

City, University of London Institutional Repository

Citation: Katopodis, S., Spanoudakis, G. & Mahbub, K. (2014). Towards hybrid cloud

service certification models. In: 2014 IEEE International Conference on Services Computing
(SCC). (pp. 394-399). Institute of Electrical and Electronics Engineers Inc.. ISBN
9781479950669 doi: 10.1109/SCC.2014.59

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5726/

Link to published version: https://doi.org/10.1109/SCC.2014.59

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Towards Hybrid Cloud Service Certification Models
Spyros Katopodis, George Spanoudakis, Khaled Mahbub

City University London
London, UK

e-mail: {Spyros.Katopodis.1, G.E.Spanoudakis, K.Mahbub}@city.ac.uk

Abstract— In this paper, we introduce a hybrid approach for
certifying security properties of cloud services that combines
monitoring and testing data. The paper argues about the need
for hybrid certification and examines some basic
characteristics of hybrid certification models.

Keywords-cloud security, certification, hybrid models

I. INTRODUCTION
The certification of cloud service security has become a

necessity due to on-going concerns about cloud security and
the need to increase cloud trustworthiness through rigorous
assessments of security by trusted third parties [1][2]. Unlike
the certification of security in traditional software systems,
which is based on static forms of security assessment (e.g.,
the Common Criteria model [11]), the certification of cloud
service security requires continuous assessment [5]. This is
because cloud services are provisioned through dynamic
infrastructures operating under security controls and other
configurations that may change dynamically introducing
unforeseen vulnerabilities. Cloud service security can also be
compromised because of attacks on co-tenant services.

Recent work on cloud service certification applies
dynamic forms of security assessment, notably dynamic
testing (e.g., [4]) or continuous monitoring (e.g., [6][10]).
These overcome some of the limitations of traditional
security certification and audits (e.g. they produce machine
readable certificates incorporating dynamically collected
evidence). However, there are cases where existing
approaches cannot provide an adequate level of assurance.
Testing, for instance, may be insufficient for transactional
services, as it is normally performed through a special testing
(as opposed to the operational) service interface. Monitoring
based certification may also be insufficient if there is
conflicting or inconclusive evidence in monitoring data; such
data may, for example, not cover all traces of system events
that should be seen to assess a property.

To overcome such problems, we are working on a hybrid
approach for certifying cloud service security that could
combine both monitoring and testing evidence. Our approach
is based on the cloud certification framework of the
CUMULUS project [1]. In this paper, we introduce the basic
concepts of hybrid certification models and present examples
of such models formalised using EC-Assertion (i.e., the
monitoring language of the CUMULUS framework).

The rest of the paper is organized as follows: Sect. 2
reviews related work; Sect. 3 introduces hybrid certification

models, giving formal examples of such models; and Sect. 4
presents concluding remarks and directions of future work.

II. RELATED WORK
Dynamic cloud security certification is the focus of some

recent work. The Cloud Security Alliance has generated the
STAR self-assessment certification framework [6]. STAR is
limited to monitoring and, to the best of our knowledge, is
not implemented yet. A configurable cloud certification
framework allowing the definition and realisation of
different monitoring based cloud certification models is
described in [10]. Monitoring has also been combined with
model checking techniques to assess properties of software
cloud services in [7]. A test based security certification
scheme for cloud services has been proposed in [12].
Providing security assurance through IT audits has been the
norm in industrial practice. IT audits, however, focus on
providing guidelines for inspection of security controls on IT
and cloud infrastructures and they are not automated [3][8].

III. HYBRID CERTIFICATION MODELS

A. Background: CUMULUS Certification framework
Our work on hybrid security certification is part of the

EU Project CUMULUS, which focuses on incremental,
multiple evidence and multi-layer cloud service security
certification. In CUMULUS, certification is a process that is
carried out according to a certification model [13]. This
model defines: (i) the security property to be certified, (ii)
the cloud service that this property applies to (aka target of
certification (TOC)), (iii) the evidence that should be used
to assess the property, (iv) the conditions that determine the
sufficiency of evidence for issuing a certificate for the
property, and (v) ways to treat conflicts in the evidence.

