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Abstract -- With the improvement of battery technology over the 

past two decades and automotive technology advances, more and 

more vehicle manufacturers have joined in the race to produce 

new generation of affordable, high-performance electric drive 

vehicles (EDVs). Permanent magnet synchronous motors 

(PMSMs) are at the top of AC motors in high performance drive 

systems for EDVs. Traditionally, A PMSM is controlled with 

standard decoupled d-q vector control mechanisms. However, 

recent studies indicate that such mechanisms show limitations. 

This paper investigates how to mitigate such problems using a 

nested-loop recurrent neural network architecture to control a 

PMSM. The neural networks are trained using backpropagation 

through time to implement a dynamic programming (DP) 

algorithm. The performance of the neural controller is studied 

for typical vector control conditions and compared with 

conventional vector control methods, which demonstrates the 

neural vector control strategy proposed in this paper is effective. 

Even in a highly dynamic switching environment, the neural 

vector controller shows strong ability to trace rapidly changing 

reference commands, tolerate system disturbances, and satisfy 

control requirements for complex EDV drive needs. 

 

Index Terms – Permanent magnet synchronous motor, decoupled 

vector control, electric drive vehicle, recurrent neural network, 

dynamic programming, backpropagation through time  

I.  INTRODUCTION 

MALLER, lighter, and less expensive electric motors are 

critical for the adoption of electric drive vehicles (EDVs) 

in significant quantities, especially for HEV and PHEV 

applications where motors have to be packaged in a vehicle 

along with other large powertrain components such as engines 

and transmissions [1]. Permanent magnet synchronous motors 

(PMSMs) have emerged in recent years as a very strong 

contender to replace induction motors used in electronically 

controlled variable speed applications. In most cases, PMSMs 

can provide superior performance in terms of increased 
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efficiency and reduced noise, while the total cost differential 

for motor plus power converters is subject to relatively fast 

payback [2, 3]. 

But, the performance of a PMSM depends also on how it is 

controlled. Conventionally, a PMSM is controlled using the 

standard decoupled d-q vector control approach [5-8]. But, 

recent studies indicate that the conventional vector control 

strategy is inherently limited [9, 10], particularly when facing 

uncertainties [11]. In recent years, significant research has 

been conducted in the area of dynamic programming (DP) for 

optimal control of nonlinear systems [16-20]. Classical DP 

methods discretize the state space and directly compare the 

costs associated with all feasible trajectories that satisfy the 

principle of optimality, guaranteeing the solution of the 

optimal control problem [21]. Adaptive critic designs 

constitute a class of approximate dynamic programming 

(ADP) methods that use incremental optimization combined 

with parametric structures that approximate the optimal cost 

and the control [22, 23]. Both classical DP and ADP methods 

have been used to train neural networks for a large number of 

nonlinear control applications, such as steering and controlling 

the speed of a two-axle vehicle [24], intercepting an agile 

missile [25], performing auto landing and control of an aircraft 

[26-28], and controlling a turbogenerator [29]. However, no 

research has been conducted regarding the vector control of 

PMSMs using DP or ADP-based neural networks.    

The purpose of this paper is to report our research in 

developing a nested-loop neural-network-based vector control 

strategy for a PMSM. First, a brief review of the PMSM 

configuration in an electric drive vehicle is presented in 

Section II. Section III discusses PMSM model and the 

limitations associated with the conventional standard vector 

control method. Section IV proposes a nested-loop neural 

network vector control structure. Section V explains how to 

employ dynamic programming to train the current- and speed-

loop neural networks for a PMSM. The performance of the 

proposed nested-loop neural network vector control scheme is 

evaluated in Section VI. Finally, the paper concludes with a 

summary of the main points. 

