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Abstract

The asymptotic t-test for the long-run average in a heterogeneous nonstationary

panel model is derived. The asymptotics of the Least Squares Dummy Variable (LSDV)

and of the Pooled-OLS (POLS) estimators for the slope parameter is studied under

various circumstances (serial correlation, strong cross sectional dependence in the er-

rors and in the regressors and mixed stationary/non-stationary errors) and a modi�ed

estimator of the asymptotic variance is derived. The asymptotic variance is computed

up to a simple transformation of the residual and no nuisance parameters need to be

estimated. The resulting t-statistics are shown to have a standard normal limiting

distribution. Asymptotic tests based on the standardised version of the t-statistic are

shown to have good power properties,and the correct size, even for n as small as 25.
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1 Introduction

Consider the heterogeneous panel regression model

yit = �i + �ixit + uit; (1)

where i = 1; :::; n, t = 1; :::; T and the variables yit and xit are both I (1) for each i. It is well

known, since the seminal contributions by Engle and Granger (1987) and Phillips (1986),

that when the error term uit is I (1), there is no cointegration between yit and xit. However,

this does not imply that there is no relationship of any kind between yit and xit: this would

be the case if and only if �i = 0, which is genuine spurious regression. Finding uit � I (1)

could be due to various other reasons, which have been summarised, inter alia, by Fuertes

(2008) and Choi, Hu and Ogaki (2008); these include e.g. neglected nonlinearity in the form

of lumpy adjustment costs or Markov switching, nonstationary measurement error, or other

forms of misspeci�cation such as omitting an important nonstationary variable from the

speci�cation of (1). Of course, even when �i 6= 0, �i cannot be interpreted as a cointegration
coe¢ cient, due to the lack of cointegration. However, �i may be interpreted as a statistical

long-run correlation coe¢ cient between yit and xit, and thus the information contained in �i
would not be entirely worthless. The question then arises as to how to estimate consistently

and conduct inference on �i.

In a pure time series setting, it is well known that when uit is I (1), then �i may not

be estimated consistently - see e.g. Phillips (1986). Conversely, in a large panel framework

(where both n and T are large), the seminal contributions by Kao (1999) and Phillips

and Moon (1999b) show that even when (some or all of) the uits are nonstationary, it is

still possible to estimate consistently, at a rate Op
�
n�1=2

�
, the average long run correlation

between yit and xit, i.e. the coe¢ cient � customarily known as the �long-run average�- see

Phillips and Moon (1999b, 2000). The issue of estimating average elasticities has been paid

great attention in the empirical literature. For example, in the context of growth studies,

as Fuertes (2008, p. 3356) points out �[...] output is regressed against the stock of physical

capital and/or education, and the error term captures technical progress. The individual

equations are not long-run equilibrium relations if technology is I(1), but the average capital

(or education) elasticity E (�i) is still of interest for economists�. See also the discussions

in Temple (1999), Baltagi and Kao (2000), Sun (2004) and Smith and Fuertes (2009). An

important potential shortcoming of the long run average coe¢ cient � is that it is equal

to the average �i, say E (�i), only under certain assumptions. For example, � = E (�i)
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when the �is and the xits are independent, although other assumptions would grant the

same result - see e.g. the discussion in Phillips and Moon (2000). In principle, E (�i) could

be estimated using the Mean-Group estimator (henceforth �̂
MG
) proposed by Pesaran and

Smith (1995); if all units cointegrate, then it is well known that �̂
MG

is
p
nT -consistent (see

also Smith and Fuertes, 2009, p. 52-53). If, however, the panel is mixed, with uit being I (0)

for some units and I (1) for some other units, then �̂
MG

becomes inconsistent. Conversely,

the estimator of the long run average parameter �, say �̂, is
p
n-consistent irrespective of

whether all, some or no units cointegrate in (1). Thus, �̂ is a more robust estimator of the

long-run average relationship between yit and xit (see Phillips and Moon, 2000, p. 272).

In recent years, the literature on nonstationary panels has developed various techniques to

estimate �. Phillips and Moon (1999a, 1999b) discuss the properties of the Pooled OLS

(POLS) and of the Least Squares Dummy Variables (LSDV) estimators, �nding that these

are
p
n�consistent as (n; T )!1 under the restriction n

T
! 0; a similar analysis is contained

in Kao (1999). Sun (2004) proposes an estimator of � based on the estimators of the long

run variance/covariance matrices in (1), showing that this is
p
n�consistent as (n; T )!1

under the milder restriction
p
n
T
! 0.

The asymptotic t-test for long-run averages

Despite the availability of consistent estimators for � in a panel setting, asymptotic

theory and inference di¤er from the time series case; particularly, Kao (1999) shows that

t-tests based on estimates of � diverge as T ! 1, thereby leading to null rejection fre-
quency asymptotically equal to 1. Hence, care should be used when carrying out signi�cance

tests using estimates from a nonstationary panel, and it is crucial to implement a correct

standardization of the estimated � in order to conduct hypothesis testing.

In a recent contribution, Fuertes (2008) studied the behavior of t-statistics for the long-

run average parameter � under the null H0 : � = �0. Using a comprehensive Monte Carlo

exercise, Fuertes analysed the amount of size distortion when using

t� =
�̂ � �0

se
�
�̂
� ; (2)

where �̂ is either the Least Squares Dummy Variable (LSDV) or the Pooled-OLS (POLS)

estimator of � in

yit = �i + �xit + vit; (3)
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with vit = uit + (�i � �)xit and

se
�
�̂
�
=

s
1

nT

Pn
i=1

PT
t=1 v̂

2
itPn

i=1

PT
t=1 �x

2
it

; (4)

where v̂it is the regression residual and �xit is the demeaned version of xit, i.e. �xit = xit �
T�1

PT
t=1 xit. The null rejection frequency is shown to be very high (around 70% for T = 300,

with a nominal level at 5%) and increasing with T , which is a consequence of the theoretical

result that t� = Op

�p
T
�
- see Theorem 1(c) in Kao (1999). This problem is compounded

when the panel is a mixture of spurious and cointegrated regressions, since the asymptotic

distribution of T�1=2t� depends upon various nuisance parameters including the proportion of

spurious regressions in (1): this is a consequence of se
�
�̂
�
being an inconsistent estimator for

the standard error of �̂. In order to overcome this issue and make the t-test usable, Fuertes

(2008) proposes sieve bootstrap. Although the theory of bootstrap for cross-sectionally

dependent panels is still to be fully explored, and the bootstrap may be computationally

burdensome, the simulations in Fuertes (2008) show that size distortion is reduced. However,

as T !1, t� diverges and thus even the bootstrap becomes inapplicable.

The main contribution of this paper is to propose a general methodology to consistently

estimate the standard error of the estimated �, obtaining ese��̂�. Thus, �̂ � �0 can be

properly studentized by ese (�), thereby obtaining a nuisance free statistic, whose limiting
distribution is standard Normal as (n; T ) ! 1 jointly with n

T
! 0. As an illustration, we

calculate the standard errors of the LSDV and POLS estimators for �, de�ned respectively asese��̂POLS� and ese��̂LSDV �, and study the asymptotic t-test based on the two estimators.
The empirical relevance of conducting a t-test for the long-run average � in a panel

that is a mixture of cointegrating and spurious regressions can be motivated by noting

that in empirical applications it is rather frequent to �nd evidence of a panel which is a

mixture of spurious and cointegrating regressions. As an example, consider the literature

on PPP. Whilst empirical evidence shows that very often some units are not cointegrated

and/or that the individual slopes are not homogeneous as prescribed by the strong version

of the PPP (see e.g. Pedroni, 2001, and the references therein), it is still interesting to

verify whether on average, in the panel, there is a one-to-one correspondence between the

movements of nominal exchange rates and aggregate price ratios. Denoting the elasticity of

the former to the latter as �, this would correspond to testing for H0 : � = 1. As another

example, in the literature on the Feldstein-Horioka puzzle, estimation of the long-run average
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is a routine exercise, also motivated by the systematic failure of cointegration in the unit

speci�c equations (Phillips and Moon, 2000, p. 279; Coakley et al., 2004); in this context,

a customarily tested hypothesis is that of perfect capital mobility, which is a t-test for the

null H0 : � = 0, where � represents the elasticity of investments to savings.

From a statistical point of view, tests based on the modi�ed t-statistic proposed here,
~t�, are a useful complement to bootstrap for at least three reasons. First, the test is shown

to be asymptotically N(0; 1) under serial dependence, in presence of strong cross sectional

dependence arising from the presence of a factor-loading structure in in the regressor xit
and/or in the error term uit and for any value of the percentage of spurious regressions

in the panel. Thus, the test is robust to all the cases considered in Fuertes (2008), and

can be used with no need for pre-testing, thereby avoiding e.g. having to apply unit root

tests to the residuals ûit. Note that some bootstrapping algorithms (e.g. the pre-testing

sieve bootstrap, discussed in Fuertes, 2008) do require pre-testing. Also, the estimation of

the fraction of spurious regressions is not required either (see also Ng, 2008, and Trapani,

2010). A second advantage is that the test statistic is asymptotically bounded (unlike t�)

and its limiting distribution is free from nuisance parameters; therefore, the accuracy of

the bootstrap algorithm when applied to ~t� instead of t� directly should be enhanced, also

allowing for asymptotic re�nements. Thus, the results of this paper can be viewed as both an

alternative or a complement to bootstrap. Third, the test is computationally very convenient

and it can be implemented in any software that performs panel estimation, such as Eviews,

OxMetrics or Stata.

The structure of this note is as follows. Section 2 lays out the assumptions and discusses

the asymptotics of the estimated �; the modi�ed t-test is studied in Section 3. Numerical

evidence from synthetic data is reported in Section 4. Section 5 concludes. Proofs and Tables

are in Appendices A and B respectively. The notation employed throughout the paper is

fairly standard: standard Brownian motions are denoted as W (r) for r 2 [0; 1]; integrals
involving Brownian motions such as e.g.,

R 1
0
W (s)ds are referred to as

R
W when there is no

ambiguity over limits; k�k denotes the Euclidean norm, d�! convergence in distribution,
p�!

convergence in probability and b�c the integer part; for a generic Brownian motion W , we
de�ne �W = W �

R
W to denote the demeaned version of W .