CUMULUS offers a monitoring infrastructure for
realising monitoring based certification models based on
EVEREST [10]. EVEREST enables the monitoring of
runtime events produced by distributed systems based on
rules and assumptions expressed in an Event Calculus based
language, called EC-Assertion [10]. Rules express conditions
that must be satisfied at all times by runtime events, whilst
assumptions express the ways of deducing information from
such events (e.g. the state of the monitored system). Both
rules and assumptions are defined in terms of events and
fluents. An event is something that occurs at a specific
instance of time and has instantaneous duration. Fluents
represent system states and are initiated and terminated by
events. The basic predicates used by EC-Assertion are:

• Happens(e,t,[L,U]) – This predicate denotes that an event e
of instantaneous duration occurs at some time point t
within the time range [L,U]. An event e is specified as
e(_id,_snd,_rcv,TP,_sig,_src) where _id is its unique id of
it, _snd is its sender, _rcv is its receiver, _sig is its
signature, and _src is the source where e was captured
from. TP is the event’s type. EC-Assertion offers three
built-in event types: (a) captured operation calls (REQ), (b)
captured operation responses (RES) and (c) forced
operation execution events (EXC), i.e., operation
executions triggered by the monitor itself.
• Initiates(e,f,t) – This predicate denotes that a fluent f is

initiated by an event e at time t.
• Terminates(e,f,t) – This predicate denotes that a fluent f is

terminated by an event e at time t.
• HoldsAt(f,t) – This is a derived predicate denoting that a

fluent f holds at time t. HoldsAt(f,t) is true if f has been
initiated by some event at some time point t’ before t and
has not been terminated by any event within [t’,t].

B. Hybrid certification models
The key concept underpinning a hybrid certification

model is to cross-check evidence regarding a security
property that has been gathered from testing and monitoring
and, provided that there is no conflict within it, to combine it
providing assurance for properties. Consider, for example, a
scenario where the property to be certified is cloud service
availability. If availability is measured as the percentage of
the calls to service operations for which a response was
produced with a given time period d, a monitoring check
should verify exactly this condition. However, the trace of
service calls that has been examined by the monitoring
process might not cover all the operations in the service
interface or the expected peak workload periods of the
underlying infrastructure. In such cases, before issuing a
certificate for service availability, it would be necessary to
test any of the above service usage conditions that have not
been covered yet. The combination of monitoring and testing
can be attempted in two basic modes:
(1) The dependent mode – In this mode, a security property
is assessed for a TOC by a primary form of assessment
(monitoring or testing) which triggers the other (subordinate)
form in order to confirm and/or complete the evidence
required for the assessment.
(2) The independent mode – In this mode, a security property
is assessed for a TOC by both monitoring and testing
independently without any of these assessments being
triggered by outcomes of the other. Then at specific points
defined by the evidence sufficiency conditions of the
certification model the two bodies of evidence are correlated
and cross-checked to complete the hybrid assessment.

 Beyond the elements of certification models that were
overviewed in III.A, a hybrid certification model should also
define: (a) the mode of hybrid certification; (b) the way of
correlating monitoring and testing evidence; (c) conditions

for characterising these types of evidence as conflicting, and
(d) the way in which a final overall assessment of the
property can be generated based on both types of evidence.

In the following, we give examples of hybrid certification
models of both modes, formalise them in EC-Assertion and
use this formalisation to examine generic relationships that
exist in hybrid models.

C. Example 1: Hybrid, dependent mode models
Our first example shows the use of a hybrid approach in

certifying data integrity-at-rest. As defined in [9], this
property expresses the ability to detect and report any
alteration of stored data in a target of certification (TOC).

To demonstrate the difference between monitoring and
hybrid certification models, we first present the monitoring
certification model for data integrity-at-rest, expressed by the
EC_Assertion monitoring rule R1 that is listed below. The
specification of this rule as well as all models in the paper,
assumes the following agents and variables denoting them:
service consumers (_sc), target of certification (_TOC),
authentication infrastructure (_AI), certification authority
(_CA).
Rule	
 R1:	

Happens(e(_e1,_sc,_TOC,REQ,_updOp(_cred,_data,_auth),_T
OC),t1,[t1,t1])	
 ^	

Happens(e(_e2,_TOC,_AI,RES,_updOp(_cred,_data,_vCode),_
TOC),t2,[t1,t1+d1])	
 ^	
 (_vCode	
 ≠	
 Nil)	
 ⇒	

Happens(e(_e3,_TOC,_A,REQ,_notifO(_cred,_data,_auth,_h)
,_TOC),t3,[t2,t2+d2])	

