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Efficient maximum likelihood pedigree reconstruction

Robert G. Cowell

Faculty of Actuarial Science and Insurance, Cass Business School, 106 Bunhill Row,

London EC1Y 8TZ, UK

Abstract

A simple and efficient algorithm is presented for finding a maximum likeli-

hood pedigree using microsatellite (STR) genotype information on a complete

sample of related individuals. The computational complexity of the algorithm

is at worst (O(n32n)), where n is the number of individuals. Thus it is possible

to exhaustively search the space of all pedigrees of up to thirty individuals for

one that maximizes the likelihood. A priori age and sex information can be

used if available, but is not essential. The algorithm is applied in a simulation

study, and to some real data on humans.
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1. Introduction

There are a number of situations in which reconstructing the pedigree of re-

lated individuals from genetic data is of interest and importance, both in human

and non-human populations. Biologists interested in (preserving) endangered

species may have an interest in pedigree reconstruction, as it may help in infer-

ring the population size, and the amount of inbreeding within the species. This

in turn could help to determine both the genetic variability and viability of the

species.

Mass-grave scenarios, or disasters in which the remains of many people are

found and can only be identified by DNA profiles, can also lead to the prob-
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lem of reconstructing pedigrees. A quite famous historical case concerns that

of the Russian royal family who disappeared during the Russian revolution of

1917. In July 1991, in a shallow grave 20 miles from Ekaterinburg, Russia, nine

skeletons were found. From the size of some of the bones three were identified

as children. The remains were believed to be the remains of Tsar Nicholas II,

his wife, three of their five children, together with some servants, and the Royal

Physician. A sophisticated DNA analysis of the remains, including comparison

of mitochondrial DNA obtained from the remains to that obtained from blood

donated by the Duke of Edinburgh (a grand-nephew of the Tsarina) confirmed

the identification of the members of the Romanov family (Gill et al., 1994).

One approach to pedigree reconstruction using genotypic data is to find the

pedigree having the maximum likelihood. This was developed by Thompson

(1976) (see also (Thompson, 1986)) using age and sex information, and more

recently by Almudevar (2003) who presented a simulated annealing algorithm

that can run either with or without age and sex information. Both of these

authors used a complete sample of individuals. This means that a parent of an

individual is either in the sample, or if not he or she is unrelated to all other

members in the sample. Under this assumption, the likelihood function for a

given pedigree decomposes into a simple multiplicative form: this paper will

also assume a complete sample. For recent reviews of pedigree reconstruction,

see Jones and Ardren (2003) and Blouin (2003).

In recent years Bayesian network expert systems (Cowell et al., 1999) have

been applied to model and analyse problems of forensic genetics. Dawid et al.

(2002) describe how to use Bayesian networks to analyse problems of disputed

paternity. Mortera (2005) and Cowell et al. (2007) have developed Bayesian

networks to analyse mixed DNA samples, such as may be found at a crime

scene. Lauritzen and Sheehan (2003) provide an overview of various Bayesian

network representations for genetic modelling applications.

Within the Bayesian network community there has been much work in in-

ferring Bayesian network structure from data; see, for example, Cooper and

Herskovits (1992); Buntine (1996); Heckerman et al. (1994). Learning a pedi-
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gree from genotypic data is similar to learning a Bayesian network from data,

though the latter tends to be more complex. This is because the graphical struc-

ture of a pedigree is constrained so that an individual has at most two parents,

and if sex information is available, they are of opposite sex. This considerably

reduces the number of possible pedigrees on n individuals, compared to the

number of Bayesian networks on n nodes; nevertheless the number of pedigrees

still grows rapidly with n.

Following on from work by Koivisto and Sood (2004), a Bayesian network

structure learning algorithm capable of searching the complete space of Bayesian

networks for up to n = 25 variables was proposed by Singh and Moore (2005).