II.  PERMANENT MAGNET SYNCHRONOUS MOTORS IN 

ELECTRIC DRIVE VEHICLES  

A PMSM is an ac electric motor that uses permanent 

magnets to produce the air gap magnetic field rather than 

using electromagnets. The rotors are driven by the stators via a 

synchronous rotational field generated by the three-phase 

currents passing through the stator windings. In most EDV 
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applications, the stator windings of a PM motor are connected 

to the dc bus through a standard three-leg voltage-source 

PWM converter (Fig. 1) [12, 13]. The converter converts dc to 

three-phase ac in the PMSM drive mode or converts three-

phase ac to dc in the regenerating mode. In the drive mode, 

power flows from the dc bus to the PMSM to drive the vehicle 

while in the regenerating mode, power flows from the PMSM 

to the dc bus to charge the battery. 

PWM

Position and 

speed sensing

PI

e

*

sqv *

, ,a b cv

*

di

*

qi

di

qi









 d,q

       a,b,c

, ,a b ci
 d,q

       a,b,c

PI
*

sdv

PI




*n

n

Battery

dc/ac 

converter

PMSM

 

Fig. 1.  Configuration and control of a PMSM in EDV application 

A typical PMSM control strategy is the standard d-q vector 

control approach (Fig. 1), in which each of the d- and q-axis 

control loops has a cascaded structure: a fast inner current 

loop combined with an outer slower loop for speed and air gap 

magnetic field controls. In Fig. 1, the speed reference m
*
 is 

generated during the operation of the vehicle. The speed and 

magnetic field control is converted into decoupled d-q current 

control. The current-loop controller implements the final 

control function by applying a stator voltage control signal to 

the voltage-source PWM converter  to realize the variable-

speed operation of the EDV. [14, 15].  

The control signal applied directly to the power converter 

is a three-phase sinusoidal voltage having the stator current 

frequency of the PMSM. The general strategy for 

transformation from the d-q control signal to the three-phase 

sinusoidal signal is also illustrated in Fig. 1 [15], in which vsd
*
 

and vsq
*
 are d- and q-axis output voltages generated by the 

PMSM controller. The two d- and q-axis voltages are then 

converted to the three-phase sinusoidal voltage signals, va
*
, vb

*
 

and vc
*
, to control the voltage-source converter. Hence, from 

the converter average model standpoint, the three-phase 

sinusoidal voltage, vsa, vsb, and vsc, applied to the stator is 

linearly proportional to the three-phase control voltage in the 

converter linear modulation mode [15].  

III.  PMSM CONVENTIONAL VECTOR CONTROL 

A.  PM Motor Model 

A commonly used PMSM transient model is the Park 

model. Using the motor convention, space vector theory yields 

the stator voltage equation in the form [20]:  
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    (1) 

where Rs is the resistance of the stator winding; e is the motor 

electrical rotational speed; and vsd, vsq, isd, isq sd, and sq are 

the d and q components of instant stator voltage, current, and 

flux. If the d-axis is aligned along the rotor flux position, the 

stator flux linkages are 

0
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where Lls is the leakage inductance of the stator winding; Ldm 

and Lqm are the stator and rotor d- and q-axis mutual 

inductances; f is the flux linkage produced by the permanent 

magnet. Under the steady-state condition, (1) reduces to  

0sd sds e q

sq sq e fe d s

V IR L

V IL R





      
       
      

       (3) 

If neglecting stator winding resistance, the stator d and q-

axis currents are 

     ,   sq sd e q sd sq e f e dI V L I V L          (4) 

In a PM motor, the magnets can be placed in two different 

ways on the rotor. Depending on the placement they are called 

either as surface permanent magnet (SPM) motor or interior 

permanent magnet (IPM) motor. An IPM motor is considered 

to have saliency with q axis inductance greater than the d axis 

inductance (Lq > Ld) while a SPM motor is considered to have 

small saliency, thus having practically equal inductances in 

both axes (Lq=Ld) [8]. Therefore, depending on SPM or IPM 

motor, the torque of the PM motor is calculated by (5) or (6)  

                              em f sqp i SPM motor     (5) 

  em f aq d q ad aqp i L L i i IPM Motor        (6) 

where p is pole pairs. If the torque computed from (5) or (6) is 

positive, the PM motor operates in the drive mode. Otherwise, 

the motor operates in the regenerate mode. 