According to R1 when a call of an update operation in a
_TOC is detected at some time point t1 (see event
Happens(e(_e1,_sc,_TOC,REQ,_updOp(_cred,_data,_auth),_T
OC),t1,[t1,t1])) and a response to this call occurs after it
(see event Happens(e(
 _e2	
 ,_TOC,	
 _AI,	
 RES,_updOp(_cred,	

_data,_verCode),_TOC),t2,[t1,t2+d1])) indicating that the
request has been granted (see condition (_vCode	
 ≠	
 Nil) in
the rule), the monitor should also check for the existence of
another event showing the call of an operation in some
authorisation agent _A to notify the receipt and execution of
the update request (see Happens(e(_e3,_TOC,_CA,	

REQ,_notifO(_cred,_data,_auth,_h),_TOC),t3,[t2,t2+d2]))1

. The above model has two limitations in providing assurance
for the integrity-at-rest property: (1) it cannot capture
updates of data that might have been carried out without
using the update interface assumed of _TOC (i.e.,
_updOp(_cred,_data,_vCode)), and (2) it cannot check that
the operation _updOp has checked authorisation rights before
updating data, and

A hybrid model could be used in this case to overcome
partially the first of these limitations. More specifically, a
hybrid model in this case could be based on periodic testing
to detect if stored data have been modified and monitor the
periods between the tests that revealed data modifications to
check if appropriate notifications have also been sent. Data

1 Note that the operation signatures used in the rule may change

depending on _TOC without affecting the generality of the rule.

modifications could be detected by obtaining the hash value
of the relevant data file in the TOC periodically. Then, if
across the execution of two consecutive tests, the last
retrieved hash value of the file is different from the previous
hash value, a data modification action can be deduced. In
parallel with the execution of this periodic test, the hybrid
model will also monitor the execution of notification
operations. Hence, when a data modification action is
detected by two consecutive tests, the hybrid model could
also check whether a correlated notification operation has
been executed within the period between the tests.

 This hybrid model model can be expressed using the
following monitoring rule and assumption:
Rule	
 R2:	
 Happens(e(_e1,_CA,_TOC,EXC(Tper),	

_getHash(_TOC,_file,_h1),_CA),	
 t1,	
 [t1,t1])	
 	
 ^	

HoldsAt(LastHash(_file,_h2,t2),t1)	
 ^	
 (_h1	
 ≠	
 _h2)	
 ⇒	

Happens(e(_e3,_TOC,_CA,REQ,_notifO(_cred,_data,	

_auth,_h1),_TOC),t3,[t2,t1])	

Assumption	
 A1:	
 Happens(e(_e1,_CA,_TOC,REQ,	

_getHash(_TOC,_file,_h1),_TOC),t1,[t1,t1])	
 	
 ^	

HoldsAt(LastHash(_file,_h2,t2),t1)	
 ^	
 (_h1	
 ≠	
 _h2)	
 ⇒	

Terminates(_e1,LastHash(_file,_h2,t2),t1)	
 ^	
 	

Initiates(_e1,LastHash(_file,_h1,t1),t1)	

Rule	
 R2 is “hybrid” as it includes normal monitoring
events (i.e., REQ and RES events) and events that trigger the
execution of tests (i.e., EXC events). R2 expresses a hybrid
dependent mode model where evidence arising from testing
triggers the acquisition of monitoring evidence. Hence,
testing is the primary form of assessment. In particular, R2
forces the execution of the event Happens(e(_e1,	
 _CA,	
 _TOC,	

EXC(Tper),	
 _getHash(_TOC,	
 _file,_h1),_TOC),	
 t1,[t1,t1])
periodically every Tper time units to invoke the operation
_getHash	
 in the testing interface of _TOC and obtain the
current hash value (_h1) of the data file (_file) of _TOC. If
this value is different from the hash value recorded by a
previous test at some t2 (i.e., the value recorded in the fluent
LastHash(_file,_h2,t2),t1), rule R2 checks if an update
notification has also occurred between t2 and t1, as
expressed by the monitoring event
Happens(e(_e3,_TOC,_A,REQ,_notifO(_cred,_data,_auth,_h1
),_TOC),t3,[t2,t1]). The hybrid model uses also a
monitoring assumption (i.e., A1). This assumption is used in
the model to update the hash value recorded in the fluent
LastHash, if a test retrieves a hash value that is different from
the last recorded one.

