimation can be based on using the vertical 

loads due to gravity only (service loads), which in fact are the average loads applied to the 

posts during the actual cyclic (seismic) loading history.  

Consequently, the proposed procedure can be summarised as follows: 
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1. Preliminary elastic analysis of the TF structure to estimate the axial stress of the timber 

posts due to gravity loading. 

2. Discretization of the TF structure into panels consisting of two timber beams, two timber 

posts and a pair of timber diagonal braces. 

3. NL analysis of the TF panels under horizontal loading using the complex model. 

4. Generation of pushover curves for the TF panels. 

5. Transformation of the pushover curve into a simple bilinear one and definition of the 

yield (Vy- δy) and failure (Vu- δu) points. This transformation is done here using the 

familiar equal energy absorption rule (equal areas between the bilinear and the original 

curves), but other valid procedures could also be used. 

6. Modification of the axial stiffness of the diagonals to take into account their expected 

sliding. The following relationship can be used (Kouris and Kappos 2012): 

 (5) 

where H and L are the height and the length of the panel, E is the modulus of elasticity 

for wood, and A is the area of the timber brace section. The modified elastic axial 

stiffness of the diagonals Κel should be calculated as follows: 

       
(6a) 

 

       
 ⁄  (6b) 

Using the secant axial stiffness of the diagonals the axial deformation at yield can be 

calculated from the following equation: 

        
       

   
⁄  (7) 

7. Determination of the NL law of the axial hinges according to the following relationships: 

 (8) 

8. Insertion of plastic hinges in the diagonals of the model, which can carry compressive 

loads only. 

9. NL static analysis to determine the pushover curve of the structure. 

The proposed procedure was applied to the specimens tested at IST. Steps 1 to 5 result in the 

bilinear curves of Figure 18. The final deformed shape of the model is shown in Figure 19 where 

the plastic hinge state is illustrated with red colour for failure and yellow for close to failure. The 
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derived pushover curve is plotted in Figure 20 against the experimentally derived hysteresis 

loops. Both displacements and base shears are in fairly good agreement with the envelope of 

the experimental results. The difference in maximum base shear is 8.9% for specimen SC2 and 

17.5% for specimen SC3. However, it should be pointed out that at the maximum drift these 

differences are much lower (less than 10%) and for a model aiming to capture the overall 

response by an almost bilinear curve it is sufficient just to target at an ‘equivalent’ base shear. 

The modification factors ks of step 6 are calculated according to Equation 6 and values 0.09, 

0.25, 0.10 and 0.19 are found for panels 1 to 4, respectively. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 18 Bilinear curves of the pushover curves of the four TF panels of IST 

laboratory (a to d correspond to panels 1 to 4, respectively). 

 

The final deformed shape of the model is shown in Figure 19 where the plastic hinge state is 

illustrated with red colour for failure and yellow for close to failure. The derived pushover curve 

is plotted in Figure 20 against the experimentally derived hysteresis loops. Both displacements 

and base shears are in fairly good agreement with the envelope of the experimental results. The 

difference in maximum base shear is 8.9% for specimen SC2 and 17.5% for specimen SC3. 

However, it should be pointed out that at the maximum drift these differences are much lower 
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(less than 10%) and for a model aiming to capture the overall response by an almost bilinear 

curve it is sufficient just to target at an ‘equivalent’ base shear. 

 

 

Figure 19 Deformation of the TF panel at its final step of analysis: red bullets imply failure 

and orange bullets imply close to failure. 

 

 

Figure 20 Pushover curve from the model versus experimental hysteretic loops (IST 

tests). 

 

Displacements of the analytical model are in good agreement with specimen SC2. However, 

SC3 has an ultimate displacement 20% higher than that of the analytical model, but for a 
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hysteresis loop with significant stiffness and strength degradation; on the contrary, the last cycle 

of almost constant strength is very close to the analytical model. Moreover, the initial stiffness is 

well captured. The comparison with specimen SC1 leads to similar conclusions. 

 

4.2. Empirical model based on IST tests 

The phenomenological hysteresis model presented herein was developed by Meireles et al. 

(2011, 2012). In the present study that focuses on NL static analysis, only envelope curves are 

considered and comparison between experimental and analytical curves is carried out in terms 

of envelopes.  

The hysteresis model was developed based on a minimum number of path-following rules 

that can reproduce the response of the wall tested under general monotonic or cyclic loading. It 

was constructed using a series of exponential and linear functions and calibrated according to 

the experimental tests on the 2x2 panels (see section 2). Figure 21 illustrates the basic features 

of the hysteresis model for TF walls.  

 

 

Figure 21 Phenomenological hysteresis model. 

 

The envelope curve is modelled using one exponential and one linear function, as shown in Fig. 