Subsequently a simpler and more efficient (and currently state-of-the-art) algo-

rithm was proposed by Silander and Myllymäki (2006) that is able construct

maximum scoring Bayesian networks with up to 32 variables. In this paper

the latter algorithm is specialised and adapted to the purpose of reconstructing

pedigrees using a complete sample. The algorithm is efficient—finding the max-

imum likelihood pedigree with 20 individuals takes around 1 second, whilst with

29 individuals the time rises to just over 8 minutes.1 Previously, an exhaustive

search over all pedigrees on more than nine individuals would have been pro-

hibitive (Egeland et al., 2000). As the complexity is similar to the Bayesian

network learning algorithm of Silander and Myllymäki (2006), the pedigree re-

construction algorithm proposed in this paper will also be feasible for up to 32

individuals, the limit they suggest for their algorithm.

The plan of the paper is as follows. In the next section the pedigree re-

construction algorithm is presented. It is then applied in a simulation study

of two pedigrees involving 20 individuals, and also to the Romanov mass grave

dataset. The discussion section examines limitations of and potential uses and

extensions of the current work.

1All timings refer to calculations carried out using a computer with an AMD dual-core

1.96GHz processor, 2GB of ram running the Debian 4.1 Linux (etch) operating system
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Figure 1: A simple pedigree showing two female half siblings, each of their mothers and their

common father, using a standard pedigree diagram (left) and a Bayesian network representa-

tion (right).

2. The search algorithm

2.1. The likelihood function

We shall represent a given pedigree on n individuals of known genotype

graphically using a Bayesian network, in which each node represents the geno-

type of an individual. If A and B are nodes in the network, then a directed

edge from A to B means that A is a biological parent of B. Figure 1 shows a

simple pedigree for two half siblings and their parents as a Bayesian network.

One property of the Bayesian network is that it is a directed acyclic graph. This

means that you cannot start from some node, follow a path along edges in the

directions of the arrows, and arrive back where you started. Biologically this

corresponds to the logical requirement that an individual cannot be her/his own

ancestor.

Suppose we have a given pedigree Bayesian network structure G, consisting

of nodes V and directed edge set E, where each node represents the genotype of

an individual, and the genotypes of all individuals are known. Then each node

of G has one of three possible parent configurations:

• The node has no incoming arrows. Hence the individual is a founder in

the pedigree.

• The node has one incoming arrow. Hence the individual has only one

parent specified in the pedigree.

• The node has two incoming arrows. Hence both parents of the individual

are in the pedigree.
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Let V0 denote the set of nodes that have no incoming arrows, V1 the set

of nodes that have one incoming arrow, and V2 denote the set of nodes that

have two incoming arrows. Then following Almudevar (2003), we let α1(gi|gj)

denote the conditional probability that individual i ∈ V1 has genotype gi given

one of its parents j ∈ V has genotype gj. Similarly, α2(gi|gj, gk) denotes the

conditional probability that individual i ∈ V2 has genotype gi given that its two

parents j, k have genotypes gj and gk respectively. We let α0(gi) denote the

(marginal) probability that individual i ∈ V0 has genotype gi.

We shall assume Hardy-Weinberg equilibrium, so that the founders in the

pedigree are unrelated (or marginally independent, in the Bayesian network

terminology). Then, under the assumption of a complete sample, the likelihood

of the pedigree G decomposes into the product

L(G) = L0(G)L1(G)L2(G),

where

L0(G) =
∏

i∈V0

α0(gi),

L1(G) =
∏

i∈V1

α1(gi|gj),

L2(G) =
∏

i∈V2

α2(gi|gj , gk).

For simplicity we shall also assume in the examples later in the paper that the

STR markers in the marker system that specifies the genotypes are independent

(unlinked), and that mutation does not take place. Under these extra assump-

tions, the likelihood terms Li(G) factorize further, as described by Almudevar

(2003). (The algorithm presented in the next section does not require these

additional assumptions, but it does require that the various α probabilities can

be evaluated.)