Although the above model can capture data updates that
have taken place without the invocation of the file updating
interface, it cannot guarantee that it can capture all possible
updates that might have taken place. In particular, it won't be
able to detect if more than one updates have taken place
between two consecutive executions of the periodic test.
Hence, it addresses the first of the limitations of the
monitoring problem (i.e., limitation (1)) only partially.

To address the second limitation of the monitoring model
(i.e., limitation (2)), it is possible to construct a different
hybrid model. This model could rely on testing to ensure that
every time that an agent that requests a data alteration, it has

the authorisation right to do the requested alteration. This
model can be expressed by the monitoring rule below:
Rule	
 R3:	
 Happens(e(_e1,_sc,_TOC,REQ,_updOp(_cred,_data,	

_auth),_TOC),t1,[t1,t1])	
 	
 ^	

Happens(e(_e2,_TOC,_AI,RES,_updOp(_cred,_data,_vCode1),
_TOC),t2,[t1,t1+d1])	
 ^	
 (_vCode1	
 ≠	
 Nil)	
 ⇒	

Happens(e(_e3,_CA,_AI,EXC,_authorO(_cred,_auth,_vCode2)
,_TOC),t3,[t2,t2+d2])^(_vCode2≠Nil)

Rule R3 monitors requests for updates of _TOC data
through its normal updating interface. However, for every
such request that is granted by _TOC, it requests the execution
of a test to check if the entity that requested the update had
indeed the authorisation to update data. This is expressed by
the EXC event
Happens(e(_e3,_CA,_AI,EXC,_authorO(_cred,_auth,_verCode
2),_TOC),t3,[t2,t2+d2])) and the condition _verCode2	
 ≠	

Nil. In R3, the monitoring evidence triggers the execution of
tests. Hence, the rule expresses a dependent hybrid model
where monitoring is the primary form of assessment. Rules
R2 and R3 are examples of general time correlation
structures that may arise in dependent hybrid certification
model and which are shown in Figure 1.

Part (a) of the figure shows dependent hybrid
certification models where testing is the dominant form of
assessment. In such models, test plans each consisting of a
series of tests (i.e., {Testn1,…,TestnL}) are executed
according to some periodic schedule. Assuming that the
execution of a test plan starts at ts

(n) and ends at te
(n), the

hybrid model may also check for monitoring events that
occurred within the interval [ts

(n)–d1, te
(n)+d2] in order to

provide an assessment of the security property of interest.
Note that the length of the execution of each test plan and the
monitoring events found within [ts

(n)–d1, te
(n)+d2] may vary.

Figure 1. Dependent mode hybrid certification models

Part (b) of the figure shows the timelines of evidence
collection in dependent hybrid certification models where
monitoring is the dominant form of assessment. In such
models following the collection of monitoring evidence
(events), tests plans are executed to cross-check/complete it.
The execution of these plans starts within the range [tm

(n),
tm

(n)+d] where tm
(n) is the time of occurrence of the last event

in a pattern of events that should trigger the execution of the
plan and d is a period set by the model. The length of the
execution of each test plan may vary.

D. Example 2: Hybrid, independent mode models
 Our second example shows the use of a hybrid approach
in certifying cloud service availability. As defined in [9], this
property expresses the ability of a TOC to produce a non-
faulty response within a certain period of time and is
measured by the percentage of calls that satisfy this
condition over an assessment period. An independent hybrid
model for the certification of TOC availability could be
based on collecting evidence regarding the availability of a
TOC through monitoring and testing independently (i.e.,
without any of these activities being triggered by outcomes
of the other) and then correlating and cross-checking the
collected pools of evidence to produce a hybrid assessment
of the property. More specifically, the hybrid model could
include monitoring formulas to record instances of
invocation of TOC operators where TOC produced a
response within the acceptable time limit and the instances
where it did not, and keep a record of counters of these
instances from which an overall availability measure could
be drawn. The formulas that could be used to collect this
monitoring evidence are as follows:
Assumption	
 A2	
 (monitoring	
 evidence):	

Happens(e(_e1,_CA,_TOC,REQ,_OP(_data),_TOC),t1,[t1,t1])
^	
 Happens(e(_e2,_TOC,_CA,RES,_OP(_data),_TOC),	

t2,[t1,t1+tav])	
 ^	
 HoldsAt(MCounterA(_TOC,_MCA),t2)⇒	

Terminates(_e1,MCounterA(_TOC,	
 _MCA),	
 t2)	
 ^	
 	
 	

