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BAYESIAN ESTIMATION OF DYNAMIC DISCRETE
CHOICE MODELS

BY SUSUMU IMAI, NEELAM JAIN, AND ANDREW CHING1

We propose a new methodology for structural estimation of infinite horizon dynamic
discrete choice models. We combine the dynamic programming (DP) solution algo-
rithm with the Bayesian Markov chain Monte Carlo algorithm into a single algorithm
that solves the DP problem and estimates the parameters simultaneously. As a result,
the computational burden of estimating a dynamic model becomes comparable to that
of a static model. Another feature of our algorithm is that even though the number of
grid points on the state variable is small per solution-estimation iteration, the number
of effective grid points increases with the number of estimation iterations. This is how
we help ease the “curse of dimensionality.” We simulate and estimate several versions
of a simple model of entry and exit to illustrate our methodology. We also prove that
under standard conditions, the parameters converge in probability to the true posterior
distribution, regardless of the starting values.

KEYWORDS: Bayesian estimation, dynamic programming, discrete choice models,
Markov chain Monte Carlo.

1. INTRODUCTION

STRUCTURAL ESTIMATION OF DYNAMIC DISCRETE CHOICE (DDC) models has
become increasingly popular in empirical economics. Examples include Keane
and Wolpin (1997) on labor economics, Erdem and Keane (1996) on market-
ing, Imai and Krishna (2004) on crime, and Rust (1987) on empirical indus-
trial organization. Structural estimation of DDC models is appealing because
it captures the dynamic forward-looking behavior of individuals. This is im-
portant in understanding agents’ behavior in various settings. For example, in
the labor market, individuals carefully consider future prospects when they de-
cide whether to change jobs. Moreover, since structural estimation allows us to
obtain estimates of parameters that have economic interpretations, based on
these interpretations and the solution of the model, we can assess the effect of
fundamental changes in policy regimes by simply changing the estimated value
of “policy” parameters and simulating the model. However, one major obsta-
cle in adopting the structural estimation method has been its computational
burden, which is mainly due to the following two reasons.

First, the likelihood or the moment conditions are based on the explicit so-
lution of a dynamic programming (DP) model. For instance, solving an infinite

1We are very grateful to the editor and the anonymous referees for insightful comments.
Thanks also go to Chris Ferrall, Chris Flinn, Wesley Hartmann, Mike Keane, Justin McCrary,
Andriy Norets, Matthew Osborne, Peter Rossi, John Rust, and seminar participants at the UIUC,
NYU, Ohio State University, University of Kansas, University of Michigan, University of Min-
nesota, SBIES, 2006 Quantitative Marketing and Economics Conference, and 2005 Econometrics
Society World Congress for helpful comments on the earlier draft of the paper. We also thank
SSHRC and FQRSC for financial support. All remaining errors are our own.
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horizon DP problem requires us to obtain the fixed point of a Bellman opera-
tor for each possible point in the state space. Second, the possible number of
points in the state space increases exponentially with the dimensionality of the
state space. This is commonly referred to as the curse of dimensionality, which
makes the estimation of DDC models infeasible even in a relatively simple
setting.

In this paper, we propose an estimator that helps overcome the two compu-
tational difficulties of structural estimation of infinite horizon DP models. Our
estimator is based on the Bayesian Markov chain Monte Carlo (MCMC) esti-
mation algorithm, where we simulate the posterior distribution by repeatedly
drawing parameters from a pseudo-Markov chain until convergence. In con-
trast to the conventional MCMC estimation approach, we combine the Bell-
man equation step and the MCMC algorithm step into a single hybrid solution-
estimation step, which we iterate until convergence. The key innovation in our
algorithm is that, for a given state space point, we only need to conduct a single
iteration of the Bellman operator during each estimation step. Since evaluat-
ing a Bellman operator once is as computationally demanding as computing a
static model, the computational burden of estimating a DP model is in order
of magnitude comparable to that of estimating a static model.2 This is in con-
trast to conventional estimation methods that “estimate” the model only after
solving the DP problem.

Our estimation method is related to the algorithm advocated by Aguirre-
gabiria and Mira (2002) and others, which is an extension of the method devel-
oped by Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith (1994).3
However, their estimation algorithms, which are not based on the full solution
of the model, have difficulties dealing with unobserved heterogeneity. This is
because they essentially recover the value function from the observed choices
of individuals at each point of the state space by conditioning on observed state
variables. In contrast, our estimation algorithm is based on the full solution of
the DP problem and, therefore, it can accommodate a rich specification of both
observed and unobserved heterogeneity.4

2Ferrall (2005) also considered an optimal mix of model solution and estimation algorithms.
Arcidiacono and Jones (2003) adopted the expectation–maximization (EM) algorithm to esti-
mate different parts of a dynamic model with latent types sequentially rather than jointly. Using
a Monte Carlo experiment, they showed that their method could potentially result in significant
computational gain compared with the full information maximum likelihood.

3See also Aguirregabiria and Mira (2007) and Arcidiacono and Miller (2009) for extensions of
the work of Hotz et al. to estimate models with dynamic games and finite mixture models.

4In contrast to Ackerberg (2004), where the entire DP problem needs to be solved for each
parameter simulation, in our algorithm, the Bellman operator needs to be evaluated only once
for each parameter value. Furthermore, there is an additional computational gain because our
pseudo-MCMC algorithm guarantees that, except for the initial burn-in simulations, most of the
parameter draws are from a distribution close to the true posterior distribution. In Ackerberg’s
case, the initial parameter simulation and, therefore, the DP solution would be inefficient because
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We avoid the computational burden of the full solution by approximating
the expected value function (that is, the emax function) at a state space point
using the average of value functions of past iterations in which the parameter
vector is “close” to the current parameter vector and the state variables are
either exactly the same as the current state variables (if the state space is finite)
or close to the current state variables (if the state space is continuous). This
method of updating the emax function is similar to Pakes and McGuire (2001)
except in the important respect that we also include the parameter vector in
determining the set of iterations over which averaging occurs.

Note that the probability function that determines the next period parameter
values is not a Markov transition function because our updated emax function
depends on the past simulations of parameter vectors and value functions. We
prove that under mild conditions, the probability function converges to the
true MCMC transition function as the number of iterations of our Bayesian
MCMC algorithm increases. That is, as the number of iterations increases, our
algorithm becomes closer to the standard MCMC algorithm.

Our algorithm also helps in the “curse of dimensionality” situation where
the dimension of the state space is high. In most DP solution exercises involv-
ing a continuous state variable, the state space grid points, once determined,
are fixed over the entire algorithm, as in Rust (1997). In our Bayesian DP
algorithm, the state space grid points do not have to be the same for each
solution-estimation iteration. In fact, by varying the state space grid points
at each solution-estimation iteration, our algorithm allows for an arbitrarily
large number of state space grid points by increasing the number of iterations.
This is how our estimation method reduces the computational burden in high-
dimensional cases.

We demonstrate the performance of our algorithm by estimating a dynamic,
infinite horizon model of firm entry and exit choice with observed and unob-
served heterogeneity. The unobserved random effects coefficients are assumed
to have a continuous distribution function, and the observed characteristics are
assumed to be continuous as well. It is well known that for a conventional dy-
namic programming simulated maximum likelihood estimation strategy, this
setup imposes a severe computational burden. The computational burden is
due to the fact that during each estimation step, the DP problem has to be
solved for each firm hundreds of times. Because of the observed heterogeneity,
each firm has a different parameter value. Furthermore, because the random
effects term has to be integrated out numerically via Monte Carlo integration,
for each firm, one has to simulate the random effects parameter hundreds of
times, and for each simulation, solve for the DP problem. This is why most

at the initial stage, true parameter distribution is not known. On the other hand, if prior to the
estimation, one has a fairly accurate prior about the location of the parameter estimates, and
thus the model needs to be solved at only very few parameter values up front, then the algorithm
could be computationally efficient.
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practitioners of structural estimation follow Heckman and Singer (1984), and
assume discrete distributions for random effects and only allow for discrete
types as observed characteristics.

We show that the computational burden of the estimation exercise above,
using our algorithm, becomes quite similar in difficulty to the Bayesian esti-
mation of a static discrete choice model with random effects (see McCulloch
and Rossi (1994) for details). Indeed, through simulation-estimation exercises,
we show that the computing time for our estimation exercise is around five
times as fast and significantly more accurate than the conventional random ef-
fects simulated maximum likelihood estimation algorithm. In addition to the
experiments, we formally prove that under very mild conditions, the distribu-
tion of parameter estimates simulated from our solution-estimation algorithm
converges in probability to the true posterior distribution as we increase the
number of iterations.

Our algorithm shows that the Bayesian methods of estimation, suitably mod-
ified, can be used effectively to conduct full-solution-based estimation of struc-
tural DDC models. Thus far, application of Bayesian methods to estimate such
models has been particularly difficult. The main reason is that the solution of
the DP problem, that is, the repeated calculation of the Bellman operator,
is computationally so demanding that the MCMC, which typically involves far
more iterations than the standard maximum likelihood (ML) routine, becomes
infeasible quickly with a relatively small increase in model complexity. One of
the few examples of Bayesian estimation is Lancaster (1997). He successfully
estimated the equilibrium search model where the Bellman equation can be
transformed into an equation where all the information on optimal choice of
the individual can be summarized in the reservation wage and, hence, there is
no need to solve the value function. Another line of research is Geweke and
Keane (2000) and Houser (2003), who estimated the DDC model without solv-
ing the DP problem. In contrast, our paper accomplishes Bayesian estimation
based on full solution of the infinite horizon DP problem by simultaneously
solving for the DP problem and iterating on the pseudo-MCMC algorithm.
The difference turns out to be important because their estimation algorithms
can only accommodate limited specification of unobserved heterogeneity.5

Our estimation method makes Bayesian application to DDC models not
only computationally feasible, but possibly even superior to the existing (non-
Bayesian) methods, by reducing the computational burden of estimating a dy-
namic model to that of estimating a static one. Furthermore, the usually cited

5Since the working paper version of this paper has been circulated, several authors have used
the Bayesian DP algorithm and made some important extensions. Osborne (2007) applied the
Bayesian DP algorithm to the estimation of dynamic discrete choice model with random effects
and estimated the dynamic consumer brand choice model. Norets (2007) applied it to the DDC
model with serially correlated state variables. Also see Brown and Flinn (2006) for a classical
econometric application of the idea.
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advantages of Bayesian estimation over classical estimation methods apply
here as well. That is, first, the conditions for the convergence of the pseudo-
MCMC algorithm are in general weaker than the conditions for the global
maximum of the ML estimator, as we show in this paper. Second, in MCMC,
standard deviations of parameter estimates are simply the sample standard er-
rors of parameter draws, whereas in ML estimation, standard errors have to be
computed, usually either by inverting the numerically calculated information
matrix, which is valid only in a large sample world, or by repeatedly bootstrap-
ping and reestimating the model, which is computationally demanding.

