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Abstract

This paper develops a novel asymptotic theory for panel models with
common shocks. We assume that contemporaneous correlation can be
generated by both the presence of common regressors among units and
weak spatial dependence among the error terms. Several characteristics
of the panel are considered: cross-sectional and time-series dimensions
can either be �xed or large; factors can either be observable or unobserv-
able; the factor model can describe either a cointegration relationship or
a spurious regression, and we also consider the stationary case. We derive
the rate of convergence and the limit distributions for the ordinary least
squares (OLS) estimates of the model parameters under all the aforemen-
tioned cases.
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1 Introduction

There is a growing body of literature dealing with limit theory for nonstationary

panels. While the �rst generation of these contributions assumed independence

across units (see for instance Phillips and Moon, 1999; Kao, 1999), in the second

generation this assumption is relaxed, and hypothesis testing and estimation

methods are evaluated assuming various degrees of cross-sectional dependence,

e.g., see Bai (2003, 2004), Bai and Ng (2002, 2004), Stock and Watson (2002).

We can distinguish the case where regressors are cross-sectionally dependent

(see Donald and Lang, 2004; Moulton, 1990) from the case where it is the

error terms across unit to be dependent (see for instance Bai and Kao, 2006;

Moon and Perron, 2004) or both (see for instance Ahn, Lee, and Schmidt, 2001;

Pesaran 2006).

The main aim of this paper is to propose a novel asymptotic theory for

panel models where common shocks are present among the regressors, thereby

introducing strong cross-sectional dependence. We generalize the asymptotics

developed by Phillips and Moon (1999) and Andrews (2005) by employing and

extending the theory for factor models in Bai (2003, 2004) and Bai and Ng

(2004).

Phillips and Moon (1999) analyze nonstationary panels when both cross-

sectional dimension n and time-series dimension T are large. They derive the

seminal result that as n!1 a long-run average relationship between two non-

stationary panel vectors exists even when the single units do not cointegrate.

A similar result is also reported in Kao (1999). However, the asymptotics de-

rived in Phillips and Moon (1999) is based on the assumption of cross-sectional

independence though the authors point out that their results still hold when

certain degree of weak cross-sectional dependence is allowed. Thus, the deriva-

tion of sequential and joint asymptotics with arbitrary dependence amongst

units remains largely unexplored, and it is likely to lead to di¤erent asymp-

totics. Asymptotic normality may not hold, for example, when all or part of

the regressors are common across cross-sectional units, and may result in mixed
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asymptotic normality, as Andrews (2005) has demonstrated in a cross-sectional

context. Andrews (2005, Theorem 4, p. 1567) proves that the presence of com-

mon factors among the cross-sectional units makes the limiting distribution of

the OLS estimator of the regression slope mixed normal and not normal as in

the classical regression analysis. Note that in this case mixed normality of the

OLS estimator of the regression slope holds even if regressors are stationary,

i.e., I (0) ; and independent of errors. This �nding is also obtained in our paper

when studying the distribution limit for the OLS estimator of the regression

slope for the �xed T case (see equation 20 in Theorem 2 below), while when we

consider the T !1 case, not explored by Andrews (2005), we show that in the

stationary case as T !1 the OLS estimator of the regression slope is normally

distributed.

1.1 Basic Model and Extensions

In this paper we consider the following panel regression model with common

shocks

yit = �i + �
0Ft + uit (1)

i = 1; :::; n; t = 1; :::; T , where � is a k � 1 vector of slope parameters and the

regressor Ft = (F1t; :::; Fkt)
0 is a k � 1 vector of common shocks,

Ft = Ft�1 + "t:

Equation (1) could be either a spurious regression or a cointegration model de-

pending on whether uit is I(1) or I (0), respectively. It is important to emphasize

that, as far as the presence of Ft is concerned, equation (1) represents a panel

regression model with a set of regressors, Ft, which is common across units and

with common slope coe¢ cient �. Model (1) di¤ers from a factor-loading speci�-

cation as in Bai (2004) and Bai and Ng (2004), for example. Thus, in our setup

Ft is a genuine (observable or unobservable) regressor rather than a �common

factor�. A framework which is similar in spirit to the one in this paper is in

Stock and Watson (1999, 2002, 2005), where yit in (1) (with n = 1) is the time-

series variable to be predicted and zi = (zi1; zi2; :::; ziT )
0 is an n-dimensional
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multiple time-series of candidate predictors; also, model (1) resembles the panel

cointegration model with global stochastic trends of Bai, Kao and Ng (2009),

although (1) assumes having common �.

When common shocks are not observable, we assume that a set of exogenous

variables, zit, is observable such that

zit = �
0
iFt + eit (2)

where �i is a vector of factor loadings and eit is an idiosyncratic component.

We assume throughout the paper, for the sake of the simplicity of the notation,

that the number of the zits is the same as that of the yits. However, the panel

dimensions of yit and the zit may be di¤erent, for example yit may refer to

individuals while zit may index several macro variables.

To extend our results to the stationary panel model case, we also consider

the �rst-di¤erenced form of model (1),

�yit = �
0�Ft +�uit: (3)

Model (1) considers a very simple speci�cation. However, it could be ar-

gued that a more complete and realistic framework should also embed a set of

idiosyncratic shocks, i.e.,

yit = �i + �
0Ft + 

0xit + uit: (4)

For the sake of notational simplicity, the main results in the paper, reported

in Section 3, are derived under the restrictive assumptions of no idiosyncratic

shocks, i.e., under the constrain that  = 0. However, in Section 4 we show

that our main results concerning the asymptotics of the estimator of � are still

useful in presence of a more complicated speci�cation as (4). This is obviously

true when the regressors Ft and xit are orthogonal. We also examine the case

whereby the xit are allowed to be correlated with Ft via the factor-loadings

speci�cation

xit = � iGt + !it (5)
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where Gt is a set of common factors that can be independent of the regressors

Ft or (fully or partly) overlap with them, and !it is a unit speci�c (stationary

or nonstationary) shock. A similar framework that allows for cross-sectional

dependence among the idiosyncratic regressors and dependence between the

idiosyncratic regressors and the common regressors is in Pesaran (2006) and

Kapetanios, Pesaran and Yamagata (2006), even though in our paper Ft is a

set of regressors and not nuisance parameters. Note that allowing for xit being

dependent upon Ft through some possibly heterogeneous loadings � i allows for

the response of yit to Ft being (indirectly) heterogeneous across individuals.

Models (1) and (4) are frequently employed for the purpose of forecasting

(Stock and Watson, 1999, 2002, 2005), and they encompass a wide set of models

in economics and �nance. As a general interpretation, such models represent the

decision of a microeconomic agent i (yit), being in�uenced by macroeconomic

factors Ft and by a set of individual speci�c characteristics, �i and possibly

xit. Examples in the literature include, inter alia: demand for household food

consumption (see e.g., Dynarski and She¤rin, 1985, where households are as-

sumed to have the same elasticity to food price, which is the common shock,

and to permanent income, which is the idiosyncratic variable); �rm size evolv-

ing according to a random walk, a case known in the literature as Gibrat�s

law (see Sutton, 1997; Geroski et al., 2002); other examples can also be found

in micro demand for investment, consumption, labor demand. Moreover, the

forward rate unbiasedness hypothesis postulates that the forward rate is an un-

biased predictor of the corresponding future spot rate. This hypothesis has

been extensively tested for exchange rates (Baillie and Bollerslev, 1989; Liu and

Maynard, 2005; Westerlund, 2007). Another example in �nance are models for

default intensity for �rm i at time t expressed as function of common factors

(such as U.S. 3-month T-bill and the trailing 1-year returns) and idiosyncratic

covariates such as distance to default and trailing 1-year stock return of the �rm

i (see Das, Du¢ e, Kapadia and Saita, 2007). Relevant is also the literature on

output convergence where output for country i at time t depends on a set of

common, to all n countries, technological shocks/knowledge and heterogenous
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degrees of access to the technological knowledge (Pesaran, 2007; Phillips and

Sul, 2007). Considering (3), which represents a stationary panel regression with

common shocks, the most natural application one may have in mind is to asset

pricing models, such as the APT, where asset returns are explained by common

factors (such as e.g., market return and powers thereof to represent coskewness

and cokurtosis, macro factors, etc.); see Cochrane (2005) for a comprehensive

review.

1.2 Main Results

Our asymptotic theory considers several features of the underlying model. First,

we assume that contemporaneous correlation can be generated by both the

presence of common regressors (e.g., macro shocks, aggregate �scal and mone-

tary policies) among units and weak spatial dependence among the error terms.

Second, the common shocks can either be known or unobservable. Classical

examples of observed common shocks are index models such as those used in in-

ternational trade, labor economics, urban regional, public economics and �nance

literature. Most often, shocks are unknown, as in the cases of index extraction

and indicators aggregation in economics, e.g., Quah and Sargent (1993), Forni

and Reichlin (1998), and Bernanke and Boivin (2000). Third, regression model

(1) may describe either a cointegration relationship or a spurious regression.

Fourth, the time-series dimension T and the cross-sectional dimension n can be

either �xed or large. We develop our limit theory by considering cases where

the time-series dimension T and the number of units n are large and we also

include the case of when either n or T is �xed.

An overview of the results derived in this paper is reported in Table 1.

[Insert Table 1 somewhere here]

As Table 1 shows, this paper provides a uni�ed framework for the asymp-

totics of panels with common shocks. Particularly, results for the case of large

n and large T with observable Ft are novel and can be thought of as extensions
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Table 1: Consistency (C) and Limiting Distribution (LD) of �̂: yit = �i + �
0Ft + uit

Ft known Ft unknown
(n; T ) C LD (n; T ) C LD

Cointegration: uit � I(0)
Fixed n
T !1 Yes Mixed Normal (Eq.11) Yes Non Standard (Eq. 37)

Fixed T
n!1 Yes Mixed Normal (Eq.13) Yes Mixed Normal (Eq.13)

(n; T )!1
n=T ! 0 Yes Mixed Normal (Eq.15) n=T ! 0 Yes Mixed Normal (Eq. 27)
T=n! 0 Yes Mixed Normal (Eq.16) T=n! 0 Yes Non Standard (Eq. 32)

Spurious Regression: uit � I(1)
Fixed n
T !1 No Non Standard (Eq. 12) No Non Standard (Eq. 38)

Fixed T
n!1 Yes Non Standard (Eq. 14) Yes Non Standard (Eq. 14)

(n; T )!1
n=T ! 0 Yes Non Standard (Eq. 17) n=T ! 0 Yes Non Standard (Eq. 29)
T=n! 0 Yes Non Standard (Eq. 18) T=n! 0 Yes Non Standard (Eq. 30)

First Di¤erences: �̂
FD

: �yit = �
0�Ft +�uit

Fixed n
T !1 Yes Normal (Eq. 19) No Degenerate (Eq. 39)

Fixed T
n!1 Yes Mixed Normal (Eq. 20) Yes Mixed Normal (Eq. 20)

(n; T )!1
n=T ! 0 Yes Normal (Eq. 21) n=T ! 0 Yes Normal (Eq. 31)
T=n! 0 Yes Degenerate (Eq. 22) T=n! 0 Yes Degenerate (Eq. 32)
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of the asymptotic theory for panels derived by Phillips and Moon (1999) and

Kao (1999), who consider a model with cross-sectional independence. Assum-

ing cross-sectional dependence in the panel changes the asymptotic theory, and

a typical feature (discussed in greater details hereafter) is the asymptotic dis-

tribution of estimates being no longer normal as opposed to the independence

case. An important result here is the extension of the joint limit theory to the

strong dependence case, and the development of a method of proof for the as-

ymptotics of double sums involving common shocks. Thus, although our results

are speci�c to model (1), the method of proof we follow can be extended to

study the asymptotics of estimators and tests for di¤erent models. For exam-

ple, the method of proof developed here extends readily to inferential theory

for cointegrated panels with common factors (Westerlund, 2007) or it can be

used to show the asymptotics of t-tests for long run parameters in mixed panels

(Fuertes, 2008; Ng, 2008); other applications to models where common factors

are treated either as nuisance parameters or are genuine observable regressors

are possible.

