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On the Use of Cross-Sectional Measures of Uncertainty

Abstract. This paper investigates the role of cross sectional dependence among private

forecasters, assessing its impact on measuring and using forecasting uncertainty. We study un-

der which circumstances cross sectional measures of uncertainty (such as disagreement across

forecasters) are valid proxies for private information, analysing the impact of distributional as-

sumptions on private signals. In particular, we explore the role played by cross dependence

among forecasters, arising e.g. from partially shared private information. We validate the theory

through a Monte Carlo exercise, which reinforces our �ndings, and through an application to US

nonfarm payroll data.

J.E.L. Classi�cation Numbers: C21, C22.
Keywords: Forecast Disagreement, Cross Sectional Dependence, Uncertainty.
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1 Introduction

The main question of this paper is: can disagreement among private forecasters (irrespective of

its determinants) be used to improve predictive ability? We base our analysis on the same setup

as in Engle (1983), using a simple model in which an outcome variable, yt, has DGP determined

by its past value(s) and some other explanatory variables, which may be observable or not. In

this context, yt is predicted by a researcher by using only past information. This can be due to

the other explanatory variables being unobservable, or to the model (s)he employs simply not

including them. As well as by the researcher, yt may be predicted by several individuals, who

use the publicly available past information on yt and some other explanatory variables. Such

variables may be available only to them; alternatively, the variable may be observable but only

used by some forecasters. Based on this framework, we propose that the researcher, in addition to

using standard proxies such as the mean of the individual forecasts, should proxy the unavailable

explanatory variables by using a measure of dispersion among the individual forecasters. The

most obvious measure of dispersion is the cross sectional variance (henceforth de�ned as CS(2)t ),

which is traditionally used as a measure of disagreement (see e.g. Giordani and Soderlind, 2003).

We show that using CS(2)t as a regressor in a model for yt can increase forecasting ability by

reducing the Mean Squared Error (MSE) of forecasts. However, we also show that the usefulness

of CS(2)t is very sensitive to the distributional features of the explanatory variables in the DGP

of yt. Indeed, as a leading counterexample we show that augmenting an ARMA speci�cation

for yt by including CS
(2)
t yields no gain in predictive ability when the omitted explanatory

variables follow a normal distribution. In order to generalise this, we also consider a generalised

version of cross sectional disagreement, called CS(k)t , which, in essence, is based on representing

cross sectional dispersion as the k-th sample moment of individual forecasts. Such generalised

measures are not sensitive to the distribution of the omitted variables. Given that the CS(k)t s

are non structural in nature, the approach that we recommend is a General-to-Speci�c (GETS)

approach based on using the AutoMetrics option on OxMetrics 6.2 (Doornik, 2009; Castle et al.,

2011), �tting an ADL model to yt using the CS
(k)
t s, and their lags.

We show that the CS(k)t s manage to proxy the extra omitted variables by exploiting the

presence of cross dependence among them. This has a twofold implication. On the one hand,

cross dependence among the information sets available to individual forecasters is necessary in

order for the CS(k)t s to improve forecasting ability. On the other hand, the reverse argument

holds: whenever there are cross dependent forecasts, even in presence of unobservable, private

information, it is possible to proxy such private information by using disagreement, and use it to

better predict yt. Individual forecasts that are correlated have been noted in various contexts.

Examples include the accounting literature, where evidence of correlation among individual earn-

ings forecasts has been found in several contributions (e.g. O�Brien, 1988; Lys and Sohn, 1990;

see also the analysis in Fischer and Verrecchia, 1998; Barron et al. 1998); macroeconomics, using

surveys of professional forecasters (Dovern et al., 2011; Genre et al., 2010); in predicting unem-

ployment, using the Blue Chips Survey (Gregory et al., 2001); and we also refer to the comments
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on the presence of correlation in the Survey of Professional Forecasters in Elliott (2011), and the

theoretical framework therein, where the impact of cross correlation in determining the optimal

forecast is discussed. Thus, cross dependence among forecasters is an important feature in em-

pirical studies. Several theoretical explanations have been proposed, from presence of partially

shared private information (Patton and Timmermann, 2010) to herding (Scharfstein and Stein,

1990; Stein, 2003).

As well as the contribution above, we review the relationship between the traditionally em-

ployed measure of cross sectional dispersion CS(2)t , and GARCH-type measures. As mentioned

above, this is a �classical� investigation (see Lahiri and Sheng, 2010); in our context, we assess

the impact of cross dependence on this relationship, showing that it leads to an ambiguous sign

in the di¤erence between them.

The paper is organised as follows. We �rst (Section 2) introduce the CS(k)t s, showing how they

can reduce the forecast error for yt. This is validated through a Monte Carlo exercise and through

the application to the prediction of the United States Non-farm Payroll index (NFP henceforth)

- Section 3. Section 4 concludes. All proofs and derivations are in the supplementary online

material.

2 Use of cross section uncertainty in forecasting

The starting point of our analysis is equation (9) in Engle (1983, p. 295):

yt = �yt�1 + �
0
t"t + �t; (1)

with j�j < 1. Equation (1) states that yt is generated by a process which depends on its past

value(s), and on a set of n explanatory variables, "t � ["1t; :::; "nt]
0; this could be regarded as

�the reduced form of a structural model� (Engle, 1983, p. 295), with �t being the error term.

As far as forecasting yt is concerned, we start our analysis from the same viewpoint as Engle: yt
is predicted by a researcher who has only yt�1 at his/her disposal. Thus, the researcher predicts

yt as

yrt = �yt�1:

Hence, the forecast error in this case is yt � yrt = �0t"t + �t. In this respect, (1), from the

researcher�s viewpoint, is a model with latent explanatory variables (the "its). The researcher�s

model is

yt = �yt�1 + vt; (2)

where vt = �t+�
0
t"t. Thus, from the researcher�s viewpoint, using (2) instead of (1) is an omitted

variables problem.

