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SYSTEMS NEUROSCIENCE

has a unitary waveform, which is often not the case (Aguirre et al., 
1998; d’Avossa et al., 2003; Handwerker et al., 2004; Likova and 
Tyler, 2007). Even minor deviations from a stable waveform violate 
the assumptions of such single-parameter analysis and invalidate 
the delay measure.

Indeed, most commonly used fMRI analysis techniques, such 
as the SPM analysis package, employ the convolution approach. 
Convolution is based on the assumption of a unitary BOLD wave-
form kernel that generates the straightforward prediction of the 
BOLD response waveform for any stimulus type or duration in any 
brain area. In fact, however, major deviations from a standard BOLD 
waveform may be found, even in the same cortical regions, for vari-
ations in stimulus conditions. d’Avossa et al. (2003), for example, 
reported strong differences in waveform when the response to the 
motion or color of a cue/stimulus pairing was modulated by atten-
tion. Such local waveform differences must derive from differences 
in the neural signals driving the BOLD activation, since the meta-
bolic and hemodynamic processes that mediate the paramagnetic 
signals should be invariant within a given cortical region.

To study the neural involvement in generating differential BOLD 
response waveforms within the same cortical regions, Likova and 
Tyler (2007) developed an “instantaneous stimulus paradigm” to 
evoke BOLD responses to instantaneous stimulus transitions. It is 
typically assumed that, despite their perceptual differences, such 
“instantaneous” stimuli would all generate the same BOLD wave-
form (effectively equivalent to the hemodynamic response function, 
HRF) for all different stimulus types. Thus, revealing any significant 
deviation from that prediction in the BOLD waveform elicited in one 
and the same cortical area can contribute to revealing the specifics of 
the underlying neural processing and enhance the understanding of 
the recurrent network of extended perceptual responses to complex 
stimulus configurations. Indeed, the instantaneous stimulus para-
digm generated a wide variety of BOLD waveforms. Moreover, the 
data show dramatic differences in the BOLD waveforms properties 

IntroductIon
The basic capability of functional magnetic resonance imaging 
(fMRI) is mapping the spatial organization of the cortical and 
subcortical responses throughout the brain to a variety of stimu-
lus and behavioral paradigms. The blood oxygen level dependent 
(BOLD) signal measured by fMRI is often considered to have high 
spatial resolution (up to a quarter of a million voxels), but low 
temporal resolution (0.5–5 s) relative to other methods for map-
ping human brain function (such as high-density EEG analysis). Of 
course, even the BOLD spatial resolution is low relative to single-
unit neurophysiological recoding, but this is largely attributable 
to the signal/noise ratio. In-plane spatial resolution for functional 
imaging as high as 150 μm has been reported at 9.4 T in cat cortex 
(Harel et al., 2006) and less than 1 mm × 1 mm × 1 mm voxels have 
been achieved in human (Barth and Norris, 2007). As improved 
technologies come on line, such high spatial resolution is expected 
to be continually increased, as exemplified by the “inverse imaging” 
approach of Lin et al. (2008).

The temporal limit is not so tractable. The inherent time con-
stants of the BOLD signal are about 5 s, several orders of mag-
nitude slower than the neural signal that is driving it, even for 
the most recent fast acquisition protocols (Lin et al., 2008; Grotz 
et al., 2009). For a reasonable recording time and voxel size (e.g., 
3 mm × 3 mm × 3 mm) the signal/noise ratio even for the most 
effective stimuli rarely exceeds 20:1. At such signal/noise ratios, 
deconvolution of the BOLD response can improve its temporal 
resolution by about a factor of 5 (Glover, 1999; Logothetis, 2003). 
However, that leaves the temporal resolution for the underlying 
neural signal at about 1 s, which is far short of what is required 
to measure typical neural delays. Estimation of single-parameters 
of the waveform, such as response delay alone, can improve the 
temporal resolution for the neural signal delays to 100 ms or better 
for narrowly targeted brain regions (Menon et al., 1998; Henson 
et al., 2002) but this requires the assumption that the BOLD signal 
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(e.g., latency, sign, amplitude, and width) even within the same brain 
areas as a function of the stimulus type. As there can be no vascular 
heterogeneity within the same area, these dramatic waveform vari-
ations must be attributed to differences in the underlying neural 
dynamics, not to spatial variations in the HRF. These results further 
imply that fMRI signals contain much more information about the 
neural processing than is commonly appreciated, and thus have the 
potential to capture them through an appropriate approach.

However, there is at present no method of transcending the 
BOLD temporal limitations in order to estimate the dynamics of the 
neural signals underlying the measured fMRI waveforms. The goal 
of the temporal analysis we propose is therefore to provide a method 
for the time-resolved estimation of the neural signals underlying 
the particular characteristics of the temporal BOLD waveforms for 
a particular stimulus processed by a particular cortical region. The 
philosophy of this approach is to utilize the information available 
from neurophysiological studies of the neural population dynam-
ics and biochemical studies of the metabolic pathway coupling to 
the measurable blood response to provide Bayesian priors as to the 
likely temporal structure of the component neural signals. We pro-
pose a non-linear dynamic forward optimization (NDFO) approach 
to provide a compact account of the measured waveform with the 
minimal number of neural predictors, based on prior knowledge 
of the expected temporal properties of neural signals and of their 
consequent metabolic demand. This approach is reminiscent of the 
spectral analysis of the composition of stars, in which each chemical 
element has a characteristic pattern of emission lines (the Bayesian 
priors) and the net spectrum is the sum of an unknown mixture 
of these predetermined patterns. The result is the ability to specify 
the prevalence of each element in the otherwise inaccessible star. In 
the case of the neural signals, the goal is to estimate the amplitude 
and time course of each of the neural components whose metabolic 

effects, when summed, account for the measured BOLD waveform 
for a particular stimulation condition and cortical region. Here the 
predictors are non-linear because there is a non-linear relationship 
between the neural responses and the metabolic demand that they 
generate, but the summative property of the paramagnetic signals 
throughout a voxel implies that we can assume that the component 
metabolic demands sum linearly together.

theoretIcal overvIew
To start the analysis, we may develop a specific model structure of 
the processes leading to the BOLD paramagnetic signal of fMRI 
recordings. We note that this model is focused on the non-linearities 
that are likely to affect the process of estimating neural responses 
from BOLD waveform properties, but simplifies aspects of the bio-
physical processes that will not be resolvable by the NDFO tech-
nique. As such, it is substantially elaborated relative to the linear 
convolution analyses of Friston (1997) and Friston et al. (1998, 
2000), but somewhat condensed in comparison with the recent 
biophysical/metabolic derivations of Mechelli et al. (2001), Buxton 
et al. (2004), or Sotero and Trujillo-Barreto (2007, 2008).

We will treat the neural responses within each voxel as generated 
by sets of homogeneous populations with similar signal waveforms 
N

i
(t) within each population (Figure 1). Each neural response then 

generates a local metabolic demand M
i
(t) that may have a non-linear 

relationship to the neural signal waveform (Chatton et al., 2003).
The metabolic demand has been shown to have a short time 

course, on the order of the membrane response to a single pre-
synaptic spike (Magistretti and Pellerin, 1999; Magistretti, 2009). 
The integrated metabolic demands are met primarily by the astro-
cytes, which integrate the required energy consumption over time 
and space and make a complementary oxygen demand G(t) on the 
adjacent vasculature. The hemodynamic processes H(t) provide 

FIguRe 1 | Block diagram of the main processing stages that lead up to the BOLD signal. The i subscript indicates that the stage incorporates multiple 
components within the voxel. See text for details.
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Buxton et al. (2004) extend their balloon model of the hemody-
namic response leading to the BOLD signal by proposing a model 
of the neural response to account for the temporal non-linearity 
in BOLD responses as a function of duration. This neural response 
incorporates a slow subtractive inhibitory component to the net 
neural signal, which has the effect of producing a neural response 
consisting of an initial transient followed by a sustained plateau. 
Model responses for three kinds of stimuli – a single short pulse, 
two short pulses, and one long pulse, are offered as a demonstra-
tion of the properties of this model. As with Mechelli et al. (2001), 
no attempt is made to compare the model outputs with actual 
BOLD recordings, so the Buxton et al. (2004) study again does not 
qualify as a validated procedure for estimating the neural popula-
tion dynamics underlying the local BOLD signals.