Results obtained for the case whereby the common shocks Ft are not ob-

servable are also new. The asymptotic theory for the estimates of the common

shocks Ft is based on previous work by Bai (2003, 2004) and Bai and Ng (2002,

2004), and extended to the case of �nite n. When common shocks are not ob-

servable, the estimated latent variables Ft are used as generated regressors to

estimate �. This introduces a new error component in the regression equation.

An important contribution of our paper is to study the impact of the estimation

error when one needs to use an estimate of Ft in the regression model; see e.g.,

although in a nonparametric set-up, Connor, Hagmann and Linton (2007). Note

that in Table 1, the �non standard� limiting distributions depend also on the

assumptions made on the data generating process (DGP). Section 3 provides

details on this.

Last, it is important to note that, as far as Theorems 1-4 are concerned,

when both n and T are large the limits we derived are joint limits, which we

obtain for (n; T )!1 under, as a restriction on the rate of expansion of n and
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T , n=T ! 0. Although more details on the method of proof are provided in

Theorem 9 in Appendix B and in the remarks and proofs (reported in Appendix

C) of the other theorems, the derivation of the joint limit is carried out by

conditioning on the �-�eld generated by the common shocks Ft. We show, in a

similar spirit to Andrews (2005), that this entails that the quantities involved

in the derivation of the asymptotics are martingale di¤erence sequences (MDS),

conditional on Ft. For each of the cases considered here, we then prove a joint

Liapunov condition, under (n; T )!1, which allows to apply the MDS central

limit theorem (CLT) discussed in Hall and Heyde (1980) as (n; T ) ! 1. The

restriction on the rate of expansion n=T is derived using similar arguments as in

Phillips and Moon (1999), based on the Beveridge-Nelson (BN) decomposition

of the series involved in the calculations.

The remainder of the paper is organized as follows. Section 2 introduces and

comments on the main assumptions. In Section 3, we report the asymptotic the-

ory of the ordinary least square (OLS) estimators of � in models (1) and (3). We

analyze both the cases of known factors (Section 3.1) and unknown factors (Sec-

tion 3.2), and we distinguish the cases of large n and T , �nite T and large n and

�nite n and large T . Section 4 considers a discussion of the asymptotics for the

estimator of when the data are generated by (4). Some Monte Carlo evidence is

reported in Section 5. Section 6 concludes. Appendix A reports and discusses

a joint MDS CLT. The main proofs are reported in Appendix B, contained

in the present paper. Other proofs and preliminary Lemmas are in Appendix

C in an extended, working paper version of this paper, which can be found at

http://www.cass.city.ac.uk/cea/research_papers/WorkingPapers2010/WP_CEA_01_2010.pdf

Notation is fairly standard. Throughout the paper, kAk denotes
p
tr (A0A),

! the ordinary limit, ) weak convergence, and
p! convergence in probability.

Stochastic processes such as B (r) on [0; 1] are usually written as B, integrals

such as
R 1
0
B (r) dr as

R
B and stochastic integrals such as

R 1
0
B (r) dB (r) asR

BdB. We let M <1 be a generic positive number, not depending on T or n.
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2 Model and Assumptions

We assume that yit is generated as follows

yit = �i + �
0Ft + uit

Ft = Ft�1 + "t (6)

zit = �0iFt + eit

i = 1; :::; n; t = 1; :::; T ; � is a k�1 vector of slope parameters; Ft = (F1t; :::; Fkt)0

is a k�1 vector of common shocks; uit may be I(1) or I (0) (spurious regression

or cointegration relationship); zit is a set of observed exogenous variables.

De�ne B" as the Brownian motion associated with the partial sums of "t with

covariance matrix 
"" and �B" (r) as the demeaned Brownian motion associated

to the partial sums of Ft, i.e., �B" (r) = B" (r)�
R 1
0
B" (r) dr. The following set

of assumptions are used throughout the paper:

Assumption 1: (a) Either (i) (cointegration case) uit = Di (L) �it, or (ii)

(spurious regression case) �uit = Fi (L) �it with Fi (1) 6= 0 and such thatP
i uit � I (1); for both cases, �it

i:i:d:�
�
0; �2�

�
over t and i, with E j�itj

8
< M ,P1

j=0 j jDij j < M ,
P1

j=0 j jFij j < M and D2
i (1)�

2
� > 0, F

2
i (1)�

2
� > 0; the two

MA processes uit = Di (L) �it and �uit = Fi (L) �it are assumed to be invert-

ible; (b) (time-series and cross-sectional correlation) letting E (uitujs) = � ij;ts =

� ij;jt�sj and E (�uit�ujs) = ij;ts = ij;jt�sj, as n!1 a law of large numbers

(LLN) and a CLT hold for the quantities n�1=2
P

i uit and n
�1=2P

i�uit.

Assumption 2: "t = C (L)wt where C (L) =
P1

j=0 CjL
j ; (a) wt

i:i:d:� (0;�u)

with E kwtk4+� �M for some � > 0; (b) V ar (�Ft) = ��F =
P1

j=0 Cj�uC
0
j is

a positive de�nite matrix; (c)
P1

j=0 j kCjk < M and (d) C (1) has full rank.

Assumption 3: E kF0k4 �M and E jui0j4 �M .

Assumption 4: The loadings �i are non random quantities such that (a)

k�ik �M ; (b) either n�1
Pn

i=1 �i�
0
i = �� if n is �nite, or limn!1 n

�1Pn
i=1 �i�

0
i =
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��, if n ! 1; in both cases, the matrix �� is positive de�nite and such that

the eigenvalues of the matrix �1=2� ��F�
1=2
� are distinct, and the eigenvalues of

the stochastic matrix �1=2�

R
B"B

0
"�

1=2
� are distinct with probability 1.

Assumption 5: eit = Gi (L) �it where (a) �it
i:i:d:�

�
0; �2vi

�
, E jvitj8 < M ,P1

j=0 j jGij j < M and G2i (1)�
2
vi > 0; (b) E (�it�jt) = � ij with

Pn
i=1 j� ij j �

M for all j; (c) E
��n�1=2Pn

i=1 [eiseit � E (eiseit)]
��4 � M for every (t; s); (d)

E
�
n�1

Pn
i=1 eiteis

�
= s�t,

��s�t�� � M for all s and T�1
PT

s=1

PT
t=1

��s�t�� �
M ; (e) E jei0j4 �M .

Assumption 6: f"tg, fuitg and feitg are three independent groups; F0 is

independent of fuitg and feitg.

Assumption 1(a) considers the possibility that equation (1) is either a coin-

tegration or a spurious regression. Processes uit and �uit are assumed to be

invertible MA processes as in Bai (2004) and Bai and Ng (2004), in a similar

fashion to processes "t and eit. Assumption 1(b) also considers the presence

of some, limited, cross-sectional dependence among the uits or the �uits and

therefore it rules out the possibility that all the cross-sectional dependence is

taken into account by the common factors Ft, e.g., see the related work by

Conley (1999).

Even if it refers to a di¤erent framework (panel data with common shocks as

opposed to factor models), we take a position similar to that in Bai (2003, 2004)

and Bai and Ng (2002, 2004). Using the factor models terminology, this means

having a model with an �approximate factor structure�, which di¤ers from a

strict common factor model where the uit are assumed to be independent across

i, e.g., Chamberlain and Rothschild (1983) and Onatski (2005).

The amount of cross-sectional dependence we allow for in Assumption 1(b)

is anyway limited, since we require that it allows a LLN and a CLT to hold for

the (rescaled) sequences
Pn

i=1 uit and
Pn

i=1�uit.

Assumption 2 allows for some weak serial correlation in the dynamics of

"t. This process can be described as invertible MA process, implied by the
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absolute summability conditions. Both the short run and the long run variance

of �Ft are positive de�nite (Assumptions 2(b) and 2(d), respectively). Note

that Assumption 2(d) rules out the possibility that the (common) regressors Ft

in model (1) are cointegrated. This requirement is standard in cointegration to

have non-degenerate limiting distributions.

Assumption 3 is a standard initial condition requirement. Assumption 4

serves to identify the factor loadings, which, merely for the purpose of a concise

discussion, are assumed to be non random. This requirement could be relaxed,

as in Bai (2003, 2004) and Bai and Ng (2004), assuming that the �i are randomly

generated and independent of "t and eit, and our results would keep holding.

Assumption 4(b) ensures that the factor structure is identi�able. Note that

it would be possible to relax this assumption by constraining the minimum

eigenvalue of
Pn

i=1 �i�
0
i to tend to in�nity as n!1, as pointed out by Onatski

(2005). This structure would allow factors to be less pervasive than in our

framework, thereby allowing the idiosyncratic component eit in equation (2)

to have a greater impact in explaining the contemporaneous correlation among

the zit. Nonetheless, this would be made at the price of losing the possibility

to model the zit as a serially correlated process, whilst in our framework some

limited time-series and cross-sectional dependence in model (2) is allowed for

as one could realize from Assumption 5. As pointed out in Bai (2003), the

conditions in Assumption 5 are fairly general and allow for consistency and

distribution results to hold for the principal component analysis (PCA).

Assumption 6 also rules out the existence of any form of dependence between

factors Ft and uit. Therefore, it is a stronger requirement than the simple lack

of correlation, and we need it in order to prove the main results in our paper.

The following de�nitions are employed throughout the paper. Let hi (h�i )

and hij (h�ij) be the long run variance for uit (�uit) and the long run covariance

between processes uit and ujt (�uit and�ujt) - we have hij = limT!1 T
�1PT

t=1

PT
s=1 � ij;ts

and h�ij = limT!1 T
�1PT

t=1

PT
s=1 ij;ts. Also, let �h = limn!1 n

�1Pn
i=1

Pn
j=1 hij

and �h� = limn!1 n
�1Pn

i=1

Pn
j=1 h

�
ij . Last, the following variances arising

from cross sectional aggregation of the uit and the �uit are often used in our re-
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sults: �� ts = limn!1 n
�1Pn

i=1

Pn
j=1 � ij;ts, and �ts = limn!1 n

�1Pn
i=1

Pn
j=1 ij;ts.