The organization of the paper is as follows. In Section 2, we present a gen-
eral version of the DDC model and discuss conventional estimation methods
as well as our Bayesian DP algorithm. In Section 3, we state theorems and
corollaries on the convergence of our algorithm under some mild conditions.
In Section 4, we present a simple model of entry and exit. In Section 5, we
present the simulation and estimation results of several experiments applied
to the model of entry and exit. Finally, in Section 6, we conclude and briefly
discuss the future direction of this research. Appendices are provided as a sup-
plement on the Econometrica website (Imai, Jain, and Ching (2009)). Appen-
dix A contains some results of the simulation-estimation exercises of the basic
model and the random effects model. Appendix B contains all proofs. Appen-
dix C contains plots of the MCMC estimation of the random effects model.

2. THE FRAMEWORK

We estimate an infinite horizon dynamic model of a forward-looking agent.
Let θ be the J-dimensional parameter vector. Let S be the set of state space
points and let s be an element of S. We assume that S is finite. Let A be the set
of all possible actions and let a be an element of A. We assume A to be finite
to study discrete choice models.

Let R(s�a� εa� θ) be the current period return function of choosing action a,
where s is the state variable and ε is a vector whose ath element εa is a ran-
dom shock to current returns to choice a. We further assume that ε follows a
multivariate distribution F(ε|θ) with density function dF(ε�θ) and is indepen-
dent over time. We assume that the transition probability of next period state
s′, given current period state s and action a, is f (s′|s� a�θ), where θ is the para-
meter vector. Then the time invariant value function can be defined to be the
maximum of the discounted sum of expected revenues as

V (st� εt� θ)≡ max
{at �at+1����}

E

[ ∞∑
τ=t

βτR
(
sτ� aτ� εaτ � θ

)∣∣∣st� εt]�
where β is the discount factor. This value function is known to be the unique
solution to the Bellman equation

V (s� ε�θ) = max
a∈A

{
R(s�a� εa� θ)+βEs′�ε′ [V (s′� ε′� θ)|s� a]}�(1)
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where s′ is the next period’s state variable. The expectation is taken with re-
spect to the next period shock ε′ and the next period state s′.

If we define V(s�a� εa� θ) to be the expected value of choosing action a, then

V(s�a� εa� θ)=R(s�a� εa� θ)+βEs′�ε′ [V (s′� ε′� θ)|s� a]

and the value function can be written as

V (s� ε�θ) = max
a∈A

V(s�a� εa� θ)�

We assume that the data set for estimation includes variables which correspond
to state vector s and choice a in our model but the choice shock ε is not ob-
served. That is, the observed data are YNd�Td ≡ {sdi�τ� ad

i�τ�G
d
i�τ}N

d�Td

i=1�τ=1, where Nd

is the number of firms and Td is the number of time periods.6 Furthermore,

ad
i�τ = arg max

a∈A
V(sdi�τ� a� εa� θ)�

Gd
i�τ =

{
R
(
sdi�τ� a

d
i�τ� εadi�τ � θ

)
� if (sdi�τ� a

d
i�τ) ∈Ψ ,

0� otherwise.

The current period return is observable in the data only when the pair of
state and choice variables belongs to the set Ψ . In the entry–exit problem of
firms that we discuss later, profit of a firm is only observed when the incumbent
firm stays in. In this case, Ψ is a set whose state variable is being an incumbent
(and the capital stock) and the choice variable is staying in.

Let π(·) be the prior distribution of θ. Furthermore, let L(YNd�Td |θ) be
the likelihood of the model, given the parameter θ and the value function
V (·� ·� θ), which is the solution of the DP problem. Then, we have the posterior
distribution function of θ:

P(θ|YNd�Td )∝ π(θ)L(YNd�Td |θ)�(2)

Let ε ≡ {εi�τ}Nd�Td

i=1�τ=1. Because ε is unobserved to the econometrician, the likeli-
hood is an integral over it. That is, if we define L(YNd�Td |ε�θ) to be the likeli-
hood conditional on (ε�θ), then

L(YNd�Td |θ) =
∫

L(YNd�Td |ε�θ)dFε(ε|θ)�

6We denote any variables with d superscript to be the data.
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The value function enters into the likelihood through choice probability, which
is a component of the likelihood. That is,7

P[a= ad
i�τ|sdi�τ� V �θ] = Pr

[
ε :ad

i�τ = arg max
a∈A

(
R(sdi�τ� a� εa� θ)(3)

+βEs′�ε′ [V (s′� ε′� θ)|sdi�τ� a])]�
Below we briefly describe the conventional estimation approaches and then
the Bayesian dynamic programming algorithm we propose.

2.1. The Maximum Likelihood Estimation

The conventional ML estimation procedure of the DP problem consists of
two main steps. First is the solution of the DP problem and the subsequent
construction of the likelihood, which is called the inner loop; second is the esti-
mation of the parameter vector, which is called the outer loop.

DP Step (Inner Loop)

Given parameter vector θ, we solve for the fixed point V (·� ·� θ) of the Bell-
man operator Tθ:

TθV(s� ε�θ) ≡ max
a

{
R(s�a� εa� θ)+βEs′�ε′ [V (s′� ε′� θ)|s� a]}�

This typically involves several steps.
Step a. The random choice shock ε is drawn a fixed number of times, say,

Mε, generating ε(m)�m = 1� � � � �Mε. At iteration 0, we let the expected value
function be 0, that is, Eε′ [V (0)(s� ε′� θ)] = 0 for every s ∈ S. Then we set initial
guess of the value function at iteration 1 to be the current period payoff. That
is,

V (1)
(
s� ε(m)� θ

)= max
a∈A

{
R
(
s� a� ε(m)

a � θ
)}

for every s ∈ S, ε(m).
Step b. Assume we are at iteration t of the Bellman operator. Given s ∈ S

and ε(m), the value of every choice a ∈ A is calculated. For the emax function,
we use the approximated expected value function Êε′ [V (t−1)(s′� ε′� θ)] com-
puted at the previous iteration t − 1 for every s′ ∈ S. Hence, the iteration t

7Notice that it is not necessary that we have a random choice shock εa for each choice a. What
is important for the feasibility of estimation is that the likelihood, which is based on the choice
probability P[a = ad

i�τ|sdi�τ� V �θ], is well defined and bounded for all {ad
i�τ� s

d
i�τ}, and for uniformly

bounded V and θ ∈Θ�
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value of choice a is

V (t)
(
s� a� ε(m)

a � θ
)

=R
(
s� a� ε(m)

a � θ
)+β

∑
s′

Êε′
[
V (t−1)(s′� ε′� θ)

]
f (s′|s� a�θ)�

Then we compute the value function, V (t)(s� ε(m)� θ) = maxa∈A{V (t)(s� a�
ε(m)
a � θ)}� This calculation is done for every s ∈ S and ε(m), m= 1� � � � �Mε.
Step c. The approximation for the expected value function is computed by

taking the average of value functions over simulated choice shocks as

Êε′
[
V (t)(s′� ε′� θ)

]≡ 1
Mε

Mε∑
m=1

V (t)
(
s′� ε(m)� θ

)
�(4)

Steps b and c have to be repeated for every state space point s ∈ S. Further-
more, the two steps have to be repeated until the value function converges.
That is, for a small δ > 0, |V (t)(s� ε(m)� θ) − V (t−1)(s� ε(m)� θ)| < δ for all s ∈ S
and m= 1� � � � �Mε.

Likelihood Construction

The important increment of the likelihood is the conditional choice prob-
ability P[a = ad

i�τ|sdi�τ� V �θ] given the state sdi�τ, value function V and the para-
meter θ. For example, suppose that the per period return function is specified
as

R(s�a� εa� θ)= R̂(s� a�θ)+ εa�

where R̂(s� a�θ) is the deterministic component of the per period return func-
tion. Also, denote

V̂(s�a�θ) = R̂(s� a�θ)+β
∑
s′

Êε′ [V (s′� ε′� θ)]f (s′|s� a�θ)

to be the deterministic component of the value of choosing action a. Then

P[ad
i�τ|sdi�τ� V �θ]

= P
[
εa − εadi�τ ≤ V̂(s�ad

i�τ� θ)− V̂(s�a�θ); ∀a 	= ad
i�τ|sdi�τ� V �θ

]
�

which becomes a multinomial probit specification when the error term ε is
assumed to follow a joint normal distribution.8

8As long as the choice probability is well defined, the error term does not have to be additive.
The dynamic discrete choice model is essentially a multinomial discrete choice model, where the
right hand side includes future expected value functions.
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Likelihood Maximization Routine (Outer Loop)

Suppose we have J parameters to estimate. In a typical ML estimation rou-
tine, where one uses the Newton hill climbing algorithm, at iteration t, like-
lihood is derived under the original parameter vector θ(t) and under the per-
turbed parameter vector θ(t) + �θj , j = 1� � � � � J. The perturbed likelihood is
used together with the original likelihood to derive the new direction of the
hill climbing algorithm. This is done to derive the parameters for the iteration
t + 1, θ(t+1). That is, during a single ML estimation routine, the DP problem
needs to be solved in full J + 1 times. Furthermore, often the ML estimation
routine has to be repeated many times until convergence is achieved. During a
single iteration of the maximization routine, the inner loop algorithm needs to
be executed at least as many times as the number of parameters plus 1. Since
the estimation requires many iterations of the maximization routine, the entire
algorithm is usually computationally extremely burdensome.