21. The exponential function defines the ascending branch (exponential envelope) and the 

linear function the descending branch (linear envelope). The envelope curve is defined by 6 

identifiable parameters that were fitted to experimental data. The parameters, illustrated in 

Figure 21, are F0, K0, r1, r2, δu and δult. The force-displacement relationships are defined, by 

these parameters - equation (9). 

 

!
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(9) 

 The exponential function used to describe the ascending branch (Equation 9a) was first 

proposed by Foschi (1974) and later used by Folz and Filiatrault (2001) to model the response 

of wood shear walls. Beyond the displacement δu, which corresponds to the ultimate load Fu, 

the load-carrying capacity is reduced. Failure of the wall under monotonic loading occurs at 

displacement δult. It has been assumed that the wall’s monotonic deformation capacity 

corresponds to a drop in strength equal to 20% of the maximum (ultimate) load Fu or when a 

maximum drift of 3.5%is reached. In this case, δult is already defined based on r2, δu and Fu; 

hence, the number of identifiable parameters is reduced to 5. 

Figure 22 shows the comparison between the envelope curves developed by the previously 

described model and the results of the experimental testing (2×2 panel); it is seen that the 

model’s envelope curves were well fitted to the experimental results. In this case, the black 

curves are terminated at the assumed failure of the wall, based on the 20% drop in strength 

criterion. 

 

Figure 22 Phenomenological model applied to the IST test results. 

4.2.1. Calibrating the 2×2 panel based on the experimental initial stiffness, K0 

An analytical model of the wall was set up in SAP 2000 (1998) in order to predict its behaviour 

in the linear range (i.e. to predict the initial stiffness, K0). In this way, the model was calibrated 

according to the initial stiffness obtained. The analytical model developed (Figure 23) has the 

following properties: 

a) The diagonals of the wall resist compression only, as also found by Cardoso et al. (2005) 

and Meireles (2012). 

b) Shell elements were used to model the masonry. 
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c) Pinned connections were used at the nodes; this is not fully representative of nailed 

connections, but is more practical for a macro - scale modelling approach. 

d) Rigid links were adopted to connect the shell elements of the masonry to the diagonals in 

order to simulate the thickness of the diagonals and the true area of the masonry, implying 

a 100% load transfer. 

e) At the supports, springs were used to simulate the effect of rigid body movement 

(discussed later in this section). 

f) Vertical loads applied matched the ones from the experimental testing. 

 

 

Figure 23 Analytical model for estimating initial stiffness (units in m). 

 

In Figure 23, the green lines define the areas of the masonry shell elements; the red lines 

define the rigid links, and the black lines define the timber elements. In the same figure, H is the 

applied horizontal force and V1, V2 and V3 are the vertical forces in the posts. The springs at 

the supports model the effect of rigid body movement observed during the tests. More 

specifically, the nailed connections at the bottom are moving upwards and downwards and this 

gives rise to a rigid body movement of the specimen. Note that the bottom horizontal timber 

beam is tightly fixed to the horizontal steel reaction beam of the testing rig, so the rigid body 

movement only comes from the displacement of the nailed connections. The springs are 

calibrated for the model to match the initial experimental stiffness of the tested walls. It is noted 

that one could assume that the calibrated spring stiffness is the same regardless of the panel 

configuration, i.e., the same one for a 2×2 or 3×2 panel pattern, since the spring represents a 

nailed connection and these are the same for all the panels. It is also assumed that the 

compression stiffness of the springs is the same as the tension stiffness, in the absence of more 

specific evidence. 

The mechanical properties of wood and masonry assumed for the model are described in 

the following. Properties of wood were taken from LNEC norm for Pinho Bravo para estruturas 

(LNEC 1997) based on several mechanical tests made on the Portuguese Pinus Pinaster (the 
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wood used in the tests). Based on this work, the Young’s Modulus of elasticity is 12,000 MPa, 

the density 580 kg/m
3 
and the Poisson’s ratio 0.2. With respect to masonry, Carvalho (2007) has 

carried out some testing on hydraulic mortar with the same characteristics as the mortar used in 

the IST test presented (2×2 panels). The value used for the Modulus of elasticity of masonry 

was 770 MPa, the density 22 kN/m
3
, this time, and Poisson’s ratio 0.2, based on the Portuguese 

Technical Tables (1998). To derive the appropriate spring stiffness, 3 spring stiffnesses were 

explored: 6,000, 10,000 and 15,000 kN/m. Table 3 shows the results obtained, aiming to find 

the optimal spring stiffness. In this table Kanal is the analytical estimation of initial stiffness and K0 

is the experimental value of initial stiffness. It can be seen in the table that the spring stiffness 

that makes the model have an initial stiffness equal to the experimentally obtained stiffness is 

Kspring=15,000 kN/m. This is the spring stiffness used for the subsequent configurations studied 

in the next section. 

