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Abstract

In analyzing a DNA mixture sample, the measured peak areas of alleles of STR

markers amplified using the polymerase chain-reaction (PCR) technique provide valu-

able information concerning the relative amounts of DNA originating from each con-

tributor to the mixture. This information can be exploited for the purpose of trying

to predict the genetic profiles of those contributors whose genetic profiles are not

known. The task is non-trivial, in part due to the need to take into account the

stochastic nature of peak area values. Various methods have been proposed sug-

gesting ways in which this may be done. One recent suggestion is a probabilistic

expert system model that uses gamma distributions to model the size and stochastic

variation in peak area values. In this paper we carry out a statistical analysis of

the gamma distribution assumption, testing the assumption against synthetic peak

area values computer generated using an independent model that simulates the PCR

amplification process. Our analysis shows the gamma assumption works very well

when allelic dropout is not present, but performs less and less well as dropout be-

comes more and more of an issue, such as occurs, for example, in Low Copy Template

amplifications.
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1 Introduction

Analysing mixed DNA STR profile samples is acknowledged to be a complex task [3].

The importance of using peak-area information (or, alternatively, peak height information:

peak area values are known to be highly correlated with peak height values) to analyse

mixed DNA STR profile samples is recognised. In recent years, a variety of methods has
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been proposed to exploit peak area information, see for example [4] [5] [6]. This paper

examines the probabilistic model developed and applied by Cowell, Lauritzen and Mortera

in a series of recent papers [1], [7], [8]. In particular, we focus on checking the assumption

of using Gamma distributions to model the probabilistic variation in peak area values

obtained from the PCR process. Ideally, this would be carried out using data obtained

from an extensive controlled experiment involving amplifications of many DNA samples.

However, this is not practical. Instead we opt for a simulation approach, in which we

simulate peak area values using the stochastic model in [2].

The plan of the paper is as follows. The next section summarises the mathematical

model presented in [1] and the simulation model of [2], but ignoring the complication

of stutter. Then we examine the fit of the gamma model to simulated data, and also

make some analytic comparisons. We then summarise our results. A set of Appendices

containing technical mathematical proofs is available as an online supplement.

2 Models and methodology

In this section, we present a brief summary of the gamma model of [1], a summary of the

PCR simulation model of [2], and a discussion of the application of the simulation model

to testing the gamma model.

2.1 Summary of peak area model for mixtures

The gamma model of [1] considers I potential contributors to a DNA mixture. Let there

be M markers to be used in the analysis of the mixture, and that marker m has Am

allelic types, m = 1, . . . ,M . Let θi denote the proportion of DNA from individual i prior

to PCR amplification, with θ = (θ1, θ2, . . . , θI) denoting the vector of proportions from

all contributors. It is assumed that this pre-amplification proportion of DNA is constant
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across markers.

For a specific marker m, the peak weight W+a is the peak area at allele a multiplied by

the allele number. This is a simple correction for preferential amplification of alleles. The

model is idealized in that it ignores complicating artifacts such as stutter, drop-out alleles

and so on, and makes the following further assumptions:

• If Wia denotes the contribution of individual i to peak weight at allele a, then

W+a =
∑

i

Wia.

• W+a is approximately proportional to the amount of DNA of type a.

The key modelling assumption is that each contribution Wia from individual i to peak

weight at allele a, is assumed to have a Gamma distribution:

Wia ∼ Γ(ργinia, η)

where

• γi = γθi is the amount of DNA from individual i in mixture;

• nia is the number of alleles of type a carried by individual i;

• η determines scale and ρ is the amplification factor. Both may be marker dependent.

It follows from the gamma distribution assumption that

W+a =
∑

i

Wia ∼ Γ(ρ
∑

i

γinia, η)

and

W++ =
∑

a

W+a =
∑

a

∑

i

Wia ∼ Γ(2ργ, η).
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By scaling the weight of each allele by the total for the marker we obtain relative weights

Ra = W+a/W++, where it follows that

Ra ∼ Dir(ρBa),

where Ba =
∑

i γinia is the weighted allele number, and B+ = 2γ is twice the total amount

of DNA γ and is marker independent. Note that

E(Ra) = µa = Ba/B+ =
∑

i

θinia/2,

V(Ra) = µa(1− µa)/(2ργ + 1) = σ2µa(1− µa).

where we define σ2 = 1/(2ργ + 1). Using these moments, a moment-matching approx-

imation to the gamma model using normal distributions can also be developed; this is

described in [7].