2.2. The Conventional Bayesian MCMC Estimation

A major computational issue in the Bayesian estimation method is that the
posterior distribution, given by equation (2), is a high-dimensional and com-
plex function of the parameters. Instead of directly simulating the posterior,
we adopt the MCMC strategy and construct a transition density from current
parameter θ to the next iteration parameter θ′� f (θ�θ′), which satisfies, among
other more technical conditions, the equality

P(θ|YNd�Td )=
∫

f (θ�θ′)P(θ′|YNd�Td )dθ′�

where P(θ|YNd�Td ) is the posterior distribution of θ given YNd�Td . From the
transition density, we simulate the sequence of parameters {θ(s)}ts=1, which is
known to converge to the correct posterior. The conventional Bayesian esti-
mation method applied to the DDC model proceeds in the following two main
steps.9

Metropolis–Hastings (M–H) Step

The M–H algorithm is a Markov chain simulation algorithm used to draw
from a complex target distribution.10 In our case, the target density is propor-
tional to π(θ)L(YNd�Td |θ). Given θ(t), the parameter vector at iteration t, we
draw the new parameter vector θ(t+1) as follows: First, we draw the candidate

9See Tierney (1994) and Tanner and Wong (1987) for details on Bayesian estimation.
10See Robert and Casella (2004) for more details on the M–H algorithm.
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parameter vector θ∗(t) from a candidate generating density (or proposal den-
sity) q(θ(t)� θ∗(t)). Then we accept θ∗(t), that is, set θ(t+1) = θ∗(t) with probability,

λ
(
θ(t)� θ∗(t))= min

{
π(θ∗(t))L(YNd�Td |θ∗(t))q(θ∗(t)� θ(t))

π(θ(t))L(YNd�Td |θ(t))q(θ(t)� θ∗(t))
�1
}
�(5)

and we reject θ∗(t), that is, set θ(t+1) = θ(t) with probability 1 − λ.
Since the likelihood is a function of the value function, the DP problem

needs to be solved for each θ∗(t). Hence, similar to the maximum likelihood
estimation procedure, one can interpret the M–H step as the outer loop of the
estimation algorithm and interpret the DP step involved in constructing the
likelihood for each candidate parameter vector as the inner loop. This DP step
is the same as the one described in the previous subsection. The full-solution-
based Bayesian MCMC method turns out to be even more burdensome com-
putationally than the full-solution-based ML method because MCMC typically
requires a lot more iterations than the ML routine.

We next present our algorithm for estimating the parameter vector θ� We call
it the Bayesian dynamic programming (Bayesian DP) algorithm. The key inno-
vation of our algorithm is that we solve the DP problem and estimate the para-
meters simultaneously rather than sequentially as in the conventional methods
described above.

2.3. The Bayesian Dynamic Programming Estimation

The main difference between the Bayesian DP algorithm and the conven-
tional algorithm is that during each estimation step, we do not solve for the
fixed point of the Bellman operator. In fact, during each modified M–H step,
we iterate the Bellman operator only once. This operator can be expressed as

T (t)
θ V (·� ·� θ)

≡ max
a

{
R(s�a� εa� θ)+β

∑
s′

Ê(t)
ε′ [V (s′� ε′� θ)]f (s′|s� a�θ)

}
�

Our Bellman operator T (t)
θ depends on t because our approximation of the

expected value function, Ê(t)
ε′ , depends on t. In conventional methods, this

approximation is given by equation (4). In contrast, we approximate it by
averaging over a subset of past iterations. Let H(t) ≡ {ε(s)� θ∗(s)� V (s)}ts=1 be
the history of shocks, candidate parameters,11 and value functions up to it-
eration t. Let V (t)(s� a� ε(t)a � θ∗(t)� H(t−1)) be the value of choice a and let
V (t)(s� ε(t)� θ∗(t)� H(t−1)) be the value function derived at iteration t of our

11We do not use past history of θ(s); hence it is not included in H(t).
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solution–estimation algorithm. Then the value function and the approxima-
tion Ê(t)

ε′ [V (s′� ε′� θ)|H(t−1)] for the expected value function Eε′ [V (s′� ε′� θ)] at
iteration t are defined recursively as

Ê(t)
ε′
[
V (s′� ε′� θ)|H(t−1)

]
(6)

≡
N(t)∑
n=1

V (t−n)
(
s′� ε(t−n)� θ∗(t−n)� H(t−n−1)

) Kh(θ− θ∗(t−n))
N(t)∑
k=1

Kh(θ− θ∗(t−k))

�

V (t−n)
(
s� a� ε(t−n)

a � θ∗(t−n)� H(t−n−1)
)

=R
(
s� a� ε(t−n)

a � θ∗(t−n)
)

+β
∑
s′

Ê(t−n)
ε′

[
V
(
s′� ε′� θ∗(t−n)

)∣∣H(t−n−1)
]
f (s′|s� a�θ)�

V (t−n)
(
s� ε(t−n)� θ∗(t−n)� H(t−n−1)

)
= max

a∈A
V (t−n)

(
s� a� ε(t−n)

a � θ∗(t−n)� H(t−n−1)
)
�

where Kh(·) is a multivariate kernel with bandwidth h> 0.
The approximated expected value function given by equation (6) is the

weighted average of value functions of N(t) most recent iterations. The sam-
ple size of the average, N(t), increases with t, that is, N(t) → ∞ as t → ∞.
Furthermore, we let t − N(t) → ∞ as t → ∞. The weights are high for the
value functions at iterations with parameters close to the current parameter
vector θ(t). This is similar to the idea of Pakes and McGuire (2001), where the
expected value function is the average of the past N iterations. In their algo-
rithm, averages are taken only over the value functions that have the same state
space point as the current state space point s. In our case, averages are taken
over the value functions that have the same state as the current state s as well
as parameters that are close to the current parameter θ(t).

We now describe the complete Bayesian DP algorithm at iteration t. Sup-
pose that {ε(l)}tl=1, {θ∗(l)}tl=1 , and {V (l)(s� ε(l)� θ∗(l)� H(l−1))}tl=1 are given for all
discrete s ∈ S. Then we update the value function and the parameters as fol-
lows.

Modified M–H Step12

We draw the new parameters θ(t+1) as follows: First, we draw the candi-
date parameter vector θ∗(t) from the proposal density q(θ(t)� θ∗(t)). Then we

12We are grateful to Andriy Norets for pointing out a flaw in the Gibbs sampling scheme
adopted in the earlier draft. We follow Norets (2007) and Osborne (2007), and adopt the modi-
fied Metropolis–Hastings algorithm for the MCMC sampling. Notice that in a linear model (see
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accept θ∗(t), that is, set θ(t+1) = θ∗(t) with probability λ(θ(t)� θ∗(t)|H(t−1))� defined
in the same way as before, in equation (5), and we reject θ∗(t), that is, we set
θ(t+1) = θ(t) with probability 1 − λ.

Modified DP Step

As explained in the conventional Bayesian MCMC algorithm, during each
Metropolis–Hastings step, we need to update the expected value function
Ê(t)

ε′ [V (·� ·� ·)|H(t−1)] for parameters θ(t) and θ∗(t). To do so for all s ∈ S, without
iterating on the Bellman operator until convergence, we follow equation (6).
For use in future iterations, we simulate the value function by drawing ε(t) to
derive V (t)(s� a� ε(t)a � θ∗(t)� H(t−1)) and V (t)(s� ε(t)� θ∗(t)� H(t−1))�

We repeat these two steps until the sequence of parameter simulations con-
verges to a stationary distribution. In our algorithm, in addition to the DP and
Bayesian MCMC methods, nonparametric kernel techniques are also used to
approximate the value function. Notice that the convergence of kernel-based
approximation is not based on the large sample size of the data, but on the
number of Bayesian DP iterations. Moreover, the Bellman operator is evalu-
ated only once during each estimation iteration. Hence, the Bayesian DP algo-
rithm avoids the computational burden of solving for the DP problem during
each estimation step, which involves repeated evaluation of the Bellman oper-
ator.13

It is important to note that the modified Metropolis–Hastings algorithm is
not a Markov chain.14 This is because it involves value functions calculated in
past iterations. Hence, convergence of our algorithm is by no means trivial.

McCulloch and Rossi (1994) for an example), the equations are

zit =Ritγ + uit� uit ∼N(0�Σ)�

yijt =
{

1� if zijt ≥ max{zit},
0� otherwise.

Then, once zit is derived by data augmentation, the first equation is linear in parameter γ and
thus can be estimated by linear Gibbs sampling. However, in our case,

zit =Ritγ +βEV (Rit+1|Rit� θ)+ uit� uit ∼N(0�Σ)�

where EV (Rit+1|Rit� θ) is a nonlinear function of the state variable Rit and, thus, linear Gibbs
sampling algorithms cannot be applied.

13Both Osborne (2007) and Norets (2007) approximated the expected value function using
the value functions computed in the past iterations evaluated at the past parameter draws θ(t−n).
Here, we use the value functions evaluated at the past proposal parameter draws θ∗(t−n). We chose
to do so because given θ(t)� it is easier to control the random movement of θ∗(t) than the random
movement of θ(t+1), since θ∗(t) is drawn from a known distribution function. This simplifies both
the proofs and the empirical example. By keeping the conditional variance of the proposal density
given θ(t) small, we can guarantee that the invariant distribution of θ∗(t) is not very different from
that of θ�

14We are grateful to Peter Rossi for emphasizing this.
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In the next section, we state theorems and corollaries which show that under
some mild assumptions, the distribution of the parameters generated by our
algorithm converges to the true posterior in probability. All proofs are in Ap-
pendix B.

3. THEORETICAL RESULTS

In this section, we prove the convergence of the Bayesian DP algorithm in
the basic model. We then present the random effects model and the continuous
state space model in two subsections. To facilitate the proof, we modify the DP
step slightly to calculate the expected value function. That is, we simulate the
value function by drawing ε(t) to derive

V (t)
(
s� a� ε(t)a � θ∗(t)� H(t−1)

)
= R̃

(
s� a� ε(t)a � θ∗(t))+β

∑
s′

Ê(t)
ε′
[
V
(
s′� ε′� θ∗(t))∣∣H(t−1)

]
f (s′|s� a�θ)�

where

R̃
(
s� a� ε(t)a � θ∗(t))= min

{
max

{
R
(
s� a� ε(t)a � θ∗(t))�−MR

}
�MR

}
for a large positive MR. This makes the current period return function used in
equation (1) uniformly bounded, which simplifies the proof. This modification
does not make any difference in practice because MR can be set arbitrarily
large. Let V denote the solution of the Bellman equation:15

V (s� ε�θ) = max
{
R̃(s� a� εa� θ)+βEs′�ε′ [V (s′� ε′� θ)|s� a]}�

Next we show that under some mild assumptions, our algorithm generates a
sequence of parameters θ(1)� θ(2)� � � � that converges in probability to the correct
posterior distribution.