Both Mechelli et al. (2001) and Buxton et al. (2004) include 
parameters intended to account for the temporal non-linearity of 
short-duration responses (which do not fall linearly as response dura-
tion is reduced; Boynton et al., 1996; Birn et al., 2001). Both studies 
demonstrate the required lack of reduction in a single example of a 
short-duration response, but neither study provides a validation of 
either the waveform or the amplitude response function relative to 
empirical BOLD data. In principle, either model could provide a plat-
form for such validation or the further estimation of the dynamics 
of the underlying neural population response, but they neither do so 
nor suggest procedures by which such estimation could be achieved.

StepwISe Incremental eStImatIon of the neural dynamIcS
Quantitative estimation of the temporal transients underlying BOLD 
responses can be achieved by the use of an appropriate set of temporal 
duration stimuli, such as the temporal summation study reported in 
Birn et al. (2001). Their stimuli consisted of counterphasing checker-
board patches with durations increasing in factors of 2 from 0.5–2 s 
(together with a 20-s duration stimulus). The key result was that the 
BOLD response amplitudes did not increase proportionately with 
stimulus duration. (A proportionate increase would be expected 
under a general linear model (GLM) of linear summation with a neu-
ral response of constant amplitude.) Instead, the amplitude showed 
little increase from the short durations, implying either a non-linear 
summation process or a disproportionate strength of neural signals 
for short-duration stimuli (Figure 2).

Bandettini and Ungerleider (2001) proposed a discrete approxi-
mation analysis for the derivation of the implied neural signal in 
human cortex under the assumption that the integration process 
underlying the generation of the BOLD response was indeed 

the requisite oxygen exchange to replenish the energy depletion in 
the astrocytes and other intermediary processes. The fMRI BOLD 
analysis provides an estimate Y(t) of the ratio of oxygenated to 
deoxygenated hemoglobin in the blood complement of a given 
voxel. The post-neural processing stages are often modeled as a 
linear hemodynamic response kernel convolved with the presumed 
neural signal. However, this approach overlooks the key role of the 
pre-hemodynamic processes of the glial and other intermediaries. 
To incorporate the contributions of these intermediary processes, 
we will term it a “metabolic response kernel” (MRK1) incorporat-
ing both the glial and hemodynamic components of the metabolic 
recovery processes. The MRK will be convolved with a non-linear 
transform of the presumed neural signal to provide an estimate of 
the neural metabolic demand that is being met by the combined 
glial and hemodynamic metabolic response. The fMRI analysis 
also has a finite dynamic response time, but it will be treated as 
incorporated in the MRK of the glial/hemodynamic response. The 
formal equations linking the processing stages in Figure 1 are pro-
vided in Table 1.

dIrect forward modelIng approacheS
A few previous studies have made estimates of the effects of differ-
ent neural models on the form of the BOLD response dynamics. 
For example, Mechelli et al. (2001) report a simulation study of the 
estimated regional cerebral blood flow (rCBF) and BOLD signals 
as a function of the duration, onset asynchrony, and relative ampli-
tudes of two brief stimuli. They included a basic model of neuronal 
dynamics and varied one parameter of this model – the amplitude 
of a slow late transient – to show its effect on the simulated BOLD 
responses. This exercise constitutes an unvalidated forward model 
of the effect of only one parameter of a simulated neural response. 
However, what they offer as the analysis of the effects on the BOLD 
waveform is described (incomprehensibly) as “the BOLD param-
eter estimates,” which is actually a single-valued function with no 
specification of which parameter(s) is/are being estimated. Since 
no comparison is made with empirical data or their noise limita-
tions, the fact that this study includes a proposed model for the 
neural dynamics does not qualify it as a validated procedure for 
estimating the neural population dynamics underlying the local 
BOLD signals (which is the goal of our study).

FIguRe 2 | Neuronal input amplitude estimation by a box-car 
approximation to the presumed neuronal signal (red rectangles) that 
accounts for the BOLD responses (black line) as a function of the 
duration of a counterphase checkerboard stimulus. Reproduced from 
Bandettini and Ungerleider (2001).

1The term “kernel” is preferred because it is conceptualized as the theoretical response to 
an imaginary stimulus of infinitely short duration and unit area, termed a “Dirac pulse.”

Table 1 | Mathematical model of the linear and nonlinear operations 

involved in the generation of the BOLD signal from the input stimulus, 

S(t).

Output generation logic Features

Neural signal Ni(t) = ∫ [S(t) ⊗ ni(t)] Nonlinear transducer

Neural metabolic Mi(t) = ∫ [Ni(t) ⊗ m(t)] Nonlinear transducer 

demand

Glial oxygen demand G(t) = ∑Mi(t) ⊗ g(t) Multiple linear integrator

Hemodynamic response H(t) = G(t) ⊗ h(t) Linear (slow)

Paramagnetic response Y(t) = H(t) ⊗ p(t) Linear (fast)

	  ≈∑Mi(t) ⊗ MRK(t) Combines four linear stages

Tyler and Likova Neural signal dynamics from fMRI

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 33 | 3

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


cells (see Figure 1). Gamma probability density functions have the 
analytic form a·tk−1·e−t/τ/Γ(k), where t is the time dimension, a is a 
scaling parameter, and k and τ are generic waveform parameters. 
(To equate the area to unity, the function is defined with a = 1/τk), 
but for the present purposes a is a free optimization parameter.) 
They may be termed simply “gamma functions” to emphasize 
their analytic rather than statistical properties. In engineering 
the same function is known as the n-pole filter function (with 
n = k), and is used to describe the dynamics of a wide range of 
processes. For the present application, the temporal gamma func-
tion is assumed to have integer powers of k and corresponds to 
the solution of differential equations with real (non-imaginary) 
roots. The gamma function has the analytic advantage over many 
other functions, such as the Gaussian, that it is by definition causal 
because it has the value of 0 at t = 0, and is defined as 0 for t < 0 
(i.e., the full specification is y = kt−1·e−t/τ for t < 0; y = 0 for t < 0). 
Its shape progresses from highly asymmetric around the peak 
for small k to approximately Gaussian and symmetric for large 
k (see Figure 3).

A key feature of this formalism is that the peak latency is deter-
mined by the time constant, τ, and is proportional to the width (at 
half height) of the response peak, which can be estimated to good 
accuracy by the methods described in the next section.

neural model
A comprehensive model of the BOLD therefore requires an accurate 
model of the intracellular potential dynamics deriving from the 
sensory stimulation. Formally, we propose to use the full neural 
response model jointly specified in Eqs 1 and 2:

N t N t N t tp( ) ( ) ( ) ( ),/= ⋅ + −
−τ+ + ελ ηe

 
(1)

where ε is the net source of additive noise and the function is 
governed by the parameter set.

 equivalent to a linear convolution operation. To derive a crude esti-
mate of the neural signal, they took the difference between integrated 
BOLD response areas for each successive pair of stimulus durations 
as an estimate of the amplitude of the neural signal for the time 
interval defined by the difference in stimulus durations (Figure 2), 
based on the (unstated) assumption that the neural response is fast 
enough to follow the stimulus exactly. This discrete approximation 
approach implied that the neural signal underlying these BOLD 
responses has a pronounced early transient followed by a sustained 
phase of stable amplitude out to 20 s (red box functions, Figure 2). 
The details of this transient, however, remained unresolved.

non-lInear dynamIc forward optImIzatIon
In this section, we propose a more biophysically based development 
of the forward modeling approach that we term NDFO. Rather than 
simply characterizing the behavior of the BOLD waveform (Birn 
et al., 2001; Bandettini et al., 2002; d’Avossa et al., 2003; Fox et al., 
2005; Grotz et al., 2009) or attempting to infer the potentially com-
plex properties of the underlying neural mechanisms from the form 
of the BOLD response by deconvolution (Glover, 1999; Logothetis, 
2002, 2003; Logothetis and Wandell, 2004), the concept of forward 
modeling is to start from the “cause” – the neural signal, instead from 
the “consequence” – the BOLD signal. Thus we incorporate into the 
model as much knowledge as possible about the likely neural sub-
strate and then optimize the remaining details to best fit the BOLD 
waveform. This knowledge includes the known temporal properties 
of neural responses and non-linearities both of the population of 
neural responses to the stimulus and of the metabolic requirements 
of the neural processing that lead to the measurable BOLD response.

The dynamic forward modeling discussed so far is linear (see 
Boynton et al., 1996) in the sense that it assumes no non-linearity 
in the model linking the neural response to the BOLD response 
(or indeed in linking the original stimulus waveform to the BOLD 
response). It merely estimates the gain of the neural response for 
each stimulus duration, which can vary by a linear process. A more 
general form of forward modeling is to incorporate a variety of 
possible non-linearities into the structure of the model. The range 
of possible non-linearities at each stage of the model is so large 
that the approach is not feasible unless one incorporates Bayesian 
constraints in the modeling, based on the known biophysics of the 
neuronal response properties likely to underlie the BOLD activation 
(Logothetis and Wandell, 2004; see Table 1). The particular form of 
the model will depend on the specific knowledge of the population 
dynamics of the signal driving the hemodynamic response available 
from the literature at any given time.

