First-Differenced Inference for Panel Factor Series

Ekaterina Ipatova
Cass Business School, City University London

Lorenzo Trapani*
Cass Business School, City University London

September 21, 2012

Abstract

We complement existing inferential theory for panel factor models by deriving the asymptotics for the first differences of the estimated factors and common components obtained from a non-stationary panel factor model. As an application, we propose an estimator for the long run variance of the common components.

JEL Classification: C13, C23.

Keywords: Non-stationary panels, common factors, common components, first differences.

*Corresponding author: Centre for Econometric Analysis, Faculty of Finance, Cass Business School, 106 Bunhill Row, London EC1Y 8TZ (U.K.). Tel. 00.44.(0)20.70405260 Fax. 00.44.(0)20.70408881, e-mail: L.Trapani@city.ac.uk
1 Introduction

Consider the non-stationary panel factor series

\[X_{it} = \lambda'_i F_t + e_{it}, \quad (1) \]

where \(i = 1, \ldots, n, \ t = 1, \ldots, T, \) \(F_t \) is a \(k \)-dimensional vector with DGP \(F_t = F_{t-1} + \varepsilon_t \), and \(e_{it} \) is stationary. Bai (2004) develops the inferential theory for (1) - specifically, for \(F_t, \lambda_i \), and for the non-stationary common component \(C_{it} = \lambda'_i F_t \). Alternatively, one may also consider the stationary, first-differenced model

\[x_{it} = \lambda'_i f_t + u_{it}, \quad (2) \]

where \(x_{it} = \Delta X_{it} \) and \(f_t = \Delta F_t \). In this case, estimators for \(\lambda_i, f_t \) and \(c_{it} \equiv \lambda'_i f_t \) (\(\hat{\lambda}_i, \hat{f}_t \) and \(\hat{c}_{it} \) respectively) are provided by Bai (2003).

This note complements the existing inferential theory on (1) and (2), by studying estimation based on the first difference of the estimator of \(F_t \), say \(\hat{F}_t \), computed from (1). Indeed, instead of estimating \(f_t \) from (2), one could use \(\tilde{f}_t = \hat{F}_t - \hat{F}_{t-1} \). Thence, using the either the estimated \(\lambda_i \) from (1), say \(\tilde{\lambda}_i \), or estimating \(\lambda_i \) from (2) using \(\tilde{f}_t \), one can compute the first differenced estimator of \(c_{it} \) as \(\tilde{c}_{it} \equiv \tilde{\lambda}_i \tilde{f}_t \). Estimating \(f_t \) and \(c_{it} \) is useful for various purposes; in this paper we consider the estimation of the long run covariance matrices (henceforth, LRV) of \(F_t \) and \(C_{it} \).

Some results have already been developed by Trapani (2012) in the context of bootstrapping nonstationary factor models. This note completes the inferential theory for the first-differenced estimators, reporting rates of convergence for: \(\tilde{f}_t \); for the estimator of \(\lambda_i \) based on \(\tilde{f}_t \), say \(\tilde{\lambda}_i \); and for a weighted-sum-of-covariances estimator of the LRV of \(C_{it} \) based on \(\tilde{f}_t \).
2 Results

All results are derived under the same assumptions as in Bai (2003, 2004), omitted for brevity. Henceforth, we define the $r \times r$ rotation matrix $H \equiv \left(\hat{F}'F \right) \left(\frac{N\Lambda}{n} \right)$, where $F = [F_1, ..., F_T]'$ (\hat{F} is defined similarly) and $\Lambda = [\lambda_1, ..., \lambda_n]'$. The number of factors, r, is assumed known.

We firstly report a Lemma containing rates of convergence for $\tilde{f}_t = \hat{F}_t - \hat{F}_{t-1}$.

