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Abstract

The Aumann-Shapley (1974) value, originating in cooperative game

theory, is used for the allocation of risk capital to portfolios of pooled

liabilities, as proposed by Denault (2001). We obtain an explicit for-

mula for the Aumann-Shapley value, when the risk measure is given

by a distortion premium principle (Wang et al., 1997). The capital

allocated to each instrument or (sub)portfolio is given as its expected

value under a change of probability measure. Motivated by Mirman

and Tauman (1982), we discuss the role of Aumann-Shapley prices in

an equilibrium context and present a simple numerical example.
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1 Introduction

We discuss the problem of allocating aggregate capital requirements for a

portfolio of pooled liabilities to the instruments that the portfolio consists

of. Cooperative game theory (Shapley (1953), Aumann and Shapley (1974),

Aubin (1981)) provides a suitable framework for cost allocation problems

(e.g. Lemaire 1984). Typically, provisions are made so that the allocation of

total costs does not produce disincentives for cooperation to any player (in-

strument) in the game or coalition of players (sub-portfolio of instruments).

A closely related approach has been to determine an allocation scheme by

imposing economically motivated axioms on the system of prices that it

would produce (Billera and Heath (1982), Mirman and Tauman (1982)).

The solution concept that emerges from the latter approaches is the cele-

brated Aumann-Shapley (1974) value. In the context of capital allocation,

cooperation can be understood as the pooling of risky portfolios, and the cost

as the ‘risk capital’ that a regulator decides that the holder of the portfolios

should carry. This case was discussed in depth by Denault (2001), who used

a cost functional based on a coherent risk measure (Artzner et al., 1999),

and the Aumann-Shapley value emerged again as an appropriate solution

concept. Explicit calculations of the Aumann-Shapley value were provided

when the risk measure used is Expected Shortfall (this problem was solved

by Tasche (2000a) in the context of performance measurement) and for the

case of a risk measure used by the Securities and Exchange Commission.

In this paper we calculate an analytic formula for the Aumann-Shapley

value using quantile derivatives (Tasche 2000b), for the case that the risk

measure belongs to the class of distortion principles (Denneberg (1990),

Wang et al. (1997)). We obtain a representation of the Aumann-Shapley
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value, i.e. the capital allocated to each portfolio, as the expected value of

the portfolio under a change of probability measure. This representation

creates a formal link between problems of allocating capital and pricing

risks. We discuss this relationship through the example of a pool, which

covers specific liabilities carried by a number of insurers, who in turn make

cash contributions to the pool, that can be interpreted as risk premia.

It was shown by Mirman and Tauman (1982) that the Aumann-Shapley

value yields equilibrium prices in a monopolistic production economy. Mo-

tivated by this work, we generalise the example to a case where the different

insurers choose the extent of coverage received from the pool, by expected

utility maximization. This set-up is quite different from the equilibrium

models usually found in the literature on risk sharing, for example Borch

(1962), Bühlmann (1980), Taylor (1995), Aase (2002). In these papers, mar-

ket prices are obtained via a clearing condition, which is not applicable to the

problem that we discuss. Finally, we provide a simple numerical example,

where the pool offers stop-loss protection to the participating insurers.

2 Coherent risk measures and distortion princi-

ples

A coherent risk measure is defined by Artzner et al. (1999) as a functional

ρ(X) on a collection of random cashflows (in our case X will be a non-

negative random variable representing liabilities) that satisfies the following

properties:

Monotonicity: If X ≤ Y a.s. then ρ(X) ≤ ρ(Y )

Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y )
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Positive Homogeneity: If a ∈ R+ then ρ(aX) = aρ(X)

Translation Invariance: If a ∈ R then ρ(X + a) = ρ(X) + a

ρ(X) is interpreted as “the minimum extra cash that the agent has to

add to the risky position X, and to invest ‘prudently’, to be allowed to

proceed with his plans” (Artzner et al., 1999). ‘Invest prudently’, in this

paper, means with zero interest.

All functionals satisfying the above properties allow a representation:

ρ(X) = sup
P∈P

EP[X] (1)

where P is a collection of probability measures.

Two random variables X, Y are called comonotonic if there is a random

variable U and non-decreasing functions g, h such that X = g(U), Y = h(U)

(Denneberg, 1994a). Comonotonicity corresponds to the strongest form

of positive dependence between random variables. An additional desirable

property of risk measures is additivity for comonotonic risks:

Comonotonic Additivity: If X, Y comonotonic then ρ(X+Y ) = ρ(X)+ρ(Y )

It can be shown that, if and only if ρ(X) is a coherent risk measure sat-

isfying comonotonic additivity, it has a representation as a Choquet integral

with respect to a submodular set function or capacity, v (Choquet (1953),

Denneberg (1994a), Delbaen (2000)):

ρ(X) =
∫

Xdv =
∫ ∞

0
v(X > t)dt, (2)

where v(A ∪B) + v(A ∩B) ≤ v(A) + v(B).

