
              

City, University of London Institutional Repository

Citation: Reyes-Aldasoro, C. C., Williams, L. J., Akerman, S., Kanthou, C. & Tozer, G. M. 

(2011). An automatic algorithm for the segmentation and morphological analysis of 
microvessels in immunostained histological tumour sections. Journal Of Microscopy, 242(3),
pp. 262-278. doi: 10.1111/j.1365-2818.2010.03464.x 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/5508/

Link to published version: https://doi.org/10.1111/j.1365-2818.2010.03464.x

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Title:  An automatic algorithm for the segmentation and morphological analysis of 

microvessels in immunostained histological tumour sections 

Authors:  Constantino Carlos Reyes-Aldasoro, Leigh J Williams, Simon Akerman, 

Chryso Kanthou and Gillian M Tozer 

Address:  Cancer Research UK Tumour Microcirculation Group, The University of 

Sheffield, Department of Oncology, K Floor, School of Medicine, Beech Hill 

Road, Sheffield, S10 2RX, UK 

E-mail:  c.reyes@sheffield.ac.uk 

Telephone: 00 44 (0) 114 271 2850 

Fax: 00 44 (0) 114 271 3791 

 

Abstract 

A fully automatic segmentation and morphological analysis algorithm for the analysis of 

microvessels from CD31 immunostained histological tumour sections is presented. Development of 

the algorithm exploited the distinctive hues of stained vascular endothelial cells, cell nuclei and 

background, to provide the seeds for a ‘region-growing’ method for object segmentation in the 3D 

Hue, Saturation, Value (HSV) colour model. The segmented objects, identified as microvessels by 

CD31 immuno-staining, were post-processed with three morphological tasks: joining separate 

objects that were likely to belong to a single vessel, closing objects that had a narrow gap around 

their periphery, and splitting objects with multiple lumina into individual vessels. The automatic 

segmentation was validated against a hand-segmented set of 44 images from 3 different SW1222 

human colorectal carcinomas xenografted into mice. 96.3 ± 0.9% of pixels were found to be 

correctly classified. Automated segmentation was carried out on a further 53 images from 3 

histologically distinct mouse fibrosarcomas (MFs) for morphological comparison with the SW1222 

tumours. Four morphometric measurements were calculated for each segmented vessel: vascular 

area (VA), ratio of lumen area to vascular area (lu/VA), eccentricity (e), and roundness (ro). In 

addition, the total vascular area relative to tumour tissue area (rVA) was calculated. lu/VA, e and ro 
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were found to be significantly smaller in MF tumours than in SW1222 tumours (p<0.05; unpaired t-

test). The algorithm is available through the website http://www.caiman.org.uk where images can 

be uploaded, processed and sent back to users. The output from CAIMAN consists of the original 

image with boundaries of segmented vessels overlaid, the calculated parameters and a Matlab file, 

which contains the segmentation that the user can use to derive further results.  

Keywords: Vessel segmentation, immunohistochemistry, vessel morphology 
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Introduction 

 

The immunohistochemical staining of tissue sections for different proteins is a standard 

method for diagnostic and research purposes (Ramos-Vara, 2005). Staining for platelet 

endothelial cell (EC) adhesion molecule (PECAM-1 / CD31) with tagged antibodies is an 

effective method for identifying and localising the ECs that line blood vessels, as CD31 is 

expressed constitutively on the surface of adult, embryonic and tumour ECs (Newman, 

1997, van Mourik et al., 1985). In oncology, the expression of CD31 by endothelial cells in 

angiogenic vessels has gained considerable attention (Aroca et al., 1999, Righi et al., 

2003, Wang et al., 2008) as the tumour vasculature is emerging as an important 

therapeutic target for cancer (Tozer et al., 2005, Heath & Bicknell, 2009).  

 

Despite the popularity of the use of immunohistochemistry to stain for different proteins 

and the growth and power of computer and image analysis algorithms, manual procedures 

are still the most common method for assessing the presence, absence, distribution or 

intensity of staining. Manual analysis methods involve qualitative assessment of staining 

distribution (den Bakker et al., 2003, Duyndam et al., 2002), semi-quantitative assessment 

of staining intensity via visual observation (Enomoto et al., 2009, Rogers et al., 2007), or 

quantitative assessment of staining distribution (Hansel et al., 2003, Koukourakis et al., 

2000, Lund et al., 2000, West et al., 2005) using direct counting methods with or without 

applications of stereological principles to obtain morphometric data e.g. Chalkley point 

counting (Chalkley, 1943, Weibel, 1989). 

 

Numerous algorithms for immunostained image analysis have been developed for different 

specific tasks: counting objects such as nuclei, cells or microvessels (Van der Laak et al., 
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1998, Chantrain et al., 2003, Wester et al., 1999, Goddard et al., 2002, Goddard et al., 

2003, Zhou & Mao, 2005, Munzenmaier & Greene, 2006), quantifying optical density (Kim 

et al., 1999, Maximova et al., 2006), measuring the abundance of a stain (Lauronen et al., 

2006, Ranefall et al., 1998, Ranefall et al., 1997, Pham et al., 2007) or extracting 

morphometric measurements such as area, perimeter, ratio or perimeter and area and 

angle of microvessels (Luukkaa et al., 2007, Virgintino et al., 1997, Maximova et al., 2006, 

Dagnon et al., 2008, Van der Laak et al., 1998, Laitakari et al., 2003, Laitakari et al., 2004, 

Sadoun & Reed, 2003, Tsuji et al., 2002). Many of these algorithms are semi-automated, 

but most require a certain degree of user interaction, either for (a) pre-processing tasks 

such as adjustments of brightness and contrast or selection of window sizes (Kim et al., 

1999, Lauronen et al., 2006, Pham et al., 2007), counting of vessels or demarcation of 

regions of interest or vessels (Tsuji et al., 2002, Lauronen et al., 2006), (b) post-processing 

tasks such as delineation of lumina for segmented objects (Van der Laak et al., 1998), 

inclusion/exclusion of regions of interest (Chantrain et al., 2003), elimination of artefacts 

(Van der Laak et al., 1998, Virgintino et al., 1997) or (c) training of classifiers (Kim et al., 

1999, Ranefall et al., 1997, Ranefall et al., 1998) with supervised data. “Automation” in 

some cases refers to the automatic selection of a threshold (Kim et al., 1999), 

quantification and measurement procedures after the user selected a threshold (Dagnon et 

al., 2008) or selection of objects according to user-defined sizes (Goddard et al., 2002).  

