

City, University of London Institutional Repository

Citation: Alonso, E. (2014). Actions and Agents. In: Frankish, K. & Ramsey, W. (Eds.), The

Cambridge Handbook of Artificial Intelligence. (pp. 232-246). UK: Cambridge University
Press. ISBN 9781139046855 doi: 10.1017/CBO9781139046855

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5191/

Link to published version: https://doi.org/10.1017/CBO9781139046855

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Actions and Agents
Eduardo Alonso

Department of Computer Science
City University London, London EC1V 0HB

E.Alonso@city.ac.uk

1 Introduction

In this chapter the notion of agency in AI is presented..It has been argued that in order
to behave rationally in prevalent software applications artificial entities would have to
be autonomous and adaptive. Besides, rather than working with single, isolated
systems the new trend in AI would need to focus on inherently social entities in the
form of multi-agent systems.

The chapter begins by introducing the notion of action in traditional AI systems,
deliberative and reactive. Next, the idea of agency is presented as complementary to
classical AI approaches to action as well as a key factor in the development of
applications and services that currently rely on technologies where software systems
execute instructions automatically. In particular, the chapter highlights the importance
of developing theories of action and learning in multi-agent scenarios such as the
Internet. This introduction shall conclude with some considerations about the research
areas that need to be targeted if the agent paradigm is to become the standard in the
design, specification and implementation of intelligent systems.

2 Action in traditional AI

Historically, the “physical symbol system hypothesis” in traditional AI (Newell and
Simon 1976) has been embedded in so-called deliberative systems. Such systems are
characterized by containing symbolic models of the world, and decisions about which
actions to perform are made via manipulation of these symbols. To get an AI system
to “act” it is enough to give it a logical representation of a theory of action (how
systems make decisions and act accordingly) and “get it to do a bit of theorem
proving”.

This approach to action is perhaps best illustrated in the planning problem where
systems use symbolic manipulation to reason about which actions to execute to
achieve their goals, that is, to reason about how to behave efficiently. Typically (Fikes
and Nilsson 1971), the system will be given a description of the state of the world it is
in (the initial state) and of the desired state of the world (the final state or goal). The
system will also be provided with a set of actions, each accompanied with a list of
pre-conditions for the action to be executed and a list of effects that result from the
action being executed –that is, such lists encode how the world changes when the
action is completed, which predicates are deleted and which added to the description
of the world. For example, imagine that the world consists of two blocks and a table
and that the initial state of the world is “block B on table, block A on block B, nothing
on block A” or, as formally, {OnTable(B), On(A, B), Clear(A)}; also
imagine that the goal is to have “block B on table and block A on table”, that is,
{OnTable(A),OnTable(B)} and that the system is able to execute two actions,

UnStack(x, y) and PutDown(x). These actions are accompanied by the
following lists of pre-conditions and effects, for UnStack(x, y) and
PutDown(x) respectively:

Pre {On(x, y), Clear(x)}
Del {On(x, y)}
Add {Holding(x), Clear(y)}

Pre {Holding(x)}
Del {Holding(x)}
Add {OnTable(x)}

Clearly, in this example the plan consisting of the sequence of actions
{UnStack(A, B), PutDown(A)} will bring the world from its initial state to
the goal. At each step, the system that executes the planning algorithm (the planner)
tries to match the preconditions for various actions to the description of the actual
world. For example, the planner may begin by attempting PutDown(A), but fail
since the precondition for this action (holding A) does not obtain. On the other hand,
the preconditions for the action UnStack(A, B) do hold (A is stacked on B), so
this action can be executed. As a result of executing this second action in turn, the
state of the world becomes {OnTable(A), Clear(B), Clear(A),
OnTable(B)}, which satisfies the goal {OnTable(A), OnTable(B)}.

Unfortunately, given the computational complexity of theorem proving in even very
simple logics this approach to the design and implementation of rational systems has
not been widely applied in real-life scenarios. It has been proved (Chapman 1987)
that even refined techniques will ultimately turn out to be unusable in any time-
constrained system –as the extremely simple example above illustrates, it just takes
too long to search through all possible combinations to deduce the goals (theorems)
from a set of initial conditions (premises). These results had a profound influence on
AI research, caused some researchers to question the symbolic AI paradigm and led to
alternative approaches, reactive architectures particularly.