Let P0 be the physical (actuarial) probability measure. If g : [0, 1] 7→
[0, 1] is a continuous, increasing and concave function, with g(0) = 0 and
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g(1) = 1, then v(A) = g(P0(A)) is a submodular set function (Denneberg,

1994a). Thus the following integral is a comonotonic additive coherent risk

measure:

ρ(X) =
∫ ∞

0
g(P0(X > t))dt, (3)

The risk measures used in this paper will be of the above form. This type

of risk measures have been axiomatically defined in the context of insur-

ance pricing by Denneberg (1990) and Wang et al. (1997). They are

termed distortion principles, since the non-linear function g ‘distorts’ the

physical probability measure P0. Choquet integrals have also found appli-

cation as non-linear pricing functionals in financial markets with frictions

(Chateauneuf et al., 1996).

Given a probability space (Ω,F ,P0), the set P of probability measures in

the representation (1) corresponds to the core of the set function v = g(P0)

(Denneberg (1994a), Delbaen (2000)):

ρ(X) =
∫ ∞

0
g(P0(X > t))dt = sup{EP[X] : P(A) ≤ g(P0(A)) ∀A ∈ F} (4)

Distortion principles have an economic justification in terms of Yaari’s

(1987) dual theory of choice under risk. By modifying the von Neumann-

Morgenstern independence axiom, Yaari obtains an operator H dual to ex-

pected utility, given by the superadditive Choquet integral:

H(X) =
∫ ∞

0
h(P0(X > t))dx, (5)

where h : [0, 1] 7→ [0, 1] is a continuous, increasing and convex function,

which h(0) = 0 and h(1) = 1. While in expected utility theory preferences

(risk aversion) are modelled by a nonlinear transformation of a random cash-

flow, in Yaari’s framework preferences (‘uncertainty aversion’) are expressed
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by a nonlinear distortion of the cashflow’s probability distribution. The

distortion principle can then be obtained by an indifference argument.

3 Cost allocation and cooperative games

3.1 The cost functional

In our application, costs corresponding to the capital that the holder of

a risky portfolio (e.g. of insurance liabilities) is obliged to hold will be

allocated to the different instruments (or sub-portfolios) it consists of. The

cost functional used will be derived from the distortion principle defined in

the previous section.

Consider a portfolio Zu composed of n liabilities Xj , with portfolio

weights u ∈ [0, 1]n:

Zu =
∑

j

ujXj (6)

Then, as in Denault (2001), we define the cost functional c : [0, 1]n 7→ R:

c(u) = ρ(Zu) = ρ


∑

j

ujXj


 (7)

This cost functional gives the capital that the holder of portfolio Zu must

hold, as a function of the vector u of portfolio weights.

3.2 Cooperative games and the fuzzy core

In this section we give a brief and informal discussion of the application of

cooperative game theory to cost allocation problems. Consider n investors,

each holding a liability (i.e. a positive random variable) Xi and therefore

each obliged to hold (regulatory) capital ρ(Xi); in aggregate they have to
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hold
∑

j ρ(Xj). Now suppose that the investors decide to pool their liabili-

ties, i.e. to form a portfolio
∑

j Xj . The aggregate capital requirement then

becomes ρ(
∑

j Xj). Because of the subadditivity property of coherent risk

measures, it will then be ρ(
∑

j Xj) ≤
∑

j ρ(Xj). This means that the level

of aggregate capital required for the pooled liabilities Z =
∑

j Xj will be

lower than ‘the sum of its parts’.

Thus, cooperation, in the form of the pooling of liabilities, produces in

the aggregate capital savings for the investors of size
∑

j ρ(Xj)− ρ(
∑

j Xj).

Furthermore, maximal savings are produced when all investors contribute

the total of their liabilities to the pool. The question that emerges now

is how to allocate the costs (or equivalently the savings) to the different

investors, in a fair (in some sense) and efficient way. The problem of cost

allocation is thus to determine an appropriate vector d ∈ Rn such that:

∑

j

dj = c(1) = ρ(Z) = ρ(
∑

j

Xj) (8)

Cooperative game theory provides a conceptual framework for addressing

such problems. If N is the set formed by n players (e.g. portfolios), we

define an n-person cooperative game (Shapley, 1953) as an ordered pair

(c,N), where c is a real-valued function c(uS) : Rn 7→ R . The set S ∈ 2N

represents a coalition of players and the argument uS is a vector in Rn with

1 in the ith component if the ith player belongs to S and 0 otherwise. The

function c(uS) is the cost that this coalition would incur, if the players in

S would cooperate and ignore the rest of the players. In our application,

c(uS) = ρ
(∑

j∈S Xj

)
would be the amount of total capital required from a

pool containing all liabilities carried by members of S, e.g. all instruments

Xj , j ∈ S.

