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ABSTRACT 

Monitoring the preservation of QoS properties during the 
operation of service-based systems at run-time is an important 
verification measure for checking if the current service usage is 
compliant with agreed SLAs. Monitoring, however, does not 
always provide sufficient scope for taking control actions 
against violations as it only detects violations after they occur. 

In this paper we describe a model-based prediction framework, 
EVEREST+, for both QoS predictors development and 
execution. EVEREST+ was designed to provide a framework 
for developing in an easy and fast way QoS predictors only 
focusing on their prediction algorithms implementation without 
the need for caring about how to collect or retrieve historical 
data or how to infer models out of collected data. It also 
provides a run-time environment for executing QoS predictors 
and storing their predictions. 

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed applications, C.4 
[Performance of Systems]: Measurement techniques 

General Terms 
QoS Measurement, Algorithms 

Keywords 
Run-time QoS Prediction, Prediction Framework 

1. INTRODUCTION 
Monitoring the preservation of quality of service (QoS) 
properties during the operation of service-based systems at run-
time is an important verification measure for checking if the 
current usage and behaviour of the services deployed by the 
system is compliant to the Service Level Agreements (SLAs) set 
for these services. The monitoring of QoS properties specified in 
an SLA has received significant attention in the literature and 
several approaches and monitoring systems have been 
developed to support it [12][11][1][7]. Most of these approaches 
and systems, however, can only support the detection of a QoS 

property violation once it has occurred. Thus, they do not 
provide sufficient support for taking control actions that could 
prevent violations or warning the relevant parties that violations 
are likely to occur in the future. 

The prediction of violations of QoS properties of software 
systems has been the subject of research outside the area of SLA 
monitoring. This work has focused on prediction related to 
different types of properties including, for example, software 
systems failures [13], system dependability [4], security [15], 
and parameters of system infrastructures such as server 
workloads, CPU loads, and network throughput [3][6]. Related 
techniques have been based on wide spectrum of prediction 
algorithms ranging from time series analysis [2] to mean-value 
prediction techniques [3] or belief-based reasoning [8]. 

Three limitations of existing techniques that make them falling 
short of providing adequate support for run-time prediction of 
SLA violations are: 

• They tend to focus on system infrastructure properties (e.g., 
network and server properties) rather than service level 
application based properties (e.g., service throughput, mean 
time to failure). 

• They tend to focus on the prediction of specific types of 
properties without providing a more generic framework for 
building predictors that can cover a wide or even the whole 
spectrum of service properties that can be part of an SLA 

• They are not integrated with environments for monitoring 
SLAs for service-based systems 

The latter limitation is important as the lack of relevant 
integration prevents the development of support for proactive 
management of service-based systems and SLAs including, for 
example, proactive service discovery by service clients in cases 
where the QoS properties in SLAs of the services used by a 
system are forecasted to fail, proactive negotiation of new SLAs 
with existing customers in cases where providers detect that 
their SLAs are due to be violated, or proactive provision of 
further service capacity in the same case. 

In this paper, we introduce a new framework, which supports the 
prediction of potential violations of QoS properties in SLAs. 
This framework has been developed as part of a generic 
monitoring framework for checking SLAs at run-time, called 
EVEREST [15]. Our prediction framework provides an 
integrated architecture for SLA monitoring and prediction that 
supports the latter activity through the deployment of a built-in 
set of model-based predictors (including for example a generic 
predictor for constraints regarding mean values of QoS 
properties). Our framework receives specifications of the QoS 
properties, which need to be monitored and predicted, expressed 
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in a general high level SLA specification language developed as 
part of FP7 EU project SLA@SOI, and a specification of the 
prediction parameters and model that should be used for 
generating predictions of violations of these properties. Based 
on the input QoS and prediction model specifications, the 
framework generates automatically operational monitoring 
specifications expressed in Event Calculus [5] to enable not only 
the classic (i.e., non predictive) monitoring of the required QoS 
properties but also the acquisition and recording of run-time 
information that will be required for predicting potential 
violations of the given QoS properties. Following the generation 
of operational monitoring specifications, the framework 
activates these specifications to perform run-time monitoring, 
and uses the data gathered during monitoring to compute 
automatically the prediction model identified for the relevant 
QoS property and generate the required forecasts. 