Lemma 1 As $(n, T) \to \infty$, it holds that

$$
\tilde{f}_t - H'f_t = O_p \left(\frac{1}{\sqrt{n}} \right) + O_p \left(\frac{1}{T^{3/2}} \right),
$$

$$
\max_{1 \leq t \leq T} \left\| \tilde{f}_t - H'f_t \right\| = O_p \left(\frac{1}{T} \right) + O_p \left(\frac{T}{n} \right),
$$

$$
\frac{1}{T} \sum_{t=1}^{T} \left(\tilde{f}_t - H'f_t \right) u_{it} = O_p \left(\frac{1}{\sqrt{n}} \right) + O_p \left(\frac{1}{T^{3/2}} \right).
$$

Under $\frac{n}{T} \to 0$, $\sqrt{n} \left(\tilde{f}_t - H'f_t \right) \overset{d}{\to} QN (0, \Upsilon_t)$, where Q is defined in Theorem 2 in Bai (2004, p. 148) and $\Upsilon_t \equiv \lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} E \left(\lambda_i \lambda_j' u_{it} u_{jt} \right)$.

Lemma 1 states that rates and uniform convergence of $\tilde{f}_t - H'f_t$ are the same as for $\hat{F}_t - H'F_t$ - see Lemma 2 in Bai (2004). This can also be compared with the results in Theorem 2 in Bai (2003), where it is shown that $\hat{f}_t - H'_1 f_t = O_p \left(n^{-1/2} \right) + O_p \left(T^{-1} \right)$ - in general, the rotation matrices H and H_1 are different. Therefore, heuristically, \tilde{f}_t should be a better estimator than \hat{f}_t for the space spanned by f_t, especially when T is small. Lemma 1 is a complement, regarding the properties of \tilde{f}_t, to Lemma A.1 in Trapani (2012).

We now turn to presenting results on the estimation of the loadings λ_i. To this end, it is possible to use the estimator of λ_i from (1), say $\hat{\lambda}_i$. Bai (2004, p. 148-149) shows that $\hat{\lambda}_i$ is “superconsistent”, viz. $\hat{\lambda}_i - H^{-1} \lambda_i = O_p (T^{-1})$; also, the rate of convergence does
not depend on \(n \). Alternatively, it is possible to estimate loadings as
\[
\tilde{\lambda}_i = \left(\sum_{t=1}^{T} \hat{f}_i f_t \right)^{-1} \left[\sum_{t=1}^{T} \hat{f}_t x_{it} \right].
\]
Let \(\Sigma_\varepsilon = E(\varepsilon_i \varepsilon'_i) = E(f_i f'_i) \); it holds that:

Proposition 1 As \((n, T) \to \infty \) it holds that \(\tilde{\lambda}_i = H^{-1} \lambda_i = O_p(n^{-1}) + O_p(T^{-1/2}) \). Under
\[
\sqrt{T} \to 0, \quad \sqrt{T} \left(\tilde{\lambda}_i - H^{-1} \lambda_i \right) \xrightarrow{d} N(0, V_i) \text{ with } V_i = (H' \Sigma_\varepsilon H)^{-1} (H' \Phi_i H) (H \Sigma_\varepsilon H')^{-1}
\]
and
\[\Phi_i = \lim_{T \to \infty} E(f_i f'_i u_{it} u_{is}).\]

Proposition 1 states that the properties of \(\tilde{\lambda}_i \) are (apart from the rotation matrix \(H \)) the same as in Theorem 2 in Bai (2003), where estimation of \(\lambda_i \) is based on using (2). This can be compared with \(\hat{\lambda}_i \), whose convergence rate does not depend on \(n \) and it is faster in \(T \).

