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Abstract 

A computer model using finite ray tracing methods was developed to simulate a 

videokeratoscope analysing an average cornea. Different faceplate designs 

were tested using five points in the faceplate subtending angles between 15 

and 75 in 15 intervals at the corneal vertex. Image quality was assessed by 

adding the geometrical blurs of the 5 image points. Differences (error) between 

accurate sagittal radius of curvature and sagittal radius of curvature calculated 

by the van Saarloos algorithm were calculated for selected surfaces at the 

same corneal points. The calculations were repeated for the tangential radius of 

curvature. Differences equal or bigger than 0.02 mm were regarded as clinically 

significant. The surface that provided the sharpest image for an average cornea 

was a cylinder with the base 120 mm away from the corneal vertex and a 

diameter of 26 mm. Changing the faceplate design results in clinically significant 

differences for an average cornea.  
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Introduction: 

 

Early keratoscope target designs were flat (Goode (1847) cited in Stone (1994) 

and Placido (1880)). To provide adequate corneal coverage, a flat target has to 

be much larger than any other concave target placed at the same distance as 

has been illustrated by Stone (1962) and Fowler (1994). Ludlam and Wittenberg 

(1966) report the last use of a flat target by Reynolds and Kratt (1959).  Since 

then it appears that this faceplate geometry has been largely discontinued.  

Berg (1927), (cited by Ludlam and Wittenberg (1966)), appears to be the first 

investigator to use a non-flat target when he employed two perpendicular arcs 

to increase the corneal coverage.  Overviews of these early faceplate designs 

can be found in Ludlam and Wittenberg (1966) and Mammone et al. (1990). 

 

Wittenberg and Ludlam (1970) presented results on optimum faceplate designs 

both for a spherical and elliptical reflecting surface (resembling the cornea). 

They concluded that an elliptical target was the best design but the theoretical 

calculations and the experimental work resulted in different ellipsoidal shapes.  

However, their use of a vertical line target, which is focused sharply in the 

sagittal focal plane, would not necessarily be expected to agree with 

calculations that used a formula for tangential focus.  This could explain the 

discrepancy between their theoretical and experimental results. In addition, the 

large stop size used would introduce other aberrations making the theory only 

an approximation.  
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Mandell and St. Helen (1971) determined experimentally the best faceplate 

design for spherical and parabolic reflecting surfaces using a target with moving 

parts. No results were presented that attempted to fit a particular surface form 

to the final result.  In addition, neither the spherical nor parabolic surfaces used 

are a good approximation to the human cornea. 

 

Rowsey (1983) and Binder (1995) claimed that a parabolic faceplate design 

would decrease optical aberrations allowing for a flat image plane. Although no 

experimental work was presented to support this claim, it may arise from the 

fact that the sagittal and tangential image surfaces are parabolic in form for a 

plane target (Hecht (1998)).  Reversing the path of the rays, a parabolic 

faceplate would result in a flat image surface. 

 

Modern keratoscopes have faceplate designs that often depart from the conic 

section geometry that has been investigated by earlier workers.  In addition, the 

speed of computer ray tracing now allows us to carry out a more extensive 

investigation than previously of the optimum faceplate design to achieve best 

ring mire image quality.  The aim of this study is therefore to determine the 

effect of faceplate geometry on image quality and hence the accuracy of data 

produced by computer videokeratoscopes.  This would allow us to understand 

the advantages of the plethora of designs that are currently available 

commercially and to know whether differences in the results produced by 

corneal topographers with various faceplate geometries may be clinically 

significant. 
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Methods: 

 

Determination of best faceplate design 

A computer model of a videokeratoscope was developed using Borland C++ 

Development Suite v5.0 (Borland International Inc, Scotts Valley, CA, USA) and 

employing finite ray tracing techniques common in computer-aided optical 

design. The average corneal surface was simulated by a prolate ellipsoid with a 

7.72mm central radius of curvature, and a p-value of 0.81 (Guillon et al. (1986)) 

and the surface given by the well known equation 

 

222 pz-2Rzyx  .                                    (1) 

 

R is the apical radius of curvature and (x,y,z) is a Cartesian coordinate system 

with origin at the surface vertex and the z-axis aligned with the axis of revolution 

of the surface (Baker, (1943)).  The p-value controls the rate of peripheral 

flattening and hence the conic surface type: p > 1 oblate ellipsoid, p = 1 sphere, 

0 < p < 1 prolate ellipsoid, p = 0 paraboloid and p < 0 hyperboloid.  Cones, 

although degenerate, can be modelled as a special case of a conicoid by 

setting R = 0.  A negative p-value can then be used to control the aperture 

angle. 