B.  EDV Drives Model 

In an electric drive vehicle, the motor produces an 

electromagnetic torque. The bearing friction and wind 

resistance (drag) can be combined with the load torque 

opposing the rotation of the PM motor. The net torque, the 

difference between the electromagnetic torque em developed 

by the motor and the load torque TL causes the combined 

inertias Jeq of the motor and the load to accelerate. Therefore, 

using the motor convention, the rotational speed of the motor 

follows from  

m
em eq a m L

d
J B T

dt


              (7) 

where m is the motor rotational speed, and Ba is the active 

damping coefficient representing motor rotational losses. The 

relation between m and e is presented in (8), where p is 

motor pole pairs.  

e mp                   (8) 

C.  Conventional PM Motor Vector Control  

The conventional vector control method for the PMSM has 

a nested-loop structure as shown by Fig. 1 [12]. The speed-



 

 

loop controller is normally a PI controller that is designed 

based on the torque equation (7). The current-loop controller 

is developed by rewriting (1) and (2) as  
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where the item in the bracket of (9) and (10) is treated as the 

state equation between the voltage and current in the d- or q-

axis loops, and the other items are treated as compensation 

terms [12, 25]. This treatment assumes that vsd in (9) has no 

major influence on isq and vsq in (10) has no main effect on isd.  

But, this assumption is inadequate as explained below. 

According to Fig. 1, the final control voltages vsd
*
 and vsq

*
, 

linearly proportional to the converter output voltages vsd and 

vsq [25], include the d- and q-axis voltages vsd
’ 

and vsq
’
 

generated by the current-loop controllers plus the 

compensation terms as shown by (11). Hence, the 

conventional control configuration intends to regulate isd and 

isq using vsd
’ 
and vsq

’
, respectively. But, according to (4), the d-

axis voltage is primarily effective for isq or toque control, and 

the q-axis voltage is mainly effective for isd control. 
* '

* '
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IV.  PMSM VECTOR CONTROL USING ARTIFICIAL NEURAL 

NETWORKS  

The neural network control scheme consists of a faster 

inner current-loop neural network controller plus a slower 

outer speed-loop neural network controller as shown by Fig. 2.  

A.  Current-Loop Neural Network Vector Control  

To develop a current-loop neural network vector controller, 

the PM motor model of eq. (1) is rearranged into the standard 

state-space form as shown by:  
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    (12) 

where the system states are isd and isq, permanent magnet flux 

f  is normally constant, and converter output voltages vsd and 

vsq are proportional to the control voltage of the action neural 

network. For digital control implementation, the discrete 

equivalent of the continuous system state-space model must be 

obtained as shown by: 
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where Ts represents the sampling period, A is the system 

matrix, and B is the input matrix. In this paper, a zero-order-

hold discrete equivalent mechanism [31] is used to convert the 

continuous state-space model of the system (14) to the discrete 

state-space model (13). We used Ts=0.001sec in all 

experiments. 

Let 
0

,  ,  and .
sd sd

sq sq e f

i v
x u k

i v 

     
       

     
Then, the state 

equation (13) can be simplified in a more general form as 

shown by 

 1t t tx x u k   A B              (14) 

The system is controlled by the action network  , , ix p x z   

which is a neural network with weight vector iz , such that  

 , ,t t t t iu x p x z               (15)
 

The objective of the current-loop neural controller is to 

implement a current tracking problem, i.e. hold the state tx

near to a given (possibly moving) target state tp . We train the 

weights of the action network to solve the tracking problem by 

doing gradient descent with respect to w on the following 

function based on the dynamic programming principle:  

 0 ,
mt

i t t

t

J x z x p              (16)
 

where m is some constant power (we used m=0.5 in our 

experiments), || denotes the modulus of a vector, and [0, 1] 

is a constant “discount factor”. The gradient descent weight 

update z J w    , for a learning rate  > 0, can be 

computed efficiently by the backproagation through time [1, 

2]. 