Alongside the researcher, Engle�s framework postulates the existence of n forecasters, each of

whom has inside information on his/her own "it; in this respect, "it is customarily interpreted

as private information, but more generally it represents the additional regressors that the i-th
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forecasters uses in order to predict yt. This entails that the i-th forecaster predicts yt as

yit = �yt�1 + �it"it: (3)

Equation (3) is based on the assumption that � and �it are observable, and therefore it may

be viewed as an infeasible prediction. We use this as our baseline case. In the comments

to Proposition 1 below, we analyse the impact of having to estimate both � and �it on the

prediction yit.

We consider the following assumptions.

Assumption 1: �t and "t are mutually independent, zero mean, covariance stationary processes
with E (yt�1�t) = 0, E (yt�1"t) = 0, V ar (�t) = �

2
� < 1 and E ("it"jt) = !ij with !ij = 1 for

all i = j.

Assumption 2: the �its are non-stochastic quantities that satisfy (i) �0t"t = Op (1), (ii) 0 <

�0tE ("t"
0
t)�t < 1 as n ! 1 for all t; (iii) 0 <

Pn
i=1 �

2
it"

2
it < 1 as n ! 1 for all t; (iv)

E
h
(�0t"t)

4
i
<1 and E

h�Pn
i=1 �

2
it"

2
it

�2i
< 1 as n!1; (v) k�tk = O (1) for all n and t.

Assumption 1 considers the presence of contemporaneous correlation, and therefore of inter-

actions among agents. As pointed out above, from the researcher�s viewpoint, using (2) instead

of (1) is an omitted variables problem; assuming E [yt�1"t] = 0 entails that this does not cause

inconsistency of the estimated �.

Assumption 2 allows the �its to be time dependent; this also entails that the number of

forecasters, n, is allowed to vary over time, as it is typical in empirical applications. In addition

to this, Assumption 2 poses some restrictions on the moments of �0t"t as n ! 1. The square
summability condition prevents the variance of the error term in regression (1) from exploding as

the number of individuals grows; a similar assumption is contained in Pesaran and Weale (2006).

The regressors "it are not observable to the researcher. Thus, (s)he could proxy them using

some variables that are related to them. In order to construct such an �instrument�, recall that

each individual forecaster predicts yt using yt�1 and "it. The i-th forecaster�s prediction error is

given by

"it � yt � yit = �t +
X
j 6=i

�jt"jt: (4)

De�ne CS(2)t as the dispersion of the individual predictions around their mean

CS
(2)
t =

nX
i=1

�
yit � �yt

�2
=

nX
i=1

�2it"
2
it �

1

n
(�0t"t)

2
; (5)

where the second equality follows from yit � �yt = yit � 1
n

Pn
i=1 y

i
t = �it"it � 1

n�
0
t"t.
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Equation (5) illustrates how CS
(2)
t can be used by the researcher as a proxy for the "its.

The quantity CS(2)t contains the squares of the "its, and it is observable at time t, since it is

constructed using predictions for yt which are available prior to t. From a technical point of

view, our de�nition of CS(2)t is di¤erent from the one usually employed in the literature, where

cross sectional dispersion is de�ned as 1
n

Pn
i=1

�
yit � �yt

�2
. In our case, there is no need to divide

by n, since
Pn

i=1

�
yit � �yt

�2
is already normalised by assuming that the �its are summable. In

order to make the two measures comparable, further assumptions are needed on the �its, e.g.

that they sum to one.

Since CS(2)t contains a transformation of the "its, in order to reduce the error term in (2),

i.e. vt = �t + �
0
t"t, the econometrician could employ the augmented regression:

yt = �yt�1 + CS
(2)
t + v�t ; (6)

where

v�t = v
�
t () = �t + �

0
t"t � CS

(2)
t :

Considering an MSE criterion, using CS(2)t improves the prediction of yt in (2) as long as

E
�
v�2t
�
< E

�
v2t
�
. Particularly, for the case of an estimator that minimizes E

�
v�2t
�
, the model

improves after adding CS(2)t if  6= 0 (otherwise there is only an unnecessary reduction in the

degree of freedom) and if, for the chosen value of  (say �), E
�
v�2t
�
is indeed smaller than

E
�
v2t
�
.

It holds that:

Proposition 1 Let Assumptions 1-2 hold with E k"tk4 <1 and consider

min

E [v�t ()]

2
: (7)

This has solution

� =
n2E

�
�0"t

Pn
i=1 �

2
it"

2
it

�
� nE

h
(�0t"t)

3
i

E
h
(�0t"t)

2 � n (
Pn

i=1 �
2
it"

2
it)
i2 (8)

=
E
h
CS

(2)
t (�0t"t)

i
E

��
CS

(2)
t

�2� :

Also, it holds that E [v�t (
�)]

2 � E
�
v2t
�
, with E [v�t (

�)]
2
= E

�
v2t
�
if and only if � = 0. The

same result holds as n!1, assuming that supiE j"itj
4
<1 and supi j�itj = O

�
n�1=4

�
.

Proposition 1 states that it is possible to attenuate the MSE by using disagreement among

forecasters as an explanatory variable. This is accomplished by proxying the unobservable "its
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using CS(2)t , which contains (a quadratic transformation of) the "its; improvements are present

when � 6= 0.
It is interesting to explore what happens when the number of forecasters or alternative models,

n, passes to in�nity. As n!1, Assumption 2 ensures that �0t"t and
Pn

i=1 �
2
it"

2
it do not vanish.

Thus, CS(2)t =
Pn

i=1 �
2
it"

2
it +Op

�
n�1

�
. From (8), this entails that � = Op (1).

Building on the calculations in the supplementary material, it can be shown that

E [v�t (
�)]

2 � E
�
v2t
�
= �2E

24 nX
i=1

�2it"
2
it

!235� 2�E "�0t"t nX
i=1

�2it"
2
it

#

+Op

�
1

n

�
+Op

�
1

n2

�
:

Thus, it follows from (8) that

E [v�t (
�)]

2 � E
�
v2t
�
= �

h
E
�
CS

(2)
t �0t"t

�i2
E

��
CS

(2)
t

�2� ;

which is always negative as long as E
�
CS

(2)
t �0t"t

�
6= 0. Therefore, as n ! 1, there is still a

gain in forecasting accuracy.