The architectural design of the framework enables its extension 
by new QoS predictors that may be required for specific types of 
properties, and provides a language that enables the users of the 
framework to declare how new predictors can fit in the generic 
prediction approach advocated by it and the type of predictor(s) 
that should be used for a given property if more than one 
predictors are available for the property by specifying 
appropriate configuration specifications. 

Our integrated monitoring-prediction framework addresses the 
lack of integration of monitoring and prediction systems and the 
tendency to provide specific prediction algorithms instead of a 
generic framework for building predictors. Our framework 
provides a coherent approach to data collection and analysis 
both for monitoring and prediction purpose. Moreover, it 
supports the developing of monitoring and prediction uses-
designed algorithm that can be used for extending the 
framework abilities. Also, it defines a single point of access for 
configuring the integrated framework. 

In the rest of this paper, we compare our approach with existing 
work (Section 2), present the key concepts underpinning our 
framework (Section 3), present our framework key points and its 
architecture (Section 4 and 5), present the specifications used by 
our framework (Section 6). We also present an initial 
experimental evaluation of the framework (Section 7) and 
outline directions for future work (Section 8). 

2. RELATED WORK 
Several different approaches to QoS monitoring have been 
proposed in literature (e.g. [12][11][1]) and recommendations 
about QoS metrics measurement for web services have been 
described in [14]. 

Michlmayr et al. [11] present an event-based QoS monitoring 
and SLA violation detection framework. They developed client 
and service side monitoring and integrated them in the VRESCo 
[10], a run-time environment for service-oriented computing. At 
the moment VRESCo supports a limited list of QoS properties. 
Our approach, like [11], can monitor both client and server side, 
but it doesn’t have a fixed list of supported QoS properties. 
Indeed, users can specify new properties to be monitored as EC-
Assertions. 
Sahai et al. [12] present an automated and distributed SLA 
monitoring engine. They use both client and service side 
collected information. There is not a fixed set of monitorable 
properties, but to add a new property a new SLA evaluator 

component must be developed and deployed into the framework. 
Our approach does not require any new components to be 
developed and deployed to monitor a new QoS property. It is 
only required to write a new AC-Assertion specification. 

De Luc et al. [1] present a middleware component for 
monitoring services and delivery timely and coherent 
monitoring data to business processing using them in run-time 
decision making settings. This work focuses on data collection 
and how to efficiently deliver it to other components. Our 
approach also detects when monitored data violates QoS 
requirements. 

Leitner et al. [7] present an approach for predicting SLA 
violations at run-time. The Prediction approach requires the 
definition at design-time of checkpoints for each BPEL 
subjected to prediction. Moreover, it does not support the 
prediction of aggregate properties. Our approach does not 
require defining any checkpoints; in fact a prediction can be 
requested at any time. It can also predict aggregate properties. 

All the described approaches focus on monitoring or prediction 
only. On contrary, our approach integrates monitoring and 
prediction with in a same coherent framework. Moreover, we 
provide a more generic framework for building predictors that 
can cover a wide or even the whole spectrum of service 
properties that can be part of an SLA. 

3. BACKGROUND: The EVEREST 
Monitoring Framework  
EVEREST is a generic monitoring engine for checking 
violations of software system properties expressed in an Event 
Calculus (EC) based language called EC-Assertion at run-time. 
EVEREST has been used for monitoring different types of 
properties of software systems including functional security and 
dependability properties [15]. It has also been applied for 
monitoring SLA guarantee terms for service-based systems [9]. 
Whilst a full description of EVEREST is beyond the scope of 
this paper, in this section we provide an overview of the 
language that it uses to express monitorable SLA guarantee 
terms to enable the reader understand how the prediction 
specifications used by the prediction framework relate to 
specifications of these terms. 