Without loss of generality, we shall label the |V | individuals with the integers

1, 2, . . . , n, and use the index 0 to represent a general “absent” individual. Then

we may write, for i, j and k ∈ {1, . . . , n}:

α0(gi) ≡ α2(gi|g0, g0)
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α1(gi|gj) ≡ α2(gi|gj , g0) = α2(gi|g0, gj)

We shall also work with the log-likelihood rather than the likelihood. Thus the

log-likelihood may be written as

l(G) = log L(G) =

n∑

i=1

log α(gi|gj, gk) (1)

where either or both parents j and k of individual i can take index value 0,

indicating untyped individuals not (explicitly present) in the pedigree, and the

suffix 2 of α2(∗|∗, ∗) is now superfluous and so has been omitted.

Note, importantly, that the log likelihood is decomposed into a sum of terms,

with one term from each of the n individuals.

2.2. Overview of the reconstruction method

As mentioned in Section 1, the pedigree reconstruction algorithm presented

here is based on the method of Silander and Myllymäki (2006). It is, however,

simpler because within a pedigree an individual can have at most two parents,

whilst in a Bayesian network a node can have more than two incoming arrows.

The key observation, also used by Singh and Moore (2005), is that in a directed

acyclic graph there is at least one node, called a terminal node or sink, that does

not have any outgoing edges. In a pedigree, this will be true for the youngest

individual. Removing this sink node results in a directed acyclic graph that also

has a sink node.

So suppose that we have n nodes in a set V to begin with, labelled from 1

to n. For each node i ∈ V we can find the the combination of parents in V \ i

that maximizes the contribution α(gi|?, ?) to the log likelihood (1). If we could

also find for each of the n sets V \ i : i = 1, . . . , n, each of n− 1 individuals, the

maximizing value of the log likelihood over all pedigrees—call this l(V \i)—then

we can identify the “best” or optimum sink as that node i which maximizes the

sum log α(gi|?, ?)+ l(V \ i). Having found the “best sink” with the “best score”,

a pedigree search can then be carried out on the remaining n − 1 individuals.

Singh and Moore (2005) used this as the basis for a dynamic programming
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search algorithm. Silander and Myllymäki (2006) instead use an array in which

best scores and sinks are stored and updated as they are encountered during

the execution of their algorithm. A key requirement is that the score function

is decomposable, which is true of the pedigree likelihood function used here.

2.3. Details of the reconstruction method

There are four main steps to the pedigree reconstruction algorithm.

1. Find the set of possible parent configurations for every individual i.

2. Find the best sinks for all 2n subsets of V .

3. Find a best ordering of best sinks.

4. Recover the pedigree using the sink ordering and the best parents of each

sink.

The details are as follows:

Step 1: Finding local score contributions.

In this a list Λi is constructed for each individual i ∈ V that stores the

combinations of possible parents and the corresponding local scores α(i|j, k).

• For each i ∈ V and all the valid (j, k) parent combinations (with j < k

or j = k = 0) that i can have using the remaining variables V \ i, find

the corresponding score contribution α(i|j, k) > 0, and store the ordered

quadruple (α(i|j, k), i, j, k) in the list Λi.

• Sort each list Λi in decreasing order of the score contribution α(i|, j, k) of

the quadruples.

Note that each list Λi always has at least one element, corresponding to

j = k = 0 which treats i as a founder, and that the probabilities stored are all

strictly positive. Genetic constraints will usually make the number of elements

in each list small if there is no mutation, but with mutation, the lists can have

up to 1 + n(n − 1)/2 entries. (These arise as follows: (n − 1)(n − 2)/2 two-

observed parent entries α(i|j, k), n−1 one-observed parent entries α(i|0, k) and
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the founder entry α(i|0, 0).) Hence this part of the algorithm has complexity

O(n3).