Fig. 2. PMSM neural vector control structure  



 

 

In addition, to overcome the challenge of training the 

action network for rapidly changing target states and random 

variation of PM motor parameters in EDV applications, we 

have employed the following strategies: 1) a “stabilizing 

matrix” approach to enhance the learning speed and stability 

of the neural network controller and 2) a design of using 

predicted and past inputs to allow the neural network having 

the capability of training offline but adaptive online [XX].  

With the stabilizing matrix [XX], the control voltage from 

the current-loop action network becomes 

  0, ,t t t t i tu x p x z x k   W         (17)
 

where  1

0

  W B A I  is constant. It acts like an extra 

weight matrix in the neural network that connects the input 

layer directly to the output layer.  

To make the neural network having the capability of 

training offline but adaptive online, the neural network needs 

to have some idea on how the actual plant behavior is differing 

from its expected behavior. Hence we give the neural network 

an extra input of the difference between the actual current 

state  tx  and the predicted current state  ˆ
tx calculated with 

a fixed model 

 0 1 0 1
ˆ

t t tx x u k   A B
           

(18) 

where A0 and B0 are constant matrices of (13) chosen for the 

default normal PMSM parameters. This idea is similar to the 

conventional predictive control concept. However, when the 

predictive input is combined with the neural network, it is 

much more powerful than the conventional only model-based 

predictive control mechanism.  

Finally to improve performance further, the neural network 

needs to know what action it attempted in the previous time 

step. This enables the neural network to get feedback on what 

it tried previously and hence whether it’s worth trying that a 

bit more next time, or a bit less. So, we add a network input 

which represents the previous action, i.e.
 1tu  . 

In summary, with the stabilizing matrix and predicted and 

past inputs to the network, the control voltage generated by the 

current-loop action network becomes 

 1 0
ˆ, , , ,t t t t t t t i tu x p x x x u z x k     W     (19) 

B.  Speed-Loop Neural Network Controller  

To develop a speed-loop neural network controller, the 

torque equation from Eq. (7) is rearranged into the standard 

state-space representation as shown by:  

 
1m a

m em L

eq eq

d B
T

dt J J


              (20) 

where the system state is m and the drive torque em is 

proportional to the output of the speed-loop action neural 

network. The conversion from the torque to the q-axis current 

is obtained from Eq. (5). For digital control implementation, 

the discrete equivalent of the continuous state-space model 

must be obtained as shown by 

     m s s m s em s LkT T a kT b kT T         
 

  (21) 

The objective of the speed-loop control is to implement a 

speed tracking problem, i.e. hold the state m near to a given 

(possibly moving) target state m
*
. We train the weights of the 

speed-loop action network to solve the tracking problem by 

doing gradient descent with respect to sw on the following 

function based on the dynamic programming principle:  

  *

0 ,
n

t

m s s mt mt

t

J z                (22)
 

We also adopted the stabilizing matrix strategy, the 

predictive input, and the previous control action for the speed-

loop neural network controller. Therefore, the control signal 

generated by the speed-loop action network is 

 *

_ ( 1)

0
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 W
   (23) 

In (23), the predictive input is  

0 ( 1) 0 ( 1)
ˆ

mt m t em t La b T   
               

(24) 

where a0 and b0 are constant values of (21) chosen for the 

default PM motor inertias and damping coefficient.  

V.  TRAINING NEURAL NETWORKS BASED UPON DYNAMIC 

PROGRAMMING 

Dynamic programming employs the principle of optimality 

and is a very useful tool for solving optimization and optimal 

control problems. According to [20], the principle of 

optimality is expressed as: “An optimal policy has the 

property that whatever the initial state and initial decision are, 

the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision.” The 

typical structure of the discrete-time DP includes a discrete-

time system model and a performance index or cost associated 

with the system [23]. 

A.  Backpropagation Through Time Algorithm 

For the PM motor drives, the current- and speed-loop 

action neural networks were trained separately to minimize the 

DP cost of Eqs. (16) and (22), respectively, by using the 

backpropagation through time (BPTT) algorithm [33]. BPTT 

is gradient descent on  0 ,J x z  or  0 ,m sJ z with respect to 

the weight vector of the action network. BPTT can be applied 

to an arbitrary trajectory with an initial state 0x or 0 ,m and 

thus be used to optimize the neural network control strategy.  