From a technical point of view, the main result in Proposition 1 (i.e., the possibility of prox-

ying private information through CS(2)t ) holds under more general conditions than Assumptions

1 and 2. For example, if we assumed that "t and �t are not independent, equation (8) would be

modi�ed into � =
E
h
CS

(2)
t (�

0
t"t��t)

i
E
h�
CS

(2)
t

�i - this follows from the same algebra as in the proof of the

Proposition. Even in this case, � is not, in general, equal to zero, and thus it can be employed

as a proxy for the "its.

It is worth pointing out that the result in Proposition 1 are based on the assumption that the

i-th forecaster knows and uses the actual values of � and �i (we suppress the dependence on i for

simplicity). As it can be expected, Proposition 1 does not change if � and �i are replaced with

consistent estimators in (3). The i-th forecaster would estimate � and �i from his/her model,

viz.

yit = �yt�1 + �i"it + v
i
t; (9)

with vit = �t +
P

j 6=i "it. In view of (1), this is an omitted variables problem, similarly to the

one observed for the researcher when using (2). Indeed, estimating � consistently is possible

for the i-th forecaster, due to the independence between yt�1 and the omitted "its. However,

consistent estimation of �i from (9) is fraught with di¢ culties. Of course, if the "its are assumed

to be uncorrelated (as in Engle, 1983), then �i can be estimated applying e.g. OLS to (9) and

the estimate can be expected to be consistent. Conversely, if the "its are correlated, consistency

may not hold. The complete passages are in the supplementary online material; here, we brie�y
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show that even using inconsistently estimated �is does not make CS
(2)
t useless. Consider (9),

and, for simplicity, let � = 0 and assume that "it is normalised so that
PT

t=1 "
2
it = T . The OLS

estimation error of �i is

�̂i � �i =
1

T

TX
t=1

"it�t +
X
j 6=i

�j

 
1

T

TX
t=1

"it"jt

!
= I + II:

Considering I, this is Op
�
T�1=2

�
under Assumption 1. Turning to II, the only way in which �̂i

can be consistent is if
P

j 6=i �j

�
T�1

PT
t=1 "it"jt

�
= op (1). Using the notation in Assumption 1

and a LLN, this could be rewritten as
P

j 6=i �j!ij = op (1). This holds e.g. if !ij = O (T
��) for

some � > 0 for all j 6= i, but this may be a rather arti�cial requirement. Thus, in general, �̂i
is estimated inconsistently when using (9), which is not surprising due to the omitted variable

problem mentioned above. From the researcher�s point of view, this entails that CS(2)t should

be replaced by its empirical counterpart, saydCS(2)t , de�ned as

dCS(2)t =

nX
i=1

�
yit � �yt

�2
=

nX
i=1

�̂2i "
2
it �

1

n

�
�̂0"t

�2
;

so that (6) becomes

yt = �yt�1 + dCS(2)t + v̂�t ;

with v̂�t = v̂�t () = �t + �0t"t � dCS(2)t . However, following the same passages as in the proof

of Proposition 1, it can be shown that the solution to the minimisation problem min E [v̂
�
t ()]

2

is

(
E

"�dCS(2)t �2
#)�1

E

�dCS(2)t (�0"t)

�
, which is not, in general, equal to zero. Thus, from the

researcher�s point of view, usingdCS(2)t does not, in general, cause problems, even if the �is (or

some of them) are not estimated consistently. The intuition behind this is that the estimation

error �̂i � �i may not vanish as T !1, but its asymptotic bias contains the "jts (with j 6= i),
which is indeed useful information. From an empirical point of view, of course the researcher

does not know how the �is have been estimated, and therefore the only way of assessing whether

usingdCS(2)t is useful is to estimate (6) and check whether  is signi�cantly di¤erent from zero.

Finally, note that equation (8) also illustrates some potential issues with using CS(2)t : in

general, the usefulness of CS(2)t (and ofdCS(2)t ) depends in a non-trivial way on the (unobservable)

distributional properties of the "its. In order to illustrate this, we consider, as an example, the

case of the "its being Gaussian; assuming normality of private signals is a typical assumption

in the literature (see e.g. the literature on herding: Chamley, 2004). In such case, it holds

that � = 0, and therefore CS(2)t is not useful. This is due to the fact that in the numerator

of (8) there are quantities like E
�
"3it
�
and E

�
"2it"jt

�
with i 6= j, which are all equal to zero if

"it is Gaussian. This is only an illustrative example, based on the infeasible i-th prediction yit
(see equation (3)), and in Section 3 we report a set of simulations under various distributional
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assumptions to analyse in which cases CS(2)t can be employed.

In order to expand the framework and to make it robust to the distributional properties of

the "its, we introduce a generalised class of measures of cross sectional disagreement. De�ne the

k-th sample moment of the individual forecasts:

CS
�(k)
t =

nX
i=1

�
yit � �yt

�k
(10)

=
nX
i=1

�
1

n
�0t"t � �it"it

�k
=

nX
i=1

kX
j=0

1

nk�j

�
k

j

�
(�0t"t)

k�j
�jit"

j
it;

for k = 2; :::; p, where the last equality comes from Pascal�s triangle.