More specifically, the SLA terms that can be checked by 
EVEREST are expressed as EC-Assertion monitoring rules 
and/or assumptions of the form: body ⇒ head. The semantics 
of a monitoring rule of this form is that when the body of the 
rule evaluates to True, its head must also evaluate to True. 
The semantics of assumption of this form is that when the body 
of the rule evaluates to True, its head is deduced by 
EVEREST. The body and head of EC-Assertion rules and 
assumptions are defined in terms of standard EC predicates: 

(a) Happens(e,t,R(lb,ub)) − This predicate denotes that an 
instantaneous event e occurs at some time t with in the time 
range R(lb,ub), where lb≤ub are R lower and upper bounds. 

(b) HoldsAt(f,t) − This predicate denotes that a state (a.k.a. 
fluent) f holds at time t 

(c) Initiates(e,f,t) and Terminates(e,f,t) − These predicates 
denote the initiation and the termination of a fluent f by an 
event e at a time t respectively, and 

(d) Initially(f) which denotes that a fluent holds at the start of 
the operation of a system. 



An example of an SLA term specified in EC-Assertion is shown 
in Table 1. The formulas in the table check whether the mean 
time to repair of a service (MTTR) _Srv, i.e., is the mean length 
of the periods of time over which a service does not respond to 
operation calls and is therefore unavailable, is always below a 
given threshold K, i.e., MTTR≤K.  

Rule R1: 
Happens(e(_id1, _Snd, _Srv, Call(_O), _Srv), t1, [t1,t1]) ∧ 
Happens(e(_id2, _Srv, _Snd, Response(_O), _Srv), t2, [t1,t1+d]) ∧ 
∃ _PN, _STime, _MTTR: HoldsAt(Unavailable(_PN, _Srv, _STime), t1)) ∧ 
HoldsAt(MTTR(_Srv, _PN, _MTTR), t1))  ⇒ 
_MTTR < K 
Assumption R1.A1: 
Happens(e(_id1, _Snd, _Srv, Call(_O), _Srv), t1, [t1,t1]) ∧ 
¬Happens(e(_id2, _Srv, _Snd, Response(_O), _Srv), t2, [t1,t1+d]) ∧ 
¬∃ _PeriodNum, _STime,: HoldsAt(Unavailable(_PeriodNum, _Srv, _STime), 
t1)) ∧ 
∃ _PN, _MTTR: HoldsAt(MTTR(_Srv, _PN, _MTTR), t1))  ⇒ 
Initiates(e(_id1, _Snd, _Srv, Call(_O), _Srv), Unavailable(_PN+1, _Srv, t1), t1) 
∧ 
Terminates(e(_id1, _Snd, _Srv, Call(_O), _Srv), MTTR(_Srv, _PN, _MTTR), t1) 
∧ 
Initiates(e(_id1, _Snd, _Srv, Call(_O), _Srv), MTTR(_Srv, _PN+1, _MTTR), t1 

Assumption R1.A2: 
Happens(e(_id1, _Snd, _Srv, Call(_O), _Srv), t1, [t1,t1]) ∧ 
Happens(e(_id2, _Srv, _Snd, Response(_O), _Srv), t2, [t1,t1+d]) ∧ 
∃ _PeriodNum, _STime: HoldsAt(Unavailable(_PeriodNum, _Srv, _STime), t1) 
⇒ 
Terminates(e(_id1, _Snd, _Srv, Call(_O), _Srv), Unavailable(_PeriodNum, 
_Srv, _STime), t1+1) 
Assumption R1.A3: 
Happens(e(_id1, _Snd, _Srv, Call(_O), _Srv), t1, [t1,t1]) ∧ 
Happens(e(_id2, _Srv, _Snd, Response(_O), _Srv), t2, [t1,t1+d]) ∧ 
∃ _PeriodNum, _STime,: HoldsAt(Unavailable(_PeriodNum, _Srv, _STime), 
t1)) ∧ 
∃ _PN, _MTTR: HoldsAt(MTTR(_Srv, _PN, _MTTR), t2)) ⇒ 
Terminates(e(_id1, _Snd, _Srv, Call(_O), _Srv), MTTR(_Srv, _PN, _MTTR), t2) 
∧ 
Initiates(e(_id1, _Snd, _Srv, Call(_O), _Srv), MTTR(_Srv, _PN, 
(_MTTR*(_PN−1) +(t1 −  STime))/_PN), t2) 