We chose to use the BPTT algorithm because it is particularly 

suited to situations where the model functions are known and 

differentiable, and also because BPTT has nice proven 

stability and convergence properties since it is a gradient 

descent algorithm - provided the learning rate is sufficiently 

small. In general, the BPTT algorithm consists of two steps: a 

forward pass which unrolls a trajectory, followed by a 

backward pass along the whole trajectory which accumulates 

the gradient descent derivative. Figure 3 illustrates the 

pseudocode of this whole process for the current-loop neural 

controller. In the figure, the vector and matrix notation is such 

that all vectors are columns; differentiation of a scalar by a 

vector gives a column.  Differentiation of a vector function by 



 

 

a vector argument gives a matrix, such that for example 

(dA/dw)ij=dAj/dwi. In Fig. 3, the subscripted k variables on 

parentheses indicate that a quantity is to be evaluated at time 

step k. For the termination condition of a trajectory, we used a 

fixed trajectory length corresponding to a real time of 1  

second (i.e. a trajectory had 1/Ts=1000 time steps in it).  We 

used =1 for the discount factor in both (16) and (22). 
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Fig. 3. DP based BPTT algorithm for PMSM Vector control 

B.  Training the Current-Loop Neural Controller 

To train the current-loop neural network controller, the 

system data associated with Eq. (12) are specified. The 

training procedure for the current-loop neural network 

controller includes 1) randomly generating a sample initial 

state isdq(j), 2) randomly generating a changing sample 

reference dq current time sequence, 3) unrolling the trajectory 

of the GCC system from the initial state, 4) training the 

current-loop neural network based on the DP cost function Eq. 

(16) and the BPTT training algorithm, and 5) repeating the 

process for all the sample initial states and reference dq 

currents until a stop criterion associated with the DP cost is 

reached (Fig. 3). The weights were initially all randomized 

using a Gaussian distribution with zero mean and 0.1 variance. 

The training also considers variable nature of the PM motor 

resistance and inductance. Training used RPROP [35] to 

accelerate learning, and we allowed RPROP to act on multiple 

trajectories simultaneously (each with a different start point 

and isdq
*
). 

The generation of the reference current must consider the 

physical constraints of a practical PMSM. These include the 

rated current and converter PWM saturation constraints. From 

the neural network standpoint, the PWM saturation constraint 

stands for the maximum positive or negative voltage that the 

action network can output. Therefore, if a reference dq current 

requires a control voltage that is beyond the acceptable voltage 

range of the action network, it is impossible to reduce the cost 

(Eq. (16)) during the training of the action network. 

The following two strategies are used to adjust randomly 

generated reference currents. If the rated current constraint is 

exceeded, the reference dq current is modified by keeping the 

q-axis current reference isq
*
 unchanged to maintain torque 

control effectiveness (Eq. (5)) while modifying the d-axis 

current reference isd
*
 to satisfy the d-axis control demand as 

much as possible as shown by [13, 14]  

     
2 2

* * * *

_ _ maxsignsd new sd sdq sqi i i i        (22) 

If the PWM saturation limit is exceeded, the reference dq 

current is modified by  
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    (23) 

which represents a condition of keeping the d-axis voltage 

reference vsd
*
 unchanged so as to maintain the torque control 

effectiveness ((4) and (5)) while modifying the q-axis voltage 

reference vsq
*
 to meet the d-axis control demand as much as 

possible [13].    

C.  Training the Speed-Loop Neural Network Controller 

To train the speed-loop neural network controller, the 

system data associated with Eq. (7) are specified [6, 7, 14]. 

The training procedure includes 1) randomly generating a 

sample initial state m, 2) randomly generating a changing 

sample reference speed time sequence, 3) unrolling the motor 

speed trajectory from the initial state, 4) training the neural 

network based on the DP cost function of Eq. (22) and the 

BPTT training algorithm, and 5) repeating the process for all 

the sample initial states and reference speeds until a stop 

criterion associated with the DP cost is reached. Training also 

used RPROP. 