Based on Lemma 1 and Proposition 1, consider the first-differenced estimator of the common components \(c_{it}, \hat{c}_{it} \equiv \hat{\lambda}'_i f_i = \hat{C}_{it} - \hat{C}_{it-1} = \hat{\lambda}'_i \left(\hat{f}_i - \hat{f}_{i-1} \right) \). By combining the results above, and using Lemma 3 in Bai (2004), we have
\[
\hat{c}_{it} - c_{it} = \hat{\lambda}'_i f_i - \lambda'_i f_t = \left(\hat{\lambda}_i - H^{-1} \lambda_i \right)' f_i + \left(f_i - H' f_t \right)' H^{-1} \lambda_i + \left(\hat{\lambda}_i - H^{-1} \lambda_i \right)' \left(f_i - H' f_t \right) = O_p(n^{-1/2}) + O_p(T^{-1}).
\]
Using Theorem 3 in Bai (2004) on the limiting distribution of \(T \left(\hat{\lambda}_i - H^{-1} \lambda_i \right) \), the asymptotic distribution of \(\hat{c}_{it} - c_{it} \) has the same properties as in Theorem 4 in Bai (2004, p. 149).

The results in Lemma 1 and Proposition 1 can be combined in order to estimate the LRV of \(F_t \) and \(C_{it} \). Let \(\Sigma_F \) be the LRV of \(F_t \), and define similarly the LRV of \(C_{it} \) as \(\Sigma_C \).

A rotation of \(\Sigma_F \) can be estimated as
\[
\hat{\Sigma}_F = \hat{\gamma}^F_0 + \sum_{j=1}^{h} \left(1 - \frac{j}{h+1} \right) \left(\hat{\gamma}^F_j + \hat{\gamma}^{F'}_j \right),
\]
where \(h \) is a bandwidth parameter and \(\hat{\gamma}^F_j = \frac{T}{\sum_{i=1}^{T} \hat{f}_i f_{i-j}} \). Of course, \(\hat{\Sigma}_F \) does not estimate \(\Sigma_F \) consistently due to rotational indeterminacy; it can be expected that
\[
\| \hat{\Sigma}_F - H' \Sigma_F H \| = o_p(1).
\]
Similarly, \(\Sigma_C \) can be estimated either as \(\hat{\Sigma}_C = \hat{\lambda}'_i \hat{\Sigma}_F \hat{\lambda}_i \), or as
\(\hat{\Sigma}_C = \hat{\lambda}_i^{\top} \hat{\Sigma}_F \hat{\lambda}_i \). By virtue of Proposition 1, \(\hat{\Sigma}_C \) should be better, and we focus our attention on it.

Theorem 1 Assume that \(\sum_{j=0}^\infty j^s |\gamma_j^F| < \infty \). It holds that

\[
\| \hat{\Sigma}_C - \Sigma_C \| = O_p \left(\frac{h}{\sqrt{T}} \right) + O_p \left(\frac{h}{n} \right) + O_p \left(\frac{1}{h} \right).
\]

(6)

Theorem 1 contains rates of convergence for \(\hat{\Sigma}_C \), which is consistent provided that \(h \to \infty \) and \(h/ \min \{n, \sqrt{T}\} \to 0 \). This also gives a selection rule for \(h \); the choice of the bandwidth that maximizes the speed of convergence is \(h^* = O \left(\min \{T^{1/4}, n^{1/2}\} \right) \).

We point out that \(\hat{\Sigma}_C \) is not the only possible estimator for \(\Sigma_C \). One could consider estimating a rotation of \(\Sigma_F \) using \(\hat{f}_i \) calculated from (2). Given that \(H \) differs depending on whether (1) or (2) is used, in this case it is necessary to employ the estimated loadings from model (2), which have the same properties as \(\hat{\lambda}_i \) in Proposition 1. Based on this, and on Lemma 1, it can be expected that this estimator does not converge as fast as \(\hat{\Sigma}_C \). Similarly, it is possible to estimate \(\Sigma_C \) using the \(x_{it} \)s directly. Theoretically, this estimator should work, since \(e_{it} \) is stationary, although this may introduce some noise in the estimation of \(\Sigma_C \).

Proofs

Proof of Lemma 1. See the online material.