Initiates(_e1,MCounterA(_TOC,	
 _MCA+1),	
 t2)^	
 	

Initiates(_e1,MAvail(_TOC,_OP(_data),t2–t1),	
 t2)	
 	

Assumption	
 A3	
 (monitoring	
 evidence):	

Happens(e(_e1,_CA,_OC,REQ,_OP(_data),_TOC),t1,[t1,t1])	

^¬Happens(e(_e2,_TOC,_CA,RES,_OP(_data),_TOC),t2,[t1,t1
+tav]))^	
 HoldsAt(MCounterU(_TOC,_MCU),	
 t2)	
 ⇒	

Terminates(_e1,MCounterU(_TOC,_MCU),	
 t2)	
 ^	

Initiates(_e1,MCounterU(_TOC,	
 _MCU+1),	
 t2)	
 ^	

Initiates(_e1,MUnav(_TOC,_OP(_data),t2–t1),t2)	
 	

The first of the above monitoring formulas (i.e.,
assumption A2) monitors calls to any operation in a _TOC and
the responses to them (see events Happens(e(_e1,	
 _CA,	
 _TOC,	

REQ,	
 _OP(_data),_TOC),	
 t1,	
 R(t1,t1)) and Happens(e(_e2,	

_CA,	
 _TOC,	
 RES,	
 _OP(_data),	
 _TOC),	
 t2,[t1,t1+tav])) and if
a response is within the required period (tav), it updates the
counter of instances where _TOC was available and records
the related call (in fluents MCounterA(_TOC,_MCA,t2) and
MAvail(_TOC,_OP(_data),t2–t1), respectively). The second
formula (i.e., assumption A3) monitors calls to _TOC
operations that did not produce a response within the
required time, and keeps an overall counter of unavailability
and the related calls in fluents MCounterU(_TOC,_MCU,t2) and
MUnav(_TOC,_OP(_data),t2–t1)).

The hybrid model for the certification of availability
could also incorporate a test-based availability assessment
sub-model. This sub-model can execute a randomly selected
operation in the interface of _TOC periodically to check its
availability, and keep a record of instances of test-triggered
invocations of operations of TOC in which a response was
produced within the required time period, and instances of
test-triggered invocations where it was not.

This sub-model is expressed by following formulas for
collecting testing evidence:
Assumption	
 A4	
 (testing	
 evidence):	

Happens(e(_e1,_CA,_TOC,	
 EXC(Tper),	

_x=random(interface(_TOC)),_TOC),t1,[t1,t1])	
 ^	

Happens(e(_e2,_TOC,	
 _CA	
 RES,_x,_TOC),t2,[t1,t1+tav])^	

HoldsAt(TCounterA(_TOC,_TCA),t2)	

⇒	
 Terminates(_e1,TCounterA(_TOC,_TCA),t2)	
 ^	
 	
 	

Initiates(_e1,TCounterA(_TOC,_TCA+1),t2)^	
 	

Initiates(_e1,TAvail(_TOC,_x,t2–t1),t2)	
 	

Assumption	
 A5	
 (testing	
 evidence):	

Happens(e(_e1,_CA,_TOC,	
 EXC(Tper),	

_x=random(interface(_TOC)),_TOC),t1,[t1,t1])	
 ^	

¬Happens(e(_e2,,	
 _TOC,	
 _CA,	
 RES,_x,_TOC),t2,	

[t1,t1+tav])^	
 HoldsAt(TCounterU(_TOC,_TCU),t2)	
 ⇒	

Terminates(_e1,TCounterU(_TOC,_TCU),t2)	
 ^	

Initiates(_e1,TCounterU(_TOC,_TCU+1),t2)	
 ^	

Initiates(_e1,TUnav(_TOC,_x,	
 t2–t1),t2)	
 	

A4 and A5 are similar to assumptions A2 and A3
respectively except that, instead of monitoring real
operation calls, they execute a randomly selected operation
in the interface of _TOC periodically (see the event
Happens(e(_e1,_CA,_TOC,EXC(Tper),_x=random(interface(_TOC
)),	
 _TOC),t1,[t1,t1])) to check its availability, and update
fluents recording the overall counters of availability and
unavailability of _TOC	
 and the test executions that revealed
them.

