

City, University of London Institutional Repository

Citation: Lorenzoli, D. & Spanoudakis, G. (2009). Detection of Security and Dependability

Threats: A Belief Based Reasoning Approach. 2009 Third International Conference on
Emerging Security Information, Systems and Technologies, pp. 312-320. doi:
10.1109/SECURWARE.2009.55 ISSN 2162-2108 doi: 10.1109/SECURWARE.2009.55

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/626/

Link to published version: https://doi.org/10.1109/SECURWARE.2009.55

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Detection of Security and Dependability Threats: A Belief Based Reasoning
Approach

Davide Lorenzoli, George Spanoudakis
Department of Computing, City University London

E-mail: Davide.Lorenzoli.1@soi.city.ac.uk, G.Spanoudakis@soi.city.ac.uk

Abstract

Monitoring the preservation of security and
dependability (S&D) properties during the operation
of systems at runtime is an important verification
measure that can increase system resilience. However
it does not always provide sufficient scope for taking
control actions against violations as it only detects
problems after they occur. In this paper, we describe a
proactive monitoring approach that detects potential
violations of S&D properties, called “threats”, and
discuss the results of an initial evaluation of it.

I. INTRODUCTION

Monitoring security and dependability (S&D)

properties during the operation of software systems is
widely accepted as a measure of runtime verification
that can increase system resilience to dependability
failures and security attacks. Runtime monitoring of
S&D properties is particularly important for systems
that deploy distributed components running and
communicating over heterogeneous infrastructures and
networks dynamically (e.g., web service based, mobile
and/or ambient intelligence systems). This is because,
as the operational conditions of these systems change,
the S&D mechanisms used by the systems and their
components may become ineffective and, when this
happens, the systems need to adapt or replace the
deployed S&D mechanisms to ensure the preservation
of the desired S&D properties.

To address the monitoring needs of such systems,
we have developed a monitoring framework, called
EVEREST (EVEnt RESoning Toolkit). EVEREST
supports the monitoring of different types of S&D
properties (e.g., confidentiality, availability and
integrity) that are expressed as rules in an Event
Calculus [10] based language called EC-Assertion
[4][8]. The rules expressing such properties are checked
against streams of runtime events that EVEREST
receives from event captors associated with the
different components of the monitored system.

EVEREST has been developed as part of the runtime
platform of the EU F7 project SERENITY project and
to enable monitoring with distributed events, it supports
the synchronisation of the clocks of event captors and
optimised event management. When it detects a
violation of an S&D property, EVEREST reports the
violation to the runtime platform of SERENITY which
has responsibility for taking control action (e.g.,
deactivate or replace the system components that have
caused the violation).

Whilst the core monitoring capabilities of
EVEREST are effective for detecting violations of
S&D properties once they have occurred, post-mortem
detection does not always provide sufficient scope for
taking control actions that could contain or repair a
violation. To address this shortcoming, we have
extended EVEREST with mechanisms that enable it to
detect potential violations of S&D properties, called
S&D threats, and measure how likely is for them to
occur. An S&D threat report can be used by the runtime
platform for triggering automatic preventive actions for
violations (e.g., deactivate the component that causes
the problem or block any further interactions with it).

To detect S&D threats, EVEREST determines
patterns of runtime events that would violate different
monitoring rules and uses them to monitor the threat
likelihood of different rules. More specifically, as
runtime events arrive they are matched with rules and if
a match is found the events are used to partially
instantiate the rules. Then, for each partially instantiated
rule, EVEREST computes a belief indicating how likely
it is for the missing events of the rule to occur. These
beliefs are computed based on functions founded in the
Dempster-Shafer (DS) theory of evidence [12]. The
reason for adopting the DS theory is due to uncertainty
regarding the genuineness of the runtime events
received by EVEREST − an event may, for example, be
the result of an attack or failure. This uncertainty makes
the use of classic probabilistic reasoning inappropriate.
EVEREST assesses the genuineness of events based on
the generation of possible explanations for them and the

availability of evidence confirming the plausibility of
these explanations.

In the rest of this paper, we present our approach for
S&D threat detection and give the results of an initial
experimental evaluation of it. More specifically,
Section II presents an overview of EVEREST; Section
III outlines threat detection using an example; Section
IV presents the functions used to estimate threat beliefs;
Section V presents belief graphs which are used to
combine belief functions; Section VI presents an initial
evaluation of our approach; Section VII presents related
work; and, finally, Section VIII provides conclusions
and outlines directions for future work.

