

City, University of London Institutional Repository

Citation: Gashi, I. & Popov, P. T. (2006). Rephrasing rules for off-the-shelf SQL database

servers. Paper presented at the Sixth European Dependable Computing Conference, 2006
(EDCC '06), 18 - 20 Oct 2006, Coimbra, Portugal.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/521/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Rephrasing Rules for Off-The-Shelf SQL Database Servers

Ilir Gashi, Peter Popov
Centre for Software Reliability, City University,

Northampton Square, London, EC1V 0HB

I.Gashi@city.ac.uk, ptp@csr.city.ac.uk

Abstract

We have reported previously [1] results of a study

with a sample of bug reports from four off-the-shelf

SQL servers. We checked whether these bugs caused

failures in more than one server. We found that very

few bugs caused failures in two servers and none

caused failures in more than two. This would suggest

a fault-tolerant server built with diverse off-the-shelf

servers would be a prudent choice for improving

failure detection. To study other aspects of fault tol-

erance, namely failure diagnosis and state recovery,

we have studied the “data diversity” mechanism and

we defined a number of SQL rephrasing rules. These

rules transform a client sent statement to an addi-

tional logically equivalent statement, leading to more

results being returned to an adjudicator. These rules

therefore help to increase the probability of a correct

response being returned to a client and maintain a

correct state in the database.

1. Introduction

Fault tolerance is frequently the only viable ap-

proach of obtaining the required system dependability
from systems built out of “off-the-shelf” (OTS) prod-
ucts [2]. There are various methods in which this fault
tolerance can be achieved ranging from simple error
detection and recovery add-ons (e.g. wrappers [3]) to
diverse redundancy replication using diverse versions
of the components.
These design solutions are well known. Questions

remain, however, about the dependability gains and
implementation difficulties for a specific system.
We have studied some of these issues in SQL da-

tabase servers, a very complex category of off-the-
shelf products. We have previously reported [1] re-
sults from a study with a sample of bug reports from
four off-the-shelf SQL servers so as to assess the pos-
sible advantages of software fault tolerance - in the

form of modular redundancy with diversity - in com-
plex off-the-shelf software. We found that very few
bugs cause failures in two servers and none cause
failures in more than two, which would indicate that
significant dependability improvements can be ex-
pected from the deployment of a fault-tolerant server
built out of diverse off-the-shelf servers in compari-
son with individual servers or the non-diverse repli-
cated configurations.
Although we found that using multiple diverse

SQL servers can dramatically improve error detection
rates it does not make them 100%, e.g. our study [1]
found four bugs causing identical non-self-evident
failures in two servers. Thus there is room for im-
proving failure detection further. Many of the cases,
in which a failure was detected did not allow for im-
mediate diagnosis of the failed server. Fault tolerance
requires also diagnosing the faulty server and main-
taining data consistency among the databases in addi-
tion to failure detection. To improve the situation, we
studied the mechanism called “data diversity” by
Ammann and Knight [4] (who studied it in a different
context). The simplest example of the idea in [4] re-
fers to computation of a continuous function of a con-
tinuous parameter. The values of the function com-
puted for two close values of the parameter are also
close to each other. Thus, failures in the form of dra-
matic jumps of the function on close values of the
parameter can not only be detected but also corrected
by computing a “pseudo correct” value. This is done
by trying slightly different values of the parameter
until a value of the function is calculated which is
close to the one before the failure. This was found [4]
to be an effective way of detecting as well as masking
failures, i.e. delivering fault-tolerance. Data diversity,
thus, can help with failure detection and state recov-
ery, and thus complement fault-tolerance solutions
which employ diverse modular redundancy, as well as
helping achieve a certain degree of fault tolerance
without employing diverse modular redundancy.

Data diversity is applicable to SQL servers be-
cause of the inherent redundancy that exists in the
SQL language: statements can be “rephrased” into
different, but logically equivalent [sequences of]
statements. While working with the bug reports we
found examples where a particular statement causes a
failure in a server but a rephrased version of the same
statement does not. Examples of such statements of-
ten appear in bug reports as “workarounds”.
In this paper we provide details of how SQL re-

phrasing can be employed systematically in a fault-
tolerant server and provide examples of useful re-
phrasing rules. We also report on performance meas-
urements using the TPC-C [5] benchmark client im-
plementation to get some initial estimates of the de-
lays introduced by rephrasing.
The paper is structured as follows: in section 2 we

give details of the architecture of a fault-tolerant
server employing rephrasing. In section 3 we give
details of the data diversity study we have conducted
for defining SQL rephrasing rules and illustrate how
one of these rules has been used as a workaround for
two known bugs of two SQL servers. In section 4 we
give some empirical results of experiments we have
conducted to measure the performance penalty due to
rephrasing. In section 5 we discuss some general im-
plications of our results and finally in section 6 some
conclusions are presented with possibilities for fur-
ther work.

