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BackgroundBackground
Limited contrast in optical images from intravital microscopy is problematic for analysing tumour vascular morphology. Moreover, in some cases, 
changes in vasculature are visible to a human observer but are not easy to quantify. 
We present 2 methodologies to quantify the characteristics of vasculature: first through measurements of the vessel morphology and second through the 
observation of its chromatic characteristics. We evaluated the methodologies on images from SW1222 human colorectal carcinoma cells transfected 
with angiopoeitin Ang-1 or Ang-2 cDNA, or with an empty vector (WT) and implanted into window chamber-bearing mice. 464 transmitted light 
images (x10 objective) were acquired from 29 restrained mice (11 Ang-1, 12 Ang-2, 6 WT) in 2 regions of interest  before and up to 24h [0, 2.5, 15, 30, 60, 
180, 360, 1440 min] (Fig. 1) after treatment with 30 mg/kg of  the vascular disrupting agent combretastatin A-4-P (CA-4-P)  or saline.
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images (x10 objective) were acquired from 29 restrained mice (11 Ang-1, 12 Ang-2, 6 WT) in 2 regions of interest  before and up to 24h [0, 2.5, 15, 30, 60, 
180, 360, 1440 min] (Fig. 1) after treatment with 30 mg/kg of  or saline.
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Fig. 1 Eight images of the vasculature in a dorsal window chamber as observed through intravital microscopy in a mouse treated with CA-4-P. Notice the  colour variation and changes in vasculature with time.Fig. 1 Eight images of the vasculature in a dorsal window chamber as observed through intravital microscopy in a mouse treated with CA-4-P. Notice the  colour variation and changes in vasculature with time.
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Fig. 1 Eight images of the vasculature in a dorsal window chamber as observed through intravital microscopy in a mouse treated with CA-4-P. Notice the  colour variation and changes in vasculature with time.Fig. 1 Eight images of the vasculature in a dorsal window chamber as observed through intravital microscopy in a mouse treated with CA-4-P. Notice the  colour variation and changes in vasculature with time.

(1) Decrease in Relative Area: the algorithm successfully identified the majority of tumour 
microvessels. CA4P-treated tumours showed a decrease in average length and width of detected 
vessels (box plots not shown) and the combined relative area covered by the vessels  up to 1-3h, with 
recovery by 24h. Saline had no effect. Ang-2 over-expressing tumours had lower values of length, 
width and relative area than Ang-1 and wild-type tumours. Ang-1 tumours were similar to the WT 
except that average length was longer. 
(2) Increase in saturation balance: Chromaticity analysis showed a trend in the CA-4-P treated 
images to increase the ratio of pixels with low saturation (i.e. closer to white) relative to total pixels 
during the first hour after treatment, later to return to initial levels. Also, the hues shifted from brown-
orange to red-purple in the same time as the saturation (box plots not shown) with a similar recovery.
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ResultsResults

The Hue, Saturation, Value (HSV) colour model describes 
perceptual colour relationships related to the artistic ideas of hue, 
tint and shade and is better for discrimination of structures than the  Red, Green, Blue (RGB) colour space (Reyes-Aldasoro 2010a). 
While hue is related to the wavelength or the tint of the image, 
saturation indicates the purity of a colour (saturation = 1) or how 
close to white or grey (saturation = 0) and thus devoid of colour. For 
this study we were interested in detecting if the images became paler with time and how this reflected in the saturation.
The chromatic changes of the images can be visualised from the 2D / 
3D HSV histograms m , m , (Figs. 4,5) and a saturation balance HS HSV
was calculated as the ratio between the number of pixels in the 50%  
least saturated region to the total number of pixels.
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ConclusionsConclusions
The increase in saturation balance (Fig. 6) and the decrease in relative vascular area (Fig. 3)may be 
due to the changes in oxygenation in the tissue following CA-4-P.  Over-expression of Ang-2 resulted 
in excessively branching and narrow vessels, indicative of a high vascular resistance, potentially 
influencing response to therapy. Although no differential response to CA-4-P was found between the 
angiopoeitins, investigation of functional vascular parameters is needed to confirm this conclusion. 
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Fig. 5. The 3D m  histograms corresponding to the images of Fig. 1. Clouds of points describe pixels according to HSVhues, saturation and value. Notice the changes in the clouds; the red cloud (right hand side) grows and then decreases in size. Both clouds increase their pale/bright region, which  later on  decreases.Fig. 5. The 3D m  histograms corresponding to the images of Fig. 1. Clouds of points describe pixels according to HSVhues, saturation and value. Notice the changes in the clouds; the red cloud (right hand side) grows and then decreases in size. Both clouds increase their pale/bright region, which  later on  decreases.