II. EVEREST: AN OVERVIEW

A detailed description of the core monitoring
capabilities of EVEREST is beyond the scope of this
paper and may be found in [4]. It is however important
to explain how the threat detection mechanisms that we
describe in this paper are connected to other
components of the toolkit. Thus, in the following we
provide an overview of EVEREST and discuss threat
detection in its context.

As shown in Figure 1, EVEREST has five main
functional components, namely an Event Collector, a
Monitor, a Diagnosis Tool (DT), a Threat Detection
Tool (TDT), and a Manager.

Figure 1. The architecture of EVEREST

The event collector provides the API for the
notification of events that are captured by event captors
associated with the system that is being monitored and
its components, and notifies these events to the Monitor
and TDT.

The Monitor checks if the received runtime events
violate monitoring rules that specify the S&D properties
of interest. This component has been implemented as an
Event Calculus reasoning engine and detects only
violations that have definitively occurred without
attempting to diagnose whether the events that have
caused these violations are genuine. The latter analysis

is the responsibility of the diagnosis tool (DT). DT
assesses the genuineness of runtime events and
computes a belief measure for them. These belief
measures are stored in an event database and become
accessible to the threat detection tool.

The threat detection tool (TDT) receives the same
stream of runtime events as the monitor but, instead of
checking for definite violations of S&D rules, it checks
for potential violations and computes belief measures
indicating the likelihood of such violations.

The Monitor and TDT operate in parallel and store
their results in a violations database. This database is
accessed by the Manager which retrieves definite
violations and/or threat signals for potential violations
and reports them to external components (e.g. the
system that is being monitored) in a pull or push mode
(push notifications of monitoring results are generated
when external components subscribe for these results).

III. S&D THREATS: AN EXAMPLE

To comprehend the mechanisms for threat detection
in the rest of the paper, consider the following example
of a monitoring rule:
Rule-1:
∀ _U: User; _C1, _C2: Client;
 _C3: Server; t1, t2:Time

Happens(e(_e1,_C1,_C3,REQ,login(_U,_C1),_C1
),t1,ℜ(t1,t1)) ∧

Happens(e(_e2,_C2,_C3,REQ,login(_U,_C2),_C2
),t2,ℜ(t1,t2)) ∧ _C1 ≠_C2

⇒ ∃ t3: Time
Happens(e(_e3,_C1,_C3,REQ,logout(_U,_C1),

_C1),t3,ℜ(t1+1,t2+1))

Rule-1 is specified to monitor the logging activity of
the users of a system that is accessible from different
distributed client devices. The rule states that if a user
_U logs on the system from some client device _C1
(i.e., when the event e(_e1, _C1, _C3, REQ, login(_U,
_C1), _C1) happens) and later he/she logs on from
another device _C2 (i.e., when the event e(_e2, _C2,
_C3, REQ, login(_U, _C2), _C2) happens), by the time
of the second login (t2), he/she must have logged out
from the first device (i.e., an event e(_e3, _C1, _C3,
REQ, logout(_U, _C1), _C1) must have occurred).

Monitoring Rule-1 can be used to prevent users
from logging on from different devices simultaneously
and, therefore, reduces the scope for masquerading
attacks. Simultaneous logging provides scope for such
attacks since a user who is logged on from different
devices simultaneously may leave one of them
unattended. When this happens, however, some other
user may start using the unattended device with _U’s
credentials. Blocking logging attempts that violate
Rule-1 would prevent such cases. Furthermore,
monitoring Rule-1 could detect cases where some user
gets hold of the credentials of another user _U and tries

Threat Detection Tool

Diagnosis Tool

Event
Collector

EVEREST

Monitor

Event Captor (System) Event Captor
(System Component)

Manager

Control Component

Event DB

Violation
DB

Event notification
Event/Violation retrieval

Event write
Diagnosis request

e

e

e

e

to use them to log on with the identity of _U at the
same time when _U is logged from a different device.