Table 1. EC formula for monitoring MTTR 
More specifically, rule R1 in Table 1 checks for MTTR 
violations when a call of an operation of the service _Srv is 
served after a period of unavailability. The first two conditions 
in the rule check whether a served operation call has occurred. 
The latter two conditions check whether this happens at a time 
when the service has been unavailable. 

The first assumption in Table 1 (R1.A1) initiates the fluent 
Unavailable(_PN+1, _Srv, t1) to represent a period of service 
unavailability. This fluent is initiated when service call occurs 
(i.e., the call represented by the event _id1), no response to this 
call is produced within d time units, and at the time of the 
occurrence of the call the service is not already unavailable (i.e., 
no fluent of the form Unavailable(_PeriodNum, _Srv, _STime) 
already holds). The number of the new unavailability period is 
determined by increasing the variable _PN whose current value 
is extracted from the fluent MTTR(_Srv, _PN, _MTTR) which 
keeps a record of the number of the past periods of 
unavailability of the service (i.e., _PN) and the mean length of 
time during which the service remained unavailable in each of 
these periods (i.e., the value of the variable _MTTR). As a new 
period of unavailability is initiated for the service, the 

assumption also re-initiates the fluent MTTR(_Srv, _PN, 
_MTTR) in order to increase the number of unavailable periods 
_PN. 

The second assumption (R1.A2) terminates the fluent that 
represents a currently active period of service unavailability 
(i.e., the fluent Unavailable(_PeriodNum, _Srv, _STime)) when 
a served service call occurs (i.e., the call represented by the 
event _id1) and at the time of the occurrence of this call the 
service is not unavailable (i.e., a fluent of the form 
Unavailable(_PeriodNum, _Srv, _STime) holds). 

The third assumption (R1.A3) updates the fluent that represents 
the mean length of consecutive periods of service unavailability 
(i.e., the value stored in the variable _MTTR of the fluent 
MTTR(_Srv, _PN, _MTTR)) when a served service call occurs 
(i.e., the call represented by the event _id1) and at the time of 
the occurrence of this call the service is not unavailable (i.e., a 
fluent of the form Unavailable(_PeriodNum, _Srv, _STime) 
holds). The new mean value is computed as the mean of the 
mean of the previous _PN-1 observations that is stored as the 
current value of _MTTR and the new period of unavailability 
(t1−STime). 

4. OVERVIEW OF OUR PREDICTION 
APPROACH 
At a high level, our framework assumes that a prediction 
problem can be formulated as follows: Given a request for 
predicting whether a QoS property will be satisfied at some 
future time point te that is received at a time point tc, prediction 
is the computation of the probability that the QoS property will 
be satisfied at te. The computation of this probability will, in 
general, be based on estimating the probability of different 
values for specific variables that underpin the QoS property 
and/or the QoS property itself. These probabilities can be 
computed by fitting probability distribution functions to 
historical data of these variables. 

 
 Figure 1. Prediction framework common definitions 

Figure 1 illustrates this general formulation. More specifically, tc 
in the figure is the time point at which a prediction is requested, 
te is the time point in the future that the prediction is required 
for, p is the prediction window (i.e., p=te−tc), N is the number of 
QoS observations between ts and tc, Y is the number of future 
QoS observations between tc and ts, QoSc is the value of the 
observed QoS at the time point tc, and QoSy is the value of the 
predicted QoS at the time point te. 
The design of EVEREST+ enables the realization of different 
prediction models for QoS factors which are based on a common 
underlying principle: the estimation of probabilities of specific 
values (or ranges of values) for different variables that underpin 
the violation or otherwise of a QoS term, and the use of these 
probabilities in deriving the probability of the violation of the 
term in a given period.  