The neural model that we investigate in the present version of 
the analysis is the sum of positive and a negative component based 
on delayed gamma functions convolved with the stimulus wave-
form, with the parametrization specified in Table 2. To illustrate 
the properties of the model, we analyze the effect of varying the 
inhibitory ratio implied by the negative component weight b, and 
the offset/onset gain ratio λ.

analytIc framework for the neural temporal reSponSe
The starting point for the NDFO modeling is a model of the neural 
signal, whose first effect in terms of the cascade of BOLD dynam-
ics is to create a metabolic demand G(t) in the neighboring glial 

Table 2 | Non-linear forward model parameters.

a Scaling constant (a fitting parameter but not 

 a waveshape parameter)

kn Integer exponent governing the rising phase

τn Time constant of falling phase in the neural response

∆t Transmission delay before response onset

b Sustained/transient ratio in the step response

η Time constant of non-linear gain control in the neural response

λ Ratio of offset to onset gain in the neural response

FIguRe 3 | examples of delayed gamma function step responses with 
exponents of k = 2 (left) and 6 (right). Successive functions (colors) 
introduce a wide range of peak latencies for the neural signal estimates (with 
time constants τ increasing in factors of 2 and a fixed delay ∆t of 40 ms).
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Having provided relevant variables for the linear and non-linear 
components of the neural response dynamics, we may now consider 
the issue of the metabolic coupling of the neural signal to generate 
the BOLD response. This coupling has been extensively modeled 
over the past two decades, with the best-known example being 
the Buxton–Friston balloon model and the most elaborated ver-
sion being by Sotero and Trujillo-Barreto (2007, 2008). However, 
these models are not well-validated by empirical human studies 
(because they contain too many interdependent variables to allow 
the independent assessment of each separately.

characterIStIcS of the model
We may now evaluate the response to these two options for the 
non-linearity of the metabolic demand through the biophysical 
chain of the metabolic processes to the measured BOLD signal 
(Table 1). The first element in this chain is the astrocytes sur-
rounding the neuron, which provide glucose to the neuron and 
replenish its supply by ATP metabolism fueled by oxygen from 
neighboring blood vessels. It may be emphasized that the astrocyte 
metabolic processes are as slow, relative to the intracellular signal 
dynamics, as are the processes of hemodynamic oxygen supply. 
The time constant of the astrocyte responses at the cell body is 
known to be of the order of several seconds (Kelly and van Essen, 
1974; Filosa et al., 2004; Metea and Newman, 2006), and it is clear 
that these slow responses must mediate the hemodynamic com-
ponent. However, at present too little is known of the dynamics of 
transmitter recovery and/or the non-linearities in the process to 
securely assign time constants to the astrocytic component rela-
tive to the hemodynamic component of the metabolic coupling. 
For the present example, we will therefore treat the entire chain 
from the metabolic demand to the magnetic resonance signal in 
the traditional fashion, as a unitary linear kernel. As stated above, 
this kernel is often termed the HRF, but in view of its likely sub-
stantial astrocyte contribution, we give it the more general term 
of the MRK. Our main goal is to estimate the properties of the 
neural signal processing, and it will be seen that there is sufficient 
information to provide a rich analysis of these properties, and 
to account for the empirical non-linearities of the BOLD signal, 
as long as the metabolic supply chain conforms to the linearity 
assumption. (As more information becomes available, non-linear 
aspects of the metabolic coupling may readily be incorporated into 
the analysis we propose.)

The development of the peak amplitude in the BOLD tempo-
ral summation series is shown as the blue summation curve in 
Figure 4Ad. The critical point of this plot is that the asymptotic 
corner of this summation curve occurs at 40 ms, which is the value 
of the time constant assumed for the neural signal in this example. 
Thus, the form of the BOLD amplitude summation series (Figure 4, 
column d) provides a direct empirical estimate of the time constant 
of neural integration down to the millisecond range. There is no 
limit in principle to the temporal resolution that can be achieved 
by this methodology since it is estimated from the amplitude vari-
ation of the BOLD signal as a function of stimulus duration, not 
from its temporal aspects.

The reduction in peak amplitude is captured in the red temporal 
summation curve of Figure 4Ad, showing a reduction by a factor of 
two for long durations. (The green curve in Figure 4Ad represents 

The neural signal NP
(t) in Eq. 1 is the sum of positive and a 

negative component based on delayed gamma functions convolved 
with the stimulus waveform:

N t a S t n t t( ) ( ) ( )= ⋅ ⊗ − ∆  (2)

where
 
N t t t

b
tk t

n

k tn n n n( ) ( ) / /= ⋅1 − −−1 − −e eτ τ

τ

(Note the convention that time series functions are capitalized, 
impulse response kernels are lower case, and vectors are bold-face.) 
The neural impulse response expression n(t) is set up so that its 
convolution with a step function is equivalent to the sum of a 
pure transient and a pure sustained component. In addition, the 
expression is specified with an additional transmission delay, ∆t, 
that delays the response relative to the stimulus without affecting 
its waveshape. Thus, Table 2 defines the parameters in vector p of 
this equation.

One issue that arises is how to measure the latency ∆t of the 
delayed gamma functions of Figure 3. A simple derivation can 
show that the peak latency t

peak
 of these responses is specified by 

the expression (kτ
n
 + ∆t). Thus if k and ∆t, both of which are well-

determined from neurophysiological studies in monkey cortex, are 
set to means of their Bayesian priors on this basis, the peak latency 
t

peak
 is determined from the value of τ, which can be accurately 

derived from the model optimization.

metabolIc couplIng
Since little is known about the glial dynamics of transmitter recov-
ery, we will pursue two options as to their effects. One option is 
that the metabolic demand driving the BOLD response derives from 
the transmitter recovery cycle following the activation by an axonal 
spike. Since axonal spikes represent only the positive aspect of the 
intracellular voltage and since 90% of cortical synapses are excita-
tory (Shank and Aprison, 1979; Wang and Floor, 1994), the signal 
transmitted from one cortical stage to the next may be treated 
as a half-wave rectified version of the dynamic neural signal. This 
prediction is shown as the blue curves in Figure 4Aa (indexed in 
row/column notation), which is an overlay of the model estimates 
of the neural responses to stimulus pulses that double in duration 
from 8 ms to 16 s (eight doublings). For this example, the neural 
response has balanced excitation and inhibition, so even the pro-
longed pulses generate only an initial transient response, with the 
negative lobe at offset being thresholded out by the rectification. 
(Note that the local metabolic demand, M

i
(t), has the same time 

course in this model as the transmitter recovery from which it 
derives. The energetic processes required for the recovery to the 
initial state, however, form an oxygen-based chain of glial metabolic 
response, G(t), that may have substantially slower time course at 
one or more stages.)

The other option is to consider the instantaneous metabolic 
demand of both excitatory and inhibitory cells, or both “on” and 
“off” cells, implying that the signal generating the metabolic 
demand is a full-wave rectified version of the intracellular volt-
age. This option is shown as the red curve in Figure 4Aa, whose 
spikes represent the instantaneous metabolic demand for the offset 
transient for each of the pulse duration doublings (which were 
thresholded out in the blue curve).
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can be strongly diagnostic of even slight variations in the proper-
ties of brief neural signals. Moreover, the nature of the metabolic 
demand function (half- or fully rectified) has a big impact on the 
form of the BOLD response, determining whether or not an offset 
peak occurs at the tail of the responses even when they are sustained 
(Figure 4Bc). Such a peak has been reported in some studies but is 
not always evident. Thus it remains an empirical question to what 
extent rectification is representative of BOLD waveforms; interme-
diate forms of the rectification model are required to capture the 
empirical properties in detail.

Note that the amplitude series in Figures 4Bb,c show bands 
of denser packing of the functions, where the amplitude changes 
were not spaced in proportion to the doublings of stimulus dura-
tion. Viewed in terms of the sequence of BOLD waveforms in 
Figures 4Bb,c, the regions of dense packing form an intermediate 
“shelf” or partial asymptote in peak amplitude summation plots of 
Figure 4Bd. It is again evident that the onset of this  intermediate 

the values expected for fully proportional linear summation of the 
energy in the stimulus pulse; it is an accelerating curve due to the 
logarithmic abscissa.) The case of the full-rectification model of 
the metabolic demand is shown in Figure 4Ac. Here the second 
neural response peak (i.e., that from the stimulus offset) plays a key 
role in varying the BOLD waveform, which first extends in time 
and then shows a two-peaked structure with reduced amplitude 
for long-duration stimuli.