The attractiveness of the gamma model, and its normal approximation, is that it pro-

vides a framework in which a variety of complex mixture problems can be both formulated

and solved using Bayesian network technology.

2.2 Summary of simulation model (excluding stutter)

Building on the binomial model of [9], Gill et.al [2] developed a simulation model of the

process of analysing STRs. In this section we present a simplified version of their model

that excludes stutter. (In Appendix C we present their extended model with a correction

for dealing with stutter, and also including dropout occurring through silent alleles.)

The simulation model of PCR amplification without stutter is much simpler than the

one with stutter, because it is possible to treat each allele independently of other alleles.

Thus, let us concentrate on a sample containing N alleles of type a bound within cells.
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The simulation model then has the following three steps that are readily implemented in

a small computer program:

Step 1 Extract the alleles from the cells: It is assumed that each allele a has a probability

πextraction of surviving this process, independently of other alleles, hence the total

number of type a alleles n has a binomial distribution:

n |N ∼ Binom(N, πextraction).

Step 2 A portion πaliquot of the extracted sample is used for PCR amplification. It is

assumed that an individual allele that has survived the extraction process will be

randomly selected with probability πaliquot for amplification, independently of other

alleles, hence the total number of available for amplification, n0, has a binomial

distribution:

n0 |n ∼ Binom(n, πaliquot).

Note that this may be combined with the distribution in Step 1, to give

n0 |N ∼ Binom(N, πextractionπaliquot).

Step 3 The surviving alleles are then subject to K cycles of amplification. During each

amplification cycle, each allele is either duplicated with probability πPCReff or not

duplicated with probability 1− πPCReff . Assuming that alleles do not interfere with

each other in the amplification process the number of alleles after the kth cycle, and

that the replication probability πPCReff is the same for each cycle, then nk is related

to the number nk−1 in the previous cycle by the following recurrence relation:

nk = nk−1 +Binom(nk−1, πPCReff).
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For standard amplifications, K is set to 28 cycles, whilst for low copy number procedures,

appropriate with N < 20, K = 34 simulated cycles are used. Using experimental data

based on their laboratory procedures, [2] estimated the following values for the various

probability parameters πextraction = 0.6, πaliquot = 20/66 and πPCReff = 0.82. We use these

values in all our simulations. Finally, the alleles register a peak if their number exceeds the

threshold total of 2.35 × 107, and numbers are scaled by the factor of 2 × 106 to convert

them to a representative peak area value.

Note that the iteration in Step 3 defines a Galton-Watson branching process. Such

processes have been used to model aspects of PCR by other authors, for example [10]

who studied mutations in the PCR process, and [11] who estimate the efficiency of the

amplification process.

2.3 Nature of simulations

There are some differences in the simulation model and the gamma model that need to be

accommodated in order to use the simulated peak areas to test the gamma model. The

gamma model introduces weighted areas, that is, the weight associated with a peak area of

an allele having repeat number a is the peak area times the repeat number. This is to ac-

commodate preferential amplification, where longer alleles tend to amplify less efficiently

than shorter alleles. Such preferential amplification is not modelled in the simulation

model, as the amplification efficiency parameter πPCReff does not depend on allele length.

Therefor, in our comparison we shall model the peak areas directly using gamma distribu-

tions, rather than the weighted peak areas: that is, interpret the Wia etc. in Section 2.1

directly as peak areas and not peak weights. Secondly, the gamma model does not deal

with thresholds, whereby in PCR analysis of real DNA samples a peak height has to be

above a certain threshold to be counted as a peak. Hence in simulating the peaks areas we

shall set the threshold number to zero, and merely scale the counts by 2 × 106 to obtain
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an area value.

This calibration factor, converting simulated counts to area values, is not ideal because

it does not give the correct range of values for peak areas that one would expect to see

in terms of RFU units from an electropherogram. However our analysis will not depend

on the precise value that the calibration should take for two reasons. The first is that

a positive multiple of a gamma distributed random variable is also a gamma distributed

random variable. Hence in testing whether the gamma distribution family is suitable to

use to model peak areas, the value of the calibration factor is not an issue. The second

reason why the value of the calibration factor is not important for this paper is that the

likelihoods that are derived from the peak area values that enter the probabilistic model

depend on the relative areas Ra, and in forming these ratios of areas, the scaling calibration

cancels out.