Consider all allocations d ∈ Rn of costs to the players that are efficient,
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that is, they add up to the aggregate cost (8). A further requirement on

the allocation scheme is that there be no coalition S with ‘blocking’ power,

that is, no coalition that would reduce its costs if it left the grand coalition

N . These considerations are formalised by the concept of the core, C, of the

game:

C = {d ∈ Rn|
∑

j∈N

dj = c(uN ) and c(uS) ≥
∑

i∈S

di ∀S ∈ 2N} (9)

The above setting may prove inappropriate for some applications. In

the case that the players represent portfolios, it is conceivable that a player

could participate in a coalition with only part of his investment (Denault,

2001). A suitable framework for such problems is provided by the theory of

fuzzy cooperative games introduced by Aubin (1981). In a fuzzy game, each

player participates in a coalition to a certain degree; thus the coalitions are

interpreted as fuzzy sets. (This approach is closely related to the theory of

non-atomic games of Aumann and Shapley (1974), where a continuum of

players is considered and measureable sets stand for coalitions.)

An n-person fuzzy cooperative game is defined by a set of n players N

and a function: c(u) : [0, 1]n 7→ R. The vector u represents a fuzzy coalition,

by giving the ‘level of involvement’ of each player to that coalition. E.g.

ui = 0 means that player i does not contribute anything to coalition u,

ui = 1 means that he fully participates to u, and ui = 0.5 means that he

commits half of his ‘involvement in the game’ (e.g. 0.5Xi) to coalition u.

Note that the coalition of all players is now represented by the n-vector

of ones, 1. The core of an n-person fuzzy cooperative game (N, c) is then

defined as:

C = {d ∈ Rn|c(1) =
∑

i∈N

di and c(u) ≥
∑

i∈N

uidi ∀u ∈ [0, 1]n} (10)
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It is easily understood that in the fuzzy setting, the number of coalitions

with potential blocking power increases and, accordingly, the core shrinks.

Consider the case that the cost function c is subadditive and positively

homogenous:

c(φ + ψ) ≤ c(φ) + c(ψ)

c(γu) = γc(u) for γ ≥ 0

Then the core of the fuzzy game is convex, compact and non empty. Fur-

thermore, if c(u) is differentiable at u = 1 then the core consists only of the

gradient vector of c(u) at u = 1 (Aubin, 1981):

dCi =
∂c(u)
∂ui

|uj=1∀j (11)

This is the allocation scheme that we are going to use subsequently in the

paper. We note that Tasche (2000a) obtained a similar formula, in the

context of performance measurement.

The Aumann-Shapley value is the unique linear operator satisfying a

set of game theoretically motivated axioms (Aumann and Shapley (1974),

Aubin (1981)). The Aumann-Shapley value produces an allocation of costs:

dAS
i =

∂

∂ui

∫ 1

0
c(γu)dγ|uj=1∀j (12)

Besides its game theoretical derivation, the Aumann-Shapley value has been

arrived at by several authors (e.g. Billera and Heath (1982), Mirman and

Tauman (1982)) as the unique allocation scheme satisfying a set of econom-

ically motivated axioms. In the case that the cost function is subadditive,

positively homogenenous and differentiable at u = 1, it is obvious that the

Aumann-Shapley value coincides with the core of the fuzzy game (c,N):

dAS
i = dCi =

∂c(u)
∂ui

|uj=1∀j (13)
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4 The Aumann-Shapley value for distortion prin-

ciples

Explicit calculations of the Aumann-Shapley value have been given in the

bibliography for the cases that the cost functional is derived from the risk

measure Expected Shortfall (Tasche, 2000a) and a risk measure used by the

Securities and Exchange Commission (Denault, 2001). Here we provide an

explicit formula for the Aumann-Shapley value in the case that the cost

functional corresponds to a distortion principle, as defined in section 2.

To derive Aumann-Shapley prices, we will need to calculate derivatives of

the type ∂c(u)
∂ui

, where c is the cost function derived from the Choquet integral

(3) as in (7). The calculation of Aumann-Shapley prices is performed by

using the quantile representation of the Choquet integral and the analytical

tool of ‘quantile derivatives’.

The cost functional c(u) equals the risk measure of the portfolio Zu =
∑

j ujXj , thus it is given by the integral:

c(u) = ρ(Zu) =
∫

Zudv, (14)

where v is the set function defined by v = g(P0), g : [0, 1] 7→ [0, 1] is a

continuous, twice differentiable, strictly increasing and concave function,

with g(0) = 0 and g(1) = 1.