A reactive system is a system that does not use a symbolic model of the world nor
symbolic reasoning to decide what to do next. Reactive architectures are modeled as
black boxes: they follow if-then rules that map directly inputs, information received
from their sensors, into actions. Without a model of the world or the task at hand such
systems are cognitively elementary –they (re)act more like caterpillars rather than as
human beings. Perhaps the most paradigmatic example of this type of system is the
subsumption architecture, which establishes a hierarchy of competing behaviours
where lower layers have precedence over higher ones (Brooks 1986).

For example, let’s imagine a reactive robot that picks up samples from, say, the
surface of Mars. Suppose the robot is given the following (situation → action) rules:

(1) If detect an obstacle then change direction.
(2) If carrying samples and at the base then drop samples.
(3) If carrying samples and not at the base then travel up gradient.
(4) If detect a sample then pick sample up.
(5) If true then move randomly.

Such rules form a hierarchy that ensures that the robot will turn if it finds an obstacle;
if it is at the base and carrying samples, then it will drop them provided there is no
immediate danger of crashing, and so on. The highest behavior –a random walk– will
only be carried out if the agent has nothing more urgent to do: its “If true”
precondition is assumed to always fire. It is a way of guaranteeing that, if rules (1)-(4)
don’t apply, the robot will still do something.

The resulting systems are, computationally speaking, extremely simple, and yet they
are able to execute complex tasks. In addition, reactive systems are situated in real-
life domains and able to display flexible behavior. In fact, actions are not planned
ahead but are rather the emergent result of the system’s “embeddedness” in a
particular situation.

However interesting this approach may be, it presents several problems. Reactive
systems learn procedures but no declarative knowledge; that is, they only learn values
or attributes that are not easy to generalize to similar situations (or transmit to other
systems). Besides, and perhaps more importantly, precisely because they show
emergence properties there is no principled methodology for building such systems.

Regardless of the many attempts to combine deliberative and reactive architectures in
hybrid systems (Ferguson 1992, Müller 1997), it seems that at the end of the day one
is left to choose between theoretically sound but impractical deliberative systems and
efficient yet loosely designed reactive systems. This may reflect the fact that each
type of AI system was designed to solve related yet different problems: symbolic AI
resulted from the effort to formalize and mechanize reasoning that blossomed with the
development of expert systems; reactive systems on the other hand were often
motivated by efforts to solve numerical, non-linear problems such as those associated
with connectionism and Artificial Life.

Now, for the last couple of decades researchers have experienced the emergence of
new technologies such as the Internet. These demand personal, continuously running
systems for which older notions of action –those resulting from either cumbersome
symbolic reasoning or ever-adaptive reflexes– may be insufficient. Indeed, many
researchers believe that in the XXI century for AI systems to perform “intelligently”
they must be able to behave in an autonomous, flexible manner in unpredictable,
dynamic, typically social domains. In other words, they believe that the “new” AI
should develop agents (Alonso 2002).

In fact, it can be argued that current trends in web development and web design as
well as new applications in electronic commerce (for instance, PayPal) and social
software (for example, facebook) will be only fully developed if an agents’
perspective is adopted.

3 The three principles of agent-centered AI

This section examines in detail the main functionalities software systems would
display in a social, agent-centered AI or, in other words, the principles of behavior of
the “new” AI.

3.1 Autonomous behavior
By autonomy researchers mean the ability of the systems to make their own decisions
and execute tasks on the designer's behalf. The idea of delegating some responsibility
to the system to avoid tediously writing down code is certainly very attractive.
Moreover, in scenarios where it is difficult to control directly the behavior of our
systems, the ability of acting autonomously is essential. For example, space missions
increasingly depend on their unmanned space-crafts and robots to make decisions on
their own: this ability is paramount since the costs (in time and money) of
communication between the space station and such systems can be prohibitive.

It is precisely this autonomy that defines agents. Traditionally, software systems
execute actions (so-called methods) automatically: Imagine that the web application
in your computer, the user or client, requests access the contents of a webpage that is
stored in another software system elsewhere, the server or host. The server cannot
deny access to the content of the webpage; it must execute the “send” method
whenever it is requested to do so. On the contrary, agents decide by themselves
whether to execute their methods according to their beliefs, desires and intentions
(Bratman et al. 1988). Paraphrasing (Jennings et al. 1998), “what traditional software
systems do for free, agents do for money”.

3.2 Adaptive behavior
Secondly, agents must be flexible. When designing agent systems, it is impossible to
foresee all the potential situations they may encounter and specify their behavior
optimally in advance. For example, the components of interaction in the Internet
(agents, protocols, languages) are not known a priori. Agents therefore have to learn
from and adapt to their environment. This task is even more complex when Nature is
not the only source of uncertainty, but the agent is situated in a multi-agent system
(MAS) that contains other agents with potentially different capabilities, goals, and
beliefs.