 

This corneal model was considered reasonable for diameters up to 9mm. In the 

periphery the surface flattens rapidly towards the limbus and can no longer be 



 6 

adequately approximated by a conicoid as has been noted by Waring among 

others (Waring (1989)). 

 

All the modelled faceplate geometries, (plane, conic section, cylinder and cone), 

had a pupil diameter of 9mm, which is approximately the average aperture in 

the faceplate seen in several commercial instruments. The models were tested 

at working distances, d, of 120mm, 80mm and 50mm (corneal vertex to the 

pupil plane of faceplate) (figure 1(b)). These values were again chosen to cover 

the range used by several commercial instruments. 

 

For the cylindrical design (figure 1(a)), the diameter of the cylinder, , was 

changed from 25mm to 240mm in 1mm steps for each of the three working 

distances. Diameters less than 25mm were not tested because it would be 

difficult to manufacture such surfaces and diameters larger than 240mm would 

approximate a plane surface. 

 

Cones were tested at each distance with semi-aperture angles ranging from 1 

to 89 degrees in 1-degree steps (Fig 1b). The other conical surfaces were 

modelled by p-value and radius of curvature. For each p-value the radius of 

curvature was changed from 5 to 250mm in 5mm steps. A radius of curvature 

bigger than 250mm would represent almost flat surfaces for the diameter 

analysed. Negative p values, corresponding to a hyperbolic surface, were 

tested and incremented in such a way that the asymptotic line (figure 2) would 

change by 1-degree for each increment. A fixed increment to p wasn’t used in 
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the hyperbola because it varies non-linearly with the slope of the asymptotic 

lines. 

 

For ellipsoids (p > 0), the p-value increment was fixed at 0.1. For each radius of 

curvature, the last p-value tested would be the one corresponding to a surface 

that didn’t intersect a 45 degrees line from the corneal vertex (figure 3). 

 

In order to maximise accuracy the program only processes faceplate shapes 

such that at least an 8mm corneal diameter is analysed.  This is the total 

coverage claimed by several instrument manufacturers. 

 

Five points in the faceplate subtending 15, 30, 45, 60 and 75 degrees at the 

corneal apex were initially selected. Cones, cylinders, hyperboloids and 

paraboloids will always have points that subtend these five angles. Spheres and 

ellipsoids can only increase in diameter until a certain point, and then start 

decreasing, so it was not always possible to find the five points.   

 

After determining the position of the tangential plane focus (see appendix) for 

each of the five points in the faceplate, the range of these focal positions was 

calculated. The focal plane was then shifted from the tangential focus position 

closest to the faceplate to the furthest in 1 m intervals. For each focal plane 

position the tangential blurs for the five points are summed. The best focal 

plane position for a given surface, the plane where the sharpest image is 
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obtained, was considered to be the one that has the smallest value of the total 

blur. 

 

All faceplate designs that passed the 8 mm minimum corneal coverage criterion 

were divided in four classes. The first class included the ones that produced 

minimum blur sum differences  0.001 mm from the best, the second  0.01 

mm, the third  0.1 mm and the fourth > 0.1 mm. 

 

 

Influence of faceplate design on radius of curvature maps 

The best faceplate design and a surface representing each of the minimum blur 

sum based classes, mentioned above, were compared. Since each surface is 

tested separately and there are only five surface geometries to compare, 

computation time is no longer a problem, hence the number of points tested in 

each faceplate was increased. Sixteen points were selected, which is equivalent 

to eight rings on the faceplate. This number is similar to that used in 

videokeratoscopes when analysing ring edges. Videokeratoscopes that have a 

large number of rings do not analyse ring edges but the average position of the 

complete image ring, since the image is very thin. 