 
Figure 2. EVEREST+ components 

In the case of the MTTR QoS term for a service, for instance, a 
prediction model that we have developed for checking whether 
MTTR ≤ K at a future time point te is based on the estimating 
the probability distribution functions of two variables: (a) the 
MTTR of a service itself and (b) the time between two 
successive non served calls of service operations, referred to as 
time-to-failure or TTF in the following.  
More specifically, assuming that N is the number of TTR values 
recorded until tc and y is the (yet unknown) number of TTR 
values that will be recorded during the period p (or, 
equivalently, the number of cases where a service became 
available again following a period of unavailability), to violate 
MTTR at time te the following inequality must be false. 

(N*MTTRc + y*MTTRy)/(N+y) ≤ K (1) 
From (1), we can deduce that for the MTTR term to be violated 
it must be true that: 

MTTRy ≥[K∗(N+y)−N∗MTTRc]/y=MTTRcrit (2) 

Given (2), there are two factors to take into account to predict 
MTTR: 

• Pr(y), that is the probability to observe y failures in the 
prediction time period p. 

• Pr(MTTRy > MTTRcrit), that is the probability of having 
MTTRy > MTTRcrit. 

The probability to violate the QoS term constraint MTTR ≤ K at 
the end of p time units is approximated by formula (3). 

(3) 

Pr(y) and Pr(MTTRy > MTTRcrit) are computed by using density 
and cumulative probability functions. These probability 
functions are inferred by analyzing MTTR and TTF historical 
values collected by EVEREST, fitting different known 
probability functions to them, and selecting the function that has 
the best fit with the data. More specifically, during monitoring, 
EVEREST stores all the fluents defined in the EC formulas of 
Table 1 that required for monitoring the MTTR term  including, 
for instance, run-time values of the variable _MTTR of the 
fluent MTTR(_Srv, _PN, _MTTR) from which the density and 
probability function of MTTR can be inferred. The prediction 
components of EVEREST+ use subsequently these historical 
values to identify the probability density and probability 
functions that have the best fit with the stored MTTR values and 
use these functions to estimate Pr(MTTRy > MTTRcrit).  

5. ARCHITECTURE OF EVEREST+  
EVEREST+ has been designed with the general goal of 
providing a framework for developing QoS predictors in an easy 
and fast way by focusing only on prediction algorithm 
implementations without the need for caring about how to 
collect or retrieve historical data or how to infer statistical 
models out of the collected data. The architecture of 
EVEREST+, shown in Figure 2, includes two main components: 
(1) the EVEREST monitoring framework, and (2) the new 
prediction framework. 

As discussed earlier, the EVEREST monitoring framework 
checks services at run-time to determine whether they behave 
according to SLAs QoS terms set for them. EVEREST checks 
QoS terms based on events intercepted from services by internal 
or external event captors. Whilst monitoring QoS terms, 
EVEREST stores QoS related information, including the 
computed QoS term values, the instances of QoS term violations 
and satisfactions, and the values of any other state variables (aka 
fluents) that have been taken into account in checking QoS 
terms (see Section 3). This information is available through an 
API that allows its retrieval from the internal EVEREST 
monitoring database (see QoS data store in Figure 2). 

The prediction framework (PF) fits statistical distribution 
functions to different types of historical QoS data generated by 
EVEREST, selects the distribution functions that have the best 
fit with the data, and makes these functions and the “raw” QoS 
data available to different QoS predictors that are deployed in 
EVEREST+ as plug-ins. The prediction framework has three 
main components, namely the model manager, QoS predictor, 
and prediction manager. These components are described in the 
following. 