2. Architecture of a Fault-Tolerant Server

2.1 General Scheme

Data replication is a well-understood subject [6],

[18], [7]. The main problem replication protocols
deal with is guaranteeing consistency between copies
of a database without imposing a strict synchronisa-
tion regime between them. A study which compared
various replication protocols in terms of their per-
formance and the feasibility of their implementation
can be found in [8]. Existing protocols implement
efficient solutions for this problem, but depend on
running copies of the same (non-diverse) server.
These schemes would not tolerate non-self-evident1
failures that cause incorrect writes to the database or

1 In [1] we classified the failures according to their detect-
ability by a client of the database servers into: Self-Evident
failures - engine crash failures, cases in which the server
signals an internal failure as an exception (error message)
and performance failures; Non-Self-Evident failures: incor-
rect result failures, without server exceptions within an
accepted time delay.

that return incorrect results from read statements. For
the former, incorrect writes would be propagated to
the other replicas and for the latter, incorrect results
would be returned to the client. This deficiency can
be overcome by building a fault-tolerant server node
(“FT-node”) from two or more diverse SQL servers,
wrapped together with a “middleware” layer to ap-
pear to each client as a single SQL server. An illustra-
tion of this architecture with two diverse Off-The-
Shelf servers (“O-servers”) is shown in Fig. 1. A brief
explanation of the figure follows. Several nodes
(computers) are depicted which run client applica-
tions (Client node 1, Client node 2 and Client node 3)
or server applications (Middleware node, RDBMS 1
node and RDBMS 2 node). The bottom three nodes
together form the FT-server. Components may share a
node: e.g. Replication Middleware, and the two SQL
connectors for dialects 1 and 2 are deployed on the
Middleware node. The SQL connectors additionally
contain the SQL rephrasing rules. The diagram as-
sumes that the Off-The-Shelf servers (O-servers) run
on separate nodes, RDBMS 1 node and RDBMS 2
node. The circles represent the interfaces through
which the components interact. Each SQL connector,
implements the SQL Connector API interface used by
the Replication Middleware component. This, in turn
implements the Middleware API interface via which
the client applications access the FT-server, either
directly or via a driver for the FT-server in a specific
run-time environment, e.g. JDBC driver or .NET
Provider.
Further improvements to this architecture would

be to also run diverse replicas of the middleware
component. We have described elsewhere [9], [2] in
more detail the FT-node architecture. Here we will
only elaborate on the parts relevant to the discussion
of rephrasing.

2.2 SQL Connectors

The O-servers are not fully compatible: they

“speak different dialects” of SQL, despite being com-
pliant at various levels with SQL standards. Therefore
the FT-server includes a translator between these dia-
lects, defined for a subset of SQL (e.g. “SQL-92 entry
level”) plus some more advanced features important
for enterprise applications (such as TRIGGERs and
STORED PROCEDUREs). The translators are depicted
as “SQL Dialect Connector’s” in Fig 1.
A similar idea (implemented in [10], [11]) is to re-

define the grammar of one database server to make it
compatible with that of another while keeping the
core database engine unchanged.

Client Node 3

FT-server .NET

Provider API

FT-server .Net

Provider

Application 3

(e.g. C# legacy

application)

Client node 1

Application 2 (e.g.

synthetic load

silmulator)

RDBMS 2 Node

RDBMS 2

(O-server 2)

RDBMS 2 API

Client Node2

FT-server

JDBC Driver

FT-server JDBC API

Application 1 (e.g.

Java legacy

application)

Middleware Node

Replication

Middleware

SQL Dialect 2

Connector

SQL Connector API

SQL Dialect 1

Connector

Replication API

RDBMS 1 API

RDBMS 1 Node

RDBMS 1

(O-server 1)

1 1..*TCP/IP

1 1..*

TCP/IP

0..*

1

0..*

1

TCP/IP

0..*

1

TCP/IP

TPC/IP

Fig. 1 - UML Deployment diagram of the FT-server.

2.3 Failure Detection, Masking, Recovery

The middleware of the FT-server includes extensive

functionality for failure detection, masking and state
recovery. Self-evident server failures are detected as in
a non-diverse server, via server error messages (i.e. via
the existing error detection mechanisms inside the
servers), and time-outs for crash and performance fail-
ures. Diversity gives the additional capability of detect-
ing non-self-evident failures by comparing the outputs2
of the different O-servers. In a FT-node with 3 or more
diverse O-servers, majority voting can be used to
choose a result and thus mask the failure to the clients,
and identify the failed O-server which may need a re-
covery action to correct its state. With a 2-diverse FT-
node, if the two O-servers give different results, the
middleware cannot decide which O-server is in error.

2 An “output” may be the results from a SELECT statement
or the number of rows affected for a write (INSERT,
UPDATE and DELETE) statement. For INSERT and
UPADTE statements a more refined way would be to read
back the affected rows and use those for comparison.

This is where “data diversity” can help by providing
additional results to break the tie (more in the next sub-
section). State recovery of the database can be obtained
in the following ways:
• via standard backward error recovery, which will be
effective if the failures are due to transient failures
(caused by so called “Heisenbugs” [12]). To com-
mand backward error recovery, the middleware may
use the standard database transaction mechanisms:
aborting the failed transaction and replaying its
statements may produce a correct execution. With
“data diversity” a finer granularity level of recovery
is possible using SAVEPOINTs and ROLLBACKs;

• additionally, diversity offers ways of recovering
from non-transient failures (caused by so called
“Bohrbugs” [12]), by essentially copying the data-
base state of a correct server into the failed one
(similarly to [13]). Since the formats of the database
files differ between the servers, the middleware
would need to query the correct server[s] for their
database contents and command the failed server to
write them into the corresponding records in its da-
tabase, similar to what is proposed in [14]. This

would be expensive, perhaps to be completed off-
line, but a designer can use multi-level recovery, in
which the first step is to correct only those records
that have been found erroneous on read statements.