 

Sagittal and tangential radii of curvature were calculated for the simulated 

cornea by the van Saarloos algorithm (van Saarloos and Constable (1991)) for 

the best and for a representative of each of the other four minimum blur sum 



 9 

based classes. These designs were also selected since they are similar to the 

faceplates used in commercial instruments. 

 

A problem with calculating difference maps for different faceplate shapes (with 

the same number of rings) is that the reflection points on the simulated cornea 

will not be the same. To overcome this problem the radial coordinates for the 

corneal reflection points for the best faceplate surface were used as a reference 

and the radius of curvature for the same points was calculated for the other 

faceplate designs. This was done by linear interpolation of radius of curvature 

between two calculated corneal points. For the selected reference points the 

sagittal and tangential radius of curvature were calculated from the simulated 

cornea parameters (apical radius and p value). For each faceplate design, the 

radius of curvature error was calculated for each corneal reference point. This 

error was determined by subtracting the calculated radius of curvature (in the 

van Saarloos algorithm) from the actual radius of curvature taken from 

equations 2 and 3. This process was applied both to the sagittal and tangential 

radius of curvature values resulting in the sagittal radius error and tangential 

radius error. These errors were plotted on graphs and compared between 

faceplates with 9 mm pupils and the image plane at best focus. The experiment 

was then repeated with the image plane at the first image ring focus.  

 

 222 pzRyxRs       (2) 
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Stone (1962) suggested that an accuracy of 0.02 mm is needed for instruments 

designed to measure radius of curvature of ophthalmic surfaces. This is due to 

the fact that contact lenses are manufactured in 0.05 mm steps therefore the 

accuracy should be approximately half that value. Taking this into account a 

difference between two radii of curvature equal or larger than 0.02 mm was 

considered as clinically significant for the scope of this work. 

 

 

 

Results 

 

a) Determination of best faceplate design 

The least sum of the image blurs from the 5 points in the faceplate will be 

referred to as the ‘minimum sum’ for the rest of this discussion.  Table 1 

summarises the minimum sums for the best design of each of the four 

geometries tested together with details of the design geometry.  Statistics on 

the number of surfaces that fell within four different amounts of mimumum blur 

sum were also recorded (table 2). 

 

Two surfaces closely matched the optimum design (a cone of diameter 26mm 

and working distance of 120mm): the first was another cylinder with the base 

located at 120mm from the cornea and a diameter of 27mm (1mm bigger than 
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the best), which can be considered ostensibly the same as the optimum design; 

the second was the best cone whose design details are given in table 1. 

 

b) Influence of faceplate design in power maps 

For each one of the groups listed in Tables 1 & 2 a faceplate design with a 

minimum blur sum close to each group limit was selected. In addition, the 

selected designs had to resemble those seen in commercial videokeratoscopes 

so that we could address the question as to whether differences in faceplate 

design of current instruments cause significant differences in radius of curvature 

maps.  Specifications of the five surfaces tested are given in table 3. 

For simplicity the selected surfaces will be labelled surfaces 1 to 5 respectively. 

The sagittal radius of curvature errors (SRE) and tangential radius of curvature 

errors (TRE) calculated for each one of the five faceplate designs are 

represented in figures 4 and 5 respectively. These errors were calculated using 

a 9 mm pupil in the faceplate and for the image plane at best focus. In the 

abscissas d is the distance from the corneal point to the axis of the simulated 

cornea measured perpendicular to the axis. The markers on the error curves 

indicate the radial coordinates d, for which radii of curvature were calculated for 

all surfaces.  

 

The sagittal and tangential radius of curvature errors for a 9 mm pupil diameter 

in the faceplate and image plane at the focus of the first ring mire image are 

represented in figure 6 and figure 7 respectively. 
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Discussion 

a) Determination of best faceplate design 

For the best conoidal and best flat surface, the blur patterns are partially 

vignetted at the 75 degrees points. This vignetting is an artefact of the program 

due to the corneal diameter being limited to 9 mm. In the periphery the real 

cornea adopts a flatter shape and the rays would strike that part without being 

vignetted. As a result the blur sum would be bigger than actually is measured in 

the simulation. Within the minimum blur sums (minimum value of the sum of the 

radial geometrical blurs for five predefined object points) for each type of 

surface, the flat and conoidal surfaces present the highest values. For these two 

cases the vignetting is of no concern because it would make the minimum blur 

sums even larger. The best cone and the best cylinder do not induce vignetting 

at the 75 degrees points. The minimum blur sums for these two particular 

surfaces are therefore realistic within the limits of the simulation. 