3 Asymptotic Theory

The main objective of this paper is to derive the rate of convergence and limiting

distribution of the OLS, �̂

�̂ =

"
nX
i=1

TX
t=1

�
Ft � �F

� �
Ft � �F

�0#�1 nX
i=1

TX
t=1

�
Ft � �F

�
yit (7)

in equation (1), where �F = T�1
PT

t=1 Ft, and �̂
FD

when using equation (3),

�̂
FD

=

"
nX
i=1

TX
t=1

�Ft�F
0
t

#�1 " nX
i=1

TX
t=1

�Ft�yit

#
: (8)

We consider several features of (1) and (3):

1. the shocks Ft can either be known or (more likely) unobservable;

2. the relationship described by equation (1) can be either a cointegration

relationship or a spurious regression. As pointed out by Kao (1999) and

Phillips and Moon (1999), convergence is obtained at rate
p
n in panel

spurious regression models and
p
nT for panel cointegrated models;

3. the time series dimension T and the cross-sectional dimension n can be

either �xed or large.

We �rst start with the exploration of the case of known common shocks

(Section 3.1) and then move to the case of unknown common shocks (Section

3.2).

3.1 Observable Ft

When Ft is known we have:

�̂ � � =
"

nX
i=1

TX
t=1

WtW
0
t

#�1 " nX
i=1

TX
t=1

Wtuit

#
(9)

13



where Wt = Ft � �F , and

�̂
FD

� � =
"

nX
i=1

TX
t=1

�Ft�F
0
t

#�1 " nX
i=1

TX
t=1

�Ft�uit

#
: (10)

The convergence rate and the limiting distribution for �̂ are stated in the

following theorem.

Theorem 1 Suppose Assumptions 1-6 hold, and de�ne Z � N (0; Ik), indepen-

dent of the Fts. For �xed n and T !1

T
�
�̂ � �

�
) 1

n

�Z
�B" �B

0
"

��1=20@ nX
i=1

nX
j=1

hij

1A1=2

� Z; (11)

if equation (1) is a cointegration relationship, and

�
�̂ � �

�
)
�Z

�B" �B
0
"

��1�Z
�B"Bu

�0@ nX
i=1

nX
j=1

h�ij

1A1=2

; (12)

if (1) is a spurious regression. For �xed T and n!1, we have

p
n
�
�̂ � �

�
)
 

TX
t=1

WtW
0
t

!�1 TX
t=1

TX
s=1

WtW
0
s�� ts

!1=2
� Z; (13)

if (1) is a cointegration regression, whilst if it is a spurious relationship we have

p
n
�
�̂ � �

�
)
 

TX
t=1

WtW
0
t

!�1 TX
t=1

Wt�ut

!
; (14)

where �ut = limn!1 n
�1=2Pn

i=1 uit.

Let equation (1) be a cointegration relationship; as (n; T )!1 with n=T ! 0:

p
nT
�
�̂ � �

�
)
"p

�h

�Z
�B" �B

0
"

��1=2#
� Z; (15)

as (n; T )!1 with T=n! 0:

T 3=2
�
�̂ � �

�
)
�Z

�B" �B
0
"

��1
�1; (16)

where �1 is de�ned in the proof - see equation (61).

Let equation (1) be a spurious regression; as (n; T )!1 with n=T ! 0:

p
n
�
�̂ � �

�
)
�Z

�B" �B
0
"

��1�Z
�B"Bu

�p
�h�; (17)

14



as (n; T )!1 with T=n! 0:

p
T
�
�̂ � �

�
)
�Z

�B" �B
0
"

��1
�2; (18)

where �2 is de�ned in the proof - see equation (64).

Proof. See Appendix B.

Equation (12) is a standard results in the literature. With respect to the

speed of convergence, when (n; T ) ! 1 our results lead to the same rates

of convergence as in Phillips and Moon (1999) and Kao (1999) for both the

cointegration and the spurious regression case. Consistency is achieved under

the spurious regression case as well, where the rate of convergence is
p
n. Note

that, irrespective of model (1) being a cointegration regression or a spurious

regression, large n allows for consistency to hold.

For the case of (n; T ) ! 1 with n=T ! 0, the rate of convergence for �̂

is the same as in Phillips and Moon (1999) under the case of contemporaneous

independence across cross-sectional units. The limiting distributions in (15)

and (17) are mixed normal rather than normal, as in Phillips and Moon (1999).

The mixed normality is due to both Ft being nonstationary and common across

cross-sectional units, as can be seen by considering equation (13) for T ! 1.

The design matrix
�
nT 2

��1Pn
i=1

PT
t=1 FtF

0
t = T

�2PT
t=1 FtF

0
t converge in dis-

tribution to a random matrix, namely
R
�B" �B

0
", rather than to a constant. Of

course,
�
nT 2

��1Pn
i=1

PT
t=1 FtF

0
t would converge to a constant (in probability)

if Ft were not common shocks, i.e., if Ft were replaced by Fit. Theorem 1 also

explores the case of a �short�panel, where T=n! 0. In this case, �̂ is still con-

sistent, irrespective of whether (1) is a cointegration or a spurious regression,

although consistency is achieved at a �slower� rate than in the case whereby

n=T ! 0. The limiting distributions, given in (16) and (18), are non standard,

and they depend upon �1 and �2. As shown in Appendix C, these terms come

from the bias arising from the BN decomposition of Ft and uit, and thus they

depend upon the assumptions on the DGP of Ft and uit. A similar argument is

discussed in Phillips and Moon (1999); of course, if Ft and uit had initial values
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set equal to zero, and if they were i.i.d. processes, then (15) and (17) would

hold for (n; T )!1 for all combinations of n and T .

The convergence rates and the limiting distributions for �̂
FD

are reported

in the following theorem.

Theorem 2 Suppose Assumptions 1-6 hold and de�ne Z � N (0; Ik), indepen-

dent of the �Fts.

For �xed n and T !1

p
T
�
�̂
FD

� �
�
) n�1�

�1=2
�F

0@ nX
i=1

nX
j=1

h�ij

1A1=2

� Z: (19)

For T �xed and n!1, we have

p
n
�
�̂
FD

� �
�
)
 

TX
t=1

�Ft�F
0
t

!�1 TX
t=1

TX
s=1

�Ft�F
0
s�ts

!1=2
� Z: (20)

When (n; T )!1, under n=T ! 0 it holds that

p
nT
�
�̂
FD

� �
�
)
�
�
�1=2
�F

p
�h�
�
� Z; (21)

as (n; T )!1, under T=n! 0, it holds that

T
�
�̂
FD

� �
�

p! ��1�F�3; (22)

where �3 is de�ned in the proof - see equation (??).

Proof. See Appendix C.

Since the �rst di¤erenced model is always stationary, irrespective of whether

equation (1) is a cointegration equation or a spurious regression, one can always

apply the CLT to obtain the limiting distribution of �̂
FD

� �.

Equation (21) states that the limiting distribution of �̂
FD

� � is normal

instead of mixed normal, despite the strong dependence across cross-sectional

units. This can be seen from equation (20), which gives the limiting distribution

for T �xed and n!1. The matrix T�1
PT

t=1�Ft�F
0
t is random for �nite T ,

but it converges to a constants as T !1 due to a LLN.
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Equation (22) refers to a panel where T=n ! 0, and thus the number of

cross-sectional units is �much larger� than the number of time-series observa-

tions. This case is similar to that found in Theorem 1: when T=n ! 0, the

bias in the BN decomposition dominates, thereby making the limiting distribu-

tion non standard and depending upon the assumptions on the DGP of Ft and

uit. Of course, if one knows �
�1
�F�3 (or could estimate it consistently at a rate

�nT ) then the remainder in the BN decomposition of �̂
FD

�
�
� +��1�F�3

�
has

mean zero (or of order Op (�nT )). Under additional assumptions, the bias in

the BN decomposition for ��1�F
Pn

i=1

PT
t=1�Ft�uit (see also equation (??) in

Appendix C) is of order Op (
p
n) (resp., Op (n�nT )). Therefore, when normal-

ized by
p
nT , the bias is always dominated by the martingale approximation

to ��1�F
Pn

i=1

PT
t=1�Ft�uit - resp., of order Op

�p
n
T �nT

�
. The former case

implies that (21) holds as (n; T ) ! 1, with no restriction on the rate of ex-

pansion of n and T as they pass to in�nity. This is consistent with Phillips and

Moon (1999, p. 1074, Remark (a)), and a similar argument could be in principle

applied to Theorem 1.

3.2 Unobservable Ft

We turn now to the case when common shocks are unknown and thus they need

to be estimated. The asymptotics of �̂ and �̂
FD

are a¤ected by the errors in

estimating shocks Ft.

Let F̂t be an estimate of Ft. Denote Ŵt = F̂t � T�1
PT

t=1 F̂t. Estimation of

� using the model in levels or �rst di¤erences respectively are now given by:

�̂ =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#�1 " nX
i=1

TX
t=1

Ŵtyit

#
(23)

and

�̂
FD

=

"
nX
i=1

TX
t=1

�F̂t�F̂
0
t

#�1 " nX
i=1

TX
t=1

�F̂t�yit

#
(24)

with estimation errors:

�̂ � � =
"

nX
i=1

TX
t=1

ŴtŴ
0
t

#�1( nX
i=1

TX
t=1

Ŵt

��
Wt � Ŵt

�0
� + uit

�)
(25)
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and

�̂
FD

� � =
"

nX
i=1

TX
t=1

�F̂t�F̂
0
t

#�1( nX
i=1

TX
t=1

�F̂t

��
�Ft ��F̂t

�0
� +�uit

�)
:

(26)

We assume that the number of common shocks k is known. This does not

lead to any loss of generality since the distribution of the estimated shocks does

not depend on whether k is known or estimated, and therefore the estimation

error that arises from using k̂ instead of k does not play any role as long as k̂ is

consistent, e.g., see Bai (2003, p. 143, note 5).

3.2.1 The case of n and T large

In this section, we estimate the common shocks Ft using the principal component

estimator. This means minimizing either

Vb (k) =
1

nT

nX
i=1

TX
t=1

�
zit � �0iFt

�2
when considering Ft in levels, or

Va (k) =
1

nT

nX
i=1

TX
t=1

�
�zit � �0i�Ft

�2
when estimating shocks�Ft from (2). Consider the T�nmatrix Z = (z1; :::; zT )0,

and the T � k matrix of shocks F = (F1; F2; :::; FT )0. Then each objective func-

tion Va (k) or Vb (k) can be minimized by concentrating out � and obtaining

estimates �F̂ and F̂ using the normalizations �F̂ 0�F̂ =T = Ik or F̂ 0F̂ =T 2 = Ik.

The estimated shock matrices �F̂ and F̂ are
p
T and T times respectively the

eigenvectors corresponding to the k largest eigenvalues of the T � T matrices

�Z�Z 0 or ZZ 0.