2.4 Data Diversity Extensions

Even with just two diverse O-servers, many of the

O-server failures may be masked by using “data diver-
sity” (rephrasing an SQL statement into a different, but
semantically equivalent one) to solicit “second opin-
ions” from the O-servers and if possible outvote the
incorrect response.
Data diversity could be implemented via an algo-

rithm in the “Middleware Node” that rephrases state-
ments according to predefined rules. We can define
these rules for each type of SQL statement defined by
the SQL grammar implemented by the server. These
rules therefore may form part of the “SQL Dialect Con-
nectors“. Upon receiving a statement from a client ap-
plication the middleware can look up a rule from the
list of available rules and rephrase the statement. The
middleware must allow for new rules to be defined as
and when necessary. If the middleware exhausts the list
of rules that it can apply to a certain statement but no
“correct result”3 can be established by applying the
closed adjudication mechanism then an error message
is returned to the client.
Data diversity can be used with or without design

diversity. Architectural schemes using data diversity
are similar to those using design diversity. For instance,
Amman and Knight in [4] describe two schemes, which
they call “retry block” and “n-copy programming”,
which can also be used for SQL servers. The “retry
block” is based on backward recovery. A statement is
only rephrased if either the server “fail-stops” or its
output fails an acceptance test. In “n-copy program-
ming”, a copy of the statement as issued by the client is
sent to one of the O-servers and rephrased variant(s)
are sent to the others; their results are voted to mask
failures.
Data diversity allows for a finer-granularity of state
recovery, which is facilitated by the implementation of
“SAVEPOINT” and “ROLLBACK” within transactions.
The procedure (written in pseudocode), for a statement
within a transaction, is given at the end of this subsec-
tion.
A performance optimization could be to perform ad-

judication at an intermediate step of the WHILE loop
execution rather than at the end (e.g. for a “majority

3 Depending on the setup used a correct result could be either
the majority result or one that passes an acceptance test.

voting” adjudication, if there are five rules for a par-
ticular statement then could check after the execution
of the first three rephrased versions of the statement
whether results returned by each of them are identical;
if yes then majority result is already obtained and there-
fore no need for the last two rephrased versions of the
statement to be executed).
The SAVEPOINT and ROLLBACK approach is the cor-
rect way of ensuring the “isolation” property of an
ACID transaction.4 Otherwise, if we “ABORTed” the
transaction and started a new one to perform the re-
phrased version of the statement, a concurrent transac-
tion may have updated rows in the target table. This
would lead to different results being returned by the O-
server for the rephrased statement even though the be-
havior is not faulty.
WHILE more rephrasing rules available for the statement DO

IF WRITE (i.e. DML (INSERT, UPDATE or DELETE) or DDL (e.g.

CREATE VIEW etc.)) statement THEN

SAVEPOINT;

Execute WRITE statement[s] produced by the current re-

phrasing rule;

READ the rows amended by the WRITE statement;

Store the results produced by the preceding READ state-

ment;

ROLLBACK TO last SAVEPOINT;

ELSE IF READ (i.e. SELECT) statement THEN

Execute READ statement[s] produced by the current re-

phrasing rule;

Store the results produced by the READ statement;

END IF

END WHILE

Adjudicate from the stored results produced by each rephrased version

of the statement;

IF adjudication succeeds (e.g. “majority voting” produced a result) THEN

Execute the statement which was adjudicated to be correct;

ELSE

ABORT current Transaction

Raise an exception;

END IF

3. SQL Rephrasing Rules

As explained in section 2, the support for data di-

versity can be implemented in the middleware in the
form of rephrasing rules. The initial step is defining the
rules that are to be implemented. The rules can be de-
fined by studying in depth the SQL language itself to
identify the parts of the language which are synony-
mous and therefore enable the definition of logically
equivalent rephrasing rules. We took a different more

4 This is under the assumption that the ACID property of the
transaction is failure-free.

direct approach to defining these rules: we studied the
known bugs reported for 4 open-source servers, namely
Interbase 6.0, Firebird 1.05, PostgreSQL 7.0 and Post-
greSQL 7.2 (abbreviated IB 6.0, PG 7.0, FB 1.0 and
PG 7.2 respectively). However our intention was not to
simply define workaround rules which are highly bug
specific, but instead to define generic rephrasing rules,
which can be used in a broader setting. As a result we
found that some of the generic rules that we defined
could be applied to multiple bugs in our study. We
provide examples next.