ASSUMPTION 1: Parameter space Θ ⊆ RJ is compact, that is, closed and
bounded in the Euclidean space RJ . The proposal density q(θ� ·) is continuously
differentiable, strictly positive, and uniformly bounded in the parameter space
given any θ ∈ Θ.16

15Given the expected value function, per period return in the likelihood construction is set to
be R not R̃� See equation (3).

16Compactness of the parameter space is a standard assumption used in proving the conver-
gence of the MCMC algorithm. It is often not necessary but simplifies the proofs. An example of
the proposal density that satisfies Assumption 1 is the multivariate normal density, truncated to
only cover the compact parameter space.
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ASSUMPTION 2: For any s ∈ S, a ∈ A, and ε, θ ∈ Θ, |R̃(s� a� εa� θ)| <MR for
some MR > 0. Also, R̃(s� a� ·� θ) is a nondecreasing function in ε and R̃(s� a� ·� ·)
satisfies the Lipschitz condition in terms of ε and θ. Also, the density function
dF(ε�θ) and the transition function f (·|·� a� ·) given a satisfy the Lipschitz con-
dition.

ASSUMPTION 3: β is known17 and β< 1.

ASSUMPTION 4: For any s ∈ S, ε, and θ ∈ Θ, V (0)(s� ε�θ) < MI for some
MI > 0. Furthermore, V (0)(s� ·� ·) also satisfies the Lipschitz condition in terms
of ε and θ.

Assumptions 2, 3, and 4 jointly make V (t)(s� ε�θ) and hence Ê(t)
ε′ [V (s′� ε′� θ)],

t = 1� � � � � uniformly bounded, measurable, and continuous, and satisfy the
Lipschitz condition as well.

ASSUMPTION 5: π(θ) is positive and bounded for any θ ∈ Θ. Similarly, for any
θ ∈ Θ and V uniformly bounded, L(YNd�Td |θ�V (·� θ)) > 0 and is bounded and
uniformly continuous in θ ∈ Θ.

Define the sequence t(l), Ñ(l) as follows. For some s > 0, define t(1) = s
and Ñ(1) = N(s). Let t(2) be such that t(2) − N(t(2)) = t(1) + 1. Such t(2)
exists from the assumption on N(s) stated in Assumption 6. Also, let Ñ(2) =
N(t(2)). Similarly, for any l > 2, let t(l+1) be such that t(l+1)−N(t(l+1))=
t(l)+ 1 and let Ñ(l + 1)= N(t(l + 1)).

ASSUMPTION 6: N(t) is nondecreasing in t, increases at most by one for a unit
increase in t, and N(t) → ∞. Furthermore, t−N(t) → ∞ and there exists a finite
constant A> 0 such that Ñ(l + 1) <AÑ(l) for all l > 1, and, for any l = 2� � � � �
N(t(l)+ 1)= N(t(l))+ 1.

An example of a sequence that satisfies Assumption 6 is t(l) ≡ s + (l+1)(l+2)
2 ,

Ñ(l) = l for l > 0, and N(t) = l + 1 for t(l) < t ≤ t(l + 1), l > 1.

ASSUMPTION 7: The bandwidth h is a nonincreasing function of N and
as N → ∞, h(N) → 0 and Nh(N)9J → ∞. Further, h(N) is constant for
N(t(l)) < N ≤N(t(l + 1)).

ASSUMPTION 8: Kh(·) is a multivariate kernel with bandwidth h > 0. That is,
Kh(z) = (1/hJ)K(z/h)� where K is a nonnegative, continuous, bounded real

17The assumption that β is known may not be necessary but greatly simplifies the proofs. How-
ever, we show later that β can be successfully estimated as long as its prior is restricted to be
strictly less than 1.
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function which is symmetric around 0 and integrates to 1, that is,
∫
K(z)dz = 1.

Furthermore,
∫
zK(z)dz <∞ and

∫
|z|>1/h K(z)dz ≤Ah4J for some positive con-

stant A� where for a vector z, |z| = supj=1�����J |zj|, and K has an absolutely inte-
grable Fourier transform.

THEOREM 1: Suppose Assumptions 1–8 are satisfied for V (t), π, L, ε, and θ.
Then, the sequence of approximated expected value functions Ê(t)

ε′ [V (s′� ε′� θ)|
H(t−1)] converges to Eε′ [V (s′� ε′� θ)] in probability uniformly over s′ ∈ S, θ ∈ Θ as
t → ∞. Similarly, the sequence of value functions V (t)(s� ε�θ� H(t−1)) converges
to V (s� ε�θ) in probability uniformly over s, ε, andθ ∈Θ as t → ∞.

COROLLARY 1: Suppose Assumptions 1–8 are satisfied. Then λ(θ(t)� θ∗(t)|
H(t−1)) converges to λ(θ(t)� θ∗(t)) in probability uniformly in Θ.

THEOREM 2: Suppose Assumptions 1–8 are satisfied for V (t), t = 1� � � � � π, L,
ε, and θ. Then θ(t) converges to θ̃(t) in probability, where θ̃(t) is a Markov chain
generated by the Metropolis–Hastings algorithm with proposal density q(θ�θ(∗))
and acceptance probability function λ(θ�θ(∗)).

COROLLARY 2: The sequence of parameter simulations generated by the
Metropolis–Hastings algorithm with proposal density q(θ�θ∗) and acceptance
probability λ(θ�θ∗) converges to the true posterior in total variation norm. That
is,

lim
n→∞

∥∥∥∥∫ Kn(θ� ·)μ0(dθ)−μ

∥∥∥∥
TV

= 0

for arbitrary initial distribution μ0, where μ is the true posterior distribution and
Kn(θ� ·) is the transition kernel for n iterations.

By Corollary 2, we can conclude that the distribution of the sequence of pa-
rameters θ(t) generated by the Bayesian DP algorithm converges in probability
to the true posterior distribution.

To understand the basic logic of the proof of Theorem 1, suppose that para-
meter θ(t) stays fixed at a value θ∗ for all iterations t. Then equation (6) reduces
to

Ê(t)
ε′
[
V (s′� ε′� θ∗)|H(t−1)

]= 1
N(t)

N(t)∑
n=1

V (t−n)
(
s′� ε(t−n)� θ∗� H(t−n−1)

)
�

Then our algorithm boils down to a simple version of the machine learning
algorithm discussed by Pakes and McGuire (2001) and Bertsekas and Tsitsiklis
(1996). They approximated the expected value function by taking the aver-
age over all past value function iterations whose state space point is the same
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as the state space point s′. Bertsekas and Tsitsiklis (1996) discussed the con-
vergence issues and showed that under some assumptions, the sequence of
the value functions from the machine learning algorithm converges to the true
value function almost surely. The difficulty of the proofs lies in extending the
logic of the convergence of the machine learning algorithm to the framework
of estimation, where the parameter vector moves around as well. Our answer
to this issue is simple: for a parameter vector θ ∈ Θ at iteration t, we look at
the past iterations and use value functions at parameters θ∗(t−n) that are very
close to θ. Then the convergence is very similar to the case where the parame-
ter vector is fixed, as long as the number of past value functions used can be
made arbitrarily large. This is guaranteed by Assumption 1, since every neigh-
borhood in the compact parameter space Θ will be visited infinitely often. It is
important to note that for convergence of the value function, the estimation al-
gorithm does not have to be Markov. The only requirement is that during the
iteration, each neighborhood in Θ has a strictly positive probability of being
drawn.

3.1. Random Effects

Consider a model where, for a subset of parameters, each agent has a differ-
ent value θ̃i, which is randomly drawn from a density f (θ̃i|θ(1)). The parameter
vector of the model is θ ≡ (θ(1)� θ(2)), where θ(1) is the parameter vector for the
distribution of the random coefficients and θ(2) is the vector of other parame-
ters. The parameter vector of firm i is (θ̃i� θ(2)). Instead of explicitly integrating
the likelihood over θ̃i, we follow the commonly adopted and computationally
efficient procedure of treating each θ̃i as a parameter and drawing it from its
density. It is known (see McCulloch and Rossi (1994), Albert and Chib (1993),
and Chib and Greenberg (1996)) that instead of drawing the entire parameter
vector ({θ̃i}Nd

i=1� θ(1)� θ(2)) at once, it is often simpler to partition it into several
blocks and draw the parameters of each block separately given the other pa-
rameters. Here, we propose to draw them in the following three blocks. At
iteration t the blocks are

Block 1: Draw {θ̃(t+1)
i }Nd

i=1 given θ(t)
(1)� θ

(t)
(2)�

Block 2: Draw θ(t+1)
(1) given {θ̃(t+1)

i }Nd

i=1, θ(t)
(2)�

Block 3: Draw θ(t+1)
(2) given {θ̃(t+1)

i }Nd

i=1, θ(t+1)
(1) �

Below we describe in detail the algorithm at each block.

Block 1—Modified M–H Step for Drawing θ̃i

For firm i, we draw the new random effects parameters θ̃(t+1)
i as follows: We

set the proposal density as the distribution function of θ̃i, that is, f (θ̃i|θ(1)). No-
tice that the prior is a function of θ(1) and θ(2), and not of θ̃i. Hence for drawing
θ̃i given θ(1) and θ(2), the prior is irrelevant. Similarly, given θ(1), the likelihood
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increment of firms other than i is also irrelevant in drawing θ̃i. Therefore, we
draw θ̃i using the likelihood increment of firm i, which can be written as

Li

(
Yi�Td |(θ̃i� θ(2)

))
f
(
θ̃i|θ(1)

)
�

where

Li

(
Yi�Td |(θ̃i� θ(2)

))≡L
(
Yi�Td |(θ̃i� θ(2)

)
� V (t)

(·� ·� ·� θ̃i� θ(2)� H(t−1)
))
�

because the likelihood depends on the value function. Now, we draw the can-
didate parameter θ̃∗(t)

i from the proposal density f (θ̃∗(t)
i |θ(1)). Then we ac-

cept θ̃∗(t)
i , that is, set θ̃(t+1)

i = θ̃∗(t)
i with probability

λ1

(
θ(t)� θ̃∗(t)

i

∣∣H(t−1)
)

= min
{
Li(Yi�Td |(θ̃∗(t)

i � θ(t)
(2)))f (θ̃

∗(t)
i |θ(t)

(1))f (θ̃
(t)
i |θ(t)

(1))

Li(Yi�Td |(θ̃(t)
i � θ(t)

(2)))f (θ̃
(t)
i |θ(t)

(1))f (θ̃
∗(t)
i |θ(t)

(1))
�1
}

= min
{
Li(Yi�Td |(θ̃∗(t)

i � θ(t)
(2)))

Li(Yi�Td |(θ̃(t)
i � θ(t)

(2)))
�1
}
;

otherwise, reject θ̃∗(t)
i , that is, set θ̃(t+1)

i = θ̃(t)
i with probability 1 − λ1.