Most of these algorithms use either the Red, Green and Blue (RGB) channels, a subset of 

these or the intensity of the grey level conversion from the colour images from a light 

microscope, and few exploit the higher discrimination that can be achieved when the RGB 

channels, the immediate output of a digital camera, are transformed to the Hue, Saturation 

and Value (HSV), Hue, Saturation and Intensity (HSI) or Hue, Saturation and Density (HSD) 

channels (van Der Laak et al., 2000, Maximova et al., 2006). In addition, most algorithms 
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use single threshold selection as a segmentation technique, which is not always accurate. 

Moreover, to the best of the authors’ knowledge, no segmentation algorithm performs any 

morphological post-processing except for the deletion of objects according to their size 

(Kim et al., 1999) or adjacency to the border of the image (Goddard et al., 2003) and 

splitting of round nuclei (Zhou & Mao, 2005). Post-processing of the segmented objects, 

as presented in this paper, is desirable to introduce a higher reliability of any morphometric 

measurements and therefore all the statistical measurements derived from these. For this 

paper, all the processing is done in MATLAB (The Mathworks, USA ©), and is deployed as 

an open web-based application. 

 

The aim of this work was to develop an algorithm for quantitatively analysing stained ECs 

in tumour tissue, with particular emphasis on producing a series of segmented objects that 

accurately describe the tumour microvessels from which measurements of stained area, 

vascular eccentricity and vessel roundness can also be obtained. This algorithm could be 

extrapolated to aid the analysis and quantification of immunohistochemical staining in 

general. The algorithm is part of an on-line algorithm repository for Cancer Image Analysis 

called CAIMAN, which can be accessed at http://www.caiman.org.uk. Users can upload 

immunostained images, which will be processed with the algorithm described below and 

segmented ECs will be overlaid on the original image and sent back to the user with a 

series of measurements provided by the algorithm.  

 

Here we describe the theoretical bases of the algorithm (pre-processing, segmentation 

and post-processing of the images and calculation of vascular parameters from the 

segmented images), as well as examples of results from a human colorectal carcinoma 

xenografted into mice and a mouse fibrosarcoma transplanted into mice. We determine 
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that the carcinomas and fibrosarcomas have similar total vascular areas but that the 

individual vessels in the fibrosarcomas have relatively smaller lumens than those in the 

carcinomas, which may have therapeutic significance. Mathematical details of the 

procedures comprising the algorithm are provided in the appendices. 

 

Materials and Methods 

Tumour models and Immunohistochemistry 

All animal procedures were carried out in accordance with the UK Animals (Scientific 

Procedures) Act 1986. Human colorectal carcinoma SW1222 cells (provided by Dr. R. B. 

Pedley, Department of Oncology, Royal Free and University College Medical School) or 

mouse fibrosarcoma (MF) cells derived from transformed mouse embryo fibroblasts (Tozer 

et al., 2008) were grown subcutaneously in the rear dorsum of six severe combined 

immunodeficiency (SCID) mice (three for each line). Mice were sacrificed and the tumour 

excised when their geometric mean diameter reached 6-8 mm diameter, 10-14 days post 

implantation. Zinc-fixed tumour sections (5 µm thick) were deparaffinised and antigen 

retrieval was performed with 20 µg ml-1 Proteinase K (Chemicon International - Millipore, 

Billerica, USA) for 15 minutes at 37 oC. Sections were blocked with species-specific serum 

for one hour followed by endogenous avidin, biotin and peroxidase blocks and were then 

incubated with purified rat anti-mouse CD31 (PECAM-1) monoclonal antibody (1:500, BD 

Pharmingen – BD Biosciences, San Diego, USA) overnight at 4o C. Sections were washed 

(PBS + 0.1% Tween-20) and secondary biotinylated rat antibody (1:400, Vector 

Laboratories – Peterborough, UK) was applied for 1 hour at room temperature. Sections 

were washed and the immune signal amplified by AB complex (DAKO) for 1 hour at room 

temperature. The immune reaction was detected by DAB (DAKO), with positive staining 
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appearing brown, against blue counterstaining, with Mayers Hematoxylin (Fluka – Sigma 

Aldrich, Gillingham, UK).  

 

Image acquisition 

Bright field images were captured with the following acquisition settings:  x10 magnification 

objective (N Plan 10x /0.25) on a Leica DM 1000 light microscope attached to a JVC KY-

1030U digital camera (1.5 Megapixel 1/2" CCD). Each image contained 1280 × 960 pixels, 

which measured 0.93 × 0.93 µm2, thus covering 1.1904 × 0.8928 mm2. A stage micrometer 

(Agar Scientific ©) was used to calibrate the ratio of pixels to µm. Images were acquired 

across a single central section from each tumour. In total, 44 SW1222 images and 53 MF 

images (12 to 19 per tumour) were captured. The software used for the acquisition was 

KY-link (JVC, Japan ©).  

 

Overview of the algorithm 

 

Pre-processing of images was necessary to equalise background inhomogeneity, as 

published previously (Reyes-Aldasoro 2009). The segmentation method was based on a 

transformation from the RGB (Red, Green, Blue) to the HSV (Hue, Saturation, Value) colour 

model. The HSV model describes perceptual colour relationships related to the artistic 

ideas of hue, tint and shade (Smith, 1978, Gonzalez & Woods, 2008) enabling a three 

dimensional chromatic histogram to be constructed from the HSV images. The saturated 

brown pixels, representing intense CD31 staining, were selected as the starting point or 

‘seeds’ for a ‘region-growing’ segmentation method and the bright pixels in the yellow-

green-cyan hues were selected as background and a stopping criterion for the growing 



 8 

process. Since the calculated morphological vascular parameters were obtained from each 

segmented object i.e. vessel of the image, it was crucial to perform three morphological 

tasks as post-processing steps to examine the objects; otherwise the statistical analysis on 

the shape and size measurements of the vessels could be misleading.  

First, where segmentation resulted in a series of unconnected objects, which should 

clearly form a single vessel, these objects were linked into a single vessel, on the basis of 

a small distance between the objects and their shape. Second, some of the thresholded 

objects appeared with an elliptical shape, identifying them as vessels, but they were not 

closed structures. These objects were closed, where the gap between the edges of the 

object was small. Third, objects with more than one inner lumen were split into separate 

objects. Since the pixels that described the vessels and their position within the tumour 

were recorded, statistical measurements such as eccentricity and proportional lumen area 

were extracted.  

 

Definition of the data and pre-processing 

Throughout this work, we considered that a colour image Irgb  had dimensions Nr × Nc × 3  

for rows, columns and three colour channels R,G,B[ ]  red, green and blue. Hue, 

 h ∈ 0,360!"# $% , is a circular property related to the wavelength of the colour where red 

corresponded approximately to 0°, yellow to 60°, green to 120°, cyan to 180°, blue to 240° 

and magenta to 315°. The saturation s, s ∈ 0,1[ ] , is a measure of the purity of the colour or 

its departure from white or grey and value v, v ∈ 0,1[ ] , is a measure of the brightness. 