5



2 Assumptions and preliminary results

Recall the heterogeneous panel model (1)

yit = �i + �ixit + uit;

and the pooled regression (3)

yit = �i + �xit + vit:

The regressor xit is assumed to have the following DGP

xit = xit�1 + exit; (5)

and we let vit = uit + (�i � �)xit. Strong cross-sectional dependence is assumed to be

introduced by considering a factor-loading speci�cation for the error term uit:

uit =
h
'iF

(�)
t + e

u(�)
it

i
d�;i +

h
'iF

(1��)
t + e

u(1��)
it

i
(1� d�;i) ; (6)

where we de�ne d�;i = 1 for i = 1; :::; bn�c and zero otherwise. We assume that
n
F
(�)
t ; e

u(�)
it

o
is nonstationary and

n
F
(1��)
t ; e

u(1��)
it

o
is stationary, i.e.

F
(�)
t = F

(�)
t�1 + "Ft ;

e
u(�)
it = e

u(�)
it�1 + "eit;

and

F
(1��)
t = �Fi F

(1��)
t�1 + "Ft ;

e
u(1��)
it = �eie

u(1��)
it + "eit;

with
���Fi �� < 1 and j�ei j < 1;

�
"Ft ; "

e
it

	
is assumed to be a linear stationary process in both

cases. The setup considered here allows for a mixed panel, where bn�c units are spurious
regressions and the rest of the units are cointegration relationships. Allowing for � 2 [0; 1]
means that the boundary cases where all units are cointegration/spurious relationships can

be accommodated within this framework. Thus, we entertain the cases that (a) all units

are cointegrated, (b) all units are spurious regressions and (c) the panel is a mixture of

cointegrating and spurious regressions (mixed panel). Hence, the tests discussed below are
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robust to the boundary cases of cointegration or spurious regression across all units as well

as the case of a panel with mixed I (0) and I (1) error terms. Model (3) represents a

spurious regression for all units i since the error term is always I (1) because it contains

(�i � �) �xit � I (1) for all i - see also Phillips and Moon (1999b, p. 1080) - and also possibly

because uit � I (1) for some i. All results are derived assuming only one regressor in (1) and

only one factor in (6). This is done for the sake of notational simplicity, and extensions to

the multivariate case can be done at the price of a more complicated algebra but essentially

under the same assumptions.

Consider the following assumptions.

Assumption 1: [time series properties] (i) for all i it holds that j'ij
2+� <1 for some � > 0;

(ii) letting !it =
�
exit; "

F
t ; "

e
it

�0
, it holds that !it is a linear stationary process with E k!itk2+� <

1 for some � > 0 and an Invariance Principle (IP) holds for the partial sums of !it such

that for all r 2 [0; 1], T�1=2
PbTrc

t=1 !it
d! Bi (r), where Bi (r) = [Bxi (r) ; B"i (r) ; Bei (r)] has

covariance matrix 
i = diag f�2x; �2F ; �2ug.
Assumption 2: [heterogeneous coe¢ cients] (i) for all i, the coe¢ cients �i and �i are i.i.d.
with E (�i) = �, V ar (�i) = �2� <1 and E (�i) = �, V ar (�i) = �2� <1 and E j�ij

2+� <1
for some � > 0; (ii) f�ig, f�ig and fxit; uitg are three mutually independent groups.

Assumption 1 considers a broadly general speci�cation for the time series properties of

panel yit. Time dependence is assumed through a linear process - this requirement is needed

in order to apply the method of proof proposed in Phillips and Solo (1992), but more general

forms of time dependence could be allowed, as long as an IP holds for the partial sums of

!it. Cross sectional dependence is allowed for by using a factor-loading speci�cation for the

error term (equation (6)) - we refer e.g. to Bai (2003) and Pesaran (2006) for the stationary

case and Bai (2004) for the nonstationary case. No assumption is needed on the loadings 'i
or on the factors F (�)t apart from the validity of the IP and j'ij

2+� <1. The latter is needed
in order for the variance of 'iF

(�)
t to be �nite for all t. In this respect, it could alternatively

be assumed that the loadings 'i be random and independent of the other random variables

in the model, as long as some Lindeberg condition holds. Note that in this context neither 'i
nor F (�)t need to be identi�ed or estimated, as they will be treated as nuisance parameters.

Correlation between "Ft and "
e
it is assumed to be zero; while this is common in panel factor

models (see e.g. Assumption D in Bai, 2004), this requirement is not strictly needed here and

it is assumed only for the purpose of a simple notation. The long run covariance matrix of Bi
is assumed to be homogeneous across units. This is not necessary, and all the results derived
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hereafter could be obtained considering di¤erent long run covariance structures (under some

mild summability conditions).

Assumption 2 is needed only in order for the Central Limit Theorem (CLT) and the Law of

Large Numbers (LLN) to hold for the �is and the �is such that e.g. n
�1Pn

i=1 (�i � �)2
p! �2�

and
�
n�2�

��1=2Pn
i=1 (�i � �)

d! N (0; 1); less strict assumptions could be considered as long

as the CLT and the LLN hold in the weak form. A consequence of Assumption 2(ii) is that

E (�i) = �.

As well as considering a framework where the regressors xit are cross-sectionally indepen-

dent, typical in the early panel literature (Phillips and Moon, 1999b; Kao, 1999), recently

the literature has also considered the case of strong cross-dependence in the regressors (see

e.g. the analysis and the comments in Pesaran, 2006; and Kapetanios et al., 2009). This

case, arising e.g. from the presence of common factors in the DGP of the xits, can be

accommodated using exactly the same theoretical framework as developed for the case of

cross-sectionally independent regressors, and it is explored separately for the sake of nota-

tional simplicity. Consider the following DGP, alternative to (5)

xit = #iGt; (7)

where the nonstationary common factorGt is de�ned byGt = Gt�1+"
G
t , with "

G
t a stationary,

linear process. Equation (7) could be generalised e.g. to include idiosyncratic nonstationary

shocks as well, i.e. xit = #iGt + �it with �it � I (1), which we do not consider for brevity.

Consider the following additional assumptions.

Assumption 3: [cross-correlated regressors] (i) either (a) E ('i#i) = O
�
T�1=2

�
for all i,

or (b) uit = e
u(�)
it d�;i+ e

u(1��)
it (1� d�;i)+ 'iF

(1��)
t ; (ii) letting ~!it =

�
"Git ; "

F
t ; "

e
it

�0
, it holds

that ~!it is a linear stationary process with E k~!itk2+� <1 for some � > 0 and an IP holds

whereby T�1=2
PbTrc

t=1 !it
d! ~Bi (r), where ~Bi (r) has covariance ~
i = diag f�2G; �2F ; �2ug; (iii)

E j'ij
4+� <1 and E j#ij4+� <1 for some � > 0 with f'i; #ig is independent of �i.

Assumption 3 is made of three parts. Parts (ii) and (iii) are a generalisation of Assump-

tions 1(ii) and 2. Particularly, part (iii) is a su¢ cient condition to show that E j'i#ij
2+� <

1. The assumption that Gt and Ft have no long-run correlation could be relaxed but is
maintained here for simplicity. Part (i) controls the amount of cross-dependence allowed for.

Part (i)(a) is needed in order to establish that the correlation between xit and uit (conditional

on the common shocks Gt and Ft) is weak; a similar (in spirit) requirement is Assumption
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CU in Andrews (2005, p. 1559). If E ('i#i) 6= 0 and �nite, it would no longer be possible to
have a consistent estimator of the long-run average � using an ordinary OLS framework (see

also, in a cross sectional setting, Andrews, 2005); consistency could be achieved using the

estimation technique proposed by Pesaran (2006), although in order for this to be applied

without incurring in overdi¤erencing, one needs either � = 0 or � = 1. Alternatively, it can

be shown that OLS is consistent even if E ('i#i) 6= 0, as long as the common factors in the
error term are stationary, as required in part (b) of Assumption 3(i). Further explanations

as to how part (i) works are below, after Lemma 2.

Consider the LSDV and the POLS estimators respectively for � in (3),

�̂
LSDV

=

"
nX
i=1

TX
t=1

�x2it

#�1 " nX
i=1

TX
t=1

�xit�yit

#
;

�̂
POLS

=

"
nX
i=1

TX
t=1

~x2it

#�1 " nX
i=1

TX
t=1

~xit~yit

#
;

where �xit = xit � T�1
P

t xit and ~xit = xit � (nT )�1
P

i

P
t xit and �yit and ~yit are de�ned

similarly.

The following notation will be used henceforth: we let 'k = limn!1 n
�1P

i '
k
i for k =

1; 2; :::; #k is de�ned similarly. LettingWj for j = 1; 2; ::: be independent standard Brownian

motions, we de�ne Dj =
R 1
0

R 1
0
�Wj (s) �Wj (r)  (r; s) drds with  (r; s) = 1

3
+ min (r; s)��

1
2
r2 + r (1� r)

�
�
�
1
2
s2 + s (1� s)

�
and,

D0
1 = '2

1Z
0

1Z
0

W1 (r)W1 (s)min (r; s) drds

�
�
'1
�2 24 1Z

0

W1 (r) dr

35 1Z
0

1Z
0

�
W1 (r) + �W1 (r)

�
min (r; s) drds:

The following theorem characterizes the limiting distribution of �̂
LSDV

and �̂
POLS

and

of their standard errors computed from (4).

Lemma 1 Let the DGP of xit be the one in (5), and let Assumptions 1 and 2 hold. Then,
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as (n; T )!1 with n
T
! 0, it holds that

p
n
�
�̂
LSDV � �

�
d!
�
2

5

��2u
�2x

+
9

5
�2� + 6

�'2�2F
�2x

D1

�1=2
� Z; (8)

p
nTse

�
�̂
LSDV

�
d!

s
��2u
�2x

+ �2� +
6�'2�2F
�2x

�Z
�W 2

�
; (9)

and

p
n
�
�̂
POLS � �

�
d!
�
2
��2u
�2x

+
10

3
�2� + 2

��2F
�2x

D0
'1

�1=2
� Z (10)

p
nTse

�
�̂
POLS

�
d!

s
��2u
�2x

+ �2� +
2�'2�2F
�2x

�Z
W 2

�
; (11)

with Z � N (0; 1) independent of all the other random variables. For both estimators, it

holds that t� = Op

�p
T
�
as (n; T )!1 under n

T
! 0.