The generation of the reference speed considers the speed 

changing range from 0 rad/s to the maximum possible motor 

rotating speed. The training considers variable nature of the 

inertia and the damping coefficient and the limitation of 

maximum acceptable torque. 

  
Fig. 4. Average DP cost per trajectory time step for training neural controller 

Figure 4 demonstrates the average DP cost per trajectory 

time step for a successful training of the current-loop action 

neural network, in which both the initial state is generated 

randomly using Gaussian distribution while the reference dq 

currents are generated randomly using uniform distribution. 

Each trajectory duration was unrolled during training for a 

duration of 1 second, and the reference dq current was 

changed every 0.05 seconds. As the figure indicates, the 
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overall average DP cost dropped to a small number quickly, 

demonstrating good learning ability of the neural controller for 

the vector control application. 

VI.  PERFORMANCE EVALUATION OF NESTED-LOOP NEURAL 

NETWORK CONTROLLER 

To evaluate the current- and speed-loop neural network 

controllers, an integrated transient simulation of a complete 

PMSM system is developed by using power converter average 

and detailed switching models in SimPowerSystems (Fig. 5), 

in which both steady and variable drive conditions are 

considered. The average model is used for an initial evaluation 

while the detailed switching model is used for investigation 

under more practical conditions. For the switching-model 

based PMSM system, the converter switching frequency is 

1980Hz and losses within the dc/ac power converter are 

considered. The parameters used in the simulation study are 

shown in Table 1.  

 
Fig. 5. Neural network control of PM motor in SimPowerSystems 

Parameter Value Units 

Rated Power 50 kW 

dc voltage 500 V 

Permanent magnet flux 0.1757 wb 

Inductance in q-axis, Lq 1.598 mH 

Inductance in d-axis, Ld  1.598 mH 

Stator copper resistance, Rs 0.0065 Ω 

Inertia 0.089 kgm
2 

Damping coefficient 0.1  

Pole pairs 4  

A.  Ability of the Neural Network Controllers in Current and 

Speed Tracking 

Figure 6 presents a performance study of the current- and 

speed-loop controllers of the PM motor under a steady load 

torque condition by using the average-model based simulation. 

The motor starts with a reference speed increasing linearly 

from 0 rad/s at the beginning to 60 rad/s at t=0.25s. This 

causes the q-axis reference current generated by the speed-

loop controller increasing linearly while d-axis reference 

current is hold at 0A for a minimum stator current control 

purpose. As shown by Fig. 6, both motor current and speed 

can follow the reference current and speed perfectly. When the 

reference speed changes to a constant value of 60 rad/s at 

t=0.25s, the motor current or torque is quickly regulated in 

such a way that makes the motor get to the steady speed 

almost immediately. For other reference speed change from 60 

rad/s to 40 rad/s at t=1s and from 40 rad/s to 80 rad/s at t=2s, 

the nested-loop neural network controller has excellent 

performance in regulating current, torque, and speed of the 

PM motor to meet the motor control demands as shown by 

Fig. 6.  

 
a) Reference and actual motor speeds 

 
b) Electromagnetic torque 

 
c) Reference and actual d- and q-axis currents torque 

Fig. 6. Performance of nested-loop neural network vector controller 

B.  Comparison of Neural Network Controller with 

Conventional Vector Control Method  

For the comparison study, the current- and speed-loop PI 

controllers are designed by using the conventional standard 

vector control technique, as shown in Section III. The gains of 

the current-loop PI controller are designed based on the 

transfer function of Eqs. (9) and (10) [7]. The gains of the 

speed-loop PI controller are designed based on the transfer 

function of Eq. (7). Then, for digital control implementation of 

the PI controllers at the sampling rate of Ts=1ms, the 

controller gains for both the speed and current loops are 

retuned until the controller performance is acceptable [14]. 

Tuning of the PI controllers is a challenging task, particularly 

for a low sampling rate, such as Ts=1ms. This gives neural 

network controller better a advantage from this perspective. 