3.1 Generic Rules

The “generic rules” are rephrasing rules, which can

be applied to a range of ‘similar’ statements, be it DML
(data manipulation language: SELECT, INSERT,

UPDATE and DELETE) or DDL (data definition lan-
guage e.g. CREATE TABLE etc.) statements. We have
defined a total of 14 generic rephrasing rules. Full de-
tails of these rules are in [15]. We will provide details
of Rule 8 and how it proved to be a useful workaround
for two different bugs reported for two different serv-
ers.
Rule 8: An SQL VIEW can be rephrased as an

SQL STORED PROCEDURE or SQL TEMPORARY

TABLE
This rule proved to be a useful workaround for FB

1.0 Bug 488343 [16]. To observe the failure the bug
report details the following setup:
CREATE TABLE CUSTOMERS (ID INT, NAME, VARCHAR(10));

CREATE TABLE INVOICES (ID INT, CUST_ID INT, CODE

VARCHAR(10), QUANTITY INT);

INSERT INTO CUSTOMERS VALUES (1, 'ME');

INSERT INTO INVOICES VALUES (1, 1, 'INV.1', 5);

INSERT INTO INVOICES VALUES (2, 1, 'INV.2', 10);

INSERT INTO INVOICES VALUES (3, 1, 'INV.3', 15);

INSERT INTO INVOICES VALUES (4, 1, 'INV.4', 20);

The following VIEW is faulty (specifically, the use
of the SQL DISTINCT keyword to filter the results of a
SELECT statement is faulty in SQL VIEWs of the FB
1.0 server):
CREATE VIEW V_CUSTOMERS AS SELECT DISTINCT ID, NAME

FROM CUSTOMERS;

The failure can be observed by issuing the follow-
ing statement:

SELECT SUM(INV.QUANTITY) FROM INVOICES INV INNER JOIN

 V_CUSTOMERS CUST ON INV.CUST_ID = CUST.ID;
SUM

20

5 Firebird is the open-source descendant of Interbase 6.0. The
later releases of Interbase are issued as closed-development
by Borland.

The expected result is 50 not 20. If we use a
STORED PROCEDURE instead of the VIEW then the
correct results is returned6:
SET TERM !!;

CREATE PROCEDURE V_CUSTOMERS RETURNS (ID INT, NAME

VARCHAR(10)) AS

BEGIN

FOR SELECT DISTINCT ID, NAME FROM CUSTOMERS

INTO :ID, :NAME DO

BEGIN

SUSPEND;

END

END!!

SET TERM; !!

Issuing the same SELECT statement as before we
obtain the expected result (50):
SELECT SUM(INV.QUANTITY) FROM INVOICES INV INNER JOIN

V_CUSTOMERS CUST ON INV.CUST_ID = CUST.ID;

SUM

50
The same rule was a useful workaround for another

bug, this time the PG 7.0 bug 23 [17]. To observe the
failure the bug report details the following setup:
CREATE TABLE L (PID INT NOT NULL, SEARCH BOOL, SERVICE

BOOL);

INSERT INTO L VALUES (1,'T','F'); INSERT INTO L VALUES (1,'T','F');

INSERT INTO L VALUES (1,'T','F'); INSERT INTO L VALUES (1,'T','F');

INSERT INTO L VALUES (1,'T','F'); INSERT INTO L VALUES (1,'F','F');

INSERT INTO L VALUES (1,'F','F'); INSERT INTO L VALUES (2,'F','F');

INSERT INTO L VALUES (3,'F','F'); INSERT INTO L VALUES (3,'T','F');

The following VIEWs are then defined (notice the
use of the GROUP BY clause):
CREATE VIEW CURRENT AS SELECT PID, COUNT(PID), SEARCH,

SERVICE FROM L GROUP BY PID, SEARCH, SERVICE;

CREATE VIEW CURRENT2 AS SELECT PID, COUNT (PID),

SEARCH, SERVICE FROM L GROUP BY PID, SEARCH, SERVICE;

By issuing the following SELECT statement incor-
rect results are obtained (this is due to the GROUP BY
clause used in the VIEWs and the COUNT used on a
column from a VIEW):
SELECT CURRENT.PID, CURRENT.COUNT AS SEARCHTRUE,

CURRENT2.COUNT AS

SEARCHFALSE FROM CURRENT,CURRENT2 WHERE

CURRENT.PID =CURRENT2.PID AND CURRENT.SEARCH='T'

AND CURRENT2.SEARCH='F' AND CURRENT.SERVICE='F' AND

CURRENT2.SERVICE='F';

-- pid | searchtrue | searchfalse

-- 1 | 10 | 10

-- 3 | 1 | 1

The expected results are:
-- pid | searchtrue | searchfalse

-- 1 | 5 | 2

-- 3 | 1 | 1

6 The syntax used is specific for Firebird.

By using TEMPORARY TABLEs instead of VIEWs the
correct result is obtained:
SELECT PID, COUNT(PID), SEARCH, SERVICE INTO TEMP

 CURRENT FROM L GROUP BY PID, SEARCH, SERVICE;

SELECT PID, COUNT(PID), SEARCH, SERVICE INTO TEMP

CURRENT2 FROM L GROUP BY PID, SEARCH, SERVICE;

SELECT CURRENT.PID,CURRENT.COUNT AS SEARCHTRUE,

CURRENT2.COUNT AS SEARCHFALSE FROMCURRENT,

CURRENT2 WHERE CURRENT.PID=CURRENT2.PID AND

CURRENT.SEARCH='T' AND CURRENT2.SEARCH='F' AND

CURRENT.SERVICE='F' AND CURRENT2.SERVICE='F';