Finally the gamma model does not deal with allelic dropout. In the simulation model,

dropout of allele a occurs either because no alleles of type a survive the first two stages

of the simulation–extraction and subsequent sampling–or if some do they fail to amplify

beyond the threshold. As we are setting the threshold to zero, this means that dropout

can only happen in our simulations if an allele of a certain type a fails to survive the first

two steps of the simulation. Therefor in simulating many samples, we shall only retain

those in which dropout does not occur. We shall return to these issues in more detail in

Section 4.

It is worthwhile emphasizing here the distinct natures of the gamma model and the

simulation model. The simulation model of [2] generates mixture peak areas that appear

to capture the important statistical characteristics of peak area values obtained from PCR

amplification of real DNA mixture samples, incoporating artifacts such as stutter and

dropout. The simulation method itself is not used to analyse any given mixture, for

example to identify unknown genetic profiles of individual contributors. In contrast, the

8



gamma model has been developed for the purpose of analysing given mixtures using the

peak area information. Calculations based on the gamma model can be carried out quickly

and accurately using probabilistic expert system software. The gamma model presented

and analysed in this paper does not cater for stutter or dropout, so where such effects start

to become dominant in the simulated samples we could expect the gamma model to start

breaking down, and indeed we shall see that this is the case. Work is in progress to extend

the gamma model to cater for artifacts, and it is hoped to present this extension elsewhere.

The aim of this paper is to see if the gamma model provides a good fit to situations in

which artifacts are not present: if it does then it makes sense to try and extend the model

to cope with artifacts. On the other hand if the gamma model turns out to fit poorly in

the simplified situation of no artifacts, then one would not expect an extended gamma

model to fit any better. As we shall see, the gamma model fits well when artifacts are not

present, justifying the attempt to extend it to cater for artifacts.

3 Results

Given the restrictions described above, we proceed to use the simulation model to test the

following aspects of the gamma model:

Peak areas The peak areas follow gamma distributions with mean proportional to the

amount of DNA in the sample, and scale parameter independent of the amount of

DNA in the sample.

Relative areas The gamma model predicts that the relative areas Ra = W+a/W++ follow

Dirichlet distributions Ra ∼ Dir(ρBa), where Ba = γ
∑

i θinia. For the special case

of amplifying the DNA of a single heterozygote person, the prediction simplifies to

Ra ∼ Beta(2ργ) having mean E(Ra) = 0.5 (because no allowance has been made for

preferential amplification) and variance V(Ra) = 1/4(2ργ+1). We examine how well
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the Beta distribution fits, and also examine the behaviour of the variance: according

to the model the inverse of the variance will be linearly proportional to the amount

γ of DNA prior to amplification.

We shall look at each aspect in turn.

3.1 Peak area size

In Figure 1 is plotted the results of simulating counts (representing areas) for three dif-

ferent starting values of N , the number of alleles so a certain type. For each value of N ,

10,000 amplifications were simulated, and those that did not lead to dropout were retained.

The histogram plots in the first column indicating more skewness in the distribution the

lower the value of N . All indicate that gamma distributions are appropriate. This is con-

firmed in the second column of plots, in which moment estimation was used to estimate

the parameters of the gamma distribution for each N , and values simulated from this to

construct the quantile-quantile plots in the second column. All plots are highly linear over

the range except for departures from linearity apparent to the top right hand corners of

the plots. In [7] a normal approximation to the gamma model was suggested. Hence in

the third column is plotted normal quantile-quantile plots based on the simulated counts.

All plots are reasonable linear over the range (−2, 2), but departures are apparent outside

this range for the two simulations with starting values N = 5 and N = 20, consistent with

the skewed histograms. It is worth pointing out that the plots in Figure 1 were based on

28 simulated PCR cycles, but starting values N = 5 and N = 20 correspond to low copy

number situations, for which 34 simulated cycles should be used [2]. However, using 34

simulated cycles leads to similar plots (not shown) to those in Figure 1.