Besides, the new systems must be general. An agent must have the competence to
display an action repertoire general enough to preserve its autonomy in dynamic
environments. Certainly, an agent can hardly be called intelligent if it is not able to
perform well when situated in an environment different from (yet in some ways
similar to) the one it was originally designed for.

Indeed, there is no need to learn anything in static, closed domains where agents have
perfect knowledge of state-action transitions. Nonetheless, intelligence and learning are
tightly tied in domains where autonomous agents must make decisions with partial or
uncertain information, that is, in domains where agents learn without supervision and
without the luxury of having a complete model of the world, that is when facing the so-
called reinforcement learning problem (Kaelbling et al. 1996). In such scenarios, each
time an agent executes an action in a state it receives a numerical reward that indicates
the immediate value of this state-action transition –how “good” it is. This produces a
sequence of states, actions and rewards. The agent’s task is to learn a policy that
maximizes the expected sum of rewards, typically with future rewards discounted
exponentially by their delay. In other words, the more into the future the predictions
are, the less likely the rewards will count, a sensible principle since more distant
rewards are less probable. Unlike supervised learning such as pattern recognition or

neural networks, the learner is not told which actions to take, but instead must discover
which actions yield the most reward by exploiting and exploring their relationship with
the environment. Actions may affect not only the immediate reward but also the next
situation and, through that, all subsequent rewards. These two characteristics, trial and
error search and delayed reward, are the two most important features of reinforcement
learning.

This method has been successfully applied to several organizational problems in
robotics, control, operation research, games, human computer interaction,
economics/finance, complex simulation, and marketing.

3.3 Social behavior
Agents also show a social attitude. In an environment populated by heterogeneous
entities, agents would need the ability to recognize their opponents, and to form
groups when it is profitable to do so. It is not a coincidence that most agent-based
platforms incorporate multi-agent tools (Luck et al. 2005). Indeed, some authors do
state that agent-oriented software engineering needs to be developed precisely
because there is no notion of organizational structure in the traditional software
systems (Etzioni and Weld, 2007).

Generally speaking, the design and implementation of multi-agent systems is an
attractive platform for the convergence of various AI technologies. That is the
underlying philosophy of competitions such as RoboCup (http://www.robocup.org/)
where teams of soccer agents must display their individual and collective skills in
real-time. More importantly, multi-agent systems play several roles in IT and
telecoms: for clients, they provide personalized, user-friendly interfaces; as
middleware, they have been used extensively to implement electronic markets and
electronic auctions.

The reasons for this happy marriage between MAS and new technologies are various.
When the domain involves a number of distinct software systems that are physically
or logically distributed (in terms of their data, expertise or resources), an agent-based
approach can often provide an effective solution. Relatedly, when the domain is large,
sophisticated, or unpredictable, the overall problem can indeed be partitioned into a
number of smaller and simpler components, which are easier to develop and maintain,
and which are specialized at solving the constituent problems. That is, in most real-
life applications (single) agents can grow “too big” to work well, and a divide and
conquer strategy, where qualified agents work in parallel, seems more sensible.
Examples include the geographical distribution of cameras in a traffic network or the
integrated approach required to solve complex tasks, for instance the collaboration
between experts (surgeons, anesthetists, nurses) in an operating room.

To sum it up, it is widely accepted within the AI community that the “new” AI would
need to design and implement multi-agent systems capable of acting and learning in a
quick and efficient manner. The next two sections are dedicated to describing the
basics of multi-agent behavior and multi-agent learning.

4 Multi-agent behavior

Approaches to multi-agent behavior differ mainly in regards to the degree of control
that the designer should have over individual agents and over the social environment,
i.e., over the interaction mechanisms (Bond and Gasser 1988, Durfee 1988, Weiss
1999). In Distributed Problem Solving systems (DPS) a single designer is able to
control (or even explicitly design) each individual agent in the domain –the task of
solving a problem is distributed among different agents, hence the name; in MAS on
the other hand, there are multiple designers and each is able to design only its agent
and has no control over the internal design of other agents.

The design of interaction protocols is also tightly coupled to the issue of agents'
incentives. When agents are centrally designed they are assumed to have a common
general goal. As long as agents have to co-exist and cooperate in a single system,
there is some notion of global utility that each agent is trying to maximize. Agents
form teams that jointly contribute towards the overall goal. By contrast, in MAS each
agent will be individually motivated to achieve its own goal and to maximize its own
utility. As a result, no assumptions can be made about agents working together
cooperatively. On the contrary, agents will collaborate only when they can benefit
from that cooperation.