Rule-1 above is specified in the rule language of
EVEREST that is based Event Calculus [10]. In this
language, S&D properties are expressed as rules of the
form B⇒H. The meaning of such rules is that when
their head H is True their body B must be True as well.
Rules of this form are used to specify conditions about
the patterns of events that should occur in a system and
their effects onto the system and its environment state.
The occurrence of an event in a rule is specified by the
predicate Happens(E,t1,ℜ(t1,t3)). This predicate
expresses that an event E of instantaneous duration
occurs at some time point t1 that is within the time
range (t2, t3]. An event E is specified by a term of the
form e(_id, _s, _r, [REQ|RES], _sig, _c) where _id is
the identifier of the event, _s is the identifier of the
component that has sent the event (event sender), _r is
the identifier of the component which the event was
sent to (event receiver), REQ(RES) are constants
indicating whether the event is a request (REQ) or a
response (RES) from the sender, _sig is the signature
of the event (e.g., the signature of an operation if the
event represents an operation call or response as in
Rule 1), and _c is the identifier of the component from
which the event was captured (i.e., typically the sender
or the receiver of the event)1.

The detection of threats w.r.t. specific monitoring
rules at runtime is based on the computation of a belief
in the potential occurrence of runtime events that
would violate the rules. The pattern of events that can
violate a rule is determined by negating the rule and
getting its violation signature (i.e., B∧¬H for a rule of
the form B⇒H). The belief in a potential rule violation
is computed from beliefs in the genuineness of the
events that have already occurred and match the rule’s
violation signature, and beliefs in the potential
occurrence of events which appear in the signature but
have not occurred yet.

In the case of Rule-1, the violation signature that is
produced by negating the rule is:
∀ _U: User; _C1, _C2: Client;
 _C3: Server; t1, t2:Time

Happens(e(_e1,_C1,_C3,REQ,login(_U,_C1),_C1
),t1,ℜ(t1,t1)) ∧

Happens(e(_e2,_C2,_C3,REQ,login(_U,_C2),_C2
),t2,ℜ(t1,t2)) ∧ _C1 ≠_C2 ∧

∀ t3: Time
¬Happens(e(_e3,_C1,_C3,REQ,logout(_U,_C1),

_C1),t3,ℜ(t1+1,t2+1))
Thus, the detection of threats for this rule during

monitoring would need to be assessed in the following
cases:

1 A full description of the rule language of EVEREST is given in [4].

(a) When a login event matching e(_e1,…) but no login
event matching e(_e2,…) have been received. In
this case, the threat for the rule would be a
combined measure of the belief that the event _e1
which has been matched with the rule is genuine,
the belief that an event _e2 matching the rule will
occur within the time range (t1, t2], and the belief
that no event matching the event _e3 will occur in
the range (t1, t2].

(b) When a login event matching e(_e2,…) but no login
event matching e(_e1,…) has been received. In this
case, the threat likelihood of the rule would be a
combined measure of the belief that the event _e2
which has already been matched with the rule is
genuine, the belief that an event of type e(_e1,…)
matching the rule has already occurred within the
time range (latestTime(captor(_e1)), t2] 2 but not
received by EVEREST yet, and the belief that an
event matching e(_e3,…) will occur in the range
(latestTime(captor(_e1)), t2].

(c) When a login event matching e(_e1,…) and a login
event matching e(_e2,…) have been received by the
monitor. In this case, the threat likelihood the rule
would be a combined measure of the beliefs that
the e(_e1,…) and e(_e2,…) events are genuine and
the belief that no event of type e(_e3,…) matching
the rule will occur in the time range (t1, t2].

(d) When a login event matching e(_e1,…) and an
event matching e(_e2,…) have been received by the
monitor and an event E has been received from the
event captor that should have sent e(_e3,…) at
some time point t’ > t2 indicating that e(_e3,…)
will not arrive. The absence of e(_e3,…) could be
derived from E in this case using the principle of
negation as failure (NAF). More specifically, since
t’ > t2 TDT knows that it cannot receive any event
with a timestamp earlier than t’ from the same
captor and therefore earlier than t2 (the
communication channels between captors and
EVEREST follow the TCP/IP protocol). Thus, in
this case, the threat likelihood of the rule would be
a combined measure of the belief that the e(_e1,…)
and e(_e2,…) events that have been matched with
the rule and the event E which provides the basis
for deriving ¬ e(_e3,…) are genuine.