FIGURE 1 HERE
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A second assumption of the gamma model is that the mean area associated with an

allele is proportional to the amount of DNA of that allelic type in the sample prior to

amplification : Wia ∼ Γ(ργinia, η). This assumption is verified by the plot in Figure 2,

(10000 simulations for each integer value of N ∈ (1, 100)) which shows a strong linear

dependence of mean area on the amount over a large range, with just a hint of departure

from linearity in the low copy number regime. This result can be derived analytically for

the simulation model, as shown in Appendix A.

FIGURE 2 HERE

Another assumption of the gamma model is that, for each marker, the scale parameter

η does not depend on the amount. To test this, scale parameters were estimated for each

value of N using the same simulations as for Figure 2. The plot in Figure 3 shows that the

common scale parameter assumption appears reasonably valid for the range N > 25, but

the assumption appears to breakdown in the range of values of N in the low copy number

regime. The breakdown is arising in the variation arising from the selection of alleles in

the pre-PCR stage. For the PCR stage itself the assumption of constant scale parameter

η holds as follows. It is shown in Appendix A that the mean number of alleles arising

from r simulated PCR cycles starting from a single allele is Er[X] = (1 + πPCReff )
r, and

the variance is Vr[X] = (1− πPCReff )(1 + πPCReff )
r−1((1 + πPCReff )

r − 1). For an initial

number N alleles amplifying independently, both the mean and variance are multiplied by

N . (This follows because of the independence. Alternatively, it can be found by finding

the moments using Fr(t)
N .) For the gamma distribution, the moment matching estimate

of the scale parameter η is Er[X]/Vr[X] = (1−πPCReff )((1+πPCReff)
r−1)/(1+πPCReff)

which does not depend on N .

FIGURE 3 HERE
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3.2 Relative area size

We have seen that the use of gamma distributions appears to be justified from the simu-

lations in Section 3.1. We now look at the gamma model prediction that the relative peak

areas obtained by amplifying the alleles of a heterozygote individual are Beta distributed.

In Figure 4 we plot the results of simulations of relative areas for three different starting

values for the number of alleles of each type. Each simulation sampled 10000 amplification

values, only those that did not result in a dropout were retained for calculating relative

area values. To the left are histograms, indicating a symmetric distribution with mean

0.5. On the right are corresponding quantile-quantile plots which use the simulated values

for actual quantiles, plotted against quantiles of values simulated from a beta distribution

of mean 0.5 and variance matching that of the relative area values. All quantile-quantile

plots yield close to straight lines, indicating that the beta distribution is a very good fit to

the data, even for the low-copy number regime with a starting value of 5 for each type of

allele.

FIGURE 4 HERE

Figure 5 shows the results of a similar simulation, in which the starting number of

alleles was unequal, in a ratio na : nb = 1 : 3. This could correspond to two homo-

zygote contributors contributing DNA in a ratio of 1:3 to a mixture, or one homo-zygote

and one heterozygote having one allele in common and contributing equal amounts to a

DNA mixture. Again, the quantile-quantile plots fit straight lines well, indicating that the

relative areas are following appropriate Beta distributions.

FIGURE 5 HERE

A second prediction of the gamma model regarding the relative areas is that the inverse

of the variance of the relative area is linearly proportional to the starting amount of DNA.
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From the histogram plots in Figure 4 the variance does appear to decrease as na increases.

For a fuller analysis of the dependence of variance on amount, one hundred amplifications

were simulated of a heterozygote, with each of the starting values na(= nb) = 1, 2, . . . , 100

for the number of alleles to each type, with 28 simulated PCR cycles. From each simulation

the variance of the relative areas was calculated for those simulated amplifications that did

not lead to dropout. The variance and inverse variance are plotted against na (which is

proportional to the amount of DNA in the gamma model) in Figure 6.

FIGURE 6 HERE

From the plot of inverse variance, a good straight line fit is apparent for the range

na ≥ 20 (the sample correlation coefficient of the values in this range is 0.998). Thus,

the gamma model is providing an excellent fit over this range. However it is clear than

for smaller amounts the gamma model prediction regarding the dependence of variance

on amount is breaking down. The plot on the right reaches a minimum for na = 14,

and for lower values of na the inverse variance is increasing, corresponding to the variance

decreasing with decreasing na for na ≤ 14.