Block 2—Drawing θ(t+1)
(1)

Conditional on {θ̃(t+1)
i }Nd

i=1, the density of θ(t+1)
(1) is proportional to

∏Nd

i=1 f (θ̃
(t+1)
i |

θ(1))� Drawing from this density is straightforward as it does not involve the
solution of the DP problem.18

Block 3—Modified M–H Algorithm for Drawing θ(2)

We draw the new parameters θ(t+1)
(2) as follows: First, we draw the candidate

parameter θ∗(t)
(2) from the proposal density q(θ(t)

(2)� θ
∗(t)
(2) ). Then we accept θ∗(t)

(2) ,

18As pointed out by a referee, a potential issue could be serial correlation of θi , because the
new θi ’s could be dependent on θ(1) from the past iteration. Furthermore, draws of new θi could
be heavily centered around the past mean of θi , which may suppress sufficient movement of θ(1).
MCMC plots in Appendix C for the example discussed later show that there is sufficient move-
ment of the parameters θ(1) and that serial correlation is small. An important statistic to look at
in this case is the acceptance probability of the M–H draw of θ(t)

i . If the acceptance probability is
too low, then there is insufficient movement of θ(t)

i over iteration t and thus their hyperparameter
θ(t)

1 will exhibit high correlation across t. On the other hand, if it is too high, that is, close to 1,
then their mean θ(t)

1 will not change much if N is large, and thus will result in high serial correla-
tion of θ(t)

1 . In our random effects example, the acceptance probability of θ(t)
i is around 15–25%,

which is considered to be quite appropriate in the MCMC literature. If the acceptance rate is ei-
ther too high or too low, then a different procedure such as the ones proposed by Osborne (2007)
or Norets (2007) is recommended.
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that is, set θ(t+1)
(2) = θ∗(t)

(2) with probability

λ2

(
θ(t+1)
(1) � θ∗(t)

(2)

∣∣H(t−1)
)

= min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
π(θ(t+1)

(1) � θ∗(t)
(2) )

[
Nd∏
i=1

Li(Yi�Td |θ̃(t+1)
i � θ∗(t)

(2) )

]
q(θ∗(t)

(2) � θ
(t)
(2))

π(θ(t+1)
(1) � θ(t)

(2))

[
Nd∏
i=1

Li(Yi�Td |θ̃(t+1)
i � θ(t)

(2))

]
q(θ(t)

(2)� θ
∗(t)
(2) )

�1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
;

otherwise, we reject θ∗(t)
(2) , that is, set θ(t+1)

(2) = θ(t)
(2) with probability 1 − λ2.

Bellman Equation Step

During each M–H step, for each agent i we evaluate the expected value func-
tion Ê(t)

ε′ [V (·� ·� θ̃i� θ(2))|H(t−1)]. To do so for each agent, for all s ∈ S, we follow
equation (6) as before.19 For use in future iterations, we simulate the value
function by drawing ε(t) to derive

V (t)
(
s� a� ε(t)a � θ̃i� θ(2)� H(t−1)

)
= R̃

(
s� a� ε(t)a � θ̃i� θ(2)

)
+β

∑
s′

Ê(t)
ε′
[
V
(
s′� ε′� θ̃i� θ(2)

)∣∣H(t−1)
]
f (s′|s� a�θ)�

V (t)
(
s� ε(t)� θ̃i� θ(2)� H(t−1)

)= max
a∈A

V (t)
(
s� a� ε(t)a � θ̃i� θ(2)� H(t−1)

)
�

The additional computational burden necessary to estimate the random co-
efficient model is the computation of the value function which has to be done
separately for each firm i, because each firm has a different random effects
parameter vector. In this case, adoption of the Bayesian DP algorithm results
in a large reduction in computational cost.

3.2. Continuous State Space

So far, we assumed a finite state space. However, the Bayesian DP algorithm
can also be applied, with minor modifications, in a straightforward manner to
other settings of dynamic discrete choice models. One example is the random
grid approximation of Rust (1997).

Conventionally, randomly generated state vector grid points are fixed
throughout the solution-estimation algorithm. If we follow this procedure and

19For more details, see Experiment 1 in Section 5.1.
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let sm, m = 1� � � � �M , be the random grids that are generated before the start
of the solution-estimation algorithm, then, given parameter θ, the expected
value function approximation at iteration t of the DP solution algorithm using
the Rust random grids method would be

Ê(t)
s′�ε′
[
V (s′� ε′� θ)|s� a� H(t−1)

]
(7)

≡
M∑

m=1

⎡⎢⎢⎢⎢⎢⎣
N(t)∑
n=1

V (t−n)
(
sm� ε

(t−n)� θ∗(t−n)� H(t−n−1)
) Kh(θ− θ∗(t−n))
N(t)∑
k=1

Kh(θ− θ∗(t−k))

⎤⎥⎥⎥⎥⎥⎦
× f (sm|s� a�θ)

M∑
l=1

f (sl|s� a�θ)
�

Notice that in this definition of emax function approximation, the grid points
remain fixed over all iterations. In contrast, in our Bayesian DP algorithm, ran-
dom grids can be changed at each solution-estimation iteration. Let s(t) be the
random grid point generated at iteration t. Here s(τ), τ = 1�2� � � � � are drawn
independently from a distribution. Then the expected value function can be
approximated as

Ê(t)
s′�ε′
[
V (s′� ε′� θ)|s� a� H(t−1)

]
≡

N(t)∑
n=1

V (t−n)
(
s(t−n)� ε(t−n)� θ∗(t−n)� H(t−n−1)

)
× Kh(θ− θ∗(t−n))f (s(t−n)|s� a�θ)

N(t)∑
k=1

Kh(θ− θ∗(t−k))f (s(t−k)|s� a�θ)
�

In the Rust method, if the total number of random grids is M , then the
number of computations required for each iteration of the Bellman operator
is M . Hence, at iteration τ, the number of DP computations that is required
is Mτ. If a single DP solution step requires τ iterations of the Bellman operator
and if each Newton ML step requires K DP solution steps, then to iterate the
Newton ML algorithm once, we need to compute a single DP iteration MτK
times.

In contrast, in our Bayesian DP algorithm, at iteration t we only need to
draw one state vector s(t) (so that M = 1) and only iterate on the Bellman op-
erator once on that state vector (so that τ = 1 and K = 1). Still, at iteration t�
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the number of random grid points is N(t), which can be made arbitrarily large
when we increase the number of iterations. In other words, in contrast to the
Rust method, the accuracy of the DP computation in our algorithm automati-
cally increases with iterations.

Another issue that arises in application of the Rust random grid method is
that the method assumes that the transition density function f (s′|s� a�θ) is not
degenerate. That is, we cannot use the random grid algorithm if the transition
from s to s′, given a and θ, is deterministic. It is also well known that the ran-
dom grid algorithm becomes inaccurate if the transition density has a small
variance. In these cases, several versions of polynomial-based, expected value
function approximation have been used. Keane and Wolpin (1994) approxi-
mated the emax function using polynomials of the deterministic part of the
value functions for each choice and state space point. Imai and Keane (2004)
used Chebychev polynomials of state variables. It is known that in some cases,
global approximation using polynomials can be numerically unstable and ex-
hibit “wiggling.” Here, we propose a kernel-based local interpolation approach
to emax function approximation. The main problem behind the local approx-
imation has been the computational burden of having a large number of grid
points. As pointed out earlier, in our solution-estimation algorithm, we can
make the number of grid points arbitrarily large by increasing the total num-
ber of iterations, even though the number of grid points per iteration is 1. Thus,
if the continuous state variable evolves deterministically, we approximate the
emax function Ês′�ε′ [V (s′� ε′� θ)|s� a] as follows. Let Khs(·) be the kernel func-
tion with bandwidth hs for the state variable and Khθ(·) for the parameter vec-
tor θ. Then

Ê(t)
ε′
[
V (s′� ε′� θ)|s� a� H(t−1)

]
≡

N(t)∑
n=1

V (t−n)
(
s(t−n)� ε(t−n)� θ∗(t−n)� H(t−n−1)

)
× Khs(s

′ − s(t−n))Khθ(θ− θ∗(t−n))
N(t)∑
k=1

Khs(s
′ − s(t−k))Khθ(θ− θ∗(t−k))

�

4. EXAMPLES

We estimate a simple, infinite horizon, dynamic discrete choice model of
entry and exit, where firms are in a competitive environment.20 We describe
the model in general first and then consider two simplifications. In the general
model, there are firm-specific random effects and the state variable evolves

20For an estimation exercise based on this model, see Roberts and Tybout (1997).
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stochastically. In the first model, which we term the basic model, there is no
observed or unobserved heterogeneity. In the second model, in addition, the
state variable evolves deterministically.

The firm is either an incumbent (I) or a potential entrant (O). If the incum-
bent firm chooses to stay, its per period return is

RI�IN(Kt� εt� θi)= αiKt + ε1t �

where Kt is the capital of the firm, ε1t is the independent and identically dis-
tributed (i.i.d.) random shock, and θi is the vector of parameters, including
firm-specific parameter αi, which is distributed according to N(α�σα). When
there are no random effects, αi = α for all i and σα = 0� If the firm chooses to
exit, its per period return is

RI�OUT(Kt� εt� θi)= ε2t �

Similarly, if the potential entrant chooses to enter, its per period return is

RO�IN(Kt� εt� θi)= −δ+ ε1t �

and if it decides to stay out, its per period return is

RO�OUT(Kt� εt� θi)= ε2t �

where ε2t is an i.i.d. shock. We assume that the random components of cur-
rent period returns are i.i.d. and normally distributed, that is, εlt ∼ N(0�σεl )�
l = 1�2.