Figure 4Ba shows the half- and fully rectified version of the 
metabolic demand to the same pulse duration series, where the 
neural inhibition is now assumed to be reduced in energy by 1.5% 
relative to the excitation. This small imbalance is magnified by the 
convolution with the sustained stimulus, and thus it results in a 
sustained component that is 12% of the amplitude of the initial 
transient (blue curve in Figure 4Ba) and then into an almost fully 
sustained set of BOLD response functions (Figure 4Bb, compare 
to Figure 4Ab). Thus, the form of the BOLD response functions 

FIguRe 4 | Simulations of four different types of BOLD response for 
monophasic metabolic demand signals (and a monophasic metabolic 
response kernel, MRK). The rows represent the results for (A) metabolic 
demands with a purely transient time course, (B–D) responses with a mixed 
transient and sustained time course, with the sustained component at 
respectively 12, 18, and 50% of the amplitude of the transient component 
(based on different ratios of neural excitation/inhibition). For each type, column 
(a) shows the assumed metabolic demand, column (b) plots the BOLD 
responses over duration for the half-wave-rectified model of metabolic demand, 

column (c) plots the BOLD responses over duration for a fully rectified model, 
and column (d) plots the duration summation curves for peak amplitude (blue 
curve: half-rectified model, red curve: fully rectified model, green curve: pure 
linear summation). Note the use of the logarithmic abscissa in column (d) to 
focus the analysis on the brief duration regime. The progression of the model 
BOLD responses with stimulus duration and the form of the summation curves 
are diagnostic of both the relative weighting between the sustained and 
transient components of the neural signal and the form of rectification feeding 
the metabolic demand.

Tyler and Likova Neural signal dynamics from fMRI

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 33 | 6

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


the m-sequence design. M-sequences are pseudorandom sequences 
that fully counterbalance the order of stimulus presentation up to a 
memory length of m-sequential items (Golomb, 1967; Sutter, 1987, 
1991; Buracas and Boynton, 2002). They therefore specify the ideal 
order of presentation of stimuli given that the memory length of 
the system is known. The m-sequence design is constrained by the 
fMRI modality, since its analysis is inherently slower than for the 
ERP. The interstimulus interval was set at 4 s, as we have found 
that this is an optimal rate for fMRI studies. The typical BOLD 
response lasts for about 16 s, so this is the length of time over which 
the response sequence needs to be balanced. Quantitatively, with a 
sampling time of TR = 2 s and an interstimulus interval of 4 s, we 
used an m-sequence that balanced all combinations of eight stimuli 
over a memory duration of 16 s (= 4 samples).

FMRI data collection
Functional MRI scanning was conducted on a Siemens Trio 3 T scan-
ner equipped with eight-channel SENSE parallel imaging capability. 
In targeting the specific activation sites, it is important to avoid 
artifactual spread of the activation by partial-voluming across cortex 
and between blood vessels and cortex on the two sides of a sulcus. 
Such artifactual spread may account for much of the apparently 
distributed activation in previous studies with large voxels, and is 
almost never discussed in relation to studies of the activation pat-
terns for visual processing tasks.

To avoid partial-voluming with the blood vessel overlying the 
cortex, we make the voxels small enough to lie strictly within the 
cortical gray matter. For a cortical thickness of 2.5 mm, a sampling 
analysis shows that the ∼33 mm voxels in a typical retinotopy scan 
have an average of more than half (60%) of their volume outside the 
cortex, and even across to the other side of a sulcus. (The situation 
is obviously far worse if the data are averaged to 43 mm effective 
voxel size. If, however, the voxels are reduced to 23 mm, a continu-
ous sheet of voxels could be found to lie almost entirely within 
the cortex (an average of 80% isolation of each sample volume).

Our current recording parameters achieve such resolution with 
an in-plane matrix size of 96 at 23 mm isotropic resolution by using 
TR = 2 s (with TE = 27 ms, flip angle = 90°), interleaved by stagger-
ing the event timings to give an effective temporal resolution of 1 s 
for the BOLD temporal waveform (see Appendix for details). The 
4 cm depth provided sufficient coverage for the posterior occipital 
lobe in each hemisphere. Activations were analyzed only for voxels 
lying within the cortical gray matter, as defined by an anatomical 
segmentation algorithm). The voxels were selected as those lying 
within the calcarine sulcus, and were therefore restricted to primary 
visual cortex (V1).

Error bars
To obtain both the individual responses and the standard errors 
required for the maximum entropy estimation procedure, we 
employ a novel use of the jackknife procedure specified by Efron 
and Tibshirani (1993). In brief, to determine the error variance for 
each repeat in an experiment with i = 1,2,…,n repeats of a given 
stimulus condition, n − 1 jackknife estimates for each of the event 
types in the design matrix are derived by re-running the analysis 
with each repeat of the chosen event removed in succession from 
the design matrix.

shelf in the summation curve corresponds to the integration time 
of the underlying neural signal, while the second asymptote at 
higher amplitude corresponds to the ∼5 s integration time of the 
MRK (HRF). Accurate measurement of such summation func-
tions can therefore provide discriminative characteristics that, when 
interpreted through the non-linear model structure, can provide 
estimates of both the neural and the metabolic time constants in 
the neural-to-BOLD signal chain.

This point is emphasized by the response set in row c of 
Figure 4, which probes the effect of varying the time constant 
of the neural transient. The key difference from the parameters 
used in row b of Figure 4, is that the neural time constant was 
doubled from 50 to 100 ms (and the excitation/inhibition imbal-
ance was also increased to 7% to maintain the same form of offset 
peak). It is evident that (i) the summation curve (Figure 4Cd) 
takes a measurably different form, and that (ii) the accuracy of 
estimation of the neural time constant is limited not by the BOLD 
time constant but only by the variability of the BOLD amplitude 
measures. For example, this analysis shows that the neural time 
constant is estimable to within about 0.1 log units if the BOLD 
response functions can be measured to an achievable accuracy 
of about 10%.

The final case of duration summation analyses (Figure 4Dd) 
shows the NDFO predictions of increasing the excitation/inhi-
bition imbalance of the neural response to 50%, illustrative of 
a system that is predominantly sustained in nature. Under these 
conditions, the impact of the initial transient becomes essentially 
negligible, and the summation curves (Figure 4Dd) become indis-
tinguishable from proportional summation (i.e., they run parallel 
to the green curve). This manipulation illustrates that the power 
of the NDFO analysis depends on the neural processing being 
predominantly transient, and that the properties of the underly-
ing neural mechanisms would not be accessible to this form of 
analysis in predominantly sustained systems. Luckily, however, 
the well-established deviation from proportionality for short-
duration stimuli implies that the neural system is, in practice, 
predominantly transient and is therefore amenable to this form 
of NDFO analysis.

valIdatIon of the forward model analySIS
To validate the model framework described in the previous sections 
in a specific implementation, and to determine the sensitivity of 
the model parameters to experimental noise sources, we conducted 
a specific BOLD fMRI experiment.

methodS
Ethics statement
This research was approved by the institutional review board of 
the University of California, San Francisco, with informed consent 
obtained for the fMRI study.

Stimulus presentation
The stimuli were spatial arrays of Gabor patches scaled to maxi-
mally stimulate retinotopic cortices at all eccentricities. They were 
presented in durations from a single frame of 16.67 ms duration in 
factors of 2 to 1.067 s (Figure 5A) in a fully balanced m-sequence 
design. The durations were presented with full counterbalancing by 
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sis was conducted in a full-range temporal summation paradigm 
(Figure 5A) and provides not only the estimated neural response 
waveform but confidence limits on the waveform parameters that 
are sufficiently narrow to indicate that the results are within the 
expected range for early cortical response dynamics.

The responses from primary visual cortex (∼250 voxels) for a 
1-h session from a typical subject are shown in Figure 5B. They 
show a progressive growth in amplitude with stimulus duration 
from the shortest to the longest, but note that the amplitudes do 
not increase by a factor of two (the linear GLM prediction; cyan 
dashed curves in Figure 5B) as duration is increased. We therefore 
need a non-linear model to understand the processing mechanism 
for these effects.

