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Abstract

This paper develops an estimation and testing framework for a stationary large panel model with

observable regressors and unobservable common factors. We allow for slope heterogeneity and for

correlation between the common factors and the regressors. We propose a two stage estimation

procedure for the unobservable common factors and their loadings, based on Common Correlated

Effects estimator and the Principal Component estimator. We also develop two tests for the null

of no factor structure: one for the null that loadings are cross sectionally homogeneous, and

one for the null that common factors are homogeneous over time. Our tests are based on using

extremes of the estimated loadings and common factors. The test statistics have an asymptotic

Gumbel distribution under the null, and have power versus alternatives where only one loading

or common factor differs from the others. Monte Carlo evidence shows that the tests have the

correct size and good power.

JEL codes: C12, C33.

Keywords: Large Panels, CCE Estimator, Principal Component Estimator, Testing for Factor

Structure, Extreme Value Distribution.
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1 Introduction

Consider the following model for stationary panel data:

yit = β′
ixit + γ′ift + ǫit, (1)

xit = Λift + ǫxit, (2)

where i = 1, ..., n, t = 1, ..., T , xit is an m-dimensional vector of observable explanatory variables

and ft is an r-dimensional vector of unobservable common factors; in equation (2), Λi is a matrix of

coefficients of dimension m× r. Model (1)-(2) is based on Pesaran (2006), and it arguably has a huge

potential for empirical applications. In the context of finance, yit could represent the excess return

on an asset; then, as pointed out by Bai (2009a), ft could represent a vector of unobservable factor

returns, which are added to the observable ones (e.g. the Book-to-Market ratio) that are typically

employed. Kapetanios and Pesaran (2007) consider an APT model allowing for individual asset

returns to be affected by common factors (both observable and unobservable). In a similar setup,

Castagnetti and Rossi (2013) adopt a heterogeneous panel with a multifactor error model to study

the determinants of credit spread changes in the Euro corporate bond market. Factor models are also

useful in the context of estimating production functions, where xit is a set of observable factor inputs,

and ft allows to consider cross sectional dependence as arising from common shocks or e.g. spillover

effects determined by policy or technology shocks. For example, Eberhardt and Teal (2012) adopt

a common factor model approach to estimate cross-country production functions for the agriculture

sector. Similarly, Eberhardt, Helmers and Strauss (2013) consider the impact of spillovers in the

estimation of private returns to R&D allowing for a common factor framework. Another promising

field of application is the prediction of mortality rates (or their first difference), where the seminal

Lee-Carter model (Lee and Carter, 1992) has been extended to incorporate idiosyncratic explanatory

variables as well as the traditional factor structure - see French and O’Hare (2013) and the references

therein.

As far as conducting inference on (1) is concerned, the inferential theory on the slope coefficients

βi has been developed in various contributions. Particularly, Pesaran (2006) proposes a family of

estimators for βi based on instrumenting the fts through cross sectional averages of the xit and yit;

such estimation techniques are referred to as the Common Correlated Effects (CCE) estimators. One

of the key features of the CCE estimator is that it does not require any inference to be carried out

on γi or ft. Pesaran and Tosetti (2011) and Castagnetti and Rossi (2013) show that, in principle,
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residuals computed from (1) using CCE estimators can be used to extract γi and ft using e.g. Principal

Components (henceforth, PC). However, the properties of the estimated γi and ft are not discussed.

In addition to the CCE estimators, Bai (2009a) develops a different estimation technique for (1)-(2)

under the assumption of homogeneous slopes, i.e. βi = β. Such technique is known as the Interactive

Effect (henceforth IE) estimator, and it is based on iteratively computing β for given values of γi and

ft, and then γi and ft for a given value of β. Although results are available for the estimated triple

(β, λi, ft), inference is developed under the assumption of homogeneous βis; moreover, no explicit

asymptotics for γi or ft is derived beyond consistency. Despite this, inference on γi and ft is likely

to be important in many settings. For instance, where a multifactor error structure is employed for

the purpose of dimension reduction, or simply when explanatory variables may not be observable. In

such cases, it could be relevant to know whether there is indeed a factor structure in (1), or whether

common effects can be adequately represented by more parsimonious models such as a model with

cross-sectional or time dummies, as also studied by Sarafidis, Yamagata and Robertson (2009), and

Bai (2009a) in the context of model (1) with homogeneous slopes. In this case, the asymptotics of the

estimated common factors and loadings is obviously a first, fundamental step in order to construct

tests for the presence of a multifactor error structure.

This paper makes two contributions to the literature. Firstly, we derive the inferential theory for

the unobservable common factors ft and their coefficients γi in (1)-(2). We estimate γi and ft by

applying PC to the residuals computed from (1) using the CCE estimator. This two-stage procedure

builds on an idea of Pesaran (2006, p.1000), and Pesaran and Tosetti (2011), while the asymptotics

of the estimated (γi, ft) is studied by adapting the method of proof in Bai (2009a) to the case of

heterogeneous βis.

Secondly, we develop two tests: one for the null that γi = γ for all i, and one for the null that

ft = f for all t. The rationale for these two tests can be understood by noting that, as Pesaran (2006)

points out, model (1)-(2) nests various alternative specifications. In the case of homogeneous loadings

(i.e. γi = γ), equation (1) is tantamount to a panel regression with a time effect - therefore there is

no real common factor structure. This fact is used by Sarafidis, Yamagata and Robertson (2009) to

test for cross dependence in a dynamic panel context. Similarly, in the case of homogeneous factors

(i.e. ft = f), equation (1) boils down to a heterogeneous panel with individual effects - in this case,

too, there is no real common factor structure. Therefore, the two tests described above can be used

to verify whether a factor structure in (1)-(2) indeed exists, or whether simpler specifications nested

in (1)-(2) should be employed. Both tests should therefore be employed before trying to estimate any
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factor structure, including the number of common factors, as we also discuss in Section 3. In this

respect, our paper is related to a recent contribution by Baltagi, Kao, and Na (2012), who propose

an approach based on finite sample corrections and wild bootstrap to testing for H0 : γi = 0 in a

standard panel factor model defined as yit = γ′ift + ǫit.

From a methodological point of view, we use statistics based on extrema of the estimated γi

and ft, in a similar fashion to the tests for slope homogeneity developed by Kapetanios (2003)

and Westerlund and Hess (2011). From a technical point of view, in our proofs we use similar

arguments to the changepoint literature (see e.g. Csörgö and Hórvath, 1997): we approximate the

sequences of estimated parameters with sequences of normals, and apply Extreme Value Theory

(EVT henceforth). In this respect, our paper is a first attempt to systematize the use of extrema

of estimated parameters in the context of a panel regression with unobservable common factors. As

far as small sample properties are concerned, we show through a Monte Carlo exercise that the tests

have correct size and satisfactory power for different levels of the signal-to-noise ratio and for several

simulation designs.

The paper is organized as follows. The estimation procedure, and the asymptotics of the estimates

of γi and ft are in Section 2; Section 3 contains results about the two tests mentioned above. Section

4 discusses alternative testing approaches. Section 5 contains a validation of our theory through

synthetic data. Section 6 concludes.

NOTATION. We use “−→” to denote the ordinary limit; “
d−→” and “

p−→” to denote convergence

in distribution and in probability respectively; and we use “a.s.” as short-hand for “almost surely”.

The Frobenius norm of a matrix A is denoted as ‖A‖ =
√
tr (A′A), where tr (A) denotes the trace

of A. Definitional equality is denoted as “≡”. Other notation is defined throughout the paper and

in Appendix.

2 Estimation

In model (1)-(2), where xit is m-dimensional and ft is r-dimensional, we consider the following

notation, which we use throughout the whole paper. We define F = (f1, ..., fT )
′
; Xi = (xi1, ..., xiT )

′
;

ǫi = (ǫi1, ..., ǫiT )
′
; yi = (yi1, ..., yiT )

′
; zit = (yit, x

′
it)

′
; zi = (zi1, ..., ziT )

′
and H̄w = n−1

∑n
i=1 zi. We
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also define the matrices M̄w = IT − H̄w

(
H̄ ′
wH̄w

)−1
H̄ ′
w and

Ci = [γi|Λ′
i]




1 01×m

βi Im


 ,

for each i. Based on this, the βis in (1) can be estimated as

β̃i =

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wyi
T

)
, (3)

which is the CCE estimator of Pesaran (2006); it holds that β̃i − βi = Op

(
1√
T

)
+ Op

(
1√
nT

)
+

Op
(
1
n

)
.

In order to estimate γi and ft, we propose the following two-step procedure.

Step 1 Estimate the βis using the CCE estimator, and compute the residuals ṽi = yi −Xiβ̃i.

Step 2 Apply the PC estimator to ṽi, obtaining γ̂i and f̂t under the restrictions F̂ ′F̂ = TIr and

n−1
∑n

i=1 γ̂iγ̂
′
i diagonal.

In Step 2, F̂ is calculated as
√
T times the r largest eigenvectors of 1

nT

∑n
i=1 ṽiṽ

′
i. Similarly, γ̂i is

computed as

γ̂i =
(
F̂ ′MXiF̂

)−1 (
F̂ ′MXiyi

)
, (4)

with MXi = IT −Xi (X
′
iXi)

−1
X ′
i. In (1), γi and ft are not separately identifiable; as is typical in

this literature, we only manage to estimate a rotation of γi and ft, say H
−1γi and H

′ft. However,

for our purposes knowing H−1γi and H
′ft is as good as knowing γi and ft. We point out that the

results in this paper do not strictly require the CCE estimator in Step 1: our results keep holding

as long as the βis are estimated at a rate Op
[
min

{
T−1/2, n−1

}]
. Thus, the CCE is only a possible

choice. Alternatives, like the Song (2013) estimator, which extends Bai (2009a) IE estimator to the

case of heterogeneous slopes, may be used instead. The Song (2013) estimator obtains the same rate

of convergence as for the CCE estimates of the individual slopes. In the remainder of the paper, we

show our results based on employing the CCE in Step 1.

Consider the following assumptions.

Assumption 1. [error terms: serial and cross sectional dependence] (i) E (ǫit) = 0 and E |ǫit|12 <

∞; (ii) (a)
∑T

t=1 |E (ǫitǫis)| ≤M for all i and s, (b)
∑n
i=1

∑n
j=1 |E (ǫitǫjs)| ≤Mn for all t and s, (c)
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∑T
t=1

∑T
s=1 |E (ǫitǫis)| ≤ MT for all i, (d)

∑n
i=1

∑n
j=1

∑T
t=1

∑T
s=1 |E (ǫitǫjs)| ≤ M (nT ); (iii) (a)

E
∣∣∣(nT )−1/2∑n

i=1

∑T
t=1 ǫit

∣∣∣
2

≤ M , (b)
∑T

t=1

∑T
s=1

∑T
v=1

∑T
u=1 |E (ǫitǫisǫiuǫiv)| ≤ MT 2, (c)

∑n
i=1

∑n
j=1

∑T
t=1

∑T
u=1 |E (ǫitǫisǫjuǫjs)| ≤ M (nT ) for all u, (d)

∑n
i=1

∑n
j=1

∑T
t=1

∑T
s=1 |E (ǫitǫktǫjsǫks)|

≤ M (nT ) for all k; (iv) (a) E
∣∣∣
∑T

t=1 ǫit

∣∣∣
r

≤ ME
∣∣∣
∑T

t=1 ǫ
2
it

∣∣∣
r/2

for all i, r < 12, (b) E |∑n
i=1 ǫit|

r ≤

ME
∣∣∑n

i=1 ǫ
2
it

∣∣r/2 for all t, r < 12.

Assumption 2. [regressors and common factors] (i) E ‖ǫxit‖
12
< ∞ and E ‖ft‖12 < ∞; (ii)

T−1
∑T
t=1 ftf

′
t
p→ Σf as T → ∞ with Σf non-singular; (iii) {ǫxit, ft} and {ǫjs} are mutually indepen-

dent for all i, j, t, s; (iv) E
∣∣∣
∑T

t=1 xitǫit

∣∣∣
r

≤ ME
∣∣∣
∑T
t=1 (xitǫit)

2
∣∣∣
r/2

for all i, r ≤ 6.

Assumption 3. [slopes and loadings] (i) {βi} is independent of
{
ǫjt, ǫ

x
jt, ft

}
for all i, j, t; (ii)

E ‖βi‖2+δ < ∞ for some δ > 0; (iii) the γis are non stochastic and such that maxi ‖γi‖ < ∞ and

n−1
∑n

i=1 γiγ
′
i → Σγ as n→ ∞ with Σγ non-singular.

Assumption 4. [Step 1 estimation] (i) lmin

(
X′

iM̄wXi

T

)
> 0; lmin

(
X′

iMFXi

T

)
> 0 and lmin

(
F ′MXiF

T

)
>

0 a.s. for all i, where lmin (·) denotes the smallest eigenvalue; (ii) C ≡ n−1
∑n
i=1 Ci has rank r ≤ m+1.

Assumption 5. [Central Limit Theorems] (i) (a) there exists a nonrandom, positive definite

matrix ΣfM,i such that p limT→∞ T−1 F ′H ′MXiHF = ΣfM,i, (b) T
−1/2F ′H ′Mxiǫi

d→ N (0,ΣfMe,i),

where ΣfMe,i = p limT→∞ T−1 F ′H ′Mxiǫiǫ
′
iMxiHF , for all i; (ii) n

−1/2
∑n

i=1 γiǫit
d→ N (0,Φγǫ,t),

where Φγǫ,t = p limn→∞ n−1 γiγ
′
iǫitǫit, for all t.

Broadly speaking, Assumptions 1-4 are needed to prove the consistency of the estimated common

factors and loadings. Assumption 4 is specific to the CCE estimator, employed in Step 1. Assumption

5 is required when deriving the asymptotic distributions.

In particular, Assumption 1 deals with the error term ǫit, and it allows for serial and cross

dependence. The conditions in parts (ii) and (iii) of the assumption resemble closely (and in some

cases are exactly the same as) those in Bai (2003) and Bai (2009a), and can be shown immediately

if ǫit is assumed to be independent. Part (i) requires the existence of the 12-th moment of ǫit, which

is stronger than what the literature normally considers - e.g. in Bai (2009a), assuming E |ǫit|8 < ∞

suffices. In our context, the existence of the 12-th moment is needed in order to derive consistency

of γ̂i and f̂t (see in particular the proof of Lemma A.1). Finally, part (iv) contains Burkholder-type

inequalities: these could be shown directly under more specific assumptions on the degree of serial

and cross sectional dependence. For example, part (a) holds immediately if one assumes that ǫit

is a Martingale Difference Sequence (MDS) across t (the same holds for part (b), under the MDS

assumption across i) - see e.g. Lin and Bai (2010, p.108).

As far as Assumption 2 is concerned, we allow for serial and cross sectional dependence in both
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the ǫxits and in the common factors ft. The requirement in part (ii) is standard in the literature

(see e.g. Assumption B in Bai, 2009a), and it entails that common factors are “strong” in the sense

of Chudik, Pesaran and Tosetti (2011) (see in particular Assumption 3). Finally, according to part

(iii), the xits are strictly exogenous. Assumption 3 is standard. Assumption 4 is specific to the CCE

estimator of the βis, employed in Step 1. Particularly, the rank condition in part (ii) is the same as

equation (21) in Pesaran (2006), and it guarantees the consistency of the β̃is.

Finally, Assumption 5 contains two CLT-type results which are employed when deriving the lim-

iting distributions of the estimated common factors and loadings: parts (i) and (ii) can be compared

with Assumption F in Bai (2003).

We now turn to studying the asymptotics of γ̂i and f̂t.

Theorem 1 Let Assumptions 1-4 hold; then, for every i

γ̂i −H−1γi = Op

(
1√
T

)
+Op

(
1

n

)
. (5)

Let Assumptions 1-5 hold. As (n, T ) → ∞ with
√
T
n → 0

√
T
(
γ̂i −H−1γi

) d→ N (0,Σγi) , (6)

where Σγi = Σ−1
fM,iΣfMe,iΣ

−1
fM,i and ΣfM,i and ΣfMe,i are the probability limits of T−1 (F ′H ′MXiHF )

and T−1 (F ′H ′MXiǫiǫ
′
iMXiHF ), respectively.

Theorem 1 can be compared with Theorem 2 in Bai (2003, p.147): the rates of convergence in

(5) are exactly the same. On the other hand, the limiting distribution of
√
T
(
γ̂i −H−1γi

)
in (6) is

different from the one in Theorem 2 in Bai (2003): this is due to the presence, in our context, of the

idiosyncratic regressors xit.

We use the estimator of Σγi proposed in (Bai, 2003, p.150)

Σ̂γi = (Q′
i)

−1
Φi (Qi)

−1
(7)

whereQi = T−1(F̂ ′MXiF̂ ), and Φi =D0,i +
∑q

j=1

(
1− j

q+1

) (
Dj,i +D′

j,i

)
, with Dj,i = T−1

∑T
t=j+1

f̂x
′
t f̂xt−j ǫ̂it ǫ̂it−j , where f̂xt is the t-th row of MXiF̂ and ǫ̂it = yit − β̂′

ixit − γ̂′if̂t. The bandwidth

q is chosen so that q → ∞ with q/T 1/4 → 0.

We now present the asymptotic results for f̂t.
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Theorem 2 Let Assumptions 1-4 hold; then, for every t

f̂t −H ′ft = Op

(
1√
n

)
+Op

(
1

T

)
. (8)

Let Assumptions 1-5 hold. As (n, T ) → ∞ with
√
n
T → 0

√
n
(
f̂t −H ′ft

)
d→ N (0,Σft) , (9)

where Σft = HΣfΣΓǫ,tΣfH
′ and ΣΓǫ,t = limn→∞ n−1

∑n
i=1

∑n
j=1 γiγ

′
jǫitǫjt.

Theorem 2 is the counterpart to Theorem 1 in Bai (2003, p.145). Rates of convergence and

limiting distribution are exactly the same: the presence of individual specific regressors does not

affect inference on the common factors.

By virtue of Theorem 2, the asymptotic covariance matrix of
√
n
(
f̂t −H ′ft

)
can be estimated

using equation (7) in Bai (2003, p.150). Specifically, letting ǫ̂ = (ǫ̂1, ..., ǫ̂n)
′
with ǫ̂i = [ǫ̂i1, ..., ǫ̂iT ]

′
,

and defining VnT as a diagonal matrix containing the r largest eigenvalues of 1
nT ǫ̂ǫ̂

′ in descending

order, the estimated Σft is

Σ̂ft = V −1
nT

(
1

n

n∑

i=1

γ̂iγ̂
′
iǫ̂

2
it

)
V −1
nT . (10)

Note that ΣΓǫ,t is estimated through n−1
∑n
i=1 γ̂iγ̂

′
iǫ̂

2
it, which is valid under cross sectional indepen-

dence. It is not possible, in general, to estimate ΣΓǫ,t consistently unless some ordering among the

cross sectional units is assumed - see also Bai (2003, p.150).

Combining Theorems 1 and 2, we obtain the asymptotics for the estimated common component

cit = γ′ift, defined as ĉit = γ̂′if̂t.

Corollary 1 Let Assumptions 1-4 hold; then, for all i and t

ĉit − cit = Op

(
1√
n

)
+Op

(
1√
T

)
. (11)

Let Assumptions 1-5 hold. As (n, T ) → ∞

(
1

n
γ′iΣftγi +

1

T
f ′
tΣγift

)−1/2

(ĉit − cit)
d→ N (0, 1) , (12)

where Σft is defined in Theorem 2 and Σγi in Theorem 1.
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After discussing the asymptotic properties of γ̂i and f̂t, we turn to deriving tests for the null of

no factor structure.

3 Testing for no factor structure

In this section, we discuss and compare two approaches to testing for the null of no factor structure

in (1). Motivated by Sarafidis, Yamagata and Robertson (2009), we study tests for, respectively:

(a) the null of cross-sectional homogeneity of the loadings γis; and (b) the null of homogeneity, over

time, of the fts.

Formally, we propose two tests for the null hypotheses:

Ha
0 : γi = γ for all i; (13)

Hb
0 : ft = f for all t. (14)

Both (13) and (14) entail that there is no real factor structure in (1). Consider (13) first. When Ha
0

holds, equation (1) can be rewritten as

yit = ϕt + β′
ixit + ǫit, (15)

where we have defined ϕt = γ′ft. Thus, under Ha
0 , model (1) boils down to a standard panel

specification with a time effect. Similarly, under Hb
0 in (14), equation (1) can be rewritten as

yit = ϕi + β′
ixit + ǫit, (16)

where we have defined ϕi = γ′if . Therefore, under H
b
0 , model (1) is tantamount to a standard panel

specification with a unit specific effect.

The considerations made above also entail that testing for (13) and (14) is equivalent to testing

for strong cross dependence among the yits. Sarafidis, Yamagata and Robertson (2009) propose a

test for cross dependence (albeit in a different context) based on verifying the null that loadings are

homogeneous, i.e. γi = γ. Our paper extends the contribution by Sarafidis, Yamagata and Robertson

(2009) to our context, and complements it by also considering a test for (14). A similar approach to

testing for factor structures versus models with individual or time dummies is also suggested in Bai

(2009a).
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In order to test for (13) and (14), we propose two tests based directly on the results in Section

2, i.e. on the estimates of γi and ft. Specifically, we propose two max-type statistics, where the

maximum is taken over the deviation of the individual estimate of γi (resp. of ft) with respect to

their cross-sectional (resp. time) average. This approach has been proposed, in the context of testing

for poolability with observable regressors, by Westerlund and Hess (2011), whose simulations show

that the power properties are very promising, although issues may arise in presence of ties (Hall and

Miller, 2010). In our context, we show that tests based on max-type statistics have power even versus

alternatives whereby only one unit/time period has heterogeneous loadings/common factors. Other

approaches to testing for Ha
0 and Hb

0 are discussed in Section 4.

Define ̂̄γ = n−1
∑n
i=1 γ̂i and

̂̄f = T−1
∑T

t=1 f̂t. We propose the following max-type test statistics:

Sγ,nT ≡ max
1≤i≤n

[
T
(
γ̂i − ̂̄γ

)′
Σ̂−1
γi

(
γ̂i − ̂̄γ

)]
, (17)

Sf,nT ≡ max
1≤t≤T

[
n
(
f̂t − ̂̄f

)′
Σ̂−1
ft

(
f̂t − ̂̄f

)]
. (18)

We point out that under the null hypotheses Ha
0 and Hb

0 , the spaces spanned by the loadings and

by the factors (respectively) have rank equal to one. This fact was already noted by Sarafidis,

Yamagata and Robertson (2009) who, building on it, suggest running their test setting r = 1. This

can be applied to our context also: Sγ,nT and Sf,nT can be used setting r = 1, which avoids having

to estimate r.

