

City, University of London Institutional Repository

Citation: Cowell, R. (2013). A simple greedy algorithm for reconstructing pedigrees.

Theoretical Population Biology, 83(1), pp. 55-63. doi: 10.1016/j.tpb.2012.11.002

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/6011/

Link to published version: https://doi.org/10.1016/j.tpb.2012.11.002

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A simple greedy algorithm for reconstructing pedigrees

Robert G. Cowell∗,a

aFaculty of Actuarial Science and Insurance, Cass Business School, 106 Bunhill Row,
London EC1Y 8TZ, UK

Abstract

This paper introduces a simple greedy-search algorithm for finding high-likelihood
pedigrees using micro-satellite (STR) genotype information on a complete sam-
ple of related individuals. The core idea behind the algorithm is not new, but
it is believed that putting it into a greedy search setting, and specifically the
application to pedigree learning, is novel. The algorithm does not exploit age or
sex information, but this information can be incorporated if desired. Prior infor-
mation concerning pedigree structure is readily incorporated after the greedy-
search is completed, on the high-likelihood pedigrees found. The algorithm is
applied to human and non-human genetic data and in a simulation study.

Key words:
Pedigree reconstruction, maximum likelihood pedigree, greedy search.

1. Introduction

The reconstruction or estimation of pedigrees of individuals finds applica-
tions in both human and non-human populations, for reviews see (Jones and
Ardren, 2003; Blouin, 2003; Pemberton, 2008). This paper considers the statis-
tical estimation of pedigrees using genotype markers for a complete sample of
individuals. Maximum likelihood pedigree estimation was developed by Thomp-
son (1976, 1986) using age and sex information. Almudevar (2003) proposed a
simulated annealing approach that avoids the need for age and sex information.
Cowell (2009) adapted the Bayesian network learning algorithm of Silander and
Myllymäkki (2006) to develop an exhaustive search algorithm that is guaranteed
to find a pedigree of highest likelihood; the algorithm has complexity O(n32n)
in the number n of individuals, but is computationally feasible for up to around
30 individuals. A constraint-based integer programming approach is presented
in (Cussens, 2010; Cussens et al., 2012) that can find maximum likelihood pedi-
grees involving more than 30 individuals, giving examples of pedigrees of up
to 64 individuals. Using the same algorithm the second, third, . . . , kth highest
likelihood pedigrees may be found by imposing additional constraints as each

∗Corresponding author

Preprint submitted to Elsevier June 12, 2012

high-likelihood pedigree is found (Cussens et al., 2012). It is also possible to
extend the algorithm of Cowell (2009), along the lines that Tian et al. (2010)
use for general Bayesian networks, to find the k highest likelihood pedigrees;
however the complexity grows as O(kn32n), thus limiting k to a relatively small
number.

The algorithm presented in this paper grew out of the desire to find a large
set of high likelihood pedigrcussens:etal:2012ees, rather than a single maximum
likelihood pedigree. It uses a simple procedure of selecting one pedigree at a
time, and deriving from the selected pedigree a set of candidate pedigrees by
a partitioning process described below. A feature of the partitioning process
is that the candidate pedigrees could have a very different structure to the
pedigree that they are generated from. In addition, the partitioning process
in principle covers the space of all possible pedigrees on the set of individuals,
without duplicating any pedigree.

The next section introduces the partitioning algorithm in the context of
finding the best k-spanning trees of an undirected graph. (This is closely related
to finding pedigrees in which each individual has at most one parent in the
pedigree.) The pedigree search algorithm using the partitioning is presented in
Section 3. The algorithm is then applied to human and animal data, and in a
simulation study, in Section 4.

2. Finding the k best spanning trees of a graph

Before presenting the pedigree search algorithm, we first present a variation
of the algorithm that can find the k highest weight spanning trees of an undi-
rected graph. The algorithm is given by Sörensen and Janssens (2005) (who
looked for lowest weight spanning trees, rather than highest weight spanning
trees). Suppose that we are given an undirected connected graph on n vertices,
in which each edge between a pair of vertices is given a non-negative weight
value. A spanning tree is a connected subgraph containing all n vertices and
n − 1 edges, but does not have a cycle. The weight of the spanning tree is the
sum of the weights of the edges of the spanning tree. The problem is to find a
set of k spanning trees such that no other spanning tree has a weight greater
than any spanning tree in the set of the k spanning trees.

A well known algorithm for finding the highest scoring spanning tree is
Kruskal’s algorithm (Kruskal, 1956), which we describe as follows. Let the
nodes of a graph G be labelled by the integers from 1 to n. We form an ordered
list L of the E edges, which are sorted in order of decreasing weight, with
the first entry denoted by L(1), the second by L(2), ... , up to L(E). The
algorithm starts with an initial graph F having no edges between the n nodes.
The algorithm is simply to work through the weight-ordered edges in L, adding
an edge to F if in doing so it does not create a cycle, until F is fully connected.
It is illustrated in Algorithm 1.

Note that the first edge in the list is always added (because it cannot
form a cycle by itself). Suppose that the maximum weight spanning tree
F1 is made up of edges that have the increasing sequence of index values

2

input : An undirected edge-weighted graph G in n vertices;
a list L of the E edges of G sorted in decreasing weight;
a totally disconnected graph F on the n vertices.

output: F as the maximum weight spanning tree of G.

1, . . . , n Initialization: Set i← 1.

while F is not connected do
Add edge L(i) to F if it does not create a cycle.
i← i+ 1

end
Algorithm 1: Kruskal’s algorithm for finding the maximum weight spanning
tree of an undirected graph

e11(= 1), e12, e
1
3, . . . , e

1
n−1 of the entries in the list L. If S denotes the space

of spanning trees of G, then the second highest-weight spanning tree F2 of S
is the highest in S − F1. (Note it is possible that F1 and F2 might have the
same weight.) Let us denote the list L edge indices of F2 by e21, e

2
2, e

2
3, . . . , e

2
n−1.