Mathematical details of the image and the transformations are described in the appendix. 

The first step of the algorithm corrected the background inhomogeneity or shading of the 

images and equalised the histogram of the RGB channels. It was assumed that an original 
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unbiased image U was corrupted by a slowly-varying shading S so that I = U + S. 

Therefore, the corrected image Û, which was an estimation of U, was given by: U ≈ Û = I - 

S. The shading component was estimated as the envelope of the signal (Reyes-Aldasoro, 

2009). The envelope can be understood as the iterative stretching of a thin flexible surface 

under which a series of objects, that is the cells in this case, are placed. Initially, the 

surface was identical to the signal intensity but after a series of stretches, the surface 

adapted to the peaks of the objects, and intermediate values in between them. The 

process of stretching was repeated iteratively until change was minimal as defined in 

(Reyes-Aldasoro, 2009). Once shading was removed, the mean value of the three RGB 

channels was equalised to obtain a background with minimum saturation. 

 

Segmentation procedure I: the three-dimensional hue-saturation-

value histogram 

 

The next step of the algorithm transformed the RGB image to an HSV colour model and 

obtained the three-dimensional hue-saturation-value histogram mHSV h, s,v( ) . The intensity 

histogram (Winkler, 1995) of an image is a well-known measurement of the occurrence or 

relative frequency of elements at certain intensities or grey levels and it is the basis of 

threshold-based segmentation algorithms, as opposed to those based on clustering or 

deformable models (Ma et al., 2010). A distribution that varies along three dimensions can 

be summarised along one dimension, typically through summing the elements with respect 

to the desired dimension, the result is called a marginal distribution. In the same way, 

marginal distributions of a 2D distribution consist of 1D distributions. Marginal distributions 

of a three dimensional histogram would correspond to two-dimensional hue-saturation, 
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hue-value of saturation-value histograms. Isat , Ival  denoted the average values of 

saturation and value. Histograms of colour images have been used as one dimensional 

histograms of separate channels (RGB or HSV) for segmentation (Schettini, 1993), 

histogram equalisation (Tominaga, 1987, Lu et al., 2005), or image enhancement (Bassiou 

& Kotropoulos, 2007). In some cases, two channels have been used to form a bi-variate 

histogram (Angulo & Serra, 2007, Hanbury & Serra, 2003). Three dimensional channel 

description was discussed in (Marcu & Abe, 1995) as a visualising tool. In 3D, the 

histogram approaches have concentrated on enhancement of the RGB channels 

(Trahanias & Venetsanopoulos, 1992) or motion detection through 3D statistical 

characteristics obtained by filtering (Iliev et al., 2007). HSV segmentation in 3D was 

proposed in (Cho et al., 2001). For this work, we introduced the maximum saturation 

profile pmax S  as measurement of the distribution of the highest value of saturation for every 

value of hue. 

 

While the marginal distributions revealed the relative frequency of pixels within a certain 

hue or saturation, the maximum saturation profile revealed important characteristics of the 

image as it was important to distinguish between the hues with low saturation, which may 

correspond to background regions, and those highly saturated, which may correspond to 

regions of interest, that is the endothelial cells and the nuclei. Those hues with very bright 

pixels only ( pmax S ≤ 0.25 ) were considered as background (Androutsos et al., 1999, Angulo 

& Serra, 2005) as the hue did not contain saturated colours. Three criteria defined the 

brown colour of the endothelial cells, low value (v< Ival ), high saturation (s>0.25) and an 

adaptive hue range described below. The colour variations inherent to 

immunohistochemistry (Taylor & Levenson, 2006) resulted in images where the colour of 

stained nuclei was either blue or light purple and the endothelial cells were brown to light 
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beige. To compensate for this variation, the amount of dark brown (0°, 67°) was measured 

and used to determine the range of hues that were selected as brown. For those images 

with a strong component of brown, the range of brown, background and blue were 

approximately (10°, 50°), (60°, 200°), (220°, 310°) respectively, while for those with a low 

component it was (350°, 90°), (90°, 190°), (200°, 290°) respectively. These values were 

established after numerous immunostained images (more than 600) of different 

experiments were analysed in the HSV space. 

 

Segmentation procedure II: region-growing process 

The endothelial cells in brown previously defined, were used as seeds in the next ‘region-

growing’ step of the algorithm for image segmentation while bright background and blue 

nuclei, were also used for the stop criterion. Region-growing is a process in which all the 

neighbouring pixels of a small region or seed form an outer boundary. If the pixels of the 

boundary fulfil certain criteria of similarity, they are merged to the region and the procedure 

continues until no neighbouring pixels comply with the criteria. The criteria of similarity for 

the images were: (a) distance in rows and columns from the seed pixels, (b) distance in 

hue between the neighbouring pixels and the hues of the seeds, and (c) a combination of 

the saturation and value: only dark regions (pixels whose value v< Ival ) and saturated 

regions (for each hue, saturation s > 0.25pmax S ) were considered in the region growing, 

bright and non-saturated regions were not included. The three regions grew iteratively; the 

seeds were dilated to construct the outer boundary previously mentioned, and the pixels 

tested for the previous criteria. The region-growing stopped when minimal change (10 

pixels) was detected between iterations. Small (1 or 2 pixels) and isolated regions were 

considered as spurious and removed and the region-growing was repeated. If any pixels 

remained unassigned to any region, they were considered as background. The regions 
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corresponding to blue were labelled and those that were in contact with brown areas were 

reassigned to brown as these could correspond to nuclei of the endothelial cells. The 

resulting regions were smoothed with a closing (dilation followed by erosion) 

morphological operator.  

The regions corresponding to brown, that is the objects formed by endothelial cells, were 

labelled and their hues and sizes were analysed. A reliability criterion (rel) was defined as 

the ratio of pixels whose hues belonged to the original definition of brown to their area A, 

with the idea of retaining the objects that were most likely to be vessels and discarding 

those that could be formed by dark stained nuclei of cells other than ECs. Objects were 

discarded, i.e. not considered as a vessel (or part of a vessel), and assigned to 

“background” class, according to their area and reliability criterion (1) A < 20 pixels, (2) rel 

< 0.1, (3) A < 100 and rel < 0.2. These values were heuristically determined to discard very 

small objects, objects with a very low ratio of brown, and small objects with a low ratio of 

brown. 