5.1 Prediction Manager 
The Prediction Manager component coordinates and supervises 
prediction tasks by managing prediction specifications, 
triggering components, and reporting prediction results. The 
operation of Prediction Manager is driven by prediction 
specifications. As shown in Figure 3, these specifications 
determine the QoS term that is to be monitored and forecasted 
(qos_specification) and the prediction_parameters whose 
statistical models will need to be determined in order to make 
predictions for this QoS term. They also specify predictor 
configuration parameters (e.g. type of predictor, prediction 
period). The prediction manager extracts and sends the QoS 
specification to EVEREST; selects and deploys the appropriate 
QoS predictor and sends the necessary configuration parameters 
to it, and sends the prediction configuration to the model 



manager. Once all the above components are configured, QoS 
predictors begin to produce predictions and store them into the 
prediction database. It is prediction manager responsibility to 
fetch and report them when needed. 

5.2 Model Manager 
The Model Manager is in charge of coordinating a pool of 
Model Calculator components used for inferring models out of 
historical QoS data collected by EVEREST. The model manager 
also makes inferred models available to QoS predictors. 

A Model Calculator component is a component implementing 
model-specific algorithm. EVEREST+ has a set of already 
implemented model calculators that can infer statistical 
distribution functions from historical QoS data, e.g., probability 
distribution (aka density) functions (PDF) and cumulative 
probability distribution functions (CDF). Statistical models are 
computed (and updated) at run-time, and stored in the model 
database. EVEREST+ also provides mechanisms for extending 
its default set model calculators. 

The model manager also implements model-updating policies 
that can be specified in EVEREST+ configuration files. They 
can be time, data, or time/data driven. Time driven policies 
trigger model updating after a certain time period has passed 
from the last computed version of the model. Data driven 
policies trigger model updating after a certain amount of data 
has been computed after the last updating of the model. 
Time/data driven policies trigger model updating by considering 
both time elapsed and the data received after the last model 
updating. The triggering policy should be chosen with respect to 
the specific domain EVEREST+ is operating in. Variable data 
might suggest a data driven policy, whilst for homogeneous data 
a time driven policy would suit better. 

5.3 QoS Predictors 
QoS Predictor components are the components in EVEREST+ 
that implement specific QoS prediction algorithms. All QoS 
predictors extend a basic predictor component. The base 
predictor component provides the common functionalities 
required for accessing EVEREST historical QoS data and the 
statistical models inferred by the model calculator components. 
It also provides functionality for storing QoS prediction results. 
In this way, developers of specific QoS predictors can focus 
only on prediction algorithm implementation without 
implementing the above common core functionalities. 

To render it deployable in the EVEREST+ framework, a QoS 
predictor must also provide a prediction feature list and 
dependencies. The list of prediction features indicates the QoS 
terms that the particular predictor can generate forecasts for. The 
dependency list indicates which data are required by a QoS 
predictor to make predictions. For instance, a predictor for 
MTTR based on the approach outlined in Section 4 (MTTR_PRE 
predictor) has one prediction feature only, i.e., the QoS term 
MTTR, and requires MTTR and TTF historical data to make its 
predictions. 

5.4 Monitoring Specification Generator 
The Monitoring Specification Generator component receives a 
prediction specification, translates it into a monitoring 
specification expressed in EC-Assertion, and forwards it to 
EVEREST. It also checks whether all needed resources required 
by QoS predictors are available. 

6. PREDICTION SPECIFICATIONS 
A prediction specification is a user-defined document that tells 
the prediction framework what to predict. To express prediction 
specifications we use the high level SLA specification language 
developed by the FP7 EU project SLA@SOI and extended it to 
support the specification of prediction requirements. 

Besides prediction targets, a prediction specification carries 
information about how to configure QoS predictors and which 
information is needed by QoS predictors to operate. Moreover, it 
can contain EC rules (QoS specifications) to be used by 
monitoring framework to monitor new QoS terms.  

An example of a prediction specification is given in Figure 3. As 
shown in the figure, a prediction specification specifies an 
agreement_term element for a service identified by a service_id. 
An agreement_term, identified by its unique id, can have one or 
more guaranteed_state sub-elements specifying the QoS term 
that the prediction is required for (i.e., MTTR in the example). 
Each guaranteed state has its own unique id too. The triplet 
(service id, agreement term id, guaranteed state id) is used to 
retrieve stored prediction results. 