From a methodological perspective, this entails that tests based on (17) and (18) can be imple-

mented without prior knowledge of the number of factors: thus, testing does not require estimation

of r as a preliminary step. Indeed, we note that tests for (17) and (18) are to be implemented before

determining r. If the null is not rejected, the conclusion can be drawn that no factor structure is

needed, and either (15) or (16) is the correct specification. Conversely, if the null is rejected, then

it follows that there is a genuine factor structure. Hence, the next step is determining the number

of latent common factors r, e.g. by applying some information criteria as discussed in Bai and Ng

(2002) and Bai (2009b). The asymptotic properties of the estimated common factors, loadings and

common components are those given in Section 2.

We now report the results on tests based on Sγ,nT (Theorem 3) and on Sf,nT (Theorem 4). For

both test statistics, a heuristic preview of the main arguments used in the proofs of both theorems is

as follows. Referring to (17) as a benchmark example, we approximate the sequence of the estimation

errors
√
T
(
γ̂i −H−1γi

)
with a sequence of normally distributed random variables, plus an error term
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whose supremum taken over n is negligible. In light of this, the proofs are similar, in spirit, to the

ones found in the changepoint literature (see e.g. Csörgö and Hórvath, 1997).

3.1 Testing for Ha
0 : γi = γ

In this section we report the asymptotics of Sγ,nT under the null Ha
0 , and we analyse the consistency

of tests based on Sγ,nT . We show that, as (n, T ) → ∞ under some restrictions on the relative speed of

divergence, Sγ,nT (suitably normalised) converges to a Gumbel distribution. Further, we also show

that tests based on Sγ,nT have nontrivial power versus alternative hypotheses shrinking at a rate

Op

(√
lnn
T

)
.

Let k1 be the largest number for which E |ǫit|k1 , E ‖xit‖k1 and E ‖ft‖k1 are finite. In view of

Assumption 1, k1 ≥ 12. Consider the following assumptions, which complement Assumptions 1 and

2, imposing further conditions on the form of time and cross sectional dependence.

Assumption 6. [serial dependence] Let δ > 0 and α ∈ (1,+∞): (i) ǫit, ft and xit are L2+δ-

NED (Near Epoch Dependent) of size α on a uniform mixing base {vt}+∞
t=−∞ of size −r/ (r − 2)

and r > 2α−1
α−1 ; (ii) (a) letting V fǫiT ≡ T−1 E

[(∑T
t=1 ftǫit

)(∑T
t=1 ftǫit

)′]
, V fǫiT is positive defi-

nite uniformly in T , and as T → ∞, V fǫiT → V fǫi with
∥∥∥V fǫi

∥∥∥ < ∞, (b) the same holds for V xǫiT

≡ T−1 E

[(∑T
t=1 xitǫit

)(∑T
t=1 xitǫit

)′]
, V fxiT ≡ T−1E

(
w̄fxiT w̄

fx′
iT

)
with w̄fxiT = vec

(∑T
t=1 ftx

′
it

)
−

E
[
vec

(∑T
t=1 ftx

′
it

)]
, and V xxiT = T−1E (w̄xxiT w̄

xx′
iT ) with w̄xxiT = vec

(∑T
t=1 xitx

′
it

)
− E

[
vec

(∑T
t=1 xitx

′
it

)]
;

(iii) (a) letting wfǫkt be the k-th element of ftǫit and defining SfǫkT,m ≡ ∑m+T
t=m+1 w

fǫ
kt , there exists a

positive definite matrix Ω̄fǫ =
{
̟fǫ
kh

}
such that T−1

∣∣∣E
[
SfǫkT,mS

fǫ
hT,m

]
−̟fǫ

kh

∣∣∣ ≤ MT−ψ, for all k

and h and uniformly in m, with ψ > 0, (b) the same holds for xitǫit.

Assumption 7. [cross sectional dependence] It holds that T−1
∑T
t=1

∑T
s=1 |E (ǫitǫjs)| lnn → 0

as (n, T ) → ∞ for all i 6= j.

Assumptions 6 and 7 complement Assumptions 1 and 2, by adding further requirements on the

form of serial dependence and on the amount of cross dependence respectively.

More specifically, Assumption 6 specifies the amount of memory allowed in the series ǫit, ft and

xit - these all have, by Assumptions 1 and 2, finite moments up to order 12. The assumption is

needed in order to prove an a.s. version of the Invariance Principle (IP), and it is a quite general

specification for the form and amount of serial dependence. Part (iii) is a bound on the growth rate

of the variance of partial sums, and it is the same as equation (1.5) in Eberlein (1986); see also

Assumption A.3 in Corradi (1999).
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As far as Assumption 7 is concerned, it complements the summability conditions in Assumption

1 by allowing for some cross dependence. In essence, it requires that T−1
∑T

t=1

∑T
s=1 |E (ǫitǫjs)|

declines (faster than lnn) as n passes to infinity. This assumption is similar to the so-called “Berman

condition” (Berman, 1964), which is employed in EVT for dependent time series data; we refer to

Assumption 9 below for further explanations on how the Berman condition works in the case of time

series data. By way of comparison, Assumption 7 can be viewed as a complement to Assumption

1(ii)(d), since it contains the same summation across t. As far as the amount of cross sectional

dependence is concerned, the assumption is quite weak; as an example, it would be satisfied if T−1

∑T
t=1

∑T
s=1 |E (ǫitǫjs)| = o

(
ln−1 n

)
for all i 6= j, which is a much weaker requirement than the one

in Assumption 1(ii)(d).

Let the critical value cα,n be defined such that P (Sγ,nT ≤ cα,n) = 1− α under Ha
0 , and let Γ (·)

denote the Gamma function. It holds that:

Theorem 3 Let Assumptions 1-4 and 6-7 hold, and let (n, T ) → ∞ with

√
Tn2/k1

n
+
n4/k1

T
→ 0. (19)

Under Ha
0 , it holds that

P (AnSγ,nT ≤ x+Bn) = e−e
−x

, (20)

where An = 1
2 and Bn = ln (n)+

(
r
2 − 1

)
ln ln (n)−ln Γ

(
r
2

)
. Under the alternative Ha

1 : γi = γ+ci for

at least one i, if

T

lnn
‖ci‖2 → ∞, (21)

it holds that P (Sγ,nT > cα,n) = 1.

Theorem 3 states that Sγ,nT has a Gumbel distribution. This holds in the joint limit (n, T ) → ∞,

with the restrictions specified in (19). Since k1 ≥ 12, the latter condition requires T
n5/3 → 0, which

is marginally stricter than the condition
√
T
n → 0 needed in for (6). Also, (19) needs that n4/k1

T → 0;

this becomes, under Assumptions 1(i) and 2(i), n
T 3 → 0. It is interesting to note that, based on

equation (45) in Appendix B, if all moments exist (as is the case with Gaussian variables), then (19)

reduces to
√
T lnn
n + ln4 n

T → 0, which is essentially the same as in Theorem 1.

Equation (20) also provides a rule to calculate asymptotic critical values cα,n, which are given by

cα,n = 2Bn − ln |ln (1− α)|2 . (22)
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Thus, for a given level α, cα,n is nuisance free, and it depends only on the cross-sectional sample size,

n. A well known issue in EVT is that convergence to Extreme Value distributions is in general rather

slow. Canto e Castro (1987) shows that the rate of convergence for the maximum of a sequence of

random variables following a Gamma distribution is O
(
1/ ln2 n

)
. Unreported Monte Carlo evidence

shows that tests based on using cα,n perform quite well, although they are a bit oversized. As an

alternative, one can replace Bn with F−1
χr

(1− 1/n), where F−1
χr

(·) is the inverse of the cumulative

distribution function of a chi-square with r degrees of freedom, see Embrechts, Klüppelberg and

Mikosch (1997).

As far as consistency of the test is concerned, equation (21) shows that nontrivial power is attained

versus local alternatives shrinking at a rate Op

(√
lnn
T

)
. Thus, when using max-type statistics such

as Sγ,nT , n does not play a role in enhancing the power of the test. On the other hand, the test is

powerful as long as just one γi is different from the others.

3.2 Testing for Hb
0 : ft = f

We report the asymptotics of Sf,nT under Hb
0 , and its consistency. Similarly to the previous subsec-

tion, we show that, as (n, T ) → ∞ under some restrictions on the relative speed of divergence, Sf,nT

(suitably normalised) converges to a Gumbel distribution. Further, we also show that tests based on

Sf,nT have nontrivial power versus alternative shrinking at a rate Op

(√
lnT
n

)
.

Let k2 be the largest number such that E ‖ft‖k2 , E ‖xit‖k2 and E |ǫit|k2 are all finite. In view of

Assumptions 1 and 2, k2 ≥ 12. Consider also the following assumption, which, as in the previous

section, complement Assumptions 1 and 2 by adding further structure to the serial and cross sectional

dependence of the series.

Assumption 8. [cross sectional dependence] Let δ > 0 and α ∈ (1,+∞): (i) ǫit is L2+δ-NED

across i, of size α on a uniform mixing base {vi}+∞
i=−∞ of size−r/ (r − 2) and r > 2α−1

α−1 ; (ii) letting V ǫǫtn

= n−1 E [(
∑n

i=1 ǫit) (
∑n

i=1 ǫit)], V
ǫǫ
tn is positive definite uniformly in n, and as n → ∞, V ǫǫtn → V ǫǫt

with ‖V ǫǫt ‖ < ∞; (iii) letting Sǫmt =
∑m+n

i=m+1 ǫit there exists a positive constant ̟ǫǫ such that

n−1
∣∣E
(
Sǫ2mt

)
−̟ǫǫ

∣∣ ≤ Mn−ψ′′

uniformly in m, with ψ′′ > 0.

Assumption 9. [serial dependence] It holds that limk→∞ n−1
∑n

i=1

∑n
j=1 |E (ǫitǫjt−k)| ln k = 0

as (n, T ) → ∞.

Assumption 8 is very similar, in spirit, to Assumption 6, and it requires that ǫit is NED across

i. By virtue of Assumption 8, an a.s. IP holds for
∑n
i=1 ǫit and for

∑n
i=1 ǫ

2
it. The definition of NED
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for spatial processes has been studied in Jenish and Prucha (2012), and we refer to that paper for

details.

Assumption 9 is the so-called “Berman condition” (Berman, 1964): as mentioned when discussing

Assumption 7, standard EVT, which holds for i.i.d. data, can be applied under such condition,

yielding the same results as in the case of independence. Berman condition holds as long as serial

correlations have at least a logarithmic rate of decay, and it is a sufficient condition used to verify

more general mixing conditions which are typical of EVT (and more difficult to verify; see e.g.

Leadbetter and Rootzen, 1988). Assumption 9 is a very mild requirement: for example in the case of

ARMA processes, typically the autocovariances have an exponential rate of decay (see e.g. Hannan

and Kavalieris, 1986), which is more than enough to ensure that Assumption 9 holds. Further,

Assumption 9 can be shown to hold in contexts where the autocorrelation function is not absolutely

summable, as e.g. fractional ARIMA processes. In our context, Assumption 9 can be compared to

Assumption 1(ii)(d), and it contains the same summation across i.

Let the critical value cα,T be defined such that P (Sf,nT ≤ cα,T ) = 1−α under Hb
0 . It holds that:

Theorem 4 Let Assumptions 1-4 hold and 8-9, and let (n, T ) → ∞ with

√
nT 1/k2

T
+
T 4/k2

n
→ 0. (23)

Under Hb
0, it holds that

P [ATSf,nT ≤ x+BT ] = e−e
−x

, (24)

where AT = 1
2 and BT = ln (T )+

(
r
2 − 1

)
ln ln (T )−ln Γ

(
r
2

)
. Under the alternative Hb

1 : ft = f+ct for

at least one t, if

n

lnT
‖ct‖2 → ∞, (25)

it holds that P (Sf,nT > cα,T ) = 1.

Theorem 4 is very similar to Theorem 3; convergence to the Gumbel distribution under the null is

shown for (n, T ) → ∞ jointly under some restrictions between n and T , spelt out in (23). Specifically,

it is required that T 1/k2
√
n

T → 0; since k2 ≥ 12, the former restriction is, at most, n
T 11/6 → 0. This

is only marginally stronger than
√
n
T → 0, which is required for (9) to hold. Similarly, requiring that

T 4/k2

n → 0 entails T
n3 → 0. As in the case of Theorem 3, the test should be applied when n is not

exceedingly larger than T , and vice versa. Using (45), under the assumptions that all moments exist,

(23) becomes
√
n lnT
T + ln4 T

n → 0 - again very close to the restriction needed in Theorem 2.
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Critical values for a test of level α can be calculated as

cα,T = 2BT − ln |ln (1− α)|2 ; (26)

alternatively, BT can be approximated by F−1
χr

(1− 1/T ).

As far as power is concerned, (25) stipulates that the test is consistent versus alternatives shrinking

as O

(√
lnT
n

)
. Similarly to Theorem 3, it suffices that ft differs from f in just one period t for the

test to reject Hb
0 .

4 Discussion - other testing approaches

This section discusses other possible approaches to test for (13) and (14). We show that it is in

general not possible to use average-type statistics of the estimated γi and ft (Section 4.1). We also

discuss tests based on applying the Hausman principle to the estimated slopes (Section 4.2).

4.1 Tests based on average-type statistics

Pesaran and Yamagata (2008) suggest using averages of F -statistics in order to test for the null of

slope homogeneity in a model with observable regressors, viz.

S̃γ,nT =

√
n

2r

1

n

n∑

i=1

[
T
(
γ̂i − ̂̄γ

)′
Σ̂−1
γi

(
γ̂i − ̂̄γ

)
− r
]
, (27)

S̃f,nT =

√
T

2r

1

T

T∑

t=1

[
n
(
f̂t − ̂̄f

)′
Σ̂−1
ft

(
f̂t − ̂̄f

)
− r

]
. (28)

Similarly to the max-type statistics defined in (17) and (18), estimation of r is not required, and

tests can be carried out setting r = 1.

We show that S̃γ,nT and S̃f,nT cannot be employed in our context: in essence, this is because

S̃γ,nT and S̃f,nT diverge under the null as (n, T ) → ∞, so that tests based on (27) and (28) always

reject the null of no factor structure.

Results are summarized in the following Theorem:

Theorem 5 Let Assumptions 1-4 hold.

1. If, in addition, as (n, T ) → ∞

1√
n

n∑

i=1

[
ǫ′iMxiFΣ

−1
fMe,iF

′MXiǫi − r
]
= Op (1) , (29)

15



then, under Ha
0 it holds that S̃γ,nT = Op (1) + Op

(√
T
n

)
+ Op

(√
n
T

)
.

2. If, in addition, as (n, T ) → ∞

1√
T

T∑

t=1


 1

n

n∑

i=1

n∑

j=1

γ′i

(
F̂ ′F

T

)(
F ′F̂

T

)
γjǫitǫjt − r


 = Op (1) , (30)

then, under Hb
0 it holds that S̃f,nT = Op (1) + Op (

√
n) + Op

(
n√
T

)
+ Op

(√
T
n

)
.

Theorem 5 shows that, under the respective null hypotheses, both average-type statistics diverge,

and therefore cannot be employed.

4.2 Tests based on the Hausman principle

Building on Bai (2009a, Section 9), tests could be constructed indirectly using a pooled estimator of

the βis.
1

In order to illustrate the idea, define the average slope β = E (βi). Estimation of β could be

based on pooling the estimates of the individual βis:

β̂CCE/IE =
1

n

n∑

i=1

β̃
CCE/IE
i .

We use the notation β̂CCE and β̂IE according as the β̃is are computed using the individual CCE

estimators (Pesaran, 2006) or the individual IE estimators (see Song, 2013) respectively. One can

expect that under either null Ha
0 and Hb

0 , both the CCE and the IE estimators are consistent, since no

assumption for the consistency of either estimator is violated. The Hausman principle can therefore

be applied upon finding another estimator which is consistent, and more efficient, under the null -

Bai (2009a) points out that, in the context of slope homogeneity, estimators based on the “between”

and “within” transformation should be more efficient under the null.

Testing for Ha
0 : γi = γ

Under Ha
0 , an alternative estimator for β is

β̂bw =
1

n

n∑

i=1

(
1

T

T∑

t=1

ẋitẋ
′
it

)−1(
1

T

T∑

t=1

ẋitẏit

)
,

1We wish to thank the anonymous Associate Editor for asking the question that led to the results in this Section.
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with ẋit = xit − n−1
∑n

i=1 xit and ẏit = yit − n−1
∑n
i=1 yit; this is the Mean-Group version of the

“between” estimator, as also suggested in Bai (2009a). It can be expected that, under Ha
0 , β̂

bw is

consistent and should be more efficient than β̂CCE and β̂IE . Hence, tests for Ha
0 could be based on

S
IE/CCE
γ,nT = n

(
β̂IE/CCE − β̂bw

)′ [
V ar

(
β̂IE/CCE − β̂bw

)]−1 (
β̂IE/CCE − β̂bw

)
.

Let the critical value cα,n be defined such that P
(
S
IE/CCE
γ,nT ≤ cα,n

)
= 1− α under Ha

0 . It holds

that:

Theorem 6 Let Assumptions 1, 2, 3(i)-(ii) and 4 hold. As (n, T ) → ∞ with
√
n
T → 0, under Ha

0 ,

SIEγ,nT
d→ χ2

m. Assume further that γi is i.i.d. (and independent of all other quantities) with mean γ

and E ‖γi‖2+δ <∞. Then, under the alternative Ha
1 : γi 6= γj for i 6= j, as (n, T ) → ∞ it holds that

P
(
SIEγ,nT > cα,n

)
< 1. The same results holds for SCCEγ,nT as min {n, T } → ∞.

Theorem 6 is, in essence, a negative result. It is possible to construct a test statistic that does

not diverge under the null, and which has a “standard” limiting distribution - this can be contrasted

with Theorem 7 below. However, the test is inconsistent, i.e. the power does not tend to 1 as the

sample size passes to infinity. Heuristically, this is due to the fact that, under the alternative, the

estimation error of β̂bw (rescaled by
√
n) has the extra term

1√
n

n∑

i=1

[
1

T

T∑

t=1

ẋitẋ
′
it

]−1 [
1

T

T∑

t=1

ẋitf
′
t (γi − γ)

]
;

under the (quite standard: see e.g. Assumption 3 in Pesaran, 2006) random coefficients assumption

for γi, such term has the same order of magnitude as the leading term (thus ruling out power versus

local alternatives), and it does not converge to a constant; rather, it can be shown to converge to a

normally distributed random variable. This has the effect of inflating the variance of
√
n
(
β̂IE − β̂bw

)
,

but it does not introduce any non-centrality parameter that would diverge under alternatives, whence

the result in the theorem.

Testing for Hb
0 : ft = f

Under Hb
0 , β can be estimated as

β̂wn =
1

n

n∑

i=1

(
1

T

T∑

t=1

x̄itx̄
′
it

)−1(
1

T

T∑

t=1

x̄itȳit

)
,
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where x̄it = xit − T−1
∑T
t=1 xit and ȳit = yit − T−1

∑T
t=1 yit; β̂

wn is the Mean-Group version of the

“within” estimator. Based on this, testing for Hb
0 could be done using either

S
IE/CCE
f,nT = nT

(
β̂IE/CCE − β̂wn

)′ [
V ar

(
β̂IE/CCE − β̂wn

)]−1 (
β̂IE/CCE − β̂wn

)
.

It holds that

Theorem 7 Let Assumptions 1-4 hold. As (n, T ) → ∞, under Hb
0

SIEf,nT = Op (1) +Op

(√
T

n

)
+Op

(√
n

T

)
, (31)

SCCEf,nT = Op (1) +Op

(√
T

n

)
. (32)

More specifically, as far as SIEf,nT is concerned, equation (31) states that Hausman-type tests

based on the IE estimator cannot be employed, as they always diverge under the null. The reason

is that, in the expansion of β̃IEi − βi, there are terms of order Op
(
n−1

)
+ Op

(
T−1

)
, which do not

get averaged out when calculating the cross-sectional averages. Thus, the impact of such terms on
√
nT
(
β̂IE − β

)
is of order Op

(√
n
T

)
+ Op

(√
T
n

)
, which diverges as (n, T ) → ∞. As far as SCCEf,nT

is concerned, equation (32) states that SCCEf,nT could potentially be employed, at least under the

restriction that T
n → 0. As we point out in the proof in Appendix, the problem with this approach is

that, in general, the distribution of the Op (1) term is degenerate, and it anyway depends on several

nuisance parameters in the DGP of the xits, and on ft and γi. In essence, equation (32) states that

testing for no factor structure using SCCEf,nT is fraught with difficulties and, in general, not feasible.

5 Small sample properties

In this section, we evaluate, through synthetic data, the small sample properties of estimators of γi

and ft (discussed in Section 2), and the power and size of tests for (13) and (14) based on Sγ,nT and

Sf,nT (discussed in Section 3).

The Monte Carlo settings are as follows. Based on model (1)-(2), we consider the following data

generating process (DGP):

yit = βixit + γift + ǫit, (33)

xit = µi + λift + ǫxit, (34)
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i.e. we consider model (1)-(2) with m = r = 1 - only one individual specific regressor, xit, and only

one common factor, ft. Unreported simulations show that increasing either r or m does not alter

the results. In the simulations, we generate the parameters βi and µi as i.i.d. N(1, 1). The common

factor ft, the loading λi, and both error terms ǫit and ǫ
x
it are all generated as i.i.d. N(0, 1) unless

otherwise stated. Results are reported for (n, T ) ∈ {30, 50, 100, 200} × {30, 50, 100, 200}. Finally, in

both exercises, simulations are carried out with 5000 iterations.

5.1 Small sample properties - γ̂i and f̂t

We evaluate the small sample properties of the estimators γ̂i and f̂t.

As far as f̂t is concerned, we follow the same logic as in Bai (2003). We compute the correlation

coefficient between {f̂t}Tt=1 and {ft}Tt=1, for each Monte Carlo iteration j - say ρfj . We report the

average correlation coefficients, i.e. J−1
∑J

j=1 ρ
f
j , in Table 1 (recall that J = 5000).