Step 2: Finding best sinks

This is the heart of the algorithm, and where the computational complexity

is greatest. We use two arrays, scores[] and sinks[], each of size 2n, with each

element corresponding to a subset of V . The algorithm proceeds by examining

the subsets of V in a particular order: two possible orderings are presented

here. In addition, there is a lookup procedure that finds the best parents for an

individual i from any subset of V and returns the associated Best Local Score:

this will be denoted by BLS(i, W ) where W ⊆ V \ i. It also uses a local variable

skore. On completion of this step of the algorithm, the array sinks[] stores for

each subset of V the best sink.

• For all W ⊆ V in ORDER Do

> scores[W ]← 0.0

> sinks[W ]← −1

• For all i ∈W Do

> U ←W \ {i}

> skore← BLS(i, U) + scores[U ]

• If sinks[W ] = −1 or skore > scores[W ] Then Do

> scores[W ]← skore

> sinks[W ]← i

Finding the Best Local Score BLS(i, U) is straightforward. One simply

traverses the sorted list Λi inspecting the quadruples (α(i|j, k), i, j, k) in turn.

The first quadruple encountered such that j ∈ U and k ∈ U gives the best

parent set for individual i out of the subset of individuals U , and log(α(i|j, k))

is the corresponding value of BLS(i, U). (Note that 0 ⊆ U always.)

The heart of the algorithm is in using an appropriate ORDER. What we

require for the algorithm to work efficiently is that, in evaluating scores[W ],
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the best scores of all subsets U ⊂ W have already been evaluated and stored

in elements of scores[], and so can be accessed readily without recalculation.

One possible ordering that achieves this is to look at the subsets in an or-

der of non-decreasing size, starting with the empty set. For example, suppose

we have three individuals, then the sequence of subsets W of V consisting of

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} will work.

An alternative, used by Silander and Myllymäki (2006), is to use a lexico-

graphic order of bit vectors that implement the sets. Treating the case of three

individuals once more, the ordering would be: {} = 000, {1} = 001, {2} = 010,

{2, 1} = 011, {3} = 100, {3, 1} = 101, {3, 2} = 110 and {3, 2, 1} = 111. This is

simple to implement, as it corresponds to counting from 0 to 2n − 1 in binary

and the count variable can be used as the array index.

This step of the algorithm has the greatest computational complexity. In the

worst case the complexity of calling BLS(i, U) is O(n2). For a given W ⊂ V ,

the For loop is called 1 ≤ |W | ≤ n times. Hence each For loop call has worst

case complexity of O(n3), and is called for each of the 2n subsets of V . Hence

the worst case running time complexity of the algorithm is O(n32n), but will

typically be much less than this (but still at least O(2n)). It also requires an

array of size 2n to store the score[] values in memory. If memory storage is an

issue, then the array sinks[] may be written to a file as generated instead of

being stored in an array in memory: the values can re-read into memory for the

Steps 3 and 4, for which the scores[] array is not required.

Step 3: Ordering the sinks

After Steps 1 and 2, the array sinks[] stores the best sink for each subset

of V . So the algorithm first finds the best sink i for V , then the best sink for

V \ {i}, etc. The algorithm is the same as in Silander and Myllymäki (2006),

and uses an integer array ord[1, . . . , n].

• Initialize left = {V }.

• For i = n step -1 until 1 Do
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> ord[i]← sinks[left]

> left← left \ {ord[i]}

At the end of the algorithm, the array ord[] is a permuted ordering of the n

individuals, with ord[1] being a founder and ord[n] being a childless individual

in the maximum likelihood pedigree. With the array sinks[] in memory, the

complexity is linear in n.

Step 4: Recovering the pedigree

The final step is to extract the pedigree from the ordering. It uses a lookup

function BLSet(i, U) that is identical to the score function BLS(i, U) of Step 2,

but returns the parent set (j, k) instead of the score α(i|, j, k). This step also uses

an array parents[1, . . . , n] of sets, a local set variable predecs of predecessors,

and the ord[] array from Step 3.