This somewhat surprising inflexion in the curve can be understood by a closer exami-

nation of how variability arises from the simulation model. Recall there are two stages to

the simulation process, the pre-PCR selection stage (consisting of two steps) and the PCR

stage. Each stage provides variability. In the pre-PCR selection stage, alleles are sampled

for the PCR stage, each with probability p = 0.6/3.3 = 0.182. Thus an equal number

na = nb of alleles of types a and b can easily become unbalanced prior to the PCR stage

of the simulation, and the PCR amplification stage can further exacerbate the in-balance.

Now consider the extreme case where we start out with na = nb = 1. The simulations

only retain those values where there is no dropout. This requires that both alleles are

present for the simulation of the PCR stage, and thus start out with the same number,
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that is na = nb = 1, and the ratio of one allele count to the total is 0.5. Thus there is no

pre-PCR variability in the relative amounts of the two alleles entering the amplification

stage, and so the total variability is less than may be expected at first sight. On the other

hand, for very large values of na = nb, the Beta distribution become very highly peaked

and narrow, so that the values sampled from Binom(na, p) and Binom(nb, p) are close to

nap and nbp, leading to a relative values close to 0.5 and again a small variance that goes

to zero as na = nb → ∞. For the intermediate values of na = nb both sources of variability

are present, and so by continuity we should expect a maximum value somewhere. For the

parameters used in the simulation the greatest variance occurs at na = 14, as shown in

Appendix B for the pre PCR sampling stage, and also na = 14 in Figure 6 where both

sources of variation are combined.

4 Discussion

This paper has presented the results of a simulation study of the gamma model of [1] for

the distribution of peak areas arising in the PCR amplification of STRs. The study has

been based on a simplified version of the model of [2] for simulating the whole process

of amplifying STRs to create realistic simulations of peak area distributions. On the

whole, the gamma model is seen to compare favourably for modelling the peak areas

simulated from the model of [2]. The plots in Figure 1 show that gamma distributions

model the simulated areas well, even in the low copy number regime (N ≤ 20). The

normal approximation suggested in [7] works well for large N but breaks down in the

low copy number regime. We have shown in Appendix A that the assumption of the

linear dependence of the mean of the gamma distribution on the amount is a consequence

of the simulation model. There is a slight departure for the low copy number regime

that can be explained by the pre PCR sampling of alleles in the extraction and aliquot
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selection processes that can lead to some or all alleles of specific type not being selected

for amplification. The gamma model does not cater for such dropout behaviour. The

assumption of the common scale parameter η has been shown to hold via simulation for

large N values but appears to break down in the low copy number regime. Again this can

be traced to the pre PCR sampling of alleles for the amplification process. The results

of Section 3.2 shows that the relative areas of two alleles in a simulated amplifications

closely follow beta distributions even in the low copy number regime. The prediction of

the gamma model that the variance of the relative areas should increase as the amount of

DNA decreases holds in the regime for large N , but breaks down in the low copy number

regime. The explanation of this behaviour in the simulation model is given in detail in

Appendix B, and again lies in the variability of alleles introduced by the pre PCR sampling

of alleles for amplification.

We must now return to the points made in Section 2.3, and address the relevance of

the simulation study of this paper to the application of the gamma model to the analysis

of real STR mixtures.

The main issue is that the gamma model of [1] used a simple correction for preferential

amplification that the present simulation study did not use, because the simulation model

of [2] does not include simulation of preferential amplification. The simple correction of

[1] does not take into account the dependence of preferential amplification of DNA on the

condition of the sample. The question arises as to whether it provides a good enough

approximation: ultimately this can only be resolved by experimental analysis of real STR

PCR amplifications.

Another issue concerns stutter. The simulations reported in this paper used a simplified

model that ignored the generation of stutter peaks. This was because the model of [1] does

not model stuttering. However an extension to take account of stuttering is being developed

and will be reported elsewhere. Another property of the simulations used this paper is that
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they were conditional on no dropout occurring. This was appropriate for testing the model

of [1] as it does not take account of dropout. Real PCR amplifications do lead to dropout,

and there appear to be three main causes. These are:

1. Pre-selection of alleles lead to some alleles types not being selected for the PCR

amplification stage. This is particularly acute for low copy number amplification.