[Insert Table 1 somewhere here]

Table 1 illustrates that the estimated common factor f̂t is highly correlated with the unobserved

common factor ft. This reinforces the results in Bai (2003), albeit obtained in a different context,

that the estimated factors are quite good at tracking the true ones; indeed, numerical values are very

similar to those in Table 1 in Bai (2003, p.151). When n and T are ≥ 100, the estimated factors can

be treated as the true ones.

As far as γ̂i is concerned, we report confidence intervals for γi. In order to illustrate how confidence

intervals shrink as T expands, we set n = 50 and T = 20, 50, 100, 1000.

According to equation (6) in Theorem 1, as (n, T ) → ∞ with
√
T
n → 0, the 95% confidence

interval for H−1γi is given by γ̂i ± 1.96√
T

× Σ̂
1/2
γi . Further, let δ̂ be the least square estimate of δ in

Γ = Γ̂δ + error, where Γ = (γ1, . . . γn)
′ and Γ̂ = (γ̂1, ..., γ̂n)

′. The 95% confidence interval for γi is

therefore obtained as δ̂ ×
(
γ̂i ± 1.96√

T
× Σ̂

1/2
γi

)
. By rotating γ̂i towards γi, we consider the confidence

interval for γi directly, reported in Figure 1.

[Insert Figure 1 somewhere here]

Figure 1 shows that, in most cases and for all combinations of n and T , the confidence intervals

contain the true value of γi. This also holds true for the case (n, T ) = (50, 1000), where the ratio
√
T
n
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is not negligible, as the theory would require. As predicted by the theory, as T grows, the confidence

intervals collapse to the true value of γi.

5.2 Small sample properties - Sγ,nT and Sf,nT

In this subsection, we report empirical rejection frequencies and power for tests based on the max-type

statistics Sγ,nT and Sf,nT defined in (17) and (18) respectively.

As far as the design of the Monte Carlo is concerned, recall that the variance of the common

components cit = γift is set equal to 1 across all experiments. We conduct our simulations for

different values of the signal-to-noise ratio V ar(cit)
σ2
ǫ

, where σ2
ǫ is the variance of ǫit, equal to

{
1
3 ,

1
2 , 1
}
.

In addition to conducting simulations under the DGP (33), we also consider two alternative

DGPs that are nested in (33), in order to assess the robustness of the tests proposed to different

specifications of (1)-(2). We firstly consider a DGP for the regressors xit that modifies (34) by not

containing common factors, viz.

xit = µi + ǫxit. (35)

In this case, cross dependence in the yits is purely due to the presence of ft in (33). The rank

condition in Assumption 3(ii) does not hold, although the CCE estimator is still consistent. Secondly,

we consider a DGP for (1) in which there are no unit specific regressors, viz.

yit = γift + ǫit; (36)

this is a pure factor model, that fits in the class of models considered by Bai (2003). In this case, it

can be argued that testing for no factor structure (either by using Sγ,nT or Sf,nT ) complements the

information criteria in Bai and Ng (2002), by being a test for r = 0. This is can also be compared

with the framework in Baltagi, Kao, and Na (2012).

Critical values have been computed by approximating Bn and BT as discussed in Section 3.

Unreported simulations show that results worsen only slightly when using the asymptotic critical

values.2

Testing for Ha
0 : γi = γ

When evaluating the empirical rejection frequencies for tests based on Sγ,nT , we run the Monte

Carlo simulations under the null γi = 1 for all i. When evaluating power, we generate the loadings

2The simulation results are available upon request.
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γi as i.i.d. N
(
1, σ2

γ

)
, reporting results for the case of σγ = 0.2. Given that ǫit is cross sectionally

uncorrelated and homoskedastic by design, Σγi is estimated as Σ̂γi = σ̂2
ǫ × T

(
F̂ ′MxiF̂

)−1

, where

σ̂2
ǫ = 1

nT

∑n
i=1

∑T
t=1 ǫ̂

2
it.

Results for size and power when using the main DGP (33)-(34) are in Table 2.

[Insert Table 2 somewhere here]

We firstly consider the empirical rejection frequencies (left panel in the table). The test has

a tendency to be oversized in small samples; as a general rule, the correct size is attained when

T ≥ 100 and n ≥ 50; indeed, when σ2
ǫ = 1 (high signal-to-noise ratio), the test has satisfactory size

properties even for T = 50. The Table also shows that, as the signal-to-noise ratio decreases (i.e., as

σ2
ǫ increases), the tendency towards small sample oversizement worsens. This is not so when T ≥ 100

and n ≥ 50: the test attains the correct size even for large values of σ2
ǫ .

As far as the power is concerned (right panel in the Table), the test has good power properties

in all cases: the power is above 50% for almost all cases. We note that, similarly to the size, the

power deteriorates as the signal-to-noise ratio decreases; when n and T are sufficiently large, this

disappears.

When considering the two alternative specifications (33)-(35) and (36), results are reported in

Tables 3 and 4.

[Insert Tables 3 and 4 somewhere here]

Results do not change much with respect to the ones in Table 2, as far as both empirical rejection

frequencies and power are concerned. Indeed, the size improves in both cases (especially when

simulations are conducted under (36)). When the signal-to-noise ratio is sufficiently high, the test

attains its nominal size for all values of n, as long as T ≥ 100.

It is interesting to note that both size and power become much better under (36) than in the

other cases. The correct size is attained as long as n ≥ 30 and T ≥ 50; moreover, the power is always

above 90% for all combinations of n and T .

Testing for Hb
0 : ft = f
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We run the Monte Carlo simulations under the null ft = 1 for all t when evaluating the size of tests

based on Sf,nT . When evaluating the power, we generate the common factors ft as i.i.d. N
(
1, σ2

f

)
,

reporting results for the case of σf = 0.2. Finally, we estimate Σft as Σft = V −1
nT σ̂

2
ǫ
1
n

∑n
i=1 λ̂iλ̂

′

iV
−1
nT

where σ̂2
ǫ = 1

nT

∑n
i=1

∑T
t=1 ǫ̂

2
it.

Results when using (33)-(34) are in Table 5.

[Insert Table 5 somewhere here]

The size of the test is almost always the correct one, with few exceptions - the test is oversized

for small T when σ2
ǫ is high. Both n and T have a quite limited impact on the results.

The test has very good power properties, especially when the signal-to-noise ratio is high. We

note that the power increases with both n and T , in a more pronounced way with n.

As in the previous subsection, we also considered size and power under the alternative specifica-

tions (33)-(35) and (36); results are in Tables 6 and 7.

[Insert Tables 6 and 7 somewhere here]

Results do not differ much, when carrying out simulations under (33)-(35), from the values in

Table 5. Actually, as it was noted for the case of Sγ,nT , results improve slightly, in particular the

power. Similar considerations hold for the empirical rejection frequencies computed under (36): the

size is always the correct one. The power is also very good, under all possible combinations of

parameters.

For the sake of completeness, we run both tests using as a first step estimator the IE proposed

by Song (2013). The size and power reported in Table 8, for the Sγ test, when the DGP is the

one in equations (33)-(34), show that the test procedure is unaffected by the choice of the first step

estimator when this is a consistent one.

[Insert Table 8 somewhere here]

Autocorrelated and heteroskedastic idiosyncratic errors
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In order to assess the finite sample properties of the two test procedures when the errors are

autocorrelated and heteroskedastic, we consider the following DGP:

ǫit = 0.5ǫit−1 + uit

uit ∼ IIDN(0, σ2
ui) σ2

ui ∼ U(0.1, 0.5)

and we make use of the HAC estimators for Σγ and Σf given by equations (7) , (10). Apart from

these features, the experiments have the same specifications as above. As far as the noise-to-signal

ratio is concerned, results are very similar to the i.i.d. cases, and we only report the cases in which

σ2
ǫ = 1 (i.e. the worst case, based on the simulations above) to save space.

[Insert Tables 9 and 10 somewhere here]

The results in Tables 9 and 10 can be compared with the i.i.d. cases in Tables 2 and 5 respectively.

In the case of non i.i.d. errors, both tests have a tendency to be oversized in small samples, (n, T ) ≤

50. However, as both dimensions are larger than 50, the empirical rejection frequencies become almost

undistinguishable from the ones computed with i.i.d. errors. As far as, the power is concerned, both

tests have good properties and are very close to the i.i.d. case.

6 Conclusions

In this contribution, we develop an inferential theory for the unobservable common factors and their

loadings in a large, stationary panel model with observable regressors. Our framework allows for

slope heterogeneity; we also allow for correlation between common factors and observable regressors,

by modelling the DGP of the observable regressors as containing the common factors, in a similar

spirit as in Pesaran (2006).

We extend the framework in Pesaran (2006) by providing a two stage estimator for the unobserved

common factors and their loading. We derive rates of convergence and limiting distribution of both

the estimated factors and loadings, using a similar method of proof to Bai (2009a). In a similar

vein to Sarafidis, Yamagata and Robertson (2009), we also develop two tests for the null of no

factor structure, based on the null that factor loadings are homogeneous, and that common factors

are homogeneous over time, respectively. In either case, the assumed factor model boils down to

a model with (time specific or unit specific) common effects, so that common features in the panel
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can be captured by inserting time dummies or unit specific dummies. The proposed test procedures

simplify the specification analysis of heterogeneous panel data models with unobserved factors. From

a methodological perspective, this entails that the tests can be implemented without prior knowledge

of the number of factors. The only thing which is needed is a consistent preliminary estimation of the

slope parameters. Building on this, we propose statistics based on extrema of the estimated loadings

and common factors. Under the null, the test statistics converge to an Extreme Value distribution.

As far as power is concerned, from a theoretical point of view our tests are consistent even under

alternatives where only one loading or common factor differs from the average. Monte Carlo evidence

shows that both tests have the correct size and good power properties.

Building on the theory developed in this paper, there are several interesting avenues for further

developments. An important case is the estimator of the βis used in Step 1. In our paper, we focus on

the CCE estimator proposed by Pesaran (2006); this estimator is easy to treat analytically, but it is

only a possible choice. In particular, our setup requires strict exogeneity, thereby ruling out e.g. the

possibility of having lagged values of the yits among the regressors. This requirement is due to the

estimation method employed in Step 1, rather than to the inference on factors and loadings per se.

Indeed, the CCE is known not to work in presence of weakly exogenous regressors (see Everaert and

Groote, 2012; and Chudik and Pesaran, 2013). However, the assumption of strict exogeneity can be

readily relaxed (accommodating e.g. for dynamic models), upon employing, in Step 1, an estimator

of the βis that is consistent at a rate Op
[
min

{
T−1/2, n−1

}]
. A possible choice for this case is the

IE estimator studied in Song (2013), which has the desired convergence rate, even in presence of

dynamic models. Alternatively, a different approach, based on unit specific estimators can be used,

by instrumenting the unobservable common factors ft using the regressors xjt for each unit i, with

i 6= j - indeed, both the CCE and the IE have a natural Instrumental Variable interpretation (see

also Bai, 2009b). Such extensions are currently under investigation of the authors.
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Appendix A: Technical Lemmas

In this Appendix and the next one, we set H = Ir in the proofs (although not in the statements of

the Lemmas), for the sake of notational simplicity. Inequalities are written, when possible, omitting

constants.

The Lemmas in this Section extend various results in Bai (2009a,b) to our framework. All proofs

rely upon the decomposition - see Proposition A.1 in Bai (2009a):

F̂ − F =
1

nT

n∑

j=1

Xj

(
β̃j − βj

)(
β̃j − βj

)′
X ′
jF̂ (37)

− 1

nT

n∑

j=1

Xj

(
β̃j − βj

)
γ′jF

′F̂ − 1

nT

n∑

j=1

Xj

(
β̃j − βj

)
ǫ′jF̂

− 1

nT

n∑

j=1

Fγj

(
β̃j − βj

)′
X ′
jF̂ − 1

nT

n∑

j=1

ǫj

(
β̃j − βj

)′
X ′
jF̂

+
1

nT

n∑

j=1

Fγjǫ
′
jF̂ +

1

nT

n∑

j=1

ǫjγ
′
jF

′F̂ +
1

nT

n∑

j=1

ǫjǫ
′
jF̂ .

In (37), the main difference with Bai (2009a) is the presence of the unit specific estimates, β̃j.

Consider also the following notation, which we use henceforth throughout Appendices A and B. We

define Υi ≡
(
X ′
iM̄wXi

)−1 (
X ′
iM̄wǫi

)
, so that we can write

β̃i − βi =

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wǫi
T

)
+

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wF

T
γi

)
(38)

= Υi + Ῡi,

for every i; by construction, Ῡi = Op
(
1
n

)
+ Op

(
1√
nT

)
. We extensively use the notation δnT =

min
{√

n,
√
T
}
and φnT = min

{
n,

√
T
}
.

Lemma A.1 Under Assumptions 1-4, it holds that, for every i, E
∥∥∥β̃i − βi

∥∥∥
r

= O
(
φ−rnT

)
, for any

r ≤ 3.

Proof. Let ‖A‖1 denote the L1-norm of a matrix A, i.e. ‖A‖1 = maxx 6=0 ‖Ax‖1 / ‖x‖1. By a

well known norm inequality (see e.g. Strang, 1988, p. 369, exercise 7.2.3), it holds that

∥∥∥β̃i − βi

∥∥∥
r

≤
∥∥∥∥∥

(
X ′
iM̄wXi

T

)−1
∥∥∥∥∥

r

1

∥∥∥∥
X ′
iM̄wǫi
T

+
X ′
iM̄wF

T
γi

∥∥∥∥
r

=

[
l−1
min

(
X ′
iM̄wXi

T

)]r ∥∥∥∥
X ′
iM̄wǫi
T

+
X ′
iM̄wF

T
γi

∥∥∥∥
r

,
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where the last equality holds by symmetry. In view of Assumption 4(i), and omitting γi by virtue of

Assumption 3(iii)

E
∥∥∥β̃i − βi

∥∥∥
r

≤ E

∥∥∥∥
X ′
iM̄wǫi
T

∥∥∥∥
r

+ E

∥∥∥∥
X ′
iM̄wF

T

∥∥∥∥
r

= I + II.

Consider I; we have I ≤ T−rE ‖X ′
iǫi‖

r
= T−rE

∥∥∥
∑T

t=1 xitǫit

∥∥∥
r

. It holds that

T−rE ‖X ′
iǫi‖

r ≤ T−rE

∣∣∣∣∣
T∑

t=1

‖xitǫit‖2
∣∣∣∣∣

r/2

≤ T−rE

∣∣∣∣∣∣
T 1−2/r

(
T∑

t=1

‖xitǫit‖r
)2/r

∣∣∣∣∣∣

r/2

(39)

≤ T−rT r/2
(

1

T

T∑

t=1

E ‖xitǫit‖r
)

≤ T−r/2
(

1

T

T∑

t=1

[
E ‖xit‖2r

]1/2 [
E |ǫit|2r

]1/2
)

= O
(
T−r/2

)
,

where we have used: Assumption 2(iv); Holder’s inequality; the Cr-inequality and Jensen’s inequality;

the Cauchy-Schwartz inequality; and the fact that, by Assumptions 1 and 2(i), E |ǫit|2r < ∞ and

E ‖xit‖2r < ∞ respectively. Using the Cauchy-Schwartz inequality in this context is more than

what is necessary, since xit and ǫit are independent. Turning to II, note that, for sufficiently

large n and omitting higher order terms,
(
H̄ ′
wH̄w

)−1
= D−1

w − D−1
w RwD

−1
w , with Dw = C′F ′FC

and ‖Rw‖ = Op
(
1
n

)
+ Op

(
1√
nT

)
- see e.g. equation (29) in Pesaran (2006). Therefore, letting

ǭ = n−1
∑n
i=1 ǫi and omitting higher order terms

X ′
iM̄wF

T
= −X

′
iFCD

−1
w ǭ′F

T 2
− F ′ǭD−1

w C′F ′Xi

T 2
(40)

−X
′
i ǭD

−1
w ǭ′F

T 2
− X ′

iFCD
−1
w RwD

−1
w C′F ′F

T 2

= −I − I ′ − II − III.

Consider E ‖I‖r; since C has full rank by Assumption 4(ii) and Dw is invertible

E ‖I‖r ≤ E

∥∥∥∥
X ′
iF

T

ǭ′F

T

∥∥∥∥
r

≤M

[
E

∥∥∥∥
X ′
iF

T

∥∥∥∥
2r
]1/2 [

E

∥∥∥∥
ǭ′F

T

∥∥∥∥
2r
]1/2

.

Consider the first term; we have T−1
∑T
t=1 E ‖xitf ′

t‖2r ≤ T−1
∑T
t=1

[
E ‖xit‖4r

]1/2 [
E ‖ft‖4r

]1/2
,
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which is finite by Assumption 2(i). As far as the second term is concerned, note

E

∥∥∥∥
ǭ′F

T

∥∥∥∥
2r

≤ T−2r
T∑

t=1

[
E ‖ft‖4r

]1/2

E

∣∣∣∣∣
1

n

n∑

i=1

ǫit

∣∣∣∣∣

4r


1/2

,

after similar passages as in equation (39). It holds that E ‖ft‖4r < ∞ by Assumption 2(i). By

using Assumption 1(iv)(b) and following thereafter a similar logic as in the proof of (39), we have

E
∣∣ 1
n

∑n
i=1 ǫit

∣∣4r = O
(
n−r/2), so that E ‖I‖r = O

(
n−r/2T−r/2). The same logic yields E ‖II‖r =

O (n−rT−r). Finally, consider III; after some passages

E ‖III‖r ≤ ‖Rw‖r
[
E

∥∥∥∥
X ′
iF

T

∥∥∥∥
2r
]1/2 [

E

∥∥∥∥
F ′F

T

∥∥∥∥
2r
]1/2

= O (‖Rw‖r) ,

again by similar passages as above. Therefore, E
∥∥∥X

′

iM̄wF
T

∥∥∥
r

= O (‖Rw‖r). Putting everything

together, the Lemma follows. QED

Lemma A.2 Under Assumptions 1-4, it holds that, for every i

A.2(i) T−1ǫ′i

(
F̂ − F

)
= Op

(
δ−2
nT

)
;

A.2(ii) n−1/2T−1
∑n

i=1 ǫ
′
i

(
F̂ − F

)
= Op

(
n−1/2

)
+Op

(
T−1

)
.

Proof. The proof of A.2(i) is very similar, and in fact simpler, than that of A.2(ii); thus we

focus on the latter only. Using (37)

n−1/2T−1
n∑

i=1

ǫ′i

(
F̂ − F

)
(41)

=
1

n
√
T

n∑

j=1

(∑n
i=1

ǫi√
n

)′
Xj

√
T

(
β̃j − βj

)(
β̃j − βj

)′ X ′
jF̂

T
− 1

n
√
T

n∑

j=1

(∑n
i=1

ǫi√
n

)′
Xj

√
T

(
β̃j − βj

)
γ′j
F ′F̂

T

− 1

nT

n∑

j=1

(∑n
i=1

ǫi√
n

)′
Xj

√
T

(
β̃j − βj

) ǫ′jF̂√
T

− 1

n
√
T

(∑n
i=1

ǫi√
n

)′
F

√
T

n∑

j=1

γj

(
β̃j − βj

)′ X ′
jF̂

T

− 1√
n

1

nT

n∑

j=1

n∑

i=1

ǫ′iǫj
(
β̃j − βj

)′ X ′
jF̂

T
+

1√
nT

1√
n

n∑

i=1

ǫ′iF√
T

1√
n

n∑

j=1

γj
ǫ′jF̂

T

+
1√
nT

1√
n

n∑

i=1

ǫ′i
1√
n

n∑

j=1

ǫjγ
′
j

F ′F̂

T
+

1

T

1

n

n∑

j=1

(∑n
i=1 ǫi√
n

)′
ǫj
ǫ′jF̂

T

= I + II + III + IV + V + V I + V II + V III.
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The proof follows very similar lines to that of Lemma A.8 in Song (2013): the only difference is

the different expansion of the estimation error β̃j−βj when using the CCE. Thus, we report only the

complete passages to determine the order of magnitude of I; the same logic applies to all the other

terms in the expansion. The only term for which passages slightly differ is V , and we report the full

blown proof for it.

Consider I; it holds that I ≤ n−1
∑n
j=1

∥∥∥
∑n

i=1
ǫ′iXj√
nT

∥∥∥
∥∥∥∥
X′

j F̂

T

∥∥∥∥
∥∥∥β̃j − βj

∥∥∥
2

. This is bounded by

E

[∥∥∥∥
∑n
i=1 ǫ

′
iXj√

nT

∥∥∥∥

∥∥∥∥∥
X ′
jF̂

T

∥∥∥∥∥
∥∥∥β̃j − βj

∥∥∥
2
]

(42)

≤
[
E

(∥∥∥β̃j − βj

∥∥∥
2p
)]1/p [

E

(∥∥∥∥
∑n
i=1 ǫ

′
iXj√

nT

∥∥∥∥

∥∥∥∥∥
X ′
jF̂

T

∥∥∥∥∥

)q]1/q

≤
[
E
∥∥∥β̃j − βj

∥∥∥
3
]2/3 [

E

∥∥∥∥
∑n

i=1 ǫ
′
iXj√

nT

∥∥∥∥
6
]1/6 

E
∥∥∥∥∥
X ′
jF̂

T

∥∥∥∥∥

6


1/6

,

using Holder’s inequality in the first line (with p = 3
2 and q = 3), and the Cauchy-Schwartz inequality

in the second line. The first term is of order O
(
φ−2
nT

)
in light of Lemma A.1. Similar passages as

in the proof of Lemma A.1 yield that both the second and third terms are of order O (1). This

entails that I = Op
(
T−1/2φ−2

nT

)
. Similar passages yield II = Op

(
T−1/2φ−1

nT

)
; III = Op

(
T−1φ−1

nT

)
;

IV = Op
(
T−1/2φ−1

nT

)
; V I = Op

(
T−1/2φ−1

nT

)
+ Op

(
δ−2
nT

)
; V II = Op

(
n−1/2

)
and V III = Op

(
T−1

)

+Op
(
n−1/2T−1/2

)
.