In the hybrid model, the assumption pairs (A2, A3), and
(A4, A5) are used to collect evidence independently without
any monitoring events triggering tests or vice versa.
However, it might still be desirable to correlate the testing
and monitoring evidence. For example:
(a) The overall availability measure may be computed on the

basis of both test and monitoring evidence as A =
(_MCA + _TCA)/(_MCA+ _TCA+_MCU+ _TCU).	

(b) Testing events may be considered as valid evidence of
TOC availability only if all real calls of TOC in the range
[tmon–d, tmon+d] produced responses within tav.	

(c) Monitored calls to TOC that produced a response within
the maximum allowed period tav may be disregarded in
computing TOC’s availability if the relevant responses
were marginally below tav and all testing events for the
same TOC in the range [tmon–d,tmon+d] (tmon is the
timestamp of a monitored call) produced responses after
the maximum allowed period tav. 	

(d) An availability measure based on testing (monitoring)
evidence will be used for issuing a certificate only if the
availability measure based on monitoring (testing)
evidence over the same period is no more than 1%
different from it.
Clearly, several other combinations of monitoring and

testing evidence may be defined. In general, in an
independent hybrid certification model:
• individual (or groups of) instances of monitoring and

testing evidence may be cross-validated against each
other before producing an overall assessment on the basis
of any of these types of evidence (see (b) and (c) above);

• aggregate assessments based on each type of evidence
may be validated against an aggregate assessment based
on the other type before issuing a certificate (see (d)
above); or

• an aggregate assessment may be formulated from both
monitoring and testing evidence as in case (a) above.

 Compared to non-hybrid models for certifying
availability, the hybrid model introduced above can produce
availability assessments of higher confidence as the
monitoring and testing evidence can be cross-checked before
being used in an assessment (and certificate) and can both be
included in a certificate depending on the chosen validation
checks. Hybrid models offer also a more extended pool of
evidence and possibilities to decide which data are relevant
and of sufficient quality so that they can be taken into
consideration for issuing a hybrid certificate. Apart from
increasing the confidence level of assessments, hybrid
models are also more customisable than traditional
certification models since they offer the choice of deciding
how test and monitoring evidence should be correlated,
cross-checked and used in assessments.

IV. COMPARISON BETWEEN HYBRID AND TRADITIONAL
CERTIFICATION MODELS

In this section we present a comparison between hybrid
and traditional certification of cloud services. Traditional
approaches for certifying security properties rely on manual
inspections and audits, proving to be static, inflexible, non-
automated and unable to realise the economic dimension that
the Cloud entails [14]. As already stated, CSA has generated
the STAR self-assessment certification framework that
allows cloud providers to submit self-assessment reports,
when fully implemented [6]. At the same time, CSA has
generated the Cloud Controls Matrix (CCM), which
provides a framework of controls that gives detailed
understanding of security concepts and principles that are
aligned to the Cloud Security Alliance guidance in 13
domains [15]. CCM facilitates regulatory compliance and
provides organizations with the needed structure, detail and
clarity relating to information security tailored to the cloud
industry. It is also specifically designed to provide
fundamental security principles to guide cloud vendors and
to assist prospective cloud customers in assessing the
overall security risk of a cloud provider, integrating the
ISO/IEC 27001 management systems standard Error!
Reference source not found.. However, CCM is human-
process centric requiring from the companies that adopt it to
address the issues that they define critical concerning cloud
security and to pre-assess how mature their systems are
[16][20]. CCM enables the integration, monitoring and
managing of cloud services through a framework that can
take care of the elementary issues regarding cloud security
[16], but it does not support certification as an automated
service in the cloud [17].

Traditional certification models (i.e. ISO/IEC 27001,
NIST) also require manual inspections and are unable to
provide the required level of assurance in cloud computing
and to fit the dynamic nature of the cloud, focusing on
monolithic software components [4] and failing to address
on-demand self-service, dynamic allocation of resources and
multi-tenancy [14][18]. Additionally, traditional
certification models lack in trust, transparency and accuracy,
as they do not support the constant provision of information
about the security of cloud services, unlike our hybrid
approach that relies on incremental monitoring and
automated testing and it is focused on cloud services.

IT audits have been widely used in providing security
assurance. Security auditing approaches focus on providing
guidelines and are not automated [8]. One more drawback is
that they require that the consumer relies on third-party
auditors for security assurance.

Common Criteria (CC) certification uses Evaluation
Technical Reports [19]. CC has also a human-centric
approach, unlike our model, which is not designed to
support automated security certification, targeting static,
monolithic systems and requiring a large investment of
resources [4].