Let SZu be the decumulative distribution function of Zu, SZu(z) =

P0(Zu > z). We define the distribution function GZu : R 7→ [0, 1] of Zu

with respect to the monotone set function v as:

GZu(z) = v(Zu > z) = g(P0(Zu > z)) = g ◦ SZu(z) (15)

Assume, for simplicity, that SZu(z) is a continuous one-to-one map. Its
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inverse, S−1
Zu(t) then exists and is also one-to-one. The inverse of the distri-

bution function GZu(z) is defined in the obvious way:

G−1
Zu(t) = S−1

Zu ◦ g−1(t) (16)

The Choquet integral admits a quantile representation (Denneberg, 1994a),

which yields:

c(u) =
∫

Zudv =
∫ 1

0
G−1

Zu(t)dt =
∫ 1

0
S−1

Zu ◦ g−1(t)dt =
∫ 1

0
S−1

Zu(t)dg(t)

(17)

In the ensuing calculations we will need to calculate ∂S−1
Zu (t)

∂ui
. Tasche

(2000b) showed that, under some technical assumptions relating to the con-

tinuity of conditional densities (see Appendix), that we will assume to be

satisfied, such derivatives exist and are given by:

∂S−1
Zu(t)
∂ui

= E[Xi|Zu = S−1
Zu(t)] (18)

Let the probability density function of Zu be fZu(z) and the joint density

of Xi and Zu, fXi,Zu(x, z). Then we can write:

E[Xi|Zu = z] =
∫ ∞

0
x

fXi,Zu(x, z)
fZu(z)

dx (19)

We now proceed with a direct calculation of the Aumann-Shapley value.

The ith element of the Aumann-Shapley allocation dAS ∈ Rn, i.e. the

amount of capital allocated to instrument Xi, is:

dAS
i =

∂c(u)
∂ui

|uj=1∀j

We have:

∂c(u)
∂ui

(17)
=

∂

∂ui

∫ 1

0
S−1

Zu(t)dg(t)

=
∫ 1

0

∂

∂ui
S−1

Zu(t)dg(t)
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(18)
=

∫ 1

0
E[Xi|Zu = S−1

Zu(t)]dg(t)

= −
∫ ∞

0
E[Xi|Zu = z]dg(SZu(z))

(19)
= −

∫ ∞

0

∫ ∞

0
x

fXi,Zu(x, z)
fZu(z)

g′(SZu(z))dxdSZu(z)

=
∫ ∞

0

∫ ∞

0
xfXi,Zu(x, z)g′(SZu(z))dxdz

= E[Xig
′(SZu(Z))]

Let now Z =
∑

j Xj . The Aumann-Shapley allocation will be given by:

dAS
i = E[Xig

′(SZu(Zu))]|uj=1∀j = E[Xig
′(SZ(Z))] (20)

Thus, the capital allocated to the liability Xi, is calculated as its expected

value under a change of probability measure:

dAS
i = EQ[Xi],

∂Q
∂P0

= g′(SZ(Z)) (21)

The corresponding Radon-Nicodym derivative (or ‘price density’) thus is

D = g′(SZ(Z)). It is trivial that E[D] = 1.

Example: Consider the distortion function (e.g. Delbaen, 2000):

g(t) =
1− e−ht

1− e−h
(22)

Then

g′(t) =
he−ht

1− e−h
,

and

g′(SZ(Z)) =
he−heSZ (Z)

1− e−h
=

ehFZ(Z)

E[ehFZ(Z)]

Thus, the Aumann-Shapley allocation using this distortion function would

be:

dAS
i =

E[Xie
hFZ(Z)]

E[ehFZ(Z)]
(23)
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We note the formal similarity of the above equation to the Esscher premium

principle obtained by Bühlmann (1980), using exponential utility functions

in a competitive equilibrium framework. Our pricing (risk capital alloca-

tion) formula (23) is different to that of Bühlmann, in that the association

of individual premium to collective risk is not induced by the aggregate risk

itself, Z, but by its order statistics, as captured by the term FZ(Z). The

fact that in our model individual premium depends only on the rank and not

the scale of aggregate losses is a direct consequence of the scale invariance

of preferences under Yaari’s (1987) dual theory of choice, whence the risk

measure used originates. In that sense our approach is complementary to

the one of Bühlmann, as he considers competitive equilibrium pricing under

(exponential) expected utility preferences, while we obtain cooperative cost

sharing formulas under preferences expressed through (exponential) distor-

tion functions.