Now because F1 and F2 are distinct trees, they must differ in at least one edge.
Therefore (exactly) one of the following n− 1 conditions must be true:

e21 > e11 (1a)

e21 = e11 & e22 > e12 (1b)

e21 = e11 & e22 = e12 & e23 > e13 (1c)

...

e21 = e11 & e22 = e12 & . . . & e2n−2 = e1n−2 & e2n−1 > e1n−1 (1d)

Hence, the procedure for finding the second highest weight spanning tree is
to carry out Kruskal’s algorithm n − 1 times, the first time excluding e11 from
the list L (constraint 1a), the second time including e11 but excluding e12 (1b),
and so on. From the set of n − 1 trees found, pick the one having the highest
weight (breaking ties arbitrarily if necessary), thus giving F2. Now suppose that
we want the third highest weight spanning tree F3. Then it is either amongst
the remaining n − 2 candidate trees found during the search for F2, or it has
edges with indices e31, e

3
2, e

3
3, . . . , e

3
n−1 where one of the following holds to ensure

it differs from F2 in at least one edge:

e31 > e21 (2a)

e31 = e21 & e32 > e22 (2b)

e31 = e21 & e32 = e22 & e33 > e23 (2c)

...

e31 = e21 & e32 = e22 & . . . & e3n−2 = e2n−2 & e3n−1 > e2n−1 (2d)

3

By applying Kruskal’s algorithm again several times, using these constraints,
F3 may be identified. Note the first constraint (2a) is equivalent to removing
the first e21 edges from the list L, whilst for the other possible trees the search
is started at the e21 edge (2b - 2d). The procedure may be repeated until the
desired number k of maximum weight spanning trees is found, see Sörensen
and Janssens (2005) for more details and proof. Note that if the procedure is
repeated with no upper bound k specified, then the algorithm will generate all
possible spanning trees ordered by weight. It does not carry forever because for
some trees the final edge added will be the last in the list L, and so for these
the tree-search cannot be split on the last edge (2d). One can fruitfully view
the partitioning as generating a binary search over the space of spanning trees,
similar to but distinct from the standard depth-first search algorithm.

Sörensen and Janssens (2005) based their algorithm on one by Murty (1968)
for finding the k best assignments; the latter was generalised by Lawler (1972).
This idea of partitioning the search space into exclusive and exhaustive parts
was also used in a probabilistic setting by Nilsson (1998) in an application
to find the k highest probability configurations of discrete random variables
having a joint distribution defined over a junction tree. Note that the k-th
stage of the maximum-weight spanning tree algorithm gives the k-th highest
weight tree. This is a consequence of the fact that Kruskal’s greedy search
algorithm is optimal for returning the highest weight spanning tree. The best
k combinatorial search applications cited above combine the partitioning with
an optimal procedure (such as Kruskal’s algorithm) to find the k best-optimal
configurations (of whatever combinatorial structure is being searched for). The
simple idea in this paper is to use the exclusive and exhaustive partitioning
procedure combined with a greedy rather than an optimal procedure to guide
the search, in this paper over the space of high-likelihood pedigrees. This simple
adaptation of an old algorithm appears to be novel, but quite powerful.

3. Pedigree search algorithm

3.1. Finding the local scores

We will consider the special case of learning pedigrees with complete data.
This means that a parent of an individual is either in the sample, or if not the
parent is unrelated to all other members in the sample. Under this assumption,
the likelihood function for a given pedigree decomposes into a simple multi-
plicative form. A pedigree on n individuals (numbered from 1 up to n) may
be represented by a directed-acyclic graph G on n nodes, in which each node
represents the genotype of an individual. An arrow from node j to node i in-
dicates that j is a parent of i. The graph has no directed cycles, to avoid an
individual being their own ancestor. Each node of G has one of three possible
parent configurations:

• The node has no incoming arrows. Hence the individual is a founder in
the pedigree.

4

struct Score

{

integer child, parent1, parent2;

real value;

}

Figure 1: Score data structure used for storing in value the log-likelihood of an individual’s
genotype given the genotypes of the specified parents. Note that both parent1 and parent2

being zero, corresponds to the score if child is a founder.

• The node has one incoming arrow. Hence the individual has only one
parent specified in the pedigree.

• The node has two incoming arrows. Hence both parents of the individual
are in the pedigree.

Let gi represent the genotype of the i-th individual. Then we let p(gi|gj , gk)
denote the conditional probability that individual i will have genotype gi given
that it has the two parents j and k in the pedigree G having genotypes gj and
gk respectively. If i has only one specified parent, say j then it has conditional
probability p(gi|gj), and if no parents then probability p(gi). If we let gπi

denote
the genotypes of the parents πi of i in the sample, then the log-likelihood of a
pedigree having parent-sets {πi|i = 1, . . . , n} decomposes into the additive form:

l(G) =

n∑
i=1

log p(gi|gπi
). (3)

The pedigree search algorithm requires the evaluation of every possible
p(gi|gπi

) term, but this is carried out only once. If the markers are independent,
then each p(gi|πi) term is itself a product of terms one for each marker m:

p(gi|gπi) =
∏
m

p(gmi |gmπi
).

This decomposable form of the overall log-likelihood into local score con-
tributions is used in the pedigree search algorithm. Like the spanning tree
algorithm, a sorted list is formed. In this case the elements of the list are the
local scores log p(gi|gπi

) together with the child node i and the parent-set πi
of i. We store them in the following Score data structure, shown in Figure 1.
If S is a instance of a score, then S.child gives the index ∈ {1, . . . , n} of the
child individual, and so on. The algorithm for making the list of local scores is
outlined in Algorithm 2.