Lemma 1 states that �̂ is estimated consistently at a rate
p
n. This result is typical in

panel spurious regression as shown by Kao (1999) and Phillips and Moon (1999a, 1999b).

The novel result in (8) and (10) is the asymptotic distribution of �̂ under the broadly general

Assumptions 1 and 2. Note that the limiting distribution of �̂ is mixed Normal instead of

Normal, contrary to what is usually found in large nonstationary panel literature. This is

due both to the presence of the common factors F (�)t across units and the non-stationarity of

F
(�)
t , which makes the asymptotic theory in Phillips and Moon (1999b) not applicable here;

see also the discussion in Kao, Trapani and Urga (2008, 2010). Equations (9) and (11) show

that, for similar reasons, se
�
�̂
�
converges in distribution to a random variable rather than

converging to a constant; this arises again from the presence of the I (1) common factors

F
(�)
t across units.

Equation (8) stipulates the consistency of �̂
LSDV

under various circumstances: mixed

presence of cointegration and spurious regressions (so that � 2 [0; 1]), various levels of slope
heterogeneity (so that �2� 2 [0;+1)), and presence of strong cross-sectional dependence.
Since the asymptotics of the LSDV estimator (as well as that of the POLS one) is robust

to the values of various nuisance parameters, it can be used, for the purpose of carrying out

a t-test on �, without the need of pre-testing for, e.g. panel cointegration or homogeneity.

An alternative approach to the estimation of � is using some Mean Group procedure. Par-

ticularly, in the boundary cases � = 0 and � = 1, as an alternative estimation method one
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could use the Common Correlated E¤ects Mean Group (CCE-MG) estimator, discussed in

Kapetanios et al. (2009) and Pesaran (2006, applying it to �rst di¤erenced data) respec-

tively. The CCE-MG estimator of �, say �̂
CCEMG

, is
p
n-consistent and it holds that (see

e.g. Theorem 2 in Pesaran, 2006, p. 985)
p
n
�
�̂
CCEMG � �

�
d! N

�
0; �2�

�
. Thus, �̂

MG
is

asymptotically more e¢ cient, which could result in higher power for the t-test. However,

the range of applicability of Lemma 1 states that the LSDV and POLS estimators are more

robust, since they can be used for all values of � 2 [0; 1] and not only at the boundaries.

When the DGP of the xits contains common factors, as in (7), the results are conceptually

very similar, and the method of proof is exactly the same. We illustrate this by presenting

the asymptotics of the LSDV estimator only, in order to save space - the limiting distribution

of the Pooled-OLS estimator can be calculated following exactly the same steps as in the

proof of Lemma 1.

Lemma 2 Let the DGP of xit be the one in (7), and let Assumptions 1-2 and 3(ii) hold.
Then, under either Assumption 3(i)(a) or 3(i)(b), as (n; T )!1 with n

T
! 0, it holds that

p
n
�
�̂
LSDV � �

�
d! ��1G � (12)"

�2��
2
G + ��2u�

2
G#

2D2 + db��
2
u�

2
G�

2

�Z
�W1
�W2

�2#1=2
� Z;

p
nTse

�
�̂
LSDV

�
d! �

�1=2
1

�
��2u
6
+ �2��G + db�'

2�2F

�Z
�W 2
1

��1=2
; (13)

where �G = �2G#
2
R
�W 2
2 , �

2 = limn!1 n
�1P

i '
2
i#
2
i and the dummy variable db is equal to 1

under Assumption 3(i)(a) and zero otherwise. It holds that t� = Op

�p
T
�
as (n; T ) ! 1

under n
T
! 0.

Lemma 2 states a very similar result to Lemma 1, in terms of rate of convergence of �̂
LSDV

and also as far as its standard error is concerned. The method of proof, as shown in Appendix

A, is the same. As in Lemma 1, the presence of common factors introduces a randomness

which is not smoothed away by cross-sectional averaging: the limiting distribution of �̂
LSDV

is mixed Normal instead of Normal. In this case, this is due to the presence of common

factors in both the error term uit and in the regressor xit, as it can be seen by noting that

the denominator of �̂
LSDV � � does not converge in probability to a number as in the case

of Lemma 1, but it converges weakly to a random variable, �G.
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As equation (24) in Appendix A shows, Assumption 3(i) is needed in order to ensure

consistency of �̂
LSDV

; this is because, in the expression of the denominator of �̂
LSDV��, there

is a term equal to
�
n�1=2

Pn
i=1 'i#i

� �
T�2

PT
t=1

�Ft �Gt

�
. As (n; T )!1 this has expectation

(conditional on Ft and Gt) given by � =
p
nE ('i#i)

�
T�2

PT
t=1

�Ft �Gt

�
; this is negligible

(and therefore there is no asymptotic bias) if either E ('i#i) or T
�2PT

t=1
�Ft �Gt converge

to zero in some sense. This happens under Assumption 3(i)(b), as the FCLT entails that

E
�
T�2

PT
t=1

�Ft �Gt

�
= Op (T

�1), and therefore � = Op

�p
n
T

�
; alternatively, Assumption

3(i)(a) su¢ ces to show that � = Op
�p

n
T

�
. In both cases, the restriction n

T
! 0 as (n; T )!

1 entails that � = op (1).

3 The asymptotic t-test

Equations (8)-(11) in Lemma 1, and (12)-(13) in Lemma 2, show that, as already proved

by Kao (1999) under di¤erent assumptions, t� = Op

�p
T
�
both when computed using the

LSDV and the POLS estimator. Therefore, the ordinary t-test t� can not be employed due

to two reasons. First, t� diverges as T ! 1 and therefore, as T ! 1, the size of the test
converges in probability to 1; this �nding is consistent with the theory derived by Kao (1999)

for a more restrictive setting and with the simulations in Fuertes (2008). Second, even when

suitably normalised by
p
T , t� would not converge to a standard Normal because se

�
�̂
�

does not converge to the asymptotic variance of �̂.

In order to solve this problem, in this section we propose an alternative approach to the

estimation of the variances of �̂
LSDV

and �̂
POLS

, in a similar spirit to Bai and Kao (2006).

Let v̂it = �yit � �̂
LSDV

�xit and �vit = ~yit � �̂
POLS

~xit and de�ne

ese��̂LSDV � =

rPn
i=1

�PT
t=1 �xitv̂it

�2
Pn

i=1

PT
t=1 �x

2
it

; (14)

ese��̂POLS� =

rPn
i=1

�PT
t=1 ~xit�vit

�2
Pn

i=1

PT
t=1 ~x

2
it

: (15)
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Under H0 : � = �0, the modi�ed t-statistic is de�ned as

~tLSDV� =
�̂
LSDV � �0ese��̂LSDV � ;

and ~tPOLS� can be de�ned similarly.

The following theorem characterizes the limiting distribution of ~t� under H0 and under

local alternatives H(n)
A : � = �0 + c=

p
n.

Theorem 1 Consider (5), and let Assumptions 1 and 2 hold. Then as (n; T ) ! 1 with
n
T
! 0,

~tLSDV�
d!
H0
N (0; 1) ; (16)

~tLSDV�
d!

H
(n)
A

N (c; 1) : (17)

The same results hold for ~tPOLS� , and also under (7) and Assumption 3.

Theorem 1 shows the distribution of the modi�ed t-statistics ~tLSDV� and ~tLSDV� under the

null and under local alternatives. The studentization in (14) ensures that ~t� has a standard

Normal distribution as (n; T )!1, under the setup laid out in Assumptions 1 and 2. Since
Lemma 1 shows that �̂ has a mixed Gaussian distribution, appropriate studentization ensures

standard normality - see also the discussion in Andrews (2005). This is achieved with no

need to estimate nuisance parameters such as the fraction of error terms uit that are I (1),

the degree of heterogeneity �2� or 'i and F
(�)
t in (6). The statistic is robust to the values of

nuisance parameters: for example, when � = 0 or 1, and regardless of the presence and the

extent of cross-sectional dependence. Also, the limiting distribution of ~t� is nuisance free,

and therefore bootstrapping ~t� could yield asymptotic re�nements. This holds true also if

there are common factors in the DGP of the xits, in spite of the di¤erent limiting distribution

of �̂
LSDV

as illustrated by Lemma 2. Finally, note that Theorem 1 holds for the joint limit

case, provided that n
T
! 0. The practical consequence of this restriction is that the number

of units n cannot be �too large�with respect to T . The test is shown to be powerful versus

local alternatives of magnitude Op (1=
p
n). This result is not surprising and, as shown in the

proof, it follows from the consistency of
p
n ese��̂� as an estimator of V ar ��̂� under H(n)

A .

Theorem 1 states that both
h ese��̂LSDV �i2 and h ese��̂POLS�i2 are consistent estima-
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tors for the variance of �̂
LSDV

and �̂
POLS

respectively. Whilst details are in Appendix

A, it is worth providing an intuition of this result here. Consider the numerator of (14),

n�1
Pn

i=1

�
T�2

PT
t=1 �xitv̂it

�2
. Given that �̂

LSDV
is a consistent estimator, n�1

Pn
i=1

�
T�2

PT
t=1

�xitv̂it)
2 = n�1

Pn
i=1

�
T�2

PT
t=1 �xitvit

�2
+ op (1). The quantities

�
T�2

PT
t=1 �xitvit

�2
are (after

conditioning) independent across i and have �nite expectation. Thus, a cross-sectional LLN

holds as n!1, for any T , ensuring that n�1
Pn

i=1

�
T�2

PT
t=1 �xitvit

�2 p! limn!1 n�1
Pn

i=1

E

�
limT!1

�
T�2

PT
t=1 �xitvit

�2�
, which, as T ! 1, corresponds to the asymptotic variance

of the numerator of �̂
LSDV

by de�nition - see equation (20) in Appendix A. Thus, similarly to

the Phillips and Moon (1999b) approach, the fact that T passes to in�nity is just ancillary to

the main argument of the proof. This is another example that illustrates how it is possible,

with panel data, to estimate long run variances using the full time series sample due to the

availability of a large amount of cross sectional information - see also the discussion in Sun

(2004).