The de�nition of CS�(k)t is based on the case of �nite n. However, as n ! 1, it is pos-
sible to envisage that

Pn
i=1

�
1
n�

0
t"t � �it"it

�k
converges to zero. Indeed, using the Cr inequal-

ity,
Pn

i=1

�
1
n�

0
t"t � �it"it

�k � Cn1�k (�0t"t)
k
+ C

Pn
i=1 �

k
it"

k
it. Assumption 2(i) stipulates that

n1�k (�0t"t)
k
= Op

�
n1�k

�
. The argument for

Pn
i=1 �

k
it"

k
it is subtler, but again in light of As-

sumption 2(i), it is natural to think of the case of �it being proportional to n�1=2 (albeit non

necessary; the assumption allows for greater �exibility). In such case,
Pn

i=1 �
k
it"

k
it would also

vanish as n ! 1, at a rate O
�
n1�

k
2

�
, provided that E j"itjk < 1. In light of this, we propose

to modify CS�(k)t as

CS
(k)
t = n

k
2�1CS

�(k)
t : (11)

It can be expected that, as n!1, CS(k)t converges to (�1)k limn!1
Pn

i=1 �
k
itE

�
"kit
�
.

Let � =
�
2; :::; p

�0
andgCSt = hCS(2)t ; :::; CS

(p)
t

i0
. The following Assumption, which com-

plements Assumption 2, summarizes the discussion above.

Assumption 3: for all n it holds that (i) E
�
(�0t"t)

p�
< 1 and 0 < n

p
2�1

Pn
i=1E

h
(�pit"

p
it)
2
i

<1 and (ii) E
�gCStgCS0t� is positive de�nite.

Based on the discussion above, equation (2) could be augmented as

yt = �yt�1 +

pX
k=2

kCS
(k)
t + v�t

= �yt�1 + �
0gCSt + v�t : (12)

Similarly to Proposition 1, it holds that:

Theorem 1 Let Assumptions 1-3 hold with E k"tk2p <1 and consider

min
�
E [v�t (�)]

2
:
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This has solution

�� =
h
E
�gCStgCS0t�i�1 hE �gCSt�0t"t�i :

Also, it holds that E [v�t (�
�)]

2 � E
�
v2t
�
, with E [v�t (�

�)]
2
= E

�
v2t
�
if and only if �� = 0. The

same result holds as n!1, assuming that supiE j"itj
2p
<1 and supi j�itj = O

�
n�1=4

�
.

Theorem 1 is similar to Proposition 1. Particularly, gains are present if at least one element

of �� is non-zero, i.e. if at least one element of E
�gCSt�0t"t� is non-zero, viz.

kX
j=0

1

nk�j

�
k

j

�
E

"
(�0t"t)

k�j
nX
i=1

�jit"
j
it

#
6= 0;

for some k. Of course, in order to use this approach one needs the further assumption that

E k"tk2p <1. However, in this case, the MSE could be further reduced. Similarly to Proposition
1, in general the i-th forecaster is not able to use the true values of � and �i. From the researcher�s

point of view, this entails that the CS(k)t s are computed based on possibly inconsistent estimates

of the �is. Even in this case, this is not necessarily a problem for the researcher, and using the

CS
(k)
t s can still help improve the prediction of yt.

Another advantage of using the CS(k)t s is that the dimensionality of the estimation problem

is reduced. Indeed, if one were to estimate the �its in equation (1), even assuming homogeneity

over time (i.e. �it = �i for all t), as n ! 1 this would be a classical incidental parameters

problem (Neyman and Scott, 1948). Conversely, consider the OLS estimator of ��, say �̂, in the

regression yt = �yt�1 + �
0gCSt + v�t . Under the martingale di¤erence assumption for the "its,

T�1
P

t
gCStyt�1 = Op �T�1=2� and thus �̂ = �� + Op �T�1=2�.

Finally, it is interesting to note that the is need not represent di¤erent individuals. As a

possible, alternative example, the equation yit = �yt�1+�it"it could be the prediction generated

from model i (which augments the AR(1) model by using a set of regressors "it) out of n possible

models. In this case, Proposition 1 and Theorem 1 provide guidelines as to how to combine

forecasts, as well as (see remarks above) spelling out the distributional assumptions on the

regressors "it that make the combined forecast better than the basic AR(1) model.

The results in Proposition 1 and in Theorem 1 illustrate how measures of forecast disagree-

ment can help to improve the forecast of yt, especially under the realistic case of presence of

cross dependence.

3 Applications

In this section, we �rst present a Monte Carlo exercise, to assess the impact of cross dependence

(and other distributional properties) of the "its on the ability of the augmented model (6) to
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yield better forecasts for yt, using synthetic data. Secondly, we validate our �ndings with an

application to US NFP data.

3.1 Monte Carlo simulations

The design of our experiments is as follows. We generate T + 1000 datapoints (discarding the

�rst 1000 to avoid dependence on initial conditions) for yt using equation (2). The alternative

sample sizes we use are T 2 f50; 100; 200g. Also, we set � in (2) equal to 0:5; this value is chosen
based on the actual �rst order partial autocorrelation in the dataset used in Section 3.2. Other

unreported results show that changing � has virtually no impact on the results. As far as the

number of forecasters is concerned, we set n 2 f15; 20; 25; 30; 45; 60; 80g.
We generate �t as i.i.d. normal with zero mean and variance �

2
� = 1 (this parameter, too, does

not appear to have much impact). We draw the �its from iidN
�
n�1=2; 1

�
, so that Assumption

2 is satis�ed; cross dependence among the "its is modelled by setting, for i 6= j, E ("it"jt) = ! 2
f0; 0:2; 0:4; 0:6; 0:8; 0:99g.
The impact of asymmetry and cross dependence in the distribution of the "its is analysed by

generating them as (centered and scaled) chi-squared with p degrees of freedom. Experiments

are carried out with p = f1; 5; 10; 30; 50g. As a benchmark, we also report an experiment where
"it � N (0; 1) - according to the theory, there should be no gain at all in this case when using

CS
(2)
t . We also consider using the CS(k)t s when "it � N (0; 1). In particular, we proceed in the

following way. We include CS(2)t and CS(3)t only for T = 50, in order not to saturate the degree

of freedom. When T = 100, we add CS(5)t and CS(6)t (as well as CS(2)t and CS(3)t ); �nally, we

consider CS(2)t up to CS(8)t in the case T = 200. In these cases, Theorem 1 states that there

should be some gains in predictive ability.