The level of capital Kt evolves as follows. If the incumbent firm stays in, then

lnKt+1 = b0 + b1X
d
i + b2 lnKt + ut+1�

where ut+1 ∼ N(0�σu) and Xd
i is a firm-specific characteristic vector observ-

able to the econometrician. In the simple specification without firm-specific
heterogeneity, b1 is set to zero. In the specification where we allow for het-
erogeneity, we set b0 to zero. In the specification where we assume the cap-
ital transition for the incumbent who stays to be deterministic, we simply set
Kt+1 = Kt , in other words, b0 = 0, b1 = 0, b2 = 1, and σu = 0. If the potential
entrant enters, then

lnKt+1 = be + ut+1�

Now consider a firm that is an incumbent at the beginning of period t. Let
VI(Kt� εt� θi) be the value function of the incumbent with capital stock Kt and
let VO(0� εt� θi) be the value function of the potential entrant, who has capital
stock 0. The Bellman equation for the optimal choice of the incumbent is

VI(Kt� εt� θi)= max{VI�IN(Kt� εt� θi)� VI�OUT(Kt� εt� θi)}�



1886 S. IMAI, N. JAIN, AND A. CHING

where

VI�IN(Kt� εt� θi)

=RI�IN(Kt� ε1t � θi)+βEt+1VI(Kt+1(Kt�ut+1� θi)� εt+1� θi)

is the value of staying in during period t. Similarly,

VI�OUT(Kt� εt� θi)= RI�OUT(Kt� ε2t � θi)+βEt+1VO(0� εt+1� θi)

is the value of exiting during period t. The Bellman equation for the optimal
choice of the potential entrant is

VO(0� εt� θi)= max{VO�IN(0� εt� θi)� VO�OUT(0� εt� θi)}�
where

VO�IN(0� εt� θi)=RO�IN(0� ε1t � θi)+βEt+1VI(Kt+1(0�ut+1� θi)� εt+1� θi)

is the value of entering during period t and

VO�OUT(0� εt� θi)= RO�OUT(0� ε2t � θi)+βEt+1VO(0� εt+1� θi)

is the value of staying out during period t. Notice that the capital stock of a
potential entrant is always 0.

Notice that if we assume εlt to be extreme value distributed (see Rust (1987)
for details on dynamic discrete choice models based on extreme valued er-
ror term), then the deterministic component of the value function can be ex-
pressed analytically, greatly simplifying the solution of the dynamic program-
ming problem. To allow for correlation of the revenue function across different
choices, one can adopt the random coefficient logit specification, where the
random coefficient term is added to the per period revenue function. Then, in
the basic model, the underlying latent per period revenue would be

RI�IN(Kt� ε�θi� θ)�

where εa�a ∈ A is assumed to be i.i.d. extreme value distributed and the distri-
bution of θi is assumed to be G(dθi;θ). McFadden and Train (2000) showed
that any choice probabilities can be approximated by the random coefficient
multinomial logit model. Since θi is only introduced to allow for correlation
of the revenues across different choices, and not to add serial correlation
of choices, we assume θi to be i.i.d. over time as well. RI�OUT(Kt� ε�θi� θ),
RO�IN(Kt� ε�θi� θ), and RO�OUT(Kt� ε�θi� θ) are similarly defined.

To derive the expected value function at iteration t + 1, we would first draw
θm ∼ G(dθi;θ)� m = 1� � � � �M , and then use the analytic formula for the ex-
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pected value function proposed by Rust (1987) to evaluate

Eε[VI(K�ε�θm�θ)]
= log

[
exp

(
RI�IN(K�0� θm�θ)+βE(t)VI(K

′� ε′� θ)
)

+ exp
(
RI�OUT(K�0� θm�θ)+βE(t)VO(K

′� ε′� θ)
)]
�

These two steps are repeated to derive

E(t+1)[VI(K�ε�θ)|K] = 1
M

M∑
m=1

EεVI(K�ε�θm�θ)�

Similarly, E(t+1)[VO(K�ε�θ)|K] is computed. This algorithm involves Monte
Carlo integration over θm and thus is very similar to the DP step of the Bayesian
DP algorithm for the probit case. Hence, our algorithm would straightfor-
wardly apply to the case of mixed logit where the mixture distribution is con-
tinuous and would result in a computational gain.

We now discuss estimation of the basic model. The parameter vector θ of
the model is (δ�α�β�σε1�σε2�σu�b0� b2� be)� The state variables are the capital
stock K and the status of the firm Γ ∈ {I�O}, that is, whether the firm is an in-
cumbent or a potential entrant. We assume that for each firm, we only observe
the capital stock, the profit of the firm that stays in, and the entry–exit status
over Td periods. That is, we know {Kd

i�t�R
d
i�t� Γ

d
i�t}t=1�Td

i=1�Nd , where Rd
i�t ≡ αKd

i�t + ε1t

if the firm stays in. We assume the prior distribution of all parameters to be
diffuse. That is, we set π(θ) = 1. Below, we explain the estimation steps in
detail.

Assume we start with the initial guess of expected value functions being zero,
that is,

Ê(0)
ε

[
VI

(
K�ε�θ(0)

)]= 0� Ê(0)
ε

[
VO

(
0� ε�θ(0)

)]= 0�

We employ the modified random walk M–H algorithm, where at iteration
s the proposal density q(θ(s)� θ∗(s))� given iteration s parameter θ(s), is21

δ∗(s) ∼ N(δ(s)�σ2
δ), α∗(s) ∼ N(α(s)�σ2

α), lnσ∗(s)
ε1

∼ N(lnσ(s)
ε1
�σ2

lnσε1
), lnσ∗(s)

ε2
∼

N(lnσ(s)
ε2
�σ2

lnσε2
), b∗(s)

0 ∼ N(b(s)
0 �σ2

b0
), b∗(s)

2 ∼ N(b(s)
2 �σ2

b2
), b∗(s)

e ∼ N(b(s)
e �σ2

be
),

and lnσ∗(s)
u ∼ N(lnσ(s)

u �σ2
lnσu), and when we estimate β, β∗(s) ∼ N(β(s)�σ2

β).
Given the parameters of iteration s, θ(s) = (δ(s)�α(s)�σ(s)

ε1
�σ(s)

ε2
� b(s)

0 � b(s)
2 � b(s)

e �

σ(s)
u ), we draw the candidate parameter θ∗(s) from these normal densities.

21The standard errors of the innovations of the random walk M–H are all set to be 0�004,
except for β, for which it is set to be 0�001.
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Expected Value Function Iteration Step

We update the expected value function for parameter θ(s) and θ∗(s)� First, we
derive E(s)

ε [VΓ (K�ε�θ|H(s))] for θ = θ(s) and θ∗(s), using the Gaussian kernel22

Kh(θ− θ′)= (2π)−L/2
∏J

j=1 h
−1
j exp[− 1

2((θj − θ
′
j)/hj)

2], as follows:

Ê(s)
ε′
[
VI(K�ε′� θ)|H(s−1)

]
≡

N(s)∑
n=1

[
1
Mε

Mε∑
j=1

V (s−n)
I

(
K�εj�(s−n)� θ∗(s−n)� H(s−n−1)

)]

× Kh(θ− θ∗(s−n))ILθ(θ
∗(s−n))

N(s)∑
k=1

Kh(θ− θ∗(s−k))ILθ(θ
∗(s−k))

�

Ê(s)
ε′
[
VO(0� ε′� θ)|H(s−1)

]
≡

N(s)∑
n=1

[
1
Mε

Mε∑
j=1

V (s−n)
O

(
0� εj�(s−n)� θ∗(s−n)� H(s−n−1)

)]

× Kh(θ− θ∗(s−n))ILθ(θ
∗(s−n))

N(s)∑
k=1

Kh(θ− θ∗(s−k))ILθ(θ
∗(s−k))

�

The expected value function is updated by taking the weighted average over
L of the past N(s) iterations where the parameter vector θ∗(l) was closest to θ
(we denote this as ILθ(θ∗(l))= 1), where L is set to be 2�000 and N(s) increases
to 3�000. As discussed before, in principle, only one simulation of ε is needed
during each solution-estimation iteration. But that requires the number of past
iterations for averaging, that is, requires N(s) to be large, which adds to the
computational burden. Instead, in our example, we draw ε ten times and take
an average. Hence, when we derive the expected value function, instead of
averaging past value functions, we average over past average value functions,
that is, (1/Mε)

∑Mε

m=1 VΓ (K�ε(j)m � θ(j)), where Mε = 10. This obviously increases
the accuracy per iteration and reduces the need to have a large N(s).

It is important to notice that as the algorithm proceeds, and t and N(t) be-
come sufficiently large, the computational burden of our nonparametric ap-
proximation of the expected value functions could become more than that of
solving the DP problem.23 In our examples, we have set the number of MCMC
iterations and the maximum of N(t) arbitrarily, but at these values, the al-

22Kernel bandwidth hj is set to be 0�02 for all j = 1�2� � � � � J�
23We thank an anonymous referee for emphasizing this point.
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gorithm is computationally much superior to the full-solution-based MCMC,
without experiencing any noticeable loss in accuracy in posterior distribution
estimation. To avoid this arbitrariness, and still avoid the computational bur-
den of large N(t), one could initially set N(t) at a fixed number N̂ and occa-
sionally conduct one-step Bellman updates using the expected value E(t)V (s′)
computed using the past values as an initial value for the DP iteration. If the
newly iterated expected value function is sufficiently close to E(t)V (s′), then
there is no need for an increase in N̂ . Norets (2008) considered other ways to
combine the Bayesian DP algorithm with the standard DP steps to gain further
computational efficiency.

To further integrate the value function over the capital shock u, we can use
the Rust random grid integration method which uses a fixed grid. Since the
state space has only one dimension, we use equally spaced Km, m = 1� � � � �M ,
capital grid points and apply equation (7). That is, for the incumbent,

Ê(s)
[
VI(K

′(Kd
i�t� u�θ)� ε�θ)|Kd

i�t� H(s−1)
]

=
∑
m

Ê(s)
ε

[
VI(Km�ε�θ)|H(s−1)

]
× [Kmσu]−1 exp(−(lnKm − b0 − b1 lnKd

i�t)
2/(2σ2

u))
M∑
l=1

[Klσu]−1 exp(−(lnKl − b0 − b1 lnKd
i�t)

2/(2σ2
u))

for θ = θ(s)� θ∗(s). For the entrant,

Ê(s)
[
VI

(
K′(0�u�θ(s)

)
� ε�θ

)∣∣H(s−1)
]

=
∑
m

Ê(s)
ε

[
VI(Km�ε�θ)|H(s−1)

]
× [Kmσu]−1 exp(−(lnKm − be)

2/(2σ2
u))

M∑
l=1

[Klσu]−1 exp(−(lnKl − be)
2/(2σ2

u))

for θ = θ(s)� θ∗(s).