In the context of unobservable common factors, the problem of identi�cation

arises. It is well known (see e.g., Bai, 2003, and Bai, 2004) that the solutions to

the above minimization problems are not unique, e.g., when estimating shocks

�Ft and Ft, these are not directly identi�able even though they are up to a

transformation. This entails that whilst it is possible to �consistently�estimate
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the space spanned by the common factors �Ft and Ft, it is not possible to esti-

mate �Ft and Ft themselves. Thus, F̂t and �F̂t are, respectively, �consistent�

estimators for H 0
1Ft and H

0
1�Ft, where H1 is a non singular k�k matrix, mean-

ing that F̂t�H 0
1Ft and �F̂t�H 0

1�Ft converge to zero in some sense. This makes

it impossible to estimate � consistently, although once again the space spanned

by � can be estimated consistently. Due to the rotational indeterminacy of the

estimation of Ft and �Ft, the estimators �̂ and �̂
FD

may �consistently� esti-

mate H�1
1 �, so that �̂ �H�1

1 � may converge to zero in some sense as n and T

(or either) pass to in�nity. Whilst there is no direct consistency result for �,

being able to estimate the space it spans is su¢ cient for many purposes. For

example, the quantity �Ft can be consistently estimated by �̂F̂t, and therefore

predicting using (1) is feasible. Also, it is possible to carry out inference on e.g.,

the signi�cance of the Fts as regressors in (1) - see also a similar discussion in

Bai (2003, p. 145). Likewise, it is impossible to consistently estimate the load-

ings �i in (2), although it is possible to consistently estimate the space spanned,

i.e. �̂i�H2�i, where the rotation matrix H2 is n�n, can be shown to converge

to zero in some sense.

The convergence rate and the limiting distribution for �̂ are in the following

theorem.

Theorem 3 Suppose Assumptions 1-6 hold.

Let equation (1) be a cointegration relationship; as (n; T )!1 with n=T ! 0:

p
nT
�
�̂ �H�1

1 �
�
)
�
H 0
1

Z
�B" �B

0
"H1

��1=2 h
�h+ �0H 0�1

1
~QB� ~Q

0
BH

�1
1 �

i1=2
�Z

(27)

where Z � N1 (0; Ik) independent of the �-�eld generated by the common shocks

Ft and of the random matrix ~QB. Also

T�2
TX
t=1

ŴtW
0
t ) ~QB

and

� = lim
n!1

n�1
nX
i=1

nX
j=1

�i�
0
jE (eitejt) :
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When (n; T )!1 with T=n! 0, it holds that

T 3=2
�
�̂ �H�1

1 �
�
)
�
H 0
1

Z
�B" �B

0
"H1

��1
�1 (28)

where �1 is de�ned in (61).

Let equation (1) be a spurious regression; as (n; T )!1 with n=T ! 0:

p
n
�
�̂ �H�1

1 �
�
)
�
H 0
1

Z
�B" �B

0
"H1

��1�
H 0
1

Z
�B"Bu

�p
�h�: (29)

As (n; T )!1 with T=n! 0, it holds that

p
T
�
�̂ �H�1

1 �
�
)
�
H 0
1

Z
�B" �B

0
"H1

��1
�2 (30)

where �2 is de�ned in (64).

Proof. See Appendix B.

The estimator �̂ is always consistent, even though T=n ! 0 results in a

slower rate of convergence and in a degenerate behavior of the numerator of

�̂ � H�1
1 �. When n=T ! 1, results for the case of (1) being a cointegrating

regression are essentially the same as in equation (15) in Theorem 1. The only

di¤erence is that now the variance of �̂�H�1
1 � is �in�ated�by the non-negative

random variable �0H 0�1
1

~QB� ~Q
0
BH

�1
1 �, which arises from the estimation error

when replacing Ft with F̂t.

Notice the consequence of equation (1) being a spurious regression: as long

as the number of cross sectional units n is �smaller� than T , the classical
p
n

consistency holds, and we have the same limiting distribution as in equation

(17).

In both cases, the limiting distributions become non standard when T=n!

0.

The convergence rate and the limiting distribution for �̂
FD

are in the fol-

lowing theorem.

Theorem 4 Suppose Assumptions 1-2 and 4-6 hold.

If nT ! 0

n
�
�̂
FD

�H�1
1 �

�
p! (H 0

1��FH1)
�1 � Z; (31)
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where Z is N (0; Q) with

Q = lim
n;T!1

1

T 4

TX
t=1

TX
s=1

TX
u=1

TX
v=1

H 0
1�Ft

�
�F̂s �H 0

1�Fs

�0
V �1� �

�0V �1
�
�F̂u �H 0

1�Fu

�0
�FvH1 �

nX
i=1

nX
j=1

E f[eiteis � E (eiteis)] [ejuejv � E (ejuejv)]g ;

and V is the probability limit of the diagonal matrix consisting of the �rst k

eigenvalues of (nT )�1�Z�Z 0 in decreasing order.

If Tn ! 0

T
�
�̂
FD

�H�1
1 �

�
p! �heV

�1� + (H 0
1��FH1)

�1
�3 (32)

where �he is the long-run variance of limn!1 n
�1=2Pn

i=1 eit and �3 is de�ned

in (??).

Proof. See Appendix C.

Notice that in this case we have a degenerate limiting distribution when
T
n ! 0, despite having a consistent estimate. The distribution limit depends on

the bias arising in the BN decomposition, �3, but also on the presence of the

error term �F̂t �H 0
1�Ft.

3.2.2 The case of T �xed and n large

When T is �xed and n is large, consistent estimation of shocks is still possible, see

Connor and Korajzcyk (1986) and Bai (2003). However, the following restriction

is necessary:

Assumption 7: E (eiteis) = 0 for all t 6= s.

Assumption 7 rules out the possibility of serial correlation in the DGP of

the eit, and therefore this is a constraint on Assumption 5(d). However, con-

temporaneous correlation and cross-sectional heteroscedasticity are preserved.

Under Assumptions 4-7, we know that shocks estimation is
p
n consistent,

i.e., we have both

F̂t �H 0
1Ft = Op

�
n�1=2

�
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and

�F̂t �H 0
1�Ft = Op

�
n�1=2

�
for all t.

Theorem 5 Suppose Assumptions 1-7 hold; then for every consistent estimator

F̂t of H 0
1Ft and for �xed T and n!1 we have the same result as in equation

(14).

Proof. See Appendix C.

Theorem 6 Suppose Assumptions 1-7 hold; then for every consistent estimator

�F̂t of H 0
1�Ft and for �xed T and n!1 we have the same result as in equation

(20).

Proof. See Appendix C.

Theorems (5) and (6) do not anyway require
p
n consistency, since they

ensure the consistency of �̂ and �̂
FD

for any consistent estimate of the shocks,

irrespective of the rate of convergence. In both cases we have the same results

as we would have if the Fts were observable. Therefore, when T is �xed, having

large n makes it indi¤erent to use observed or estimated shocks as long as shocks

are estimated consistently.

3.2.3 The case of n �xed and T large

In what follows, we develop the inferential theory for the case when shocks are

unknown and the cross-sectional dimension n is �nite. Rewriting model (2) in

the vector form, one gets:

zt = �Ft + et (33)

where zt = (z1t; :::; znt)
0, et = [e1t; :::; ent]

0, and � = (�1; �2; :::; �n)
0. One can

estimate � using PCA. A feasible estimator of �, �̂, is given by the
p
n times

the eigenvectors corresponding to the k largest eigenvalues of Z 0Z. Notice that

this estimator exploits the normalization �̂0�̂=n = Ik, and it turns out to be

computationally convenient for the case of n < T . Henceforth, for sake of the

22



notation and without loss of generality, we modify Assumption 4 by assuming

that n�1
Pn

i=1 �i�
0
i = Ik.

The following theorem characterizes consistency and limiting distribution of

�̂.

Proposition 1 Under Assumptions 3-6 we have

T
�
�̂�H2�

�
)

�
In � n�1H2�

�
H 0
1

Z
�B" �B

0
"H1

�
�0H 0

2

��Z
dWe

�B0"H1

��
H 0
1

Z
�B" �B

0
"H1

��1
�n�1�H2

�Z
dWe

�B0"H1

�
�H 0

2

+n�1
�
In � 2n�1�H2

�
H 0
1

Z
�B" �B

0
"H

0
1

�
�0H 0

2

�

e�H2 (34)

where We is the Wiener process associated to the partial sums of et and 
e =

E (ete
0
t).

Proof. See Appendix B.

Note that in this case we have a T -consistent estimate of �, even though the

PCA of Ft is not consistent, e.g., see Bai (2004) and Proposition 2 below, when

n is �nite.

De�ne the limiting distribution of T
�
�̂�H2�

�
asD1

�, i.e., T
�
�̂�H2�

�
)

D1
�. Given the restriction �̂0�̂=n = Ik, the OLS estimator of Ft, obtained

regressing the zt on the estimated loadings �̂, is

F̂t = n
�1�̂0zt:

The following proposition characterizes (the inconsistency of) this estimator:

Proposition 2 Consider F̂t = n�1�̂0zt, and also the �rst di¤erence estimator,

�F̂t = n
�1�̂0�zt. Then

max
1�t�T

F̂t �H 0
1Ft

 = Op (1) (35)

and

max
1�t�T

�F̂t �H 0
1�Ft

 = Op (1) (36)

uniformly in t.
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Proof. See Appendix C.

Proposition 2 states that the estimates of the shocks and of their �rst di¤er-

ence are inconsistent, in that the estimation error does not die out as T ! 1.

However this inconsistency has no impact on the consistency of �̂ and �̂
FD
,

though it a¤ects their asymptotic distributions. See the proofs of Theorems 7

and 8.

The convergence rate and the limiting distribution for �̂ are in the following

theorem.

Theorem 7 For the estimator �̂, we have:

T
�
�̂ �H�1

1 �
�
)
�
H 0
1

Z
�B" �B

0
"H1

��18><>:
R
H 0
1
�B"dBu

�Pn
i=1

Pn
j=1 hij

�1=2
�n�1

�
H 0
1

R
�B"d �B

0
eH2�H

�1
1 � + n�1�0H 0

2�eH2�H
�1
1 �

�
�n�1

�
H 0
1

R
�B" �B

0
"H1

� �
D10
�H2�� �0H 0

2D
1
�

�
H�1
1 �

9>=>;
(37)

where �Be is the demeaned Brownian motion associated to the partial sums of et

and �e = V ar (et). When this is a spurious relationship, one gets

�̂ �H�1
1 � )

�
H 0
1

Z
�B" �B

0
"H1

��1�
H1

Z
�B"Bu

�0@ nX
i=1

nX
j=1

h�ij

1A1=2

: (38)

Proof. See Appendix C.

Note that even though common shocks cannot be estimated consistently, �̂

is consistent when (1) is a cointegration relationship but inconsistent when (1)

instead is a spurious regression. With respect to the case of observable shocks,

shock estimation has an impact on the limit distribution of �̂ � H�1
1 � when

equation (1) is a cointegration regression - see equation (37) above. On the

other hand, it does not a¤ect the asymptotic distribution when equation (1) is

a spurious regression - see equation (38).

Equations (37) and (38) show an important common feature of this theo-

retical framework. Only the numerators of equation (37) and (38) depend on

whether equation (1) is a cointegrating or spurious regression, whilst the de-

nominators are not a¤ected. This is due to the fact (detailed in the proof)
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that though F̂t is not a consistent estimator for Ft, the quantity
P
F̂tF̂

0
t is a

consistent estimator for
P
FtF

0
t for any consistent estimator of the loadings �̂.

The convergence rate and the limiting distribution of �̂
FD

are in the follow-

ing theorem.

Theorem 8 For the �rst di¤erence estimator �̂
FD
, we have:

�̂
FD

�H�1
1 �

p! �H�1
1 � + n [�0��z�]

�1
[H 0

1��FH1]H
�1
1 � (39)

where ��e = V ar (�et) and ��z = �(H 0
1��FH1) �

0 +��e.