The functions that we use to measure the above beliefs
are discussed in the following.

IV. BELIEF FUNCTIONS
The calculation of the overall belief in a potential

rule threat requires the combination of basic beliefs of
three types:

2 latestTime(captor(e)) is the timestamp of the latest event that has
been received from the captor that is expected to generate e.

1. Basic beliefs in the genuineness of occurred events
(like _e1 and _e2 in case (c) above),

2. Basic beliefs in the occurrence of an event of a
specific type within a time range that is determined
by another event (i.e., basic belief of seeing an
event like _e2 after an event _e1 has occurred as in
case (a) above), and

3. Basic beliefs in the validity of the derivation of the
negation of an event when another event’s
occurrence indicates that the time range within
which the former event should have occurred has
elapsed (i.e., basic belief in events like ¬e(_e3,…)
given another event E as in case (d) above).

A. Basic belief in event genuineness
The calculation of basic belief in the genuineness of

events is based on the approach described in [11].
According to this approach, an event received by
EVEREST is genuine if there is at least one valid
explanation for it. The possible alternative explanations
of an event e are generated from assumptions about the
system that is being monitored. Assumptions are
expressed as EC formulas having the same form as
monitoring rules but are used for abductive and
deductive reasoning without being checked as rules.
Given an event e that needs to be explained at time t,
the explanations generation process finds recursively all
the assumptions of the form Hn⇐ Bn, Hn-1⇐Bn-1, …,
H1⇐B1 where e matches with Hn and Bi matches with
Hi-1 for all i=n…2. For all the different chains of such
formulas that may exist, B1 is a possible explanation of
e. The belief in the validity of this explanation is then
computed by establishing all the runtime events (other
than e) that should have occurred as a consequence of
B1 if the latter was true and computing the basic belief
in at least of one of these events being genuine. The set
of the consequences of B1 is formally defined as:
Cons(B1) = {ec | {B1, Events(t − DW, t) |− ec and e≠ec))

where DW is parameter denoting the period of time of
interest in diagnosis, called diagnosis window.

Given the set of possible explanations EXP(e) of an
event e and the consequence set Cons(x) of each
element x of EXP(e), the basic belief in the genuineness
of e is computed by the function m(e) in Figure 2.

As discussed in [11], m (e) is defined as a DS basic
belief function (also known as mass or basic belief
assignment in the context of DS theory). The use of DS
theory is because for some explanation consequences it
might not be possible to establish with certainty
whether they are confirmed by runtime events. This
phenomenon arises in cases where the runtime event
that would confirm an explanation consequence is
expected to occur at some time point t but as the
timestamp of the last event that was received from the
relevant captor (i.e., lastTime(captor(e))) is less than t,
it is impossible to establish with certainty whether the
event has indeed occurred. Such cases arise due to
communication channel delays – an event E might have
occurred but not received by EVEREST yet when its
occurrence needs to be established due to delays in the
communication channel that transmits the event from
the relevant event captor to the framework. Classic
probabilities are unable to represent this uncertainty
and, hence, we use DS beliefs.

B. Basic belief in potential event occurrences
The second type of basic belief functions that we

use in threat detection measure the likelihood of the
potential occurrence or not of an event Ei, which has
not occurred yet, when another event Ej that Ei is
temporally constrained by has occurred. The likelihood
of such conditional event occurrences is measured by
the basic belief function mi|j(X) in Figure 2. In the
definition of this function:
• Log(Ej) is a randomly selected sample of N events

of type Ej in the event log up to the time point when
mi|j is calculated.

⎪
⎩

⎪
⎨

⎧
¬∨=−

=
=

−=
−×=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

¬∨=−−

¬=
¬

=

=
−

=

=

∑ ∏
∑ ∏

∑
∑ ∑

∑
∑ ∑ ∏

≠∧⊆ ∈
+

≠∧∈ ∈
+

∈

∈ ∈

∈

∈ ≠∧℘∈ ∈
+

Otherwise
eeXifem

eXifem
Xm

emexmv
exmvemem

eeXifkk

eXif
em

emem
k

eXif
em

emem
k

Xm

jji

ji
NAF
ij

SxConsS Se i
S

j

IeExpI Ix j
I

j
o

j

iiijij

i
ELoge j

ELoge eELoge ij
ij

i
ELoge j

ELoge IeELogI Ie k
I

j
ij

ji

i

j

jj

jj jii

jj

jj ji k

0
)(1

)(
)(

)()1(),(
)},()1({)()(

1
)(

])()[(
)(

])()1()[(

)(

|
)(

1||
)(

1||

'
)(

)()|('