 

Figure 8 displays the distance of the tangential focus positions from the paraxial 

plane for 15 ring edges on the best cylinder. From this figure it can be seen why 

that cylinder produces the minimum blur sum. The first and last set of edges are 

focused near the paraxial plane (0 mm on the graph) and only the intermediate 

edges are focused away from the paraxial plane. Hence if the image plane is 

set for the first ring edge (paraxial plane) the blur sum will be small since only 

the intermediate rings will be out of focus. 
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In order to fill the pupil, a bundle of rays reflected on the cornea must spread 

less if the cornea is further away. This explains why surfaces placed at larger 

working distances present smaller blur sums. On the other hand the distance 

has to be limited for an adequate corneal area to be analysed since it was found 

by experimentation that as the working distance increases the analysed corneal 

area is reduced. 

  

 

 

b) Influence of faceplate design on radius of curvature maps 

Analysis of figure 4 shows large sagittal radii errors for all surfaces until ring 

edge 4. From ring edge 5 only surfaces 4 and 5 present errors outside the 

0.02 mm tolerances. The large central error is due to the defocusing of the 

central rings, resulting in incorrect ring mire image edge position. Since these 

curves were calculated for the best focus based on the minimum blur sum, this 

shifts the focus to the intermediate rings. The central and peripheral rings will be 

out of focus. However focusing errors for the central mires will have a bigger 

effect than focusing errors for the more peripheral; the same amount of error will 

represent a substantial percentage of a smaller ring mire image height and a 

smaller percentage of a large mire.  

 

Analysis of figure 5 shows large tangential radii errors for all surfaces for central 

and peripheral rings, while intermediate rings display less error. Central ring 

errors result from the same causes specified for sagittal error. Peripheral ring 
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errors are due to the method used by the van Saarloos algorithm to calculate 

tangential radius of curvature. It considers that three consecutive corneal points 

share the same centre of curvature to obtain surface smoothness. However in 

an aspheric surface (with p<1) the centre of curvature for peripheral points is 

different for each points and gets progressively further away from the surface 

axis. This fact explains the larger error for outer rings. 

 

On figure 6 the image plane was changed from best focus to focus on the inner 

edge of the first ring mire image. This leads to an accurate edge position 

resulting in an accurate apical radius calculation for all surfaces. The shift in 

focus increases the blur for peripheral points. However it doesn’t result in a 

clinically significant error increment when compared to figure 4. This finding 

suggests that focusing at the first ring mire image inner edge is better than 

focusing at the best focus position. An interesting effect, magnified by the scale 

change, is the oscillation of the graphs. It can be explained by the effect of 

focus on consecutive ring edges. The image of the inner ring edge of an image 

ring will look smaller when out of focus, while the image of the outer edge will 

look larger. This results in a decrease and an increase in the calculated radius 

of curvature respectively. 

 

Figure 7 shows that once again the tangential radius of curvature error is larger 

than the sagittal radius of curvature error. The error also increases to the 

peripheral points for the reasons explained earlier. It can also be concluded that 

the large tangential radius error is not caused by focus but by the algorithm 
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itself. It is also interesting to note that surface 1 does not seem to be affected by 

this algorithm error that leads to a tangential radius of curvature error increment 

for the peripheral rings.  

 

As to the influence of faceplate design on radius of curvature maps, analysis of 

all data shows that different faceplate designs will lead to clinically significant 

differences. Although the curves displayed do not show differences directly they 

represent them, since the radius error for the same point in each curve results 

from the subtraction of the calculated radius of curvature from the accurate 

radius of curvature. The accurate radius of curvature for each curve point is the 

same for all curves at that point.   