The prediction specification tells the constraint that holds for the 
QoS specified in the guaranteed state, whose violation will be 
the subject of prediction (i.e., MTTR<K seconds in our 
example), and the window of the prediction (i.e., the time period 
in the future that the prediction should be concerned with). This 
window is set to 10 minutes in our example, meaning that the 
prediction required in this instance should be whether the MTTR 
of _Srv will be greater than or equal to K seconds within 10 
minutes following the prediction request 

 Note that a prediction specification uses a QoS name that is also 
used in a QoS specification, and therefore, enables the QoS 
predictor to retrieve historical QoS data for the term in order to 
compute the statistical prediction model for it.  

6.1 QoS Specification 
QoS specifications are EC formulas given to EVEREST to 
instruct it for monitoring QoS terms, e.g., MTTR, TTF, and 
availability. An example of QoS specification for monitoring 
MTTR has been discussed in Section 2. Via QoS specifications 
it is possible to extend the set of monitorable QoS terms own by 
EVEREST. If a prediction about a new QoS term is required, 
and EVEREST doesn’t have its QoS specification, it is sufficient 
to attach to a prediction specification, a QoS specification that 
describes how to monitor the new QoS term.  

prediction_specification { 
   serice_id = _Srv 
   prediction.window = 10min 
   Agreement_term { 
      id = AG-1 
      guaranteed_state { 
         id= GS-1 
         MTTR < K 
      } 
   prediction_parameters { 
      qos { id = MTTR } 
      qos { id = TTF } 

   } 
   prediction_configuration { 
      predictor_id = MTTR_PRED 
      configuration_property { history.window = 400 } 

   } 
   qos_specification { 
      ec_formula_id = MTTR 
      ec_formula = “The EC-Assertion formula” } 
} 

Figure 3. Example of prediction specification 



6.2 QoS Predictor Configuration 
Since EVEREST+ supports user-defined QoS predictors, each 
predictor might require different kind of configurations. QoS 
predictor configuration provides a key-value pair based 
configuration policy. 

For instance, in Figure 3, MTTR_PRED predictor receives a 
QoS predictor configuration for configuring the data history size 
it must use during its computation. QoS predictor configuration 
sets the available data history size to 400 (history.window=400). 

7. EXPERIMENTAL RESULTS 
The current implementation EVEREST+ is based on Java 
Platform Standard Edition 5.0 (J2SE 5.0) and uses MySQL 5.1 
as DBMS. J2SE 5.0. 

Monitoring and prediction can be time critical tasks. In real-time 
or high performance environments decision must taken within a 
few seconds or even a few milliseconds time. Therefore, the 
ability to provide results fast is crucial. EVEREST+ current 
implementation most consuming activity is model inferring from 
historical data. The inferring process fits up 43 statistical 
distributions given a set of data points. 

We evaluated EVEREST+ performance with historical data of 
different sizes, from 50 to 20000 data points. Table 2 shows the 
input size, the number of inferred models, and the time 
consumed by the inferring process in the first, second, and third 
column respectively. As expected, the bigger is the history size, 
the longer the inferring process takes. However, it exceeds one-
second time only for history sizes greater equal to 10000. Our 
experiments also highlighted how data point set sizes of 1000 
and 5000 are sufficient to produce quality statistical models. 

Data points Inferred models Inferring time (ms) 

50 20 ~322 
100 20 ~217 
500 20 ~217 

1000 20 ~222 
5000 20 ~656 

10000 18 ~1196 
20000 18 ~1701 

Table 2 Model inferring performance 
Moreover, the prediction algorithm execution time is of a few 
milliseconds only. Therefore, latencies of one or two seconds (in 
the worst case) are still acceptable in not time critical systems. 