• predecs← ∅

• For i from 1 step 1 to n Do

> parents[ord[i]]← BPSet(ord[i], predecs)

> predecs← predecs ∪ {ord[i]}

At the end of the algorithm the array element parents[i] contains the parent

set for the individual i. Taken together for all individuals i ∈ [1, . . . , n], this

defines a pedigree having the maximum likelihood. (Note that there could be

more than one pedigree that achieves the same maximum likelihood value.)

3. Evaluation and results

3.1. Example 1: Simulation using two pedigrees

Figure 2 and Figure 3 show two pedigrees each with twenty individuals, the

second highly inbred, that were used in a simulation study. Genetic profiles for

all individuals were simulated using the assumptions of Hardy-Weinberg equilib-

rium, independence of markers and no mutation. Four pedigree reconstruction

scenarios were carried out for both pedigrees:

10



Figure 2: A pedigree of twenty individuals with slight inbreeding. Note that the offspring of

individual 7 are all half-siblings, as are the offspring of individual 12.

Figure 3: An inbred and incestuous pedigree of twenty individuals.
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• Use 10 markers, without sex information

• Use 10 markers, using sex information

• Use 15 markers, without sex information

• Use 15 markers, using sex information

In both pedigrees, in using sex information, the even numbered individual were

assigned as male, and the odd numbered individuals as female.

Allele frequencies were taken for the American Caucasian population given

by (Butler et al., 2003). For the first two scenarios, the following markers were

used: CSF1PO, FGA, THO, TPOX, VWA, D3, D5, D7, D8, and D13. The

following additional five markers were used for the second pair of simulations:

D16, D18, D21, D2 and D19. None of the simulations used age or generational

information from the true pedigree. For each scenario, 1000 genetic profiles for

the individuals were simulated. Both the likelihood of the profile according to

the true pedigree, and the maximum likelihood were found. Typically it took

approximately 1.1 seconds to find the maximum likelihood pedigree for each

pedigree profile.

Figures 4 and 5 show the distribution of the differences in the log-likelihood

of the true pedigree and the value obtained for the maximum log-likelihood,

(that is, the log-likelihood ratio), for the subsets of simulations for which the

difference is non-zero, that is, when the algorithm found a pedigree having a

higher likelihood than the true pedigree. (The logarithms are to base-10 in all

plots.) As is to be expected, as the number of markers is increased, and also in-

formation about the sex of individual is used, the number of times the maximum

likelihood exceeds the likelihood of the true pedigree decreases. We also see on

the plots the excess values bunching closer to zero. Perhaps surprisingly the re-

construction algorithm appears to perform better on the highly inbred pedigree

of Figure 3 than the pedigree of Figure 2 when comparing the excess totals in

each scenario. This might be because in the highly inbred pedigree, apart from

the 5 founders the remaining 15 individuals have both of their parents present.
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Figure 4: Simulation results for pedigree in Figure 2. The histograms shows the distribution

of the difference of the maximum log-likelihood value and the log-likelihood value according to

the true pedigree, for the subset of simulated profiles for which these quantities were different.

(That is, the log10 likelihood ratio between the maximum-likelihood and true pedigree.) The

caption of each histogram gives the total number of such different values from 1000 simulations.
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Figure 5: Simulation results for pedigree in Figure 3. The histograms shows the distribution

of the difference of the maximum log-likelihood value and the log-likelihood value according to

the true pedigree, for the subset of simulated profiles for which these quantities were different.