We now introduce a structure Pedigree. This is a directed graph with n
nodes, one for each individual, which are labelled by the integers 1 up to n.
Initially the pedigree is initialized to one in which there are no specified parent-
sets for any of the n individuals. Note that this is slightly more than saying
that there are no edges in the graph of the pedigree, as this could signify a

5

input : A set of n individuals and their genotypes {gi : i = 1, . . . , n}
output: A sorted list L of |L| local scores.
initialization: Set L← ∅.;
for each i ∈ 1, . . . , n do

for each possible parent-set π of i having genotype gπi
do

if p(gi|gπi
) > 0 then

Add a Score instance S to the list L where:
S.child = i ;
S.parent1 and S.parent2 store the indices of the
possible parents πi, (either or both may take the value zero);
S.value = log p(gi|gπi

).
end

end

end
Sort the list L of scoresbyn decreasing order of their values.

Algorithm 2: Making the local scores list

pedigree in which every is a founder. Instead in the pedigree we store for each
individual a boolean variable to indicate whether the individual’s parent-set has
been specified. It is initially set to False for every individual, and it is set to
True when an individual’s parent-set has been specified — this could include
the case that the individual is specified to be a founder.

A pedigree is built up by adding parent-sets to each individual, with one
parent-set per individual, and a pedigree is fully specified when all parent-sets
have been specified. However the process of attempting to add a parent-set of
an individual might make an invalid pedigree in by introducing a directed cy-
cle in the pedigree graph. We introduce a function AddParents(Pedigree P,

Score S) that takes as inputs a current partially specified Pedigree P and a
Score S. If the Score structure S has a child value S.child that has already
had S.child’s parent-set specified in P then the function returns False. Oth-
erwise if the parent-set specified by S.parent1 and S.parent2, can be made
parents of S.child without creating a cycle, then the function modifies P by
adding these individuals as parents of S.child (by adding a directed edge
S.parent1→S.child if S.parent1> 0, and a directed edge S.parent2→S.child

if S.parent2 > 0) and returns True; if however adding them as parents would
create a directed cycle then the function returns False without modifying P.

3.2. Making a single pedigree from the local scores

We can now present a simple greedy algorithm for making a pedigree, shown
in Algorithm 3. Suppose that the local scores stored in the list L are numbered
sequentially from 1 up to |L|, with the i-th score denoted by L(i). The algorithm
goes through the scores in the list in turn, trying to add a parent configuration
for a child, until it has done this successfully for every child without creating
a cycle. It is greedy, because at each stage it tries to add the child-parent

6

configuration from the local-scores list that is as high as possible. However the
pedigree it makes will not necessarily achieve the maximum possible likelihood
(unlike the situation for Kruskal’s algorithm). Each time a parent-set is specified
in the pedigree as it is being built up, it increments a counter C that counts
the number of parent-sets that have been specified. It stops when C = n, which
occurs when every individual has had their parent-set specified. Note that the
list L will always contains the scores for every individual in which they are
founders (corresponding to πi = ∅ for each i), thus a valid pedigree is always
returned. Note also that the log-likelihood associated with the pedigree is the
sum of the values of the scores for which adding parent-sets was successful. We
assume that this total log-likelihood is stored in the pedigree in the quantity
value.

input : The sorted list L of local scores.
output: A valid pedigree over the n individuals.
initialization:
A Pedigree P of n individuals with specified no parent-sets.
P.value ← 0
An integer C ← 0

for i from 1 to |L| do
if AddParent(P, L(i)) is true then

C ← C + 1;
P.value ← P.value + L(i).value;

end
if C = n then

STOP and return P.
end

end
Algorithm 3: MakePedigree(L): Making a pedigree from a list L of ordered
local scores.

3.3. The pedigree greedy search algorithm

We now combine the pedigree construction algorithm of Algorithm 3 with
the partitioning algorithm, to carry out a greedy search over the space of possible
pedigrees, giving two variants of the algorithm, which we shall call Variant 1

and Variant 2. Note that in forming a pedigree using Algorithm 3, n scores
from the list L were used, one for each individual parent-set specification. We
can store the list-indices of these scores in an integer array of vector of size n in
the pedigree. Let us call this array index, with P.index[i] denoting the index
in the list L of the i-th parent-set successfully added to the pedigree P. That is,
the i-th parent-set added to the pedigree is from the score L(P.index[i]) in the
list. In each pedigree we also store an integer value called fixed, the purpose of
which is to prevent a pedigree being generated more than once by the algorithm.
Before giving the general algorithm, we illustrate it in action in finding the first
three pedigrees.

7

We make the first pedigree P1 with Algorithm 3. Suppose P1 has been made
with the scores having the indices in the list L given by e11(= 1), e12, e

1
3, . . . , e

1
n,

which are stored in the array index in P1 denoted by P1.index. Hence for this
pedigree P1.index[i] = e1i , and we set P1.fixed = 1. The next stage is to make
the set of candidate pedigrees, one from each of the following constraints:

e21 > e11 (4a)

e21 = e11 & e22 > e12 (4b)

e21 = e11 & e22 = e12 & e23 > e13 (4c)

...

e21 = e11 & e22 = e12 & . . . & e2n−1 = e1n−1 & e2n > e1n (4d)

A pedigree made with the first constraint (4a) may be made by applying
Algorithm 3 using the list L, but starting the i iteration from e11 + 1 instead of
e11. A pedigree made from the second constraint (4b) may be made by adding the
parent-set associated with score L(e11), and completed by running for iterative
loop of Algorithm 3 from i = e12 + 1. In general the pedigree made from the
j-th constraint is made by creating a pedigree that adds the parent-sets of the
scores L(e11), L(e12), . . . , L(e1j−1) used in making P1, and continuing the i loop

from i = e1j + 1. For the pedigree made with the j-th constraint we store in its
fixed value the integer j.