Proof of Proposition 1. Let \(\delta_{nT} \equiv \min \{\sqrt{n}, T\} \). By definition, \(\hat{\lambda}_i - H^{-1}\lambda_i = \left(\sum_{t=1}^T \hat{f}_i \hat{f}_i' \right)^{-1} \times \left(\sum_{t=1}^T H'f_t u_{it} + \sum_{t=1}^T \hat{f}_i \left(\hat{f}_t - H'f_t \right) \lambda_i + \sum_{t=1}^T \left(\hat{f}_t - H'f_t \right) u_{it} \right) = \left(\sum_{t=1}^T \hat{f}_i \hat{f}_i' \right)^{-1} \) \((I + II + III) \). Consider the denominator. By Lemma A.1 in Trapani (2012), \(\sum_{t=1}^T \| \hat{f}_t - H'f_t \|^2 = O_p \left(T\delta_{nT}^{-2} \right) \) and \(\sum_{t=1}^T \left(\hat{f}_t - H'f_t \right) f_t = O_p \left(\sqrt{T}\delta_{nT}^{-1} \right) + O_p \left(\frac{\sqrt{T}}{n} \right) \). Hence, \(\sum_{t=1}^T \hat{f}_i \hat{f}_i' = H' \sum_{t=1}^T f_t f_t' H + o_p (T) = O_p (T) \). As regards the numerator, \(I = O_p \left(\sqrt{T} \right) \) by a CLT.

Using the same arguments as for the denominator, \(II = O_p \left(\sqrt{T}\delta_{nT}^{-1} \right) + O_p \left(\frac{\sqrt{T}}{n} \right) \). Hence, \(\hat{\lambda}_i - H^{-1}\lambda_i = O_p \left(T^{-1/2} \right) + O_p \left(n^{-1} \right) \). Finally, \(III = O_p \left(n^{-1/2} \right) + O_p \left(T^{-3/2} \right) \) using (5). The
limiting distribution follows from noting that, when $\frac{\sqrt{T}}{n} \to 0$, the dominating $O_p\left(T^{-1/2} \right)$ term is $\left(H' \sum_{t=1}^T f_t f_t' H \right)^{-1} \left(\sum_{t=1}^T H' f_t u_{it} \right)$.

Proof of Theorem 1. We omit H for simplicity when this does not cause ambiguity.

We start by showing that $\hat{\Sigma}_F - \Sigma_F = \left(\gamma_0^F - \gamma_0^F \right) + \sum_{j=1}^h \left(1 - \frac{j}{h+1} \right) \left(\gamma_j^F + \gamma_j^F \right) - \sum_{j=h+1}^\infty \left(\gamma_j^F + \gamma_j^F \right)$, whence

$$\hat{\Sigma}_F - \Sigma_F = \left(\gamma_0^F - \gamma_0^F \right) + \sum_{j=1}^h \left(1 - \frac{j}{h+1} \right) \left(\gamma_j^F + \gamma_j^F \right) - \sum_{j=h+1}^\infty \left(\gamma_j^F + \gamma_j^F \right) = 1 - II - III.$$

Consider I. We have $\gamma_0^F - \gamma_0^F = T^{-1} \sum_{t=j+1}^T \tilde{f}_t \tilde{f}_t' - \gamma_0^F = \left(T^{-1} \sum_{t=j+1}^T f_t f_t' - \gamma_0^F \right) - T^{-1} \sum_{t=j+1}^T \left(\tilde{f}_t - f_t \right) f_t f_t' + T^{-1} \sum_{t=j+1}^T \left(\tilde{f}_t - f_t \right) \left(\tilde{f}_t - f_t \right)' = I_a + I_b + I_b' + I_c$. The CLT yields $I_a = O_p\left(T^{-1/2} \right)$; as far as I_b and I_c are concerned, Lemma A.1 in Trapani (2012) entails that they are both $O_p\left(n^{-1} + T^{-2} \right)$. The same holds for $\gamma_j^F - \gamma_j^F$; putting all together $I = O_p\left(hT^{-1/2} \right) + O_p\left(hn^{-1} \right)$. Standard arguments yield $II = O\left(h^{-1} \right)$ and $III = o\left(h^{-s} \right)$. The Theorem follows from $\lambda_1 - H^{-1} \lambda_1 = O_p\left(T^{-1} \right)$.

References