Research in DPS considers how work involved in solving a problem can be divided
among several nodes so as to enhance the system’s performance, that is, the aim is to
make independent nodes solve a global problem by working together coherently,
while maintaining low levels of communication. MAS researchers are also concerned
with the coherence of interaction, but must build agents without knowing how their
opponents have been designed. The central research issue in MAS is how to have
these autonomous agents identify common ground for cooperation, and choose and
perform coherent actions.

In particular, DPS researchers see negotiation as a mechanism for assigning tasks
among agents and for allocating resources, using automated contracting: since all
agents have a common goal and are designed to help one another (following the so-
called benevolence assumption), there is no need to motivate an agent to agree to
execute a set of actions. Alternatively, multi-agent planning is another DPS approach
that avoids incoherent and inconsistent decisions by planning beforehand exactly how
each agent will act and interact. Multi-agent planning has been formalized by
extending single-agent planning languages and techniques to describe complex mental
states –usually by defining social plans in terms of common beliefs and joint
intentions (Rao et al. 1992).

On the other hand, MAS researchers have autonomous agents use negotiation to share
the work associated with carrying out a previously agreed plan (for the agents' mutual
benefit), or to resolve outright conflict. In MAS systems, agents typically make pair-
wise agreements through negotiation about how they will co-ordinate, and there is no
global control nor consistent knowledge nor shared goals or success criteria. So, the
main purpose of this incentive contracting mechanism is to “convince” agents to
reach reasonable agreements and do something in exchange for something else. In this
case, AI researchers have followed the studies on bargaining with incomplete
information developed in economics and game theory.

4.1 Negotiation

Since negotiation in MAS is probably the most common co-ordination technique, it is
worth considering it in some detail (Rosenschein and Zlotkin 1994, Jennings et al.
2001, Kraus 2001).

In a MAS setting agents are given a negotiation mechanism consisting of a protocol
and a set of strategies over a set of deals. Negotiation is defined as a process through
which in each temporal point one agent proposes an agreement and the other agent
either accepts the offer or does not. If the offer is accepted, then the negotiation ends
with the implementation of the agreement. Otherwise, the second agent has to make a
counteroffer, or reject its opponent's offer and abandon the process. So, the protocol
specifies when and how to exchange offers (i.e., which actions the agents will execute
or abstain from executing and when) –for example, an Offer(x, y, δi, t1)
means that the negotiation process will start at time t1 with agent x offering agent y
a deal δi from the set of potential deals (δi ∈ Δ), typically of the from “I will do
action 1 in exchange for action 2” or {Do(x, a1), Do(y, a2)}; then, in the next
negotiation step, agent y will counteroffer with Accept(y, δi, t2), in which
case the negotiation episode ends with the implementation of the agreement, δi; or
with Reject(y, δi, t2), so that negotiation fails. Or, alternatively, agent y can
send a respond, Offer(y, x, δj, t2), with say δj = {Do(x, a3), Do(y,
a2)}, “I would prefer you to execute action a3 rather than a1”, so that the negotiation
progresses to the next stage in which the same routine applies.

Which specific offers the agents make depend on their negotiation strategy. A
negotiation strategy is a function from the history of the negotiation to the current
offer that is consistent with the protocol. It determines what move an agent should
make to maximize its own utility, given the protocol, the negotiation up to this point,
and the agent’s beliefs and intentions. Such strategies also take into account how risk-
averse the agent might be, that is, how reluctant it is to accept a bargain with an
uncertain outcome rather than another bargain with a more certain, but possibly
lower, outcome.

Usually strategies are demanded to be in what is called Nash-equilibrium: that is, no
agent should have an incentive to deviate from agreed-upon strategies. Once a
strategy is adopted, under the assumption that agent x uses it, agent y cannot do better
by using a different strategy. Imagine the so-called Prisoners’ Dilemma: two suspects
are arrested by the police. The police have insufficient evidence for a conviction, and,
having separated both prisoners, visit each of them to offer the same deal. If one
testifies (defects from the other) and the other remains silent, the betrayer goes free
and the silent accomplice receives the full 10-year sentence. If both remain silent,
both prisoners are sentenced to only six months in jail for a minor charge. If each
betrays the other, each receives a five-year sentence. Each prisoner must choose to
betray the other or to remain silent. Obviously, the suspects cannot talk to each other
or to reach an agreement. In this case, the Nash-equilibrium is that both testify. Each
suspect knows that if one chose to remain silent the other one would do better by
testifying, thus breaking the “remain silent equilibrium”. Nash-equilibrium is a
particularly important attribute, because it is seen as the only sustainable outcome of
rational negotiation in the absence of externally enforceable agreements. Yet, this
solution presents serious drawbacks:

Firstly, there are situations in which there is no Nash equilibrium. For instance,
Matching Pennies is an example of games where one player's gain is exactly equal to
the other player's loss.