Consider now V , whose proof is marginally different to that of Song (2013)

V ≤


 1

n

n∑

j=1

E

∣∣∣∣∣
1√
nT

n∑

i=1

T∑

t=1

ǫitǫjt

∣∣∣∣∣

2


1/2 
 1

n

n∑

j=1

E

(∥∥∥∥∥
X ′
jF̂

T

∥∥∥∥∥
∥∥∥β̃j − βj

∥∥∥
)2


1/2

≤


 1

n

n∑

j=1

E

∣∣∣∣∣
1√
nT

n∑

i=1

T∑

t=1

ǫitǫjt

∣∣∣∣∣

2


1/2 
 1

n

n∑

j=1

E
∥∥∥β̃j − βj

∥∥∥
3



1/3 
 1

n

n∑

j=1

E

∥∥∥∥∥
X ′
jF̂

T

∥∥∥∥∥

6


1/6

=


 1

nT

n∑

j=1

E

∣∣∣∣∣
1√
nT

n∑

i=1

T∑

t=1

ǫitǫjt

∣∣∣∣∣

2


1/2

Op
(
φ−1
nT

)
,

using the Cauchy-Schwartz inequality (first line), Holder’s inequality with the same orders as in (42)

(second line) and Lemma A.1. Also, E
∣∣∣ 1√

nT

∑n
i=1

∑T
t=1 ǫitǫjt

∣∣∣
2

≤ (nT )
−1 ∑n

i=1

∑n
j=1

∑T
t=1

∑T
s=1

|E (ǫitǫktǫjsǫks)| ≤ M , by Assumption 1(iii)(d), so that V = Op
(
T−1/2φ−1

nT

)
. Putting all together,

part A.2(ii) follows. QED

29



Lemma A.3. It holds that, for every i

A.3(i) T−1X ′
i

(
F̂ − FH

)
= Op

(
δ−2
nT

)
;

A.3(ii) T−1F ′
(
F̂ − FH

)
= Op

(
δ−2
nT

)
;

A.3(iii) T−1
(
F̂ − FH

)′ (
F̂ − FH

)
= Op

(
δ−2
nT

)
.

Proof. The Lemma is a refinement of Lemma A.3 in Bai (2009a). Particularly, by Lemma A.3

in Bai (2009a) we have T−1X ′
i

(
F̂ − F

)
= op (1) and T

−1F ′
(
F̂ − F

)
= op (1).

Consider part (i). Using (37)

X ′
i

(
F̂ − F

)

T
=

1

n

n∑

j=1

X ′
iXj

T

(
β̃j − βj

)(
β̃j − βj

)′ X ′
jF̂

T

− 1

n

n∑

j=1

X ′
iXj

T

(
β̃j − βj

)
γ′j
F ′F̂

T
− 1

nT

n∑

j=1

X ′
iXj

T

(
β̃j − βj

)
ǫ′jF̂

− 1

n

n∑

j=1

X ′
iF

T
γj

(
β̃j − βj

)′ X ′
jF̂

T
− 1

n
√
T

n∑

j=1

X ′
iǫj√
T

(
β̃j − βj

)′ X ′
jF̂

T

+
1

nT

n∑

j=1

X ′
iF

T
γjǫ

′
jF̂ +

1

n
√
T

n∑

j=1

X ′
iǫj√
T
γ′j
F ′F̂

T
+

1

n
√
T

n∑

j=1

X ′
iǫj√
T

ǫ′jF̂

T

= I − II − III − IV − V + V I + V II + V III;

henceforth, we omit γi in the passages, based on Assumption 3(iii). Consider I; it is bounded by

E

(∥∥∥X
′

iXj

T

∥∥∥
∥∥∥∥
X′

j F̂

T

∥∥∥∥
∥∥∥β̃j − βj

∥∥∥
2
)
. Using the Holder’s inequality and the Cauchy-Schwartz inequality

in a similar way to (42), this is bounded by

[
E
∥∥∥X

′

iXj

T

∥∥∥
6
]1/6 [

E

∥∥∥∥
X′

j F̂

T

∥∥∥∥
6
]1/6 [

E
∥∥∥β̃j − βj

∥∥∥
3
]2/3

=

Op
(
φ−2
nT

)
. Turning to II, we have II = 1

n

∑n
j=1

X′

iXj

T

(
β̃j − βj

)
γ′j

F ′F
T +op (1), where the op (1)

term comes from T−1F ′
(
F̂ − F

)
= op (1). By (38), this is bounded by

∥∥∥ Xi√
T

∥∥∥
∥∥∥ 1
n
√
T

∑n
j=1XjΥj

∥∥∥ +

1
n

∑n
j=1

∥∥∥X
′

iXj

T

∥∥∥
∥∥Ῡj

∥∥ = IIa +IIb. Consider IIa; since

E

∥∥∥∥∥∥
1

n
√
T

n∑

j=1

XjΥj

∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥
1

n
√
T

n∑

j=1

Xj

(
X ′
jM̄wXj

T

)−1(
X ′
jM̄wǫj

T

)∥∥∥∥∥∥

2

=
1

n2T

n∑

j=1

E

∥∥∥∥∥∥
Xj

(
X ′
jM̄wXj

T

)−1(
X ′
jM̄wǫj

T

)∥∥∥∥∥∥

2

≤ 1

n2T

n∑

j=1

[
E

∥∥∥∥
Xj√
T

∥∥∥∥
2
]1/2 [

E

∥∥∥∥
X ′
jǫj√
T

∥∥∥∥
2
]1/2

= O

(
1

nT

)
,
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where we have used Assumptions 4(i), 1, 2(i); the Cauchy-Schwartz inequality; and the facts that

both E
∥∥∥ Xj√

T

∥∥∥
2

and E
∥∥∥X

′

jǫj√
T

∥∥∥
2

are finite. The latter statement can be shown as follows

E

∥∥∥∥
X ′
jǫj√
T

∥∥∥∥
2

= E

∥∥∥∥∥
1

T

T∑

t=1

T∑

s=1

xjtx
′
jsǫjtǫjs

∥∥∥∥∥ ≤ 1

T

T∑

t=1

T∑

s=1

E
∥∥xjtx′js

∥∥E |ǫjtǫjs| ≤M
1

T

T∑

t=1

T∑

s=1

E |ǫjtǫjs| ≤M ′,

using, respectively, Assumptions 2(iii), 2(i) and 1(ii)(c). Thus, IIa = Op
(
n−1/2T−1/2

)
. Turn-

ing to IIb, this is of the same order of magnitude as E
[∥∥∥X

′

iXj

T

∥∥∥
∥∥Ῡj

∥∥
]
≤
[
E

(∥∥∥X
′

iXj

T

∥∥∥
2
)]1/2

[
E
(∥∥Ῡj

∥∥2
)]1/2

; by the proof of Lemma A.1, IIb = Op
(
n−1/2δ−1

nT

)
. Thus, II = Op

(
n−1/2δ−1

nT

)
.

Turning to III, it can be decomposed into 1
n
√
T

∑n
j=1

X′

iXj

T

(
β̃j − βj

)
ǫ′jF√
T
+ 1

n

∑n
j=1

X′

iXj

T

(
β̃j − βj

)

ǫ′j(F̂−F)
T = IIIa + IIIb; IIIa is bounded by 1√

T
E
[∥∥∥X

′

iXj

T

∥∥∥
∥∥∥β̃j − βj

∥∥∥
∥∥∥ ǫ

′

jF√
T

∥∥∥
]
. Using the same

logic as above, this entails IIIa = Op
(
T−1/2φ−1

nT

)
. Similar passages and Lemma A.2(i), yield

IIIb = Op
(
φ−1
nT δ

−2
nT

)
. Term IV has the same magnitude of term II. As far as V is concerned,

using the fact that T−1X ′
i

(
F̂ − F

)
= op (1), V is bounded by T−1/2E

[∥∥∥X
′

iǫj√
T

∥∥∥
∥∥∥X

′

jF

T

∥∥∥
∥∥∥β̃j − βj

∥∥∥
]
;

a similar logic to the proof of I yields V = Op
(
T−1/2φ−1

nT

)
. Turning to V I, we have V I =

1
n
√
T

∑n
j=1

X′

iF
T

ǫ′jF√
T
+

X′

iF
T

1
n

∑n
j=1

ǫ′j(F̂−F)
T = V Ia + V Ib. Considering V Ia, similar passages as

above give V Ia = Op
(
n−1/2T−1/2

)
. Turning to V Ib, this is Op

(
δ−2
nT

)
by Lemma A.2(ii). Therefore,

V I = Op
(
δ−2
nT

)
. As far as V II is concerned, it is bounded by

∥∥∥F ′F
T

∥∥∥
∥∥∥ 1
nT

∑n
j=1X

′
iǫj

∥∥∥ + op (1). The

term
∑n

j=1X
′
iǫj is bounded by the square root of its variance, viz.

E

∥∥∥∥∥∥

T∑

t=1

T∑

s=1

xitx
′
is




n∑

j=1

n∑

k=1

ǫjtǫks



∥∥∥∥∥∥

≤
n∑

j=1

n∑

k=1

T∑

t=1

T∑

s=1

E ‖xitx′is‖E |ǫjtǫks|

≤ M

n∑

j=1

n∑

k=1

T∑

t=1

T∑

s=1

E |ǫjtǫks| ≤M ′ (nT ) .

Thus, V II = Op
(
n−1/2T−1/2

)
. Finally, V III = 1

nT

∑n
j=1

X′

iǫj√
T

ǫ′jF√
T
+ 1

n
√
T

∑n
j=1

X′

iǫj√
T

ǫ′j(F̂−F)
T =

V IIIa+V IIIb; V IIIa is bounded by

[
E
∥∥∥X

′

iǫj√
T

∥∥∥
2
]1/2 [

E
∥∥∥ ǫ

′

jF√
T

∥∥∥
2
]1/2

, which is O (1), so that V IIIa =

Op
(
T−1

)
. Similarly, V IIIb is bounded by T−1/2

[
E

(∥∥∥X
′

iǫj√
T

∥∥∥
2
)]1/2 [

E

(∥∥∥∥
ǫ′j(F̂−F)

T

∥∥∥∥
2
)]1/2

=

Op
(
T−1/2δ−2

nT

)
, using Lemma A.2(i). Putting all together, part (i) of the Lemma follows. The

proof of part (ii) follows essentially the same passages, and is therefore omitted. As far as part

(iii) is concerned, the same logic as above can be applied directly to (37), obtaining T−1/2
∥∥∥F̂ − F

∥∥∥

= Op

(∥∥∥β̃j − βj

∥∥∥
)
+Op

(
δ−1
nT

)
, whence T−1

∥∥∥F̂ − F
∥∥∥
2

= Op
(
δ−2
nT

)
. QED
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Lemma A.4 Let Assumptions 1-4 hold. Under Ha
0 that γi = γ, it holds that ̂̄γ − γ = Op

(
δ−2
nT

)

as (n, T ) → ∞.

Proof. By definition, under Ha
0

√
T (γ̂i − γ) =

(
F̂ ′MXiF̂

T

)−1

 F̂

′MXiǫi√
T

−
F̂ ′MXi

(
F̂ − F

)
γ

√
T


 ; (43)

also, under Ha
0 , it holds that ̂̄γ − γ = 1

n

∑n
i=1 (γ̂i − γ). Using (43) and neglecting higher order terms

coming from F̂ ′MXiF̂ − F ′MXiF

1

n

n∑

i=1

(γ̂i − γ) =
1

n

n∑

i=1

(F ′MXiF )
−1
F ′MXiǫi +

1

n

n∑

i=1

(F ′MXiF )
−1
(
F̂ − F

)′
MXiǫi

+
1

n

n∑

i=1

(F ′MXiF )
−1
F̂ ′MXi

(
F̂ − F

)
γ

= I + II + III.

Term I is bounded by the square root of

1

n2

n∑

i=1

n∑

j=1

E

∥∥∥∥∥

(
F ′MXiF

T

)−1(
F ′MXiǫi

T

)(
F ′MXjF

T

)−1(
F ′MXjǫj

T

)∥∥∥∥∥

≤ M
1

n2T 2

n∑

i=1

n∑

j=1

E ‖(F ′ǫi) (F
′ǫj)‖ ≤M

1

n2T 2

n∑

i=1

n∑

j=1

T∑

t=1

T∑

s=1

E ‖ftf ′
s‖E |ǫitǫjs|

≤ M ′ 1

n2T 2

n∑

i=1

n∑

j=1

T∑

t=1

T∑

s=1

E |ǫitǫjs| ≤M ′′ 1

nT
,

using, respectively, Assumptions 4(i), 2(iii), 2(i) and 1(ii)(c). Thus, I = Op

(
1√
nT

)
. Consider II; it

is bounded by

E

∥∥∥∥∥∥∥

(
F ′MXiF

T

)−1

(
F̂ − F

)′
MXiǫi

T

∥∥∥∥∥∥∥
≤ E

∥∥∥∥∥∥

ǫ′i

(
F̂ − F

)

T

∥∥∥∥∥∥
= Op

(
δ−2
nT

)
,

by Assumption 3(i) and Lemma A.2(i). Similarly, III is bounded by E
∥∥∥F̂ ′

(
F̂ − F

)∥∥∥ = Op
(
δ−2
nT

)
,

by Lemma A.3(ii). The bounds for II and III are not necessarily the sharpest ones, but are sufficient

for our purpose. Putting all together, ̂̄γ = γ +Op
(
δ−2
nT

)
. QED

Lemma A.5 Let Assumptions 1-4 hold. Under Hb
0 that ft = f , it holds that ̂̄f − f = Op

(
δ−2
nT

)

as (n, T ) → ∞.
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Proof. Consider (37) and let F̄ = f × iT ; under H
b
0 , it holds that

̂̄F − F̄ =
1

n

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

)(
β̃j − βj

)′ 1
T

T∑

t=1

xjt

− 1

n

(
F̂ ′F

T

)
n∑

j=1

γj

(
β̃j − βj

)′ 1
T

T∑

t=1

xjt −
1

nT

n∑

j=1

(
F̂ ′ǫj

)(
β̃j − βj

)′ 1
T

T∑

t=1

xjt

− 1

n

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

)
γ′j

1

T

T∑

t=1

ft −
1

n
√
T

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

) 1√
T

T∑

t=1

ǫjt

+
1

nT

n∑

j=1

(
F̂ ′ǫj

)
γ′j

1

T

T∑

t=1

ft +
1

n
√
T

(
F̂ ′F

T

)
n∑

j=1

γj
1√
T

T∑

t=1

ǫjt +
1

nT 3/2

n∑

j=1

(
F̂ ′ǫj

) 1√
T

T∑

t=1

ǫjt

= I − II − III − IV − V + V I + V II + V III.

Consider I; it is bounded byE

[∥∥∥ F̂
′Xj

T

∥∥∥
∥∥∥β̃j − βj

∥∥∥
2 ∥∥∥ 1

T

∑T
t=1 xjt

∥∥∥
]
≤ E

[∥∥∥β̃j − βj

∥∥∥
3
]2/3

E

[∥∥∥ F̂
′Xj

T

∥∥∥
6
]1/6

E

[∥∥∥ 1
T

∑T
t=1 xjt

∥∥∥
6
]1/6

= O
(
φ−2
nT

)
, using a similar logic to (42) and Lemma A.1. Similar argu-

ments yield II = Op
(
n−1/2T−1/2

)
+Op

(
n−1

)
, III = Op

(
φ−2
nT

)
, IV = Op

(
n−1/2δ−1

nT

)
, and V I =

Op
(
n−1/2T−1/2

)
. Consider V ; this is bounded by

1√
T
E

[∥∥∥∥∥
F̂ ′Xj

T

∥∥∥∥∥
∥∥∥β̃j − βj

∥∥∥
∣∣∣∣∣
1√
T

T∑

t=1

ǫjt

∣∣∣∣∣

]

≤ 1√
T


E

∥∥∥∥∥
F̂ ′Xj

T

∥∥∥∥∥

4


1/4 [

E
∥∥∥β̃j − βj

∥∥∥
2
]1/2


E

∣∣∣∣∣
1√
T

T∑

t=1

ǫjt

∣∣∣∣∣

4


1/4

=
1√
T
O (1)O

(
φ−1
nT

)
O (1) ,

using again Lemma A.1 and the fact that E
∥∥∥T−1/2

∑T
t=1 ǫjt

∥∥∥
4

= O (1) - this can be shown using

Assumption 1(iv)(b) and similar passages as in the proof of Lemma A.1. Hence, V = Op
(
T−1/2φ−1

nT

)
;

similarly, V II = Op
(
n−1/2T−1/2

)
and V III = Op

(
T−1/2δ−2

nT

)
. Putting all together, this yields

̂̄F − F̄ = Op
(
δ−2
nT

)
. QED

Lemma A.6 Let Assumptions 1-4 hold, and let k denote the largest finite moment of ǫit, ft and

xit. It holds that

A.6(i) max1≤i≤n
∥∥∥β̃i − βi

∥∥∥
2

= op
(
n2/kφ−2

nT

)
;

A.6(ii) max1≤t≤T
∥∥∥f̂t −H ′ft

∥∥∥
2

= op
(
T 2/kδ−2

nT

)
;

A.6(iii) max1≤i≤n
∥∥γ̂i −H−1γi

∥∥2 = op
(
n2/kT−1

)
+ op

(
n2/k−2T

)
;

A.6(iv) max1≤t≤T ǫ̂2it = op
(
T 2/k

)
+ op

(
T 2/kδ−2

nT

)
;
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A.6(v) max1≤t≤T
∣∣ǫ̂2it − ǫ2it

∣∣ = op
(
T 2/kδ−2

nT

)
;

A.6(vi) max1≤i≤n ǫ̂2it = op
(
n2/k

)
+ op

(
n4/kφ−2

nT

)
+ op

(
n2/k−2T

)
;

A.6(vii) max1≤i≤n
∣∣ǫ̂2it − ǫ2it

∣∣ = op
(
n4/kφ−2

nT

)
+ op

(
n2/k−2T

)
.

Proof. In the proof, we extensively use the fact that, for an arbitrary sequence of random

variables Z1, ..., Zm such that max1≤h≤mE |Zh|a ≤ M for some a > 0, it holds that

max
1≤h≤m

|Zh| = op

(
m1/a

)
. (44)

The proofs are rather repetitive, and where possible we only provide an intuition of the main argu-

ment, omitting passages.

Consider part (i). We know, from the proof of Lemma A.1, that

∥∥∥β̃i − βi

∥∥∥
2

≤
∥∥∥∥∥

(
X ′
iM̄wXi

T

)−1
∥∥∥∥∥

2

1

∥∥∥∥
X ′
iM̄wǫi
T

+
X ′
iM̄wF

T
γi

∥∥∥∥
2

≤
∥∥∥∥
X ′
iǫi
T

∥∥∥∥
2

+

∥∥∥∥
X ′
iM̄wF

T

∥∥∥∥
2

,

so that the order of magnitude of max1≤i≤n
∥∥∥β̃i − βi

∥∥∥
2

can be derived by studying T−1max1≤i≤n
∥∥T−1/2X ′

iǫi
∥∥2 and max1≤i≤n

∥∥T−1X ′
iM̄wF

∥∥2. Consider the former. By the proof of Lemma A.1,

we know that E
∥∥T−1/2X ′

iǫi
∥∥a is bounded by E ‖xitǫit‖a ≤ E ‖xit‖a |ǫit|a = E ‖xit‖a E |ǫit|a

by using Assumption 2(iii). The largest a for which this moment exists is a = k/2, whence

max1≤i≤n
∥∥T−1/2X ′

iǫi
∥∥2 = op

(
n2/k

)
. This entails T−1max1≤i≤n

∥∥T−1/2X ′
iǫi
∥∥2 = op

(
n2/kT−1

)
.

As far as max1≤i≤n
∥∥T−1X ′

iM̄wF
∥∥2 is concerned, we know from the proof of Lemma A.1 that

∥∥T−1X ′
iM̄wF

∥∥2 has magnitude Op
(
n−1/2δ−1

nT

)
. When applying max1≤i≤n, this only affects the xits.

To illustrate this, consider term I in (40): 1√
nT

max1≤i≤n
∥∥∥X

′

iFCD
−1

w

√
nǭ′F

T
√
T

∥∥∥
2

≤ 1√
nT

(
max1≤i≤n

∥∥∥ Xi√
T

∥∥∥
2
)

∥∥∥ F√
T

∥∥∥
2 ∥∥∥ ǭ′F√

nT

∥∥∥
2

. We have
∥∥T−1/2Xi

∥∥2 = T−1
∑T

t=1 x
2
it, so that, based on (44), max1≤i≤n

∥∥T−1/2Xi

∥∥2

= op
(
n2/k

)
. Therefore, the whole expression is of order op

(
n−1/2T−1/2n2/k

)
. Applying similar pas-

sages to terms II and III in (40) yields max1≤i≤n
∥∥T−1X ′

iM̄wF
∥∥2 = op

(
n2/k−1/2δ−1

nT

)
. Part (i)

follows putting everything together.

Consider part (ii). The passages of the proof are rather repetitive. The main argument is

that, based on (47), max1≤t≤T δ
−2
nt

∥∥∥f̂t −H ′ft
∥∥∥
2

is bounded by terms such as δ−2
nt

∥∥∥ 1
n

∑n
j=1

(
F̂ ′Xj

T

)

(
β̃j − βj

) (
β̃j − βj

)′∥∥∥∥
2

max1≤t≤T ‖xjt‖2, etc. This entails that, when taking the maximum across

t, the order of magnitude of the maximum is given by terms like max1≤t≤T ‖xjt‖2, max1≤t≤T ‖ft‖2

and max1≤t≤T ‖ǫjt‖2, which are of order op
(
T 2/k

)
. This provides part (ii).
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The proof of part (iii) is based on (46):

T ‖γ̂i − γi‖2 ≤

∥∥∥∥∥∥

(
F̂ ′MXiF̂

T

)−1
∥∥∥∥∥∥

2

1

∥∥∥∥∥∥
F̂ ′MXiǫi√

T
−
F̂ ′MXi

(
F̂ − F

)
γi

√
T

∥∥∥∥∥∥

2

≤
∥∥∥∥∥
F̂ ′ǫi√
T

∥∥∥∥∥

2

+

∥∥∥∥∥∥

F̂ ′
(
F̂ − F

)

√
T

∥∥∥∥∥∥

2

‖γi‖2 .