)(

)())|((
1||

|

φ

φ

φ

events negated for function beliefBasic (C)sgenuinenes event for function beliefBasic (A)

occurrence event potential for function beliefBasic (B)

Figure 2. Basic belief functions for event genuineness and threat detection

• Log(Ei|e) is the set of the events of type Ei in the
event log that have occurred within the time period
determined by e and up to the time point when mi|j
is calculated

• I (I∈ ℘(Log(Ei|e))) is an element set in the
powerset of Log(Ei|ej)

• m(e) is the basic belief function defined in Part (A)
of Figure 2 in the case of non negated events Ej.
According to the above definition, mi|j(X) measures

the basic belief in the occurrence of a genuine event of
type Ei within the time range determined by events of
type Ej, as the average belief of seeing a genuine event
of type Ei within the time range determined by a
genuine event of type Ej. More specifically, for each
occurrence of an Ej event, mi|j(X) calculates the basic
belief of seeing at least one genuine event of type Ei
within the period determined by Ej. Assuming that the
set of such Ei events is Log(Ei|ej), this basic belief is
calculated by the following formula:

∑ ∏≠∧℘∈ ∈
+−φIeELogI Ie k

I
ji k

em))|((
1||)()1(

The above formula measures the basic belief in at
least one of the events in Log(Ei|ej) being a genuine
event, i.e., an event that has at least one explanation
confirmed by other events in the log of the system, and
uses the basic belief in the genuineness of individual
events m(Ei) for positive events. Thus, mi|j(X) discounts
occurrences of events of type Ei which are not
considered to be genuine, and the higher the number of
genuine events of type Ei within the period determined
by an Ej event, the larger the basic belief in the
occurrence of at least one genuine event of type Ei that
it generates. It should also be noted that mi|j(X) takes
into account the basic belief in the genuineness of each
occurrence of an event of type Ej within the relevant
period (i.e., mi(ej)) and uses it to discount the evidence
arising from Ej events which are not considered to be
genuine themselves.

C. Basic belief in negated events
 The basic belief functions that we have introduced

so far do not cover cases where the absence of an event
is deduced by the NAF principle. As we discussed
earlier, EVEREST uses this principle to deduce the
absence of an event E (i.e., ¬E) that is expected to
occur within a specific time range [tL, tU] when it
receives another event E’ from the event captor that
should sent E with a timestamp t’ that is greater than tU
(t’ > tU) and has not received E up to that point.
Considering, however, that the event E’ which triggers
the application of the NAF principle in such cases
might not be a genuine event itself, it is necessary to
estimate a basic belief in the conjecture of ¬E. The
function that measures this basic belief is the function
mNAF

j|i in Figure 2.

Table 1. Combinations of basic belief functions for Rule 1

Event _e1 Event _e2 Event
¬_e3

Required
Combinations

1 received received derived by
NAF

(m1 ⊕ m2) ⊕
mNAF

3|u

2 received received not derived
by NAF

(m1 ⊕ m2) ⊕
m3|2

(m1 ⊕ m2) ⊕
m3|1

3 received not received derived by
NAF

(m1 ⊕ m2|1) ⊕
mNAF

3|u

4 received not received not derived
by NAF

(m1 ⊕ m2|1) ⊕
m3|1

5 not received received derived by
NAF

(m2 ⊕ m1|2) ⊕
mNAF

3|u

6 not received received not derived
by NAF

(m2 ⊕ m1|2) ⊕
m3|2

7 not received not received derived by
NAF

Cannot be
estimated

8 not received not received not derived
by NAF

Cannot be
estimated

The basic belief functions introduced above are

combined at runtime in order to compute the overall
threat belief for a rule. The exact combination that is
used at each stage of the monitoring process depends on
the events that have been received by TDT. It is also
determined by the principle that the computation of the
overall threat belief should be based on all the runtime
events that can be matched with the rule or used to
derive the absence of a negated event in it. Based on
this principle, the different combinations of basic belief
functions that would be required in the case of Rule 1
depending on the set of events that have been received
by TDT are summarised in Table 1. The operator ⊕ in
this table denotes the combination of two basic belief
functions using the rule of the orthogonal sum of the
DS theory [12]. According to this rule, the combined
basic belief that is generated by the combination two
basic belief functions of m1 and m2 is given by the
formula:

∑

∑

⊆∧⊆∧=∩

=∩

×=

−

×
=⊕

θθφ WVWV

PYX

WmVmk

k

YmXm
Pmm

)()(

1

)()(
)(

210

0

21
21

V. CALCULATION OF THREAT BELIEFS THROUGH

BELIEF GRAPHS
To represent the different ways of combining basic

belief functions at run time in order to calculate the
overall belief in a monitoring rule threat, TDT
constructs a belief graph for each rule. The vertices of
this graph represent the different event occurrence
predicates in the violation signature of the rule (i.e., the
Happens predicates) and the directed labelled edges
between the vertices indicate dependencies between
the time variables of these events. The edges of the
graph are derived from the boundaries of the time
variables of the rule predicates. These boundaries
constrain the predicate time variables and, hence, the

occurrence of events expressed by the predicates in the
rule. The graph edges indicate how evidence can be
propagated at runtime by combining the different basic
belief functions which are associated with the observed
events.

The algorithm that constructs belief graphs is
shown in Figure 3. Initially, this algorithm constructs a
start node to represent the starting point of the
accumulation of evidence at runtime (see line 2). Then
for each event in the rule, it constructs a node to
represent the occurrence of the event at runtime (line 4)
and identifies the dependencies of the event to other
events (line 5). An event Ej is taken to depend on all
other events Ei whose time variables appear in the
expressions that define the lower and upper bound of
the time variable of Ej. Based on these dependencies,
the algorithm creates a directed edge from all the events
Ei that Ej depends on towards Ej (see line 9). These
edges indicate the paths for obtaining a basic belief for
Ej when any of the events Ei is observed. Also an
opposite edge from Ej to each of the events Ei is created
if Ej is not a negated event (see lines 10-12). The latter
edges are used when Ej is observed before the events Ei
and indicate how the basic belief in events Ei can be
computed from Ej.

Construct_DS_Belief_Graph(R, DSGR)
 /* R is the violation signature (negated form) of a monitoring rule */
1. find all n events ei in R
2. construct a node representing the starting point in the assessment

of the threat belief of R, called “Start” node.
3. for each event ei (i ≤ n) do
4. construct a node for ei and store the mapping of the time

 variable of this event as M(ti)= ei
5. build a list TVARSi of all time variables tk appearing in the

 lower and upper bound of the time variable ti of ei.
6. end for
7. for each event ei (i ≤ n) do
8. for each time variable t ∈ TVARSi such that t ≠ ti do
9. Construct an edge to ei from ep=M(t), labelled by mi|p,
10. if ei is not a negated event then
11. Construct an edge mp|i from ei to ep=M(t)
12. end if
13. end for
14. if ei is not a negated event then
15. construct an edge from the “Start” node to ei, labelled

 by the basic belief mi of ei.
16. else if ei has a time range defined by constant values then
17. construct an edge from the “Start” node to ei, labelled

 by the basic belief mNAF
i|<x> of ei

18. end if
19. end for
end Construct_DS_Belief_Graph

Figure 3. Algorithm for constructing DS belief graphs

Note that no backward edges are constructed from
an event Ej to the events that this event depends on if Ej
is a negated event (see condition in line 10). This is
because negated events can only be derived through the
application of the NAF principle when their ranges
have fully determined boundaries. Fully determined
boundaries, however, will not be possible to have for Ej

unless Ei has already occurred. Hence, it will not be
possible to derive the truth value of Ej before that of Ei
and, therefore, compute a basic belief for the latter
event based on the basic belief of the former. The label
attached by the algorithm on an edge from an event Ei
to an event Ej is the basic conditional belief function
mi|j, i.e., the function that provides the basic degree of
belief in the potential occurrence (or not) of Ej given
that Ei has already occurred.