There are other situations in which there are several pure Nash equilibria. In a
simplified example, assume that two drivers meet on a narrow road. Both have to
swerve in order to avoid a head-on collision. If both swerve to the same side they will
manage to pass each other, but if they choose different sides they will collide. In this
case there are two pure Nash equilibria: either both swerve to the left, or both swerve
to the right. In this example, it doesn't matter which side both players pick, as long as
they both pick the same. Since both strategies are equally good, one could just toss a
coin to choose between the two alternatives. There are other situations, however, in
which one would not have that choice: in the game Battle of the Sexes both players
prefer engaging in the same activity over going alone, but their preferences differ over
which activity they should engage in. Player 1 prefers that they both party while
player 2 prefers that they both stay at home. In this case, there are two pure Nash
equlibria but no agreement is reached.

Finally, accepting a Nash equilibrium solution both agents may lose more profitable
agreements. This is the case of the Prisoner’s Dilemma: the Nash-equilibrium for this
game is a sub-optimal solution, the one that leads the two players to both play defect,
even though each player's individual reward would be greater if they both played
cooperatively and remained silent.

Thus, instead of Nash-equilibrium constraints and in order to prevent irrational
attitudes the following assumptions about social rationality are typically made:
(1) Sincerity: no agent will attempt to have another believe a proposition that it either
knows or believes to be false or a proposition it wants to be false. For example, agents
cannot commit themselves to execute actions that they are not able to perform; (2)
Honesty: agents have to act according to their beliefs; (3) Fair play: agents must abide
by the agreed deals; (4) Sociability: in case of indifference, agents must accept others’
offers. In any case, deals must always be individually rational.

4.2 Argumentation
The assumptions about social rationality required to make the previous approach work
are not intuitive, and in any case, many real agents calculate their options individually
in terms of self-interest, ignoring negotiations and agreed commitments. In response,
many members of the MAS community have adopted alternative approaches to MAS
co-ordination. In particular, several studies on argumentation-based negotiation have
been presented as a powerful technique for cooperating and solving conflict situations
(Rahwan et al. 2003). In this type of negotiation agents open up the agreement space
by exchanging not only proposals and counterproposals but also reasons supporting
them. Besides, agents commit themselves to accept the results of the argumentation,
which follows strict rules regarding the validity and acceptability of the arguments
and their ordering in argumentative types.

For instance, imagine the following situation: agent 1 has a hammer, a screw, a
screwdriver and a picture it intends to hang by using the “plan” {hammer + nail
+ picture}; agent 2 on the other hand owns a mirror and a nail, its goal is to hang

the mirror and plans to execute {hammer + nail + mirror}. Now, agent 1
knows agent 2 has a nail and asks for it. Obviously, agent 2 cannot agree to such a
request since it needs the nail to hang the mirror. Using a negotiation protocol, agent
2’s rejection will end the episode and neither agent will achieve their respective goals.
However, since they are allowed now to argue agent 2 can explain why it is rejecting
agent’s 1 offer (“I need it to hang my mirror”); with this information, agent 1 can
persuade agent 2 that in fact there is another way to hang its mirror, a new plan that
uses a screw and a screwdriver instead of a nail. Now, if agent 2 does not find a flaw
in agent 1’s argument it is forced to accept it. Since this seems to be the case, the
agents agree to exchange the nail for the screw and the screwdriver and, as a
consequence, both achieve their objectives.

This completes our account of the main issues and techniques in multi-agent behavior.
Now, as introduced in section 3.3, behaving in complex dynamic scenarios such as
MAS is not a one-shot task but a process of refinement through which agents adapt
their strategies to each other’s. Hence, dealing with multi-agent learning is paramount
when studying multi-agent behavior.

5 Multi-agent learning

Machine learning has been mostly independent of agent research and only recently
has it received attention in connection with agents and multi-agent systems (Stone and
Veloso 2000, Alonso et al. 2001, Vohra and Wellman 2007). This is in some ways
surprising because the ability to learn and adapt is arguably one of the most important
features of intelligence. As discussed above, intelligence implies a certain degree of
autonomy that in turn requires the ability to learn to make independent decisions in
dynamic, unpredictable domains such as those in which agents co-exist.