V. CONCLUSIONS
The certification of cloud service security properties

often needs to be based on hybrid models combining testing
and monitoring evidence that have been collected
dynamically during service provision. In this paper, we have
examined some of the basic characteristics of hybrid
certification models based on the formal modelling of
examples of such models. Hybrid certification models as
introduced are based on continuous monitoring of security
services and automated testing of these. Consequently, the
new dynamic models will support automation of the
certification process and enhanced customer reliability and
trust to the cloud services compared to the previous
traditional ways of certifying security properties on the
cloud. We have shown that the combination of testing and
monitoring evidence can happen in two basic models
(independent and dependent) and examined temporal
relationships between the testing and monitoring process
under these two modes. The example models that we have
presented are implementable in EVEREST, the monitoring
infrastructure of the CUMULUS project. Our next steps are
to expand the certification model specification language of
CUMULUS to enable the definition of hybrid models, and
evaluate our approach experimentally.

ACKNOWLEDGMENT
This work reported in this paper has been partially

funded by the EU F7 project CUMULUS (grant no 318580).

VI. REFERENCES
[1] G. Spanoudakis, E. Damiani, A. Mana, “Certifying Services in Cloud:

The Case for a Hybrid, Incremental and Multi-layer Approach,” IEEE
14th Int. Symp. On High-Assurance Systems Engineering, 2012.

[2] D. Catteddu, G. Hogben, “Cloud Computing: Benefits, Risks and
Recommendations for Information Security,” ENISA, 2009.

[3] Cloud Security Alliance, “Security Guidance for Critical Areas of
Focus in Cloud Computing v2.1,”
http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf .

[4] S. Cimato, E. Damiani, F. Zavatarelli, R. Menicocci, “Towards the
Certification of Cloud Services,” IEEE 9th World Congress on
Services, 2013.

[5] NIST, Guide for Applying the Risk Management Framework to
Federal Information Systems: A Security Life Cycle Approach,
(NIST Special Publication 800-37), Feb 2010.

[6] J. Reavis, D. Catteddu “Open Certification Framework. Vision
Statement,” Cloud Security Alliance, Aug 2012.

[7] H. Foster, G. Spanoudakis, K. Mahbub, “Formal Certification and
Compliance for Run-Time Service Environments,” IEEE 9th Int.
Conf. on Services Computing, 2012.

[8] Z. Chen, J. Yoon, “IT Auditing to assure a secure cloud computing,”
2010 IEEE 6th World Congress on Services.

[9] CUMULUS consortium, “Security-aware SLA specification language
and cloud security dependency model,” Deliverable D2.1, Sep 2013.

[10] G. Spanoudakis, C. Kloukinas, K. Mahbub, “The SERENITY
Runtime Monitoring Framework” in Security and Dependability for
Ambient Intelligence, Springer, pp.213-237, 2009.

[11] D. S. Herrmann, Using the Common Criteria for IT Security
Evaluation, CRC Press, Inc., Boca Raton, FL, USA, 2002.

[12] M. Anisetti, C. A. Ardagna, A..Damiani, A. Saonara, “A test-based
security certification scheme for web services,” ACM Trans. Web
7(2), 2013.

[13] CUMULUS consortium, “Certification models,” Deliverable D2.2,
Sep 2013.

[14] Windhorst I., Sunyaev A., “Dynamic Certification of Cloud
Services,” Eighth International Conference on Availability,
Reliability and Security (ARES), 2013 ,412-417, 2013

[15] https://cloudsecurityalliance.org/star/self-assessment/
[16] https://cloudsecurityalliance.org/research/ccm/
[17] Saxena S., “Ensuring Cloud Security Using Cloud Control Matrix”,

International Journal of Information and Computation Technology,
pp. 933-938, 2013.

[18] Kaliski B. Jr., Pauley W., “Toward Risk Assessment as a Service in
Cloud Environments.”, Proceeding HotCloud'10 Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, 2010.

[19] Kaluvuri S.P., Koshutanski H., Cerbo F.D., Mana A, "Security
Assurance of Services through Digital Security Certificates". in Proc.
of the 20th IEEE International Conference on Web Services (ICWS
2013). 2013.

[20] Reavis J.,Catteddu D,.“Cloud Security Alliance - Open Certification
Framework Vision Statement”, Aug 2012