 -- pid | searchtrue | searchfalse

-- 1 | 5 | 2

-- 3 | 1 | 1

We used TEMPORARY TABLEs in PG 7.0 and not
STORED PROCEDUREs since PG 7.0 does not support
functions (procedures) that return multiple rows.
Details of the other generic rephrasing rules and

how they can be used as workarounds for other re-
ported bugs are given here [15].
We looked at how many of the generic rules can be

applied to the bugs reported for the open-source servers
in our bugs study. The results are shown in Table 1.
The leftmost three columns of the table show the re-
sults for the non-self-evident failures caused by read
(i.e. SELECT) statements. Clearly, a number of these
are also classified as a “user error”, i.e. the user issues
an incorrect statement, which the server incorrectly
executes without raising an exception. For example IB
6.0 incorrectly executes a statement such as SELECT X

FROM A, B even though the column X is defined in
both tables A and B, which can lead to ambiguous re-
sults. PG 7.0 / PG 7.2, correctly, raise an exception.
If we take away the “user error” bugs then we can

see that in all the server pairs the generic rules can be
used as workarounds for at least 80% of the non-self-
evident failures caused by read statements.
The right-most 4 columns of the table are for the

bugs that cause state-changing failures, which have
been further subdivided into bugs in DDL and write
statements. We can see that generic rules can be used
as workarounds for at least 60% of failures caused by
the state-changing statements.

3.2 Specific Rules

The generic rephrasing rules that we have defined

do not provide workarounds for all the failures caused
by the bugs collected in our study. For these failures
specific workaround rules need to be defined. For ex-
ample recursive BEFORE UPDATE TRIGGERS can re-
turn error messages in FB 1.0/IB 6.0 which means the
table for which the trigger is defined becomes unusable
(FB 1.0 bug 625899 [16]). A generic rule could not be
defined for this bug. A specific workaround (and a ge-
neric recovery procedure) upon encountering this error
message would be to:
• disable the trigger in FB 1.0 / IB 6.0
• read the log of the other server to check the se-
quence of the write statements that have been issued
as a result of the trigger

• send this sequence of statements explicitly to the
FB 1.0 / IB 6.0 server
The workaround above would work in a diverse

server-type configuration if the other server[s] works
correctly (the other server[s] in our study do not con-
tain this bug) while without design diversity a fault,
clearly, cannot be dealt with this way.
We have found that a large number of bugs, if

server diversity is not employed, would require very
specific rules to be defined to workaround the failures
that they cause. In many cases these rules require sub-
stantial new implementation in the form of “wrapping”
of the results returned to the client (or for write state-
ments before they are stored in the database) or re-
implementing parts of the functionality of the database
that are found to be faulty and no workaround exists in
SQL. Although possible such an approach is clearly
limited because the newly developed code can itself be
faulty which may diminish the gains in reliability that
can be obtained from its use. This reiterates that design
diversity is desirable.

4. Performance Implications of Rephrasing

To measure the performance implications of re-

phrasing, we conducted a number of experiments based
Table 1. A summary of applying the generic rephrasing rules for non-self evident and state-

changing bugs of IB 6.0 and PG 7.0 and the later releases FB 1.0 and PG 7.2

State-changing failures
Server pair

Non-self evident non-state-changing fail-

ures (SELECT statements) DDL statement failures Write statement failures

 Total
Total covered

by generic rules

Total user

errors *
Total

Total covered

by generic rules
Total

Total covered by

generic rules

IB 6.0 + PG 7.0 21 12 6 21 13 9 7
IB 6.0 + PG 7.2 26 18 6 19 13 7 5
FB 1.0 + PG 7.0 16 11 2 19 13 8 6
FB 1.0 + PG 7.2 19 15 2 17 13 6 4

on the industry standard benchmark for databases -
TPC-C [5]7. The factors which degrade performance
when rephrasing is employed are:
1. delays enforced by the middleware for comparison
of results

2. delays from using the following mechanisms within
transactions:
• Transaction SAVEPOINTs
• Transaction ROLLBACKs
• Execution of SELECT statements after WRITE
statements (INSERT, UPDATE, DELETE)

• Rephrasing
The additional delay introduced by the use of re-

phrasing is delay 2. We have performed an experimen-
tal study to estimate delay 2. Delay 1 would exist also
in a diverse setup with or without rephrasing. Studies
that have reported measures of other delays which are
not specific to rephrasing (such as enforcing 1-copy
serialisability) can be found in [18], [6] 8. There are
other factors that can influence the degradation of per-
formance that we have not measured in our experimen-
tal setup (e.g. rephrasing delays when more than one
rephrasing rule is used etc.). The experiments that we
have conducted aim to provide an initial estimate of the
delays due to rephrasing. A more thorough perform-
ance evaluation should also take into account concur-
rent execution of transactions. As was also noted by
one of the anonymous reviewers, for some concurrency
control mechanisms, the increase in transaction execu-
tion times due to the use of rephrasing, the probability
of conflicts due to concurrency may also increase
which may further degrade performance.
The experimental setup consisted of three com-

puters. All three computers ran on Microsoft’s Win-
dows 2000 operating system, they had 384 MB RAM,
and Intel Pentium 4 1.5GHz processors. One machine
hosted the client implementation of the TPC-C bench-
mark. The other two machines hosted the servers
(PostgreSQL 8.0 and Firebird 1.5). We used later re-
leases of the servers than the ones used in our bugs
study since these earlier releases do not support SAVE-