The data have thus been fit through our NDFO procedure of 
a linear convolution of the stimuli from durations from 16.67 ms 
to 1.067 s in factors of 2 (Figure 5A) with each neural component 
kernel to generate the neural signals at each duration (Figure 5C), 
a non-linear coupling to generate the component metabolic 
demands, a linear summation over the component demands to 
generate the net metabolic demand, and a linear convolution with 
a MRK (Figure 5D) to generate the ultimate BOLD signal predic-
tion (Figure 5B). Figure 5E is a comparison of the amplitudes of 

 Under the jackknife procedure, the standard error of the mean 
(SEM) for each datum point of the response matrix X(k,t) for each 
event type k at each time point t is calculated from the ith-deleted 
pseudovalues according to

SEM
X X=

−=
∑
 

i i

i

n n

n n

− Σ /

( )11  

(3)

where   X i inA n A= − −1( ) , with A and Ai being the average and the 
ith-deleted average vectors, respectively.

reSultS
bold reSponSeS
To validate our conceptual breakthrough for the estimation of 
neural response dynamics from BOLD response measurements 
we performed a computational analysis of the implications of the 
BOLD fMRI data collected on a typical human subject with cor-
rected to normal vision, a temporal modulation sensitivity function 
within normal limits, typical event-related potentials to contrast 
reversal (onset latency of 52 ms and N1 latency of 115 ms) and a 
typical BOLD response time course as evident from Figure 5 and 
a number of previous retinotopic and localizer scans. The analy-

FIguRe 5 | Non-linear dynamic forward model of BOLD responses 
optimized to a full stimulus duration series. (A) Stimulus time courses for a 
wide range of stimulus durations. (B) BOLD responses to each stimulus 
duration (red points, and jackknife error bars), together with the NDFO fit of to 
the data (blue lines) compared with the fit of a linear model (cyan dashed 
curves). (C) Estimated neural time course to each stimulus duration (note the 

0–1.5 s time scale). White zone is the ±1σ confidence interval for the resultant fit 
(excluding the transmission delay parameter). (D). Estimated BOLD impulse 
response at the last stage of the NDFO. (e). Amplitude/duration function for the 
data (red circles), with the best-fitting prediction from the NDFO (blue curve) 
compared with the prediction for strict temporal proportionality to stimulus 
duration (cyan line).
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Figure 5E). Such deviations can be accurately determined because 
they are based on the integrated response amplitude at short dura-
tions. The accuracy of the model fit does not depend on this lin-
earity assumption, but could be fit equally well to a non-linear 
temporal integration behavior if that behavior were specifiable 
for typical neural populations. To our knowledge, however, neural 
signals exhibit linear temporal integration at this time scale (e.g., 
Koch, 2005), and the primary non-linearity is the inability of the 
spike rate to fall below 0, coupled with the presence of both ON 
and OFF type neurons, which result in a fully rectified spike-rate 
response for the typical population of a cortical voxel. Just how 
the spike rate is coupled to the metabolic demand, in terms of its 
rectification behavior, has not yet been determined, which is why 
we provide an example analysis in Figure 4 of how the determina-
tion of one form of non-linearity can be made in the framework 
of the present analysis.

Similarly, as knowledge evolves, more complex models of the 
neural/metabolic coupling and the hemodynamic response could 
be easily incorporated in our model. These all represent Bayesian 
information that, if well-established, can be used to refine the 
model structure and enhance the fitting process when available. 
However, our understanding of the literature is that (a) the first-
order specification of the neural/BOLD coupling is well approxi-
mated by a linear response kernel, and (b) that estimates of the 
second-order effects are contaminated by the assumption that they 
are purely hemodynamic, and have not taken into account potential 
and actual non-linearities in the neural signals at the time scale of 
the BOLD signal. Thus, despite the best efforts of the proponents 
of elaborated hemodynamic modeling, there is no secure infor-
mation about the non-linearities of this process for the human 
brain in vivo. Consequently, we have tried to redress the balance 
by considering the effects plausible non-linearities in the neural 
population responses to standard types of stimulus presentation. 
For clarity in this enterprise, we have assumed that the metabolic 
response is both linear and monophasic, illustrating a variety of 
BOLD response properties that could arise from such neural non-
linearities. We are not claiming to have proven that these BOLD 
properties are entirely determined at the neural level (which would 
be a vast enterprise, far beyond the scope of one paper), but that 
claims that they are purely properties of the vascular hemodynamics 
per se are suspect until they are replicated in paradigms that remove 
the neural component of the system [such as stimulation of the 
hemodynamic response by direct infusion of nitric oxide (NO) in 
the vicinity of the blood vessels. This experiment has apparently 
not been attempted, although Burke and Bührle (2006) showed 
that suppression of the NO with application of the NO synthase 
inhibitor 7-nitroindazole completely abolished the BOLD response 
while only marginally affecting the local field potentials, establish-
ing the role of NO in neurovascular coupling.]

In particular, the non-linearity of the transient responses at the 
offset of the neural response could be positive (rectifying) rather 
than negative (linear), and could in either case show reduced 
amplitude relative to the onset response (adaptive gain control). 
In this example of the NDFO analysis, the offset responses are 
much smaller than the positive responses at stimulus onset. This 
analysis demonstrates that estimation of the neural response 
dynamics for each stimulus type is therefore not a Herculean task 

the fitted model waveforms with those of the data, as analyzed in 
Section “Discussion.” Optimization of the BOLD prediction (blue 
curves in Figure 5B) to the data determines the temporal features 
of the requisite neural signals making up each waveform, allowing 
us to specify the predominant time constants for the underly-
ing neural signals. These features are defined by the following 
model population parameters for the net neural signal throughout 
each studied cortical region: transmission delay, gamma expo-
nent, recovery time constant, sustained/transient ratio, sustained 
decay, and off/on ratio (six waveform parameters). The ampli-
tude, transient integration time, and sustained/transient ratio are 
specified to worthwhile precision (see Appendix). The off/on ratio 
parameter controlling the relative amplitude of the off-responses 
is not well-constrained for the duration-range used in this data set 
(Figure 5), but we note that this parameter could also be brought 
under tighter control by adding stimuli of longer duration (e.g., 
8 s). This approach should readily provide tight constraints on 
the off/on ratio because the BOLD activity corresponding to the 
off-responses is pushed to a time period that is essentially inde-
pendent of that for the on response. This kind of approach to the 
off transient had been taken successfully by Fox et al. (2005) and 
Lingnau et al. (2009), for example.

dIScuSSIon
Our novel analysis of the neural signal underlying the BOLD 
response waveforms to a full temporal stimulus series constitutes 
a form of “temporal microscope” for the neural signals in the cor-
tex generating the recorded BOLD waveforms. Thus, this study 
illustrates how the neural waveform parameters can be estimated 
from the temporal summation series to their native temporal reso-
lution. The estimated neural waveform for the present dataset in 
Figure 5C has a strong brief transient with a width at half height of 
55 ms, followed by a sustained response of about 1/10th of the peak 
transient response and a reduced, but rectified, offset response at 
the end of each stimulus. In each respect, these response properties 
match the corresponding neural response properties recorded in 
the cortex of other species. A useful survey of the dynamics of the 
unitary intracellular responses to single synaptic action potentials 
is provided by Thomson and Lamy (2007). They tabulate data from 
a large number of studies of the excitatory post-synaptic potential 
(EPSP) time course, 54 of which have usable data on the exponential 
time constant of decay. These are analyzed in Section “Appendix” 
to show that the typical EPSP time constant has a standard devia-
tion of ±20 ms. This kind of analysis can provide the Bayesian 
constraints on the modeling, although we note that the typical 
afferent volley has a temporal spread of about ±20 ms that must 
be convolved with the EPSP time constant to obtain an estimate of 
the metabolic demand generated by the typical synaptic activation. 
Thus, the net time course of the neural transients is expected to have 
a standard deviation of the order of 28 ms, or a full width at half 
height of ∼50 ms. We are not aware of comparable meta-analysis 
for monkey cortical responses, but this value is clearly in line with 
the published examples of V1 transients from this species (such as 
those of Hegdé and van Essen, 2004).

It must be emphasized that the transient time-constant anal-
ysis relies on the deviation from the linear model of propor-
tional responses (indicated by the cyan line in amplitude plot of 
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concluSIon
The conceptualizations and techniques introduced in this paper 
provide an analytic capability to resolving the timing and neu-
ral signal estimation underlying the BOLD waveforms recorded 
throughout the cortex. Any such attempt must be based on a 
model of the known neural dynamics of the neural populations 
underlying the BOLD metabolic signal generation, which may 
be progressively refined as more information becomes available 
about both neural response characteristics and the metabolic 
cascade. Given adequate signal/noise ratio, the present analysis 
shows that it is possible to develop approaches that overcome the 
temporal limitations of BOLD signal and are able to reveal the 
relevant properties of the underlying neural signals down to their 
native temporal resolution. In combination, these approaches rep-
resent a notable advance in the capabilities of the fMRI technol-
ogy, providing a direct linkage between the live assessment of the 
functioning brain and the direct neurophysiological recordings 
in other species.
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requiring extreme levels of signal/noise ratio, but is well within 
the capability of one session of normal fMRI methodology using, 
however, the appropriate combination of experimental design and 
theoretical analysis.