We measure the gain in predictive ability by using in-sample forecasts for all t = 1; :::; T .

Let MSE1 and MSE2 be the Mean Squared Errors from models (2) and (12) respectively. The

values in Table 1 are calculated as

gain = �MSE2 �MSE1
MSE1

: (13)

The number of replications is 10; 000.

[Insert Table 1 somewhere here]

The results complement Proposition 1 and Theorem 1. As p increases, the distribution of the

"its approaches a Gaussian distribution; as a consequence, gains become increasingly smaller.

Also, gains monotonically decrease as !, the degree of cross-dependence, decreases.

As predicted by the theory, in the case of Gaussian "it, there are no improvements in predictive

power when including CS(2)t in (6). However, as the last two panels of the table show, including

11



the CS(k)t s seems to yield some reduction in the MSE, in contrast to the case of Gaussian signals

with CS(2)t as a proxy; larger sample sizes, which allow for higher order CS(k)t s, show a moderate

improvement in predictive ability. It is interesting to explore the link between the chi-squared

and the Gaussian case. When p is as large as 30, and there is no cross dependence (! = 0),

there is no gain from adding CS(2)t . This follows from the theory: as p ! 1, the Central
Limit Theorem entails that the distribution of "it is tantamount to a normal distribution. In

this case, predictive ability is present when there is a large amount of cross dependence. This

is probably due to the fact that, when ! is large, the convergence to the normal distribution

gets slower. Table 1 also shows the role played by the number of forecasters n: irrespective

of the distributional properties of the private signal "it, increases in n amplify the results, and

particularly the spread between MSE gains when ! = 0 as opposed to ! = 0:99.

3.2 Empirical exercise

In order to validate the use of the CS(k)t s studied in Proposition 1 and Theorem 1, we report

an illustrative application based on predicting a �classical�economic indicator, namely (changes

in the) US NFP data (yt). Our monthly dataset spans from June 2000 until July 2004 (thus,

T = 50); the number of forecasters, nt, increases over time, ranging between 37 and 79 with a

median value of 56.

We calculate CS(k)t as de�ned in (11), considering k = 2; 3 and 4. Descriptive statistics for

all the series are reported in Table 2, where we also report the correlogram for yt. Preliminary

analysis shows that CS(4)t is non-stationary; thus, we use its �rst di¤erence, �CS(4)t , whose

descriptive statistics are reported in the Table. The correlogram of yt shows a quite clear AR(1)

pattern.

[Insert Table 2 somewhere here]

We now turn to analysing the output. We compare the predictive ability of four di¤erent

models:

Model 1: yt = �+ �yt�1 + vt;

Model 2: yt = �+ �yt�1 + 1�yt + v
�
t ;

Model 3: yt = �+ �yt�1 + 1�yt + 2CS
(2)
t + v�t ;

Model 4: yt = �+ �yt�1 + 1�yt + 2�yt�1 + 3CS
(3)
t + 4CS

(3)
t�1 + v

�
t ;

where, as above, �yt = 1
n

Pn
i=1 y

i
t, i.e. it is the mean of the individual forecasts. This is the

most obvious proxy for private information, and the purpose of the exercise is to verify whether

augmenting the model with the CS(k)t s can signi�cantly enhance forecasting ability. Model 1

is used as a benchmark, and it is a standard AR(1) model as identi�ed using the correlogram

12



in Table 2. Model 2 augments the baseline AR(1) speci�cation by using �yt as a proxy for the

unobservable private information. Building on Proposition 1 and Theorem 1, we preliminarily

consider Model 3, which is based on augmenting Model 2 by using the �traditional�measure of

disagreement CS(2)t . As we discuss later on in greater detail, CS(2)t is found to be irrelevant.

Thus, as mentioned in the Introduction, we take a �non structural� approach to modelling yt.

Indeed, this is our recommended approach: the CS(k)t s do not have a structural interpretation,

and it is possible that yt may also depend on past values of the CS
(k)
t s, due to the possible

presence of inertia in the individual forecasters�predictions. Thus, we suggest a GETS approach,

by estimating, as a Generalised Unrestricted Model (GUM), the following ADL model for yt:

yt = �+ �yt�1 + 1;0�yt + 1;1�yt�1 + 2;0CS
(2)
t + 2;1CS

(2)
t�1 + (14)

3;0CS
(3)
t + 3;1CS

(3)
t�1 + 4;0�CS

(4)
t + 4;1�CS

(4)
t�1 + v

�
t :

Preliminary analysis carried out using the AutoMetrics option in OxMetrics 6.2 shows that

relevant explanatory variables in the model are, in addition to �yt and �yt�1, also CS
(3)
t and

CS
(3)
t�1, whence Model 4.

The goodness of �t of each model is assessed using the adjusted R2, computed for the whole

sample t = 1; :::; T . As far as forecasting ability is concerned, comparisons are based on the

MSE. Note that Models 2, 3 and 4 all nest Model 1 (see e.g. Clark and McCracken, 2001, 2005,

2006; Clark and West, 2007). We construct the predictions for yt using a recursive scheme (West,

2005; Clark and West, 2007); Model 4 also nests Model 2. This entails �rstly estimating the

models using data from t = 1 up to t = R, and use the estimated parameters to predict yt+R+1;

the estimates are then recalculated using all available data from t = 1 up to t = R + 1, and the

prediction of yt+R+2 is calculated, and so on1 . In our context, we carry out predictions from July

2002 (at mid-sample) until the end of the sample, so that R = 25 and the number of predictions

is P = 25.