In Variant 1 of the algorithm, each of these pedigrees is inserted into a
priority queue Queue that automatically keeps the pedigrees in their order of
decreasing (or more accurately, non-increasing) log-likelihood. When all candi-
date pedigrees have been made, the pedigree at the front of the queue will be
pedigree P2, and may be removed.

The pedigree P3 is made by making a new set of pedigrees from P2 and
inserting them into Queue. P3 will then be at the front of Queue. To generate
the set of pedigrees from P2 we apply one of the following constraints, which
uses the fixed value stored in P2 when it was formed. Let f = P2.fixed. Then
the constraints are:

e31 = e21 & e32 = e22 & . . . & e2f−1 = e2f−1 & e2f >e
2
f

e31 = e21 & e32 = e22 & . . . & e3f = e2f & e3f+1 >e
2
f+1

...

e31 = e21 & e32 = e22 & . . . & e3n−1 = e2n−1 & e3n >e
2
n

(5)

The reason for not looking at pedigrees with constraints such as, for example,

e31 = e21 & e32 = e22 & . . . & e2f−2 = e3f−2 & e2f−1 > e2f−1

8

is that this constraint is equivalent to

e31 = e11 & e32 = e12 & . . . & e3f−2 = e1f−2 & e2f−1 > e1f−1

which was the constraint applied to find P2 from P1. Similarly, the other con-
straints corresponding to some candidate pedigree generated from P1 and al-
ready in Queue. This is the reason for introducing the fixed value for each
pedigree, it prevents a pedigree from being generated more than once.

We are now ready to give the greedy pedigree search algorithm, which is
laid out in Algorithm 4. The pedigree found at stage k is be stored in a list
PedList, which is a first-in-first-out list. Intermediate pedigrees are stored in
Queue which initially is empty. We suppose that we wish to continue the search
until there are K pedigrees in PedList. (Note that these will not necessarily
be the K highest likelihood pedigrees.) Note that if the condition (k < K − 1)
is removed, then the algorithm will generate all possible pedigrees that can be
formed out of selection of the n parent-sets from the set of local scores, that is,
it does an exhaustive generation of possible (positive likelihood) pedigrees.

In Variant 2 of the algorithm, we simply make Queue to be a first-in-first-
out queue instead of a priority queue. As we shall see this can perform well.
Variant 3 will be introduced in Section 4.

3.4. Special case: Single parent pedigrees

Suppose that in forming the list L of local scores, we do not include any
scores in which an individual has two parents, so the local scores are only for
individuals that are founders or have one parent amongst the n individuals.
Then Algorithm 3 is equivalent to Kruskal’s search algorithm and Variant 1 of
Algorithm 4 is essentially that of Sörensen and Janssens (2005), but instead of
generating undirected maximum spanning weight trees in the order of decreasing
weight, it generates pedigrees in order of decreasing likelihood, in which no
individual has more than one parent. One minor difference it that topologically,
each such pedigree need not be connected, so graphically the pedigree could be
a forest of directed trees rather than a single connected tree. This arises because
the local scores contain terms in which individuals are founders; in contrast in
the spanning tree algorithm the weights are only ever between edges of pairs of
nodes.

3.5. Bounding the greedy search algorithm

As mentioned in Section 3.3, removing the condition k < K − 1 from the
while loop of Algorithm4 means that all possible (positive likelihood) pedi-
grees will be generated by the algorithm. If the number of individuals is small,
then this exhaustive generation may be possible and the maximum likelihood
pedigree may be identified, in fact all pedigrees may be enumerated. For the
Romanov example involving 9 individuals (see Section 4.1), it turns out that
there are 11512 possible pedigrees which give consistent genotype parent-child
combinations (using sex-information). For many individuals the search space
may be too large for an exhaustive enumeration to be computationally feasible.

9

input : The sorted list L of local scores;
A queue Queue of candidate pedigrees, initially empty;
PedList of found pedigrees, initially empty.

initialization:
Pedigree P = MakePedigree(L);
P.fixed = 1;
Insert P into Queue;
k ← 0.

search iterations:
while Queue is not empty and k < K − 1 do

k ← k + 1;
Remove the first pedigree from Queue, call it Pk;
Insert Pk to PedList.
for i from Pk.fixed until n do

Make new initialized Pedigree P;
C ← 0;
for j from 1 to Pk.fixed− 1 do

AddParent(P, L(Pk.index[j]));
C ← C + 1;

end

P.fixed ← i;

for j from Pk.fixed + 1 until |L| do
if AddParent(P, L(j)) is true then

C ← C + 1;
P.value← P.value + L(i).value;

end

end
if C = n then

Insert P into Queue

else
Discard P

end

end

end

k ← k + 1;
Remove the first pedigree from Queue, call it P k;
Insert P k into PedList.

Algorithm 4: Greedy pedigree search to find K high-likelihood pedigrees.
In Variant 1 of the algorithm, Queue is a priority queue, with highest likeli-
hood pedigrees at the front, whereas in Variant 2, Queue is a first-in-first-out
queue, so that pedigrees are inserted at the back and removed from the front.

10

However it is possible to introduce a bounding condition so that for not too
many individuals the algorithm terminates in reasonable time and the maxi-
mum likelihood pedigree is thus identified. The modification of Algorithm 4 to
achieve this is straightforward, and is as follows.