2. Silent alleles: alleles that do not amplify because the primer does not bind to the

flanking regions of thee DNA.

3. Alleles are amplified, but below a threshold for detection.

Of these possibilities, extensions of the gamma model to incorporate dropout due to (1)

and (2) are being developed and will be reported elsewhere. The problem of modelling the

detection threshold has still to be addressed withing the context of the (extended) gamma

model.

In summary, the gamma model provides a good approximate fit to data generated using

the simulation model when the initial number of alleles N is relatively large so that the

stochastic variation introduced by the selection steps 1 and 2 described in Section 2.2 are

much smaller that arising from the amplification process of step 3. In contrast the fit of

the gamma model breaks down in the low copy number regime, and the lack of fit can be

traced to the pre-PCR selection stage of the simulation model which is not captured by

the gamma model. We agree with Gill et al. [2] that this pre-PCR selection stage can be

a dominant source of peak imbalance and dropout in real DNA samples when the initial

number of alleles in a DNA sample is initially small. However, extensions of the gamma

model to incorporate dropout to take account of this are being developed. The present

study has shown that the simple gamma model of [1] analyzed in this paper forms a solid

foundation upon which to build such extensions.
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Figure captions:

Figure 1 Simulations of area amplifications for three different starting values N of the

number of an alleles, using 28 amplification cycles.

Figure 2 Mean area as a function of starting number N of alleles, using 28 amplification

cycles.

Figure 3 Estimated scale parameter η as a function of amount N of starting number of

alleles.

Figure 4 Simulations of relative areas for amplification of hetero-zygotic individual, for

three different starting values of the number of alleles of each type

Figure 5 Simulations of relative areas for amplification for a 1:3 imbalance of number of

alleles of either type to start with.

Figure 6 Variance and inverse variance of relative area Ra plotted against starting number

of alleles na for the amplification of a hetero-zygotic individual.
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Figure 1: Simulations of area amplifications for three different starting values N of the
number of an alleles, using 28 amplification cycles.

20



0 20 40 60 80 100

5.
0e

+
07

1.
5e

+
08

2.
5e

+
08

3.
5e

+
08

Amount

M
ea

n 
ar

ea
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Figure 4: Simulations of relative areas for amplification of hetero-zygotic individual, for
three different starting values of the number of alleles of each type.
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Figure 5: Simulations of relative areas for amplification for a 1:3 imbalance of number of
alleles of either type to start with.
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Figure 6: Variance and inverse variance of relative area Ra plotted against starting number
of alleles na for the amplification of a hetero-zygotic individual
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SUPPLEMENTARY MATERIAL

A Linear dependence of mean area on amount

In this appendix we derive the probability generating function (PGF) for the distribution

of the number of alleles in the simplified simulation model given the starting number of

alleles of a given type, and use the PGF to show the linear dependence of the mean on the

amount. We follow the approach of [1] based on cascade theory.

Consider a single allelic molecule a, and all of the copies produced from it in the PCR

simulation. Call the time before the first PCR cycle the zero-th generation. Let us denote

by xr the number of alleles of type a after exactly r PCR cycles, with r = 0 denoting the

number of alleles of type a prior to any PCR cycle taking place, so that x0 = 1. Now each

individual molecule is either copied or not, independently of the other molecules, so that

the PGF for the number of molecules of type a after one amplification cycle will be

F (t) = (1− πPCReff )t+ πPCReff t
2. (1)

More generally, we have

Theorem A.1 The PGF for the number of molecules after r PCR cycles, given that there

is exactly one prior to any amplification cycle, is

Fr(t) = F (F (F (. . . F (t) . . .))) (2)

where

F1(t) = F (t), Fs+1(t) = F (Fs(t)), (s = 1, 2, 3, . . .). (3)

If there are n0 molecules of type a to begin with then the PGF for the number after

r PCR cycles, assuming independent amplification of alleles (which is assumed by the
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simulation model) will be Fr(t)
n0 . However, the number n0 is not fixed, but is a random

variable that depends on the first two selection steps of the pre PCR stage. If there are

N alleles to start with, prior to selection, then as summarised in Section 2.2 (main paper)

n0 |N ∼ Binom(N, πextractionπaliquot). This has PGF given by

G(t) = (1− πs + πst)
N .