POINTs and ROLLBACKs within transactions. We have
not used any commercial servers in our experiments
since the license agreements are very restrictive with
regard to publishing performance data.
We ran experiments on both diverse and non-

diverse setups. In the diverse experiments we always
wait for the slowest server response before we can start

7 The TPC-C experiments were carried out with 1 emulated
client and 1 warehouse with client think times set to 0.
8 These studies also provide some optimisation procedures
for 1-copy serialisability.

the next transaction. Therefore the diverse setups here
are always slower (other configurations are possible
and we have discussed some of these in [9]).
Figure 2 illustrates the sequence of executions

within a transaction for the different non-diverse set-
ups. The grey boxes represent the fault tolerance
mechanism used whereas the dotted lines represent the
added delay from the use of the respective mechanism.
Setup a) is the baseline, against which we will measure
the added delays. Setups b), c), and d) measure the
delays of using the fault tolerance mechanisms when no
failures are observed (i.e. the cost of being cautious)9.
Setups e) and f), measure the cost of re-execution of a
statement10. These experiments measure delays for a
number of situations:
• re-execution of an unchanged statement as a possi-
ble protection against transient failures (caused by
the so called “Heisenbugs” [12])

• re-execution of a logically equivalent rephrased
statement in case the first one has failed self-
evidently (i.e. a crash or other exceptional failures)

• re-execution of a logically equivalent rephrased
statement to get additional results for comparison
on the middleware to increase the likelihood of
failure detection for non-self-evident failures
In our experiments we did not use rephrased state-

ments. Instead, the same statement was executed twice.
This is a simplification due to the absence of a proper
implementation of rephrasing. In the absence of any
other data, we wanted to get an initial estimate of the
delays that the various fault tolerance mechanisms will
produce with the database servers.
The diverse setups have a similar structure. The only
difference is that in diverse setups we only use 1
SAVEPOINT (at the beginning of the transaction) rather
than before each write statement and therefore we may
also have only one ROLLBACK (at the end of transac-
tion). For setups e) and f), this means that we first exe-
cute every statement once then we ROLLBACK to the
beginning and execute all the statement again. So the
difference between the diverse and non-diverse setups
is a different level of granularity of using SAVE-

POINTs/ROLLBACKs.

9 b) detection of erroneous writes; c) SAVEPOINT are used
before write statements for finer grained recovery; d) both
SAVEPOINTs are used and the modified rows are read back
(combination of b) and c));
10 e) optimistic (on writes) rephrasing: each statement is exe-
cuted twice; to ensure that the state of the database remains
unchanged during the second execution of the write state-
ment we use SAVEPOINTs and ROLLBACKs; f) pessimis-
tic rephrasing: same as e) but the written rows are also read
to protect against erroneous writes.

Fig. 2. A transaction execution sequence in the experimental setups. The shaded boxes represent

the fault tolerant mechanism used and the dotted lines represent the additional delays from their

use. The second executions of the statements are proxies for rephrased versions of statements.
The full results of these experiments are given in

Table 2. The first column explains the setup under
which the experiment was run. The following 4 col-
umns spell out which fault tolerance mechanisms were
used (if the cell is blank then the respective mechanism
was not used). The following 3 columns show the aver-
age execution time of a transaction, and the last 3 col-
umns show the added delay (in percentages) propor-
tional to the baseline of each setup. The first six rows
contain the results for each of the setups we explained
earlier (and illustrated in Figure 2).
The last two rows are structurally the same as setups
(e) and (f) respectively. However in these experiments
we have tried to simulated the effect of a simple learn-
ing rule: if after 1000 executions a statement has been
found to be correct then we stop rephrasing (in our
simulation it means we stop executing the statement
twice for both setups and additionally stop executing

the SELECT statement that read the modifications of the
write statements for setup (h)).
The delays seem to be higher proportionally in

PostgreSQL than in Firebird. This is because the exe-
cution time of COMMITs is smaller in Firebird for the
experiments with larger number of SELECT statements.
The number of write statements to be COMMITed al-
ways remains the same in all experiments (even in the
ones with 2 executions of statements, since the first
execution of a write statement is always ROLLBACKed).
Comparing the setups a) with e) we can see that even
though in setup e) every statement is being executed
twice the average execution times of the transactions
are not simply twice the execution time of transactions
in setup a). This is explained by the fact that the num-
ber of transactions remains the same (i.e. we still have
the same number of COMMITs) and also the data may
be stored already in the RAM which reduces the execu-

Table 2 Performance effects of the various fault-tolerance schemes. Each experiment is run

with loads of 10,000 transactions

Setup
Average Transaction Execution

time (milliseconds)
Delays proportional to the

baseline (%)

Setup description (with reference to
Figure 3)

SA
V
E
PO
IN
T
s

R
O
L
L
B
A
C
K
s

2
ex
ec
ut
io
ns
 f
or

ea
ch
 s
ta
te
m
en
t

SE
L
E
C
T
 a
ft
er

W
ri
te
 s
ta
te
m
en
ts

PG
8.0

FB
1.5

Diverse PG
8.0 & FB 1.5

PG
8.0

FB
1.5

Diverse
PG 8.0
& FB
1.5

Baseline (a) 228 306 343
Detection of erroneous writes (b) √ 292 356 434 28.3 16.3 26.5

Finer granularity of recovery (c) √ 240 308 350 5.3 0.4 1.8
Combination of b and c (d) √ √ 305 364 433 33.9 18.6 26.0

Optimistic (on writes) Rephrasing (e) √ √ √ 353 450 489 54.9 46.9 42.3
Pessimistic Rephrasing (f) √ √ √ √ 496 601 699 118.