Remark: Consider the Choquet integral in equation (2). According to

a result due to Schmeidler (1986) (Proposition 10.1 in Denneberg (1994a)),

for every Z such that ρ(Z) < ∞, there will exist a probability measure Q

such that:

Q ≤ v and
∫

Zdv =
∫

ZdQ (24)

From the definition of the Choquet integral it immediately follows that:

Q ≤ v ⇒ EQ[X] =
∫

XdQ ≤
∫

Xdv = ρ(X), ∀X (25)

e.g. the core property is ensured if the expectation under Q is used as an

allocation mechanism. Note that this characterisation of the measure Q

does not rely on any assumptions on the continuity of distributions. On the

other hand, Q is not necessarily unique in this, more general, setting.
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5 Application: valuation of pooled liabilities

5.1 Simple model of a pool

It was shown that the Aumann-Shapley value produces a cost allocation

mechanism that takes the form of an expectation under a change of prob-

ability measure. This representation provides a formal link between cost

allocation and pricing problems. Here we make this link explicit by an ex-

ample. Consider n (re)insurers, exposed to some specific very high risks.

In order to protect themselves against these risks, they form a pool. The

pool takes on the individual insurers’ liabilities, that is, it provides rein-

surance for their individual risks. Each insurer makes cash contributions

to the pool according to his risk profile, while any claims arising from the

corresponding liabilities are paid by the pool. Similar pooling arrangements

have emerged in the case of high risks that the insurance industry faces

(for example terrorism risk), and are often set up by national governments.

Another interpretation of this pooling arrangement is in the context of an

insurance market with policyholder protection. Here the pooled risk would

represent the insurers’ liabilities in excess of the capital that each insurer

holds. The pool would then pay the insurer’s liabilities in case of insolvency.

(We will not discuss the legal implications of such arrangements here, nei-

ther will we be concerned with a scenario where the pool itself defaults.)

A third interpretation of the pooling arrangement is the case of a reinsurer

determining the premiums for the different treaties that he writes. Holding

a liability is less costly for a reinsurer with a widely diversified portfolio,

than it is for the cedent. The savings that the reinsurer derives from his

diversified portfolio can then be passed on to the buyers of the treaties in
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setting the premiums that he charges.

We assume that the amount of capital held by the pool is determined by

a risk measure such as the one used so far in the paper. Our problem now

is to calculate the contributions that the insurers have to make to the pool.

On the one hand this is cost allocation problem that can be discussed in the

terms of a (fuzzy) cooperative game. On the other, if we view the pool as

a reinsurer, the cash contributions correspond to premia that the insurers

have to pay for the liabilities ceded to the pool. The contributions represent

the price that an individual insurer pays to the collective for the protection

that he receives.

To make the example more specific, let X1, ..., Xn be positive random

variables, corresponding to the liabilities that each insurer cedes to the pool.

The pool is then exposed to risk Z =
∑

j Xj and must hold capital:

ρ (Z) =
∫ ∞

0
g(SZ(z))dz

As discussed in 2, this amount can be interpreted either as the minimum

amount of economic capital required by a regulator, or as the pool’s cer-

tainty equivalent for the risk that it takes on, assuming that its preferences

are consistent with Yaari’s (1987) theory of choice under risk. In a straight-

forward application of the result in section 4, the individual insurers have

to contribute to the pool the amounts:

di = EQ[Xi] = E[Xig
′(SZ(Z))]

5.2 Aumann-Shapley prices and equilibrium

A fundamental application of cooperative game theory has been to the study

of transferable utility competitive equilibria in exchange economies. In such
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applications, the characteristic (‘worth’) function of the game represents

the maximum utility that a coalition can achieve in the exchange and the

(Aumann-Shapley) value is the vector of utilities that the market partici-

pants achieve at equilibrium. In the cases of a non-atomic space of players

(Aumann-Shapley, 1974) and of fuzzy coalitions (Aubin, 1981) it has been

shown that the core of the game coincides with the set of Walras equilibria

of the economy.

Risk sharing has been examined by several authors (e.g. Borch (1962),

Bühlmann (1980), Aase (2002)), in the context of competitive equilibrium

in exchange economies. These models are concerned with economies where

commodities corresponding to random cashflows are traded among a num-

ber of insurers and/or financial institutions. The cashflows can be insurance

contracts of financial securities. Market prices and consumption levels are

obtained by the maximisation of agents’ expected utilities of terminal wealth

and the imposition of a market-clearing condition. A more elaborate equi-

librium model has been proposed by Taylor (1995), who, besides stochastic

insurance liabilities and stock prices, considers consumer preferences, the

presence of real assets and the relationship between insurance pricing and

capitalisation.

A different approach was proposed by Mirman and Tauman (1982), who

proved the existence of equilibrium in a production economy with one pro-

ducer, m outputs and n consumers, when the price vector is determined by

the Aumann-Shapley value, and the consumers have quasi-concave utility

functions. Prices are dependent on demand, but no clearing condition ap-

plies. We will not use their result explicitly in this paper, but it will provide

some motivation for generalising the example of the insurance pool discussed
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earlier.

If we consider a risk market, a direct analogue of Mirman and Tauman’s

(1982) economy would be a reinsurance monopoly, with premium charged

according to Aumann-Shapley prices. Each output would correspond to a

state of the world, each consumption bundle to a random variable, and the

input to cash, used by the reinsurer in order to ‘produce’ (i.e. hold enough

capital to satisfy regulators) the random cashflows sold to the primary in-

surers.