Consider the state of the pedigree P formed from Pk after the first of the inner
j-loops. This will be in a state in which the parent-sets of C individuals have
been specified, which means that there are a further n−C individuals’ parent-
sets to specify. We also have the log-likelihood of the pedigree contributed by
the C individuals stored in P.value. So if we now add up the highest score of
each of the n − C individuals in the list from the scores located from position
1+Pk.index[Pk.fixed] up to |L|, and add this total to P.value, we will get an
upper bound of the log-likelihood of any possible pedigree completion of P. If
this is lower than the log-likelihood of the current best pedigree (which value is
kept track of during the execution of the algorithm) then we may discard P, and
not add it or any completion to Queue. Hence some potentially large sections
of the pedigree search space can be disregarded as they are irrelevant to finding
the highest likelihood pedigree.

4. Computer evaluations

Here is a summary of computer evaluations of the performance of the al-
gorithm. All computations were carried out using a computer with an AMD
dual-core 1.96GHz processor and 7GB of ram running the Debian 6 (squeeze)
Linux operating system. In all evaluations Hardy-Weinberg equilibrium was
assumed.

4.1. Romanov data

In July 1991, in a shallow grave 20 miles from Ekaterinburg, Russia, nine
skeletons were found, some of which were believed to be the the remains of Tsar
Nicholas II, his wife, three of their five children. This was confirmed in careful
DNA analysis by (Gill et al., 1994). Table 4.1 shows STR genotype data for the
nine skeletons and their designated identification as given in (Gill et al., 1994).

Skeleton HUMVWA/31 HUMTHO1 HUMF12A1 HUMFES/FPS
1 (servant) 14,20 9,10 6,16 10,11
2 (doctor) 17,17 6,10 5,7 10,11
3 (child) 15,16 8,10 5,7 12,13
4 (Tsar) 15,16 7,10 7,7 12,12
5 (child) 15,16 7,8 3,7 12,13
6 (child) 15,16 8,10 3,7 12,13
7 (Tsarina) 15,16 8,8 3,5 12,13
8 (servant) 15,17 6,9 5,7 8,10
9 (servant) 16,17 6,6 6,7 11,12

Table 1: Romanov STR data

11

Variant 1 of Algorithm 4 was run with no upper bound K of the number
of iterations of the while loop, and without the bounding procedure described
in Section 3.5, so that all possible pedigrees were generated. (In the absence
of suitable population allele frequencies, each marker was assumed to consist of
eight alleles, (inclusive of the ones in the table), with a uniform distribution.)
As mentioned above there are 11512 possible pedigrees (using sex information).
The top-left plot in Figure 2 shows the log-likelihoods of the pedigrees in the
order that they were added to the PedList, (that is P 1,P 2,. . . , P 11512). The
highest likelihood pedigree was P 2. We see from the plot that there is generally
a steady decrease in the log-likelihood but with occasional increases, and that
many of the pedigrees have log-likelihoods much lower than the highest value.
The likelihood of the most likely pedigree is 1.81 × 10−39, which amounts to
approximately 10% of the sum of the likelihoods at 1.71× 10−38. The first 254
pedigrees account for 95% of the total likelihood of all the pedigrees, the first
266 for 99% of the total. The top-left plot of Figure 2 shows the cumulative
sum of likelihoods of the first k pedigrees found as a ratio to the sum of the
likelihoods of all 11512 pedigrees, plotted for k values up to 300. Equivalent
plots for Variant 2 are shown on the bottom panel of Figure 2 for which:
the first 254 pedigree account of 78.3% of the total likelihood, the 95% level is
reached on pedigree 513, and the 99% level at pedigree 863. We see that for this
dataset Variant 1 is being more efficient at picking out the higher likelihood
pedigrees.

4.2. Simulation with a known pedigree of 20 individuals

A simulation study was carried out using the highly inbred pedigree of twenty
individuals taken from (Cowell, 2009), shown in Figure 3. In each of one thou-
sand simulations, genotypes were simulated for all the individuals consistent
with parentage assignments in the pedigree, the maximum likelihood pedigree
was found using the algorithm described in (Cowell, 2009), using sex informa-
tion, and the log-likelihood was recorded. Algorithm 4 was also run, either until
it found a pedigree having the maximum likelihood, or K = 5 million pedi-
grees were put in the PedList. The bounding described in Section 3.5 was not
employed in the search. The iteration of the highest likelihood pedigree found
by the greedy search algorithm was recorded, together with the log-likelihood
achieved. The log-likelihood of the generating pedigree was also recorded. The
results from Variant 1 and Variant 2 for the same generated genotypes are
markedly different.

Variant 1

For 255 of the runs, the first pedigree was the highest likelihood pedigree,
for 285 runs it was the second, and for 106 the third. In 759 runs, the highest
likelihood pedigree was amongst the first 20 pedigrees found. However, in 70 of
the runs, more than 10,000 iterations were required before finding the highest.
In addition, in 16 of the 1000 runs, the algorithm did not find the highest
likelihood pedigree within the 5 million iteration limit set. Figure 4 shows the

12

0 2000 4000 6000 8000 10000 12000

−
1

3
0

−
1

2
0

−
1

1
0

−
1

0
0

−
9

0

Variant 1

k

L
o

g
 L

ik
e

lih
o

o
d

0 50 100 150 200 250 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Variant 1

k

C
u

m
.

re
l.
 l
ik

e
lih

o
o

d

0 2000 4000 6000 8000 10000 12000

−
1

3
0

−
1

2
0

−
1

1
0

−
1

0
0

−
9

0

Variant 2

k

L
o

g
 L

ik
e

lih
o

o
d

0 50 100 150 200 250 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Variant 2

k

C
u

m
.

re
l.
 l
ik

e
lih

o
o

d

Figure 2: Log-likelihoods of pedigrees found from the Romanov data of nine individuals, in
the order found. Top left: all 11512 pedigrees using Variant 1, top right, the normalized
cumulative likelihoods to the first 300 pedigrees, using Variant 1. Bottom row: as for top
row but with Variant 2 of Algorithm 4.