1
96.2 105.5

Learning Optimization (g) √ √ √ 256 325 402 12.6 6.2 17.3
Learning Optimization (h) √ √ √ √ 278 341 524 22.5 11.4 52.6

tion time of the second statement. The same holds
when comparing results of setups b) with f).
Since the numbers in Table 2 represent point estimates
(i.e. they are single runs of an experiment per setup) we
have repeated the experiments for setup a) and f) to
measure the non-deterministic variation that may exist
between the different runs. We observed a very small
difference (less than 1% for 5 out of six of the experi-
ments and less than 3% for all). Hence we can trust
with a higher degree of confidence that the observa-
tions documented in table 2 represent closely the ‘true’
differences between different setups.

5. Discussion

We presented in section 2 the architecture we pro-

pose for a fault-tolerant server employing rephrasing.
The middleware used would make use of a rephrasing
algorithm. Any fault-tolerant solution, which makes use
of server diversity would need to have “connectors”
developed as part of the middleware to translate a cli-
ent sent statement to the dialect of the respective
server. This is because each server ‘speaks’ its own
dialect of SQL. The rephrasing algorithms can also be
part of these connectors. A related point is that data-
base servers offer features that are extensions to the
SQL standard, and these features may differ between
the servers. Therefore for applications which require a
richer set of functionality data diversity would be at-
tractive alone as it would for instance allow applica-
tions to use the full set of features. A complex state-
ment, which can be directly executed with some servers
but not others, may need to be rephrased as a logically
equivalent sequence of simpler statements for the latter.
For example, the TRUNCATE command is a Post-
greSQL specific feature (and is buggy in version 7.0;
see bug 20 [17] for details). In its stead the DELETE
command can be used to workaround the problem. The
DELETE command is also implemented in Firebird and
all the other SQL compliant servers.
Since most of these rules are transformations of the

SQL grammar, they are amenable to formal analysis.
Thus, despite the additional implementation, high reli-
ability can be achieved with a combination of formal
analysis and testing of the new code.
The results presented in section 3 demonstrate that a

small number of rephrasing rules can help with server
diagnosis and state recovery. We observed that a lim-
ited set of generic rephrasing rules that we have defined
(14 in total) can be used as workarounds for at least
80% of the non-self-evident failures caused by read
statements and at least 60 % of failures caused by write
or DDL statements in any of the open-source 2-diverse

setups in our study. We have also observed that using
data diversity without design diversity would lead to a
large number of specific rephrasing rules to work-
around certain failures. Implementing such rules might
require a substantial amount of new implementation,
which itself may be faulty, thus, reducing the possible
reliability gains that can be obtained from their use.
Rephrasing has been proposed as a possibility to de-

tect failures that would otherwise be un-detectable in
some replication settings. The possible benefits of this
approach could be its relatively low cost in comparison
with design diversity, and also that it can be used with
or without design diversity allowing for various cost-
dependability trade-offs. Possible setups include:
• In non-diverse redundant replication settings, if
high dependability assurances are required, the only
option available would be to rephrase all the state-
ments sent to the server. This can lead to high per-
formance penalties. To reduce the performance
penalty some form of learning strategy can be ap-
plied, e.g. keep track of all the statements that have
been rephrased. If the rephrased statement keeps
giving the same results as the original statement
then confidence is gained that the original statement
is giving the correct result and the statement does
not have to be rephrased in future occurrences
(what we did in setups g) and h) of the TPC-C ex-
periments). The other dimension is to stop sending
the client-version of the statement to a server if it
always gives an incorrect result. In this case the
middleware can flag each occurrence of this state-
ment and use the rephrased version of it without
sending the original statement to the server [2]. This
reduces the time taken to respond to the client.

• In a diverse server configuration a less rephrasing-
intensive approach may be used where only the read
statements (i.e. SELECTs) that return different re-
sults are rephrased (assuming that at least two serv-
ers are running in parallel so that a mismatch is de-
tected). The rephrasing is also done for all the write
statements (to ensure that the state of the database is
not corrupted). Since a smaller set of statements
needs to be rephrased the performance is enhanced.
The non-self-evident identical failures, however,
(we observed 4 of these in the study with known
bugs of SQL servers [1]) will not be detected. To
further enhance the performance the same learning
strategies can be used as in the previous setup.