Let MSEi be the Mean Squared Error associated with model i. We carry out the relevant

tests based on the following framework(
H0 :MSEi =MSEj

H0 :MSEi < MSEj
for i 6= j:

Tests are based on using the adjusted MSE statistic discussed in Clark and West (2007). Letting

êi;t+1 be the forecast error for yt+1 made by Model i, the adjusted MSE is de�ned as

MSEadjij =
2

P

TX
t=R+1

êj;t+1 (êj;t+1 � êi;t+1) =
1

P

TX
t=R+1

!ij;t; (15)

1Other schemes are possible, e.g. the �rolling� one, where the estimation sample has the same size, R, so
that yt+R+1 is predicted using estimates using the sample t = 1; :::; R; yt+R+2 using estimates from the sample
t = 2; :::; R+ 1, and so on.
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using the compact notation !ij;t = 2êj;t+1 (êj;t+1 � êi;t+1). The variance of !ij;t is estimated by
a HAC-type estimator (we de�ne the estimate as �̂2!ij)

2 . The test statistic that we use, tencij , is

discussed by Clark and McCracken (2001), and it is de�ned as

tencij =
1

�̂2!ij
p
P

TX
t=R+1

!ij;t: (16)

One attractive computational feature of tencij is that, although tencij does not follow the standard

normal distribution as R;P ! 1, using quantiles from the standard normal yields mildly con-

servative tests - e.g. Clark and West (2007, p. 298-299) argue that using 1:645 as a critical value

yields a test of size between 0:01 and 0:05 for R and P large enough. Thus, we base our tests on

standard normal inference, as indicated by Clark and West (2007).

Results (alongside with estimation output and mis-speci�cation tests) are reported in Table

3:

[Insert Table 3 somewhere here]

Consider Model 2. The estimation output shows that yt�1 is not signi�cant, whilst �yt is

signi�cant. The �R2 increases by around 0:25 compared to that of Model 1; as far as predictive

ability is concerned, we note that the MSE decreases by around 30% with respect to Model 1.

Moreover, a test based on tenc21 shows that MSE2 < MSE1. Turning to Model 3, the output

clearly shows that CS(2)t is not signi�cant. This is reinforced by the fact that the MSE is virtually

unchanged from Model 2. As pointed out in the comment to Proposition 1, this may be due to

a plurality of reasons (e.g. the "its being Gaussian), but the results show that there is no gain

in predictive ability - we did not carry out a test for H0 : MSE3 = MSE2 as the outcome is

already quite clear.

Finally, consider the recommended modelling strategy, Model 4. From the GUM (14), we

obtained a �nal model containing �yt and CS
(3)
t and their �rst lags. Inspecting the signi�cance

of parameters, yt�1 is barely signi�cant (at a 10% level); both �yt and �yt�1 are signi�cant, which

is partly in line with Model 2; and, �nally, CS(3)t�1 is signi�cant, whereas CS
(3)
t is borderline

signi�cant. Model 4 has superior explanatory power with respect to Model 1: the �R2 increases

by more than double. Turning to forecasting ability, the MSE declines sharply, by 50%. Further,

this is a signi�cant decline, in view of tenc41 : the null that MSE4 = MSE1 is rejected at the

5% level. Also, Model 4 is shown to be better than Model 2: by using tenc42 , the null that

MSE4 = MSE2 is rejected at the 5% level. Indeed, as we point out above, standard normal

inference using tenc42 tends to be mildly conservative (Clark and West, 2007), which reinforces the

2We compute �̂2!i based on Andrews (1991). Speci�cally, we use a Bartlett kernel. Data are pre-whitened
by �tting an AR model whose order is selected using Akaike Information Criterion; see Andrews and Monahan
(1992).
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conclusion that MSE4 < MSE2. Thus, it can be concluded from this example that the CS(k)t

can add signi�cant predictive power on top of the mean forecast �yt.

4 Concluding remarks

The main aim of this paper was to study how to extract private information from individual

forecasts, and how to use such private information in order to enhance the predictive ability for

an outcome variable yt. We de�ne a class of measures of cross sectional dispersion (de�ned as

CS
(k)
t ) which are related to the sample moments of the cross section of forecasts. We �nd that, in

presence of cross sectional dependence, such measures are useful to increase forecasting accuracy

for yt, by proxying private information. The theory developed in Section 2 clearly shows that

the usefulness of the CS(k)t s depends on the presence and amount of cross dependence across

forecasts, which is a well documented fact in empirical applications.

From a methodological point of view, the results in the empirical part of this paper suggest

some guidelines on how to use the CS(k)t s. In view of the non structural nature (and in view of

the lack of a structural interpretation for them), we recommend employing a GETS approach,

by starting, as a GUM, from an ADL speci�cation, thereby using lags of yt and of the measures

of cross sectional dispersion, CS(k)t . These �ndings are reinforced through an application to the

US NFP data. Of course, results in Section 3.2 refer to one dataset only, however important,

and in order to validate the theory developed here it is necessary to undertake a substantive set

of empirical applications.
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p = 1