The figure indicates that the neural network controller has the 

fastest response time, low overshoot, and best performance. 

For many other reference current conditions, the comparison 

demonstrates that the neural network vector controller 

performs better. 

C.  Performance Evaluation under Variable Parameters of a 

PM Motor  

PM motor stability has been one of the main issues to be 

investigated. In general, such a study primarily focuses on the 

motor performance under uncertain system parameter 

variations. These include changes of motor resistance and 
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inductance from its normal values or changes of fraction 

coefficient and combined inertia. Those changes would affect 

the performance of the current- or speed-loop controller.  

 
a) Reference and actual motor speeds 

 
b) Electromagnetic torque 

Fig. 7. Comparison of conventional and neural vector controllers 

In this paper, the nested-loop neural network control 

technique is evaluated for two variable system parameter 

conditions, namely, 1) variation of motor resistance and 

inductance, and 2) deviation of motor drive parameters 

associated with the torque-speed equation (7). Figure 8 shows 

how the neural network controllers are affected when the 

motor resistance and inductance values increase by 30% from 

the initial values and the equivalent inertia Jeq is doubled. The 

study shows that both the current- and speed-loop neural 

network controllers are affected very little by the system 

parameter variation. This is due to the fact that both the speed- 

and current-loop neural network controllers have been trained 

for the variable system parameter conditions so that the neural 

network controllers possess an ability to handle the motor 

control under variable system parameter conditions. 

   
a) Motor speed 

   
b) d-/q-axis currents 

Fig. 8. Performance of neural vector controllers under  variable system 

parameter conditions 

D.  Performance Evaluation in Power Converter Switching 

Environment  

In reality, the PM motor control is achieved through power 

electronic converters which operate in a highly dynamic 

switching environment (Fig. 5). This causes high order 

harmonics in the three-phase PMSM stator voltage and current. 

This means that in the dq reference frame, large oscillations 

would appear in voltage sdqv and current sdqi . Since those 

oscillation impacts are not considered during the network 

training stage, the neural network controller could be severely 

deteriorated or loss stability. Hence, it is important to 

investigate the behavior of the neural network controller in the 

power converter switching environment.  

 
        a) Reference and actual motor speed 

 
  b) d-/q-axis currents 

 
  b) Three-phase stator current 

Fig. 9. Performance of nested-loop neural network controller in power 

converter switching environment 

Figure 9 presents a case study of neural network vector 

controller in the switching environment of the power 

converter, in which the speed reference is similar to those used 

in Fig. 6. As it can be seen from the figure, the neural network 

control shows an excellent performance in the high frequency 

switching condition too. Due to the switching impact, the 

actual dq current oscillates around the reference current. An 

examination of the stator current shows that the three-phase 

current is very balanced and adequate (Fig. 9c). For any 

command change of the reference speed, the motor can be 

adjusted to a new balanced three-phase current and a new 

speed quickly, demonstrating a strong optimal control 

capability of the neural network vector control method even in 

the highly dynamic switching condition. 
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VII.  CONCLUSIONS 

Permanent magnet synchronous motors are used widely in 

electric drive applications, particularly in electric drive 

vehicles. This paper investigates the conventional standard 

vector control approach for the PMSM and analyzes the 

limitations associated with conventional vector control method. 

Then, a nested-loop neural network based vector control 

method is proposed. The paper describes how dynamic-

programming (DP) methods are employed to train the current- 

and speed-loop neural network controllers through a 

backpropagation through time algorithm.  

The performance evaluation demonstrates that the current-

loop neural network controller can track the reference d- and 

q-axis currents effectively while the speed-loop neural 

network controller is able to follow the reference speed 

excellently. Compared to the conventional standard vector 

control method, the neural network vector control approach 

produces the fastest response time, low overshoot, and, in 

general, the best performance. In addition, since the neural 

networks are trained under variable system parameters, the 

nested-loop neural network controller has more attractive 

performance when the system parameters are hard to be 

identified. 

In a highly dynamic switching environment, the neural 

vector controller again demonstrates strong capability in 

tracking reference commands while maintaining a high power 

quality.  
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