Figure 3: An inbred pedigree of twenty individuals.

13

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−
3
1
0

−
3
0
0

−
2
9
0

−
2
8
0

−
2
7
0

k

L
o
g
 l
ik

e
lih

o
o
d

Figure 4: The log-likelihoods of the first 100,000 pedigrees, where the maximum occurred at
iteration 43769.

log-likelihoods of the first 100,000 pedigrees found by the search algorithm for
a run in which the maximum was found on iteration 43769. Note that until the
jump to this pedigree, the plot gives the impression that the highest likelihood
pedigree has been found on the second iteration. Although such trace plots can
be suggestive that a maximum likelihood has been found, they can be misleading
as this example shows. From the runs that did find the highest likelihood
pedigree, the greatest number of iterations taken to do so was 3473461.

Note that in all of these runs the bounding strategy described in Section 3.5
was not used, so that the greedy algorithm did not identify the true maximum.
The example from Figure 4 was re-run using the bounding technique. The
computation took used 28587 iterations altogether for a complete search of
pedigree space, with the highest likelihood pedigree found on iteration 9198.

Algorithm 4 with the bounding strategy was also re-run on each of the 16
pedigrees for which the algorithm without bounding failed to find the maximum
pedigree after 5 million iterations. A limit was again set to 5 million iterations.
In 14 out of the 16 runs, the highest likelihood pedigree was found, with three
requiring over 1 million iterations.

Variant 2

The same sets of genotypes for the 1000 simulations for Variant 1 were
used for Variant 2 analyses, initially without using the bounding. For 255 of
the runs, the first pedigree was the highest likelihood pedigree, (the same as
for Variant 1 as it should be because the they both start with the same first

14

greedily selected pedigree). For 285 runs it was the second. For the remainder of
the runs, there is a gap until the 9-th iteration to finding the highest likelihood
pedigree. In 908 runs the highest pedigree was found within 1000 iterations,
rising to 972 runs for up to 10000 iterations, and 994 for 100000 iterations. Of
the remaining six pedigrees, five took from 104222 to 342247 iterations to find
the highest pedigree, the remaining one took 7830717 iterations. In contrast,
using Variant 1 the latter was found in in 541093 iterations.

However when Variant 2 of the algorithm was used with bounding, all runs
found the highest likelihood pedigree, the longest run taking 32427 iterations,
the next longest 14321 iterations.

Variant 3

In many pedigree search algorithms, such as those based on backtracking
or MCMC search, the search procedure moves around pedigree space making
small local changes to pedigrees, such as adding a parent, removing a parent, or
reversing the rôle of parent and child relationship, so that successive pedigrees
are very close in structure, differing in one or two edges. Such algorithms can
spend a lot of time searching a poor part of pedigree space, or even getting
trapped at a local maximum. The motivation behind Algorithm 4 is that the
pedigrees produced by the partitioning would be well spread out in pedigree
space, so that two such pedigrees can differ dramatically in structure. This it
is hoped would make the search range widely over pedigree space. For Variant
1 the focus is always on the currently best partition found. This appears to do
well as show in the Figure 2. However, Figure 4 shows that Variant 1 is not
immune from the problems of getting stuck for a long time in the vicinity of
a local maximum. Variant 2 of Algorithm 4 is akin to a breadth-first search
amongst the partitions, so that the successive pedigrees being found are located
far apart in pedigree space in terms of their structural differences. This appears
to be better than Variant 1, in that it is more successful in finding the highest
pedigree, though the number of iterations required has a long tail, with six pedi-
grees requiring more than 100,000 iterations, without bounding, but drastically
reduced with bounding. However it does not have the greedy focus of Variant
1 in choosing the order in which pedigrees are examined.

The motivation behind Variant 3 is to combine aspects of both of these
searches into one that is more greedy than Variant 2 but less than Variant 1.
The idea is simple: Algorithm 4 is run as Variant 2 using the first-in-first-out
Queue, but periodically after a fixed number of iterations has been performed,
Queue is sorted so that the highest likelihood pedigrees are at the front of the
list.

The five pedigrees that took more than 10000 iterations to find the high-
est pedigree using the Variant 2 with bounding were selected and this extra
periodic sorting step was applied, both with and without bounding. Sorting
was carried out every 10000 iterations (which meant that for the first 10000
iterations the algorithm behaves the same as Variant 2). The number of iter-
ations in each case are laid out in Table 4.2, which also includes analyses using
Variant 1 with and without bounding, and Variant 2 without bounding. It

15

would seem that Variant 3 performs best, however the application of bounding
has a mixed response. In addition, the performance does depend upon the pe-
riod used between sorts, as illustrated in the last row in the table. Note that for
the Variant 3 runs, the pedigree is marked as found when it is removed from
Queue rather than when it is put into Queue, which is the reason why several of
the values in the table are 1 above a multiple of 1000 or 10000.

Algorithm Pedigree
1 2 3 4 5

Variant 1 no bound NF 1441427 NF 541093 129209
Variant 1 with bound 665086 225180 73866 12639 28726
Variant 2 no bounding 246622 95589 198140 NF 106065
Variant 2 with bounding 32427 14321 13525 10684 13413
Variant 3 no bounding 30001 20001 30002 60003 20001
Variant 3 with bounding 20001 10001 10002 10003 10001
Variant 3 with bounding∗ 4001 3001 4002 15003 3001

Table 2: Comparison of of iterations required by some some selected pedigrees to find highest
pedigree, NF denotes not found within 5 million iterations. ∗Bottom row: period between
sorts 1000 iterations.