Perhaps more realistically, we consider a generalization of the example of

the pool mentioned previously. Let again X1, · · · , Xn be the liabilities of n

primary insurance companies. However, the ith, say, insurer does not neces-

sarily purchase the precise random cashflow Xi, but buys another cashflow

Yi, again a positive random variable. The Yi’s are determined by the insur-

ers’ preferences and by the price system produced by the Aumann-Shapley

value.

Let the ith primary insurer’s preferences be expressed by an increasing

and concave utility function ui : R 7→ R. Each insurer carries initial capital

bi. The price that the insurer pays for the cashflow Yi is E [YiD], where

D is the Radon-Nikodym derivative D = g′ (SZ (Z)), SZ(z) = P0 (Z > z),

Z =
∑

j Yj . We see that the prices depend on the demand for reinsurance.

The utility of the ith insurer at the end of the time period under consideration

is:

ui (bi −Xi + Yi −E [DYi]) (26)

Equilibrium in this market will be reached when all insurers maximise

their expected utility:

max
Yi

Eui (bi −Xi + Yi − E [DYi]) ∀i (27)
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subject to budget constraints:

bi ≥ E[DYi] ∀i

Note that, due to a result by Bühlmann (1980), the problem (27) is

equivalent to:

u′i (bi −Xi + Yi −E [DYi])
Eu′i (bi −Xi + Yi −E [DYi])

= D and bi ≥ E[DYi] ∀i (28)

Suppose now that all utility functions are of exponential type, ui(t) =

1
ai

(
1− eait

)
. Then (28) simplifies to:

eai(Xi−Yi)

Eeai(Xi−Yi)
= D and bi ≥ E[DYi] ∀i (29)

The above price density is the one underlying the Esscher premium principle,

derived by Bühlmann (1980). In Bühlmann’s model this price density, in

conjunction with a market clearing condition, yields competitive equilibrium

prices (an overview of such equilibrium models and their relationship to

the Esscher principle is provided by Gerber and Pafumi (1998)). In our

(cooperative) model no market clearing applies and the additional condition

on market prices is their consistency with the Aumann-Shapley value, i.e.

the requirement that D = g′ (SZ (Z)).

If the probability space in the problem was discrete, then the existence

of such an equilibrium would be guaranteed by Mirman and Tauman (1982).

However, since we are concerned with a continuous probability space, this

result does not necessarily hold. We will not attempt to solve this equilib-

rium problem analytically. Instead we turn our attention to a much more

simple as well as more realistic version of the problem. Instead of allowing

Yi to be any random variable with price in the ith insurer’s budget set, we

postulate that it be an increasing function of the insurer’s original risk Xi.
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Furthermore, Yi has a specific form corresponding to a stop-loss cover with

retention Ki:2

Yi = (Xi −Ki)+ (30)

The problem of calculating an equilibrium now becomes a question of

determining the n-vector of Ki’s by:

max
Ki

Eui(bi −min{Xi,Ki} − E[(Xi −Ki)+g′(SZ(Z))]), (31)

such that: bi ≥ E[(Xi −Ki)+g′(SZ(Z))] ∀i

Note that the aggregate risk to the pool, Z, now is:

Z =
∑

j

(Xj −Kj)+ (32)

There is of course no guarantee that an equilibrium exists in this modified

model (or that if it exists it is unique). We further discuss the model in the

next section through a numerical example.

Remark 1: The capital saving Wi that the ith insurer makes by pooling

his liabilities that are in excess of Ki, equals the cost of holding this liability

in the absence of cooperation (calculated by the distortion principle), minus

the price that the insurer has to pay to the pool for the stop-loss cover:

Wi = ρ ((Xi −Ki)+)−E [D(Xi −Ki)+] (33)
2The form of this stop-loss loss cover has an interpretation in the case that we consider

an insurance market with policyholder protection. We can interpret Xi as the ith insurer’s

liabilities, Ki as the capital that he holds and Yi as the protection he receives from the

pool, e.g. the amount that the pool pays for outstanding liabilities if i becomes insolvent,

Xi > Ki. Then the insurer i can choose the level of Ki, subject to a regulatory minimum.

Note that it is not straightforward that he would choose the lowest Ki acceptable to the

regulator, as such a choice would yield a higher premium to the pool.
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Remark 2: In the preceding discussion, we did not take into account the

regulatory capital that the insurers have to hold for their retained liabilities.

However, the inclusion of such considerations would not make a difference

in the example, apart from leading to a more stringent budget constraint.