 

Hand segmentation of images 

All forty-four images of the SW1222 tumours were manually segmented by a user without 

knowledge of the results obtained by the algorithm described above. For each image, the 

vessels and the lumen were delineated to obtain regions of background and vessels. The 

delineation was done in Matlab using a routine based on the Matlab command roipoly for 

each vessel and lumen. The final result were 44 images with all the vessels segmented 

from the background. The automated segmentation was compared with manual 

segmentation using two methods:  
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(1) Correct classification (sometimes referred as the complementary misclassification 

(Randen & Husøy, 1999)) was calculated as the ratio of pixels that belong to identical 

classes in the automatic and manual segmentation. 

(2) Positive predictive value (PPV) and Negative predictive value (NPV) (Altman & Bland, 

1994) were derived from the number of ‘True Positive’ (TP) pixels, number of ‘True 

Negative’ (TN) pixels, and the corresponding ‘False Positive’ (FP) and ‘False Negative’ 

(FN) pixels in the following way: PPV = TP / (TP + FP) and   NPV = TN / (FN + TN). 

 

Post-processing 

 

So far, the algorithm has segmented regions of brown or light beige and surrounding pixels 

of dark, saturated colours into a series of objects, which corresponded to the endothelial 

cells stained for CD31. However, before the objects were assigned as vessels, three 

morphological conditions had to be satisfied: objects were not part of a single vessel which 

have been segmented as two separate, disjoined objects (Fig. 1a), an object was not an 

open vessel (one where a small gap prevented the vessel from having a closed lumen) 

which needed to be closed (Fig. 2a) and an object was not formed by several joined 

vessels (Fig. 4a). The criteria tested to join separate objects were: closeness to each 

other, the region in between them not being background, objects not containing lumen and 

an improvement in the shape, in terms of the complexity of a skeleton, of the joined object. 

The criteria examined for the open vessels were an open lumen with small gap, which 

could form a watershed between the inside and the outside of the cell (see below). Finally, 

for the joined objects the criteria tested were to have multiple lumina larger than a 

predefined size. 
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The process of joining separate objects, which could form part of a single vessel, was 

performed as follows: for every segmented object, the Euclidean distance to all other 

objects was calculated to find its closest neighbour, with the idea of merging objects to 

form a single vessel. The dimensions of the objects dictated the maximum distance 

beyond which the objects would not be linked; larger objects allowed relatively distant 

objects to be considered while smaller objects considered only close neighbours. For each 

object, the major axis (MA) of an equivalent ellipse were calculated and combined in the 

following way: dmax = log(MA1) + log(MA2 ) . The logarithm was used to prevent large objects 

from linking to very distant objects while allowing small objects to link with not so distant 

objects. 

A second criterion to link the object was determined by the nature of the pixels between 

the objects. The region of connection was defined as all the pixels of the line of minimum 

distance between the objects dilated by two pixels. When the majority of pixels of a region 

of connection belonged to the background previously defined (60% or more), the objects 

were not joined. Otherwise, two further criteria were tested before joining the objects into a 

single one. First, both objects should be solid with no inner holes (Euler number = 1). 

Second and most important perhaps, is that the shape of the combined objects should be 

closer to the idealised shape of a vessel than the two separate objects. To test this 

criterion, both objects were reduced to a series of 1-pixel thick lines that followed the 

original shape of the objects, commonly known as skeleton (Blum, 1967). The skeleton (or 

medial axis transform) followed the shape of the objects with a thin line and for most 

objects consisted of several segments connected at branching points. Two objects (cyan), 

skeleton (yellow) and branching points (brown) are presented in Fig. 1(b, c). The first 

skeleton had 5 branching points and the second 4. The number of branching points of the 

skeleton was considered as a measure of the uniformity and smoothness of the shape of 
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each object, thus if the number of branching points of the single joined object exceeded 

the number of branching points of the individual objects, the joining was discarded. When 

all previous criteria were fulfilled, the objects were joined into a single one by changing the 

class (from background to vessel) of the previously defined region of connection into an 

object. The skeleton of the combined objects (Fig. 1d) presented nine branching points, 

thus fulfilling the last criterion.  

 

To close the open objects (Fig. 2a) the following process was carried out: for every 

segmented object of the image, the Euclidean distance between the pixels of the 

surrounding background (both inside and outside the object) was calculated to generate a 

distance map. The distances were defined as a negative value that increased, as the 

pixels were more distant from the object. In a topographical analogy with the distance 

corresponding to the altitude of a map, the object constituted a “plateau” while the 

background was a descending slope. Should this artificial landscape “received rain”; the 

water would find the path through which it could reach a region of minimum altitude, 

sometimes called lake or sea. Each point in the map corresponded to a path towards one 

and only one lake, and the landscape was partitioned into catchment basins or regions of 

influence of the regional minima (Fig. 2b). Finally, the boundaries defined by the 

watershed were used to partition the original object into a series of smaller objects. This 

segmentation process is called a watershed transformation (Vicent & Soille, 1991). The 

boundaries defined by the watershed transformation were added (mathematical OR) to the 

object (Fig. 2c) and the external boundary of the object was calculated. If the external 

boundary was identical to the original boundary, then the object could not be closed. 

However, when the external boundary (blue in Fig. 2d) was different from the original 

boundary of the object (white) through one watershed between the inside and the outside 
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of the vessel, the pixels that belonged to only the new boundary (and not the original) were 

added as a bridge, thus closing the open gap of the object (Fig. 2e). A final distance 

restriction was applied: the object was only close when the gap was relatively small, 10 

pixels is a compromise between a small gap that could be due to the segmentation 

process and a large one that could be due to a region without ECs.  

A final and important step was to divide those objects that contained more than one lumen. 

These objects could be formed by separate vessels lying very close to or even touching 

each other. Examples include sections cut through a branching vessel (Fig. 3a) or a 

tortuous vessel (Fig. 3b). Another possibility is that of a vessel with the endothelial cells 

bridging the lumen. Fig. 4a presents an object with five larger holes and several small 

holes. By splitting these objects with multiple lumina into individual vessels, the statistics 

collected will be on a per-lumen basis instead of on a per-vessel basis.  

When an object was detected to have more than one inner hole, the holes were labelled 

and the original object was removed from the analysis, leaving a new image with a series 

of objects corresponding to the holes. If the holes were smaller than a predefined size, 

they were considered to be noise and not to be split. Then, a distance map was formed 

with the Euclidean distance from each pixel of the object to its closest hole (Fig. 4b). The 

distance map was again segmented with the watershed transformation (Fig. 4c). Finally, 

the boundaries defined by the watershed were used to partition the original object into a 

series of smaller objects (Fig. 4d).  