4.3. Data for shrimp

The third example we look at is a two generation dataset of the black tiger
shrimp P. monodon (Jerry et al., 2005), downloaded from the FRANz software
web site (Riester et al., 2009). The dataset from the website has profiles for
85 individual shrimp on seven loci. However for 10 shrimp the profiles are
incomplete on some markers, and so these individuals were removed, leaving a
dataset of 75 individuals. The FRANz software was used to generate estimates
of allele frequencies. The three variants of Algorithm 4 were carried out to
100,000 iterations. (Curiously the same results were identical for with and
without bounding, which might be because there are many pedigree having a
likelihood close to the maximum, or perhaps simply because there are more
individuals in this example compared to the others examined earlier. This
is an issue that requires further exploration.) The trace plots are shown in
Figure 5. Both Variant 1 and Variant 3 found 192 pedigrees having the
highest likelihood value of -1084.44, whilst Variant 2 found 3 such pedigrees.
The next highest likelihood value found was -1085.14; this was found by Variant

1 for 480 pedigrees and by Variant 3 for 568 pedigrees, but for only 12 pedigrees
by Variant 2. Extending the number of iterations to 500,000 no additional
pedigrees having log-likelihood of -1084.44 were found by either Variant 1 or
Variant 3, however the number of pedigrees found having a log-likelihood of-
1085.14 rose to 2856 for Variant 1 and to 2824 for Variant 3.

The same dataset was analysed in 100 runs of the FRANz software, which
implements the simulated annealing algorithm of Almudevar (2003) for finding
the maximum likelihood pedigree. In these 100 runs, 72 found a pedigree of
highest log-likelihood of -1084.44, the remaining 28 found a pedigree having

16

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−
1

0
9

0
−

1
0

8
8

−
1

0
8

6
Variant 1

Iteration

L
o

g
 l
ik

e
lih

o
o

d

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−
1

1
3

0
−

1
1

1
0

−
1

0
9

0

Variant 2

Iteration

L
o

g
 l
ik

e
lih

o
o

d

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−
1

1
1

0
−

1
1

0
0

−
1

0
9

0

Variant 3

Iteration

L
o

g
 l
ik

e
lih

o
o

d

Figure 5: Successive pedigree log-likelihoods over 100,000 iterations, found for 75 individual
black tiger shrimp using all algorithm variants, with Variant 3 having a sort period of 350
iterations. Note the different scales on the likelihood axis.

highest log-likelihood of -1085.14. (By way of a timing comparison, each of
the FRANz runs took approximately 3 seconds, whilst 100,000 iterations of the
search algorithm took approximately 66 seconds on the same computer.)

As we can see from Figure 5, the decay in the log-likelihood values is quite
slow and not like the sharp decay exhibited in Figure 2. The cumulative relative
likelihood of the pedigrees found by Variant 3 of Figure 5, is plotted in Figure 6
where the likelihoods have been sorted from highest to lowest. Note that this
is cumulative relative to the set of pedigrees found, not to the total likelihood
of all possible pedigrees. The highest 1951 pedigrees found account for 50% of
the total likelihood, the number rising to 69834 pedigrees to account for 95% of
the total likelihood found.

5. Summary

This paper has presented a simple greedy algorithm for finding a large num-
ber of high-likelihood pedigrees, and illustrated it with two datasets and a sim-
ulation study. The algorithm generates candidate pedigrees by a partitioning
of the pedigree search space, where the partitioning at any stage depends upon
the current pedigree under consideration. A characteristic of the partitioning is

17

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

C
u
m

.
re

l.
 l
ik

e
li
h
o
o
d

Figure 6: The cumulative relative likelihoods of the 100,000 pedigrees found by Variant 3 in
Figure 5, where the pedigrees have been sorted in order of decreasing likelihood.

18

that pedigrees considered consecutively can have very different graphical struc-
ture. This helps the search procedure to make large jumps in the pedigree space.
In principle the algorithm generates all possible (positive likelihood) pedigrees
without duplication, but in practice the space of pedigrees will usually be too
large for an exhaustive search to be carried out.

Three variants of the algorithm were presented. In Variant 1 a priority
queue is used to store the candidate pedigrees, and on each iteration the high-
est likelihood candidate pedigree is selected from the queue. This generally
performs quite well, but as illustrated in Figure 4 can take many iterations
before finding a maximum likelihood pedigree. In Variant 2 the candidate
pedigrees are stored in a first-in-first-out queue, which means that a wider va-
riety of partitions is explored. This appears to be more efficient at finding a
highest likelihood pedigree quite early, however there is wide variability in the
likelihoods of pedigrees in successive iterations. A third variant was also exam-
ined, in which candidate pedigrees are stored in a first-in-first-out queue, but
periodically the queue is sorted so that high-likelihood pedigrees are at the front
of the queue. Note that if the sorting period is set to 1, then this reduces to
Variant 1, and if the sorting period is set to be larger than the pre-set number
of iterations to be carried out, then this reduces to Variant 2. This seemed
to perform the best, though the behaviour will depend on the choice of sorting
period. It is planned to explore this issue further elsewhere. A bounding proce-
dure was described, but it appears this might be effective only for a low number
of individuals; again this is an issue that will be explored elsewhere.

There are various extensions that could be considered. One is to use the set of
pedigrees found during a search in a pedigree averaging procedure. Indeed, this
was the main motivation for developing the algorithm. Although a maximum
likelihood pedigree will contain many features in common with the true pedigree,
averaging over a set of high-likelihood pedigrees will take account of pedigree
uncertainty. For example one could look at how often a particular feature in a
pedigree, for example a particular individual i has a particular parent j, and
using the pedigree likelihoods find the posterior probability of such a parent
child combination (assuming, say, a uniform prior over the two possibilities of j
is a parent of i, and j is not a parent of i).