4 Monte Carlo evidence

The null rejection frequency and the power of tests based on ~tLSDV� are reported in Tables 1-3

in Appendix B; results for ~tPOLS� showed a similar pattern and thus were not reported. The

Monte Carlo exercises have been conducted with 2000 replications. When assessing the size

of the test at a con�dence level c�, this entails a standard error given by
p
c� (1� c�) =2000;

for a con�dence level c� = 0:05, this means that the reported rejection frequencies lie within

a 95% con�dence interval of width �0:01.
The experiments reported here were carried out for (n; T ) = (25; 100), (50; 200) and

(100; 400); tables are reported in Appendix B. Other experiments, not reported here, showed

that size distortion does arise for n < 25. Thus, n = 25 seems to be the threshold below

which the asymptotic approximation of ~t� is no longer accurate.

Synthetic data are generated using equation (1)

yit = �i + �ixit +
h
'iF

(�)
t + e

u(�)
it

i
d�;i +

h
'iF

(1��)
t + e

u(1��)
it

i
(1� d�;i) ;

with xit = xit�1 + exit, �i � i :i :d :N(1; 1), �i � i :i :d :N(1; �2�) and 'i � i :i :d :N(�'; �'). We
consider the cases �2� = f0; 0:25; 0:5g, based on �typical� values of heterogeneity (see the
discussion in Trapani and Urga, 2009) and also �2� = 4 to investigate the robustness of the
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test versus extreme levels of heterogeneity; and we set (�'; �') = f(0; 0) ; (1; 1)g. The fraction
of spurious regressions, �, is set as � 2 f0; 0:2; 0:4; 0:6; 0:8; 1g. When common factors are
present in the DGP of the xit as in (7), we set #i � i :i :d :N(�#; �#) with (�#; �#) = (1; 1).
The innovations et =

�
exit; "

F
t ; e

u
it; "

G
t

�0
are generated by creating a Gaussian i.i.d. sequence

_et =
�
_exit; _"

F
t ; _e

u
it; _"

G
t

�0
with V ar ( _exit) = V ar

�
_"Gt
�
= �2x and V ar

�
_"Ft
�
= V ar ( _euit) = 1; the

signal to noise ratio is �x = 0:5. Time dependence is induced as

et = �eet�1 + _et + �e _et�1;

with (�e; �e) 2 f(0; 0) ; (0:75; 0) ; (0; 0:75) ; (0;�0:75)g.

Tables 1a-1c, 2a-2c and 3a-3c in Appendix B contain the null rejection frequencies for

the cases (�'; �') = (0; 0) and (1; 1), and (�#; �#) = (1; 1) respectively.

We comment on the main results of Tables 1 and 2; Tables 3 are commented in the last

bullet point. The following stylized facts emerge:

� The presence of strong cross-sectional dependence in the error term uit has a tendency

to worsen the results, at least in small samples. Although a factor structure in the

error term alters only slightly the numbers in Tables 2a and 2b (when compared to

those in Tables 1a and1b) for the cases (n; T ) = (25; 100) and (50; 200), including cross-

dependence makes the empirical rejection frequencies less close to the nominal level

0:05. This is particularly evident as � increases, which is expected since the asymptotics

is driven by units with I (1) errors and therefore with I (1) common factors in their

error term. A possible explanation is that presence of cross sectional dependence makes

the convergence of the (cross-sectional) CLT slower, thereby marring the accuracy of

asymptotic approximations. However, as the sample size increases, this discrepancy is

mitigated, and for (n; T ) = (100; 400) the �gures are very close, as one could realise

comparing Tables 1c and 2c.

� The role played by the fraction of spurious regressions, �, is evident in both cases,
with or without cross dependence. Particularly, ceteris paribus, as � increases, the

empirical rejection frequencies increase as well, with a tendency towards oversizement.

It is worth noticing that whilst for � < 0:5 the observed rejection frequencies are

usually not signi�cantly di¤erent to the nominal level, for � > 0:5 there is evidence of

signi�cant (although slight) oversizement. This is attenuated for larger sample sizes,

and when (n; T ) = (100; 400) the null rejection frequencies are closer to their nominal
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values (Tables 1c and 2c), although there still is some tendency to oversizement for

� = 1.

� The degree of heterogeneity �2� does not seem to a¤ect size results in a regular way.

Although rejection frequencies do change, and this is particularly evident as � grows,

there is no clear pattern across the various results in the tables, particularly in small

samples with (n; T ) = (25; 100) - see Tables 1a and 2a. Note that for
�
�; �2�

�
= (0; 0)

there is a tendency towards undersizement; this can be explained in light of equations

(8) and (10), fromwhich it is evident that in the case of a cointegrated and homogeneous

panel, t� = Op (1) and thus ~t� = Op
�
T�1=2

�
. As a consequence, when T grows, ~t� tends

to zero, whence the small size of the test. This is reinforced for (n; T ) = (50; 200)

(Tables 1b and 2b) and (n; T ) = (100; 400) (Tables 1c and 2c). Also, the size is not

correct for �large�values of �2� (�
2
� = 4 in the simulations), and particularly the test

seems to be undersized in �nite sample; of course, if �2� were not �nite, this would

make the CLT invalid, and therefore the asymptotics for �̂ derived above would not

hold. This could explain why �large�values of �2� entail size distortion; however, the

undersizement disappears as the sample size increases to (100; 400), see Tables 1c and

2c.

� The presence of serial dependence in the errors does not play an important role in
a¤ecting the size, at least apart from the case of a negative MA root. This is in accord

with the way in which the statistic is computed, i.e. by studentising. Whilst the

cases (�e; �e) = (0:75; 0) and (�e; �e) = (0; 0:75) do not di¤er substantially from the

white noise case, negative MA root seems to lead to undersizement in small samples.

This is fairly common in the literature - see e.g. Leybourne and Newbold (1999) and

the references cited therein. As the sample size increases to (n; T ) = (50; 200) and

(100; 400), the impact of negative MA roots decreases, and the test is less and less

undersized.

� The presence of common factors in the regressor xit has a very strong impact on the
empirical rejection frequency, making it depart sensibly from the 5% nominal value

for (n; T ) = (25; 100) and also (50; 200). There is no clear pattern of oversizement or

undersizement. As (n; T ) increases to (100; 400), the size gets closer to its nominal

value, suggesting that the convergence of �̂ to � is slowed down by the presence of

common factors. As � increases, contrary to the other experiments, the empirical

rejection frequency improves; a possible explanation is that the asymptotics is driven
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by the units that are spurious regressions, as the error term in that case is I (1), as

thus as � increases the actual sample size, bn�c, also increases, thus speeding up the
convergence. The impact of the other nuisance parameters (mainly �2�) is in line with

the other experiments.

As well as running a set of experiments to assess the size of the test, the power versus

the alternative HA : � = 2 (under the null that � = 1) has been evaluated, and it is reported

in Tables 1d, 2d and 3d. The tables show that the test has good power properties even for

the case (n; T ) = (25; 100) - the cases (n; T ) = (50; 200) and (100; 400) are not reported to

save space, and show, as expected, an improvement in the power. The power does not seem

to be strongly a¤ected by the presence of various types of serial dependence; conversely, it

is a¤ected by other nuisance parameters. Particularly, as it emerges from considering the

case �2� = 4, the power becomes lower as slope heterogeneity increases; this can be explained

by noting that, as heterogeneity increases, the notion of �average slope� becomes fuzzy,

thereby hampering inference conducted on �. Table 1d also shows that as the percentage

of spurious regressions � increases, the power seems to decrease, although this is less clear

when common factors are present in the error term uit and/or in the regressors xit (Tables 2d

and 3d respectively). Finally, the presence of common factors (Tables 2d and 3d) enhances

the power, although it should be pointed out that the size of the test becomes worse in this

case.

5 Conclusions

This note proposes an asymptotic t-test for the long-run average parameter � in mixed

panels. Standardization using the estimated standard deviation leads to t-test that are

asymptotically standard Normal. Thus, as (n; T )!1, t-tests based on this standardization
are free from nuisance parameters, and can therefore be employed using the critical values

from the Normal distribution. From the point of view of the features of the model, the test

is robust to any degree of parameter heterogeneity, to any level of serial and cross-sectional

dependence in the regressors and in the error term and to any values of the fraction of

spurious regressions in the sample. Due to the broad generality of the assumptions under

which the asymptotic t-test can be computed, the test can be applied without any pre-testing

being necessary.

Thus, the contribution of this paper can be seen as both a substitute and a complement

to the bootstrap, as discussed in Fuertes (2008). The asymptotic t-test is a substitute to the
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bootstrap and it has the advantage of being computationally straightforward. Monte Carlo

evidence shows that the size distortion is small when n is as small as 25, and it also reinforces

the conclusion that the test is robust to various values of parameters heterogeneity, fraction

of spurious regression, and presence of serial and cross dependence. The asymptotic t-test is

also a complement to sieve bootstrap, in that the test statistic ~t� is asymptotically pivotal,

and thus the bootstrap version of ~tLSDV� and ~tPOLS� could yield asymptotic re�nements.

Finally, it is important to point out that although calculations have been explicitly car-

ried out for the cases of the LSDV and the POLS estimators for illustrative purposes, the

framework described here can be readily extended and applied to other estimators. As the

proof of Theorem 1, and particularly equation (25), shows, the asymptotic standard error of

an estimator of � can always be estimated, by construction, using similar formulas to (14)

and (15). The main methodological guidelines, when calculating the standard error of an

estimator, are to use a formula where: (1) at the numerator, in order to have the correct

probability limit, the sum of the squared residuals v̂2it is replaced with the cross-sectional

summation of the squares of the time series summations of the product between the resid-

uals and the regressors; and (2) at the denominator, in order to have the appropriate order

of magnitude, the sum of the squared regressors is not under square root.
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Appendix A: proofs and derivations

Henceforth, M� denotes a �nite constant which only depends on a constant � > 0.

Proof of Lemma 1. We �rstly prove (8) and (9); the method of proof builds on the

theory developed by Kao, Trapani and Urga (2010). Henceforth, we de�ne Ft = F
(�)
t d�;i +

F
(1��)
t (1� d�;i) and euit = e

u(�)
it d�;i + e

u(1��)
it (1� d�;i).