n 15 20 25 30 45 60 80

! T

0

50

100

200

7:67

7:41

7:27

7:14

6:35

6:86

6:53

6:16

5:71

5:65

5:30

5:27

4:10

4:01

3:92

4:13

3:31

3:19

2:66

2:90

2:44

0:2

50

100

200

11:93

10:94

11:35

12:56

11:51

11:94

13:03

12:54

11:79

12:86

12:73

12:25

12:80

13:24

12:78

13:94

13:26

13:12

14:35

14:02

13:93

0:4

50

100

200

20:03

19:12

20:36

23:25

22:13

22:21

24:89

24:48

23:95

25:86

25:67

25:56

28:06

28:69

28:32

30:04

30:20

29:96

32:40

32:00

31:77

0:6

50

100

200

28:37

27:84

29:34

32:98

32:29

32:08

35:69

34:73

34:79

36:83

36:63

36:99

40:13

40:54

40:27

42:31

42:97

42:51

44:73

44:85

44:44

0:8

50

100

200

35:79

35:27

36:58

40:63

40:36

39:98

43:69

42:27

42:81

44:98

44:68

45:20

48:62

48:62

48:49

50:70

51:67

51:10

52:74

53:19

52:80

0:99

50

100

200

41:71

41:38

41:87

46:56

46:23

45:82

48:66

47:55

48:27

50:58

49:95

50:87

54:24

53:86

54:29

56:21

57:19

57:08

58:15

58:33

58:28

p = 5

15 20 25 30 45 60 80

! T

0

50

100

200

2:78

2:64

2:55

2:45

1:96

2:08

2:09

1:88

1:76

1:78

1:67

1:54

1:42

1:17

0:98

1:32

0:74

0:80

0:80

0:82

0:56

0:2

50

100

200

4:58

4:30

4:11

4:36

3:96

4:05

4:55

3:93

3:92

4:16

4:08

3:82

4:19

4:15

3:57

4:32

3:63

3:68

4:29

3:97

3:60

0:4

50

100

200

8:27

8:00

7:83

9:03

8:48

8:54

9:70

8:76

9:04

9:50

9:14

9:01

10:21

10:14

9:45

10:53

9:92

10:03

10:94

10:70

10:09

0:6

50

100
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12:34

12:14

12:11

13:96

13:33

13:41

14:85

13:87

14:52

15:07

14:38

14:55

16:19

15:90

15:37

16:56

15:97

16:26

17:10

17:07

16:46

0:8

50
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16:10

15:90

16:10

18:23

17:64

17:75

19:34

18:29

19:29

19:97

19:04

19:48

21:11

20:75

20:37

21:60

21:02

21:53

22:14

22:22

21:82
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50
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19:23

18:98

19:57

21:88

21:02

21:19

23:08

21:71

23:00

24:18

22:96

23:54

24:51

24:66

24:36

25:49

25:02

25:80

25:99

25:93

25:95
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p = 10

n 15 20 25 30 45 60 80

! T

0
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1:63

1:52

1:42

1:41

1:03

1:12

1:30

1:10
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9:82
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p = 30
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0:21

0:51

0:22

0:16

0:32

0:23

0:10

0:2

50

100

200

1:08

0:90

0:83

1:00

0:77

0:79

1:15

0:88

0:75

1:19

1:00

0:75

1:08

0:87

0:66

1:05

0:69

0:70

0:96

0:91

0:63

0:4

50

100

200

1:91

1:66

1:68

1:96

1:64

1:70

2:29

1:71

1:78

2:33

2:07

1:84

2:37

2:15

1:86

2:20

1:93

1:95

2:30

2:27

1:91

0:6

50

100

200

2:87

2:58

2:71

3:07

2:72

2:75

3:62

2:74

3:04

3:64

3:24

3:09

3:74

3:40

3:21

3:46

3:37

3:32

3:64

3:67

3:31

0:8

50

100

200

3:80

3:52

3:71

4:02

3:85

3:79

4:87

3:77

4:28

4:92

4:39

4:29

5:04

4:51

4:47

4:68

4:66

4:58

4:77

4:90

4:61

0:99

50

100

200

4:72

4:41

4:63

4:68

4:86

4:84

5:91

4:67

5:28

6:16

5:42

5:35

6:20

5:49

5:55

5:72

5:60

5:61

5:54

5:86

5:72
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p = 50

n 15 20 25 30 45 60 80

! T

0

50

100

200

0:55

0:35

0:33

0:65

0:25

0:27

0:63

0:33

0:25

0:49

0:28

0:20

0:39

0:16

0:16

0:48

0:14

0:11

0:29

0:17

0:07

0:2

50

100

200

0:77

0:57

0:54

0:81

0:50

0:49

0:84

0:56

0:49

0:91

0:64

0:47

0:70

0:52

0:43

0:80

0:43

0:45

0:54

0:59

0:39

0:4

50

100

200

1:27

1:04

1:07

1:39

1:06

1:01

1:49

1:03

1:13

1:72

1:27

1:16

1:35

1:31

1:15

1:52

1:10

1:18

1:46

1:40

1:18

0:6

50

100

200

1:89

1:60

1:71

1:97

1:77

1:61

2:36

1:63

1:92

2:52

1:94

1:93

2:10

2:12

1:99

2:36

1:91

1:99

2:39

2:05

2:05

0:8

50

100

200

2:48

2:11

2:34

2:49

2:48

2:22

3:21

2:29

2:68

3:28

2:59

2:67

2:85

2:82

2:76

3:18

2:72

2:77

3:22

3:04

2:86

0:99

50

100

200

3:01

2:53

2:85

2:95

3:02

2:87

3:80

2:84

3:29

3:91

3:28

3:33

3:50

3:38

3:40

3:91

3:47

3:40

3:84

3:67

3:52

N (0; 1)

15 20 25 30 45 60 80

! T

0

50

100

200

0:30

0:09

0:04

0:24

0:08

0:03

0:22

0:06

0:04

0:18

0:07

0:03

0:19

0:07

0:02

0:22

0:05

0:02

0:19

0:05

0:02

0:2

50

100

200

0:31

0:08

0:04

0:25

0:06

0:03

0:21

0:07

0:03

0:21

0:07

0:03

0:22

0:06

0:02

0:22

0:06

0:02

0:20

0:06

0:01

0:4

50

100

200

0:31

0:08

0:04

0:24

0:06

0:03

0:21

0:07

0:03

0:21

0:07

0:03

0:22

0:06

0:02

0:21

0:06

0:02

0:19

0:06

0:02

0:6

50

100

200

0:30

0:08

0:04

0:24

0:06

0:03

0:21

0:06

0:03

0:21

0:08

0:03

0:22

0:06

0:02

0:20

0:05

0:02

0:19

0:06

0:02

0:8

50

100

200

0:30

0:08

0:03

0:24

0:06

0:03

0:21

0:08

0:03

0:21

0:08

0:03

0:22

0:06

0:02

0:20

0:05

0:02

0:20

0:06

0:02

0:99

50

100

200

0:28

0:09

0:03

0:24

0:07

0:03

0:20

0:08

0:03

0:21

0:08

0:03

0:21

0:05

0:02

0:21

0:05

0:02

0:19

0:06

0:02
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N(0; 1) + CS
(3);(4);(5);(6);(7);(8)
t