If the ith insurer did not receive any cover from the pool, he would have

to hold regulatory capital ρ(Xi). When he receives a stop-loss cover with

retention Ki, he has to hold ρ (min{Xi,Ki}). In this case the savings from

cooperation are:

Wi = ρ(Xi)− (ρ (min{Xi,Ki}) + E [D(Xi −Ki)+])

But since the random variables min{Xi,Ki} and (Xi − Ki)+ are comono-

tonic, we have:

ρ (min{Xi,Ki}) + ρ ((Xi −Ki)+) = ρ(Xi)

and thus:

Wi = ρ ((Xi −Ki)+)− E [D(Xi −Ki)+] ,

which is the same as (33) above. The budget constraint would however

change to:

bi ≥ E[(Xi −Ki)+D] + ρ (min{Xi,Ki}) .

In the sequel we will assume that bi is net of capital requirements corre-

sponding to the retained risk. Since the exponential utility function’s risk

aversion is invariant in absolute wealth, such a change will have no affect on

the outcome.

5.3 Numerical example

We provide a simple numerical example for the model presented in 5.2.

We consider 3 insurers, each holding a lognormally distributed liability, Xi,
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ln(X) ∼ N(µ,Σ), µ = [0.9 0.9 0.9]T ,

Σ = 0.32 ·




1 0.30 0.60

0.30 1 0.80

0.60 0.80 1




Each insurer also holds cash b = 1.

The insurers’ preferences are, as previously, characterised by exponential

utility functions, and the risk aversion parameter is a = 3.5 for all insurers.

The risk measure used is a distortion principle with distortion function (22)

and parameter h = 10 (fig. 1). As discussed earlier, the economy will

be at equilibrium when the Ki’s are such that conditions (31) hold. We

assume now a market mechanism by which the retentions Ki are determined.

The Ki’s are given some reasonable initial values, e.g Ki = 3, i = 1, 2, 3

(these initial values do, as expected, affect the final outcome, though not

radically so). Every insurer chooses his retention Ki by solving the following

optimisation problem, while assuming that the other insurers’ retentions

Kj , j 6= i will remain constant:

maxKi Eui

(
bi −min{Xi,Ki} − E

[
(Xi −Ki)+g′

(
SZ

(∑
j (Xj −Kj)+

))])

such that E
[
(Xi −Ki)+g′

(
SZ

(∑
j (Xj −Kj)+

))]
≤ bi

(34)

When all insurers solve their optimisation problems, they announce their

preferred values of Ki, the valuation measure is thus updated, and the pro-

cess is repeated. Equilibrium is reached if and when the values of the Ki’s

stabilise. Of all vectors of Ki’s that would correspond to an equilibrium we

are interested only in those that could actually emerge through the above

negotiation process.

We simulate the process by solving the problems (34) numerically, with
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the parameters given above. Optima are calculated via a simple search

method and objective function evaluations take place on a simulated sample

of the random vector [X1 X2 X3]T . We observe that equilibrium is indeed

reached, after just few iterations (fig. 2). It can also be seen that although

the different insurers share the same risk profile and preferences, their final

choices of Ki’s are different:

K1 = 3.34

K2 = 3.47

K3 = 3.50

(35)

The differences can be explained by the different degrees to which individual

insurers’ ceded liabilities are correlated to the aggregate, leading to different

prices for their risks. Consider the pairwise correlations:

r
(
(X1 −K1)+,

∑
j (Xj −Kj)+

)
= 0.71

r
(
(X2 −K2)+,

∑
j (Xj −Kj)+

)
= 0.76

r
(
(X3 −K3)+,

∑
j (Xj −Kj)+

)
= 0.88

(36)

High dependence between individual and collective risk would result into

a dearer price for the risk, thus suppressing demand for reinsurance. This

explains the high retention (low coverage) that the 3rd insurer chooses, as

the correlation of his liabilities to the aggregate is highest.

Under this final choice of Ki, the individual risk of each insurer’s liability

ceded to the pool (calculated by the distortion principle) is:

ρ((X1 −K1)+) = 0.67

ρ((X2 −K2)+) = 0.57

ρ((X3 −K3)+) = 0.56

(37)

The above quantities correspond to the cost of holding the liabilities (Xi −
Ki)+, in the absence of cooperation. The premium allocated to each insurer
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is:

d1 = E[(X1 −K1)+g′(SZ(Z)] = 0.55

d2 = E[(X2 −K2)+g′(SZ(Z)] = 0.47

d3 = E[(X3 −K3)+g′(SZ(Z)] = 0.52
∑

j dj = E[Zg′(SZ(Z)] = ρ(Z) = 1.54

(38)

The development of individual risks and allocated capital for the different

insurers up to equilibrium is shown in figure 3. The difference between the

two lines corresponds to the savings that each insurer makes by cooper-

ating with the others. It is seen that the highest saving is made by the

first insurer, whose liability is less correlated to the aggregate and whose

participation in the pool is highest, while the lowest saving is made by the

third insurer, whose liability has the highest correlation to the aggregate

and whose participation in the pool is lowest.