Consider the LSDV estimator. The estimation error is

�̂
LSDV � � =

Pn
i=1

PT
t=1 [(�i � �) �xit + �uit] �xitPn

i=1

PT
t=1 �x

2
it

:

Kao (1999) proved that

1

nT 2

nX
i=1

TX
t=1

�x2it
p! 1

6
�2x; (18)

and this result holds for all values of � since it only depends on the features of �xit. As far as

the numerator of �̂
LSDV � � is concerned, let

�iT =
1

T 2

TX
t=1

[(�i � �) �xit + �uit] �xit

=
1

T 2

TX
t=1

(�i � �) �x2it +
1

T 2

TX
t=1

�xit�e
u
it +

1

T 2

TX
t=1

'i �Ft�xit;

and let C be the �-�eld generated by the Fts. Then, conditional on C, the sequence �iT is

i.i.d. across i and

E (�iT jC) = E

"
1

T 2

TX
t=1

(�i � �) �x2it

#
+ E

"
1

T 2

TX
t=1

�xit�e
u
it

#
+ E

"
1

T 2

TX
t=1

'i �Ft�xit

#
(19)

= I + II + III:

Since, by Assumption 2, �i is independent of �x
2
it and E (�i) = �, it follows that I = 0

for all T . As far as II is concerned, it follows from Phillips and Moon (1999b, p. 1101,

eq. 8.17) that II = O
�
T�1=2

�
. Similar arguments would lead to III = Op

�
T�1=2

�
. Thus,

E (�iT jC) = Op
�
T�1=2

�
for all i. Let ��iT = �iT � E (�iT ) and let Ii be the �-�eld generated

by C and
�
��1T ; :::;

��iT
	
. Then

�
��iT ; Ii; i � 1

	
is a martingale di¤erence sequence (MDS). As

T ! 1, a conditional Liapunov condition holds whereby E
����iT ��C��2+� < 1 for all i (this
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follows from ��iT being i.i.d. across i conditional on C): using the Cr-inequality

����iT ��2+� �M�

24j�i � �j2+�
����� 1T 2

TX
t=1

�x2it

�����
2+�

+

����� 1T 2
TX
t=1

�xit�e
u
it

�����
2+�

+ j'ij
2+�

����� 1T 2
TX
t=1

�Ft�xit

�����
2+�
35 :

Assumption 2 ensures that E j�i � �j2+� and E j'ij
2+� are �nite. Also, de�ne �W1i, �W2i

and �W3 as independent standard demeaned Brownian motions. Then, as T ! 1, the
Continuous Mapping Theorem (CMT) ensures that

���T�2PT
t=1 �x

2
it

���2+� d! �
2(2+�)
x

��R �W 2
1i

��2+�,���T�2PT
t=1 �xit�e

u
it

���2+� d! �2+�u �2+�x

��R �W1i
�W2i

��2+� and ���T�2PT
t=1

�Ft�xit

���2+� d! �2+�F �2+�x

��R �W3
�W1i

��2+�;
all these quantities have �nite expectation. Since E

����iT ��C��2+� <1 as T !1, it is possible
to apply a CLT for MDS; as (n; T )!1 with n

T
! 0

1p
n

nX
i=1

�iT =
1p
n

nX
i=1

��iT +
1p
n

nX
i=1

E (�iT ) =
1p
n

nX
i=1

��iT +Op

�r
n

T

�
d!
"
lim
n!1

1

n

nX
i=1

E
�
��
2
iT

���C�#1=2 � Z; (20)

where Z � N (0; 1) and independent of E
�
��
2
iT

���C�. Note that E ���2iT ���C� = E
�
�2iT
��C� +

op (1) and consider E
�
�2iT
��C�; it holds

�2iT = (�i � �)2
 
1

T 2

TX
t=1

�x2it

!2
+

 
1

T 2

TX
t=1

�xit�e
u
it

!2
+ '2i

 
1

T 2

TX
t=1

�Ft�xit

!2

+2 (�i � �)

 
1

T 2

TX
t=1

�x2it

! 
1

T 2

TX
t=1

�xit�e
u
it

!
+ 2 (�i � �)'i

 
1

T 2

TX
t=1

�x2it

! 
1

T 2

TX
t=1

�Ft�xit

!

+2'i

 
1

T 2

TX
t=1

�xit�e
u
it

! 
1

T 2

TX
t=1

�Ft�xit

!
= a+ b+ c+ d+ e+ f: (21)

Assumption 2 ensures thatE (d) = E (e) = 0. In light of Assumption 1, a d! (�i � �)2 �2x
�R

�W 2
1i

�2
as T ! 1 and E

h
(�i � �)2 �2x

�R
�W 2
1i

�2i
= E (�i � �)2 �2xE

�R
�W 2
1i

�2
for all units, with

E (�i � �)2 = �2� by de�nition and E
�R

�W 2
1i

�2
= �4x=20 - see Kao (1999) for the latter

result. Assumption 1 also ensures that b d! �2x�
2
u

�R
�W1i

�W2i

�2
for i = 1; :::; bn�c and b =

Op (T
�1) for the other units; since

R
�W1i

�W2i has mean zero, it holds that E
�R

�W1i
�W2i

�2
=
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V ar
�R

�W1i
�W2i

�
= �2e�

2
x=90 - see Kao (1999). This also entails E (f) = 0 as T ! 1. Last,

considering c

E

24 1

T 2

TX
t=1

�Ft�xit

!2������C
35 = 1

T 4

TX
t=1

TX
s=1

�Ft �FsE (�xit�xis) ;

and after some algebra, using a strong approximation it can be proved that

E (�xit�xis)

�2x
= min (s; t) +

1

T 2

TX
t=1

TX
s=1

min (s; t)

�t (t+ 1)
2T

� t (T � t)

T
� s (s+ 1)

2T
� s (T � s)

T
= T (r; s) :

As T !1 we have T�3
PT

t=1

PT
s=1min (s; t) = 1=3 and, due to the CMT,

1

T 4

TX
t=1

TX
s=1

�Ft �FsE (�xit�xis)
d! �2x�

2
F

1Z
0

1Z
0

�W3 (r) �W3 (s) (r; s) drds � �2x�
2
FD1; (22)

for i = 1; :::; bn�c and b = Op (T
�1) for the other units. To calculate n�1

Pn
i=1E

�
�2iT
��C�,

note that the only terms that di¤er across units and do not vanish asymptotically are b and

c in (21) and

1

n

nX
i=1

 
1

T 2

TX
t=1

�xit�e
u
it

!2
=

�

n�

bn�cX
i=1

 
1

T 2

TX
t=1

�xit�e
u
it

!2
+ op (1)

p! �
�2e�

2
x

90
;

1

n

nX
i=1

'2i

 
1

T 2

TX
t=1

�Ft�xit

!2
=

�

n�

bn�cX
i=1

'2i

 
1

T 2

TX
t=1

�Ft�xit

!2
+ op (1)

d! �'2�2x�
2
FD1:

Combining these results together we obtain (8).

Now we turn our attention to (9). Recall

se
�
�̂
�
=

s
1

nT

Pn
i=1

PT
t=1 v̂

2
itPn

i=1

PT
t=1 �x

2
it

;
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and let us focus on the numerator. Since v̂it =
�
�i � �̂

�
�xit + 'i �Ft + �e

u
it, it holds that

nX
i=1

TX
t=1

v̂2it =
nX
i=1

TX
t=1

�eu2it +

nX
i=1

'2i

TX
t=1

�F 2t +

nX
i=1

(�i � �)2
TX
t=1

�x2it

+
�
�̂ � �

�2 nX
i=1

TX
t=1

�x2it � 2
�
�̂ � �

� nX
i=1

TX
t=1

(�i � �) �x2it

+2
nX
i=1

(�i � �)

TX
t=1

�xit�e
u
it � 2

�
�̂ � �

� nX
i=1

TX
t=1

�xit�e
u
it

+2
nX
i=1

'i (�i � �)

TX
t=1

�xit �Ft � 2
�
�̂ � �

� nX
i=1

'i

TX
t=1

�xit �Ft

+2
nX
i=1

'i

TX
t=1

�Ft�e
u
it

= I + II + III + IV + V + V I + V II + V III + IX +X: (23)

Consider I. Assumption 1 ensures that I = Op (nT
2); also, in light of assumption 1 we havePT

t=1
�F 2t = Op (T

2) and therefore, since
Pn

i=1 '
2
i = O (n), it holds that II = Op (nT

2). As

far as III is concerned,
PT

t=1 �x
2
it = Op (T

2) and the sequence
Pn

i=1 (�i � �)2
PT

t=1 �x
2
it is i.i.d.

across i and has non-zero mean and �nite variance; thus, III = Op (nT
2). Recalling that �̂�

� = Op
�
n�1=2

�
, we have IV = Op (n

�1T 2). Since
Pn

i=1

PT
t=1 (�i � �) �x2it = Op (

p
nT 2), V =

Op (T
2). Also, as far as V I is concerned,

PT
t=1 �xit�e

u
it = Op (T

2) and
Pn

i=1 (�i � �)
PT

t=1 �xit�e
u
it

is i.i.d. across i and zero mean so that a cross-sectional CLT holds; thus V I = Op (
p
nT 2).

Similar arguments lead to V II = Op (nT
2). Given that 'i (�i � �)

PT
t=1 �xit

�Ft has mean zero

across i and
PT

t=1 �xit
�Ft = Op (T

2), and we have V III = Op (
p
nT 2), and IX = Op (T

2).

Last, since
PT

t=1
�Ft�e

u
it = Op (T

2) and this is an i.i.d. sequence which has zero mean across

i, X = Op (
p
nT 2). Thus, the terms that dominate are I, II and III, all of order Op (nT 2).