The caption of each histogram gives the total number of such different values from 1000

simulations.
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Table 1: Romanov STR data

Skeleton HUMVWA/31 HUMTHO1 HUMF12A1 HUMFES/FPS

1 (servant) 14,20 9,10 6,16 10,11

2 (doctor) 17,17 6,10 5,7 10,11

3 (child) 15,16 8,10 5,7 12,13

4 (Tsar) 15,16 7,10 7,7 12,12

5 (child) 15,16 7,8 3,7 12,13

6 (child) 15,16 8,10 3,7 12,13

7 (Tsarina) 15,16 8,8 3,5 12,13

8 (servant) 15,17 6,9 5,7 8,10

9 (servant) 16,17 6,6 6,7 11,12

In contrast, in the other pedigree, there are 4 founders, (1,2,3 and 5) and two

groups of three half-siblings (13,14,15) and (18,19,20). However the distribution

of excess values appears concentrated closer to the origin in the pedigree with

only a slight amount of inbreeding.

3.2. Example 2: The Romanov family

Table 1 shows STR genotype data for the nine skeletons found in a shallow

grave 20 miles from Ekaterinburg, Russia, and believed to be the remains of

the Romanov family, some servants and the family doctor (Gill et al., 1994),

described in Section 1. Five of the individuals including all the children were

female, the remaining four individuals were male.

Two pedigrees reconstructions were carried out, one using sex information

the other not. In both cases age information was not used. In the absence of

suitable population allele frequencies, each marker was assumed to consist of

eight alleles, (inclusive of the ones in the table), with a uniform distribution.

Figure 6 shows the maximum likelihood pedigree that results without using the

sex information. Although the pedigree places the members of the Romanov

family in the correct group, the relationships are incorrect. Using age informa-

tion, having the children c3 and c6 as parents of the Tsar and Tsarina would
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have been ruled out. Using the sex information would also rule this out, as the

children were all female. Using sex information2 gives the pedigree in Figure 7,

in which the royal family group is now correctly established. Note that both

reconstructions suggest that the doctor d2 is related to two of the three servants.

Pedigrees in which s9 is the father of the doctor, and the doctor is the parent of

s8, or in which s8 and s9 are half siblings with the doctor as the common par-

ent, would be equally likely. However, these familial relationships between the

doctor and the two servants are most probably reconstruction errors resulting

from the use of only four genetic markers.

A set of simulations similar to those of Section 3.1 was carried out in which

10,000 genetic profiles for a pedigree consisting of mother, father and three

daughters were generated. Figure 8 summarizes the excess log-likelihood values

obtained from these simulations, using 4, 10 or 15 markers, and either using or

not using sex information. We see that using only 4 markers the true pedigree

is recovered in less than half the simulations without using sex information, and

in less than 30% of the simulations when sex information is used. Thus the

pedigree reconstructed in Figure 6 is not so unusual considering the low number

of markers used.

4. Discussion

This paper has presented what is believed to be the state-of-the-art algo-

rithm of an exhaustive search of pedigrees of up to 31 or so individuals, for

reconstructing pedigrees using a complete sample. The algorithm can utilize

age and sex information, but does not require either. The algorithm was ap-

plied in a simulation study on two pedigrees of twenty individuals, and on the

historical data of the Romanov mass grave skeletons. In the examples consid-

2The paper of Gill et al. (1994) states that the children are all female, and which skeletons

correspond to the Tsar and Tsarina. It does not say which sex the remaining skeletons have.

However in this case, the result will be the same regardless of how sex is assigned to the

remaining four individuals.
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Figure 6: Reconstructed pedigree of Romanov mass grave skeletons without using sex or age

information. This pedigree had a log likelihood of -86.3172. Note that reversing the parentage

assignment from s8 to d2 (so that s8 and s9 are half-siblings), or reversing both this and the

parentage assignment from d2 to s9 (so that s9 is a grandparent of s8) yield pedigrees having

the same likelihood.

Figure 7: Reconstructed pedigree of Romanov mass grave skeletons using sex but not age

information. This pedigree had a log likelihood of -89.2075.