 

Calculation of morphological parameters 

 

The segmentation algorithm described above provided a series of objects that described 

the endothelial cells of a tumour that were stained for CD31 and as such the objects 
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described closely the shape of the microvessels of the tumour, as they appear in 2-

dimensions. The last stage of the segmentation algorithm was to obtain a series of 

measurements that provided morphological information about the vasculature of the 

tumour. The following measurements were extracted from each individual vessel 

(segmented objects): 

 

1. Area of segmented object:  excluding lumen (Stained Area [ µm2 ]) (SA)   

    including lumen (Vascular Area [ µm2 ])  (VA) 

2. Ratio of lumen to vascular area       (lu/VA) 

3. Eccentricity of the vessel        (e) 

4. Roundness of the external boundary of the vessel    (ro)  

 

The first two measurements were obtained simply by counting the number of pixels of the 

object and inner holes (lumen) if any and converting to µm2 with the use of a stage 

micrometer. When the object was solid, the first two measurements were identical, and 

when it contained holes, Vascular Area (VA) was the sum of the Stained Area and the 

lumen area. The ratio lu/VA followed the division of the previous measurements. 

The eccentricity e of the objects was calculated from the major (MA) and minor axis (ma) of 

an equivalent ellipse: 

 

e = 1− (ma)
2

(MA)2
. (1) 

 

so that e = 0 corresponded to a perfect circle, e = 1 to a straight line and 0 < e < 1 to any 

other intermediate shape. Since the pixels of the object diverged from an ideal ellipse, the 
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measurement of eccentricity was an estimation that depended on the fitting of the ellipse 

to the object. For this work, the eccentricity provided by the regionprops command of 

MATLAB and the direct least-square fitting method (Fitzgibbon et al., 1999) were 

compared; both methods provided equivalent results (data not shown). 

 

The roundness ro of the objects was estimated as the ratio of the perimeter of the object 

over the perimeter of a circle of the equivalent area: 

 

ro =
P
4πVA

, (2) 

 

where P is the actual perimeter of the object and VA is the Vascular Area. This metric 

described how elongated the object was together with how smooth or crenated the 

external boundary of each vessel was. A final measurement was calculated per image: the 

ratio of the total Vascular Area (sum of the areas of all objects in the image) relative to the 

total area of the image. This relative Vascular Area (rVA) indicates the extent of 

vascularisation of the image. 

 

The statistical significance of differences in the mean values of the calculated parameters 

between the two tumour types was tested using an unpaired t-test. Values of p<0.05 were 

considered significant.  

 

Results and Discussion 

Segmentation by simple intensity thresholding of the stained endothelial cells did not 

produce adequate results (data not shown). Several factors are likely to account for this: 
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first, the images may have inhomogeneous background intensities, or shading, which 

required correction. Second, the intensity of the EC staining may not be uniform, and 

vessels may appear as fragmented objects or several vessels may appear to be linked as 

a single object. Third, variations in the immunostaining and acquisition process can 

produce differences in colour and quality of the image and the stained cells may have 

different shades. Endothelial cells stained from dark brown to light beige. Cell nuclei 

appeared from blue-purple to light magenta, while the background was white to light grey 

(Fig. 5a). Optical artefacts were manifest as non-uniform background in the images as can 

be seen in Fig. 5b, where the intensities of the RGB channels of one row of the image in 

Fig. 5a are presented. The black arrow on the right hand side shows a decrease in the 

intensity of all three channels. The channels after shading correction are presented in Fig. 

5c where the background intensities are uniform within the image. 

 

The segmentation result of Fig. 5a is presented in Fig. 6, first as the boundaries of the 

segmented objects overlaid with a green line (Fig. 6a) and second with the objects labelled 

with different colours that allowed visual discrimination (Fig. 6b). Fig. 7 presents three 

regions of interest from each of three SW1222 tumours (Fig 7a-c) and three MF tumours 

(Fig 7d-f) at higher magnification. It can be seen that the automated segmentation is 

effective in both tumour types (green boundaries in Fig 7b and 7e; coloured objects in Fig 

7c and 7f), even though there are qualitative differences in the background staining 

between tumours shown in Fig. 7a and 7d. In order to graphically compare the staining of 

tumours, the three-dimensional histogram mHSV h, s,v( )  obtained from Fig. 7a (centre 

tumour) is presented in Fig. 8b next to its RGB equivalent cloud of points in Fig. 8a. Both 

plots present a cloud of points located along the axis of red, green and blue or hue, 

saturation and value with its corresponding colour. It should be noticed how the brown and 
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purple points are well separated in the HSV model while they are difficult to distinguish in 

the RGB model. Fig. 8c presents the marginal distribution hue-saturation mHS h, s( ) , which 

has been overlaid on the 2D loci of constant value as an aid to visualise the pixel 

distribution. A 2D plane where hue and saturation vary along their corresponding axis 

while value remains constant is called loci of constant value. In this loci colours spread 

from one side to another, while the other axis determines the purity or “whiteness” of the 

colour. The relative frequency of pixels with a certain hue and saturation determines the 

height of mHS h, s( ) , that appears as a mesh of black lines. Notice that the z-axis is in a 

logarithmic scale. The pixels with high saturation are concentrated in the region of (250°, 

50°) in hue (purple to orange), while the region (50°, 250°) (yellow to blue) has very low 

saturation (tend to white). The hue histogram mH h( )  (solid blue line) and maximum 

saturation profile pmax S  (dashed green line) are presented in Fig. 8d. While the histogram 

indicates the relative frequency of pixels of different hues, pmax S  indicates the maximum 

saturation for a given hue. pmax S  reveals information about the image that is not evident in 

the histogram such as the distribution of the saturated pixels (peaks at (0°, 50°) and (270°, 

360°)) and the background (valley between (90°, 200°)) . The pixels with hues in the low 

saturation region were used as background, and the seeds for the region-growing 

algorithm were obtained from the high saturation pixels. Fig. 9 presents the histograms 

and maximum saturation profile corresponding to the image of Fig. 7a (right-hand tumour). 

The chromatic difference between the images of Fig. 7a (centre versus right-hand image) 

can be observed in the blue region (around 250°) both in mHSV h, s,v( )  and mHS h, s( )  due to 

a higher presence of blue-purple pixels present in the histograms of Fig. 8 relative to Fig. 

9. While there is a striking difference in the relative frequency of pixels with particular 

characteristics in the 1D histograms (solid blue lines, comparing Figs. 8 and 9), the pmax S  



 21 

profiles (dashed green lines) remain similar, which indicates the robustness of pmax S  as an 

estimator for the seeds of the region-growing process. 