It holds that

1

nT 2

nX
i=1

TX
t=1

�eu2it =
�

(n�)T 2

bn�cX
i=1

TX
t=1

�eu2it + op (1)
p! ��2u

6
;

1

nT 2

nX
i=1

'2i

TX
t=1

�F 2t
d! �'2�2F

Z
�W 2
3 ;

1

nT 2

nX
i=1

TX
t=1

(�i � �)2 �x2it
p!
�2��

2
x

6
:
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It follows that
1

nT 2

nX
i=1

TX
t=1

v̂2it
d! ��2u

6
+
�2��

2
x

6
+ '2�2F

Z
�W 2;

and therefore, since the denominator
Pn

i=1

PT
t=1 �x

2
it=nT

2 p! �2x=6, we have

se
�
�̂
�

d! ��2u
�2x

+ �2� +
6'2�2F
�2x

Z
�W 2:

Note that no restriction on the rate of expansion between n and T is required here to derive

the joint limit.

The proof of (10) and (11) follows similar lines as the proof of (8) and (9), and thus some

passages are omitted. In this case the estimation error is

�̂
POLS�� =

Pn
i=1

PT
t=1

n
(�i � �) + (�i � �)xit � (nT )�1

hPn
i=1

PT
t=1 (�i � �)xit

i
+ ~uit

o
~xitPn

i=1

PT
t=1 ~x

2
it

:

Lemma 1.2 in Baltagi, Kao and Liu (2008) shows that (nT 2)�1
Pn

i=1

PT
t=1 ~x

2
it

p! �2x=2. As far

as the numerator is concerned, let (nT )�1
Pn

i=1

PT
t=1 xit = �x, (nT )

�1Pn
i=1

PT
t=1 (�i � �)xit =

�x� and de�ne

& iT =
1

T 2

TX
t=1

[(�i � �)xit~xit � �x�~xit + ~uit~xit] :

Then, conditional onC, & iT is i.i.d.; similar passages as above lead toE (& iT jC) = Op
�
T�1=2

�
.

Letting �& iT = & iT � E (& iT jC), as (n; T )!1 with n
T
! 0 the MDS CLT entails

1p
n

nX
i=1

& iT =
1p
n

nX
i=1

�& iT +
1p
n

nX
i=1

E (& iT jC) =
1p
n

nX
i=1

�& iT +Op

�r
n

T

�
d!
"
lim
n!1

1

n

nX
i=1

E
�
&2iT
��C�#1=2 � Z;

with Z � N (0; 1) independent ofE (&2iT jC). Note also that the term
Pn

i=1

PT
t=1 (�i � �) ~xit =

Op
�p

nT 3=2
�
is negligible. In order to prove (10), it is necessary to �nd the value ofE (&2iT jC).
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Note that

&2iT = (�i � �)2
 
1

T 2

TX
t=1

xit~xit

!2
+ �x2�

 
1

T 2

TX
t=1

~xit

!2
+

 
1

T 2

TX
t=1

~uit~xit

!2

�2 (�i � �) �x�

 
1

T 2

TX
t=1

~xit

! 
1

T 2

TX
t=1

xit~xit

!
� 2�x�

 
1

T 2

TX
t=1

~xit

! 
1

T 2

TX
t=1

~uit~xit

!

+2 (�i � �)

 
1

T 2

TX
t=1

xit~xit

! 
1

T 2

TX
t=1

~uit~xit

!
= I + II + III + IV + V + V I:

Note that
Pn

i=1

PT
t=1 (�i � �)xit = Op

�p
nT 3=2

�
and therefore �x� = Op

�
n�1=2T 1=2

�
. This

follows from
PT

t=1 xit = Op
�
T 3=2

�
. Also,

nX
i=1

TX
t=1

(�i � �)xit~xit =
nX
i=1

TX
t=1

(�i � �)x2it + �x

"
nX
i=1

TX
t=1

(�i � �)xit

#
:

The xits have zero mean for all t since their DGP has no drift term. Thus,
Pn

i=1

PT
t=1 xit =

Op
�p

nT 3=2
�
and �x = Op

�
n�1=2T 1=2

�
. This entails that II = Op (n

�1). Consider IV ; from

Assumption 2

E

�
�1
2
IV

�
=

1

n
�2�E

"
�x�

 
1

T 2

TX
t=1

~xit

! 
1

T 2

TX
t=1

xit~xit

!#

=
1

n
O

 r
T

n

1p
T

!
= O

�
1

n3=2

�
:

Finally, Assumption 2 entails that E (V ) = E (V I) = 0 for all n and T . As far as I is

concerned, note that as T !1, I d! (�i � �)2
�
�2x
R
W 2
�2
. It holds that E

h�R
W 2
�2���Ci =

E
�R

W 2
�2
= V ar

�R
W 2
�
+
�
E
�R

W 2
��2
. Since E

�R
W 2
�
= 1=2 and Lemma 14 in Phillips

and Moon (1999a) ensures that V ar
�R

W 2
�
= 7=12, we get E (I) = 5�2��

4
x=6. Considering

III, note

1

T 2

TX
t=1

~uit~xit =
1

T 2

TX
t=1

~xit~e
u
it +

1

T 2

TX
t=1

~xit

 
'iFt �

1

nT

nX
i=1

'i

TX
t=1

Ft

!
= a+ b;

which is Op (1) for i = 1; :::; bn�c and op (1) for the other units. Similarly to above,
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Pn
i=1

PT
t=1 ~xit~e

u
it =

Pn
i=1

PT
t=1 xite

u
it � nT �x�eu with �x and �eu both Op

�
n�1=2T 1=2

�
. Thus,

as T !1, E (a2) = ��2u�
2
x=2. As far as b is concerned, de�ne �F = T�1

PT
t=1 Ft; then

E

8<:
"
1

T 2

TX
t=1

~xit
�
'iFt � �' �F

�#2������C
9=;

=
1

T 4

TX
t=1

TX
s=1

�
'iFt � �' �F

� �
'iFs � �' �F

�
E (~xit~xis) :

Noting that E (~xit~xis) = �2xmin (t; s) and following similar passages as above, it follows that

n�1
Pn

i=1E
�
~�
2

iT

���C� d! ��2F�
2
uD

0
1. Last

E

("
1

T 2

TX
t=1

xite
u
it

#"
1

T 2

TX
t=1

~xit
�
'iFt � �' �F

�#�����C
)

=
1

T 4

TX
t=1

TX
s=1

[E (xit~xise
u
it)]
�
'iFt � �' �F

�
= op (1) ;

since E (xit~xiseuit) = Op
�
T�1=2

�
for all i, t and s. Combining all the above, (10) follows; (11)

follows from similar passages as above, and the proof is thus omitted to save space.

Proof of Lemma 2. The proof is very similar to that of Lemma 1, and it is based on

applying the MDS CLT after cross-sectional independence is achieved through conditioning.

Many passages are therefore omitted. Consider �rst (12); as above,

�̂
LSDV � � =

Pn
i=1

PT
t=1 [(�i � �) �xit + �uit] �xitPn

i=1

PT
t=1 �x

2
it

:

Consider the denominator of this expression. In light of (7), it holds that
Pn

i=1

PT
t=1 �x

2
it =�Pn

i=1 #
2
i

� �PT
t=1

�G2t

�
. Note that, as (n; T ) ! 1, this is the product of two limits, not a

joint limit. The LLN entails that
Pn

i=1 #
2
i = Op (n), and, by de�nition, n�1

Pn
i=1 #

2
i

p! #2.

Also, applying the FCLT yields
PT

t=1
�G2t = Op (T

2) with T�2
PT

t=1
�G2t

d! �2G
R
�W 2
2 . Hence,

(nT 2)
�1Pn

i=1

PT
t=1 �x

2
it

d! �2G#
2
R
�W 2
2 . Turning to the numerator, de�ne, as above, �iT =

T�2
PT

t=1 [(�i � �) �xit + �uit] �xit, and let C� be the �-�eld generated by fFtgTt=1[fGtg
T
t=1. As

C in the proof of Lemma 1, C� is an invariant �-�eld. The sequence �iT has (conditional on

27



C�) expected value given by, using (7)

E (�iT jC�) = E

"
1

T 2

TX
t=1

(�i � �) �x2it

�����C�
#
+ E

"
1

T 2

TX
t=1

�xit�e
u
it

�����C�
#

(24)

+E

"
1

T 2

TX
t=1

'i#i �Ft �Gt

�����C�
#

= I + II + III:

Assumption 2 ensures that I = 0 for all T . Similar considerations as for III in (19) entail

II = Op
�
T�1=2

�
. Finally, consider III =

�
T�2

PT
t=1

�Ft �Gt

�
E ('i#i). Under Assumption

3(i)(a), since T�2
PT

t=1
�Ft �Gt = Op (1) for some units i (those where the common factors

Ft are nonstationary), III = Op
�
T�1=2

�
; alternatively, if E ('i#i) is strictly not equal

to zero, Assumption 3(i)(b) entails T�2
PT

t=1
�Ft �Gt = Op (T

�1) using the FCLT. In either

case, as T ! 1, III is bounded by Op
�
T�1=2

�
. Thus, de�ning ��iT = �iT � E (�iT ) and

I�i = C� [
�
��1T ; :::;

��iT
	
,
�
��iT ; I

�
i ; i � i

	
is a zero mean MDS. Similar passages as in the

proof of Lemma 1 would lead to show that, under Assumptions 1-3, a Liapunov condition

holds whereby E
����iT ��C���2+� < 1. Thus, applying the MDS CLT, as (n; T ) ! 1 with

n
T
! 0, n�1=2

Pn
i=1 �iT = n�1=2

Pn
i=1
��iT+ n�1=2

Pn
i=1E (�iT ) = n�1=2

Pn
i=1
��iT+ Op

�p
n
T

�
d!
�
E
�
�2iT
��C���1=2 � Z. In order to calculate E

�
�2iT
��C��, consider (21). Even under

Assumption 3, the expectations of d, e and f are negligible. As far as a, b and c are

concerned, note that a = (�i � �)2 #4i

�
T�2

PT
t=1

�G2t

�2
; as T ! 1, the FCLT entails

a
d! (�i � �)2 �4G#

4
i

�R
�W 2
2

�2
; conditional on C�, E (a) = �2��

4
G#

4
�R

�W 2
2

�2
. As far as b is con-

cerned, note b =
�
T�2

PT
t=1 #i

�Gt�e
u
it

�2
the passages are essentially the same as for the proof

of (22), although only bn�c units have a non-negligible contribution; thus b d! �2u�
2
G#

2D2

for i = 1; :::; bn�c. Finally, consider c = ('i#i)
2
�
T�2

PT
t=1

�Ft �Gt

�2
; the FCLT entails that

c is negligible under Assumption 3(i)(b). If Assumption 3(i)(a) holds, for i = 1; :::; bn�c,
from T�2

PT
t=1

�Ft �Gt
d! �F�G

R
�W1
�W2, so that c

d! ('i#i)
2 �2F�

2
G

�R
�W1
�W2

�2
. Putting all

together, it follows that

lim
n!1

E (�iT jC�) = �2��
4
G#

4

�Z
�W 2
2

�2
+ ��2u�

2
G#

2D2 + ��2F�
2
G�

2

�Z
�W1
�W2

�2
;

where the last term is present only under Assumption 3(i)(a). Turning to (13), the numerator

has the same expansion as in (23); again, similar arguments as in the proof of (9) would
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show that the only terms which are asymptotically non-negligible are I, II and III. The

presence of common factors in the DGP of xit does not a¤ect the limits of I and II, and

therefore I
p! ��2u=6 and, as long as Assumption 3(i)(a) holds, II

p! �'2�2F
R
�W 2
1 . As far as

III is concerned, note that III =
�
n�1

Pn
i=1 (�i � �)2 #2i

� �
T�2

PT
t=1

�G2t

�
; as (n; T ) ! 1

this is the product of two limits, and the LLN and the FCLT yield III d! �2��
2
G#

2
�R

�W 2
2

�
.