Proof. See Appendix C.

The estimator �̂
FD

is inconsistent. This is due to the two terms
P
�Ft�F

0
t

and
P
�et�e

0
t in the denominator having the same asymptotic magnitude,

rather than to the common shock estimates being inconsistent. Also, this holds

for any consistent estimator �̂ (see proof in Appendix C).

4 Extensions

In this section, we consider two extensions of our basic framework:

(i) the case of model (2), where our basic framework (1) also contains some

idiosyncratic shocks;

(ii) the case where model (1) is misspeci�ed, and the common shocks Ft actually

have unit speci�c slopes, say �i.

4.1 The case of idiosyncratic shocks

Model (1) assumes that the DGP of yit depends only on a set of common shocks.

In this section, we brie�y consider the case where the model is augmented to take

into account the presence of unit-speci�c variables. Even though the algebra

becomes more tedious, all the results derived in the previous section still hold.

The only novelty is the covariance between the common shocks Ft and the unit

speci�c regressors.
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Recall the augmented model (4)

yit = �i + �
0Ft + 

0xit + uit

with i = 1; :::; n; t = 1; :::; T , where � and  are (k�1) and (p�1) vectors of slope

parameters. The idiosyncratic variables xit are a (p � 1) vector of observable

I(1) individual-speci�c regressors, de�ned as

xit = � iGt + !it (40)

where Gt is an R � 1 vector of I (1) variables that may contain some elements

of Ft, and � i is a p�R matrix and

!it = !it�1 + �it (41)

with !it assumed for simplicity i.i.d. across i and such that f�itg, f"tg, fF0g and

f!i0g are independent groups. Equation (40) considers the possible presence of

"correlation" between Ft and xit. A similar framework that allows for cross

dependence among the idiosyncratic regressors and dependence between the

idiosyncratic regressors and the common regressors is considered in Pesaran

(2006) and Kapetanios, Pesaran and Yamagata (2006). Thus, cross dependence

is accounted for directly, via Ft, and indirectly, via the factor structure in xit.

The impact of the presence of the xits on the LS estimator of � will be dis-

cussed considering (for the purpose of a concise discussion) the case of observable

Ft. Let �xit = xit � T�1
PT

t=1 xit; then,�
�̂ � �
̂ � 

�
=

" Pn
i=1

PT
t=1WtW

0
t

Pn
i=1

PT
t=1Wt�x

0
itPn

i=1

PT
t=1 �xitW

0
t

Pn
i=1

PT
t=1 �xit�x

0
it

#�1 " Pn
i=1

PT
t=1WtuitPn

i=1

PT
t=1 �xituit

#
(42)

and"
�̂
FD

� �
̂FD � 

#
=

" Pn
i=1

PT
t=1�Ft�F

0
t

Pn
i=1

PT
t=1�Ft�x

0
itPn

i=1

PT
t=1�xit�F

0
t

Pn
i=1

PT
t=1�xit�x

0
it

#�1 " Pn
i=1

PT
t=1�Ft�uitPn

i=1

PT
t=1�xit�uit

#
:

(43)
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Thus, the asymptotics of �̂ � � (and of �̂
FD

� �) depends on terms containing

the xits as well, due to the presence of the o¤-diagonal term
Pn

i=1

PT
t=1 �xitW

0
t

in the denominator of (42) and of
Pn

i=1

PT
t=1�xit�F

0
t in (43).

Depending on whether or not these quantities are asymptotically zero (i.e. Ft

and xit or their �rst di¤erences are asymptotically orthogonal), the asymptotic

distribution of �̂ and �̂
FD

may or may not change with respect to the results

reported in Section 3. In order to investigate the cases whereby �̂ � � (or

�̂
FD

� �) is orthogonal to ̂ �  (̂FD �  respectively), consider the following

preliminary assumption, where �Gt = Gt � T�1
PT

t=1Gt and similarly �!it.

Assumption 8: (1) as n ! 1, n�1
Pn

i=1 � i = �� ; (2) as (n; T ) ! 1, (i)Pn
i=1

PT
t=1 �xit�x

0
it = Op

�
nT 2

�
, (ii)

Pn
i=1

PT
t=1Wt�!

0
it = Op

�p
nT 2

�
and (iii) as

T !1, T�2
PT

t=1
�GtW

0
t )

R
�BG �B

0
"; (3) as (n; T )!1, (i)

Pn
i=1

PT
t=1��xit��x

0
it =

Op (nT ), (ii)
Pn

i=1

PT
t=1�!it�F

0
t = Op

�p
nT
�
and (iii) as T !1,

PT
t=1�Ft�G

0
t =

Op (T
{) with { = 1=2 or 1.

Assumption 8 requires some asymptotic results to hold with respect to the

newly introduced variables xit, Gt and !it, and it could be expressed using some

more primitive assumptions. For example, parts 2(i) and 3(i) could be shown

using the same arguments as in Phillips and Moon (1999); likewise, 2(ii) and

3(ii) could be proved, under suitable assumptions, using similar derivations as

for the proofs of Theorems 1 and 2. Note that a necessary condition in order

for 3(ii) to hold is that �!it and �Ft be uncorrelated. The result in 2(iii)

could be proved using a FCLT argument. Note that 3(iii) accommodates both

situations whereby Ft and Gt are independent of each other or overlap. The

former case holds under { = 1=2, which implies that a CLT is required to hold

for the sequence
PT

t=1�Ft�G
0
t; the latter case is entailed by { = 1, which

requires a LLN to hold for
PT

t=1�Ft�G
0
t.

The following theorems provide a summary of the values of
Pn

i=1

PT
t=1 �xitW

0
t

and
Pn

i=1

PT
t=1�xit�F

0
t under various combinations of n and T .
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Proposition 3 Let Assumptions 8(1) and 8(2) hold, and de�ne
Pn

i=1

PT
t=1 �xitW

0
t =Pn

i=1

PT
t=1 �!itW

0
t +

Pn
i=1 � i

PT
t=1

�GtW
0
t = a+ b.

As (n; T )!1, a = Op
�p
nT 2

�
and b = Op

�
nT 2

�
with

1

nT 2

nX
i=1

� i

TX
t=1

�GtW
0
t ) ��

Z
�BG �B

0
":

For �xed T and as n ! 1, a = Op (
p
n) and b = Op (n) with n�1b )

��
PT

t=1
�GtW

0
t . For �xed n and as T !1, a = b = Op

�
T 2
�
.

Proof. See Appendix C.

Proposition 4 Let Assumptions 8(1) and 8(3) hold, and de�ne
Pn

i=1

PT
t=1�xit�F

0
t =Pn

i=1

PT
t=1�!it�F

0
t+

Pn
i=1 � i

PT
t=1�Gt�F

0
t = a + b. As (n; T ) ! 1, a =

Op

�p
nT
�
and b = Op (nT{). When { = 1, it holds that

1

nT

nX
i=1

� i

TX
t=1

�Gt�F
0
t ! ��E (�Gt�F

0
t ) :

For �xed T and as n ! 1, a = Op (
p
n) and b = Op (n) with n�1b )

��
PT

t=1�Gt�F
0
t . For �xed n and as T !1, a = Op

�p
T
�
and b = Op (T{).

Proof. See Appendix C.

Propositions 3 and 4 illustrate the cases when �̂�� (�̂
FD
��) is orthogonal

to ̂�  (̂FD � ), thereby making the presence of the idiosyncratic shocks xit
irrelevant for the asymptotics of �̂ � � (or �̂

FD
� �). Orthogonality between

�̂ � � and ̂ �  requires two necessary conditions to hold: n!1 and �� = 0.

Note that when n is �xed, �̂ � � and ̂ �  cannot be orthogonal, irrespective

of the presence of the common factors Gt in the DGP of xit. As far as �̂
FD

��

and ̂FD� are concerned, n!1 and �� = 0 are only su¢ cient conditions but

they are not necessary: if the xits are purely idiosyncratic variables, i.e. with

no common factor structure (� i = 0), or if the xits do have a common factor

that is unrelated to Ft (i.e. { = 1=2), then this su¢ ces to have asymptotic

orthogonality between �̂
FD

� � and ̂FD � . Similar results could be proved

for the case of unobservable Ft.
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4.2 The case of heterogeneous slopes

In this section, we consider the case of heterogeneous slopes, i.e., the case

whereby the coe¢ cient of common shocks Ft is unit speci�c. This entails that

(1) now becomes

yit = �i + �
0
iFt + uit: (44)

Although �i is di¤erent across units, the researcher could however be interested

in estimating the average �; a typical case of this is in the literature on conver-

gence (see e.g., Temple, 1999, p. 126). Thus, the model that will be used for

estimation is

yit = �i + �
0Ft + vit

where vit = uit+(�i � �)
0
Ft; when unobservable common shocks are considered,

the model becomes

yit = �i + �
0 (H 0

1)
�1
F̂t + vit (45)

where now the error term vit = uit+(�i � �)
0
Ft��0

�
F̂t �H 0

1Ft

�
; it is impor-

tant to note that, as it is well known from Phillips and Moon (1999), neglected

heterogeneity introduces a further, nonstationary components in the error term,

given by (�i � �)
0
Ft. Thus, (45) is always a spurious regression. When �rst

di¤erenced data are used, (45) becomes

�yit = �
0 (H 0

1)
�1
�F̂t +�vit (46)

where �vit = �uit + (�i � �)
0
�Ft � �0 (H 0

1)
�1
�
�F̂t �H 0

1�Ft

�
.

For the sake of brevity, we will focus our attention to the case whereby Ft

is unobservable, thus analyzing the estimates of � from (45) and (46). The
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estimation errors are, respectively

�̂ �H�1
1 � =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#�1
(47)

�
(

nX
i=1

TX
t=1

Ŵt

�
uit �

�
Ŵt �H 0

1Wt

�0
H�1
1 � +W 0

t (�i � �)
�)
;

�̂
FD

�H�1
1 � =

"
nX
i=1

TX
t=1

�F̂t�F̂
0
t

#�1
(48)

�
(

nX
i=1

TX
t=1

�F̂t

�
�uit �

�
�F̂t �H 0

1�Ft

�0
H�1
1 � +�F 0t (�i � �)

�)
:

Consider also the following assumption on the �is.

Assumption 9: It holds that (i) �i
iid� (�;��) with E k�i � �k

4+�
< 1 and

(ii) �i is independent of all other quantities.

Assumption 9 yields the usual asymptotic results for f�ig
n
i=1, such as a CLT

and a LLN. Part (ii) entails that the long run average parameter � (see Phillips

and Moon, 1999 and 2000) is genuinely E (�i).

To illustrate the main point (summarized in a theorem hereafter), con-

sider (47) - similar arguments hold for (48) and can thus be readily extended.