Fig. 4. The 2D m  histogram HSw h e r e  p e a k s  d e n o t e  t h e  occurrence of pixels of certain hues/saturations. Most pixels are in the warm regions of red, orange and brown.
Fig. 4. The 2D m  histogram HSw h e r e  p e a k s  d e n o t e  t h e  occurrence of pixels of certain hues/saturations. Most pixels are in the warm regions of red, orange and brown.

Fig. 6. Boxplots describing the chromatic changes in saturation balance. While saturation balance remains constant with saline treatment, CA-4-P induces an increase (images become paler, whiter) up to one hour, after which saturation returns to previous levels. Fig. 6. Boxplots describing the chromatic changes in saturation balance. While saturation balance remains constant with saline treatment, CA-4-P induces an increase (images become paler, whiter) up to one hour, after which saturation returns to previous levels. 
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recovery by 24h. Saline had no effect. Ang-2 over-expressing tumours had lower values of length, 
width and relative area than Ang-1 and wild-type tumours. Ang-1 tumours were similar to the WT 
except that average length was longer. 
(2) Increase in saturation balance: Chromaticity analysis showed a trend in the CA-4-P treated 
images to increase the ratio of pixels with low saturation (i.e. closer to white) relative to total pixels 
during the first hour after treatment, later to return to initial levels. Also, the hues shifted from brown-
orange to red-purple in the same time as the saturation (box plots not shown) with a similar recovery.

ResultsResults

The Hue, Saturation, Value (HSV) colour model describes 
perceptual colour relationships related to the artistic ideas of hue, 
tint and shade and is better for discrimination of structures than the  Red, Green, Blue (RGB) colour space (Reyes-Aldasoro 2010a). 
While hue is related to the wavelength or the tint of the image, 
saturation indicates the purity of a colour (saturation = 1) or how 
close to white or grey (saturation = 0) and thus devoid of colour. For 
this study we were interested in detecting if the images became paler with time and how this reflected in the saturation.
The chromatic changes of the images can be visualised from the 2D / 
3D HSV histograms m , m , (Figs. 4,5) and a saturation balance HS HSV
was calculated as the ratio between the number of pixels in the 50%  
least saturated region to the total number of pixels.
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ConclusionsConclusions
The increase in saturation balance (Fig. 6) and the decrease in relative vascular area (Fig. 3)may be 
due to the changes in oxygenation in the tissue following CA-4-P.  Over-expression of Ang-2 resulted 
in excessively branching and narrow vessels, indicative of a high vascular resistance, potentially 
influencing response to therapy. Although no differential response to CA-4-P was found between the 
angiopoeitins, investigation of functional vascular parameters is needed to confirm this conclusion. 
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Fig. 5. The 3D m  histograms corresponding to the images of Fig. 1. Clouds of points describe pixels according to HSVhues, saturation and value. Notice the changes in the clouds; the red cloud (right hand side) grows and then decreases in size. Both clouds increase their pale/bright region, which  later on  decreases.Fig. 5. The 3D m  histograms corresponding to the images of Fig. 1. Clouds of points describe pixels according to HSVhues, saturation and value. Notice the changes in the clouds; the red cloud (right hand side) grows and then decreases in size. Both clouds increase their pale/bright region, which  later on  decreases.

Fig. 4. The 2D m  histogram HSw h e r e  p e a k s  d e n o t e  t h e  occurrence of pixels of certain hues/saturations. Most pixels are in the warm regions of red, orange and brown.
Fig. 4. The 2D m  histogram HSw h e r e  p e a k s  d e n o t e  t h e  occurrence of pixels of certain hues/saturations. Most pixels are in the warm regions of red, orange and brown.

Fig. 6. Boxplots describing the chromatic changes in saturation balance. While saturation balance remains constant with saline treatment, CA-4-P induces an increase (images become paler, whiter) up to one hour, after which saturation returns to previous levels. Fig. 6. Boxplots describing the chromatic changes in saturation balance. While saturation balance remains constant with saline treatment, CA-4-P induces an increase (images become paler, whiter) up to one hour, after which saturation returns to previous levels. 
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Time             [minutes]Fig. 3. Boxplots describing the morphological changes in tumour vasculature. The relative area covered by the vessels  remains constant with saline treatment. However CA-4-P induces a decrease (vessels become thinner and shorter) up to one hour, after which it starts to recover. Notice the lower values of Ang-2 relative to Ang-1. Fig. 3. Boxplots describing the morphological changes in tumour vasculature. The relative area covered by the vessels  remains constant with saline treatment. However CA-4-P induces a decrease (vessels become thinner and shorter) up to one hour, after which it starts to recover. Notice the lower values of Ang-2 relative to Ang-1. 