 

The robustness of the segmentation process lies with the chromatic characteristics of the 

immunostained vessels of the tumours and the intrinsic difference with the haematoxylin-

stained nuclei of the SW1222 tumour cells. Although there are differences in the shades 

obtained from the immunohistochemistry process, the endothelial cells can be better 

discriminated in the HSV channels than in the traditional RGB channels as can be seen in 

Figs. 8,9. Also, the use of an adaptive hue range, rather than a fixed one compensates for 

variations in the distributions of the colours and resulted in good segmentation of the cells.  

 

All forty-four images of the SW1222 tumours were manually segmented by a user without 

knowledge of the results obtained by the algorithm described above. Fig. 10a presents the 

automatic segmentation of one representative image and Fig 10b the manual 

segmentation. Fig 10c presents the pixel-to-pixel comparison, when pixels were assigned 

to the same class by both methods, this was labelled in white and the black regions 

correspond to different classes, that is, the incorrectly classified pixels. The automatic 

results are presented as green boundaries overlaid in the original image in Fig 10d. For 

this image 97.12% of the pixels were assigned into identical classes (background/vessels) 

by both techniques. The 2.88% misclassified pixels correspond to very small vessels not 

segmented by the algorithm and the edges of larger vessels, where the hand-segmented 

delineation tended to smooth the boundaries of the cells and the automatic algorithm 

presented more “serrated” edges. Overall, the correct classification of the automatic 

against the manual segmentation was 0.963±0.009 (mean ± SD for n=3 tumours) of the 

total pixels from the 44 images. The corresponding Positive predictive value (PPV) was 
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0.991±0.016 and the Negative predictive value was 0.978±0.008. Therefore, the 

automated segmentation method provided an accurate means of identifying tumour blood 

vessels from which morphological parameters could be calculated.  

 

Fig. 11 shows the histograms of the following morphometric measurements from the 

SW1222 carcinomas (Fig. 11a) and the MF fibrosarcomas (Fig. 11b): (i) vascular area VA, 

(ii) ratio of lumen area over vascular area lu/VA, (iii) eccentricity e, (iv) roundness ro, and 

(v) relative vascular area rVA. The number of vessels segmented were 6,163 from the 

three SW1222 and 9,920 from the MF tumours. The data for each tumour are shown 

separately, as indicated in the legend. Some differences in the vascular morphology of the 

three SW1222 tumours, which are visible in the selected images from each tumour shown 

in Fig. 7, are also apparent in the histograms for the whole data sets (Fig. 11a) and Table 

1. For instance, a higher proportion of larger-sized vessels (as measured by VA) are 

shown in tumour 2 compared with tumours 1 and 3 (Fig. 11a(i)). The larger vessels in 

tumour 2 were also associated with larger lumina relative to the vascular area, VA (Fig 

11a(ii)) and combined with the density of the vessels, the relative vascular area (rVA) i.e. 

the extent of vascularisation was also larger in tumour 2 than in tumours 1 and 3 (Fig 

11a(v)). In the measurements of shape, there was little variation in e, while tumour 3 

presented a higher value of ro than all other tumours (Fig 11a(iv)). There were no 

significant differences between the SW1222 tumours and the MF tumours for vascular 

areas of individual vessels (VA) or the relative vascular areas (rVA) (Table 1). 

There was a significant but small difference in eccentricity (e) between the MF and 

SW1222 tumours and a borderline significant difference in (ro) between the two tumour 

types. However, the lumen to vascular area ratio (lu/VA) was significantly smaller in the MF 

tumours than in the SW1222 tumours (comparison of Figs 11a and b and Table 1). The 
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larger lumens in the SW1222 tumours may relate to the relatively well-differentiated 

glandular structure of the SW1222 tumours (El Emir et al., 2007) and our own unpublished 

results showing that the SW1222 tumours are more resistant to vascular shut-down by the 

tumour vascular disrupting agent, combretastatin A-4-phosphate (CA-4-P) than the MF 

tumours. The relationship between vascular morphology and response to vascular 

targeting agents remains to be fully investigated but the current results illustrate the 

usefulness of the automated algorithm in providing a rapid means of quantifying vascular 

characteristics of individual blood vessels, which may have therapeutic significance. In 

contrast, manual methods are slow and can only provide relatively simple measurements 

such as vessel counts. In the future we expect to use this algorithm to compare the 

measurements in different populations, for instance, tumours treated with a vascular-

targeted drug against a control group or to measure regional variation according to the 

position within the tumour. 

 

CAIMAN Website 

 

The segmentation algorithm is provided to users through a website called “CAIMAN”. 

CAIMAN is an Image Analysis internet-based project (Reyes-Aldasoro et al., 2010) that 

combines the scripting language PHP (The PHP group, free software), the high-level 

technical computing language MATLAB (The Mathworks, USA ©), the Interactive Object 

Management Environment (IOME) Markup Language (Griffiths et al., 2009) and 

specifically designed image analysis algorithms ((Reyes-Aldasoro et al., 2008, Reyes-

Aldasoro, 2009) for instance), to provide a user-friendly web-page where any person can 

upload images from their experiments and execute analysis algorithms to obtain 

quantitative measurements. The website and the use of IOME have been presented in 
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more detail in (Reyes-Aldasoro et al., 2010, Griffiths et al., 2009), but briefly: the user 

selects the appropriate algorithm from those available through the CAIMAN website and 

uploads the image to be analysed. Once the images have been uploaded to the web-

server, the IOME-PHP toolbox is used to make a web service request to the image 

analysis service, which resides in a high performance cluster, this request is made using 

IOME-ML. The image is transferred to the cluster where it is processed in Matlab and the 

results are sent to the user via e-mail. The email contains a series of morphological 

measurements together with two attachments: an image file in jpeg format with the 

segmentation overlaid on the original image and a Matlab file with the segmentation as 

labelled objects. From this second file, the users can extract more measurements, if 

required. 

 

Conclusions 

 

An algorithm to segment the ECs from images of stained histological sections has been 

presented. The strength of the algorithm resides with the large number of microvessels 

that can be analysed by a fully automatic segmentation. In the sample images shown, no 

user intervention was required for thresholding, adjustments of brightness and contrast or 

selection of window sizes. The automatic segmentation also ensures consistent criteria for 

object identification and allows the process to be run on a set of images in the background.   