Modified DP Step

We draw ε
j�(s)
l ∼ N(0�σεl ), l = 1�2; j = 1� � � � �Mε, and compute

VI�IN

(
Km�ε

j�(s)� θ∗(s)� H(s−1)
)

=RI�IN

(
Km�ε

j�(s)
1 � θ∗(s))

+βÊ(s)
[
VI

(
K′(Km�ut+1� θ

∗(s))� ε�θ∗(s))∣∣Km� H(s−1)
]
�
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VI�OUT

(
Km�ε

j�(s)� θ∗(s)� H(s−1)
)

=RI�OUT

(
Km�ε

j�(s)
2 � θ∗(s))+βÊ(s)

[
VO

(
0� ε�θ∗(s))∣∣H(s−1)

]
�

VI

(
Km�ε

j�(s)� θ∗(s)� H(s−1)
)

= max
{
VI�IN

(
Km�ε

j�(s)� θ∗(s)� H(s−1)
)
� VI�OUT

(
Km�ε

j�(s)� θ∗(s)� H(s−1)
)}
�

to derive

1
Mε

Mε∑
j=1

V (s)
I

(
Km�ε

j�(s)� θ∗(s)� H(s−1)
)

and

1
Mε

Mε∑
j=1

V (s)
O

(
0� εj�(s)� θ∗(s)� H(s−1)

)
�

Modified M–H Step

We draw the new parameter vector θ(s+1) from the posterior distribution. Let

Ii = [Idi�1(IN)� � � � � Idi�t(IN)� � � � � Idi�T (IN)]�
where Idi�t(IN) = 1 if the firm either enters or decides to stay in, and =0 other-
wise. Similarly, we use Ki and Ri to denote vectors of Kd

i�t and Rd
i�t . The likeli-

hood increment for firm i at time t is (suppressing the superscript (s− 1) on H
and denoting φ(·) to be the standard normal density for convenience)

Li(Ii�Ki�Ri|θ)
= Pr

[
ε2t ≤Rd

it +β
{
Ê(s)

[
VI(K

′(Kd
it� u�θ)� ε�θ)|Kd

it� H
]

− Ê(s)[VO(0� ε�θ)|H]}]
× 1

σε1

φ

(
Rd

it − αKd
it

σε1

)
1

Kd
i�t+1σu

φ

(
lnKd

i�t+1 − b1 − b2 lnKd
it

σu

)
× Idit(IN)Idi�t+1(IN)

+ Pr
[
ε2t − ε1t > αKd

it +β
{
Ê(s)

[
VI

(
K′(Kd

it� u�θ
(s)
)
� ε�θ

)|Kd
it� H

]
− Ê(s)[VO(0� ε�θ)|H]}]
× Idit(IN)(1 − Idi�t+1(IN))

+ Pr
[
ε2t − ε1t ≤ −δ+β

{
Ê(s)

[
VI

(
K′(0�u�θ(s)

)
� ε�θ

)|H
]

− Ê(s)[VO(0� ε�θ)|H]}]
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× 1
Kd

i�t+1σu

φ

(
lnKd

i�t+1 − be

σu

)
(1 − Idit(IN))Idi�t+1(IN)

+ Pr
[
ε2t − ε1t >−δ+β

{
Ê(s)

[
VI

(
K′(0�u�θ(s)

)
� ε�θ

)|H
]

− Ê(s)[VO(0� ε�θ)|H]}]
× (1 − Idit(IN))(1 − Idi�t+1(IN))�

The algorithm sets θ(s+1) = θ∗(s) with probability λ(θ(s)� θ∗(s)|H(s−1)), where
the random walk proposal density satisfies q(θ∗(s)� θ(s))= q(θ(s)� θ∗(s)). Thus,

λ
(
θ(s)� θ∗(s)|H(s−1)

)
= min

⎧⎪⎪⎨⎪⎪⎩
π(θ∗(s))

∏
i

Li(Ii�Ki�Ri|θ∗(s))q(θ∗(s)� θ(s))

π(θ(s))
∏
i

Li(Ii�Ki�Ri|θ(s))q(θ(s)� θ∗(s))
�1

⎫⎪⎪⎬⎪⎪⎭
= min

⎧⎪⎪⎨⎪⎪⎩
π(θ∗(s))

∏
i

Li(Ii�Ki�Ri|θ∗(s))

π(θ(s))
∏
i

Li(Ii�Ki�Ri|θ(s))
�1

⎫⎪⎪⎬⎪⎪⎭ �

Notice that if the firm stays out or exits, then its future capital stock is zero.
Therefore, no averaging over capital grid points is required to derive the emax
function, which is simply E(s)

ε [VO(0� ε�θ)|H(s−1)].
In the next section, we present the results of several Monte Carlo studies we

conducted using our Bayesian DP algorithm. The first experiment is for the
model that incorporates observed and unobserved heterogeneity; the second
incorporates deterministic capital transition.24

5. SIMULATION AND ESTIMATION

Denote the true values of θ by θ0, that is, for the basic model, θ0 =
(δ0�σ0

ε1
�σ0

ε2
�σ0

u�α
0� b0

0� b
0
2� b

0
e�β

0). We set them as δ0 = 0�4, σ0
ε1

= 0�3, σ0
ε2

= 0�3,
σ0

u = 0�4, α0 = 0�1, b0
0 = 0�0, b0

2 = 0�4, b0
e = 0�5, and β0 = 0�98.

We first solve the DP problem numerically using the conventional full-
solution method described earlier in detail. Next, we generate artificial data
based on this DP solution. All estimation exercises are done on a 2�8 GHz
Pentium 4 Linux workstation. For data generation, we solved the DP problem,
where during each iteration we set capital grid points MK = 200 to be equally

24The results of the experiment, where we estimate the basic model (without heterogeneity),
are shown in Appendix A, Table AI.
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spaced between 0 and K, which we set to be 5�0. We draw Mε = 1�000 revenue
shocks, εm, m = 1� � � � �Mε, and calculate the value function V (Ki� ε

m). Then
we compute the expected value function as their sample average.

Êε[V (Ki� ε)] =
M∑

m=1

V (Ki� ε
m)/1�000�

We simulate artificial data of capital stock, profit, and entry–exit choice
sequences {Kd

i�t�R
d
i�t� I

d
i�t}N

d�Td

i=1�t=1 using this DP solution. We then estimate the
model using the simulated data with our Bayesian DP routine. We either set
the discount factor at the true value β0 = 0�98 or estimate it, but with its prior
being π(β) ∼ N(β�σβ) if β ≤ β and π(β) = 0 otherwise, where σβ = 0�2 and
β= 0�995. We imposed restrictions on the prior to guarantee that β< 1 so that
the Bellman operator is a contraction mapping.25

Next, we report results of the experiments mentioned above.26

5.1. Experiment 1: Random Effects

We now report estimation results of a model that includes observed and un-
observed heterogeneity. For data generation, we assume that the profit coeffi-
cient for each firm i, αi, is distributed normally with mean α= 0�2 and standard
error σα = 0�1. For the transition of capital, we simulate Xd

i from N(0�0�1�0)
and set b1 = 0�1. All other parameters are set at true values given by the vec-
tor θ0.

Notice that if we use the conventional simulated ML estimation to estimate
the model, for each firm i, we need to draw αi many times, say Mα times, and
for each draw, we need to solve the DP problem. If the number of firms in
the data is Nd , then for a single simulated likelihood evaluation, we need to
solve the DP problem NdMα times. This process is computationally demanding
and most researchers use only a finite number of types, typically less than 10,
as an approximation of the observed heterogeneity and the random effect.27

Since in our Bayesian DP estimation exercise, the computational burden of
estimating the dynamic model is similar to that of a static model, we can easily
accommodate random effects estimation.

25Notice that in DDC models, the discount factor is nonparametrically unidentified (see Rust
(1994) and Magnac and Thesmar (2002)). Hence, estimation of the discount factor relies on
functional form assumptions.

26The results reported in Appendix A, Table AI, show that the full-solution-based ML outper-
forms the Bayesian DP in the basic model (without heterogeneity).

27The only exceptions are economists who have access to supercomputers or large PC clus-
ters. Bound, Stinebrickner, and Waidmann (2007) used interpolation methods to evaluate the
expected value functions where the unobserved health status was continuous. They used PC clus-
ters for their estimation.
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In contrast to the solution-estimation algorithm of the basic model, we iter-
ate the Bellman operator once for each firm i separately. Let θ−α be the para-
meter vector except for the random effects term αi. Then, for any given K, we
derive

Ê(s)
ε

[
VΓ (K�ε�θ−α�αi)|H(s−1)

]
=

N(s)∑
n=1

[
1
Mε

Mε∑
l=1

V (s−n)
Γ

(
K�ε(s−n)

l � θ∗(s−n)
−α �α∗(s−n)

i � H(s−n−1)
)]

× Kh(θ−α − θ∗(s−n)
−α )Kh(αi − α∗(s−n)

i )
N(s)∑
n=1

Kh(θ−α − θ∗(s−n)
−α )Kh(αi − α∗(s−n)

i )

�

As pointed out by Heckman (1981) and others, the missing initial state vector
is likely to be correlated with the unobserved heterogeneity αi, which would
result in bias in the parameter estimates. To deal with this problem, for each
firm i, given parameters (θ−α�αi), we simulate the model for 100 initial periods
to derive the initial capital and the initial status of the firm. Then we proceed
to construct the likelihood increment for firm i.

We set N(s) to go up to 1�000 iterations. The one-step Bellman operator for
each firm i is the part where we have an increase in computational burden, but
it turns out that the additional burden is far lighter than that of computing the
fixed point of the Bellman operator for each firm Mα times to integrate out the
random effects αi, as would be done in the simulated ML estimation strategy.