Another possibility is to incorporate structural prior information into the set
of high likelihood pedigrees found. Examples of structural priors are proposed
by Egeland et al. (2000), Sheehan and Egeland (2007) and Almudevar and La-
Combe (2012). When structural priors are such that they decompose locally
into simple factors in the same manner as the log-likelihood (3) then incorpo-
ration into a search procedure may be relatively straightforward. However not
all structural priors are of this amenable form. For example, we might wish to
exclude pedigrees in which a pair of parents has more than a certain number
of offspring, or to put a prior on the number of offspring a pair of individuals
can have. Or we might like to excluded two individuals that are separated by
more than a certain number of generations from mating, or put a prior on inter-
generational mating. These constraints, whether hard or soft, could be quite
difficult and/or computationally expensive to incorporate into some types of

19

search algorithms. However, such structural priors could be straightforwardly
combined with the set of pedigrees found after the likelihood based search pro-
cedure of this paper. Alternatively, and probably better, candidate pedigrees
could be found using the likelihood search of Algorithm 4, and then combined
with structural prior information (and so adjusting the P.value score) before
being placed in Queue. In this way the search will be more focussed on the high
posterior pedigrees of interest rather than high likelihood pedigrees; this is an
area for further research.

References

Almudevar, A., 2003. A simulated annealing algorithm for maximum likelihood
pedigree reconstruction. Theoretical Population Biology 63, 63–75.

Almudevar, A., LaCombe, J., 2012. On the choice of prior density for the
Bayesian analysis of pedigree structure. Theoretical Population Biology 81,
131–143.

Blouin, M. S., 2003. DNA-based methods for pedigree reconstruction and kin-
ship analysis in natural populations. TRENDS in Ecology and Evolution
18 (10), 503–511.

Cowell, R. G., 2009. Efficient maximum likelihood pedigree reconstruction. The-
oretical Population Biology 76, 285–291.

Cussens, J., 2010. Maximum likelihood pedigree reconstruction using integer
programming. In: In Proceedings of the Workshop on Constraint Based Meth-
ods for Bioinformatics (WCB-10) Edinburgh.

Cussens, J., Bartlett, M., Jones, E. M., Sheehan, N. A., 2012. Maximum likeli-
hood pedigree reconstruction using integer linear programming. Genetic Epi-
demiology, (submitted and under review).

Egeland, T., Mostad, P. F., Mev̊ag, B., Stenersen, M., 2000. Beyond tradi-
tional paternity and identification cases: Selecting the most probable pedi-
gree. Forensic Science International 110, 47–59.

Gill, P., Ivanov, P. L., Kimpton, C., Piercy, R., Benson, N., Tully, G., Evett, I.,
Hagelberg, E., Sullivan, K., 1994. Identification of the remains of the Romanov
family by DNA analysis. Nature Genetics 6, 130–135.

Jerry, D. R., Evansa, B. S., Kenway, M., Wilson, K., 2005. Development of a
microsatellite DNA parentage marker suite for black tiger shrimp penaeus
monodon. Aquaculture 255, 1–4.

Jones, A. G., Ardren, W. R., 2003. Methods of parentage analysis in natural
populations. Molecular Ecology 12, 2511–2523.

20

Kruskal, J. B., February 1956. On the shortest spanning subtree of a graph and
the traveling salesman problem. Proceedings of the American Mathematical
Society 7 (1), 48–50.

Lawler, E., 1972. A procedure for computing the K best solutions to discrete
optimization problems and its application to the shortest path. Management
Science 7, 401–405.

Murty, K. G., 1968. An algorithm for ranking all the assignments in order of
increasing cost. Operations Research 16 (3), 682–687.

Nilsson, D., June 1998. An efficient algorithm for finding the M most probable
configurations in a probabilistic expert system. Statistics and Computing 8,
159–173.

Pemberton, J. M., 2008. Wild pedigrees: the way forward. Proceedings of the
Royal Society, Series B 275, 613–621.

Riester, M., Stadler, P. F., Klemm, K., 2009. FRANz: Fast reconstruction of
wild pedigrees. Bioinformatics 25, 2134–2139.

Sheehan, N. A., Egeland, T., Jul 2007. Structured incorporation of prior in-
formation in relationship identification problems. Annals of Human Genetics
71 (Pt 4), 501–518.
URL http://dx.doi.org/10.1111/j.1469-1809.2006.00345.x

Silander, T., Myllymäkki, P., 2006. A simple approach to finding the glob-
ally optimal Bayesian network structure. In: Dechter, R., Richardson, T.
(Eds.), Proceedings of the 22nd Conference on Artificial intelligence (UAI
2006). AUAI Press, pp. 445–452.

Sörensen, K., Janssens, G. K., 2005. An algorithm to generate all spanning trees
of a graph in order of increasing cost. Pesquisa Operacional 25 (2), 219–229.

Thompson, E. A., 1976. Inference of genealogical structure. Social Science In-
formation sur les Sciences Social 15, 477–526.

Thompson, E. A., 1986. Pedigree Analysis in Human Genetics. John Hopkins
University Press, Baltimore.

Tian, J., He, R., Ram, L., 2010. Bayesian model averaging using the k-best
Bayesian network structures. In: Proceedings of the 26th Conference on Un-
certainty in Artificial Intelligence (UAI 2010). P. Grünwald and P. Spirtes
(Editors). AUAI Press. ISBN 978-0-9749039-6-5.

21