Perhaps the two more important issues in multi-agent learning relate to which family
of techniques should be used and, indeed, what multi-agent learning is.

At one level, agents and multi-agent systems can be viewed as yet another application
domain for machine learning systems, admittedly with its own challenges. Research
taking this view is mostly reduced to applying existing single-agent learning
algorithms more or less directly to MAS, so that multi-agent learning is only seen as
an emergent property. Even though this could be interesting from a MAS point of
view, it does not seem overly interesting for machine learning research. Nevertheless,
this is the direction most learning research for MAS has been following.

Existing learning algorithms have been developed for single agents learning separate
and independent tasks. Alternatively, multi-agent systems pose the problem of
distributed learning, that is, many agents learning separately to acquire a joint task.
Once the learning process is distributed amongst several learning agents, such
learning algorithms require extensive modification, or completely new algorithms
need to be developed. In distributed learning, agents need to cooperate and
communicate in order to learn effectively; these issues are being investigated
extensively by MAS researchers but, to date, they have received little attention in the
areas of learning.

Regarding learning techniques, supervised learning methods are not easily applied to
multi-agent scenarios since they typically assume that the agents can be provided with
the correct behaviour for a given situation. Thus most researchers have used
reinforcement learning methods, to the point that the multi-agent learning problem
can be re-defined as the reinforcement learning problem for multi-agent systems
(Busoniu et al. 2008).

Specifically, the simplest way to extend single-agent learning algorithms to multi-
agent problems is just to make each agent learn independently. Agents learn as if they
were alone (Weiss and Dillenbourg, 1999). Communication or explicit co-ordination
is not an issue therefore –co-operation and competition are not tasks to be solved but
just properties of the environment. Likewise, agents do not have models of other
agents’ mental states or try to build models of other agents’ behaviors. However
simple this approach to multi-agent learning may be, the assumption that agents can
learn efficient policies in a MAS setting independently of the actions selected by other
agents is implausible. Intuitively, the most appealing alternative is to have the agents
learn Nash-equilibrium strategies. However, as described in section 4.1 the concept of
Nash equilibrium is problematic, and the methods formulated using such approach
suffer from a plethora of technical difficulties that make their application rather
restricted.

6 Challenges

Agent-based applications have enjoyed considerable success in manufacturing,
process control, telecommunications systems, air traffic control, traffic and
transportation management, information filtering and gathering, electronic commerce,
business process management, entertainment and medical care (Jennings and
Wooldridge 1998).

Nonetheless, one of the key problems has been the divide between theoretical and
practical work, which have, to a large extent, developed along different paths. As a
consequence, designers lack a systematic methodology for clearly specifying and
structuring their applications as (multi-)agent systems. Most agent-based applications
have been designed in an ad hoc manner either by borrowing a methodology from
more traditional approaches or by designing the system on intuition and (necessarily
limited) experience. At any rate, if agents and multi-agent systems are to become the
standard in the development of emerging web-based application -- as their advocates
believe they should -- then some important developments in agent-oriented
methodologies and technologies will be needed.

First, an agent modeling language to specify, visualize, modify, construct and
document (multi-)agent systems would have to be built. Agent developers still
characterize their systems as extensions of traditional systems and thus UML is the
facto standard language in the design and specification of agents and multi-agent
systems. This drawback extends to the lack of proper verification methods and
techniques for agent systems.

Second, while some programming features such as abstraction, inheritance and
modularity make it easier to manage increasingly more complex systems, Java and
other programming languages cannot provide a direct solution to agent

implementation. So far agent-oriented programs have been used mainly to test ideas
rather than for developing any realistic systems –but see (Bordini et al. 2005) for a
survey of multi-agent programming, languages, platforms and applications.

Third, standards for interoperability between agents will need to be established. The
debate should not be focused exclusively on the pros and cons of different agent
communication languages and protocols but also on ontologies, that is, on which
types of entities and concepts define an agent domain and what are their properties
and relations. Currently, ontologies are often specified informally or implicit in the
agent implementation. For true interoperation, agents will need explicitly encoded,
sharable ontologies.

A fourth issue is reusability. If multi-agents systems are to be sustainable, it will be
necessary to develop techniques for specifying and maintaining reusable models and
software for multi-agent systems, agents, and agent components. Reusability is also
needed for mobility. If agents are to roam wide area networks such as the WWW,
then they must be capable of being continuously reused in different scenarios.