Putting all together, (13) follows.

Proof of Theorem 1. In order to prove (16), it is su¢ cient to show that, under

H0,
p
n ese��̂LSDV � converges to the standard deviation of pn��̂LSDV � �

�
. Consider the

numerator of (14) and let �̂iT = T�2
PT

t=1 �xitv̂it; after some algebra it holds that �̂iT =

�iT �
�
�̂
LSDV � �

�
T�2

PT
t=1 �x

2
it. Therefore

1

n

nX
i=1

�̂
2

iT =
1

n

nX
i=1

�2iT +
�
�̂
LSDV � �

�2 1
n

nX
i=1

 
1

T 2

TX
t=1

�x2it

!2

�2
�
�̂
LSDV � �

� 1
n

nX
i=1

�iT

 
1

T 2

TX
t=1

�x2it

!
= I + II + III:

Since
�
�̂
LSDV � �

�
= Op

�
n�1=2

�
, we have II = op (1) and III = op (1). Thus,

1

n

nX
i=1

�̂
2

iT =
1

n

nX
i=1

�2iT + op (1) : (25)

Consider n�1
Pn

i=1 �
2
iT . Conditioning on C, �iT is an i.i.d. sequence for all T ; thus, a cross-

sectional LLN can be applied such that

1

n

nX
i=1

�2iT
p! lim
n!1

1

n

nX
i=1

E
�
�2iT
��C� ;

thus, in light of (25), n�1
Pn

i=1 �̂
2

iT

p! limn!1 n
�1Pn

i=1E
�
�2iT
��C�, which is the variance of

the numerator of
p
n
�
�̂
LSDV � �

�
as reported in equation (20). Note that the fact that

T ! 1 is just an aside, as what ensures consistency of
p
n ese��̂LSDV � is the validity of

the cross-sectional LLN. Essentially the same calculations would show that the same results

hold under (7).

To prove (17), two results need to be shown under H(n)
A . First, that

p
n
�
�̂
LSDV � �0

�
d!
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N (c; V 2), where V is given in (8). Second, that
p
n ese��̂LSDV � d! V . Since under H(n)

A :

� = �0 + c=
p
n

�̂
LSDV � �0 =

 
nX
i=1

TX
t=1

�x2it

!�1 nX
i=1

�iT +
cp
n

nX
i=1

TX
t=1

�x2it

!

=

 
nX
i=1

TX
t=1

�x2it

!�1 nX
i=1

�iT +
cp
n
;

and recalling (8) it holds that, under H(n)
A ,

p
n
�
�̂
LSDV � �0

�
d! N (0; V 2) + c � N (c; V 2).

As far as
p
n ese��̂LSDV � is concerned, consider (23). Since ese��̂LSDV � is computed using

�̂
LSDV

in v̂it = �yit��̂�xit, for any values of � it holds that
p
n ese��̂LSDV � d! V . Equation (17)

follows. The proof for the POLS estimator follows essentially the same lines and therefore

it is omitted.

30



Appendix B: Tables
(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)

� �2�

0

0

0:25

0:5

4

0:025

0:050

0:040

0:027

0:067

0:052

0:041

0:026

0:025

0:061

0:051

0:030

0:041

0:028

0:026

0:024

0:2

0

0:25

0:5

4

0:032

0:071

0:064

0:037

0:057

0:074

0:067

0:037

0:033

0:072

0:074

0:055

0:039

0:037

0:029

0:024

0:4

0

0:25

0:5

4

0:055

0:068

0:064

0:046

0:059

0:067

0:064

0:044

0:054

0:066

0:069

0:057

0:057

0:044

0:039

0:035

0:6

0

0:25

0:5

4

0:073

0:057

0:047

0:015

0:074

0:057

0:045

0:015

0:071

0:065

0:060

0:028

0:072

0:015

0:009

0:008

0:8

0

0:25

0:5

4

0:085

0:069

0:067

0:042

0:085

0:071

0:067

0:042

0:085

0:076

0:074

0:051

0:087

0:040

0:036

0:026

1

0

0:25

0:5

4

0:074

0:072

0:072

0:089

0:074

0:072

0:072

0:088

0:074

0:068

0:072

0:085

0:077

0:090

0:084

0:081

Table 1a: empirical rejection frequencies for ~t� at a nominal size 5%. Sample size

(n; T ) = (25; 100) - case with no common factors in uit or xit.
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

0:007

0:057

0:056

0:032

0:041

0:038

0:046

0:030

0:007

0:049

0:047

0:030

0:007

0:035

0:034

0:031

0:2

0

0:25

0:5

4

0:044

0:048

0:038

0:035

0:056

0:039

0:039

0:035

0:048

0:040

0:032

0:039

0:042

0:040

0:037

0:035

0:4

0

0:25

0:5

4

0:052

0:037

0:038

0:038

0:054

0:038

0:029

0:038

0:052

0:048

0:039

0:039

0:052

0:047

0:046

0:037

0:6

0

0:25

0:5

4

0:065

0:064

0:057

0:028

0:068

0:065

0:056

0:030

0:075

0:068

0:066

0:028

0:068

0:040

0:030

0:028

0:8

0

0:25

0:5

4

0:062

0:060

0:054

0:040

0:066

0:062

0:055

0:039

0:062

0:066

0:063

0:046

0:063

0:031

0:026

0:041

1

0

0:25

0:5

4

0:073

0:069

0:074

0:078

0:073

0:069

0:075

0:078

0:076

0:069

0:066

0:077

0:073

0:071

0:069

0:078

Table 1b: empirical rejection frequencies for ~t� at a nominal size 5%. Sample size

(n; T ) = (50; 200) - case with no common factors in uit or xit.
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

0:009

0:055

0:052

0:044

0:029

0:046

0:046

0:048

0:009

0:055

0:054

0:044

0:009

0:053

0:052

0:042

0:2

0

0:25

0:5

4

0:048

0:053

0:051

0:044

0:047

0:048

0:046

0:048

0:046

0:047

0:051

0:044

0:049

0:048

0:053

0:044

0:4

0

0:25

0:5

4

0:057

0:042

0:056

0:048

0:057

0:044

0:057

0:051

0:056

0:044

0:056

0:048

0:056

0:046

0:055

0:047

0:6

0

0:25

0:5

4

0:053

0:052

0:055

0:045

0:055

0:055

0:057

0:042

0:055

0:056

0:056

0:045

0:055

0:044

0:050

0:043

0:8

0

0:25

0:5

4

0:056

0:055

0:058

0:048

0:055

0:054

0:056

0:048

0:054

0:054

0:057

0:049

0:054

0:056

0:057

0:046

1

0

0:25

0:5

4

0:060

0:058

0:061

0:055

0:061

0:058

0:061

0:055

0:061

0:056

0:061

0:057

0:060

0:057

0:063

0:054

Table 1c: empirical rejection frequencies for ~t� at a nominal size 5%. Sample size

(n; T ) = (100; 400) - case with no common factors in uit or xit.
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

1:000

1:000

0:986

0:253

1:000

0:998

0:979

0:539

0:997

0:993

0:996

0:484

1:000

1:000

1:000

0:585

0:2

0

0:25

0:5

4

0:999

0:998

1:000

0:489

1:000

0:996

0:995

0:898

0:976

0:988

0:939

0:857

1:000

1:000

1:000

0:427

0:4

0

0:25

0:5

4

0:999

0:990

0:996

0:348

0:998

0:996

0:994

0:810

0:916

0:845

0:851

0:418

1:000

1:000

0:999

0:866

0:6

0

0:25

0:5

4

0:993

0:993

0:984

0:374

0:997

0:982

0:996

0:687

0:842

0:839

0:675

0:451

1:000

1:000

0:995

0:110

0:8

0

0:25

0:5

4

0:986

0:988

0:996

0:569

0:985

0:965

0:988

0:765

0:738

0:644

0:660

0:423

1:000

1:000

0:970

0:409

1

0

0:25

0:5

4

0:974

0:870

0:935

0:934

0:980

0:956

0:892

0:491

0:673

0:630

0:503

0:611

1:000

1:000

1:000

0:972

Table 1d: empirical power ~t� for H0 : � = 1 under HA : � = 2. Sample size (n; T ) = (25; 100) -

case with no common factors in uit or xit.
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

0:025

0:050

0:040

0:027

0:064

0:052

0:041

0:026

0:026

0:061

0:051

0:030

0:044

0:028

0:026

0:024

0:2

0

0:25

0:5

4

0:035

0:071

0:064

0:050

0:048

0:073

0:067

0:050

0:032

0:072

0:074

0:060

0:026

0:037

0:029

0:046

0:4

0

0:25

0:5

4

0:060

0:068

0:064

0:059

0:059

0:067

0:064

0:057

0:060

0:067

0:069

0:066

0:066

0:044

0:039

0:051

0:6

0

0:25

0:5

4

0:070

0:057

0:047

0:029

0:071

0:057

0:045

0:030

0:073

0:065

0:060

0:038

0:076

0:015

0:009

0:026

0:8

0

0:25

0:5

4

0:079

0:069

0:067

0:045

0:077

0:071

0:068

0:046

0:076

0:076

0:074

0:050

0:086

0:040

0:036

0:042

1

0

0:25

0:5

4

0:077

0:072

0:072

0:093

0:078

0:072

0:072

0:094

0:081

0:068

0:072

0:086

0:074

0:089

0:084

0:094

Table 2a: empirical rejection frequencies for ~t� at a nominal size 5%. Sample size