We set the sample size to be 100 firms for 100 periods. All priors are diffuse.
We set the initial guess of the expected value function to be 0. The Bayesian
DP iteration was conducted 10�000 times. We only use the draws from the
5�001st iteration up to the 10�000th iteration to derive the posterior means
and standard deviations. We conducted 50 replications in this experiment. Ta-
ble I reports the average of the posterior means (PM), the posterior standard
deviations (PSD), and the standard deviation of the posterior means (sd(PM))
for the 50 replications. There are three sets of results. To obtain the first and
second set of results (Bayesian DP 1, Bayesian DP 2, respectively), we set the
initial parameter values equal to the true ones. We fix the discount factor β in
Bayesian DP 1, while we estimate it in Bayesian DP 2. To obtain the third set
of results (Bayesian DP 3), we fix β at the true value and set the other initial
parameter values to be half of the true ones. All these results show that the
posterior means are very close to—indeed within 1 standard deviation of—the
true parameter values. In particular, the results presented in Bayesian DP 3
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TABLE I

POSTERIOR MEANS AND STANDARD DEVIATIONSa

Bayesian DP 1 Bayesian DP 2 Bayesian DP 3

PM PSD sd(PM) PM PSD sd(PM) PM PSD sd(PM) True

δ 0.4005 0�0162 0�0224 0.3957 0�0165 0�0239 0.4011 0�0163 0�0226 0�4
α 0.2013 0�0104 0�0104 0.2012 0�0105 0�0103 0.2013 0�0104 0�0105 0�2
σα 0.1006 0�00736 0�00655 0.1005 0�00736 0�00651 0.1006 0�00735 0�00656 0�1
σε1 0.3005 0�00284 0�00261 0.3006 0�00292 0�00271 0.3005 0�00286 0�0264 0�3
σε2 0.3034 0�0113 0�0184 0.2995 0�0124 0�0208 0.3036 0�0116 0�0190 0�3
b1 0.0993 0�00481 0�00425 0.0994 0�00490 0�00434 0.0993 0�00482 0�00420 0�1
b2 0.3975 0�00943 0�00941 0.3977 0�00952 0�00924 0.3975 0�00943 0�00939 0�4
be 0.4954 0�0125 0�0146 0.4954 0�0127 0�0149 0.4954 0�0126 0�0146 0�5
σu 0.4014 0�00314 0�00316 0.4014 0�00318 0�00312 0.4014 0�00314 0�00318 0�4
β 0.9689 0�0109 0�0170 0�98

CPU 4 h 0 min 3 h 58 min 4 h 0 min

aPM is the average of the posterior means across 50 replications; PSD is the average of the posterior standard
deviations across 50 replications; sd(PM) is the standard deviation of the posterior means across 50 replications.

confirm the robustness of the Bayesian DP algorithm to the initial parameter
values.28

On the other hand, there is a fairly large bias in the parameters estimated
by simulated ML with Mα = 100. The point estimate of entry cost parameter
δ = 0�3795, the mean of profit coefficient α = 0�1701 and its standard error
σα = 0�09326, and the standard error of the choice shock σε2 = 0�2805 are all
downwardly biased, and except for σα, the magnitude of the bias is larger than
the standard error.29 The downward bias seems to be especially large for α,
which leads us to conclude that the simulation size of Mα = 100 is not enough
to integrate out the unobserved heterogeneity sufficiently accurately. The CPU
time required for the Bayesian DP algorithm is about 4 hours, whereas for the
full-solution-based Bayesian MCMC estimation, we needed about 31 hours,
and for the full-solution-based ML estimation, 21 hours. That is, the Bayesian
DP is about 8 times as fast as the full-solution-based Bayesian MCMC algo-
rithm and about 5 times as fast as the simulated ML algorithm.30

28The standard deviations of the posterior means across the 50 replications sd(PM) reflect the
data uncertainty of the 50 simulation-estimation exercises. Note that they are very close to the
mean of the posterior standard deviations PSD. Thus, the standard deviation of the Bayesian DP
draws captures the data uncertainty well.

29These values are the averages of 10 simulation-estimation exercises. The detailed results are
shown in Tables AIII and AIV of Appendix A.

30When we solve for the DP problem, both for the full-solution-based Bayesian estimation
and the simulated ML estimation (details in Appendix A), we set Mε = 100. If we were to set
Mε = 1�000, then a single Newton iteration would take about 4 hours and 20 minutes, which is
about the same CPU time as required for the entire Bayesian DP algorithm.
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We also tried to reduce the computational time for the full-solution-based
ML algorithm by reducing the number of draws for αi from 100 to 20. Then the
CPU time reduced to 8 hours and 43 minutes, which is still about twice as much
time as required for the Bayesian DP algorithm. However, the point estimate
of α is 0�145, having larger downward bias than the estimate with Mα = 100.

If we were to try to reduce the bias of the full-solution-based ML method by
increasing the simulation size of unobserved heterogeneity from Mα = 100 to,
say Mα = 1�000, then the CPU time would be at least 200 hours. We also tried
the ML estimation where the simulation size for ε draws is reduced from 100 to
20 while keeping Mα = 100. The parameter estimates and their standard errors
are very similar to those of the 100 ε draws. However, the total CPU time of
the ML estimation with 20 ε draws is 18 hours and 15 minutes, hardly different
from that of the original 100 ε draws.

Another estimation strategy for the simulated ML could be to expand the
state variables of the DP problem to include both X and αi. Then we have
to assign grid points for the three-dimensional state space points (K�X�αi).
If we assign 100 grid points per dimension, then we end up having 10�000
times more grid points than before. Hence, the overall computational burden
would be quite similar to the previous simulated ML estimation strategy. Thus,
our Bayesian DP algorithm outperforms the full-solution-based conventional
methods when the model includes observed and unobserved heterogeneity.

Furthermore, the computational advantage of the Bayesian DP algorithm
over the conventional full-solution-based Bayesian or ML estimation grows as
the discount factor becomes closer to 1. Ching, Imai, Ishihara, and Jain (2009)
showed that while the time required to estimate the model under full-solution-
based conventional methods becomes twice as much when β changes from 0�6
to 0�8, and becomes 20 times as much when β changes from 0�6 to 0�98, there
is no difference in the overall computational performance of the Bayesian DP
algorithm. This is because in full-solution-based algorithms, the closer the dis-
count factor is to 1, the more time is required for the DP algorithm to con-
verge. However, in our algorithm, DP iteration is done only once during each
parameter estimation step, regardless of the value of the discount factor.

5.2. Experiment 2: Deterministic Transition

At iteration t we use K(t)
1 � � � � �K(t)

MK
as grid points. We set MK = 10, hence

the total number of grid points increases over iterations up to MK × N(t) =
10 × 1�000 = 10�000.

The formula for the expected value function for the incumbent who stays in
is

Ê(t)
[
VI(K�ε′� θ)|H(t−n−1)

]
≡

N(t)∑
n=1

MK∑
m=1

[
1
Mε

Mε∑
j=1

V (t−n)
I

(
K(t−n)

m � ε(t−n)
j � θ∗(t−n)� H(t−n−1)

)]
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TABLE II

POSTERIOR MEANS AND STANDARD DEVIATIONSa

Parameter PM PSD sd(PM) True Value

δ 0�1905 0�0124 0�0175 0�2
α 0�1019 0�00477 0�00428 0�1
σε1 0�3980 0�00506 0�00532 0�4
σε2 0�3961 0�0126 0�0187 0�4
b1 0�2004 0�00466 0�00401 0�2
σu 0�2000 0�00322 0�00366 0�2

Sample size 10�000
CPU time 48 min 3 s

aPM is the average of the posterior means across 50 replications; PSD is the average of the posterior standard
deviations across 50 replications; sd(PM) is the standard deviation of the posterior means across 50 replications.

× KhK(K −K(t−n)
m )Khθ(θ− θ∗(t−n))

N(t)∑
k=1

MK∑
m=1

KhK(K −K(t−k)
m )Khθ(θ− θ∗(t−k))

�

where KhK is the kernel for the capital stock with bandwidth hK . The formulas
for the expected value functions for the incumbent who exits and the potential
entrant who stays out or enters are the same as those in the basic model.

Table II shows the posterior means and the posterior standard deviations
of the parameter estimates. They are the average of 50 replications of the
simulation-estimation exercises. We can see that the parameter estimates are
close to the true values. We can also see that the posterior standard deviations
closely reflect the data uncertainty. The entire exercise took about 48 minutes.

6. CONCLUSION

We have proposed a Bayesian estimation algorithm where the infinite hori-
zon DP problem is solved and parameters are estimated at the same time.
This dramatically increases the speed of estimation, particularly in models with
observed and unobserved heterogeneity. We have demonstrated the effective-
ness of our approach by estimating a simple infinite horizon, dynamic model of
entry–exit choice. We find that the computational time required for estimating
this dynamic model is in line with the time required for Bayesian estimation of
static models. The additional computational cost of our algorithm is the cost
of using information obtained in past iterations. Our Monte Carlo experiments
show that the more complex a model becomes, the smaller is this cost relative
to the cost of computing the full solution.

We have also shown that our algorithm may help reduce the computational
burden when the dimension of the state space is high. As is well known, the
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computational burden increases exponentially with an increase in the dimen-
sion of the state space. In our algorithm, even though at each iteration, the
number of state space points on which we calculate the expected value func-
tion is small, the total number of “effective” state space points over the entire
solution-estimation iteration grows with the number of Bayesian DP iterations.
This number can be made arbitrarily large without much additional computa-
tional cost, and it is the total number of effective state space points that de-
termines accuracy. This explains why our nonparametric approximation of the
expected value function works well under the assumption of a continuous state
space with deterministic transition function of the state variable. In this case,
as is discussed in the main body of the paper, the Rust random grid method
may face computational difficulties.

It is worth mentioning that since we are locally approximating the expected
value function nonparametrically, as we increase the number of parameters,
we may face the curse of dimensionality in terms of the number of parameters
to be estimated. So far, in our examples, this issue does not seem to have made
a difference. The reason could be that most dynamic models specify per pe-
riod return function and transition functions to be smooth and well behaved.
Hence, we know in advance that the value functions we need to approximate
are smooth and, hence, are well suited for nonparametric approximation. Fur-
thermore, the simulation exercises show that with a reasonably large sample
size, the MCMC simulations are tightly centered around the posterior mean.
Hence, the actual multidimensional area where we need to apply nonparamet-
ric approximation is small. But in empirical exercises that involve many more
parameters, one probably needs to adopt an iterative MCMC strategy where
only up to four or five parameters are moved at once, which is also commonly
done in conventional ML estimation.
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