Finally, if people are to be comfortable with the idea of delegating tasks to agents,
then issues relating to trust will have be addressed. These include authentication,
privacy of communication and user's personal profile information, auditing,
accountability, and defense against malicious or incompetent agents.

All in all, although there is a need to keep theory and practice at the same pace agent-
centered AI has already brought mature and integrative techniques and procedures
that are ripe for exploitation. It can be claimed that the agent paradigm has served as a
bridge between traditional AI systems and the software applications that have
emerged in the last couple of decades. When on the occasion of AI Magazine’s
twenty-fifth anniversary experts were asked about AI’s state of the art, the shared
feeling was that AI needed to get back to building intelligent systems of general
competence (Leake 2005). It seems that agents and multi-agent systems may provide
us with the concepts, methodologies and techniques necessary to realize AI’s original
goal in the services and applications that the Internet offers.

6 Conclusions

AI systems have to make intelligent decisions. But, most importantly, they must show
that they do so by behaving accordingly. This chapter has focused on the role of
agents in the analysis of the behavior of AI systems. After all, that is what agents do:
they act. Hence, the study of behavior and action in AI does necessarily talk about
agents. In fact, there are strong reasons for thinking that agents are the paradigm that
will embody the “new” AI. More precisely, in the era of the Internet and web
services, AI will come to focus on how collections of autonomous agents co-ordinate
their behavior (multi-agent behavior) and on how they learn to do so (multi-agent
learning).

References

Alonso, Eduardo 2002. AI and Agents: State of the Art, AI Magazine 23(3): 25-30.

Alonso, Eduardo, d'Inverno, Mark, Kudenko, Daniel, Luck, Michael and Noble, Jason
2001. Learning in Multi-Agent Systems, Knowledge Engineering Review 16 (3), 277-
284.

Bond, Alan H. and Gasser, Less, (eds.) 1988. Readings in Distributed Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann Publishers.

Bordini, Rafael, Dastani, Mehdi, Dix, Jurgen. and El Fallah-Seghrouchni, Amal (eds.)
2005. Multi-Agent Programming: Languages, Platforms and Applications. Berlin:
Springer-Verlag.

Bratman, Michael, Israel, David J., and Pollack, Martha E. 1988. Plans and resource-
bounded practical reasoning, Computational Intelligence, 4 (3), 349-355.

Brooks, Rodney 1986. A robust layered control system for a mobile robot, IEEE
Journal of Robotics and Automation, 2 (1): 14–23.

Busoniu, Lucian, Babuska, Robert and De Schutter, Bart 2008. A Comprehensive
Survey of Multi-Agent Reinforcement Learning, IEEE Transactions on Systems,
Man, and Cybernetics –Part C: Applications and Reviews 38(2): 156-172.

Chapman, David 1987. Planning for conjunctive goals. Artificial Intelligence, 32 (3):
333-377.

Durfee, Edmund H. 1988. Coordination for Distributed Problem Solvers. Boston:
MA: Kluwer Academic.

Etzioni, Oren and Weld, Daniel 2007. Intelligent Agents on the Internet: Fact, Fiction,
and Forecast, IEEE Expert: Intelligent Systems and Their Applications, 10 (4): 44-49.

Ferguson, Ines A. 1992. TouringMachine: an Architecture for Dynamic, Rational,
Mobile Agents. PhD thesis, Clare Hall, University of Cambridge, UK.

Fikes, Richard and Nilsson, Nils 1971. STRIPS: a new approach to the application of
theorem proving to problem solving, Artificial Intelligence, 2:189-208.

Jennings, Nick and Wooldridge, Michael (eds.) 1998. Agent Technology:
Foundations, Applications, and Markets. Berlin: Springer-Verlag.

Jennings, Nick, Faratin, Peyman, Lomuscio, Alessio, Parsons, Simon, Sierra, Carles
and Wooldridge, Michael 2001. Automated negotiation: prospects, methods and
challenges, International Journal of Group Decision and Negotiation 10(2): 199-215.

Jennings, Nick, Sycara, Katia and Wooldridge, Michael 1998. A roadmap of agent
research and development, Journal of Autonomous Agents and Multi-Agent Systems
1(1): 7-38.

Kaelbling, Leslie Pack, Littman, Michael and Moore, Andrew 1996. Reinforcement
Learning: A Survey, Journal of Artificial Intelligence Research 4: 237-285.

Kraus, Sarit 2001. Strategic Negotiation in Multiagent Environments, Cambridge,
MA: The MIT Press.

Leake, David (ed.). 2005. Twenty-fifth anniversary issue, AI Magazine 26(4).