Looking at the numerator, we know from Lemma 2 in Appendix A that, as

(n; T ) ! 1,
Pn

i=1

PT
t=1 Ŵt

�
Ŵt �H 0

1Wt

�0
H�1
1 � = Op

�
nTC�1nT

�
. Also, as far

as
Pn

i=1

PT
t=1 Ŵtuit is concerned, its magnitude depends on whether (44) is a

cointegrated or a spurious regression, being of order Op (
p
nT ) +Op

�
n
p
T
�
in

the former case and of order Op
�p
nT 2

�
+Op

�
nT 3=2

�
in the latter - the terms

Op

�
n
p
T
�
and Op

�
nT 3=2

�
come from the remainders in the BN decomposi-

tion. Neglecting the heterogeneity of the �is entails that a further error term,Pn
i=1

PT
t=1 ŴtW

0
t (�i � �), is present. To evaluate its magnitude, consider the
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denominator as well"
nX
i=1

TX
t=1

ŴtŴ
0
t

#�1 nX
i=1

TX
t=1

ŴtW
0
t (�i � �) (49)

=
1

n
H�1
1

nX
i=1

(�i � �) +
"
TX
t=1

ŴtŴ
0
t

#�1 " TX
t=1

Ŵt

�
Wt � Ŵt

�0#" 1
n

nX
i=1

(�i � �)
#

= I + II:

Assumption 9 yields I = Op
�
n�1=2

�
. Also, II = Op

�
T�2

�
Op
�
TC�1nT

�
Op
�
n�1=2

�
,

and thus II is always dominated. Therefore,
Pn

i=1

PT
t=1 ŴtW

0
t (�i � �) =

Op
�p
nT 2

�
, thereby making the estimation error �̂ � � = Op

�
n�1=2

�
. This

result is in line with the �ndings in Phillips and Moon (1999) and Moon and

Phillips (2000), and it is consistent with the idea that neglecting heterogeneity

creates an extra, nonstationary, error term, thereby making the model equiva-

lent to a spurious regression. Thus, when (44) is a cointegrating equation, as

(n; T ) ! 1 with n=T ! 0, we have �̂ �H�1
1 � = Op

�
n�1=2

�
and the limiting

distribution of �̂�H�1
1 � is driven by n�1=2H�1

1

Pn
i=1 (�i � �). When (44) is a

spurious regression, the numerator is driven by both n�1=2H�1
1

Pn
i=1 (�i � �)

and by n�1=2T�2
Pn

i=1

PT
t=1H

�1
1 Wtuit. However, Assumption 9(ii) entails in-

dependence (conditional on the common shocks Ft) between the two terms.

The following propositions summarize the asymptotics of �̂ � H�1
1 � and

�̂
FD

�H�1
1 �; results are presented in two cases, namely n!1 and �xed n.

Proposition 5 Let Assumptions 1-6 and 9 hold and assume (n; T ) ! 1 with

n=T 2 ! 0. Then,
p
n
�
�̂ �H�1

1 �
�
) H�1

1 �
1=2
� � Z (50)

when (45) is a cointegration relationship, where Z � N (0; Ik), and
p
n
�
�̂
FD

�H�1
1 �

�
) H�1

1 �
1=2
� � Z: (51)

Also, when (45) is a spurious regression under n=T ! 0

p
n
�
�̂ �H�1

1 �
�
)
�
H 0
1

Z
�B" �B

0
"H1

��1�
H�1
1

Z
�B"Bu

�p
�h� +H�1

1 �
1=2
� �Z

(52)

where the two random variables are independent.
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Proof. See Appendix C.

Proposition 6 Let Assumptions 1-6 and 9 hold and assume T ! 1. Then

�̂ �H�1
1 � = Op (1) with E

�
�̂ �H�1

1 �
�
= 0, Also, �̂

FD
�H�1

1 � = Op (1).

Proof. See Appendix C.

Propositions 5 and 6 characterize the asymptotics of �̂ �H�1
1 � and �̂

FD
�

H�1
1 �, under the cases of n passing to in�nity and being �xed respectively.

As Proposition 5 shows, neglecting heterogeneity always results in
p
n-consistency;

this result is already well known in the nonstationary case, as proved by Phillips

and Moon (1999), and it essentially follows form the fact that in the numerators

of both (47) and (48), the terms that dominate are, respectively,
Pn

i=1

PT
t=1 ŴtW

0
t (�i � �) =

Op
�p
nT 2

�
and

Pn
i=1

PT
t=1�F̂t�F

0
t (�i � �) = Op (

p
nT ). This is also shown

in greater detail in the proofs. The main result is that the error arising from

neglected heterogeneity dominates the common shock estimation error.

Proposition 6 states that, when n is �xed, � cannot be estimated consistently.

Whilst this is in line with Theorems 7 and 8 for the case of spurious regression

and for the �rst-di¤erenced model respectively, it is now also the case for (44)

being a cointegrated equation. However, albeit inconsistent, �̂ is unbiased.

5 Conclusion

This paper developed limiting theory for the OLS estimator for panel models

with common shocks, where contemporaneous correlation is generated by both

the presence of common regressors (e.g., macro shocks, aggregate �scal and

monetary policies) among cross-sectional units and weak dependence among the

error terms. We derived rates of convergence and limiting distributions under a

comprehensive set of alternative characteristics of panels: several combinations

of the cross-sectional dimension n and the time series dimension T ; shocks

being either observable or unobservable; and stationary and nonstationary panel

models, the latter representing either a cointegrating equation or a spurious

regression.
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When the common shocks are observable, the OLS estimator always pro-

vides consistent estimates of the �, the case of spurious regression with �xed n

being the only exception. Consistency holds for all possible combinations of the

dimensions of n and T , including the case of n �xed, which so far has not been

addressed in the literature on nonstationary panel factor models. We extend

the study of consistency of OLS estimators to the case when the shocks are

unobservable and we prove that consistency always holds, the cases of spurious

regression and stationary regression when n is �xed being the only exceptions.

All the asymptotics for (n; T ) ! 1 has been derived in the joint limit, using

an approach based on the application of a conditional MDS CLT.

A central result is represented by the limiting distributions derived under the

strong cross-sectional dependence induced by the presence of common shocks.

In this case, we obtained mixed normality as consequence of the common shocks

being nonstationary; when shocks are stationary, normal distributions are ob-

tained.

In this paper, we primarily consider a panel regression model with only latent

shocks Ft as regressors. As we discuss in Section 4, this formulation can be

extended to a more general framework containing also idiosyncratic regressors,

i.e., yit = �i + �
0Ft + 

0xit + uit, and with heterogeneous slopes, i.e., yit =

�i + �
0
iFt + uit.

The results derived in this article are asymptotic, and therefore it would be

important to assess the �nite sample behavior of the estimates via Monte Carlo

exercises. Another important extension is to relax the exogeneity hypothesis in

Assumption 6(a). In this case, fully modi�ed OLS (Phillips and Hansen, 1990)

and/or instrumental variable estimators may be employed. These interesting

issues are beyond the scope of the present paper, and we leave them for future

studies.
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Appendix A: Central Limit Theorem for
Multi-index Martingale Di¤erence Sequences

In this Appendix, we provide a joint CLT for MDS, based upon the theory

in Hall and Heyde (1980). This is the building block employed to prove the

joint limits in Theorems 1 to 4.

Theorem 9 Consider the sequence of k-dimensional random variables f�iT g
n
i=1.

Let C be an invariant �-�eld such that, conditionally on C, (i) the �iT are in-

dependent across i; (ii) E [�iT jC] = 0 for all i; (iii) for some � > 0 it holds

that

E k�iT jCk
2+�

<1 (53)

as T !1. Then, as (n; T )!1, it holds that conditional on C

1p
n

nX
i=1

�iT ) V 1=2 � Z (54)

where Z � N (0; Ik) is independent of V a conditional variance and de�ned as

1

n

nX
i=1

nX
j=1

�
�iT �

0

iT

���C� p! V: (55)

Proof. In order to prove this theorem, we show that all the conditions re-

quired in Corollary 3.1 in Hall and Heyde (1980, p. 58) are satis�ed, and thus

this corollary can be applied here to prove (54). Consider the �-�eld de�ned as

In;i = f�1T ; :::; �iT g[C; as n expands, the �-�elds In;i are nested since In;i = Ii
for any i � n, and therefore condition (3.21) in Hall and Heyde (1980, p. 58)

holds. Henceforth, we therefore use the simpler notation Ii, thus suppressing the

dependence on n. According to Assumptions (i) and (ii), the �iT are indepen-

dent across i conditional on C; this entails that E [�iT j Ii�1] = E [�iT jC] = 0,

where the last equality holds by assumption. Thus, the �iT are (conditional

on C) a zero mean martingale di¤erence array. Equation (53) is essentially a

conditional Liapunov condition, which requires conditional integrability of order

2 + �. This also implies that E k�iT j Ii�1k
2
= E k�iT jCk

2
< 1, and therefore
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the conditional variance of �iT is �nite. Also, the conditional Liapunov condi-

tion (53) is su¢ cient for a conditional Lindeberg condition to hold, whereby as

n!1 for some " > 0 it holds that

nX
i=1

�
�2iT d (j�iT j > ")

�� Ii�1� p! 0

where d (�) is the indicator function. Thus, all the assumptions required for

Corollary 3.1 in Hall and Heyde (1980, p. 58) are satis�ed, and a (cross-

sectional) CLT holds for the sequence
Pn

i=1 �iT , and as n ! 1, the sequence

n�1=2
Pn

i=1 �iT converges to a normal random variable, whose asymptotic vari-

ance is given in (55).

Remarks

R1 Theorem 9 is a joint CLT for MDS sequences, of a similar type to those

studied in Hall and Heyde (1980). The only di¤erence is that the random

sequence
Pn

i=1 �iT depends on two indexes, n and T , both allowed to pass

to in�nity, which makes the result applicable in a panel data framework.

From the technical viewpoint, Theorem 9 lays out some su¢ cient con-

ditions whereby Corollary 3.1 in Hall and Heyde (1980, p. 58) holds. A

key role is played by the conditional Liapunov condition (53), which states

that the sequence �iT is (conditionally upon C) integrable of order 2+� as

T passes to in�nity. This ensures that the MDS is square integrable, and

that a Lindeberg condition holds for the �iT as T ! 1; see also Phillips

and Moon (1999, p. 1071) for the case of i.i.d. panel models.

R2 Theorem 9 can be applied to the panel models when (n; T ) ! 1 and in

presence of e.g., strong cross-sectional dependence arising from the pres-

ence of a common factor structure. Cross sectional independence among

�iT is not required, unlike in Phillips and Moon (1999), as long as the �iT s

are cross sectionally independent conditionally on some invariant �-�eld

C. When this is the case, the joint asymptotic theory follows from the

MDS CLT.
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R3 A similar approach was employed to derive asymptotic results in cross-

sectional regressions with common shocks by Andrews (2005). To the best

of our knowledge, this is the �rst time that the MDS CLT is applied to

study the asymptotics of multi-index sequences. Although the MDS CLT

is essentially a cross-sectional result, the role played by T in Theorem 9 is

still quite evident, e.g., from (53).

R4 Theorem 9 suggests a methodology to derive the joint asymptotics for panels

with possibly strong cross-sectional dependence as (n; T ) ! 1, with no

need to make appeal to sequential limit. To illustrate this, consider the

double sum
P

i

P
t �iftxit, where e.g., xit is i.i.d. across i, �i is non

random and ft is a variable common to all i - this term could arise when

studying the estimation error in a panel regression where the error term

has a factor structure such as yit = � + �xit + uit with uit = �ift. The

asymptotic theory derived in Phillips and Moon (1999) cannot be applied

to
P

i

P
t �iftxit, since the sequence �iftxit is not independent across

i. The limiting distribution of
P

i

P
t �iftxit can be studied by applying

Theorem 9 to the sequence �iT = sT
P

t ft (�ixit), where sT is a suitable

normalization, and by considering the �-�eld generated by the ft, say Cf .