(n; T ) = (25; 100) - case with common factors in uit,
�
�'; �2'

�
= (1; 1).
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

0:009

0:037

0:047

0:031

0:026

0:040

0:038

0:031

0:009

0:031

0:037

0:051

0:002

0:046

0:035

0:051

0:2

0

0:25

0:5

4

0:049

0:038

0:034

0:042

0:046

0:037

0:036

0:042

0:046

0:039

0:049

0:046

0:050

0:043

0:048

0:041

0:4

0

0:25

0:5

4

0:055

0:034

0:038

0:040

0:056

0:043

0:033

0:041

0:060

0:045

0:042

0:039

0:056

0:036

0:047

0:041

0:6

0

0:25

0:5

4

0:064

0:058

0:058

0:044

0:059

0:062

0:059

0:045

0:063

0:062

0:059

0:050

0:059

0:056

0:050

0:037

0:8

0

0:25

0:5

4

0:073

0:053

0:054

0:037

0:072

0:059

0:053

0:037

0:063

0:061

0:059

0:047

0:062

0:053

0:048

0:040

1

0

0:25

0:5

4

0:069

0:075

0:076

0:072

0:069

0:074

0:077

0:072

0:070

0:066

0:067

0:075

0:068

0:071

0:074

0:072

Table 2b: empirical rejection frequencies for ~t� at a nominal size 5%. Sample size

(n; T ) = (50; 200) - case with common factors in uit,
�
�'; �2'

�
= (1; 1).
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

0:006

0:047

0:049

0:051

0:012

0:047

0:049

0:051

0:009

0:051

0:046

0:051

0:002

0:046

0:045

0:051

0:2

0

0:25

0:5

4

0:048

0:051

0:050

0:047

0:049

0:053

0:051

0:046

0:049

0:050

0:048

0:048

0:046

0:050

0:047

0:044

0:4

0

0:25

0:5

4

0:054

0:044

0:053

0:047

0:055

0:042

0:054

0:048

0:054

0:041

0:052

0:046

0:058

0:042

0:052

0:047

0:6

0

0:25

0:5

4

0:054

0:051

0:057

0:047

0:051

0:053

0:053

0:045

0:053

0:050

0:055

0:046

0:053

0:050

0:054

0:048

0:8

0

0:25

0:5

4

0:056

0:055

0:056

0:049

0:056

0:055

0:056

0:051

0:056

0:055

0:054

0:048

0:056

0:053

0:055

0:051

1

0

0:25

0:5

4

0:062

0:054

0:061

0:054

0:060

0:057

0:061

0:054

0:061

0:056

0:061

0:055

0:061

0:058

0:059

0:053

Table 2c: empirical rejection frequencies for ~t� at a nominal size 5%. Sample size

(n; T ) = (100; 400) - case with common factors in uit,
�
�'; �2'

�
= (1; 1).
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

1:000

1:000

1:000

0:100

1:000

1:000

0:967

0:755

1:000

1:000

1:000

0:903

1:000

1:000

1:000

0:987

0:2

0

0:25

0:5

4

1:000

1:000

1:000

0:592

1:000

1:000

1:000

1:000

1:000

1:000

1:000

0:990

1:000

1:000

1:000

0:687

0:4

0

0:25

0:5

4

1:000

1:000

1:000

0:404

1:000

1:000

1:000

0:611

1:000

1:000

1:000

0:724

1:000

1:000

1:000

0:990

0:6

0

0:25

0:5

4

1:000

1:000

1:000

0:308

1:000

1:000

1:000

0:513

1:000

0:993

0:998

0:824

1:000

1:000

1:000

0:584

0:8

0

0:25

0:5

4

1:000

1:000

1:000

0:881

1:000

1:000

1:000

0:960

0:993

0:999

1:000

0:459

1:000

1:000

0:999

0:601

1

0

0:25

0:5

4

1:000

1:000

1:000

0:998

1:000

1:000

1:000

0:607

0:997

0:999

0:997

1:000

1:000

1:000

1:000

0:822

Table 2d: empirical power ~t� for H0 : � = 1 under HA : � = 2. Sample size (n; T ) = (25; 100) -

case with common factors in uit,
�
�'; �2'

�
= (1; 1).
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

0:023

0:100

0:099

0:093

0:027

0:017

0:143

0:170

0:026

0:046

0:044

0:019

0:054

0:046

0:013

0:008

0:2

0

0:25

0:5

4

0:030

0:092

0:092

0:074

0:038

0:054

0:122

0:013

0:030

0:066

0:029

0:067

0:043

0:040

0:078

0:013

0:4

0

0:25

0:5

4

0:063

0:041

0:093

0:098

0:065

0:100

0:091

0:047

0:064

0:048

0:030

0:021

0:075

0:004

0:076

0:001

0:6

0

0:25

0:5

4

0:077

0:047

0:026

0:047

0:068

0:090

0:041

0:022

0:077

0:043

0:108

0:017

0:071

0:028

0:005

0:001

0:8

0

0:25

0:5

4

0:089

0:067

0:090

0:095

0:078

0:070

0:040

0:027

0:075

0:082

0:120

0:019

0:081

0:026

0:047

0:001

1

0

0:25

0:5

4

0:089

0:067

0:049

0:019

0:091

0:067

0:057

0:045

0:082

0:069

0:039

0:068

0:068

0:033

0:021

0:082

Table 3a: empirical rejection frequencies for ~t� at a nominal size 5%. Sample size

(n; T ) = (25; 100) - case with common factors in xit,
�
�#; �2#

�
= (1; 1).
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

0:007

0:073

0:015

0:006

0:004

0:009

0:010

0:085

0:006

0:004

0:007

0:020

0:026

0:001

0:007

0:098

0:2

0

0:25

0:5

4

0:038

0:082

0:076

0:069

0:041

0:017

0:010

0:063

0:046

0:090

0:044

0:015

0:052

0:079

0:039

0:050

0:4

0

0:25

0:5

4

0:067

0:022

0:109

0:042

0:061

0:064

0:019

0:072

0:059

0:097

0:043

0:101

0:057

0:026

0:010

0:004

0:6

0

0:25

0:5

4

0:055

0:094

0:090

0:020

0:061

0:022

0:031

0:019

0:075

0:089

0:065

0:010

0:059

0:091

0:008

0:011

0:8

0

0:25

0:5

4

0:065

0:039

0:076

0:015

0:087

0:042

0:057

0:092

0:062

0:040

0:027

0:050

0:071

0:065

0:064

0:055

1

0

0:25

0:5

4

0:057

0:067

0:057

0:086

0:060

0:061

0:041

0:033

0:069

0:063

0:061

0:032

0:065

0:043

0:052

0:035

Table 3b: empirical rejection frequencies for ~t� at a nominal size 5%. Sample size

(n; T ) = (50; 200) - case with common factors in xit,
�
�#; �2#

�
= (1; 1).
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

0:004

0:020

0:010

0:003

0:007

0:011

0:023

0:018

0:007

0:014

0:020

0:016

0:012

0:041

0:029

0:001

0:2

0

0:25

0:5

4

0:003

0:047

0:063

0:027

0:018

0:055

0:012

0:026

0:016

0:061

0:061

0:034

0:001

0:046

0:036

0:060

0:4

0

0:25

0:5

4

0:009

0:046

0:061

0:036

0:008

0:054

0:040

0:038

0:011

0:054

0:042

0:033

0:001

0:052

0:061

0:038

0:6

0

0:25

0:5

4

0:058

0:041

0:036

0:029

0:061

0:042

0:041

0:052

0:054

0:060

0:061

0:034

0:050

0:043

0:043

0:038

0:8

0

0:25

0:5

4

0:057

0:043

0:046

0:041

0:058

0:050

0:062

0:033

0:060

0:060

0:047

0:037

0:052

0:046

0:061

0:046

1

0

0:25

0:5

4

0:052

0:060

0:050

0:043

0:059

0:040

0:041

0:057

0:060

0:046

0:067

0:037

0:056

0:050

0:040

0:042

Table 3c: empirical rejection frequencies for ~t� at a nominal size 5%. Sample size

(n; T ) = (100; 400) - case with common factors in xit,
�
�#; �2#

�
= (1; 1).
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(�; �) (0; 0) (0:75; 0) (0; 0:75) (0;�0:75)
� �2�

0

0

0:25

0:5

4

1:000

1:000

0:999

0:119

1:000

1:000

1:000

0:898

1:000

1:000

0:994

0:503

1:000

1:000

1:000

0:555

0:2

0

0:25

0:5

4

1:000

1:000

0:998

0:871

1:000

0:995

1:000

0:706

1:000

1:000

0:998

0:700

1:000

1:000

1:000

0:275

0:4

0

0:25

0:5

4

1:000

1:000

0:995

0:956

1:000

0:998

0:972

0:703

1:000

1:000

0:998

0:463

1:000

1:000

1:000

0:445

0:6

0

0:25

0:5

4

1:000

1:000

0:988

0:760

1:000

0:992

0:983

0:228

1:000

1:000

0:967

0:741

1:000

1:000

0:999

0:679

0:8

0

0:25

0:5

4

0:999

0:993

0:914

0:947

0:998

0:996

0:962

0:574

1:000

0:995

0:991

0:653

1:000

1:000

1:000

0:828

1

0

0:25

0:5

4

1:000

0:999

0:994

0:773

1:000

0:997

0:973

0:725

0:999

0:997

0:989

0:830

1:000

1:000

1:000

0:605

Table 3d: empirical power ~t� for H0 : � = 1 under HA : � = 2. Sample size (n; T ) = (25; 100) -

case with common factors in xit,
�
�#; �2#

�
= (1; 1).
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