17



No sex information, 4 markers: 5307

Excess log−likelihood

F
re

qu
en

cy

0 1 2 3 4 5

0
50

0
15

00
25

00

Using sex information, 4 markers: 3173

Excess log−likelihood

F
re

qu
en

cy
0 1 2 3 4 5

0
50

0
10

00
15

00

No sex information, 10 markers: 1085

Excess log−likelihood

F
re

qu
en

cy

0 1 2 3 4 5

0
20

0
40

0
60

0

Using sex information, 10 markers: 547

Excess log−likelihood

F
re

qu
en

cy

0 1 2 3 4 5

0
50

15
0

25
0

No sex information, 15 markers: 166

Excess log−likelihood

F
re

qu
en

cy

0 1 2 3 4 5

0
20

40
60

80
10

0

Using sex information, 15 markers: 77

Excess log−likelihood

F
re

qu
en

cy

0 1 2 3 4 5

0
10

20
30

40
50

Figure 8: Simulation results for a “Romanov family” structured pedigree consisting of mother,

father and three daughters. The number in the caption of each plot gives the total count,

out of 10,000 simulations, that the maximum likelihood exceeded the likelihood of the true

pedigree.
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Figure 9: An inadmissible pedigree. It is not possible to assign sexes to the founders such

that each child has two parents of opposite sex.

ered, the marker systems were assumed to be independent; however linked loci

can readily be handled by the method presented here, provided that a suitable

recombination model is incorporated into calculating the contributions to the

likelihood terms in (1). Similarly, the examples did not take into account pos-

sible mutation, but this too can be handled by the reconstruction algorithm

provided a suitable modification to the likelihood contributions in (1) can be

evaluated. All of the examples used STR markers, but the algorithm should

also be applicable to pedigree reconstruction using SNP data.

The algorithm can use sex information on individuals if available. The effect

of including sex information is potentially to remove some of the child-parent

triples in the Λi lists, introduced in Section 2.3, that contain a child with two

parents of the same sex. If not using sex information, the reconstructed pedigree

should be checked to ensure that sexes can be assigned to the individuals in the

pedigree in a consistent manner.3 An example of an inconsistent pedigree is

shown in Figure 9.

Age information can also be incorporated into the reconstruction algorithm,

where age constraints are available for some pairs of individuals. Thus for

example if individual i is known to be older than individual j, then j will be

excluded as a parent of i in the Λi lists. Note, however that this information will

be strictly local to exclude parent-child links only. (An exception may be that

individual j is known not to be old enough to have offspring, in which case j will

not appear as a potential parent in any Λi list.) Although such age constraints

3This consistency check was not carried out in the simulations.
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will exclude a pedigree being constructed which has j being a parent of i if j

is younger than i, it will not prevent j being considered as a grandparent or

other ancestor of i. Hence, when using age constraints, the final reconstructed

pedigree should be checked for possible violations extending beyond parent-child

relationships.

The consistency considerations of the previous two paragraphs highlight a

weakness of the current algorithm. If the maximum likelihood pedigree is found

to be inconsistent, then the algorithm does not suggest a maximum likelihood

consistent alternative. This is because the algorithm does not explicitly con-

struct all of the possible pedigrees as it goes along. Work on removing this

problem is being pursued.

There are two other notable limitations of the assumptions used in algorithm.

One is that it treats the founders in a pedigree as unrelated individuals. The

other is that the algorithm cannot take account of the presence of null alleles.

However, despite these limitations, the algorithm should prove useful in prac-

tical problems and for theoretical use. The time and memory requirement com-

plexity of the algorithm limits its practical applicability to a maximum of around

thirty or so individuals. The Romanov example showed its use in a mass-grave

scenario involving nine individuals. It also showed the apparent clustering of

the nine individuals into three distinct groups. For mass graves or other disas-

ter scenarios involving more than thirty people, it may be possible to identify

smaller subgroups of related individuals, and then carry out the reconstruction

algorithm on each subgroup. (Such an approach was suggested in Cowell and

Mostad (2003).) One way to do this is to construct an undirected graph on the

individuals as follows. Start with a graph in which the nodes are the individuals,