By Assumption 3(iii), max1≤i≤n
∥∥∥T−1/2F̂ ′

(
F̂ − F

)∥∥∥
2

‖γi‖2 has the same order of magnitude as
∥∥∥T−1/2F̂ ′

(
F̂ − F

)∥∥∥
2

, i.e. Op

(√
Tn−1

)
+ Op

(
T−1/2

)
. As far as max1≤i≤n

∥∥∥T−1/2F̂ ′ǫi
∥∥∥
2

is con-

cerned

max
1≤i≤n

∥∥∥∥∥
F̂ ′ǫi√
T

∥∥∥∥∥

2

≤ max
1≤i≤n

∥∥∥∥
F ′ǫi√
T

∥∥∥∥
2

+ T max
1≤i≤n

∥∥∥∥∥∥∥

(
F̂ − F

)′
ǫi

T

∥∥∥∥∥∥∥

2

= I + II.

Consider I; based on the same arguments as in (39), we have max1≤i≤n
∥∥T−1/2F ′ǫi

∥∥2 ≤max1≤i≤n T−1

∑T
t=1 ‖ftǫit‖

2. Also, E ‖ftǫit‖a ≤ E ‖ft‖aE |ǫit|a < ∞ with the largest a being a = 2k, whence

max1≤i≤n
∥∥T−1/2F ′ǫi

∥∥2 = op
(
n2/k

)
. Turning to II, max1≤i≤n

∥∥∥∥T−1
(
F̂ − F

)′
ǫi

∥∥∥∥
2

can be studied

using (41). It follows that max1≤i≤n

∥∥∥∥T−1
(
F̂ − F

)′
ǫi

∥∥∥∥
2

is bounded by the sum of terms like

max
1≤i≤n

∥∥∥∥∥∥
1

n
√
T

n∑

j=1

(
ǫ′iXj√
T

)(
β̃j − βj

)(
β̃j − βj

)′ X ′
jF̂

T

∥∥∥∥∥∥

2

≤ 1

T
max
1≤i≤n


 1

n

n∑

j=1

∥∥∥∥
ǫ′iXj√
T

∥∥∥∥
6


1/3 
 1

n

n∑

j=1

∥∥∥β̃j − βj

∥∥∥
3



4/3 
 1

n

n∑

j=1

∥∥∥∥∥
X ′
jF̂

T

∥∥∥∥∥

6


1/3

≤


 1

nT

n∑

j=1

max
1≤i≤n

∥∥∥∥
ǫ′iXj√
T

∥∥∥∥
2



 1

n

n∑

j=1

∥∥∥β̃j − βj

∥∥∥
3



4/3 
 1

n

n∑

j=1

∥∥∥∥∥
X ′
jF̂

T

∥∥∥∥∥

6


1/3

,

which follows from (42) (first line) and from the Cr-inequality (second line). Note that E
∥∥T−1/2ǫ′iXj

∥∥a

is bounded byE ‖ǫitxjt‖a ≤ E ‖xjt‖a E |ǫit|a with a = k at most. We have that max1≤i≤n
∥∥T−1/2ǫ′iXj

∥∥2 =

op
(
n2/k

)
. Applying the same logic to the squares of all the terms in (41), it follows that II =

op
(
n2/kTδ−4

nT

)
. Part (iii) follows from putting everything together.

Consider parts (iv) and (v). Using the definition of ǫ̂it:

max
1≤t≤T

ǫ̂2it ≤ max
1≤t≤T

ǫ2it +
∥∥∥β̃i − βi

∥∥∥
2

max
1≤t≤T

‖xit‖2 + ‖γ̂i − γi‖2 max
1≤t≤T

‖ft‖2

+ ‖γ̂i‖2 max
1≤t≤T

∥∥∥f̂t − ft

∥∥∥
2

= I + II + III + IV.
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Parts (iv) and (v) follow immediately from Assumptions 1 and 2. Explicit rates are derived using

the other parts of this Lemma. Parts (vi) and (vii) can be proved similarly, using

max
1≤i≤n

ǫ̂2it ≤ max
1≤i≤n

ǫ2it + max
1≤i≤n

∥∥∥β̃i − βi

∥∥∥
2

‖xit‖2 + ‖ft‖2 max
1≤i≤n

‖γ̂i − γi‖2 +
∥∥∥f̂t − ft

∥∥∥
2

max
1≤i≤n

‖γ̂i‖2 ,

and max1≤i≤n ǫ2it = op
(
n2/k

)
by (44).

Lemma A.7 Let Assumptions 1-4 hold, and let k denote the largest finite moment of ǫit, ft and

xit:

A.7(i) if, in addition, Assumption 6 holds, then
∥∥∥T−1F̂ ′F̂ −HΣfH

′
∥∥∥ = Op

(
T−1/2

)
+Op

(
n−1

)
;

A.7(ii) if, in addition, Assumption 6 holds, then max1≤i≤n
∥∥∥T−1F̂ ′MXiF̂ − ΣfM,i

∥∥∥ = Op
(
T−1/2

)
+

Op
(
n−1

)
;

A.7(iii) if, in addition, Assumption 8 holds, then max1≤t≤T
∥∥∥Σ̂Γǫ,t −H−1ΣΓǫ,t

(
H−1

)′∥∥∥ = op
(
T 2/kδ−1

nT

)
;

A.7(iv) if, in addition, Assumption 8 holds, then max1≤i≤n
∥∥∥Σ̂γ,i − Σγ,i

∥∥∥ = op

(√
Tn2/kδ−2

nT

)
;

A.7(v) if, in addition, Assumption 6 holds, then max1≤i≤n
∥∥T−1/2F ′MXiǫi −Ni

∥∥= op
(
n1/kT 1/k−1/2

)
,

where {Ni}ni=1 is a sequence of i.i.d. Gaussian random variables, with variances ΣfMe,i;

A.7(vi) if, in addition, Assumption 8 holds, then max1≤t≤T
∥∥n−1/2

∑n
i=1 γ̂iǫit −Nt

∥∥= op
(
T 1/kn1/k−1/2

)

+ op
(
T 1/kδ−1

nT

)
+ op

(
T 1/k√nδ−2

nT

)
, where {Nt}Tt=1 is a sequence of i.i.d. Gaussian random

variables, with variances ΣΓǫ,t.

Proof. As a preliminary result, note that Assumptions 1(i), 2(i) and 6(i) entail that ǫ2it, ftǫit,

xitǫit, vec (ftf
′
t), vec (ftx

′
it) and vec

(
ftf

′
tǫ

2
it

)
are all L2+δ-NED of size α′ > 1

2 on {vt}+∞
t=−∞, for each

i. These results are applications of Example 17.17 in Davidson (1994, p. 273), and are explicitly

reported in Kao, Trapani and Urga (2012; see in particular Lemmas 8 and 9 therein). Similarly,

Assumption 8 entails that ǫ2it is L2+δ-NED of size α′ > 1
2 on {vi}+∞

i=−∞, for each t.

Consider part (i), writing T−1F̂ ′F̂−Σf =
(
T−1F̂ ′F̂ − T−1F ′F

)
+
(
T−1F ′F − Σf

)
. Lemma A.3

(parts (ii) and (iii)) entails that T−1F̂ ′F̂−T−1F ′F = Op
(
δ−2
nT

)
. The CLT for NED sequences can be

applied (Theorem 24.6 and Corollary 24.7 in Davidson , 1994, p. 386-387), so thatE
∥∥T−1F ′F − Σf

∥∥2

= E
∥∥∥T−1

∑T
t=1 (ftf

′
t − Σf )

∥∥∥
2

= O
(
T−1

)
. Putting all together, part (i) follows. As far as part (ii)

is concerned, it follows immediately from noting that
∥∥∥T−1F̂ ′MXiF̂ − ΣfM,i

∥∥∥ ≤
∥∥∥T−1F̂ ′F̂ − Σf

∥∥∥ for

each i, by definition of MXi.
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As far as showing parts (iii)-(vi) is concerned, we extensively use the following result, which is an

application of Theorem 2.1 in Berkes, Liu and Wu (2013; see also Theorem 2.2 in Ling, 2007). Given

an L2+δ-NED zero mean sequence Z1, ..., Zm of size (equal to or greater than) 1
2 , such that E |Z1|k

≤ M for some k > 2, and that the conditions spelt out in Assumptions 6(ii) and 6(iii) hold; and

given a Brownian motion W (·) with E
[
W 2 (1)

]
= limm→∞ E

[(
m−1/2

∑m
h=1 Zh

)2]
, it holds that,

redefining Zh in a richer probability space

∥∥∥∥∥
1√
m

m∑

h=1

Zh −W (1)

∥∥∥∥∥ = Op

(
m1/k−1/2

)
. (45)

Results like (45) are known as “Hungarian constructions”; see, inter alia, Csörgö and Révész (1975a,b),

and Komlós, Major and Tusnády (1975, 1976); we also refer to Shorack and Wellner (1986) for a re-

view. Hungarian constructions are usually stated in terms of the partial sum processm−1/2
∑⌊mτ⌋

h=1 Zh

for τ ∈ [0, 1]; in that case, (45) is stated using the sup-norm. For our purposes, we only need to

consider τ = 1. The rate in (45) is sharp, and this result was shown, for the case of dependent data,

only very recently (Berkes, Liu and Wu, 2013). By Assumptions 6 and 8, and by the fact that, as

stated above, ǫ2it, ftǫit, xitǫit, vec (ftf
′
t), vec (ftx

′
it) and vec

(
ftf

′
tǫ

2
it

)
are all L2+δ-NED of size α′ > 1

2 ,

equation (45) can be applied to the normalized sums of all these sequences - in the case of ǫ2it, to

both sums across t and across i. As a final remark, we point out that if all moments of Zh exist (e.g.

if Zh is Gaussian), the rate in (45) becomes exponential, i.e. (45) holds with a rate Op

(
lnm√
m

)
.

We turn to the proof of part (iii) of the Lemma. We have

max
1≤t≤T

∥∥∥Σ̂Γǫ,t − ΣΓǫ,t

∥∥∥ ≤ max
1≤t≤T

∥∥∥∥∥
1

n

n∑

i=1

γiγ
′
iǫ

2
it − ΣΓǫ,t

∥∥∥∥∥+ max
1≤t≤T

∥∥∥∥∥
1

n

n∑

i=1

γ̂iγ̂
′
i

(
ǫ̂2it − ǫ2it

)
∥∥∥∥∥

+2 max
1≤t≤T

∥∥∥∥∥
1

n

n∑

i=1

γi (γ̂i − γi)
′
ǫ̂2it

∥∥∥∥∥+ max
1≤t≤T

∥∥∥∥∥
1

n

n∑

i=1

(γ̂i − γi) (γ̂i − γi)
′
ǫ̂2it

∥∥∥∥∥
= I + II + III + IV.

Consider I. Recall that the sequence zǫγ,it = γiγ
′
iǫ

2
it − ΣΓǫ,t is, as stated above, L2+δ-NED of size

α′ > 1
2 . Therefore, by Theorem 17.5(b) in Davidson (1994, p. 264), zǫγ,it is an L2+δ-mixingale

of size min
{
α′, k−1

k−2

}
> 1

2 . Using Assumption 3(iii) and Corollary 1 in Peligrad, Utev, and Wu

(2007), it follows that E
∥∥n−1/2

∑n
i=1 zǫγ,it

∥∥a ≤ ME
∣∣ǫ2it
∣∣a < ∞. By Assumption 1(i), the largest

a for which E
∥∥n−1/2

∑n
i=1 zǫγ,it

∥∥k < ∞ is k/2. Thus, max1≤t≤T
∥∥n−1/2

∑n
i=1 zǫγ,it

∥∥ = op
(
T 2/k

)
,

which entails I = op
(
T 2/kn−1/2

)
. As far as II is concerned, it has the same order of magnitude

as max1≤t≤T
∣∣ǫ̂2it − ǫ2it

∣∣, given in Lemma A.6(v). Turning to III, its order of magnitude is given by
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Op

(
‖γ̂i − γi‖2

)
max1≤t≤T ǫ̂2it, which comes from Lemma A.6(iv). Term IV is dominated. Putting

all together, part (iii) of the Lemma follows.

As far as part (iv) is concerned, the proof is similar, in spirit, to that of part (iii). Recall that

Σ̂γi = (Q′
i)

−1D0,i (Qi)
−1; the rates for Qi = T−1F̂ ′MXiF̂ are given by part (ii) of this Lemma.

Based on the definition of D0,i, we have

max
1≤i≤n

∥∥∥∥∥
1

T

T∑

t=1

f̂tf̂
′
t ǫ̂

2
it −H ′ΣfHE

(
ǫ2it
)
∥∥∥∥∥

≤ max
1≤i≤n

∥∥∥∥∥
1

T

T∑

t=1

ftf
′
tǫ

2
it −H ′ΣfHE

(
ǫ2it
)
∥∥∥∥∥+ max

1≤i≤n

∥∥∥∥∥
1

T

T∑

t=1

f̂tf̂
′
t

(
ǫ̂2it − ǫ2it

)
∥∥∥∥∥

+2 max
1≤i≤n

∥∥∥∥∥
1

T

T∑

t=1

ft

(
f̂t − ft

)′
ǫ̂2it

∥∥∥∥∥+ max
1≤i≤n

∥∥∥∥∥
1

T

T∑

t=1

(
f̂t − f̂t

)(
f̂t − f̂t

)′
ǫ̂2it

∥∥∥∥∥
= I + II + III + IV.

As far as I is concerned, the proof is similar to that of part (iii) of this Lemma, upon recalling

that ftf
′
tǫ

2
it is, across t, L2+δ-NED of size α′ > 1

2 . Indeed, the largest a for which E
∥∥ftf ′

tǫ
2
it

∥∥a

≤ E ‖ft‖2a E |ǫit|2a is a = k/2, and that T−1
∑T

t=1 ftf
′
tǫ

2
it − H ′ΣfHE

(
ǫ2it
)
= Op

(
T−1/2

)
; hence,

I = op
(
n2/kT−1/2

)
. Considering II, we have

II ≤ 1

T

T∑

t=1

∥∥∥f̂tf̂ ′
t

∥∥∥ max
1≤i≤n

∣∣ǫ̂2it − ǫ2it
∣∣

≤
[
1

T

T∑

t=1

∥∥∥f̂tf̂ ′
t

∥∥∥
2
]1/2 [

E

(
max
1≤i≤n

∣∣ǫ̂2it − ǫ2it
∣∣
)2
]1/2

;

applying Lemma A.6(v), we have II = op
(
T−2/kδ−2

nT

)
. Considering III, a similar logic as above

yields

III ≤ 1

T

T∑

t=1

∥∥∥∥ft
(
f̂t − ft

)′∥∥∥∥ max
1≤i≤n

ǫ̂2it

≤
[
1

T

T∑

t=1

∥∥∥∥ft
(
f̂t − ft

)′∥∥∥∥
2
]1/2 [

E

(
max
1≤i≤n

ǫ̂2it

)2
]1/2

;

also, [
1

T

T∑

t=1

∥∥∥∥ft
(
f̂t − ft

)′∥∥∥∥
2
]1/2

≤
√
T
1

T

T∑

t=1

∥∥∥∥ft
(
f̂t − ft

)′∥∥∥∥ = Op

(√
Tδ−2

nT

)
,

by the Cr-inequality and Lemma A.3(ii). Using Lemma A.6(vi), we have III = op
(
n2/kT 1/2δ−2

nT

)
+

op
(
n4/kT 1/2φ−2

nT δ
−2
nT

)
+ op

(
n2/k−2T 3/2δ−2

nT

)
. Term IV is dominated. Putting all together, part (iv)
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follows.

Consider now part (v). We have T−1/2F ′MXiǫi = T−1/2
∑T
t=1 ftǫit −

(
T−1

∑T
t=1 ftx

′
it

) (
T−1

∑T
t=1 xitx

′
it

)−1

T−1/2
∑T
t=1 xitǫit. Since ftǫit and xitǫit are L2+δ-NED of size α′ > 1

2 , equation (45) holds with

k∗ = 4: there are two sequences of i.i.d. Gaussian, zero mean random variables, say
{
Nfǫ
it

}T
t=1

and

{Nxǫ
it }

T
t=1, such that E

[(
Nfǫ
it

)2]
= Σfǫ,i and E

[
(Nxǫ

it )
2
]
= Σxǫ,i and T

1/k−1/2
∥∥∥T−1/2

∑T
t=1 ftǫit −

T−1/2
∑T
t=1N

fǫ
it

∥∥∥ = Op (1) and T
1/k−1/2

∥∥∥T−1/2
∑T

t=1 xitǫit − T−1/2
∑T

t=1N
xǫ
it

∥∥∥ = Op (1). Further,

by the CLT for NED processes (see e.g. Theorem 24.6 in Davidson , 1994, p. 386), T−1
∑T

t=1 ftx
′
it =

Σfx,i + Op
(
T−1/2

)
and T−1

∑T
t=1 xitx

′
it = Σxx,i + Op

(
T−1/2

)
. Putting all together, and defining the

i.i.d. Gaussian sequence Ni ≡ T−1/2
∑T

t=1N
fǫ
it − Σfx,i Σ

−1
xx,i T

−1/2
∑T

t=1N
xǫ
it , we have that T

1/k−1/2

∥∥T−1/2F ′MXiǫi −Ni
∥∥ = Op (1). Note further that, E

∥∥T−1/2F ′MXiǫi
∥∥r ≤ E

∥∥∥T−1/2
∑T
t=1 ftǫit

∥∥∥
r

;

note that ftǫit is L2+δ-NED of size α′ > 1
2 on {vt}+∞

t=−∞, which entails that it is an L2+δ-mixingale

of size min
{
α′, k−1

k−2

}
> 1

2 . Therefore, using again Corollary 1 in Peligrad, Utev, and Wu (2007),

E
∥∥∥T−1/2

∑T
t=1 ftǫit

∥∥∥
r

≤ M E ‖ftǫit‖r; by Assumptions 1(i), 2(i) and 2(iii), the largest r for which

E
∥∥T−1/2F ′MXiǫi

∥∥r < ∞ is r = k. Thus, max1≤i≤n T 1/k−1/2
∥∥T−1/2F ′MXiǫi − Ni‖ = op

(
n1/k

)
,

which proves part (v).

The proof of part (vi) is similar. Indeed, given an independent, zero mean, Gaussian sequence

{Nn
it}

n
i=1 with E (Nn

it)
2 = γiγ

′
i E

(
ǫ2it
)
, write

max
1≤t≤T

∥∥∥∥∥
1√
n

n∑

i=1

γ̂iǫit −
1√
n

n∑

i=1

Nn
it

∥∥∥∥∥

≤ max
1≤t≤T

∥∥∥∥∥
1√
n

n∑

i=1

γiǫit −
1√
n

n∑

i=1

Nn
it

∥∥∥∥∥+ max
1≤t≤T

∥∥∥∥∥
1√
n

n∑

i=1

(γ̂i − γi) ǫit

∥∥∥∥∥
= I + II.

By virtue of Assumption 8, and using similar considerations as for the proof of part (v), term I

satisfies (45) with

n1/2−1/k

∥∥∥∥∥
1√
n

n∑

i=1

γiǫit −
1√
n

n∑

i=1

Nn
it

∥∥∥∥∥ = Op (1) ;

also, the largest existing moment over t is of order k. Thus, max1≤t≤T n1/k−1/2
∥∥n−1/2

∑n
i=1 γiǫit

− n−1/2
∑n

i=1N
n
it

∥∥ = op
(
T 1/k

)
, whence I = op

(
T 1/kn1/k−1/2

)
. Consider now II. By (46), we can

write

II =
1√
n

n∑

i=1

(F ′MXiF )
−1

(F ′MXiǫi) ǫit + IIb = IIa + IIb,

where IIb contains the remainder of (γ̂i − γi). By the results in the proof of Theorem 1, and
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by using the Cauchy-Schwartz inequality, it follows immediately that IIb = op
(
T 1/k

√
nδ−2
nT

)
+

op
(
T 1/k

√
nδ−2
nT

)
. Also, IIa ≤ M n−1/2 T−1

∥∥∥
∑n

i=1

∑T
s=1 fsǫisǫit

∥∥∥, so that

IIa ≤M
1√
nT

∥∥∥∥∥
n∑

i=1

T∑

s=1

fs [ǫisǫit − E (ǫisǫit)]

∥∥∥∥∥+M
1√
nT

∥∥∥∥∥
n∑

i=1

T∑

s=1

fsE (ǫisǫit)

∥∥∥∥∥ = IIa,1 + IIa,2.

We have that IIa,1 is bounded by the square root of

E

∥∥∥∥∥∥
1

nT 2

n∑

i=1

n∑

j=1

T∑

u=1

T∑

s=1

fsf
′
u [ǫisǫit − E (ǫisǫit)] [ǫjuǫjt − E (ǫjuǫjt)]

∥∥∥∥∥∥

≤ 1

nT 2

n∑

i=1

n∑

j=1

T∑

u=1

T∑

s=1

E ‖fsf ′
u‖E |[ǫisǫit − E (ǫisǫit)] [ǫjuǫjt − E (ǫjuǫjt)]|

≤ M
1

nT 2

n∑

i=1

n∑

j=1

T∑

u=1

T∑

s=1

E |[ǫisǫit − E (ǫisǫit)] [ǫjuǫjt − E (ǫjuǫjt)]|

≤ M ′ 1

nT 2

n∑

i=1

n∑

j=1

T∑

u=1

T∑

s=1

E |ǫisǫitǫjuǫjt| ≤M ′′ 1

T
,

on account of Assumptions 2(iii) and 1(iii)(c); hence, IIa,1 = Op
(
T−1/2

)
. The same logic entails

IIa,2 = Op
(
T−1/2

)
also. Putting all together, II = op

(
T 1/kδ−1

nT

)
+ op

(
T 1/k√nδ−2

nT

)
. Defining

n−1/2
∑n

i=1N
n
it = Nt, part (vi) follows. QED
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Appendix B: Proofs

Similarly to Appendix A, in this section we set the rotation matrix H = Ir whenever possible in

order to simplify the notation.

Proof of Theorem 1. By definition, we have

√
T (γ̂i − γi) =

(
F̂ ′MXiF̂

T

)−1

 F̂

′MXiǫi√
T

−
F̂ ′MXi

(
F̂ − F

)
γi

√
T


 . (46)

We start by considering the denominator of (46):

F̂ ′MXiF̂

T
− F ′MXiF

T

=
F ′MXi

(
F̂ − F

)

T
+

(
F̂ − F

)′
MXiF

T
−

(
F̂ − F

)′
MXi

(
F̂ − F

)

T
= I + I ′ − II.

Repeated application of Lemma A.3 yields I = Op
(
δ−2
nT

)
and II = Op

(
δ−4
nT

)
. Thus, as (n, T ) → ∞,

T−1F̂ ′MXiF̂ = T−1F ′MXiF + op (1).