The algorithm can be accessed through a user-friendly website where the user can upload 

immunohistological images and the results are sent back via e-mail. In addition, the 

algorithm provides morphometric analysis of microvessels from which general population 

statistics can be calculated and has general applicability for a range of different tissues 

and therapeutic interventions. 
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Appendices: Mathematical Details 

Image Definition and transformation from RGB to HSV 

Throughout this work, we considered that a colour image Irgb  had dimensions Nr × Nc × 3  

for rows, columns and three colour channels that were quantised to 

€ 

Ni  levels, which are 

usually 256. Let Lr = {1,2,...,r,...,Nr} , Lc = {1,2,...,c,...,Nc}  be the spatial domains of the 

data, x ∈ Lr × Lc( )  be a pixel of the image, and R,G,B[ ] =  

{1,2,...,r,...,Ni},{1,2,...,g,...,Ni},{1,2,...,b,...,Ni}[ ]  a triplet of values for red, green and blue. 

An image was represented then as a function that assigned a colour to each pair of co-

ordinates (Haralick et al., 1973):  

Lr × Lc; Irgb : Lr × Lc → R,G,B[ ] .  (3) 

Irgb  was also represented by its individual colour channels Irgb = Ired , Igreen , Iblue!" #$ . An image 

in the HSV model Ihsv = T Irgb( )  was represented by the individual channels: 

Ihsv = Ihue, Isat , Ival[ ]  corresponding to the new chromatic triplet 

H ,S,V[ ] = {0,...,h,...,1},{0,..., s,...,1},{0,...,v,...,1}[ ] . Both images had the same dimensions. 
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The conversion from RGB to HSV (Smith, 1978) required the red, green, and blue channels 

to be normalised: r̂ = R
255

, ĝ = G
255

, b̂ = B
255

∈ 0,1[ ] . Their maximum and minimum values 

were: maxrgb = max r̂, ĝ, b̂{ } , minrgb = min r̂, ĝ, b̂{ } . The value v, v ∈ 0,1[ ] , is a measure of the 

brightness of the element and was defined as v = maxrgb . The saturation s, s ∈ 0,1[ ] , is a 

measure of the purity of the colour or its departure from white or grey and was defined as: 

s =

0 if maxrgb = 0

maxrgb− minrgb

maxrgb

otherwise

"

#
$$

%
$
$

. (4) 

 Hue,  h ∈ 0,360!"# $% , is a circular property related to the wavelength of the colour where red 

corresponded approximately to 0°, yellow to 60°, green to 120°, cyan to 180°, blue to 240° 

and magenta to 315°. Each hue was obtained by: 

 

h =

0! if maxrgb = minrgb

(60° ×
ĝ − b̂

maxrgb− minrgb

+ 0° ) mod 360°, if maxrgb = r̂

(60° ×
b̂ − r̂

maxrgb− minrgb

+120° ), if maxrgb = ĝ

(60° ×
r̂ − ĝ

maxrgb− minrgb

+ 240° ), if maxrgb = b̂

#

$

%
%
%
%
%

&

%
%
%
%
%

. (5) 

 

Shading Correction 

The shading component was estimated as the envelope of the signal or as an iterative 

stretching of a thin flexible surface. Mathematically, each stretch corresponded to a 

comparison between the intensities of a pixel and the average value of increasingly distant 

pairs of opposite 8-connectivity neighbours in 4 orientations: [0°, 45°, 90°, 135°]. The 
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distance di between the pairs was increased at every iteration i. The intensity of the pixel 

was replaced with the maximum value of the averages and the pixel itself: 

 

Simax (r,c) = max

I(r − di ,c − di ) + I(r + di ,c + di )
2

, I(r + di ,c − di ) + I(r − di ,c + di )
2

,

I(r − di ,c) + I(r + di ,c)
2

, I(r,c − di ) + I(r,c + di )
2

, I(r,c)

"

#
$$

%
$
$

&

'
$$

(
$
$

. (6) 

 

The three-dimensional hue-saturation-value histogram 

 

 

The hue-saturation-value histogram is a tri-variate measurement of the relative frequency 

of H ,S,V[ ]  on Ihsv  and it was defined as:  

 

mHSV h, s,v( ) =
# x ∈(Lr × Lc ) : Ihue(x) = h, Isat (x) = s, Ival (x) = v{ }

#{Lr × Lc}
, h ∈H , s ∈S,v ∈V , (7) 

 

where # denoted the number of elements in the set. The two-dimensional hue-value 

mHV h,v( ) , hue-saturation mHS h, s( )  or saturation-value mSV s,v( )  histograms are marginal 

distributions of mHSV h, s,v( ) . A marginal distribution of a n-dimensional distribution 

corresponds to the distribution when one of the dimensions is averaged over the other 

dimensions and it is obtained by integrating out the variables that are not of interest for 

that marginal (Leon-Garcia, 1994). The marginal distributions of mHS h, s( )  constituted the 

individual histograms for hue and saturation mH h( ) = mHS h, s( )
s
∑ , mS s( ) = mHS h, s( )

h
∑ . Isat , 
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Ival  denoted the average values of saturation and value: Isat =
1

Nr × Nc

Isat
c
∑

r
∑  and 

Ival =
1

Nr × Nc

Ival
c
∑

r
∑ .  

The maximum saturation profile pmax S  is measurement of the distribution of the highest 

value of saturation for every value of hue, mathematically:  

pmax S = y ∈(h × S) : max s( )  so that mHS y( ) > 0{ }, h ∈H . (8) 
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Figures 

 

Fig. 1. Morphological task of joining two separate objects. (a) Two objects considered for joining. (b, 

c) Skeleton (yellow) and branching points (brown) of individual objects; objects present 5 and 4 

branching points respectively. (d) Skeleton and branching points (nine) of the objects joined into a 

single object. When the number of branching points of the joined object exceeds the number of 

points of the individual objects, joining is not considered (see text for all criteria). In this case, the 

objects were joined. 

 

 

Fig. 2. Morphological task of closing of open objects: (a) A single object with an opening in the upper 

left hand side. (b) Distance map (brightness denotes distance from object) and segmentation 

boundaries of a watershed transformation (blue lines). (c) Combination of the object with the 

boundaries. (d) External boundaries of the original object (white) and the new object (blue) (e) Final 

closed object. 
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Fig. 3. Two examples of vessels that may appear as a single object when thin sectioned. (a) A 

branching vessel, (b) a tortuous vessel crossing the plane of sectioning. 

 

 

Fig. 4. Morphological task of splitting objects.  Any object with more than one inner area or “hole” or 

lumen is considered as a group of vessels and it will be split into several new objects: (a) One object 

with more than one hole. (b) A distance map (the minimum Euclidean distance from every pixel of the 

object to its nearest hole, brightness denotes distance from the holes) corresponding to the larger 

holes of (a). (c) Watershed segmentation of the distance map. The segmentation is analogous to the 

catchment basins of a topological map (see text). For the example, 5 regions were generated. (d) The 

original object split into 5 new objects, the segmentation boundaries (green) are overlaid on the 

original image. 
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Fig. 5. (a) One representative immunostained image. SW1222 carcinoma cancer cell nuclei appear 

blue-purple, endothelial cells in brown-beige and the background in white-grey. Bar = 80 µm. (b) The 

intensity profile of a line inside the image; red, green and blue lines correspond to the values of each 

of the colour channels. Notice the general decrease in intensity of the three channels on the right 

side (black arrow). These inhomogeneities are due to optical artefacts. (c) After shading correction, 

the Intensities of the same profile remain constant. 