If E [�iT jCf ] = 0 for T !1 and if it can be proven that as T !1 (53)

holds, then Theorem 9 ensures that
�
n�1=2sT

�P
i

P
t �iftxit converges to

a normal random variable with mean zero and variance V .

R5 Equation (55) suggests a method to calculate V . Note that V can be a

constant or a random variable, depending on the assumptions on �iT , and

thus the limiting distribution of n�1=2
P

i �iT can be mixed normal, as

already suggested by Andrews (2005) in the cross-sectional case.
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Appendix B: Proofs

Henceforth, we de�ne CnT = min f
p
n; Tg and �nT = min

np
n;
p
T
o
. Also,

in order to keep the notation simple, in this and in the other appendices, we set

the rotation matrices H1 and H2 to be identity matrices of dimensions k and n

respectively.

Proof of Theorem 1. Consider the estimation error �̂�� = [
P

i

P
tWtW

0
t ]
�1
[
P

i

P
tWtuit]

as de�ned in (9).

Let us start with the denominator
P

i

P
tWtW

0
t . When T ! 1 and n is

�xed, it holds that
P

i

P
tWtW

0
t = Op

�
T 2
�
irrespective of whether (1) is a

spurious or a cointegrating regression from Assumptions 2 and 3, and

1

nT 2

nX
i=1

TX
t=1

WtW
0
t )

Z
�B" �B

0
": (56)

As n!1, and for �xed T , we have
P

i

P
tWtW

0
t = Op (n)

1

nT 2

nX
i=1

TX
t=1

WtW
0
t =

1

T 2

TX
t=1

WtW
0
t (57)

whilst as both n and T are large we have
P

i

P
tWtW

0
t = Op

�
nT 2

�
1

nT 2

nX
i=1

TX
t=1

WtW
0
t )

Z
�B" �B

0
": (58)

As far as the numerator is concerned, we derive the asymptotics with re-

spect to three separate cases, following the same structure as in the theo-

rem. We �rstly derive the rate of convergence and the limiting distribution

of
P

i

P
tWtuit for the case when T is large and n is �xed; we then study the

opposite case, when T is �xed and n is large; last, we analyze the case when

both T and n are large.

Case 1: large T and �xed n:

We �rstly focus our attention to the case where equation (1) is a cointegration

relationship. Denote

�nt = T
�1Wt

 
nX
i=1

uit

!
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and

�nT =
TX
t=1

�nt:

Assumption 6 ensures that Ft and the uits are independent. Also, according to

Assumption 1(a), the process
P

i uit has covariance structure given by

E

" 
nX
i=1

uit

! 
nX
i=1

uis

!#
=

nX
i=1

nX
j=1

� ij;ts:

Then the absolutely summability condition on � ij;ts over time implied in As-

sumption 1(b), and Assumptions 2 and 3 ensure that a functional central limit

theorem (FCLT) holds such that

�nT )
Z
�B"dW

where W is a Brownian motion with variance

lim
T!1

1

T

TX
t=1

TX
s=1

nX
i=1

nX
j=1

� ij;ts =
nX
i=1

nX
j=1

hij :

An alternative way to write the limiting distribution of �nT is

�nT )

0@ nX
i=1

nX
j=1

hij

1A1=2�Z
�B" �B

0
"

�1=2
� Z

where Z � N (0; Ik).

This entails that the rate of convergence of the numerator of �̂�� is Op (T );

therefore, given equation (56) that ensures that the denominator of �̂ � � is

Op
�
T 2
�
, we have that �̂ � � = Op

�
T�1

�
. As far as the distribution limit is

concerned, we know, combining the asymptotics of �nT with equation (56), we

have that"
1

T 2

nX
i=1

TX
t=1

WtW
0
t

#�1 "
1

T

nX
i=1

TX
t=1

Wtuit

#
) 1

n

�Z
�B" �B

0
"

��1=20@ nX
i=1

nX
j=1

hij

1A1=2

�Z

which proves equation (11). Independence between Z and �B" is ensured by

Assumption 6.
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We now consider the case when equation (1) is a spurious regression, i.e.,

uit � I (1).

De�ne �Snt = T
�2Wt (

Pn
i=1 uit) and �

S
nT =

PT
t=1 �

S
nt. The process

Pn
i=1 uit

is still a unit root process with long run variance given by
Pn

i=1

Pn
j=1 h

�
ij .

Therefore, a FCLT, which follows from Assumptions 1(a), 2 and 3, ensures that

�SnT = Op (1). Together with (56), this proves that �̂�� = Op (1). As far as the

limiting distribution is concerned, the asymptotics of the numerator of �̂ � � is

given by

�SnT =
1

T 2

TX
t=1

Wt

 
nX
i=1

uit

!
)
�Z

�B"Bu

�0@ nX
i=1

nX
j=1

h�ij

1A1=2

:

Combining this with the asymptotics of the denominator given in (56), we get

equation (12).

Case 2: large n and �xed T .

Consider �rst the cointegration case. De�ne ~�nt =Wt

�
n�1=2

Pn
i=1 uit

�
and

~�nT =
TX
t=1

Wt

 
n�1=2

nX
i=1

uit

!
:

Assumption 1(a) ensures that a CLT holds for n�1=2
Pn

i=1 uit, so that as n !

1 we have that, for every t, n�1=2
Pn

i=1 uit ) �ut, where �ut is a normally

distributed, zero mean random variable with, after Assumption 1(b)

E [�ut�us] = �� ts:

Therefore, the quantities Wt�ut are mixed normals random variables (due to the

randomness of Wt) and

~�nT � N
"
0;

TX
t=1

TX
s=1

WtW
0
s�� ts

#
=

 
TX
t=1

TX
s=1

WtW
0
s�� ts

!1=2
� Z

where Z � N (0; Ik); Assumption 6 ensures independence between Z and the

random variable
PT

t=1

PT
s=1WtW

0
s�� ts.

Therefore, the rate of convergence of the numerator of �̂ � � is Op (
p
n).

Combining this with the rate of convergence of the denominator, given by (57),

39



we have that �̂ � � = Op
�
n�1=2

�
. As far as the distribution limit is concerned,

combining the asymptotic law of ~�nT with (57), we obtain (13).

Under the spurious regression case, de�ne ~�
S

nt = Wt

�
n�1=2

Pn
i=1 uit

�
and

~�
S

nT =
PT

t=1
~�
S

nt. Assumption 1(a) ensures the validity of the CLT for n
�1=2Pn

i=1 uit,

so that uniformly in t we have, as n ! 1, n�1=2
Pn

i=1 uit ) �ut. We have

that ~�
S

nT = Op (1), and combining this with equation (57), we obtain �̂ � � =

Op
�
n�1=2

�
. As far as the limiting distribution is concerned, since ~�

S

nT is a �nite

sum, we have ~�
S

nT )
PT

t=1Wt�ut as n!1. Combining this with equation (57),

we prove the validity of equation (14).

Case 3: large n and large T .

The proof is largely based on Theorem 9.

Let us start with the case where equation (1) is a cointegration relationship.

De�ne ��iT = T
�1PT

t=1Wtuit, and consider the BN decomposition for Wt and

uit, given respectively by

Wt
a:s:
= W �

t +W0 + ~w0 � ~wt;

uit
a:s:
= u�it + ui0 + ~�i0 � ~�it;

whereW �
t = C (1)

Pt
j=1 wj , u

�
it = Di (1) �it, ~wt =

P1
j=0

�P1
i=j+1 Ci

�
wt�j and

~�it de�ned similarly. Thus

��iT =
1

T

TX
t=1

W �
t u

�
it +RiT =

��
�
iT +RiT ; (59)

where, as far as the remainder RiT is concerned, it can be proved using sim-

ilar arguments as Phillips and Moon (1999) that RiT = Op
�
T�1=2

�
. Con-

sider ��
�
iT and let C be the �-�eld generated by the Fts. Then E

h
��
�
iT

���Ci =
T�1

PT
t=1W

�
t E (u

�
it) = 0 for all i and T . De�ning Ii as the �-�eld generated by

Ft and
�
��
�
1T ; :::;

��
�
iT

�
, it holds that

n
��
�
iT ; Ii

o
is an MDS since E

h
��
�
iT

��� Ii�1i =
E
h
��
�
iT

���Ci = 0. For some constantM� and some � > 0, we have that, uniformly
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in i

E
���iT ���C2+� = E

 1T
TX
t=1

W �
t u

�
it

�����C

2+�

� M�

TX
t=1

E

 1T W �
t u

�
it

����C2+�

= M�
1

T 2+�

TX
t=1

kW �
t k

2+�
E ju�itj

2+�
:

Since E ju�itj
2+�

< 1 for all i and constant over t by Assumption 1, it holds

that E
���iT ���C2+� < 1 if T�(2+�)

PT
t=1 kW �

t k
2+� is stochastically bounded

as T ! 1. This is ensured by Theorem 5.3 in Park and Phillips (1999),

which holds due to Assumption 2. Thus, a Liapunov condition holds whereby

E
���iT ���C2+� < 1 for some � > 0 - in light of Assumptions 1 and 2, this is

ensured for up to � > 2. Thus the joint MDS CLT can be employed to get, for

(n; T )!1

1p
n

nX
i=1

��
�
iT )

24 1
n

nX
i=1

nX
j=1

E
�
��
�
iT
��
�0
jT

���C�
351=2 � Z

with Z � N (0; Ik) independent of E
�
��
�
iT
��
�0
iT

���C�. Thus
1p
n

nX
i=1

��iT
a:s:
=

1p
n

nX
i=1

��
�
iT +O

�r
n

T

�
(60)

)

24 1
n

nX
i=1

nX
j=1

E
�
��
�
iT
��
�0
jT

���C�
351=2 � Z;

under n=T ! 0. Last, n�1
Pn

i=1

Pn
j=1E

�
��
�
iT
��
�0
iT

���C� for (n; T ) ! 1 is given

by

1

n

nX
i=1

nX
j=1

E
�
��
�
iT
��
�0
jT

���C� =
1

n

nX
i=1

nX
j=1

1

T 2

TX
t=1

TX
s=1

W �
t W

�0
s E

�
u�itu

�
js

�

=

24 1
n

nX
i=1

nX
j=1

E
�
u�itu

�
jt

�35" 1
T 2

TX
t=1

W �
t W

�0
t

#
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where the last equality holds because E (u�itu
�
is) = 0 for all t 6= s. As (n; T ) !

1, the FCLT implied by Assumption 2 and the de�nition of �h entail n�1
Pn

i=1

Pn
j=1E

�
��
�
iT
��
�0
iT

���C�)
�h
�R

�B" �B
0
"

�
, and therefore as (n; T )!1 with n=T ! 0 we have

1p
nT

nX
i=1

TX
t=1

Wtuit )
p
�h

�Z
�B" �B

0
"

�1=2
� Z:

Note that in this proof the restriction whereby n=T ! 0 arises for the same

reason as in Phillips and Moon (1999), i.e., from the fact that (either or both)Wt

and uit could be time dependent and the initial conditions W0 and ui0 need not

be zero. Combining this with equation (58), we get that �̂�� = Op
�
n�1=2T�1

�
.