Following the generation of edges between events,
the algorithm constructs edges from the Start node of
the graph to the nodes representing the non negated
events of the rule (see lines 14−20). These edges are
labelled by the basic belief function for the genuineness
of the event Ei that they point to. Negated events, on the
other hand, are linked with the Start node only if they
have a time range defined by constant values in the rule
and, therefore, it is possible to establish their absence or
not prior the seeing any other event at runtime (see
conditions in lines 14 and 17). The edge linking the
Start node with a negated event Ei is labelled by the
basic belief function mNAF

i|<x>. This function is partially
determined and bound to the identifier of the specific
event Ej that triggers the application of the NAF
principle to derive the absence of Ei creating a fully
determined function mNAF

i|j for estimating the basic
belief in ¬Ei.

Figure 4. Belief graph for Rule 1

An example of a DS belief graph is shown in Figure
4. The graph represents the different paths of combining
the basic belief functions for the events of Rule 1 and
reflects the time dependencies between the different
events. The occurrence of E2 in the rule, for instance,
depends on the occurrence of E1 since the range of the
time variable of E2 (i.e., ℜ(t1,t2)) refers to the time
variable of E1 but not vice versa (the range ℜ(t1,t1) of t1
indicates that E1 is an event with a not constrained time
variable). Thus, an edge from E1 to E2 labelled by m2|1
has been inserted in the graph as well as another edge
from E2 to E1 labelled by m1|2. Similarly, as the time
range of the event ¬E3 (i.e., ℜ(t1+1,t2−1)) refers to the
time variables t1 and t2 of the events E1 and E2, the
graph contains edges from E1 to ¬E3 and E2 to ¬E3.
Note, however, that the graph does not contain an edge
from ¬E3 to E2 or from ¬E3 to E1 as the former event
cannot be derived by NAF unless E1 and E2 are received

E1 E2

S

m2|1 m3|2

m1|2

m2 m1

 ¬E3

m3|1

first. Finally, the graph includes edges from the starting
node to E1 and E2. These edges are labelled by m1 and
m2 representing the basic belief functions that are to be
used when the occurrence or absence of the events E1 or
E2 is established from the starting node.

At runtime, belief graphs are used to record the
events matched with a given rule and determine the
combination(s) of basic belief functions that will be
needed to compute the overall threat belief for the rule.
In general, given a set of received and a set of unknown
events, the overall belief for a rule is evaluated by
combining the basic beliefs of the received events that
match with the rule’s violation signature and the
conditional beliefs for the unknown events. It should be
noted that in such cases, there may be more than one
known events in the graph which are linked directly
with an unknown one. If this is the case, the conditional
belief in the unknown event mi|j is computed by
considering all paths which start from some known
event Ei and end in the unknown event Ej, without
passing through any other known events (this ensures
that known events will not be considered as supporting
evidence for unknown ones multiple times). The
algorithm for evaluating the overall belief in a rule
threat given a belief graph is shown in Figure 5.

Compute_Threat_Belief(Ei, DSGR, R)

1. find the sets of the known events KE and the set of the
unknown events UE in DSGR

2. m = basic_belief (<start, Ei>)
3. CombinedBPA = {}

/* combine the basic beliefs of events in KE */
4. for each Ek in KE do
5. m = m ⊕ basic_belief (<start, Ek>)
6. CombinedBPA = CombinedBPA ∪ basic_belief (<start,

Ek>)
7. end for
8. for each ej ∈ UE do
9. insert all the paths from ei to ej, which do not include any

 event in KE, into Pij
10. for each p ∈ Pij do

/* combine the BPAs of paths to unknown events */
11. for each edge L in p do
12. if basic_belief (L) ∉ CombinedBPA then
13. m = m ⊕ basic_belief (L)
14. CombinedBPA = CombinedBPA ∪

 basic_belief (L)
15. end if
16. end for
17. end for
18. end for
19. mark Ei as a known event in DSGR
20. return (m(events(¬R), m(events(R)))

end Compute_Threat_Belief
Figure 5. Algorithm for computing overall threat belief

To demonstrate the estimation of the threat beliefs
consider Rule 1 again and the following sequence of
events:
• Happens(e(e100,Lap30,Lap30,REQ,

login(User1,Lap30),Lap20),80,ℜ(80,80))