 

 

Fig. 6. Vessel segmentation with the proposed algorithm. (a) Immunostained images with object 

boundaries overlaid with green lines. Bar = 80 µm. (b) Segmented objects corresponding to the 

vessels on the left column, each object was labelled with a different colour for visual discrimination. 
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Fig. 7 Six regions of interest of images, one per tumour, with different colour shades and quality due 

to variations in the immunostaining and acquisition process. Bar = 80 µm. (a) Original 

immunostained images for the SW 1222 tumours, (b) Segmented objects overlaid with green lines, (c) 

Segmented objects labelled with different colours. (d) Original immunostained images for the MF 

tumours, (e) Segmented objects overlaid with green lines, (f) Segmented objects labelled with 

different colours. 
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Fig. 8. Graphical depictions of the coloured pixels from an immuno-stained section. (a) A cloud of 

coloured points describes the distribution of pixels within the RGB domain corresponding to Fig. 7a 

(centre). (b) Three-dimensional histogram mHSV (h, s,v)  for the same image. A cloud of coloured 

points describes the distribution of pixels within the HSV domain. (c) Two-dimensional histogram 

mHS (h, s)  overlaid on loci of constant value, notice the logarithmic z-axis. The higher peaks at the 

low saturation (s<0.2) correspond to the background pixels while the lower peaks in the foreground 

correspond to the pixels stained by immunohistochemistry. (d) One-dimensional hue histogram 

(solid blue line) and maximum saturation profile pmax S  (green dotted line). While the histogram 

describes the relative frequency of the ranges of hue, pmax S  indicates those hues that reach high 

saturations (intense colours, far from white or grey) within the images.  
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Fig. 9. (a) A cloud of coloured points describes the distribution of pixels within the RGB domain 

corresponding to Fig. 7a (right). (b, c, d) Three-, two- and one-dimensional histograms mHSV (h, s,v) , 

mHS (h, s) , mH (h)  and maximum saturation profile pmax S . See Fig. 8 legend for full details.  
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Fig. 10 Manual validation of the algorithm. (a) The automatic segmentation produced by the 

algorithm, vessels are white and background is black. (b) Manual segmentation produced by hand-

delineation. (c) Comparison of the two segmentations; pixels that have identical classes in both 

segmentations appear in white (97.12%), while incorrect classifications (2.88%) appear in black. (d) 

Original image with the automatic classification overlaid with green lines. 
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Fig. 11 Histograms for the morphometric measurements of microvessels from 3 SW1222 tumours (a) 

and 3 MF tumours (b). (i) vascular area VA, (ii) ratio of lumen area over vascular area lu/VA, (iii) 

eccentricity e, (iv) roundness ro, and (v) relative area rVA. Tumours 1,4 (Fig. 7a,d left) are represented 

by a solid blue line, tumours 2, 5 (Fig. 7a,d centre) by a dashed red line and tumours 3, 6 (Fig. 7a,d 

right) by a dash-dot black line. It should be noted that there is some variation in the measurements 

between the different tumours (see text for details). Measurements in (i-iv) are acquired per object 

from 12-19 images per tumour, whereas a single value per image is acquired for rVA in (v).  
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Table 1. Statistical descriptors (Mean, Standard Error of the Mean (sem), Median, Minimum and 

Maximum) for five measurements (Vascular Area, eccentricity, Lumen/Vascular area, roundness and 

relative vascular area) obtained from 6 tumours. p-values of an unpaired t-test were calculated 

between the SW 1222 (tumours 1-3) and MF (tumours 4-6) lines. Values of p<0.05 are highlighted in 

bold. 

 
 Metric Vascular 

Area [µm2] 
Lumen/Vessel 
Area 

Eccentricity Roundness Relative 
vascular 
Area 

Tumour 1 
 
SW 1222 

mean 
sem 
median 
minimum 
maximum 

441.6 
9.3 

310.0 
25.9 

7976.9 

0.071 
0.002 

0 
0 

0.651 

0.858 
0.002 
0.897 
0.167 
0.997 

1.77 
0.01 
1.58 
0.90 
5.97 

0.059 
0.001 
0.059 
0.048 
0.070 

Tumour 2 
 
SW 1222 

mean 
sem 
median 
minimum 
maximum 

833.0 
20.4 

477.4 
25.9 

9153.2 

0.098 
0.002 
0.022 

0 
0.705 

0.856 
0.002 
0.889 
0.207 
0.996 

1.71 
0.01 
1.52 
0.93 
7.08 

0.102 
0.004 
0.103 
0.085 
0.144 

Tumour 3 
 
SW 1222 

mean 
sem 
median 
minimum 
maximum 

472.9 
13.5 

325.6 
25.9 

8893.7 

0.041 
0.002 

0 
0 

0.683 

0.875 
0.003 
0.919 
0.164 
0.997 

1.93 
0.01 
1.79 
0.93 
5.54 

0.046 
0.004 
0.051 
0.001 
0.066 

Tumour 4 
 
MF 

mean 
sem 
median 
minimum 
maximum 

266.8 
10.4 

127.1 
22.4 

22067.9 

0.019 
0.001 

0 
0 

0.678 

0.839 
0.002 
0.878 
0.109 
0.997 

1.53 
0.01 
1.41 
0.89 
5.85 

0.061 
0.004 
0.057 
0.034 
0.092 

Tumour 5 
 
MF 

mean 
sem 
median 
minimum 
maximum 

431.3 
14.6 

161.7 
22.4 

17810.8 

0.023 
0.001 

0 
0 

0.573 

0.844 
0.002 
0.882 
0.180 
0.998 

1.67 
0.01 
1.49 
0.88 
8.01 

0.095 
0.004 
0.093 
0.062 
0.146 

Tumour 6 
 
MF 

mean 
sem 
median 
minimum 
maximum 

420.5 
19.3 

149.1 
22.4 

16032.6 

0.017 
0.002 

0 
0 

0.502 

0.835 
0.001 
0.875 
0.206 
0.998 

1.52 
0.01 
1.41 
0.89 
5.76 

0.068 
0.002 
0.068 
0.050 
0.099 

t-test 
 SW vs 
MF 

p-value 0.199 0.039 0.019 0.046 0.791 

 