We turn to the numerator of (46). It holds that

F̂ ′MXiǫi√
T

=
F ′MXiǫi√

T
+

(
F̂ − F

)′
MXiǫi

√
T

= I + II.

By applying a similar logic as in the proof of Lemma A.4, it can be shown that I = Op (1). As far

as II is concerned, note

II =
√
T

(
F̂ − F

)′
ǫi

T
+

(
F̂ − F

)′
Xi

T

(
X ′
iXi

T

)−1
X ′
iǫi√
T

;

applying Lemma A.2(i) (to the first term), and Lemma A.3(i) and Assumptions 2(i) and 1(i) (to

the second term), it follows that II = Op

(√
Tδ−2

nT

)
. Thus, the numerator of (46) is of order Op (1)+

Op

(√
T
n

)
.

Finally, as (n, T ) → ∞ under the restriction
√
T
n → 0, (46) becomes

√
T (γ̂i − γi) =

(
F ′MXiF

T

)−1
F ′MXiǫi√

T
+ op (1) ;

equation (6) follows from Assumption 5(i). QED
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Proof of Theorem 2. Using (37), we can write

f̂t − ft =
1

n

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

)(
β̃j − βj

)′
xjt (47)

− 1

n

(
F̂ ′F

T

)
n∑

j=1

γj

(
β̃j − βj

)′
xjt −

1

nT

n∑

j=1

(
F̂ ′ǫj

)(
β̃j − βj

)′
xjt

− 1

n

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

)
γ′jft −

1

n

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

)
ǫjt

+
1

nT

n∑

j=1

(
F̂ ′ǫj

)
γ′jft +

1

n

(
F̂ ′F

T

)
n∑

j=1

γjǫjt +
1

nT

n∑

j=1

(
F̂ ′ǫj

)
ǫjt

= I − II − III − IV − V + V I + V II + V III.

The order of magnitude of I follows exactly from the same passages as in the proof of Lemma A.5,

with I = Op
(
φ−2
nT

)
. Consider II; omitting γj in view of Assumption 3(iii), we have

II =
1

n

(
F̂ ′F

T

)
n∑

j=1

Υ′
jxjt +

1

n

(
F̂ ′F

T

)
n∑

j=1

Ῡ′
jxjt = IIa + IIb;

we have shown that IIa = Op
(
n−1/2T−1/2

)
and IIb = Op

(
n−1/2T−1/2

)
+ Op

(
n−1

)
in the proof of

Lemma A.3, so that II = Op
(
n−1/2T−1/2

)
+Op

(
n−1

)
. Using Lemma A.3(i), it can be shown that

III = Op
(
φ−2
nT

)
. As far as IV is concerned, note that

IV =
F̂ ′
√
T

1

n
√
T

n∑

j=1

XjΥjγ
′
jft +

1

n

n∑

j=1

(
F̂ ′Xj

T

)
Ῡjγ

′
jft = IVa + IVb

Similar passages as in the proof of the order of magnitude of IIa, and the fact that E ‖ft‖ ≤M entail

IVa = Op
(
n−1/2T−1/2

)
. Similarly, IVb is bounded by ‖ft‖

[
E
∥∥∥ F̂

′Xj

T

∥∥∥
2
]1/2 [

E
∥∥Ῡj

∥∥2
]1/2

, which is

Op
(
n−1/2δ−1

nT

)
using Lemma A.1. Thus, IV = Op

(
n−1/2δ−1

nT

)
. Turning to V , we have

V =
1

n

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

)
ǫjt

=
1

n

n∑

j=1

(
F̂ ′Xj

T

)(
X ′
jM̄wXj

T

)−1(
X ′
jM̄wǫj

T

)
ǫjt

+
1

n

n∑

j=1

(
F̂ ′Xj

T

)(
X ′
jM̄wXj

T

)−1(
X ′
jM̄wF

T
γj

)
ǫjt = Va + Vb.

We start from Vb ≤ n−1
∑n

j=1

∥∥∥ F̂
′Xj

T

∥∥∥
∥∥∥∥
(
X′

jM̄wXj

T

)−1
∥∥∥∥
∥∥∥X

′

jM̄wF

T

∥∥∥ ‖γj‖ |ǫjt|. Using Assumptions
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3(iii) and 4(i), Vb is bounded by E
[∥∥∥ F̂

′Xj

T

∥∥∥
∥∥∥X

′

jM̄wF

T

∥∥∥ |ǫjt|
]
≤
(
E
∥∥∥ F̂

′Xj

T

∥∥∥
6
)1/6 (

E
∥∥∥X

′

jM̄wF

T

∥∥∥
3/2
)2/3

(
E |ǫjt|6

)1/6
= O

(
n−1

)
+ O

(
n−1/2T−1/2

)
, where the passage in the middle follows from Holder’s

inequality. Consider now Va:

Va =
1

n

n∑

j=1

(
F ′Xj

T

)(
X ′
jM̄wXj

T

)−1(
X ′
jM̄wǫj

T

)
ǫjt

+
1

n

n∑

j=1

(
F̂ − F

)′
Xj

T

(
X ′
jM̄wXj

T

)−1(
X ′
jM̄wǫj

T

)
ǫjt = Va,1 + Va,2.

Consider Va,2:

Va,2 ≤ 1

n

n∑

j=1

∥∥∥∥∥∥∥

(
F̂ − F

)′
Xj

T

∥∥∥∥∥∥∥

∥∥∥∥∥∥

(
X ′
jM̄wXj

T

)−1
∥∥∥∥∥∥

∥∥∥∥∥
X ′
jM̄wǫj

T

∥∥∥∥∥ |ǫjt|

≤ M
1

n

n∑

j=1

∥∥∥∥∥∥∥

(
F̂ − F

)′
Xj

T

∥∥∥∥∥∥∥

∥∥∥∥∥
X ′
jM̄wǫj

T

∥∥∥∥∥ |ǫjt| ,

using Assumption 4(i). Further, E

[∥∥∥∥
(F̂−F)′Xj

T

∥∥∥∥
∥∥∥X

′

jM̄wǫj
T

∥∥∥ |ǫjt|
]
≤
(
E

∥∥∥∥
(F̂−F)′Xj

T

∥∥∥∥
3/2
)2/3 (

E
∥∥∥X

′

jM̄wǫj
T

∥∥∥
6
)1/6

(
E |ǫjt|6

)1/6
, again by Holder’s inequality. Using Lemma A.3(i), Assumption 2(iv) and similar pas-

sages as in the proof of (39), and Assumption 1(i), we have Va,2 = Op
(
T−1/2δ−2

nT

)
. Turning to

Va,1

Va,1 =
1

n

n∑

j=1

(
F ′Xj

T

)(
X ′
jM̄wXj

T

)−1
X ′
jM̄wE (ǫjǫjt)

T

+
1

n

n∑

j=1

(
F ′Xj

T

)(
X ′
jM̄wXj

T

)−1
X ′
jM̄w [ǫjǫjt − E (ǫjǫjt)]

T
= Va,1,1 + Va,1,2.

By virtue of Assumption 4(i), Va,1,1 ≤ M n−1 T−2
∑n

j=1 ‖F ′Xj‖
∥∥X ′

jM̄wE (ǫjǫjt)
∥∥. We have

E
[∥∥∥F

′Xj

T

∥∥∥
∥∥∥X

′

jM̄wE(ǫjǫjt)

T

∥∥∥
]
≤
(
E
∥∥∥F

′Xj

T

∥∥∥
2
)1/2 (

E
∥∥∥X

′

jM̄wE(ǫjǫjt)

T

∥∥∥
2
)1/2

, with E
∥∥∥F

′Xj

T

∥∥∥
2

≤ M by

Assumption 2(i). Further,

E

∥∥∥∥∥
X ′
jM̄wE (ǫjǫjt)

T

∥∥∥∥∥

2

≤ 1

T 2

T∑

s=1

T∑

u=1

E [‖xjs‖ ‖xju‖]E (ǫjsǫjt)E (ǫjuǫjt)

≤ M
1

T 2

[
T∑

s=1

E (ǫjsǫjt)

]2
= O

(
1

T 2

)
,
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where we have used Assumptions 4(i), 2(i) and 1(ii)(a). Consider now Va,1,2; this is bounded by the

square root of

E





1

n2

n∑

j=1

n∑

k=1

(
F ′Xj

T

)(
F ′Xk

T

)(
X ′
jM̄wXj

T

)−1(
X ′
kM̄wXk

T

)−1

×
X ′
jM̄w [ǫjǫjt − E (ǫjǫjt)]

T

X ′
kM̄w [ǫkǫkt − E (ǫkǫkt)]

T

}
;

after some algebra, this is bounded by

E





1

n2T 2

n∑

j=1

n∑

k=1

(
F ′Xj

T

)(
F ′Xk

T

) T∑

s=1

T∑

u=1

xjsxku [ǫjsǫjt − E (ǫjsǫjt)] [ǫjuǫjt − E (ǫjuǫjt)]





=
1

n2T 2

n∑

j=1

n∑

k=1

T∑

s=1

T∑

u=1

E

[(
F ′Xj

T

)(
F ′Xk

T

)
xjsxku

]
E {[ǫjsǫjt − E (ǫjsǫjt)] [ǫjuǫjt − E (ǫjuǫjt)]}

≤ 1

n2T 2

n∑

j=1

n∑

k=1

T∑

s=1

T∑

u=1

E {[ǫjsǫjt − E (ǫjsǫjt)] [ǫjuǫjt − E (ǫjuǫjt)]}

≤ 1

nT
E

∣∣∣∣∣∣
1√
nT

n∑

j=1

T∑

s=1

[ǫjsǫjt − E (ǫjsǫjt)]

∣∣∣∣∣∣

2

,

by using Assumption 2(iii) in the second line, Assumption 2(i) in the third line, and Assumption

1(iii)(c) in the final passage. Thus, Va,1,2 = Op
(
n−1/2T−1/2

)
. Putting all together, V = Op

(
T−1

)

+ Op
(
n−1/2T−1/2

)
. The proofs of V I = Op

(
n−1/2T−1/2

)
, V II = Op

(
n−1/2

)
and V III = Op

(
δ−2
nT

)

are based on the same arguments as in Bai (2003), since the estimation error β̃j − βj does not

appear in their expression. Putting everything together, as (n, T ) → ∞ with
√
n
T → 0, the term that

dominates in the expansion of f̂t − ft is V II, whose asymptotics is exactly the same as studied in

Bai (2003, Theorem 1). QED

Proof of Theorem 3. Prior to proving the Theorem, we lay out some preliminary results and

notation. We write

γ̂i − ̂̄γ = (γi − γ̄) + (γ̂i − γi)−
(̂̄γ − γ̄

)
= ai + bi − ci.
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Under Ha
0 , ai = 0; also, bi can be rewritten as bi = γ̂i − γ̄. Using (46), we have

bi =
(
F̂ ′MXiF̂

)−1

F ′MXiǫi +
(
F̂ ′MXiF̂

)−1 (
F̂ − F

)′
MXiǫi (48)

−
(
F̂ ′MXiF̂

)−1

F̂ ′MXi

(
F̂ − F

)
γi

= b1i + b2i,

where we define b1i =
(
F̂ ′MXiF̂

)−1

F ′MXiǫi and b2i is the remainder. Further, we can write

Σ̂−1
γi = Σ−1

γi −Σ−1
γi

(
Σ̂γi − Σγi

)
Σ−1
γi +op

(∥∥∥Σ̂γi − Σγi

∥∥∥
)

for each i. Neglecting higher order terms

that depend on op

(∥∥∥Σ̂γi − Σγi

∥∥∥
)
, we have

T
(
γ̂i − ̂̄γ

)′
Σ̂−1
γi

(
γ̂i − ̂̄γ

)
(49)

= T
(
b′1iΣ

−1
γi b1i

)
+ Tb′1iΣ

−1
γi

(
Σ̂γi − Σγi

)
Σ−1
γi b1i + Tb′2iΣ̂

−1
γi b2i

+2Tb′1iΣ̂
−1
γi b2i + T

(̂̄γ − γ̄
)′
Σ̂−1
γi

(̂̄γ − γ̄
)
− 2T

(̂̄γ − γ̄
)′
Σ̂−1
γi (γ̂i − γ̄)

= T
(
b′1iΣ

−1
γi b1i

)
+ Ii + IIi + IIIi + IVi − Vi.

After this preliminary calculations, we turn to proving (20). In order to do this, we firstly show

that max1≤i≤n T
(
b′1iΣ

−1
γi b1i

)
can be approximated by the maximum of a sequence of independent

random variables with a χ2
r distribution, up to a negligible error. Given that the maximum of a

sequence of chi-squares is of order Op (lnn), the approximation error should be op (lnn) at most.

Secondly, we show that Ii − Vi in (49) are also all op (lnn) uniformly in i.

Consider max1≤i≤n T
(
b′1iΣ

−1
γi b1i

)
, and consider in particular the sequence

{√
Tb1i

}n
i=1

. It holds

that
√
Tb1i =

[
T−1F̂ ′MXiF̂

]−1 [
T−1/2F ′MXiǫi

]
. As far as the numerator of this expression is

concerned, by Lemma A.7(v) we write T−1/2F ′MXiǫi = Ni + RNi with Ni defined in Lemma A.7

as being zero mean Gaussian with covariance matrix ΣfMe,i, and RNi = op
(
n1/k1T 1/k1−1/2

)
. As far

as the denominator of
√
Tb1i is concerned, based on Lemma A.7(ii) we write

[
T−1F̂ ′MXiF̂

]−1

=

Σ−1
fM,i + RΣfM,i with RΣfM,i = Op

(
T−1/2

)
+ Op

(
n−1

)
. Hence we write

√
Tb1i =

[
Σ−1
fM,i +RΣfM,i

]
[Ni +RNi] . (50)
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Based on (50), and on the definitions of ΣfMe,i and of ΣfM,i, it holds that

T
(
b′1iΣ

−1
γi b1i

)
= N ′

iΣ
−1
fMe,iNi + 2N ′

iΣ
−1
fM,iΣ

−1
γi RNi + 2R′

NiΣ
−1
fMe,iNi (51)

+2N ′
iΣ

−1
fM,iΣ

−1
γi RΣfM,iNi + 2N ′

iΣ
−1
fM,iΣ

−1
γi RΣfM,iRNi

+R′
NiΣ

−1
fMe,iRNi + 2R′

NiΣ
−1
fM,iΣ

−1
γi RΣfM,iRNi

+N ′
iRΣfM,iΣ

−1
γi RΣfM,iNi + 2N ′

iRΣfM,iΣ
−1
γi RΣfM,iRNi

+R′
NiRΣfM,iΣ

−1
γi RΣfM,iRNi

= N ′
iΣ

−1
fMe,iNi + Ib1i + IIb1i + IIIb1i + IV b1i + V b1i + V Ib1i

+V IIb1i + V IIIb1i + IXb1
i .

We note that the distribution ofN ′
iΣ

−1
fMe,iNi is χ

2
r. We now show that, in (51), max1≤i≤n Ib1i , ...,max1≤i≤n IXb1

i

are all op (1). Consider max1≤i≤n Ib1i ; this is bounded by max1≤i≤n ‖Ni‖max1≤i≤n ‖RNi‖= op

(
n1/k1T 1/k1−1/2

√
lnn

)
,

in view of Lemma A.7(v) and the fact that max1≤i≤n ‖Ni‖ = Op

(√
lnn

)
. The same holds for

max1≤i≤n IIb1i . Turning to max1≤i≤n IIIb1i , it is bounded by max1≤i≤n ‖Ni‖2 max1≤i≤n ‖RΣfM,i‖

= Op
(
T−1/2 lnn

)
+ Op

(
n−1 lnn

)
by virtue of Lemma A.7(ii). As far as max1≤i≤n IV b1i is con-

cerned, it is bounded by max1≤i≤n ‖Ni‖ max1≤i≤n ‖RΣfM,i‖ max1≤i≤n ‖RNi‖, and therefore it is

dominated by the previously analyzed terms. Also, max1≤i≤n V b1i has the same order of magnitude

as max1≤i≤n ‖RNi‖2, thereby being dominated by the other terms. Similarly, max1≤i≤n V Ib1i is

bounded by max1≤i≤n ‖RNi‖2 max1≤i≤n ‖RΣfM,i‖, and therefore it is also dominated. Turning to

max1≤i≤n V IIb1i , it is bounded by max1≤i≤n ‖Ni‖2 max1≤i≤n ‖RΣfM,i‖2, so that it is smaller than

max1≤i≤n IIIb1i , and therefore negligible. Similarly, max1≤i≤n V IIIb1i is bounded by max1≤i≤n ‖Ni‖

max1≤i≤n ‖RΣfM,i‖2 max1≤i≤n ‖RNi‖, which is dominated by max1≤i≤n IV b1i , and thus negligible.

Finally, max1≤i≤n IXb1
i is bounded by max1≤i≤n ‖RΣfM,i‖2 max1≤i≤n ‖RNi‖2, and it is dominated.

Therefore

max
1≤i≤n

T
(
b′1iΣ

−1
γi b1i

)
= max

1≤i≤n
N ′
iΣ

−1
fMe,iNi + op

[
(nT )

1/k1

√
lnn

T

]
+Op

(
lnn√
T

)
+Op

(
lnn

n

)
. (52)

After proving that max1≤i≤n T
(
b′1iΣ

−1
γi b1i

)
can be approximated by max1≤i≤nN ′

iΣ
−1
fMe,iNi, we

turn again to equation (49). We now show that max1≤i≤n Ii, ..., max1≤i≤n Vi are all op (lnn).

Consider Ii; it holds that

max
1≤i≤n

Ii ≤
∥∥∥∥ max
1≤i≤n

T
(
b′1iΣ

−1
γi b1i

)∥∥∥∥
∥∥∥∥ max
1≤i≤n

Σ−1
γi

(
Σ̂γi − Σγi

)
Σ−1
γi

∥∥∥∥ .
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Equation (52) implies that max1≤i≤n T
(
b′1iΣ

−1
γi b1i

)
= Op (lnn); thus, applying Lemma A.7(iv),

max1≤i≤n Ii = op

(√
Tn2/k1δ−2

nT lnn
)
. Turning to max1≤i≤n IIi, note that, in equation (48), b2i

is defined as

b2i =
(
F̂ ′MXiF̂

)−1 (
F̂ − F

)′
MXiǫi −

(
F̂ ′MXiF̂

)−1

F̂ ′MXi

(
F̂ − F

)
γi;

further, by the invertibility of Σ−1
γi and Lemma A.7(iv), max1≤i≤n T

(
b′2iΣ̂

−1
γi b2i

)
has the same or-

der of magnitude as max1≤i≤n
∥∥∥
√
Tb2i

∥∥∥
2 ∥∥∥max1≤i≤nΣ

−1
γi

(
Σ̂γi − Σγi

)
Σ−1
γi

∥∥∥. Considering max1≤i≤n
∥∥∥
√
Tb2i

∥∥∥
2

, it can be evaluated by considering the orders of magnitude of max1≤i≤n

∥∥∥∥
√
T
(
F̂ ′MXiF̂

)−1

(
F̂ − F

)′
MXiǫi

∥∥∥∥
2

and of max1≤i≤n

∥∥∥∥
√
T
(
F̂ ′MXiF̂

)−1

F̂ ′MXi

(
F̂ − F

)
γi

∥∥∥
2

. The former can be

shown to be op
(
n2/k1Tδ−4

nT

)
, based on the proof of Lemma A.6(iii). The latter has the same or-

der of magnitude as
∥∥∥T−1/2F̂ ′

(
F̂ − F

)∥∥∥
2

, which is Op
(
Tδ−4

nT

)
by Lemma A.3(iii). Putting all

together, max1≤i≤n IIi = op
(
T 3/2n4/k1δ−6

nT

)
- so, max1≤i≤n IIi is dominated by max1≤i≤n Ii. Sim-

ilar passages yield that max1≤i≤n IIIi is dominated by max1≤i≤n IIi. Turning to IVi, it holds

that max1≤i≤n IVi ≤
∥∥∥
√
T
(̂̄γ − γ̄

)∥∥∥
2 ∥∥∥max1≤i≤n Σ

−1
γi

(
Σ̂γi − Σγi

)
Σ−1
γi

∥∥∥, which is op
(
Tn2/k1δ−6

nT

)
by

Lemmas A.4 and A.7(iv). Finally, max1≤i≤n Vi is bounded by
∥∥∥
√
T
(̂̄γ − γ̄

)∥∥∥ max1≤i≤n
∥∥∥
√
Tb1i

∥∥∥
∥∥∥max1≤i≤n Σ

−1
γi

(
Σ̂γi − Σγi

)
Σ−1
γi

∥∥∥ = op
(
Tn2/k1δ−4

nT lnn
)
. Putting all together, and using (52), it

holds that

max
1≤i≤n

T
(
γ̂i − ̂̄γ

)′
Σ̂−1
γi

(
γ̂i − ̂̄γ

)
= max

1≤i≤n
N ′
iΣ

−1
fMe,iNi + op

[
(nT )

1/k1

√
lnn

T

]
(53)

+op

(
n2/k1

√
T

lnn

)
+ op

(√
Tn2/k1

n
lnn

)
+ op (1) ,

where the remainders are negligible as (n, T ) → ∞ with (nT )1/k1√
T

+
√
Tn2/k1

n → 0 and n4/k1

T → 0,

which hold in light of (19). Finally, consider the sequence {Ni}ni=1: the covariance between
√
Tb1i

and
√
Tb1j is given by

E

(
F ′MXiǫiǫ

′
jMXjF

T

)
≤ E

(
F ′ǫiǫ′jF

T

)
=

1

T

T∑

t=1

T∑

s=1

E (ftf
′
sǫitǫjs)

≤ 1

T

T∑

t=1

T∑

s=1

‖E (ftf
′
s)‖ |E (ǫitǫjs)| ≤M

1

T

T∑

t=1

T∑

s=1

|E (ǫitǫjs)| ,

which tends to zero as (n, T ) → ∞ by Assumption 7. By virtue of the asymptotic independence be-

tween Ni and Nj for all i 6= j, the asymptotics of max1≤i≤nN ′
iΣ

−1
fMe,iNi is studied e.g. in Embrechts,
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Klüppelberg and Mikosch (1997, Table 3.4.4, p.156). Thus, equation (20) follows from (53).