We note that a technique with a philosophy similar to the pre-
sent approach has been successfully applied to the estimation of 
net spatial receptive field structure of small cortical regions by 
Dumoulin and Wandell (2008), although they used a linear rather 
than the full non-linear model of the sequence of processes. Their 
spatial estimates were based on a model of the temporal signal 
to be expected as a stimulus swept across each defined point on 
the retina. Like us, they take the temporal stimulus waveform, 
convolve it with a spatiotemporal model of the response of the 
underlying neural population, and then with a model of the MRK 
(HRF) to provide a forward model of the temporal BOLD response 
that is optimized to the measured BOLD response at each cortical 
location. Our approach takes the temporal analysis several steps 
further toward biological plausibility, and focuses on the temporal 
rather than spatial aspect of the neural population response, but 
the general philosophy of analyzing interesting parameters of the 
neural response through a forward model of the BOLD response 
is a similar one.
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adjacent vasculature. The hemodynamic processes H(t) provide the 
requisite oxygen exchange to replenish the energy depletion in the 
astrocytes. The fMRI BOLD analysis provides an estimate Y(t) of 
the ratio of oxygenated to deoxygenated hemoglobin in the blood 
complement of a given voxel.

model of the neural-to-bold tranSductIon caScade
The terms in Figure 1 are related by a series of mathematical opera-
tions specified in Table 1 (see main text). The three operators are: 
linear convolution (), a non-linear, zero-memory transducer  
(f[ ]) and a multiple linear integrator (Σ). It is important to empha-
size that the linear integration across multiple parallel elements 
in a network corresponds to a non-linear process in the context 
of single-channel solution. (Linearity is defined as obeying the 
principle of superposition, such that the response to any com-
bination of inputs is equal to the simple sum of the responses to 
the individual inputs.) In the non-linear neural-to-BOLD model 
of Table 1 (see main text), which is considerably elaborated from 
the conventional BOLD analyses, we make the simplification that 
each stage consists of the linear convolution of the output signal 
from the previous stage with a temporal response kernel [which 
is designated by lower case initial for the name of that stage, i.e., 
n(t), m(t), g(t), h(t)] and the paramagnetic response p(t) that 
generates the BOLD signal).

Where necessary to model the physiological processes, the input 
to the linear convolution kernel is first processed with one of the 
non-linear operators. The last line of the table corresponds to 
the GLM, in which a function representing the neural metabolic 
demand evoked by the stimulus presentation is convolved with a 
MRK. The widespread utilization of the GLM implies that it is an 
adequate approximation under typical recording conditions, but 
the focus of this paper will be to emphasize the limitations of this 
model.

To pursue the analysis of neural responses underlying BOLD 
signals, we consider the real-data responses to rapid stimulus events 
in an event-related paradigm (see Methods, main text). The experi-
mentally measured event-related BOLD response.

The model Y(t) is a functional concept that incorporates the full 
sequence of linear or non-linear neural and metabolic/hemody-
namic response properties that follow the stimulus event of what-
ever form. Y(t) for this paradigm should be distinguished from 
h(t), the underlying hemodynamic response function, or kernel. (The 
hemodynamic response function, or HRF, is the kernel specific 
to the hemodynamics of blood oxygenation and is based on the 
assumption that its input is an invariant Dirac pulse.) The empiri-
cal response waveform is the averaged BOLD activity synchronized 
with any repeated stimulus event.

theoretIcal development for applIcatIon to tIme-reSolved 
fmrI
Although the time-resolution of FMRI is low relative to the mil-
lisecond time-resolution of single-unit recordings, it must be rec-
ognized that many single-unit studies are noise-limited and use 
response integration up to 500 ms or so, and that many interesting 
perceptual processes have durations and delays this long and longer. 
Thus, temporal resolution of fMRI delays in the range below 1 s can 
deliver important information about the neural signals underlying 

appendIx
the chaIn of proceSSIng
The primary source of the BOLD signal may be estimated from 
studies of direct oxygen-level sensing in cortex (Thompson et al., 
2003, 2004, 2005). These studies show that there are two iden-
tifiable components to the oxygen response to local luminance 
stimuli, a reduction in local oxygen level or negative response to 
the X and an increase in oxygen level or positive response to the 
Y. The spatial ranges of these responses were very different, with 
the negative response having a range of 50–100 μm from the sen-
sor tip while the positive response had a range of 250–1000 μm. 
Since the distance from any neuron to its supporting arteriole is 
no greater than about 100 μm (Heinzer et al., 2006; Meyer et al., 
2008), it seems clear that the range of the larger component, at 
least, is mediated largely by the spread of the neural processes. In 
fact, their model is based on the concept that “changes in tissue 
oxygen are composed of two response components (one positive 
and one negative) with magnitudes determined by neural activ-
ity on separate spatial scales” (Thompson et al., 2005). Since the 
typical spread of the more extensive component is about 10 times 
that of the more restricted component, the implication is that the 
volume of neural tissue expressing the former is about 100 times 
greater than of the latter. Any imaging technique, such as fMRI, 
with a spatial resolution of 1 mm or more is thus likely to be heavily 
dominated by the positive component.

Logothetis and colleagues (Logothetis, 2002, 2003; Logothetis 
and Wandell, 2004; Shmuel et al., 2006) have made the case that 
the most likely basis of the metabolic demand driving the BOLD 
signal is the energetic load deriving from the total conductance 
changes in the post-synaptic membrane generated by a range of 
processes consequent on transmitter release at the synaptic inputs 
to each neuron. The summed metabolic demand in the nexus of 
active cortical neurons adjacent to a capillary forms the drive for 
the metabolic response in that region of cortex. These authors argue 
that the transmitter release is tightly coupled to the activation of 
the post-synaptic receptors on the recipient cell membrane and 
consequently to the energetic demands of the membrane receptor 
activation and to a lesser extent to the subsequent recycling of the 
transmitter molecules. The majority of these energetic demands 
are met by glycolysis of glutamate to glutamine in the neighbor-
ing astrocytes (Shank and Aprison, 1979; Wang and Floor, 1994). 
The glutamine is then taken up by the neurons for reconversion 
to glutamate for use as a transmitter, releasing energy within the 
neuron in the process.

Since cells are predominantly linear summators of the excitatory 
and inhibitory transmitter release across their synaptic population, 
it seems to follow that the energetic demand driving the BOLD 
signal is most closely coupled to the net transmitter signal imping-
ing on the cells, and hence to intracellular potential in the cells.

We treat the neural responses within each voxel as generated by 
sets of homogeneous populations with similar signal waveforms 
N

i
(t) within each population (Figure 1 in main text). Each neural 

response then generates a local metabolic demand M
i
(t) that may 

have a non-linear relationship to the neural signal waveform. The 
integrated metabolic demands G(t) are met primarily by the astro-
cytes, which integrate the required energy consumption over time 
and space and make a complementary oxygen demand G(t) on the 
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as response reaction times or perceptual ambiguity delays should 
be accurately reflected in the BOLD waveform once the inherent 
delays of the MRK are taken into account.

Transience
It is an established property of the BOLD response that it is largely 
sustained for an appropriately sustained neural response (Birn 
et al., 2001; Boynton et al., 1996; Glover, 1999; Logothetis, 2002, 
2003; Shmuel et al., 2006). Hence, transience of the BOLD response 
for a sustained stimulus implies a transience of the underlying neu-
ral response. For example, the onset of a sustained light is known 
to generate transient neural responses in most cortical neurons 
responding to it. Such stimulation will generate a transient BOLD 
response even though the stimulation and photoreceptor response 
are sustained.

Number of phases
For a monophasic MRK (HRF), the BOLD waveform will have 
the same number of phases as the input stimulus, if the neural 
input is balanced for positive and negative lobes. Thus, the fact 
that the measured BOLD waveform is typically biphasic does not 
imply that the MRK is necessarily biphasic. The negative lobe may 
derive from a biphasic neural response to a stimulus rather than 
to blood dynamics.