Table 3. Ratio of analytical over experimental stiffness for different spring constants. 

V1, V3  
(kN) 

V2  
(kN) 

H  
(kN) 

K spring  

(kN/m) 

Top horiz. 

displ. (mm) 

K anal 

(kN/mm) 

Kanal/ K0 

19.2 38.4 30 6000 10.3 2.9 0.5 

19.2 38.4 30 10000 6.5 4.6 0.8 

19.2 38.4 30 15000 4.6 6.4 1.0 

 

 

Figure 24 Configurations of TF walls studied. 
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4.2.2 Predicting the initial stiffness for other configuration of walls 

The main purpose of this section is to estimate the initial stiffness for other configurations of 

walls. Figure 24 shows the configurations of walls studied. These configurations are common in 

Pombalino buildings.  

The 2x2 configuration is the one tested at IST; the 3×2 configuration was tested at LNEC 

(Santos 1997). The others are possible existing configurations. Table 4 shows the values 

obtained analytically (Kanal) for the initial stiffness of the different configurations of walls. In this 

study it was again assumed Ewood=12,000 MPa, Emasonry=770 MPa, and the horizontal force 

applied (H) was 30 kN, the vertical load (V1) was 19.2 kN and V2 was 38.4 kN. The 

structural/analytical models for all configurations are similar to the previously presented model 

for configuration 2x2. One can also see that, as expected, configuration 3×2 is the one with the 

lowest stiffness while configuration 2×4 is the one with the highest stiffness. Also, within each 

set (number of storeys) the stiffness increases, as anticipated, as the aspect ratio (height/ 

length) decreases. 

 

Table 4. Initial stiffness for different configurations of walls 

Model 

Configuration 

Top horiz. 

displ. (mm) 

Kanal 

(kN/mm) 

Aspect ratio 
(height/ 
length) 

2x2 4.6 6.4 0.97 

2x3 1.9 15.8 0.65 

2x4 0.9 33.3 0.48 

3x2 10.3 2.9 1.45 

3x3 4.4 6.8 0.97 

3x4 2.2 13.6 0.72 

 

4.2.3 Estimating the strength of the panel for all configurations 

The failure mode of the wall was buckling and further cracking of one of the diagonals and later 

others. Figure 25 shows this failure mode. In view of this, the strength of the panel can be 

associated to the collapse of the most loaded diagonal.  

 

 

Figure 25 Buckling and cracking of diagonal. 
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At this stage, the compression force on the most loaded diagonal of the tested configuration 2×2 

was estimated. The idea is to estimate the strength associated with failure of the most loaded 

diagonal on other wall configurations (Figure 24). The structural models developed in SAP 2000 

(1998) for determining the most loaded diagonal are simple trusses with springs at the bottom 

and pinned connections at member ends (Figure 26). In this way, the contribution of the 

masonry infill is neglected. At the development of (ultimate) strength, masonry is extensively 

detached from the truss elements and considerably cracked at some locations, as has been 

discussed in Meireles (2012) and Kouris and Kappos (2012). The stiffness of the springs is the 

same as previously estimated. The compression force (strength) on the most loaded diagonal of 

the tested 2x2 configuration was 49 KN. This value is the force at the most loaded diagonal 

when the structure attains its strength Fu. It is then required to estimate the value of Fu for other 

wall configurations. It is assumed that, when the most loaded diagonal in a structure with 

another configuration reaches the value -49 KN it then fails by buckling. In this way, one can 

calculate the horizontal force, Fu, associated with each configuration. Table 5 shows the values 

of Fu obtained for the other configurations. 

 

Figure 26 Model adopted for estimating strength (dimensions in m). 

 

According to the values reached the configuration with the highest strength (Fu) is the 2×4 one, 

followed by the 3×4 configuration. The configuration with the lowest strength is 3×2. The 

diagonals reaching 49 kN are the bottom right diagonals if force is applied from left to right.  

 

Table 5. Calculation of Fu for different wall configurations  

Configuration Fu (kN) 

2x3 72.4 

2x4 111.6 

3x2 49.9 

3x3 68.6 

3x4 90.0 
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4.2.4 Prediction of envelope curves for other wall configurations 

The envelope curve determined for other wall configurations is based on the following 

assumptions:  

a) The initial stiffness, K0, is taken from the analysis carried out for each wall configuration. 

b) The value of Fu, which is the strength attained by the wall, was determined previously for 

each wall based on the assumptions presented in 4.2.3 and the wall configuration. 

c) The value of r1K0, r2K0 and ζ (=F0/Fu) are constant for all wall configurations and taken as 

the experimental values obtained for the tested 2×2configuration. 

d) The value of Fult (denotes failure) was defined when one of following conditions was 

reached: 1) the strength drops to 80% of Fu or 2) a drift of 3.5% is reached. It is worth 

mentioning that in both experimental tests summarised in section 2 the panels failed at a 

drift of about 3.5%, which is quite higher than that associated with failure of unreinforced 

masonry structures. According to the drift criterion, configurations C2×2, C2×3, C2×4 have 

ultimate displacements of about 90 mm, while configurations C3×2, C3×3, C3×4 have 

values of about 120 mm. 