 

There is a small degree of approximation in the differences. As previously 

stated differences were calculated for the same corneal points using surface 1 

as a reference. For each surface the sagittal or tangential radius of curvature at 

the corneal points heights determined for surface 1 were calculated by linear 

interpolation. When the smallest or highest corneal points in surface 1 are used, 

one of the bracketing points in other surfaces necessary to the interpolation 

may be missing. In those cases differences had to be taken at different corneal 

points, but presented in the graphs as being calculated at the same corneal 

points. For the available data the contribution of this error for the differences 

was negligible since the points were very close. 
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Selecting the measurement point on the cornea to be the same height as the 

image introduces a small error although it was the approach originally adopted 

by Rowsey, (1983).  Determination of the corneal measurement point has been 

done in many ways (Mandell & St Helen (1971), Doss et al. (1981), Klein (1992) 

and Halstead et al. (1995)) although a full investigation of errors and limitations 

goes beyond the scope of the current study. 

 

 

 

 

 

Conclusions 

 

The surface that provides the sharpest image for an average cornea is a 

cylinder with base 120-mm away from the corneal vertex and a diameter of 26-

mm. Ten other designs tested produced a total image blur from five assessed 

points within 10m of the best found. Increasing the working distance improves 

image quality but decreases the analysed corneal area. A balance must be 

found to provide optimum results. 

 

These results don’t show that a cylindrical faceplate provides better results than 

any other geometry. We can only conclude that this particular cylinder at the 

specified working distance is the best design. In this section of the work better 
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results mean that the sums from the blurs of all image points are smaller, which 

means a sharper image. 

 

Focusing errors have a major effect on radius of curvature errors. Focusing on 

the image of the first ring edge results in an accurate apical radius and a 

smaller overall error when compared with best focus. 

 

The method used by the van Saarloos algorithm to calculate the tangential 

radius of curvature may lead to significant errors for peripheral rings. 

 

We conclude that faceplate geometry can be optimised for image quality and 

should be considered as an area of design that can be addressed to improve 

accuracy at a time when keratoscopes are used for measuring corneal 

aberrations and other parameters relevant to wavefront-guided refractive 

surgery.  
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APPENDIX 

 

Tangential focal position determination 

The position of the tangential focal line for each point is determined by the 

intersection of the upper and lower tangential rim rays (figure 9b). This method 

provides a fast way of finding the tangential focus, which will correspond to the 

smallest blur of the rings.  

 

Figure 9 shows the image of a point at a 15-degrees angle from the corneal 

vertex. The point lies in the upper vertical hemi-meridian of a spherical faceplate 

with 250mm radius of curvature. The pupil size in the faceplate is 9mm located 

80mm from the corneal vertex. The image is shown at the best focus position 

(b), 2-m before (a) and 2-m after (c). The intersections of the upper and lower 

rim rays with the focal plane are represented by u and l respectively. The 

tangential blur is the blur dimension in the tangential plane direction, vertical in 

this particular case. 

 

In the best tangential focus the blur pattern is limited by the upper and lower rim 

rays in one extremity and by the chief ray in the other (figure 9b). When the 

focal position is far away from the best focus in both directions, a large blur will 

occur being limited by the upper and lower rim rays. In the interval between 

these focal positions and before reaching the best focus in both directions, only 

one extremity of the blur will be limited by the upper rim ray or lower rim ray. In 
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this case the only way to predict the other extremity is to trace rays in the 

tangential plane.  The accuracy will be limited by the number of rays traced. 

 

Determination of a ring mire image edge 

 

Geometrical ray tracing allows us to model the irradiance in the image by using 

the ray density and converting this to a gray-scale representation (figure 10).  It 

can be seen that at the tangential focal plane the edge is sharp.  Most edge 

detection algorithms compute the slope of the edge and estimate the edge by 

the mid-point of the slope.  We have taken the point of half the maximum 

irradiance as the location of the edge.  It should be noted that to accurately 

model the ring mire image, this geometrical point spread function needs to be 

convolved with a ring with the result that irradiance values inside the position of 

peak irradiance shown in the graph (figure 10) will not fall away as indicated. 
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Table 1 - Minimum blur sums for the best in each of the four categories of 

faceplate design tested. 