6. Conclusions

We have reported previously [1] on the dependabil-

ity gains that can potentially be achieved from deploy-

ing a fault-tolerant SQL server, which makes use of
diverse off-the-shelf SQL servers. From studying bugs
reported for four off-the-shelf servers we reported that
failure detection rates in 1-out-of-2 configurations was
at least 94% and this increased to 100% in configura-
tions which employed more than two servers. However
fault tolerance is more than just failure detection. In
this paper we reported on the mechanism of data diver-
sity and its application with SQL servers in aiding with
failure diagnosis and state recovery. We have defined
14 generic ‘workaround rules’ to be implemented in a
‘rephrasing’ algorithm which when applied to a certain
SQL statement will generate logically equivalent
statements. We have also argued that since these rules
are transformations of the SQL language syntax, they
are amenable to formal analysis and dependability
gains from employing rephrasing are achievable de-
spite the development of a bespoke new code.
We also outlined a possible architecture of a fault

tolerant server employing diverse SQL servers and
detailed how the middleware used in it can be extended
to also handle rephrasing of SQL statements.
We also presented some performance measurements

from experiments we have run with an implementation
of the TPC-C benchmark [5], which gave initial esti-
mates of the likely delays due to employing rephrasing.
Further work that is desirable includes:

• demonstrating the feasibility of automatic transla-
tion of SQL statements from, say ANSI/ISO SQL
syntax to the SQL dialect implemented by the de-
ployed SQL servers. We have completed some pre-
liminary work on implementing translators between
MSSQL and Oracle dialects for SELECTs, and be-
tween Oracle and PostgreSQL dialects for SELECT,
INSERT and DELETE statements;

• developing the necessary components so that users
can try out diversity in their own installations, since
the main obstacle now is the lack of popular off-
the-shelf “middleware” packages for data replica-
tion with diverse SQL servers. This would also in-
clude implementing a mechanism of maintaining
(adding/removing) rephrasing rules as add-on com-
ponents in the middleware.

Acknowledgment

This work has been supported in part by the Inter-

disciplinary Research Collaboration in Dependability
(DIRC) project funded by the U.K. Engineering and
Physical Sciences Research Council (EPSRC). Authors
would like to acknowledge the anonymous reviewers
for the thoughtful comments and useful suggestions.

Bibliography

1. Gashi, I., Popov, P., Strigini, L. Fault diversity among off-
the-shelf SQL database servers in DSN'04, 2004, Florence,
Italy, IEEE Computer Society Press p. 389-398.

2. Popov, P., et al. Software Fault-Tolerance with Off-the-
Shelf SQL Servers in ICCBSS'04, 2004, Redondo Beach,
CA USA, Springer p. 117-126.

3. Popov, P., et al. Protective Wrapping of OTS Components
in 4th ICSE Workshop on Component-Based Software En-

gineering: Component Certification and System Predic-

tion, 2001, Toronto
4. Ammann, P.E. and J.C. Knight, Data Diversity: An Ap-
proach to Software Fault Tolerance, IEEE Transactions on
Computers, 1988, C-37(4), p. 418-425.

5. TPC, TPC Benchmark C, Standard Specification, Version
5.0. 2002 http://www.tpc.org/tpcc/.

6. Patiño-Martinez, M., Jiménez-Peris, R., Kemme, B., and
Alonso, G., MIDDLE-R: Consistent database replication

at the middleware level, ACM Transactions on Computing
Systems, 2005, 23(4), p. 375-423.

7. Bernstein, P.A., V. Hadzilacos, and N. Goodman, Concur-
rency Control and Recovery in Database Systems. 1987,
Reading, Mass.: Addison-Wesley. 370.

8. Jimenez-Peris, R., M. Patino-Martinez, G. Alonso, and B.
Kemme, Are Quorums an Alternative for Data Replica-
tion?, ACM Transactions on Database Systems, 2003,
28(3), p. 257-294.

9. Gashi, I., Popov, P., Stankovic, V., Strigini, L., On De-
signing Dependable Services with Diverse Off-The-Shelf

SQL Servers, in Architecting Dependable Systems II, R. de
Lemos, C. Gacek, A. Romanovsky (Eds). 2004, Springer-
Verlag. p. 191-214.

10. EnterpriseDB, EnterpriseDB. 2006
http://www.enterprisedb.com/.

11. Janus-Software, Fyracle. 2006 http://www.janus-
software.com/fb_fyracle.html.

12. Gray, J. Why do computers stop and what can be done

about it? in 6th International Conference on Reliability
and Distributed Databases, 1987

13. Tso, K.S. and A. and Avizienis. Community Error Re-
covery in N-Version Software: A Design Study with Ex-

perimentation in FTCS-17, Pittsburgh, Pennsylvania, July
6-8, 1987 p. 127-133.

14. Sutter, H., SQL/Replication Scope and Requirements
document, in ISO/IEC JTC 1/SC 32 Data Management and

Interchange WG3 Database Languages. 2000. p. 7
15. Gashi, I., Rephrasing Rules for SQL servers. 2006
http://www.csr.city.ac.uk/people/ilir.gashi/Bugs/.

16. Gashi, I., Tables containing known bug scripts of Fire-
bird 1.0 and PostgreSQL 7.2. 2005
http://www.csr.city.ac.uk/people/ilir.gashi/Bugs/.

17. Gashi, I., Tables containing known bug scripts of Inter-
base, PostgreSQL, Oracle and MSSQL. 2003
http://www.csr.city.ac.uk/people/ilir.gashi/DSN/.

18. Lin, Y., Kemme, B. et al., Middleware based Data Rep-

lication providing Snapshot Isolation in ACM SIGMOD

Int. Conf. on Management of Data, 2005, Baltimore,
Maryland, USA, ACM Press p. 419-430.