 

Figure 27 depicts the envelope curves for different configurations of walls and their relative 

performance with respect to the analytically obtained envelope curve for the tested configuration 

(2×2). It can be seen that the configuration with both highest stiffness and highest strength is 

C2×4; the configuration with the lowest stiffness and lowest strength is C3×2.  

 

Figure 27 Various envelope curves for different wall configurations. 

 

4.2.5. Comparison with the LNEC tests (3×2 panel) 

Since the phenomenological model was calibrated on the basis of the IST tests it is important 

for its verification to test it in the light of an independent experimental programme. Hence, in this 

section, the simple model proposed and presented previously for the configuration C3×2 is used 
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and results are compared with the LNEC experimental envelopes. The comparison is shown in 

Figure 28. It can be seen that the prediction is quite reasonable given also the dispersion in the 

results of the LNEC testing. The simple model slightly underpredicts the strength of G1 and G2, 

but predicts quite well that of G3. 

 

 

Figure 28 LNEC hysteresis vs. envelope curve prediction. 

 

Conclusions 

A comparative assessment of one complex and two simple models for pushover analysis of 

timber-framed masonry walls with diagonal braces has been made, in the light of available test 

results from two experimental programmes. The simple (macroscopic) and complex 

(microscopic) analytical models were used to predict pushover curves that were compared with 

the envelope curves of the experimental hysteresis loops. The main advantages and 

disadvantages of the models are summarised in Table 6 and briefly discussed in the following. It 

should be noted here that, as with most models, those reported herein are strictly applicable to 

TF walls with comparable connections, boundary conditions, infill masonry, and workmanship. 

The (plasticity-based) micro - model of Kouris and Kappos (2012), which was further verified 

here by including the effect of the masonry infill, was found to compare well with the 

experimental results, offering good predictions in terms of both base shear and displacement. 

The model can also provide predictions of other, local, quantities, like penetration of one 

member into another, or relative sliding between members. Nevertheless, the main advantage 

of this rather complex model is its versatility, i.e. that it can be applied to virtually any TF wall 

configuration, since it does not include parameters that are calibrated on the basis of test 

results. 

Then two relatively simple approaches were evaluated, intended for the NL static analysis of 

realistic buildings. The first one, involving familiar beam-column elements, is directly connected 

to the complex model, since it treats the individual TF panels as substructures, and the 

nonlinear behaviour of each panel is estimated with the aid of the  micro - model. The procedure 
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is developed in nine steps and was found to lead to a reliable estimate of the pushover curve of 

the tested specimens with a reduced computational effort; the accuracy is slightly lower than 

that of the complex model, still quite acceptable for all practical purposes. Although it is feasible 

to analyse relatively large structures using this approach (especially suitable if several panels 

are identical and hence have to be analysed only once with the complex model), it is clear that it 

is practically important to make this model self-standing, i.e. not requiring the use of the 

complex models for the substructures; a first attempt in this direction has been made by Kouris 

(2012).  

The second simple approach is a phenomenological one wherein the basic parameters for 

the envelope curve of the hysteresis loops were identified on the basis of the IST test results. 

The model was used here for wall configurations other than the tested 2×2 panel and 

comparisons were made with other tests (LNEC), not used for its calibration. Although the 

prediction of key parameters such as strength was a bit inferior to that from the other (more 

time-consuming) models, they are acceptable for practical purposes. Moreover, unlike the 

previous models, this simple model has the capability to simulate response under cyclic loading, 

an issue not specifically addressed herein, but crucial in seismic assessment of structures. 

In Table 6 a ‘pseudo-quantitative evaluation is made of all models presented herein. It is 

noted that with regard to versatility the evaluation refers to the practicality and ease of use, 

while with regard to calibration it refers to a self-standing procedure, i.e. no need for additional 

calibration against experimental results. 

 

Table 6. Comparative summary of the models used in the present study  

 calibration accuracy versatility 

Micro - model    

Macro - model A 

(substructure) 

   

Macro - model B 

(phenomenological) 

   

Note: The number of stars reflects the suitability of each model with regard to the particular 
aspect considered.  
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