8. CONCLUSION 
This paper presents a model-based prediction framework for 
detecting potential violations of QoS properties. The proposed 
approach key properties are generality and extensibility. It is 
general because it doesn’t support a limited set of QoS only and 
it is extensible because the definition of which data to collect 
and how to analyse them can be specified using models (QoS 
specifications) and pluggable components (QoS predictors). 

To proofing the validity of our approach we defined a QoS 
specification for monitoring MTTR QoS term values and we 
implemented a QoS predictor to predict about MTTR violations. 
Our experiments show that good performance results about the 
automatically inferred statistical models. 
For future work, we plan to extend the set of available QoS 
predictors and automatically inferred models to create a robust 
and flexible support for QoS monitoring and prediction. 

9. ACKNOWLEDGEMENT 
This research has been supported by the EU Commission under 
the Framework 7 project SLA@SOI (grant n. 216556). 

10. REFERENCES 
[1] Duc B. L., P., Châtel Rivierre N., Malenfant J., Collet P., 

Truck I.: Non-functional data collection for adaptive 
business processes and decision-making. In Proceedings of 
the 4th MWSOC. ACM, 2009. 

[2] Garg S. Garg, A. V. Moorsel A. V., K. Vaidyanathan K., 
and Trivedi K.: A methodology for detection and 
estimation of software aging. ISSRE, 0:283, 1998. 

[3] Iyer R. K. Iyer and Rossetti D. J.: Effect of system 
workload on operating system reliability: A study on ibm 
3081. IEEE Trans. Softw. Eng., 1985. 

[4] Iyer R. K., Young L. T., and Iyer P. K.: Automatic 
Recognition of Intermittent Failures: An Experimental 
Study of Field Data. IEEE Trans. Comput. 39, 4, 1990. 

[5] Kowalski R. and Sergot M.: A logic-based calculus of 
events. New Gen. Comput., 4(1):67–95, 1986. 

[6] Lee B-D, Schopf J M.: Run-Time Prediction of Parallel 
Applications on Shared Environments, Cluster Computing, 
IEEE International Conference on, p. 487, Fifth IEEE 
International Conference CLUSTER, 2003. 

[7] Leitner P., Wetzstein B., Rosenberg F., Michlmayr A., 
Dustdar S. and Leymann F.: Runtime Prediction of Service 
Level Agreement Violations for Composite Services. The 
3rd Workshop NFPSLAM-SOC, 2009. 

[8] Lorenzoli D. and Spanoudakis G.: Detection of security and 
dependability threats: A belief based reasoning approach. 
SECURWARE, 0:312–320, 2009. 

[9] Mahbub K. Spanoudakis G.: Monitoring WS Agreements: 
An Event Calculus Based Approach, Test and Analysis of 
Service Oriented Systems, (eds) L. Baresi, E. diNitto, 
Springer- Verlang, 2007 

[10] Michlmayr A., Rosemberg F., Leitner P., and Dustdar S.: 
End-to-end support for QoS-aware service selection, 
invocation and mediation in VRESCo. Technical report, 
Vienna University of Technology, 2009. 

[11] Michlmayr A., Rosenberg F., Leitner P., and Dustdar A.: 
Comprehensive QoS monitoring of Web services and 
event-based SLA violation detection. In Proceedings of the 
4th MWSOC. ACM, 2009. 

[12] Sahai A., Machiraju V., Sayal M., Moorsel A. P., and 
Casati F.: Automated SLA Monitoring for Web Services. In 
Proceedings of the 13th IFIP/IEEE international Workshop 
on Distributed Systems, 2002. 

[13] Salfner F., Schieschke M., and Malek M.: Predicting 
failures of computer systems: a case study for a 
telecommunication system. IPDPS, 0:415, 2006. 

[14] Thio N., Karunasekera S.. Automatic measurement of a 
Qos metric for Web Services. In proc. of ASWEC, 2005. 

[15] Tsigkritis T., Spanoudakis G., and Lorenzoli D.: Diagnosis 
and Threat Detection Capabilities of the SERENITY 
Monitoring Framework,. cChapter 14, pages 239–271. 
Advances in Information Security. Springer US, 2009.  