Luck, Michael, McBurney, Peter, Shehory, Onn, and Willmott, Steve (eds.) 2005.
Agent Technology: Computing as Interaction (A Roadmap for Agent Based
Computing). AgentLink III.

Müller, Jörg 1997. A cooperation model for autonomous agents, in Jörg Müller,
Michael Wooldridge and Nick Jennings (eds.), Intelligent Agents III: Agent Theories,
Architectures, and Languages (pp. 245-260), LNCS 1193, Berlin: Springer.

Newell, Allen and Simon, Herbert A. 1976. Computer Science as Empirical Inquiry:
Symbols and Search, Communications of the ACM 19 (3): 113–126.

Rao, Anand S., Georgeff, Michael P., and Sonenberg, Elizabeth A. 1992. Social
Plans: a preliminary report, in Eric Werner and Yves Demazeau (eds.), Decentralized
AI 3: Proceedings of the 3rd European Workshop on Modelling Autonomous Agents in
a Multi-Agent World (pp. 57-76), Amsterdam: Elsevier.

Rahwan, Iyad, Ramchurn, Sarvapalid, Jennings, Nick, McBurney, Peter, Parsons,
Simon and Sonenberg, Liz 2003. Argumentation-based negotiation, The Knowledge
Engineering Review 18(4): 343-375.

Rosenschein, Jeffrey S. and Gilad Zlotkin 1994. Rules of Encounter: Designing
Conventions for Automated Negotiation among Computers, Cambridge, MA: The
MIT Press.

Stone, Peter and Veloso, Manuela 2000. Multiagent systems: a survey from a machine
learning perspective, Autonomous Robots 8(3): 345-383.

Vohra, Rakesh, and Wellman, Michael (eds.) 2007. Foundations of multi-agent
learning, Artificial Intelligence 171(7).

Weiss, Gerhard (ed.) 1999. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Cambridge, MA: The MIT Press.

Weiss, Gerhard and Dillenbourg, Pierre 1999. What is ‘multi’ in multiagent learning?,
in Pierre Dillenbourg (ed.), Collaborative learning. Cognitive and computational
approaches (pp. 64–80), Oxford: Pergamon Press.

Further Reading

The best on-line references for further reading on agents are the AI Topics/Agents

web-page hosted by the Association for the Advancement of Artificial Intelligence
(http://www.aaai.org/), the UMBC AgentWeb (http://agents.umbc.edu/), and
AgentLink III, the European Co-ordination Action for Agent-Based Computing
(http://www.agentlink.org/).

For those wishing to investigate agents and multi-agent systems further, the following
two books are easy to read and full of useful references to specialized topics:

• Russell, Stuart and Norvig, Peter 2010. Artificial Intelligence: A Modern

Approach. Upper Saddle River, NJ: Prentice Hall. The 3rd edition of first AI
handbook that shamelessly introduced AI from an agent’s perspective. See in
particular the second chapter on Intelligent Agents.

• Wooldridge, Michael 2009. An Introduction to Multiagent Systems. Chichester,

England: John Wiley & Sons. 2nd edition of an ideal introductory text on the
agents and multi-agent systems, despite being somewhat limited in its coverage of
learning.

Glossary terms

Agent: An agent is a software entity that acts autonomously, that is, that makes its
own decisions on behalf of the designer –typically in dynamic environments from
which it learns and to which it adapts. When applied to the development of new
Internet technologies agents need also to show a social attitude.

Multi-agent system: A Multi-agent system is a collection of autonomous agents that
need to get coordinated in order to achieve their individual goals. Coordination is
achieved through negotiation or argumentation and, in most applications, requires that
the agents learn to adapt to each other’s strategies.

Short Bio

Dr. Eduardo Alonso is a Reader in Computing at the School of Informatics, City
University London. His research has focused in the area of software agents, in
particular in modeling complex multi-agent systems. In this respect, he has developed
co-ordination mechanisms, negotiation and argumentation protocols specifically, as
well as formal models of “right systems” –with applications to road traffic networks.
He has published his research in journals such as the Knowledge Engineering Review
and the Artificial Intelligence Review, and in various Springer LNAI and LNCS
volumes. He has chaired several workshops in the field and acted as Student
Scholarships Co-Chair for the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-06), held in Hakodate, Japan, May 2006.
He has edited a special issue of the International Journal of Autonomous Agents and
Multi-Agent Systems and was a member of the Management Committee of
AgentLinkII (the European Network of Excellence for Agent-Based Computing, FP5
IST-1999-29003).