 

 

 

 

Design Design Specification Minimum Sum (m) 

Flat Working distance 80mm 102.68 

Cone Working distance 120mm 

Total aperture angle 8o 

29.05 

Cylinder Diameter 26mm 

Working distance 120mm 

28.21 

Conicoid Radius of curvature 20mm 

p = -0.163 (hyperboloid) 

Working distance 120mm 

55.65 
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Table 2 – Frequency table for faceplate designs with differences, , from the 

best minimum sum. 

 

 

  within 1m 1m - 10m 10 - 100m >100m 

Flat 0 0 1 1 

Cone 1 1 120 70 

Cylinder 2 7 350 191 

Conicoid 0 0 5785 6529 
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Table 3 – Specifications for the five faceplate designs tested for clinically 

significant differences in power maps. 

 

 

 

Nº Faceplate type Design details Minimum blur (m) 

1 Cylinder Diameter 26mm, 120mm length 28.21 

2 Cone 8o total aperture,  

25 mm maximum diameter,  

119 mm length 

29.05 

3 Cylinder 34mm diameter, 119 mm length 37.40 

4 Cylinder 49mm diameter, 49 mm length 126.96 

5 Cone  160 degree total aperture, 240 mm 

maximum diameter, 49 mm length 

182.99 
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Figure 1 - Sections of cylindrical and cone shaped faceplates. a) The angle  

from the cylinder base to the opposite corner can be used to control the 

diameter  and the length d. b) Cones with semi-aperture angles 1 and 2. 

Both cones start at a 9mm pupil aperture. 

 

Figure 2 - Hyperboles with the same apical radius of curvature and asymptotic 

lines at 30 and 45 degrees inclination. The curves are similar to a cone in the 

periphery, but different at the centre. 

 

Figure 3 - In a cone-type faceplate it is always possible to define the five points 

as long as the cone has sufficient length to either side. The same applies to 

cylindrical, hyperbolic and parabolic faceplates. In spherical and ellipsoidal 

faceplates the surface can only increase in diameter until a certain point, after 

which it starts to close. In these cases it is not always possible to find the five 

points. The figure represents a case in that is only possible to define two of the 

five points. 

 

Figure 4 - Differences (SRE) between accurate sagittal radii of curvature and 

sagittal radii of curvature calculated by the van Saarloos algorithm for surfaces 

1 to 5. Faceplate pupil with 9 mm diameter and image plane at best focus. 

 

Figure 5 - Differences (TRE) between accurate tangential radii of curvature and 

tangential radii of curvature calculated by the van Saarloos algorithm for 

surfaces 1 to 5. Faceplate pupil with 9 mm diameter and image plane at best 

focus. 

 

Figure 6 - Differences (SRE) between accurate sagittal radii of curvature and 

sagittal radii of curvature calculated by the van Saarloos algorithm for surfaces 

1 to 5. Faceplate pupil with 9 mm diameter and image plane at first ring mire 

image focus. 
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Figure 7 - Differences (TRE) between accurate tangential radii of curvature and 

tangential radii of curvature calculated by the van Saarloos algorithm for 

surfaces 1 to 5. Faceplate pupil with 9 mm diameter and image plane at first 

ring mire image focus. 

 

Figure 8 - Tangential focus position, measured from the paraxial plane (located 

at 0 mm mark), for 15 ring edges on the best cylinder. 

 

 

 

Figure 9 – Image of an object point near the instrument axis for slightly different 

positions of the image plane. Tangential blurs in cases a), b) and c) are 1.262, 

1.152 and 1.248 m respectively. The image plane position corresponding to 

the intersection of upper and lower rim rays (b) is the best focus. The 

dimensions presented are small but object points near the instrument axis 

illustrate the principle better. The same principle applies to object points further 

off axis. 

 

Figure 10 -  Image point corresponding to a ring mire edge subtending 15º from 

the corneal vertex in the best surface, and respective estimated irradiance 

pattern in the tangential plane. The ring edge was considered to be positioned 

where the irradiance is half the maximum value for that object point. 
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Fig. 5 
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Fig. 6 
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