where we define πs = πextractionπaliquot. Hence the final PGF for the number of alleles of

type a, given there are N to begin with, with r simulated PCR cycles for all three Steps

of the simulation model described in Section 2.2 (main paper) is given by

H(t) = G(Fr(t)) = (1− πs + πsFr(t))
N . (4)

It is now a simple matter to find the mean of the distribution, by differentiating with

respect to t and setting t = 1. Now,

dH(t)

dt
= Nπs(1− πs + πsFr(t))

N−1dFr(t)

dt
(5)

Let Er[X] denote the mean number of alleles of type a after r amplification cycles starting

2



from one allele. Then

Er[X] =
dFr(t)

dt

∣∣∣
t=1

=
dF (Fr−1(t))

dt

∣∣∣
t=1

=
d [(1− πPCReff )Fr−1(t) + πPCReffFr−1(t)

2]

dt

∣∣∣
t=1

= (1− πPCReff )
dFr−1(t)

dt
+ 2πPCReffFr−1(t)

dFr−1(t)

dt

∣∣∣
t=1

= (1 + πPCReff )Er−1[X].

The solution of the recurrence relation, using E0[x] = 1, is

Er[X] = (1 + πPCReff )
r, (6)

from which it follows that

dH(t)

dt

∣∣∣
t=1

= Nπs(1 + πPCReff )
r, (7)

which is clearly linear in N .

If Vr[X] denotes the variance in number of alleles of type a after r amplification cycles

starting from one allele, then it can be shown that

Vr[X] = (1− πPCReff)(1 + πPCReff )
r−1((1 + πPCReff )

r − 1) (8)

The slight curvature in Figure 2 (main paper) arises because that plot was based on

samples for which there is not dropout. Conditioning on no dropout means that the original

distribution for the pre-PCR sampling steps yields a truncated Binomial distribution with

3



PGF given by

G(t) =
N∑

i=1

(
N
i

)
(1− πs)

N−iπi
st

i

1− (1− πs)N
. (9)

The full PGF for the simulation process is now H(t) = G(Fr(t)), from which the mean is

found to be

Nπs(1 + πPCReff )
r

1− (1− πs)N

This departs from linearity in N for small values of N .

B Derivation of maximum variance in simulation

In the pre-PCR selection stage of the simulation, if N alleles are available to be sampled for

amplification, the number sampled is binomially distributed with πs = πextractionπalequot =

0.6/3.3 = 0.182. Suppose that N alleles of type a and N alleles of type b are available to

be selected. Denote by Na and Nb the number of alleles selected. Then

Na ∼ Binom(N, πs)

Nb ∼ Binom(N, πs)

The sampling is done independently for each type of allele, thus P (Na, Nb) = P (Na)P (Nb).

We concentrate on no dropout, thus we are interested in the variance of Na/(Na + Nb)

conditional on both Na > 0 and Nb > 0. This requires the distribution P (Na, Nb |Na >

0, Nb > 0) = P (Na |Na > 0)P (Nb |Nb > 0) where the conditional probabilities are obtained

from the truncated binomial, thus

P (Na |Na > 0) =

(
N

Na

)
πNa
s (1− πs)

N−Na

1− (1− πs)N
, Na = 1, 2, . . . , N

4



and with a similar expression for Nb. The conditional variance is readily evaluated numer-

ically for various values of N . Figure 1 plots the variance as a function of N = 1, 2, . . . , 25.

The plot reaches a maximum at N = 14.
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Figure 1: Variance of sampling proportionNa/(Na+Nb) in the pre-PCR stage, as a function
of the (equal) numbers of each pair of alleles to be sampled.

5



C Full simulation model, including stutter

The full simulation model of [2] differs from the simplified version used in this paper in that

it also models the generation of stutter peaks. Unfortunately their is a small error in their

formulation that we correct for here. Their formulae are found in an online supplement [3]

[2], and for simplicity we use their notation in this appendix.

Their basic simulation model in Appendix 2 of the supplement consists of the following

relations (we only give the relevant equations here). These equations are assuming that

there are no alleles of repeat number A to begin with.