We now finish the proof of the Theorem, analysing the power properties of the test. In order to

evaluate the presence of power when γi 6= γ̄ for some (at least one) i, after some algebra it can be

shown that, under the alternative, Sγ,nT has non-centrality parameter given by

SNCγ,nT = T max
1≤i≤n

c′iΣ̂
−1
γi ci + 2T max

1≤i≤n
c′iΣ̂

−1
γi (γ̂i − γi)− 2T max

1≤i≤n
c′iΣ̂

−1
γi

(̂̄γ − γ̄
)
= I + II − III,

with I = Op

(
T ‖ci‖2

)
by construction. Also, II is bounded by

√
T (max1≤i≤n ‖ci‖)

(
max1≤i≤n

√
T ‖γ̂i − γi‖

)
= Op

[
Tδ−2

nTn
1/k1 ‖ci‖

]
in view of Lemma A.6(iii);

similarly, III = Op

(√
Tδ−2

nT ‖ci‖
)

by Lemma A.4. Let Sγ,0nT denote the null distribution of SγnT ;

under Ha
1 it holds that

P [Sγ,nT > cα,n] = P
[
Sγ,0nT > cα,n − Sγ,NCnT

]
,

which tends to 1 if cα,n − SNCγ,nT → −∞ as (n, T ) → ∞. In view of equation (22), we know that

cα,n = O (lnn), whence (21) follows. QED

Proof of Theorem 4. The proof is very similar, in spirit, to the proof of Theorem 3, and

therefore some passages are omitted to save space. Consider the following preliminary notation and

derivations. We write

f̂t − ̂̄f = (ft − f) +
(
f̂t − ft

)
−
(̂̄f − f

)
= at + bt − ct.

Under Hb
0 , at = 0 and bt = f̂t − f ; using (47), we can write

bt =

(
F̂ ′F

T

)
1

n

n∑

i=1

γiǫit + b2t = b1t + b2t, (54)

where b2t contains terms I−V I and V III in (47). Also, for each t, Σ̂−1
ft = Σ−1

ft − Σ−1
ft

(
Σ̂ft − Σft

)
Σ−1
ft

+op

(∥∥∥Σ̂ft − Σft

∥∥∥
)
.

Neglecting higher order terms containing op

(∥∥∥Σ̂ft − Σft

∥∥∥
)
, we have

n
(
f̂t − ̂̄f

)′
Σ̂−1
ft

(
f̂t − ̂̄f

)
(55)

= n
(
b′1tΣ

−1
ft b1t

)
+ nb′1tΣ

−1
ft

(
Σ̂ft − Σ−1

ft

)
Σ−1
ft b1t + nb′2tΣ

−1
ft b2t

+2nb′1tΣ
−1
ft b2t + n

(̂̄f − f
)′

Σ̂−1
ft

(̂̄f − f
)
− 2n

(̂̄f − f
)′

Σ̂−1
ft

(
f̂t − f

)

= n
(
b′1tΣ

−1
ft b1t

)
+ It + IIt + IIIt + IVt − Vt.
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After this preliminary calculations, we now turn to proving (24). Similarly to the proof of Theorem

3, we firstly prove that max1≤t≤T n
(
b′1tΣ

−1
ft b1t

)
can be approximated by the maximum of a sequence

of random variables with a χ2
r distribution, up to a negligible error. Secondly, we show that, in (55),

max1≤t≤T It, ..., max1≤t≤T Vt are all op (lnT ) uniformly in t.

We start from max1≤t≤T n
(
b′1tΣ

−1
ft b1t

)
. We show that the sequence {√nb1t}Tt=1 can be approxi-

mated by a sequence of i.i.d. Gaussian random variables with covariance matrix Σft. To show this,

recall that by Lemma A.7(vi), we can write n−1/2
∑n
i=1 γiǫit = Nt+RNt, with Nt defined in Lemma

A.7 as being zero mean Gaussian with covariance matrix ΣΓǫ,t, and RNt = op
(
T 1/k2n1/2−1/k2

)

+ op

(
T 1/k2δ−1

nT

√
lnT

)
+ op

(
T 1/k√nδ−2

nT

√
lnT

)
. Further, T−1F̂ ′F = Σf +

(
T−1F ′F − Σf

)
+

T−1
(
F̂ − F

)′
F = Σf + Rf , with Rf = Op

(
T−1/2

)
+ Op

(
n−1

)
by Lemmas A.7(i) and A.3(ii).

Hence
√
nb1t = (Σf +Rf ) (Nt +RNt) , (56)

and

n
(
b′1tΣ̂

−1
ft b1t

)
= N ′

tΣ
−1
Γǫ,tNt + 2N ′

tΣ
−1
f Σ−1

ft RNt + 2R′
NtΣ

−1
Γǫ,tNt (57)

+2N ′
tΣ

−1
f Σ−1

ft RfNt + 2N ′
tΣ

−1
f Σ−1

ft RfRNt

+R′
NtΣ

−1
Γǫ,tRNt + 2R′

NtΣ
−1
f Σ−1

ft RfRNt

+N ′
tRfΣ

−1
ft RfNt + 2N ′

tRfΣ
−1
ft RfRNt

+RNtRfΣ
−1
ft RfRNt

= N ′
tΣ

−1
Γǫ,tNt + Ib1t + IIb1t + IIIb1t + IV b1t + V b1t + V Ib1t

+V IIb1t + V IIIb1t + IXb1
t .

Passages are very similar to those after (51) in the proof of Theorem 3. In particular, it can be shown

using Lemma A.7 that: max1≤t≤T Ib1t and max1≤t≤T IIb1t are both op

(
T 1/k2n1/2−1/k2

√
lnT

)
+

op

(
T 1/k2δ−1

nT

√
lnT

)
+ op

(
T 1/k

√
nδ−2
nT

√
lnT

)
; max1≤t≤T IIIb1t = Op

(
T−1/2 lnT

)
+ Op

(
n−1 lnT

)
;

and that max1≤t≤T IV b1t ,..., max1≤t≤T IXb1
t are all dominated and therefore negligible. Thus

max
1≤t≤T

n
(
b′1tΣ

−1
ft b1t

)
= max

1≤t≤T
N ′
tΣ

−1
Γǫ,tNt+op

[√
lnT

n
(nT )

1/k2

]
+op

(
T 1/k2

√
n lnT

T

)
+op (1) , (58)

where the approximation errors are negligible as long as (n, T ) → ∞ with T 4/k2

n → 0 and T 1/k2
√
n
T →

0.
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After showing that max1≤t≤T n
(
b′1tΣ

−1
ft b1t

)
can be approximated by max1≤t≤T N ′

tΣ
−1
Γǫ,tNt, we

turn back to equation (55). We show that max1≤t≤T It, ..., max1≤t≤T Vt in (55) are all op (lnT ). We

have that max1≤t≤T It ≤max1≤t≤T ‖√nb1t‖2 max1≤t≤T
∥∥∥Σ−1

ft

(
Σ̂ft − Σ−1

ft

)
Σ−1
ft

∥∥∥= op
(
T 2/k2δ−1

nT lnT
)

by using Lemma A.7(iii). Also, combining Lemmas A.5 and Lemma A.7(iii), we have max1≤t≤T IVt =

Op
(
nδ−4
nT

)
+ op

(
nT 2/k2δ−5

nT

)
and max1≤t≤T Vt =Op

(
nδ−3
nT

)
+ op

(
nT 2/k2δ−4

nT

)
. As far as max1≤t≤T IIt

and max1≤t≤T IIIt are concerned, studying their order of magnitude involves finding a bound for

max1≤t≤T ‖b2t‖ and max1≤t≤T ‖b2t‖2. Recall that

b2t =
1

n

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

)(
β̃j − βj

)′
xjt −

1

n

(
F̂ ′F

T

)
n∑

j=1

γj

(
β̃j − βj

)′
xjt

− 1

nT

n∑

j=1

(
F̂ ′ǫj

)(
β̃j − βj

)′
xjt −

1

n

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

)
γ′jft

− 1

n

n∑

j=1

(
F̂ ′Xj

T

)(
β̃j − βj

)
ǫjt +

1

nT

n∑

j=1

(
F̂ ′ǫj

)
γ′jft +

1

nT

n∑

j=1

(
F̂ ′ǫj

)
ǫjt.

Similar passages as in the proof of Lemma A.6(ii) yield max1≤t≤T ‖b2t‖= op
(
T 1/k2δ−2

nT

)
and max1≤t≤T ‖b2t‖2

= op
(
T 2/k2δ−4

nT

)
. We now turn to analyzing max1≤t≤T IIt and max1≤t≤T IIIt. As far as the for-

mer is concerned, max1≤t≤T IIt ≤ nmax1≤t≤T ‖b2t‖2 = op
(
T 2/k2φ−2

nT

)
. Also, max1≤t≤T IIIt ≤

√
n

max1≤t≤T ‖√nb1t‖ max1≤t≤T ‖b2t‖ =
√
n op

(
T 1/k2δ−2

nT

√
lnT

)
. Putting all together, we have

max
1≤t≤T

n
(
f̂t − ̂̄f

)′
Σ̂−1
ft

(
f̂t − ̂̄f

)
= max

1≤t≤T
N ′
tΣ

−1
Γǫ,tNt + op

[√
lnT

n
(nT )

1/k2

]
(59)

+op

(
T 2/k2

√
n

)
+ op

(
T 1/k2

√
n lnT

T

)
+ op (1) ;

under (23), the error term is negligible. Consider the sequence {Nt}Tt=1. The covariance between Nt

and Nt−k is proportional to, for (n, T ) → ∞

1

n

n∑

i=1

n∑

j=1

E
(
γiγ

′
jǫitǫjt−k

)

≤ 1

n

n∑

i=1

n∑

j=1

∥∥E
(
γiγ

′
jǫitǫjt−k

)∥∥ ≤ 1

n

n∑

i=1

n∑

j=1

∥∥γiγ′j
∥∥ |E (ǫitǫjt−k)|

≤ M
1

n

n∑

i=1

n∑

j=1

|E (ǫitǫjt−k)| ,

so that, under Assumption 9, limk,n→∞E (NtNt−k) ln k = 0. By virtue of such Berman condition,

equation (24) holds - see e.g. Theorem 3.5.1 in Leadbetter and Rootzen (1988, p.470).
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We now complete the proof of the Theorem by studying the power versus local alternatives. Under

Hb
1 , it can be shown that Sf,nT has non-centrality parameter given by

SNCf,nT = n max
1≤t≤T

c′tΣ̂
−1
ft ct + 2n max

1≤t≤T
c′tΣ̂

−1
ft

(
f̂t − ft

)
− 2n max

1≤t≤T
c′tΣ̂

−1
ft

(̂̄f − f
)

= I + II + III,

with I = Op

(
n ‖ct‖2

)
by construction. Also, II is bounded by

n (max1≤t≤T ‖ct‖) max1≤t≤T
∥∥∥
(
f̂t − ft

)∥∥∥ = Op
(
n ‖ct‖T 2/k2δ−2

nT

)
by Lemma A.6(ii); similarly, III =

Op
(
nδ−2
nT ‖ct‖

)
. Let Sf,0nT denote the null distribution of Sf,nT . Then, under H

b
1 we have

P [Sf,nT > cα,T ] = P
[
Sf,0nT > cα,T − SNCf,nT

]
;

P [Sf,nT > cα,T ] tends to 1 if cα,T − SNCf,nT → −∞ as (n, T ) → ∞; this holds because, by (26),

cα,T = O (lnT ). QED

Proof of Theorem 5. We start with S̃γ,nT . Under H
a
0 we have

√
2rS̃γ,nT =

1√
n

n∑

i=1

[
T (γ̂i − γ)

′
Σ̂−1
γi (γ̂i − γ)− r

]
+

1√
n

n∑

i=1

T
(̂̄γ − γ

)′
Σ̂−1
γi

(̂̄γ − γ
)

(60)

− 2√
n

n∑

i=1

T (γ̂i − γ)
′
Σ̂−1
γi

(̂̄γ − γ
)

= I + II − III.
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Consider I; using (43), we can write

I =
1√
n

n∑

i=1

[
ǫ′iMXiF√

T

(
F ′MXiF

T

)−1

Σ̂−1
γi

(
F ′MXiF

T

)−1
F ′MXiǫi√

T
− r

]

+
1√
n
T

n∑

i=1

ǫ′iMXi

(
F̂ − F

)

T

(
F ′MXiF

T

)−1

Σ̂−1
γi

(
F ′MXiF

T

)−1

(
F̂ − F

)′
MXiǫi

T

+
1√
n
T

n∑

i=1

γ′
(
F̂ − F

)′
MXiF̂

T

(
F ′MXiF

T

)−1

Σ̂−1
γi

(
F ′MXiF

T

)−1 F̂ ′MXi

(
F̂ − F

)
γ

T

+
2√
n

√
T

n∑

i=1

ǫ′iMXi

(
F̂ − F

)

T

(
F ′MXiF

T

)−1

Σ̂−1
γi

(
F ′MXiF

T

)−1
F ′MXiǫi√

T

+
2√
n
T

n∑

i=1

ǫ′iMXi

(
F̂ − F

)

T

(
F ′MXiF

T

)−1

Σ̂−1
γi

(
F ′MXiF

T

)−1 F̂ ′MXi

(
F̂ − F

)
γ

T

+
2√
n

√
T

n∑

i=1

γ′
(
F̂ − F

)′
MXiF̂

T

(
F ′MXiF

T

)−1

Σ̂−1
γi

(
F ′MXiF

T

)−1
F ′MXiǫi√

T

= Ia + Ib + Ic + Id + Ie + If .

By (29), Ia is Op (1). Turning to Ib, it is bounded by

√
nTE



ǫ′iMXi

(
F̂ − F

)

T

(
F ′MXiF

T

)−1

Σ̂−1
γi

(
F ′MXiF

T

)−1

(
F̂ − F

)′
MXiǫi

T


 ≤M

√
nTE

∥∥∥∥∥∥

ǫ′i

(
F̂ − F

)

T

∥∥∥∥∥∥

2

,

where we have used the consistency of Σ̂γi and Assumptions 3(i) and 4(i). Applying Lemma

A.2(i), we have Ib = Op
(√
nTδ−4

nT

)
. By a similar logic, it can be shown that Ic is bounded by

√
nTE

∥∥∥T−1
(
F̂ − F

)
F ′
∥∥∥
2

, which is Op
(√
nTδ−4

nT

)
by virtue of Lemma A.3(ii). Turning to Id, sim-

ilar passages as above entails that it is bounded by

√
nTE



ǫ′iMXi

(
F̂ − F

)

T

F ′MXiǫi√
T


 ≤

√
nT


E




∥∥∥∥∥∥

ǫ′i

(
F̂ − F

)

T

∥∥∥∥∥∥

2






1/2 [
E

(∥∥∥∥
F ′ǫi√
T

∥∥∥∥
2
)]1/2

=
√
nTOp

(
δ−2
nT

)
Op (1) .
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Similarly, Ie is bounded by

√
nTE



ǫ′iMXi

(
F̂ − F

)

T

F̂ ′MXi

(
F̂ − F

)
γ

T




≤
√
nT


E




∥∥∥∥∥∥

ǫ′i

(
F̂ − F

)

T

∥∥∥∥∥∥

2






1/2 
E




∥∥∥∥∥∥

F̂ ′
(
F̂ − F

)

T

∥∥∥∥∥∥

2






1/2

=
√
nTOp

(
δ−2
nT

)
Op
(
δ−2
nT

)
;

using a similar logic, it can be shown that If = Op

(√
nTδ−2

nT

)
. Putting all together, I = Op (1)

+Op

(√
nTδ−2

nT

)
+Op

(√
nTδ−4

nT

)
. Finally, consider II and III in (60). As far as II is concerned, note

that II =
√
nT
(̂̄γ − γ̄

)′
Σ−1
γi

(̂̄γ − γ̄
)
+op (1) by consistency of Σ̂γi. Thus, Lemma A.4 entails that

II = Op
(√
nTδ−4

nT

)
. Turning to III, this is bounded by

√
nT maxiΣ

−1
γi

∥∥̂̄γ − γ̄
∥∥ ∥∥ 1

n

∑n
i=1 (γ̂i − γ̄)

∥∥,

which has the same order of magnitude as II. Putting all together, it holds that
√
2rS̃γ,nT = Op (1)

+Op

(√
nTδ−2

nT

)
+Op

(√
nTδ−4

nT

)
= Op (1) +Op

(√
n
T

)
+Op

(√
T
n

)
.

We now turn to studying S̃f,nT . Under H
b
0 , we have

√
2rS̃f,nT =

1√
T

T∑

t=1

[
n
(
f̂t − f

)′
Σ̂−1
ft

(
f̂t − f

)
− r

]
(61)

+
1√
T

T∑

t=1

n
(̂̄f − f

)′
Σ̂−1
ft

(̂̄f − f
)
− 2√

T

T∑

t=1

n
(
f̂t − f

)′
Σ̂−1
ft

(̂̄f − f
)

= I + II − III.

Consider I; using (54) we may write

I =
1√
T

T∑

t=1

(
nb′1tΣ̂

−1
ft b1t − r

)
+

1√
T

T∑

t=1

nb′2tΣ̂
−1
ft b2t +

2√
T

T∑

t=1

nb′1tΣ̂
−1
ft b2t = Ia + Ib + Ic.

By (30), T−1/2
∑T

t=1

(
nb′1tΣ̂

−1
ft b1t − r

)
= Op (1). As far as Ib is concerned, by virtue of the consis-

tency of Σft, it is bounded by n
√
TE ‖b2t‖2 = n

√
T min

{
T−1, n−2

}
= Op

(
n√
T

)
+ Op

(√
T
n

)
, which

follows from the proof of Theorem 2. Finally, turning to Ic and setting Σ̂−1
Ft = Ir for simplicity, we
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may write

1

2
Ic = n

(
F ′F̂

T

)
1

n2

n∑

i=1

n∑

j=1

γ′i

(
F̂ ′Xj

T

)(
β̃j − βj

)(
β̃j − βj

)′
(

1√
T

T∑

t=1

xjtǫit

)

−n
(
F ′F̂

T

)
1

n2

n∑

i=1

n∑

j=1

γ′i

(
F̂ ′F

T

)
γj

(
β̃j − βj

)′
(

1√
T

T∑

t=1

xjtǫit

)

−n
(
F ′F̂

T

)
1

n2

n∑

i=1

n∑

j=1

γ′i
1

T

(
F̂ ′ǫj

)(
β̃j − βj

)′
(

1√
T

T∑

t=1

xjtǫit

)

−n
(
F ′F̂

T

)
1

n2

n∑

i=1

n∑

j=1

γ′i

(
F̂ ′Xj

T

)(
β̃j − βj

)
γ′j

(
1√
T

T∑

t=1

ftǫit

)

−n
(
F ′F̂

T

)
1

n2

n∑

i=1

n∑

j=1

γ′i

(
F̂ ′Xj

T

)(
β̃j − βj

)( 1√
T

T∑

t=1

ǫjtǫit

)

+n

(
F ′F̂

T

)
1

n2

n∑

i=1

n∑

j=1

γ′i
F̂ ′ǫj
T

γ′j

(
1√
T

T∑

t=1

ftǫit

)

+n

(
F ′F̂

T

)
1

n2

n∑

i=1

n∑

j=1

γ′i
F̂ ′ǫj
T

(
1√
T

T∑

t=1

ǫjtǫit

)

= Ic,1 − Ic,2 − Ic,3 − Ic,4 − Ic,5 + Ic,6 + Ic,7.

Studying the order of magnitude of each term is based on similar passages to the ones in the proof

of Theorem 2. The only differences are: the summation across t; the normalization by T−1/2; and

the multiplication by n. The effect of summing across t is washed out by the normalization by T−1/2

for all terms Ic,1 − Ic,4 and Ic,6, which can be shown by the same arguments as in (39). We have

Ic,1 = Op
(√
nT−1

)
; Ic,2 = Op

(
δ−1
nT

)
; Ic,3 = Op

(√
nT−1

)
, Ic,4 = Op

(
δ−1
nT

)
and Ic,6 = Op

(
T−1/2

)
.

As far as Ic,5 and Ic,7 are concerned, the contribution of T−1/2
∑T

t=1 ǫjtǫit is at most Op

(√
T
)
;

thus, Ic,5 = Op (
√
n) and Ic,7 = Op

(√
Tδ−2

nT

)
. We now turn to analyzing II and III in (61). By

Lemma A.5, II = n
√
TOp

(
δ−4
nT

)
. As far as III is concerned, using the consistency of Σ̂ft and the

invertibility of Σft, it is bounded by n
√
T maxt

∥∥∥Σ−1
ft

∥∥∥
∥∥∥̂̄f − f

∥∥∥
∥∥∥ 1
T

∑T
t=1

(
f̂t − f

)∥∥∥ = n
√
TOp

(
δ−4
nT

)
,

again by Lemma A.5. Putting all together, the result follows. QED

Proof of Theorem 6. We report the proof for SCCEγ,nT only - the proof for SIEγ,nT is almost

identical; the only difference is the need for the restriction
√
n
T → 0, which can be shown based on

the passages in the proof of Theorem 7.
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Consider the building block of the test statistic, viz. β̂bw − β:

β̂bw − β =
1

n

n∑

i=1

(βi − β) +
1

n

n∑

i=1

[
1

T

T∑

t=1

ẋitẋ
′
it

]−1 [
1

T

T∑

t=1

ẋitx
′
it (βi − β)

]

− 1

n

n∑

i=1

1

n

n∑

j=1

[
1

T

T∑

t=1

ẋjtẋ
′
jt

]−1 [
1

T

T∑

t=1

ẋjtx
′
it (βi − β)

]

+
1

n

n∑

i=1

[
1

T

T∑

t=1

ẋitẋ
′
it

]−1 [
1

T

T∑

t=1

ẋitǫ̇it

]
.