Fig. 2. Three examples of the vasculature tracing by scale-space. The algorithm detected vessels in an analogy to topological ridges at different scales, selected the optimal scale(i.e. related to the width of the vessel) and then ranked them according to the strength of the ridge (i.e. how well defined the ridge is). Ten strongest ridges are labelled in red, the next 40 in green and the rest in black. 

Fig. 2. Three examples of the vasculature tracing by scale-space. The algorithm detected vessels in an analogy to topological ridges at different scales, selected the optimal scale(i.e. related to the width of the vessel) and then ranked them according to the strength of the ridge (i.e. how well defined the ridge is). Ten strongest ridges are labelled in red, the next 40 in green and the rest in black. 

Vessel tracing used a scale-space approach, (Lindeberg, 1998a; Lindeberg, 1998b) employing 
differences in intensity of transmitted light between the vessels and surrounding tissues. The 
centreline of vessels was detected as a ridge in a topographical analogy and successive levels of 
filtering provided different scales to detect sharp to diffuse ridges. Morphological parameters were 
measured from the traced images - average vessel length (AL) width (AW), and relative vascular 
area (RA).  Scale-space representation of a function f(x,y) can be defined as the convolution with 
a Gaussian g(x,y,t) where t corresponds to 
the width of the Gaussian. Then, the 
normalised first and second derivatives in x 
and y dimensions (L ,L ,L ,L ), which form x xx y yy
the Hessian Matrix H, will highlight the rate 
of change of the intensities of the images. 
Regions of maxima and minima can be 
calculated when the derivatives reach zero. 
To obtain the centrelines of vessels, or 
ridges in a topological analogy, it is 
necessary to convert from the (x,y) 
coordinate system to a local (p,q) system 
aligned with the eigendirections of the 
Hessian Matrix, b corresponds to the angle 
of rotation of the coordinate system. The 
ridges at different scales constitute a scale-space ridge surface and are defined as the 
points of (L ,L ,L ,L ) that fulfil the p pp q qq
conditions of maxima at every scale. 
Finally, the ridge surface needs to be 
simplified by selecting the points where the  
ridge surface has maximal values by a given 
norm. Thus, fine ridges are detected at fine 
scales whilst coarse ridges will have higher 
norm values at larger scales.
The detected scale-space ridges can be 
ranked by the strength of the ridge, which 
indicates which ridges are better defined in 
the contrast between the ridge itself and the 
surrounding regions (Fig. 2).
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area (RA).  

representation of a function 
 can be defined as the convolution with 

a Gaussian  where  corresponds to 
the width of the Gaussian. Then, the 
normalised first and second derivatives in x 
and y dimensions ( , which form 
the  , will highlight the rate 
of change of the intensities of the images. 
Regions of maxima and minima can be 
calculated when the derivatives reach zero. 
To obtain the centrelines of vessels, or 
ridges in a topological analogy, it is 
necessary to convert from the  
coordinate system to a  
aligned with the  of the 
Hessian Matrix, corresponds to the angle 
of rotation of the coordinate system. The 
ridges at different scales constitute a 

and are defined as the 
points of  that fulfil the 
conditions of maxima at every scale. 
Finally, the ridge surface needs to be 
simplified by selecting the points where the  
ridge surface has maximal values by a given 
norm. Thus, fine ridges are detected at fine 
scales whilst coarse ridges will have higher 
norm values at larger scales.
The detected  can be 
ranked by the strength of the ridge, which 
indicates which ridges are better defined in 
the contrast between the ridge itself and the 
surrounding regions (Fig. 2).

Scale-space f(x,y) g(x,y,t) t
L ,L ,L ,L )Hessian Matrix

(x,y) local (p,q) systemeigendirections
scale-space ridge surface (L ,L ,L ,L )

scale-space ridges

x xx y yy

p pp q qq

H

b 

Scale space ridges (red) selected 

from ridge surface (black)

=

L

q

L

pp

L

p

L

qq

Ridges detected at every scale 

will form a ridge surface

WTWT

Ang 1Ang 1

L

xx

L

yx

L

xy

L

yy

Ang 2Ang 2


	Page 1