1 nA
survived ∼ Bin(N, πextraction)

3 nA ∼ Bin(nA
survived, πaliquot)

5 nA(k) ∼ nA(k − 1) +Bin(nA(k − 1), πPCReff) with nA(0) = nA

10 sA(k) ∼ sA(k − 1) +Bin(sA(k − 1), πPCReff) +Bin(nA(k), πstutter), with sA(0) = 0

Together, equations (1), (3) and (5) constitute the simplified simulation model used in

this paper. Equation 10 introduces stutter ignored in this paper. sA denotes the stutter

peak size at repeat number A − 1 arising from the alleles of repeat number A. Equation

10 models the size of the stutter peak after k amplifications is the number at the end of

the previous cycle, plus a random number that were present in the previous cycle that

get amplified, plus a contribution from a random number of alleles of repeat number A

available for the k-th cycle, nA(k), that mis-copied to yield alleles of repeat number A− 1.

The error in the system of equations is that if an allele of repeat number A mis-copies to a

stutter allele A− 1, it cannot also make a copy of repeat number A. However equation (5)

implies that is is available to do so. In essence the Binomial term on equation (5) should

be corrected as it overestimates nA(k). In addition, equation (10) also needs a similar
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correction for an allele of repeat number A− 1 can make a copy of itself, or make a copy

having a repeat number of one less, or not make either type of copy. However, using the

estimated value πstutter = 0.002, the difference that these errors make will be slight.

We now describe our full simulation model for the entire process of PCR amplifica-

tion. We need only treat a single marker, as we simulate amplification of distinct markers

independently.

Thus suppose M is a marker system, let A denote the set of alleles in the allelic ladder

of M . In this set of alleles there will be at least one allele of repeat number a such that

the repeat number a− 1 is not in A. For example, for TH01, the ladder system could be

the set {5, 6, 7, 8, 8.3, 9, 9.3, 10, 11, 12, 13, 14}. The repeat number 5 is in the set, but 4 is

not; similarly 8.3 is in the set, but 7.3 is not. In our simulation model, we assume that

such “lower boundary” alleles cannot amplify to make a stutter allele. For our simulation

model, we use vectors of counts indexed by the allele set A, one is a running count of alleles

n(a) at the various PCR stages, the other s(a) is a temporary vector to take account of

stutter. Assume we have I people, and that person i contributes mi cells to the simulated

mixture. Let nia denote the number of alleles of type a ∈ A that person i has. Note that

if person i has a silent allele then
∑

a nia = 0 if both alleles are silent, and
∑

a nia = 1 if

only one allele is silent. If neither is silent then then
∑

a nia = 2. In this way silent alleles

a readily incorporated into our simulation model, which we now present in the form of

pseudo-code.

Pseudo-code implementation of PCR simulation algorithm:

Initialisation for each a ∈ A do {n(a) := ∑
i minia and s(a) := 0};

Extraction for each a ∈ A do n(a) := Binom(n(a), πextraction);

Aliquot for each a ∈ A do n(a) := Binom(n(a), πaliquot);
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Amplify

For k = 1 step 1 until K do

• for each a ∈ A such that a− 1 ∈ A do s(a− 1) := Binom(n(a), πstutter);

• then:

– for each a ∈ A do

∗ if a− 1 ∈ A do n(a) := n(a) +Binom(n(a)− s(a− 1), πPCReff)

∗ otherwise do n(a) := n(a) +Binom(n(a), πPCReff );

– for each a ∈ A do n(a) := n(a) + s(a);

– for each a ∈ A do s(a) := 0;

In the amplification stage, we first allow alleles to stutter, and put their counts in the

vector s(a). We then allow the alleles to make copies of themselves, taking care to avoid

the possibility that an allele that has made a stutter copy of itself does not also make an

exact copy of itself: the if condition deals with this event. We then update the running

total in the vector n(a) by adding to it the counts of stutter alleles s(a). We then reset all

s(a) to zero ready for the next amplification round. (Notice they were all set to zero in the

initialization stage.) The vector n(a) gives the vector of simulated counts of the various

alleles at then end of the simulation.

Notice that this simulation model allows stutter products to themselves make stutter

products during the amplification cycles. However such sub-stutter counts will tend to be

very small in comparison to main peak counts. Also notice that if alleles a and a− 1 are

both present initially, then the simulation model allows for stutter product a−1 generated

by a to be made, but such hidden stuttering will not be obviously apparent as it will be

masked by the normal amplification of the a− 1 alleles.
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