and there are no edges between any pair of individuals. Then join each pair of

individuals with an undirected edge if it is genetically consistent for one to be

the parent of the other. After processing all pairs of individuals, the graph will

consist of one or more connected components. The reconstruction algorithm

may be carried out on the individuals of each connected component separately,

provided the number of individuals in the component is around thirty or less.
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The other use of the algorithm is as a benchmark for monitoring the effi-

cacy of heuristic algorithms for pedigree reconstruction, such as greedy search

or Monte-Carlo search algorithms. The algorithm presented here is guaranteed

to find a maximum likelihood pedigree, thus it can be used to check the con-

vergence of other proposed methods providing an insight into their effectiveness

and efficiency, particularly for use in larger problems that cannot be handled by

the method of this paper.

References

Almudevar, A. (2003). A simulated annealing algorithm for maximum likelihood

pedigree reconstruction. Theoretical Population Biology, 63, 63–75.

Blouin, M. S. (2003). DNA-based methods for pedigree reconstruction and

kinship analysis in natural populations. TRENDS in Ecology and Evolution,

18(10), 503–511.

Buntine, W. L. (1996). A guide to the literature on learning probabilistic net-

works from data. IEEE Transactions on Knowledge and Data Engineering ,

8, 195–210.

Butler, J. M., Schoske, R., Vallone, P. M., Redman, J. W., and Kline, M. C.

(2003). Allele frequencies for 15 autosomal STR loci on U.S. Caucasian,

African American and Hispanic populations. Journal of Forensic Sciences,

48(4). Available online at www.astm.org.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction

of probabilistic networks from data. Machine Learning, 9, 309–347.

Cowell, R. G. and Mostad, P. (2003). A clustering algorithm using DNA marker

information for sub-pedigree reconstruction. Journal of Forensic Sciences,

48(6), 1239–1248.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999).

Probabilistic networks and Expert Systems . Springer.

21



Cowell, R. G., Lauritzen, S. L., and Mortera, J. (2007). A gamma model for

DNA mixture analyses. Bayesian Analysis , 2, 333–348.

Dawid, A. P., Mortera, J., Pascali, V. L., and van Boxel, D. (2002). Probabilistic

expert systems for forensic inference from genetic markers. Scandinavian

Journal of Statistics , 29, 577–595.

Egeland, T., Mostad, P. F., Mev̊ag, B., and Stenersen, M. (2000). Beyond

traditional paternity and identification cases: Selecting the most probable

pedigree. Forensic Science International , 110, 47–59.

Gill, P., Ivanov, P. L., Kimpton, C., Piercy, R., Benson, N., Tully, G., Evett, I.,

Hagelberg, E., and Sullivan, K. (1994). Identification of the remains of the

Romanov family by DNA analysis. Nature Genetics , 6, 130–135.

Heckerman, D., Geiger, D., and Chickering, D. M. (1994). Learning Bayesian

networks: the combination of knowledge and statistical data. In R. L. de Man-

taras and D. Poole, editors, Proceedings of the 10th Conference on Uncertainty

in Artificial Intelligence, pages 293–301. Morgan Kaufmann, San Francisco,

California.

Jones, A. G. and Ardren, W. R. (2003). Methods of parentage analysis in

natural populations. Molecular Ecology, 12, 2511–2523.

Koivisto, M. and Sood, K. (2004). Exact Bayesian structure discovery in

Bayesian networks. Journal of Machine Learning Research, 5, 549–573.

Lauritzen, S. L. and Sheehan, N. A. (2003). Graphical models for genetic anal-

yses. Statistical Science, 18, 489–514.

Mortera, J. (2005). Analysis of DNA mixtures using probabilistic expert sys-

tems. In P. L. Green, N. L. Hjort, and S. Richardson, editors, Highly Struc-

tured Stochastic Systems . Clarendon Press.
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