n 15 20 25 30 45 60 80

! T

0

50

100

200

1:71

1:70

1:30

1:52

1:72

1:35

1:48

1:62

1:34

1:52

1:69

1:29

1:54

1:59

1:27

1:42

1:66

1:30

1:35

1:62

1:26

0:2

50

100

200

1:71

1:69

1:30

1:60

1:70

1:33

1:47

1:65

1:35

1:60

1:72

1:29

1:54

1:68

1:31

1:47

1:63

1:28

1:29

1:64

1:29

0:4

50

100

200

1:69

1:67

1:31

1:61

1:68

1:33

1:47

1:71

1:35

1:59

1:73

1:29

1:53

1:71

1:30

1:48

1:63

1:29

1:31

1:65

1:30

0:6

50

100

200

1:68

1:67

1:30

1:61

1:66

1:32

1:48

1:74

1:36

1:58

1:73

1:28

1:52

1:73

1:29

1:47

1:62

1:29

1:33

1:65

1:31

0:8

50

100

200

1:67

1:68

1:31

1:62

1:66

1:31

1:48

1:74

1:36

1:57

1:71

1:28

1:50

1:74

1:30

1:46

1:62

1:29

1:34

1:64

1:31

0:99

50

100

200

1:66

1:67

1:30

1:64

1:67

1:30

1:48

1:70

1:34

1:58

1:68

1:29

1:50

1:71

1:29

1:44

1:65

1:30

1:36

1:66

1:30

Table 1. The values in the table are MSE gains, as de�ned in (13). In each table, the �rst column
contains the degree of cross dependence, !. Tables whose headings contain p indicate the degree of
freedom of the chi-squared distributions used to generate "it; tables whose headings are N (0; 1) and
N (0; 1) + CS

(3);(4);(5);(6);(7);(8)
t refer to the cases where "it follows a standard normal and equation (2) is

augmented using CS
(2)
t only and the CS

(k)
t s respectively. For the latter, we refer to the main text.
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Descriptive statistics Correlogram of yt

yt CS
(2)
t CS

(3)
t �CS

(4)
t Lag ACF PACF

Mean 0:038 18:227 58:508 165:840 1 0:543�� 0:543��

Median 0:035 13:307 80:898 71:923 2 0:324�� 0:042

Max. 3:080 66:638 469:01 25697:87 3 0:172 �0:027

Min. �4:150 4:353 �960:609 �26873:68 4 0:186 0:131

Std . Dev. 1:534 13:155 232:700 6445:930 5 0:094 �0:075

6 0:029 �0:041

Bera-Jarque 0:984 37:680��� 84:386��� 163:813��� 7 �0:053 �0:066

8 �0:070 �0:029

ADF �3:913��� �4:521��� �5:223��� �10:209��� 9 �0:193 �0:183

10 �0:246 �0:093

11 �0:257 �0:046

12 �0:203 �0:016

13 �0:216 �0:071

Table 2. Descriptive statistics and correlogram of yt (the latter contains, respectively, autocorrelations,
ACF, and partial autocorrelations, PACF). For the Bera-Jarque and the Augmented Dickey-Fuller
(ADF) tests, the value of the test statistics has been reported; the symbol ����� indicates rejection at
1% level. The symbol ���� in the correlogram panel denotes rejection at 5% level of the null that the

estimated autocorrelation or partial autocorrelation is zero.
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Model 1 Model 2 Model 3 Model 4

Estimation output

yt�1
0:560��

(0:112)

�0:041

(0:143)

�0:103

(0:144)

0:261�

(0:145)

�yt
1:07��

(2:00)

1:12��

(0:198)

1:290��

(0:226)

�yt�1
�0:621��

(0:208)

CS
(2)
t

�1:930�

(1:100)

CS
(3)
t

�0:0012��

(0:00057)

CS
(3)
t�1

0:0017��

(0:00060)

Mis-Spec. Tests

AR 1-4
0:3642

[0:833]

1:7824

[0:150]

2:738

[0:041]

2:509

[0:057]

Heterosk .
0:0701

[0:932]

0:7071

[0:591]

0:3906

[0:881]

0:5199

[0:866]

Ramsey�s Reset
0:5561

[0:577]

2:9417

[0:093]

1:769

[0:190]

1:351

[0:252]

Bera-Jarque
7:084

[0:029]

3:653

[0:161]

3:356

[0:187]

1:483

[0:477]

Quandt-Andrew s
4:883

[0:578]

5:749

[0:698]

5:757

[0:867]

6:098

[0:414]

Goodness of �t

�R2 0:327 0:575 0:593 0:673

MSE 1:388 0:978 0:986 0:662

tencij � tenc21 = �1:7136�� � tenc41 = �1:7409��

tenc42 = �1:7880��

Table 3. Regression outputs for Models 1-4. Numbers in round brackets in the �Estimation output�
section indicate standard errors; the symbol ��� and ���� denote rejection at 10% and 5% level

respectively of the null that the corresponding coe¢ cient is non signi�cant. In the �Mis-speci�cation
tests�section, we report: the Breusch-Godfrey test carried out up to lag 4 (AR1-4); White�s test for
heteroskedasticity using squares only (Heterosk.); Ramsey�s RESET test using only the square of the
�tted value; the Bera-Jarque test for normality; Andrews�(1993) test for a break, reporting the Sup of
the sequence of the Wald statistics, constructed by trimming the �rst and last 15% of the datapoints
(Quandt-Andrews). Numbers in square brackets are the p-values. In the �Goodness of Fit�section of
the Table, we report the adjusted R2, the MSE for each model constructed as described in Section 3.2,
and the tencij statistics de�ned in (16), for the null that Model i has the same forecasting accuracy as
Model 1. We do not report the test statistic for Model 2 as the MSE is the same. The symbol ����

denotes rejection at 5% level of the null.
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