Some of these properties of the BOLD response are illustrated in 
the simulation of Figure A1, for which the MRK is assumed to be 
the gamma function shown in Figure A1A, right, as the basis func-
tion for the formal analysis. Gamma bases are statistical descriptors 
of the occurrence of discrete particles (Stacy, 1962; Farwell and 
Prentice, 1977) that have a simple analog implementation that is 
a cascade of identical lowpass filters (De Vries and Principe, 1992; 
Celebi and Principe, 1995; Chen, 2006). In terms of molecular dif-
fusion processes within neurons, the gamma function represents 
an optimal description of the cooperative process of the arrival of 
effector molecules at the channels controlling current flow through 
the cellular membrane (Shao, 1997). We derive the normal equation 
for the optimum value of the time scale parameter and decouple 
it from that of the basis weights. Using statistical signal processing 
tools, we further develop a numerical method for estimating the 
optimum time scale.

Each left-hand panel shows a different neural waveform with a 
time-course being a simplified version of a form typical of those 
seen in neurophysiological recordings. Convolution of each of the 
waveforms in the left column with a monophasic MRK (HRF) 
of the form of Figure A1A (right panel) generates the predicted 
BOLD waveforms of the right-hand column of Figure A1. The 
important point made by this simulation is that most typical fea-
tures of measured BOLD waveforms could arise from convolution 
of a simple gamma-function MRK with a variety of neural signals 
modulated within less than 100 ms (Figures A1A,C,D). Extended 
neural signals will generate BOLD waveforms with slower time-
courses (Figure A1B).

Conversely, under the assumption of a uniform monophasic 
MRK, the neural signal properties can be inferred from the form of 
the BOLD response. Thus, if the BOLD response rises to a sustained 
plateau (Figure A1B, right), we may infer that the neural signal 
was sustained (Figure A1B, left); if the BOLD response is biphasic 

such perceptual events, as demonstrated by Menon et al. (1998), in 
particular. These authors were able to resolve reaction-time delays 
of the order of 100 ms, and Henson et al. (2002) used the basis func-
tion of the first derivative of the MRK (HRF) to determine the sign 
of the advance or delay of the BOLD response (although the latter 
approach assumes a unitary MRK in all response regions, which 
may confound delays with other waveform differences (Bellgowan 
et al., 2003). Similarly, Sun et al. (2005), working with a frequency 
domain technique, used the slope of the phase of the fMRI spec-
trum as an index of relative neural delay between brain areas. This 
method allowed the mapping of causal influences from a chosen 
brain areas to the rest of the brain with a typical accuracy of about 
500 ms.

The time-domain approach of present analysis allows the 
extraction of the maximum possible information about the tem-
poral evolution and processing non-linearities of the neural sig-
nals underlying particular BOLD activation profiles. Our analysis 
reveals that much information about the neural response properties 
are reflected in the BOLD signals, even if the time-resolution is 
insufficient to reproduce the exact neural signal. Examples of such 
“transparency” of response properties are particularly clear in the 
case that the full MRK is monophasic.

This monophasic assumption was tested for rat cortex by both 
Martindale et al. (2003) and de Zwart et al. (2005), who showed that 
the empirical dispersion of the BOLD response generated increasing 
delay with distance from the activation site, but were always well-fit 
by a monophasic model of the BOLD impulse response. Similarly 
direct measurements of cerebral blood flow and the concentrations 
of oxygenated and deoxygenated hemoglobin in the human brain 
(Hoge et al., 2005) reveal only a monophasic temporal waveform 
for each of these contributors to the BOLD response. These results 
are all compatible with the inference of a dominant monophasic 
positive BOLD response in cat LGN and cortex reviewed above 
(Thompson et al., 2003, 2004, 2005). This form also seems to be a 
fair approximation in the case of human fMRI because the canoni-
cal response kernel (commonly known as the HRF) provided in the 
SPM-5 software package, although biphasic, has a negative lobe of 
less than 10% of the amplitude of the positive lobe. It is therefore 
only a minor approximation of this standardized kernel to assume 
that it has no negative lobe, which is the assumption made for the 
following analysis. (As will be explained below, the residual biphasic 
component can be readily attributed to neural rebound signals.) 
Armed with this assumption, we show how several properties of 
the neural signal are reflected in the recorded BOLD waveform. 
(For the purpose of this demonstration, we are assuming a linear 
relationship between the neural response and the BOLD waveform, 
in order to make its properties clear before introducing the non-
linear aspects discussed in the previous section.)

Polarity
The BOLD response polarity will be an accurate reflection of the 
polarity of the neural response for any monophasic neural response.

Latency
Any delay in the neural response will also be reflected in the con-
sequent BOLD response. Of course, the metabolic processing 
sequence may introduce additional delays, but neural delays such 
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kernel has a monophasic form, and that (ii) the biphasic form may 
better be interpreted as a function of the neural processing that 
precedes the metabolic demand, as illustrated in Figure A1, rather 
than of the metabolic processes.

Specifically, it is well-established that the transmission delay 
through retina to cortex is about 40 ms in the human brain, and that 
the monosynaptic transmission delays from one cortical region to 
another are only about 10 ms in monkey brain (Nowak and Bullier, 
1997; Azouz and Gray, 1999), and similarly in human brain. These 
extra transmission delays may are small in relation to the 70–200 ms 
peak latencies of the typical neural response in monkey cortex 
(V1–V4; Hegdé and van Essen, 2004, 2006). The predominant 
parameter controlling delays of this magnitude is thus the neural 
time constant τ

m
. As will be shown, the neural response parameters 

for human will be estimated to an accuracy of ∼0.1–0.2 log units, 
so intracortical transmission delays of a few tens of milliseconds 
are negligible in this context.

We emphasize that our criterion for the completeness of such 
a model is that it should be sufficiently well-specified that it char-
acterizes neural responses recorded in monkey cortex, and that its 
output could be taken as the input to the level of the practical analy-
sis of the neural signals underlying fMRI activation in the human 

(Figure A1C, right), we may infer that the neural signal was biphasic 
(Figure A1C, left); if the BOLD response is triphasic (Figure A1D, 
right), we may infer that the neural signal was correspondingly 
triphasic (Figure A1D, left). Figure A1 thus illustrates that, under 
appropriate assumptions, the form of the BOLD response can act 
as a kind of “temporal microscope” for the form of the underlying 
neural response. Although it cannot resolve the precise temporal 
parameters (e.g., whether the neural response lobes have durations 
of 1, 10, or 100 ms), many qualitative aspects of the waveform 
structure are reflected in the BOLD waveform.

As Figure A1 illustrates, the interpretation is particularly 
straightforward if the BOLD metabolic/hemodynamic kernel is 
monophasic. We emphasize that previous suggestions that it is 
biphasic are contaminated by the likelihood that the underly-
ing neural signal is itself biphasic. Under the logic of the analysis 
in Figure A1, this property would generate the biphasic form of 
empirical hemodynamic kernel that is commonly observed, but it 
seems that previous analyses of BOLD properties have not taken 
this possibility into account. In fact, the biphasic property that is 
often empirically observed is quite variable over brains and cortical 
regions (Bellgowan et al., 2003). Based on this analysis, we propose 
that (i) it may be more plausible to assume that the true metabolic 

FIguRe A1 | Left panels: (A) neural impulse response, (B) step 
response, (C) balanced doublet, and (D) balanced triplet response. 
Right panels present convolution of each of these responses with the 
MRK shown at right. Note that differences in neural response 

characteristics (left panels) at the time scale of 100 ms generate profound 
changes in the simulated BOLD waveforms (right panels) on a much 
longer timescale, which in turn are diagnostic of the differences in the 
neural signals.
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The importance of this adaptation effect is emphasized by the 
fact that the recorded LFP signal does not fully match the BOLD 
activation predicted (red trace, Figure A2) on the basis of GLM 
of convolution of a hemodynamic response kernel with the stim-
ulus time course, and therefore a more comprehensive model is 
required, going beyond the standard implementation of the GLM. 
(This analysis applies when the stimulus is continuously refreshed 
to support the assumption that the neural signal would be well 
approximated by the stimulus waveform).

Notice that the negative LFP signal following the stimulus offset 
in Figure A2 has a transient time course that is an inverted copy of 
that following the stimulus onset. This inversion implies that the 
rebound effect in the LFP is fundamentally linear. There is also a 
slow adaptation effect from about 3–24 s, with a corresponding 
recovery following the offset transient. This adaptation effect is a 
subtractive inhibition rather than a solely multiplicative form of 
fatigue (which would have no negative rebound). The predicted 
offset for a linear system from the adapted level at 24 s is shown 
by the blue dashed lines, which give an accurate prediction of the 
offset level following the initial offset transient. If there were a 
multiplicative gain control, the signal change following offset would 
be substantially less than that at onset, whereas the two amplitudes 
are quite similar.