As far as the limiting distribution is concerned, combining the asymptotic law

of ��nT with equation (58), we have:"
1

nT 2

nX
i=1

TX
t=1

WtW
0
t

#�1 "
1p
nT

nX
i=1

TX
t=1

Wtuit

#
)
p
�h

�Z
�B" �B

0
"

��1=2
Z

which corresponds to equation (15). When T=n ! 0, the term that dominates

in (60) is the second one, and thus the order of magnitude of the numerator of

�̂ � � is Op
�
n
p
T
�
. To prove (16), de�ne

p
T

n

nX
i=1

RiT
c! �1 (61)

where � c!�denotes here convergence in some sense (e.g., in distribution or in

probability) and RiT is de�ned in (59). When normalizing �̂ � � by T 3=2, the

asymptotic law of the numerator is therefore given by the quantity �1 de�ned

in (61). Combining this with equation (58), (16) follows immediately.

We now turn to the case when equation (1) is a spurious regression. Let

��
S

iT = T�2
PT

t=1Wtuit, and consider the BN decomposition of Wt and uit,

whereby

Wt
a:s:
= W �

t +W0 + ~w0 � ~wt;

uit
a:s:
= u�it + ui0 + ~�i0 � ~�it;

with u�it = Fi (1)
Pt

j=1 �ij and the other variables de�ned accordingly. It holds

42



that

��
S

iT =
1

T 2

TX
t=1

W �
t u

�
it +RiT =

��
S�
iT +R

S
iT ; (62)

again, it can be shown that RSiT = Op
�
T�1=2

�
. Conditioning on C, it holds

that E
h
��
S�
iT

���Ci = T�2PT
t=1W

�
t E (u

�
it) = 0 for all i and T . De�ning Ii as the

�-�eld generated by Ft and
�
��
S�
1T ; :::;

��
S�
iT

�
, it therefore holds that

n
��
S�
iT ; Ii

o
is

an MDS since E
h
��
S�
iT

��� Ii�1i = E
h
��
S�
iT

���Ci = 0. A Liapunov condition can be

proved noting that for all i and some � > 0

E
��S�iT ���C2+� = E

 1T 2
TX
t=1

W �
t u

�
it

�����C

2+�

� E


 
1

T 2

TX
t=1

kW �
t k

2

!1=2 
1

T 2

TX
t=1

ju�itj
2

!1=2������C

2+�

=

 
1

T 2

TX
t=1

kW �
t k

2

!1+�=2
E

24 1

T 2

TX
t=1

ju�itj
2

!1+�=235 :
The FCLT and the Continuous Mapping Theorem (CMT) ensure that as T !

1, both quantities are stochastically bounded. Thus, E
�����S�iT ���C���2+� is bounded

for all i and the (joint) MDS CLT can be employed to get, for (n; T )!1

1p
n

nX
i=1

��
S�
iT )

24 1
n

nX
i=1

nX
j=1

E
�
��
S�
iT
��
S�0
jT

���C�
351=2 � Z

with Z � N (0; Ik) independent of E
�
��
S�
iT
��
S�0
iT

���C�. Thus
1p
n

nX
i=1

��
S

iT
a:s:
=

1p
n

nX
i=1

��
S�
iT +O

�r
n

T

�
(63)

)

24 1
n

nX
i=1

nX
j=1

E
�
��
S�
iT
��
S�0
jT

���C�
351=2 � Z

under n=T ! 0. Note that

1

n

nX
i=1

E
�
��
S�
iT
��
S�0
iT

���C� = 1

T 4

TX
t=1

TX
s=1

W �
t W

�0
s

24 1
n

nX
i=1

nX
j=1

E
�
u�itu

�
js

�35

43



and an alternative representation for the random variable
h
n�1

Pn
i=1E

�
��
S�
iT
��
S�0
iT

���C�i1=2�
Z is "

n�1
nX
i=1

E
�
��
S�
iT
��
S�0
iT

���C�#1=2 � Z D
=

�Z
�B"Bu

�0@ 1
n

nX
i=1

nX
j=1

h�ij

1A1=2

where �D=�means equality in distribution. Thus, n�1=2
Pn

i=1
��
S�
iT )

�R
�B"Bu

� �
1
n

Pn
i=1

Pn
j=1 h

�
ij

�1=2
.

This result, together with equation (58), proves that �̂ � � = Op
�
n�1=2

�
. As

far as the limiting distribution is concerned, combining this result with the one

reported in equation (58), we get equation (17). When T=n ! 0, the term

that dominates in (63) is the second one, and the order of magnitude of the

numerator of �̂ � � is Op
�
nT 3=2

�
. To prove (18), de�ne

p
T

n

nX
i=1

RSiT
c! �2 (64)

where again � c!�denotes convergence in some sense, and RSiT is de�ned in (62).

When normalizing �̂�� by
p
T , the asymptotic law of the numerator is therefore

given by the quantity �2 de�ned in (64). Combining this with equation (58),

(18) follows immediately.

Proof of Theorem 3. According to equation (25)

�̂ � � =
"

nX
i=1

TX
t=1

ŴtŴ
0
t

#�1( nX
i=1

TX
t=1

Ŵt

��
Wt � Ŵt

�0
� + uit

�)
:

Let us �rst consider the denominator of this expression. Assumption 3 and

Lemma 2.1 imply that

nX
i=1

TX
t=1

ŴtŴ
0
t = Op

�
nT 2

�
(65)

and �
nT 2

��1 nX
i=1

TX
t=1

ŴtŴ
0
t )

Z
�B" �B

0
"; (66)

this holds under both the cases of cointegration and spurious regression.
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We now prove Theorem 3 for the case when equation (1) is a cointegration

relationship. Following Theorem 9, de�ne

�̂iT =
1

T

TX
t=1

Ŵt

��
Wt � Ŵt

�0
� + uit

�

=
1

T

TX
t=1

Wt

��
Wt � Ŵt

�0
� + uit

�
+
1

T

TX
t=1

�
Ŵt �Wt

��
Wt � Ŵt

�0
�

+
1

T

TX
t=1

�
Ŵt �Wt

�
uit

= ��iT + �
a
iT + �

b
iT :

Consider �rst ��iT ; applying the BN decomposition to Wt and uit with Wt =

W �
t +RWT and uit = u�it +RuiT , we have

��iT =
1

T

TX
t=1

W �
t

��
Wt � Ŵt

�0
� + u�it

�
+RiT

= ��
�
iT +RiT (67)

where following similar arguments as in Phillips and Solo (1992) it follows that

RiT = Op
�
T�1=2

�
. Conditioning on the �-�eld C generated by the Ft, it holds

that

E
�
��
�
iT

��C� = 1

T

TX
t=1

W �
t E (u

�
it) +

1

T

TX
t=1

W �
t E
h
Wt � Ŵt

���Ci0 � = Op� 1

T
p
T

�
because E (uit) = 0 and

�E
h
Wt � Ŵt

���Ci =
1

T 2

TX
s=1

Ŵss�t �
1

T 2
max
1�t�T

���Ŵt

��� TX
s=1

��s�t��
=

1

T 2
Op

�p
T
�
O (1) = Op

�
1

T
p
T

�
:

Thus, letting �Ii the union between the �-�eld generated by
�
��
�
1T ; :::;

��
�
iT

	
and

45



C,
�
��
�
iT ;
�Ii
	
is an MDS as T !1. Also for some constant M� <1

E
���iT ��C2+� = E

 1T
TX
t=1

W �
t

��
Wt � Ŵt

�0
� + u�it

������C

2+�

� M�
1

T 2+�

TX
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kW �
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2+�
E

�����Wt � Ŵt

�0
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����C����2+�
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E
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����C2+�
+M�

1

T 2+�

TX
t=1
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t k

2+�
E ju�itj

2+�

= I + II:

Considering II, given that E ju�itj
2+�

< 1 for all i and for some � > 0, and

since
PT

t=1 kW �
t k

2+�
= Op

�
T 2+�

�
, it follows that II = Op (1). As far as I is

concerned, note that for some M 0
� <1

T 2(2+�)E
�Wt � Ŵt

����C2+� � M 0
�

TX
s=1

F̂s2+� E ����e0tesn
����2+�

+M 0
�

TX
s=1

F̂s2+� E j�stjCj2+� +M 0
�

TX
s=1

F̂s2+� E j�stjCj2+�
and Assumption 2 ensures that E je0tes=nj

2+�
< 1, E j�stjCj

2+�
< 1 and

E j�stjCj
2+�

< 1. Since
PT

s=1

F̂s2+� = Op �T 2+��, as T ! 1, II = op (1).

Thus, E
���iT ��C2+� <1 as T !1 and therefore an MDS-CLT can be applied

to ��
�
iT . As far as �

a
iT and �

b
iT are concerned, note that

1p
n

nX
i=1

�aiT =

p
n

T

TX
t=1

�
Ŵt �Wt

��
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�0
� = Op

� p
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C2nT

�

according to Lemma 1.2(b); Lemma 2.2 ensures that n�1=2
Pn

i=1 �
b
iT = Op

�
C�1nT

�
.
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Thus, as (n; T )!1 with n=T ! 0

1p
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�̂iT =
1p
n

nX
i=1

��iT +
1p
n

nX
i=1

�aiT +
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=
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��
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with Z � N (0; Ik) is independent of E
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Note that, as in the proof of Theorem 1, I )
p
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R
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�
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As far as (
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i is concerned, similar arguments as in the

proof of Theorem 1 lead, as (n; T )!1 under n=T ! 0, to
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and limn!1 n
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combining this with (66), we obtain (27). Note that when T=n!1, the term

that dominates in (68) is the second one, of magnitude Op
�p

n=T
�
. Thus,

the numerator of �̂ � � is of order Op
�
n
p
T
�
, and since the denominator is
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�
nT 2

�
one has �̂ � � = Op

�
T�3=2

�
. When normalizing �̂ � � by T 3=2, the

asymptotic law of the numerator is given by the quantity �1 de�ned in (61);

(28) follows.

We now turn to the case where (1) is a spurious regression. Considering the

numerator of �̂ � �, we have
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�0
�

+
nX
i=1

TX
t=1

Wtuit +
nX
i=1

TX
t=1

�
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Lemma 1.3.(c) ensures that I = Op
�
nTC�1nT

�
. Equation (62) in the proof of

Theorem 1 states that
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Last, III = Op
�p
nT 3=2C�1nT
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after Lemma 2.4. Thus, as (n; T ) ! 1 with

n=T ! 0, the asymptotics of the numerator of �̂ � � is driven by IIa, and
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As far as the case whereby (n; T ) ! 1 with T=n ! 0, note that the term

that dominates the asymptotic law of the numerator of �̂ � � is now IIb;

thus, as (n; T ) ! 1 with T=n ! 0,
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Equation (30) follows from the de�nition of (64).

Proof of Proposition 1. Let �Ft be the principal component estimator

for Ft as de�ned in Bai (2004). Then we know (see e.g. the proof of Lemma 3
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(69)

As far as the denominator of this expression is concerned, let � =
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As far as the numerator of equation (69) is concerned, we study each term. First
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