Note also that

β̂CCE − β =
1

n

n∑

i=1

(βi − β) +
1

n

n∑

i=1

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wǫi
T

)

+
1

n

n∑

i=1

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wF

T
γi

)
,

so that

β̂bw − β̂CCE =
1

n

n∑

i=1

[
1

T

T∑

t=1

ẋitẋ
′
it

]−1 [
1

T

T∑

t=1

ẋitx
′
it (βi − β)

]

− 1

n

n∑

i=1

1

n

n∑

j=1

[
1

T

T∑

t=1

ẋjtẋ
′
jt

]−1 [
1

T

T∑

t=1

ẋjtx
′
it (βi − β)

]

+
1

n

n∑

i=1

[
1

T

T∑

t=1

ẋitẋ
′
it

]−1 [
1

T

T∑

t=1

ẋitǫ̇it

]
− 1

n

n∑

i=1

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wǫi
T

)

− 1

n

n∑

i=1

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wF

T
γi

)

= I + II + III − IV − V. (62)

Terms IV + V have magnitude Op

(
1√
nT

)
+ Op

(
1
n

)
, as discussed above. Also, in a similar way it

can be shown that III = Op

(
1√
nT

)
. Finally, we have

I + II =
1

n

n∑

i=1

1

T

T∑

t=1

D̃itx
′
it (βi − β) ,

where D̃it =
[
T−1

∑T
t=1 ẋitẋ

′
it

]−1

ẋit − n−1
∑n

j=1

[
1
T

∑T
t=1 ẋjtẋ

′
jt

]−1

ẋjt. By Assumption 3, the

sequence T−1
∑T

t=1 D̃itx
′
it (βi − β) is uncorrelated across i, so that the magnitude of I + II is pro-

portional to the square root of n−2
∑n
i=1 E

∥∥∥D̃itx
′
it (βi − β)

∥∥∥
2

≤ n−2T−1
∑n

i=1

∑T
t=1 E

∥∥∥D̃itx
′
it

∥∥∥
2

E ‖βi − β‖2. Using Assumptions 3 and 2(i), this is of order O
(
n−1

)
,so that I+II = Op

(
n−1/2

)
. The
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limiting distribution follows from standard arguments, upon noting that the sequence T−1
∑T
t=1 D̃itx

′
it (βi − β)

is conditionally independent across i by Assumption 3, and has finite moment of order 2+δ for δ > 0.

Putting all together, the null distribution follows.

As far as power is concerned, the CCE estimator is consistent under alternatives; as far as the

between estimator is concerned, β̂bw − β has the same expansion as above with the extra term

1

n

n∑

i=1

[
1

T

T∑

t=1

ẋitẋ
′
it

]−1 [
1

T

T∑

t=1

ẋitf
′
t

(
γi −

1

n

n∑

i=1

γi

)]

=
1

n

n∑

i=1

[
1

T

T∑

t=1

ẋitẋ
′
it

]−1 [
1

T

T∑

t=1

ẋitf
′
t (γi − γ)

]
− 1

n

n∑

i=1

[
1

T

T∑

t=1

ẋitẋ
′
it

]−1 [
1

T

T∑

t=1

ẋitf
′
t

(
1

n

n∑

i=1

γi − γ

)]

= I + II,

where term II is clearly dominated. As far as I is concerned, when premultiplied by
√
n, we have I

= n−1/2
∑n

i=1 CiT . By assumption, CiT has mean zero, it can be shown to have finite moment of

order 2+δ for δ > 0, and it is conditionally independent across i. It is also conditionally independent

of II + III in (62). This entails that, under alternatives,
√
n
(
β̂bw − β̂CCE

)
converges to a normally

distributed random variable with mean zero, and a higher variance than under the null. Standard

passages ensure the validity of the theorem. QED

Proof of Theorem 7. Consider first equation (32); we start with
√
nT
(
β̂CCE − β̂FE

)
under

Ha
0 . Recall that under the null Hb

0 , ft = f = ciT , where c is a constant. Therefore, MF =

IT − T−1iT i
′
T . This entails that

β̂FE − β =
1

n

n∑

i=1

(βi − β) +
1

n

n∑

i=1

(
X ′
iMFXi

T

)−1(
X ′
iMF ǫi
T

)
. (63)

By using (38) and equation (56) in Pesaran (2006, p. 982):

√
nT
(
β̂CCE − β̂FE

)
=

√
nT

1

n

n∑

i=1

(βi − β) +
√
nT

1

n

n∑

i=1

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wǫi
T

)

+
√
nT

1

n

n∑

i=1

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wF

T
γi

)

−
√
nT

1

n

n∑

i=1

(βi − β)−
√
nT

1

n

n∑

i=1

(
X ′
iMFXi

T

)−1(
X ′
iMF ǫi
T

)
.
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Under the rank condition in Assumption 4(ii), we have that

X ′
iM̄wǫi
T

=
X ′
iMF ǫi
T

+Op

(
1

n

)
,

X ′
iM̄wF

T
= Op

(
1

n

)
+Op

(
1√
nT

)
;

note that the former equation does not need the rank condition in Assumption 4(ii), whereas the

latter does. Therefore

√
nT
(
β̂CCE − β̂FE

)
= Op

(√
T

n

)
+
√
nT

1

n

n∑

i=1

(
X ′
iM̄wXi

T

)−1(
X ′
iM̄wF

T
γi

)

= Op

(√
T

n

)
+Op

(√
T

n

)
+Op (1) ,

which proves part 1 of the Theorem. The asymptotics of the terms Op

(√
T
n

)
and Op (1) depends

on the DGP of xit and yit through M̄w and T−1
(
X ′
iM̄wF

)
.

Consider now equation (31). Note that

β̂IE − β =

(
β̂IE − 1

n

n∑

i=1

βi

)
+

(
1

n

n∑

i=1

βi − β

)
,

so that, using (63):

√
nT
(
β̂IE − β̂FE

)
=

√
nT

(
β̂IE − 1

n

n∑

i=1

βi

)
−
√
nT

1

n

n∑

i=1

(
X ′
iMFXi

T

)−1(
X ′
iMF ǫi
T

)

=
√
nT

(
β̂IE − 1

n

n∑

i=1

βi

)
+Op (1) ,

where the Op (1) term holds by Assumptions 1 and 2. Let Γ = [γ1|...|γn]; using equation (42) in Song
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(2013), we have

β̂IE − 1

n

n∑

i=1

βi

=
1

n

n∑

i=1

(
β̃IEi − βi

)

=
1

n

n∑

i=1

(
X ′
iMF̂Xi

T

)−1(
X ′
iMF̂ ǫi
T

)

− 1

n

n∑

i=1

(
X ′
iMF̂Xi

T

)−1
1

n

n∑

j=1

(
X ′
iMF̂Xj

T

)[
γ′j

(
Γ′Γ

n

)−1

γi

](
β̃j − βj

)

− 1

n

n∑

i=1

(
X ′
iMF̂Xi

T

)−1

 1

n

n∑

j=1

X ′
iMF̂Xj

T

(
β̃IEj − βj

)(
β̃IEj − βj

)′ X ′
jF̂

T

+
1

n

n∑

j=1

X ′
iMF̂Xj

T

(
β̃IEj − βj

) ǫ′jF̂
T

+
1

n

n∑

j=1

X ′
iMF̂F

T
γj

(
β̃IEj − βj

)′ X ′
jF̂

T
+

1

n

n∑

j=1

X ′
iMF̂ ǫj

T

(
β̃IEj − βj

)′ X ′
jF̂

T
+

1

n

n∑

j=1

X ′
iMF̂F

T
γj
ǫ′jF̂

T
+

1

n

n∑

j=1

X ′
iMF̂ ǫj

T
γ′j
F ′F̂

T

+
1

n

n∑

j=1

X ′
iMF̂ ǫj

T

ǫ′jF̂

T



(
F ′F̂

T

)−1(
Γ′Γ

n

)
γi

=
1

n

n∑

i=1

(
X ′
iMF̂Xi

T

)−1(
X ′
iMF̂ ǫi

T

)
+ J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8;

quantities like F ′F̂
T , Γ′Γ

n and γi will be omitted henceforth, to simplify the notation. Similar passages

as above yield
√
nT 1

n

∑n
i=1

(
X′

iMF̂Xi

T

)−1 (X′

iMF̂ ǫi
T

)
= Op (1). As far as the other terms are con-

cerned, note first that, by Proposition 1 in Song (2013), β̃IEi − βi = Op
(
φ−1
nT

)
. Since the order of

magnitude of an average is bounded by the order of the summands, the same passages as in Song

(2013) would entail J2 = Op
(
φ−2
nT

)
; J3, J5 and J6 are all bounded by Op

(
φ−2
nT

)
+ Op

(
φ−1
nT δ

−1
nT

)
; J4 =

Op
(
φ−2
nT

)
+ Op

(
φ−1
nT δ

−2
nT

)
; J7 = Op

(
T−1/2φ−1

nT

)
+ Op

(
T−1/2φ−1

nT

)
. Putting all together, this entails

that
√
nT (J2 + J3 + J4 + J5 + J6 + J7) = Op

(√
n
T

)
+ Op

(√
T
n3

)
+ Op (1). This bound is not the

sharpest possible, but it suffices for our purposes. Finally, consider J1 and J8. As far as the former

is concerned, we have

J1 =
1

n

n∑

i=1

(
X ′
iMF̂Xi

T

)−1
1

n

n∑

j=1

(
X ′
iMF̂Xj

T

)[
γ′j

(
Γ′Γ

n

)−1

γi

](
β̃j − βj

)
,

which, by virtue of Assumptions 2(i) and 4(i), has the same order as derived in Song (2013); thus,
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J1 = Op
(
n−1/2T−1/2

)
and

√
nTJ2 = Op (1). Turning to J8

−J8 =
1

nT

n∑

i=1

(
X ′
iMF̂Xi

T

)−1

X ′
iMF̂

(
1

nT

n∑

k=1

ǫkǫ
′
kF̂

)

≤ M
1

nT 2

n∑

k=1

∥∥∥X ′
iMF̂

(
ǫkǫ

′
kF̂
)∥∥∥ = Op

(
1

δ2nT

)
+Op

(
1

φnT
√
T

)
,

where the last passage comes from the proof of Proposition 1 in Song (2013). Therefore,
√
nTJ8

= Op
(√

n
T

)
+ Op

(√
T
n

)
. Putting all together, part 2 of the Theorem follows. The behaviour of

the test statistics under the null Ha
0 follows immediately from the passages above, since the term

√
nT
(
β̂IE − 1

n

∑n
i=1 βi

)
is still Op

(√
n
T

)
+ Op

(√
T
n

)
. QED
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Csörgö, M., Révész, P., 1975, A new method to prove Strassen-type laws of invariance principle. II.

Probability Theory and Related Fields, vol. 31, 261-269.

Davidson J., 1994, Stochastic Limit Theory. Oxford University Press.

Eberhardt, M., Helmers, C., Strauss, H., 2013, Do spillovers matter when estimating private returns

to R&D?. The Review of Economics and Statistics, vol. 95, 436-448.

Eberhardt, M., Teal, F., 2012, No mangos in the tundra: spatial heterogeneity in agricultural pro-

ductivity analysis. Oxford Bulletin of Economics and Statistics (forthcoming).

Eberlein, E., 1986, On strong invariance principles under dependence assumptions. Annals of Prob-

ability, vol. 14, 260-270.
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Figure 1: Confidence intervals for γi. For each value of i = 1, ..., 50 (on the horizontal axis), the solid
line represents the true loading γi. The dashed lines are the confidence intervals at 95% confidence
level for each i.
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T 30 50 100 200
n

30 0.977 0.964 0.979 0.974
50 0.976 0.963 0.989 0.970
100 0.991 0.987 0.988 0.991
200 0.992 0.994 0.997 0.997

Table 1: Average correlation coefficients between {f̂t}Tt=1 and {ft}Tt=1.

Size Power

T T
n 30 50 100 200 30 50 100 200

σ2
ǫ = 1/3 σ2

ǫ = 1/3
30 0.077 0.066 0.060 0.056 0.950 0.996 1.000 1.000
50 0.073 0.063 0.050 0.056 0.986 0.999 1.000 1.000
100 0.073 0.063 0.052 0.045 0.997 1.000 1.000 1.000
200 0.072 0.062 0.053 0.042 0.998 1.000 1.000 1.000

σ2
ǫ = 1/2 σ2

ǫ = 1/2
30 0.086 0.074 0.064 0.059 0.867 0.968 0.999 1.000
50 0.078 0.067 0.053 0.058 0.926 0.993 1.000 1.000
100 0.074 0.063 0.053 0.046 0.972 1.000 1.000 1.000
200 0.073 0.064 0.054 0.042 0.992 1.000 1.000 1.000

σ2
ǫ = 1 σ2

ǫ = 1
30 0.109 0.094 0.081 0.076 0.612 0.800 0.976 0.999
50 0.090 0.079 0.065 0.068 0.667 0.883 0.993 1.000
100 0.085 0.070 0.058 0.051 0.764 0.952 1.000 1.000
200 0.076 0.067 0.057 0.044 0.863 0.983 1.000 1.000

Table 2: Empirical rejection frequencies (for a nominal size of 5%) and power for tests forHa
0 : γi = γ,

based on Sγ,nT . The DGP used in the simulations is (33)- (34).
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Size Power

T T
n 30 50 100 200 30 50 100 200

σ2
ǫ = 1/3 σ2

ǫ = 1/3
30 0.067 0.053 0.046 0.043 0.999 1.000 1.000 1.000
50 0.067 0.055 0.048 0.047 1.000 1.000 1.000 1.000
100 0.066 0.064 0.052 0.040 1.000 1.000 1.000 1.000
200 0.069 0.063 0.050 0.041 1.000 1.000 1.000 1.000

σ2
ǫ = 1/2 σ2

ǫ = 1/2
30 0.069 0.055 0.051 0.046 0.979 0.998 1.000 1.000
50 0.069 0.057 0.049 0.049 0.996 1.000 1.000 1.000
100 0.067 0.064 0.054 0.041 0.999 1.000 1.000 1.000
200 0.069 0.064 0.05 0.041 1.000 1.000 1.000 1.000

σ2
ǫ = 1 σ2

ǫ = 1
30 0.081 0.066 0.060 0.052 0.921 0.989 1.000 1.000
50 0.077 0.063 0.054 0.057 0.965 0.999 1.000 1.000
100 0.072 0.068 0.057 0.044 0.992 1.000 1.000 1.000
200 0.073 0.065 0.052 0.043 0.998 1.000 1.000 1.000

Table 3: Empirical rejection frequencies (for a nominal size of 5%) and power for tests forHa
0 : γi = γ,

based on Sγ,nT . The DGP used in the simulations is (33)- (35), i.e. the case of no common factor
structure in the regressors.

Size Power

T T
n 30 50 100 200 30 50 100 200

σ2
ǫ = 1/3 σ2

ǫ = 1/3
30 0.058 0.050 0.044 0.045 0.980 0.999 1.000 1.000
50 0.059 0.049 0.046 0.044 0.998 1.000 1.000 1.000
100 0.062 0.046 0.048 0.040 0.999 1.000 1.000 1.000
200 0.071 0.050 0.046 0.046 1.000 1.000 1.000 1.000

σ2
ǫ = 1/2 σ2

ǫ = 1/2
30 0.061 0.052 0.047 0.047 0.904 0.976 1.000 1.000
50 0.062 0.051 0.049 0.047 0.978 1.000 1.000 1.000
100 0.064 0.048 0.049 0.041 0.986 1.000 1.000 1.000
200 0.073 0.051 0.046 0.047 0.998 1.000 1.000 1.000

σ2
ǫ = 1 σ2

ǫ = 1
30 0.070 0.064 0.056 0.055 0.611 0.739 0.991 1.000
50 0.070 0.057 0.055 0.052 0.778 0.966 1.000 1.000
100 0.067 0.050 0.053 0.044 0.791 0.980 1.000 1.000
200 0.074 0.054 0.047 0.048 0.938 0.999 1.000 1.000

Table 4: Empirical rejection frequencies (for a nominal size of 5%) and power for tests forHa
0 : γi = γ,

based on Sγ,nT . The DGP used in the simulations is (36), i.e. the case of a pure factor model for yit.
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Size Power

T T
n 30 50 100 200 30 50 100 200

σ2
ǫ = 1/3 σ2

ǫ = 1/3
30 0.044 0.037 0.037 0.030 0.915 0.959 0.988 0.996
50 0.038 0.034 0.036 0.033 0.993 0.999 1.000 1.000
100 0.042 0.041 0.036 0.032 1.000 1.000 1.000 1.000
200 0.046 0.043 0.038 0.036 1.000 1.000 1.000 1.000

σ2
ǫ = 1/2 σ2

ǫ = 1/2
30 0.047 0.036 0.037 0.030 0.773 0.860 0.935 0.970
50 0.040 0.035 0.036 0.033 0.957 0.987 0.998 1.000
100 0.042 0.042 0.037 0.033 0.999 1.000 1.000 1.000
200 0.047 0.044 0.038 0.037 1.000 1.000 1.000 1.000

σ2
ǫ = 1 σ2

ǫ = 1
30 0.054 0.042 0.038 0.032 0.467 0.525 0.635 0.733
50 0.047 0.038 0.039 0.035 0.703 0.822 0.912 0.962
100 0.049 0.047 0.038 0.035 0.967 0.994 0.999 1.000
200 0.055 0.050 0.041 0.040 1.000 1.000 1.000 1.000

Table 5: Empirical rejection frequencies (for a nominal size of 5%) and power for tests for Hb
0 : ft = f ,

based on Sf,nT . The DGP used in the simulations is (33)-(34).

Size Power

T T
n 30 50 100 200 30 50 100 200

σ2
ǫ = 1/3 σ2

ǫ = 1/3
30 0.044 0.039 0.045 0.039 0.954 0.989 0.998 0.987
50 0.044 0.042 0.038 0.036 0.998 1.000 1.000 0.999
100 0.042 0.038 0.040 0.038 1.000 1.000 1.000 1.000
200 0.043 0.047 0.041 0.036 1.000 1.000 1.000 1.000

σ2
ǫ = 1/2 σ2

ǫ = 1/2
30 0.045 0.041 0.046 0.041 0.863 0.933 0.979 0.995
50 0.045 0.043 0.039 0.037 0.978 0.996 1.000 1.000
100 0.044 0.039 0.040 0.038 0.999 1.000 1.000 1.000
200 0.048 0.048 0.043 0.037 1.000 1.000 1.000 1.000

σ2
ǫ = 1 σ2

ǫ = 1
30 0.052 0.049 0.050 0.043 0.561 0.646 0.780 0.859
50 0.047 0.049 0.042 0.039 0.809 0.894 0.960 0.991
100 0.052 0.042 0.043 0.040 0.978 0.997 1.000 1.000
200 0.058 0.052 0.044 0.039 1.000 1.000 1.000 1.000

Table 6: Empirical rejection frequencies (for a nominal size of 5%) and power for tests for Hb
0 : ft = f ,

based on Sf,nT . The DGP used in the simulations is (33)-(35), i.e. the case of no common factor
structure in the regressors xit.
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Size Power

T T
n 30 50 100 200 30 50 100 200

σ2
ǫ = 1/3 σ2

ǫ = 1/3
30 0.048 0.054 0.053 0.056 0.973 0.994 0.998 1.000
50 0.042 0.041 0.046 0.049 0.999 1.000 1.000 1.000
100 0.039 0.043 0.044 0.041 1.000 1.000 1.000 1.000
200 0.043 0.040 0.039 0.040 1.000 1.000 1.000 1.000

σ2
ǫ = 1/2 σ2

ǫ = 1/2
30 0.049 0.056 0.054 0.057 0.904 0.955 0.988 0.997
50 0.046 0.042 0.047 0.050 0.989 0.997 1.000 1.000
100 0.042 0.044 0.046 0.041 1.000 1.000 1.000 1.000
200 0.045 0.041 0.040 0.041 1.000 1.000 1.000 1.000

σ2
ǫ = 1 σ2

ǫ = 1
30 0.060 0.064 0.057 0.058 0.646 0.729 0.830 0.905
50 0.053 0.047 0.050 0.051 0.869 0.934 0.977 0.995
100 0.049 0.052 0.049 0.043 0.991 0.999 1.000 1.000
200 0.052 0.046 0.044 0.043 1.000 1.000 1.000 1.000

Table 7: Empirical rejection frequencies (for a nominal size of 5%) and power for tests for Hb
0 : ft = f ,

based on Sf,nT . The DGP used in the simulations is (36), i.e. the case of a pure factor model for yit.

Size Power

T T
n 30 50 100 200 30 50 100 200

σ2
ǫ = 1/3 σ2

ǫ = 1/3
30 0.07 0.058 0.059 0.054 0.975 0.998 1.000 1.000
50 0.072 0.068 0.053 0.049 0.991 0.999 1.000 1.000
100 0.08 0.064 0.054 0.050 0.998 1.000 1.000 1.000
200 0.079 0.064 0.054 0.046 1.000 1.000 1.000 1.000

σ2
ǫ = 1/2 σ2

ǫ = 1/2
30 0.075 0.060 0.058 0.051 0.901 0.983 0.999 1.000
50 0.073 0.069 0.054 0.049 0.952 0.997 1.000 1.000
100 0.077 0.064 0.053 0.048 0.983 1.000 1.000 1.000
200 0.077 0.063 0.054 0.044 0.996 1.000 1.000 1.000

σ2
ǫ = 1 σ2

ǫ = 1
30 0.088 0.073 0.069 0.062 0.646 0.846 0.986 1.000
50 0.079 0.074 0.060 0.055 0.723 0.917 0.997 1.000
100 0.080 0.066 0.055 0.052 0.820 0.972 1.000 1.000
200 0.079 0.063 0.055 0.049 0.902 0.993 1.000 1.000

Table 8: Empirical rejection frequencies (for a nominal size of 5%) and power for tests forHa
0 : γi = γ,

based on Sγ,nT . The DGP used in the simulations is (33)- (34). The first-step estimator is the one
proposed Song (2013).
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Size Power

T T
n 30 50 100 200 30 50 100 200
30 0.103 0.087 0.088 0.100 0.838 0.905 0.966 0.994
50 0.090 0.083 0.078 0.074 0.956 0.988 0.999 1.000
100 0.081 0.071 0.063 0.065 0.999 1.000 1.000 1.000
200 0.072 0.061 0.063 0.054 1.000 1.000 1.000 1.000

Table 9: Empirical rejection frequencies (for a nominal size of 5%) and power for tests forHb
0 : γi = γ.

The test in (3) is computed using the HAC estimator of Σγi in (7).

Size Power

T T
n 30 50 100 200 30 50 100 200
30 0.118 0.121 0.144 0.159 0.976 0.985 0.985 0.987
50 0.08 0.063 0.069 0.082 0.985 0.991 0.992 0.995
100 0.05 0.046 0.036 0.04 0.997 0.998 0.999 0.999
200 0.061 0.039 0.036 0.036 0.999 1.000 1.000 1.000

Table 10: Empirical rejection frequencies (for a nominal size of 5%) and power for tests forHb
0 : ft = f .

The test in (4) is computed using the HAC estimator of Σft in (10).

69