The mechanism of this subtractive inhibition appears to be the 
tonic intracellular hyperpolarization induced by pattern adapta-
tion, as described by Carandini and Ferster (1997, 2000). However, 
the stimulus driving the response in Figure A2 was a dynamic con-
trast modulation, implying that the sustained LFP signal derives 
from a full-wave rectified transform of the intracellular potential. 
This analysis leads to a model of the LFP as the integrated response 
of instantaneous signal of the rectified intracellular potential from 
the nearby neurons, convolved with an exponential decay func-
tion. However, the data in Figure A2 clearly show a short decay 
to a stable response level followed by a slow decay of about 10% 
over the 30 s of the full stimulus epoch. This dual decay charac-
teristic can be fit by a parallel-process decay model, in which the 
two decays come from separate parallel processes summed into 
the measured signal.

An implementation of the parallel-process model that we pro-
pose on this basis is shown in Figure A3, using the parameters 
for the qualitative fit to the data of Figure A2. It incorporates two 
decaying exponential components with time constants of 1 and 
60 s (Figure A3A). These components are each convolved with 
a neural signal derived from the convolution of the rectangular 
(box-car) form of the continuous stimuli of 3 and 12 s duration 
(cf. Logothetis, 2003). The latter stimulus was also the one used in 
Figure A2. This parallel-process model (full curve in Figure A3C) 
captures the qualitative features of the LFP data (Figure A2) with 
the sum of the two component response (dashed curves in Figure 
A3C). These parallel components represent the average responses 
of two separate neural populations contributing to the recorded 
LFP. It is problematic to obtain the integrated response, i.e., the 
combination of the two component slopes of Figure A3C, with 
any kind of serial model, because this would imply a convolution 
of the two exponentials that would necessarily result in a function 
dominated by the faster process rather than allowing both processes 
full expression.

brain. Although there are numerous analyses of the empirical tem-
poral properties of neural populations, it is surprising that none 
have taken a mathematical modeling approach to the specification 
of the temporal response, defining its population parameters in a 
manner that permits such a neural analysis of the empirical varia-
tions. However, without such prior information about the popula-
tion parameters, such as the range of exponential decays from the 
transient response peak characteristic of each retinotopic area in 
monkey cortex, we will not have sufficient power to account for all 
the parameters of a quantitative model of the response behavior 
in human cortex.

valIdatIon of the neural model wIth the local cortIcal 
SIgnal
As is highlighted by the data of Logothetis (2003), there are adaptive 
effects in the neural response that become evident for long-duration 
activation by continuous dynamic stimuli (Figure A2). The LFP 
recordings (blue trace) from monkey V1 reveal that the adapta-
tion has a complex time course that can be approximated by two 
exponentials with time constants of about 1 and 60 s, respectively. 
These are remarkably prolonged neural processes that are on the 
time scale of BOLD activation, and will therefore affect the form of 
the recorded BOLD signal from the same general region of cortex 
(Figure A2, dark gray trace).

FIguRe A2 | Time course of the local field potentials (blue trace with 
cyan fill), BOLD (red trace), and predicted BOLD (dark gray trace) to a 
continuous dynamic stimulus (black dotted rectangle) of 24 s duration. 
From Logothetis (2003). Blue dashed lines show the inhibitory rebound level 
predicted from the average level of the second half of the BOLD response.

Table A1 | estimated effect sizes for each parameter.

Parameter Peak S/T Off/on MRK MRK 

 latency ratio ratio width negative

Estimated +70 ms +0.30 +0.66 +0.6 s +0.15 

variability

Estimated range 70–200 ms 0–1 −0.5–0.5 4–7 s 0–1

Estimated effect 1.86 3.3 1.5 5.0 6.7 

size (Cohen d)
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FIguRe A3 | (A) Two exponential decay processes used to account for the adaptation effects evident in Figure A2. (B) The sum of the two components in (A) each 
convolved with a 3-s stimulus time course. (C) Dashed curves: the two components in (A) each convolved with a 12-s stimulus time course; full curve: the sum of 
the two convolved responses.

fmrI methodS
Functional MRI data were acquired with a 3-T magnetic resonance 
(MR) scanner (Siemens Trio) using a single-shot gradient echo-
planar imaging (EPI) of 34 slices acquired inferior to superior in 
interleaved order with no gap. TR = 2000 ms, TE = 27 ms, flip 
angle = 90°, in-plane FOV = 220 mm × 220 mm with resolution of 
96 × 96 yielding 2 mm × 2 mm × 2 mm voxels throughout the occipi-
tal lobe. The phase encoding direction was right-to-left. The scan 
was followed by a 2-D spin echo T1 scan with the same in-plane pre-
scription. (The subject was also scanned with a high-resolution T1 
with a 3-D MP-RAGE sequence with TR = 2300 ms, TE = 2.96 ms, 
flip angle = 9° in 208 sagittal slices with 256 × 256 mm FOV and 
320 × 320 resolution yielding 0.8 mm × 0.8 mm × 0.8 mm voxels.)

 The functional activations were then processed for slice-time 
correction, motion correction, and trend removal to minimize the 
low-frequency drift in the BOLD signal. Activations were analyzed 
only for voxels lying within the cortical gray matter, as defined by 
an anatomical segmentation algorithm (mrGray), which ensures 
localization of the signal close to the activated neurons and greatly 
reduces the blood drain artifacts. The 228 s time series for each 

cortical voxel were averaged across 12 scans at the fMRI sampling 
rate of 2 s. Temporal jitter over a range of ±3 s in the presentation 
times was implemented on a 1-s time base so that the 2-s samples 
of BOLD activation could be interleaved to a 1-s sampling rate.

perturbatIon analySIS of the model fItS and eStImatIon of 
effect SIzeS
This qualitative description of the typical response parameters may 
be further refined with a perturbation analysis to reveal the sen-
sitivity of each parameter (Bevington and Robinson, 2003). Once 
the optimum fit is achieved, each parameter is perturbed to deter-
mine its sensitivity for degrading the fit, which is a form of power 
analysis. The procedure for this determination was to determine 
the sensitivity for a given parameter the model was refit with that 
parameter set at a range of values, with all the other parameters 
varying at each value of the given parameter. Thus, the specified 
sensitivity ranges take into account any potential trade-offs among 
parameters.

If small perturbations generate strong degradation of the fit, the 
neural response parameter is well-constrained by the BOLD dataset 
and its value has been determined with high confidence. The crite-
rion for the perturbation error defining the parameter sensitivity 
is the perturbation level at which the %2 fit becomes significantly 
worse at p < 0.05. Perturbation analysis of the parameters for the fits 
in Figure 4 of the main text shows that the transient width (neural 
integration time) estimate is accurate to about ±70 ms, and the 
sustained/transient peak ratio to about ±30%. These are remark-
ably tight constraints, as are those of the BOLD MRK parameters 
of net integration time (±0.6 s), the negative BOLD response ratio 
(MRK neg) (±15%), and the weight on the neural off-response 
rectification ratio to about ±66%.

These computed levels of variability may be converted to esti-
mates of effect size based on the expected range of variation of each 
parameter among cortical areas (from extensive published work in 
monkey cortex). The peak latency (x) is derived according to the 

FIguRe A4 | Histogram of neural transient durations derived from the 
data provided by Thomson and Lamy (2007).
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analySIS of neural tIme conStantS
To assess the plausibility of the peak latency estimate in Table 1 in 
main text, we provide an analysis of the characteristics of neuronal 
response in more than 50 studies of intracellular and whole-cell 
current recordings in cat, rat, and a few monkey species tabulated 
in a recent paper by Thomson and Lamy (2007). Despite the spe-
cies differences, the results indicate a relatively tight constraint on 
the neuronal response dynamics, which we have summarized in a 
frequency histogram of the durations of the neuronal transients 
(Figure A4). This histogram is derived from half-widths of the 
(intracellular) excitatory or inhibitory post-synaptic response tran-
sients in the primary sensory cortical regions. From this summary 
we infer that that typical transient half-width is of the order of 
18 ms, corresponding to standard deviation of ∼20 ms at half height.

analysis of Figure 3 in main text. These estimated effect sizes (from 
Cohen, 1992), tabulated in Table A1, are impressively large for most 
of the parameters, since any effect size greater than 1 means that 
a parameter value can be determined to within its expected range 
of physiological variation.

It should be emphasized that no previous study on any kind 
of neural signal estimation has previously conceptualized how to 
achieve this level of temporal resolution from fMRI measurements. 
The NDFO approach of Figure 5 of the main text has essentially 
unlimited ability to resolve the neural temporal characteristics of 
the order of a few milliseconds from the BOLD temporal duration 
series. All that is needed is the ability to present stimuli at durations 
spanning those of the neural response, and appropriate levels of 
signal/noise ratio of the BOLD (e.g., SNR > 10:1).
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