6 Summary and future research

We discuss the problem of allocating capital requirements for a portfolio of

stochastic liabilities to the different instruments (and sub-portfolios) that

the portfolio consists of. The allocation functional used is the Aumann-

Shapley value from cooperative game theory, which has been proposed as a

cost allocation mechanism by several authors (Mirman and Tauman (1982),

Billera and Heath (1982), Denault (2001)). In our application, we used

as a risk measure the distortion principle, which is an actuarial premium

calculation principle satisfying the coherence axioms of Artzner et al. (1999).

The resulting allocation of costs is the unique element of the core of the

associated cooperative game, in the sense that it is the unique allocation

that does not produce a disincentive for cooperation to (the holder of) any
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instrument or sub-portfolio.

For our choice of risk measure we obtained an explicit formula for the

Aumann-Shapley value. Capital requirements are calculated for each sub-

portfolio as its expected value under a change of probability measure. From

the resulting formula it can be seen that the amount of capital allocated

to each sub-portfolio is closely related to the dependence structure between

itself and the aggregate portfolio. Tail dependence between individual and

aggregate risk tends to increase capital requirements, while in the extreme

case of comonotonicity any savings from pooling vanish.

In the final section we utilise the representation of allocated capital as

an expectation under an adjusted probability measure, in order to draw

a parallel between capital allocation and insurance pricing problems. We

consider the case of a pool, which reinsures the excess liabilities of a num-

ber of insurers, and charges risk premium according to Aumann-Shapley

prices. Such a pooling arrangement is conceivable for protection against

high industry-wide risks (e.g. terrorism) or in the case of an insurance mar-

ket with policyholder protection. Motivated by an equilibrium model of

Mirman and Tauman (1982) we generalise the model of the pool by let-

ting the insurers decide themselves about the level of coverage that they

receive from the pool, via expected utility maximisation. We finally present

a numerical example, which illustrates the ideas previously discussed.

The main analytical result obtained in the paper, the formula for the

Aumann-Shapley value, was derived under the assumption that conditional

probability densities are continuous. Further research is required for the

discontinuous case, in which the cost function will not be differentiable with

respect to portfolio weights. The core of the related cooperative game will
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be the subdifferential of the cost function (Aubin, 1981) and will contain

multiple allocations. It would be interesting to know whether the solution

that we obtained under the continuity assumption will be one of them.

Another topic for future research is the generalisation of the methodol-

ogy developed here to a dynamic setting. Prerequisite for an intertemporal

allocation method is the dynamic generalisation of the risk measure used.

Updating rules for submodular set functions and distorted probabilities have

been studied by Denneberg (1994b), Young (1998), Wang and Young (1998),

while attempts to generalise conditional expectation to the non-additive case

can be found in Denneberg (2000) and Lehrer (1996).
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A Quantile derivatives

This section follows Tasche (2000b). Let X be a real valued random variable.

For a ∈ (0, 1) the a-quantile of X, Qa(X) is defined as:

Qa(X) = inf{x ∈ R|P0(X ≤ x) ≥ a}

Now let

Zu =
∑

j

ujXj

be a portfolio consisting of random liabilities Xj , j = 1, 2, ..., n. We are

interested in derivatives of the a-quantile of Zu, with respect to the portfolio

weights uj , i.e. in expressions of the form:

∂Qa(Zu)
∂ui

Such ‘quantile derivatives’ exist, subject to a set of technical assump-

tions. Let n ≥ 2 and (X1, ..., Xn) be an Rn-valued vector with a conditional

density φ of X1 given (X2, ..., Xn). φ satisfies the assumptions in an open

set U ⊂ R \ {0} × Rd−1 if:

(i) For fixed x2, ..., xn, the function t 7→ φ(t, x2, ..., xn) is continuous in t.

(ii) The mapping

(t, u) 7→ E[φ(u−1
1 (t−

n∑

j=2

ujXj), X2, ..., Xn)],

R× U 7→ [0,∞)

is finite-valued and continuous.

(iii) For each i = 2, ..., n the mapping

(t, u) 7→ E[Xiφ(u−1
1 (t−

n∑

j=2

ujXj), X2, ..., Xn)],
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R× U 7→ R

is finite-valued and continuous.

If φ satisfies the above assumptions in some open set U ⊂ R
{0} × Rd−1, the quantile derivative exists and is given by:

∂Qa(Zu)
∂ui

= E[Xi|
∑

j

ujXj = Qa(Zu)]
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Figure 1: Distortion function g(t) = 1−e−ht

1−e−h , h=10.
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Figure 2: Development of retentions K until equilibrium is reached.
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Figure 3: Risk of individual insurers’ ceded liabilities and allocated capital.

The difference between the lines represents savings from cooperation.
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