• Happens(e(e101,Lap2,Lap2,REQ,

login(User1,Lap2),Lap2),87,ℜ(87,87))
When it arrives at EVEREST, the first of these

events (e100) can be matched with the nodes E1 or E2
of the belief graph of Figure 4. Each of these matches
produces a separate instantiation of the belief graph and
leads to the estimation of different threat beliefs. When
matching e100 with node E1, for instance, the threat
belief will be computed by the combination of the basic
belief functions (m1 ⊕ m2|1) ⊕ m3|1. Based on the
definition of these functions in Section IV, it can be
shown that the application of the rule of the orthogonal
sum will result in the following functional form for (m1
⊕ m2|1) ⊕ m3|2:

)1()1((1
)1()1(

))((

'
1

'
21

'
31

'
1

'
21

'
31

'
1121

'
31

'
21211

'
31121

'
31

3211|31|21

kkkkkk
kkkkkkkkkkk

EEEmmm

−+−−
−−+−−+

=¬∧∧⊕⊕

Thus, if we assume that: (i) the basic belief in the
genuineness and non genuineness of e100 are k1 = 0.8
and k1’ = 0.1, respectively (note that the sum of these
two beliefs may be less than 1 in the DS theory); (ii)
the basic conditional belief in observing or not a
second genuine login event within 100 time units after
the observation of e100 are k21 = 0.6 and k21’ = 0.4,
respectively; and (iii) the conditional basic belief in not
observing a genuine logout event in the period of 100
time units between two genuine login events are k31 =
0.2 and k31’=0.6, respectively, the overall threat belief
for the first instance of the rule will be:

45.0
)9.0*4.0*6.09.0*4.0*2.0(*1

1*6.0*6.00*8.0*6.08.0*6.0*6.0

))((3211|31|21

=
+

++

=¬∧∧⊕⊕ EEEmmm

The threat belief for the same rule instance will be
updated when the event e101 arrives. Upon its arrival,
e101 will be matched with the node E2 in the belief
graph instance. Thus, according to the
Compute_Threat_Likelihood algorithm, the overall
threat belief will be estimated by the combination of the
basic belief functions (m1⊕m2)⊕m3|2, which due to the
rule of the orthogonal sum will be:

)1()1((1
)1()1(

))()(

'
1

'
2

'
31

'
1

'
2

'
31

'
112

'
31

'
221

'
3112

'
31

3212|321

kkkkkk
kkkkkkkkkkk

EEEmmm

−+−−
−−+−−+

=¬∧∧⊕⊕

Thus, if the basic belief assignments in the
genuineness of e101 (i.e., m2(Genuine(e101,…)) and the
non genuineness of this event (i.e.,
m2(¬Genuine(e101,…)) are k2 =0.8 and k2’ = 0.2
respectively, and the overall threat likelihood will be:

54.0)()(3212|321 =¬∧∧⊗⊕ EEEmmm
The increase in the overall threat belief in this case

is due to the fact that the basic belief in E2 given by
m2(X) is higher than the basic belief in E2 that is
computed by the combination m1 ⊕ m2|1 (0.8 vs. 0.53).

VI. EVALUATION
The threat detection tool of EVEREST has

undergone a preliminary evaluation whose objective
was to estimate the timeliness and precision of the
threat detection signals generated by the tool. This
evaluation was based on the simulation of a location
based access control system (LBACS) that grants
access to the computational resources of an enterprise
(e.g., printers, intranet) from mobile devices, depending
on the credentials of these devices and their exact
location within the physical space of the enterprise.

In the evaluation, timeliness was measured by the
threat reaction time (TRT) of each threat signal. TRT
was defined as the difference between the time when
the monitor of EVEREST detected a violation of a
monitoring rule (Tmon) and the time when TDT
produced a threat signal corresponding to the same
violation (Ttd), i.e.,

TRT = Tmon − Ttd
Precision was defined as the proportion of the threat

signals generated by TDT within a given range of threat
belief values (BR) that corresponded to definite
eventual violations of the relevant rules and measured
by the formula:

PR = TTSBR /(TTSBR + FTSBR)
In this formula, TTSBR is the number of the threat
signals with a belief in a given range (BR) that
corresponded to eventual violations of the relevant rule
detected by the EVEREST monitor (true signals), and
FTSBR is the number of the threat signals with belief in
a given range (BR) that did not correspond to an
eventual violation of the relevant rule. Our focus on
precision and timeliness was because the former of
these measures indicates the accuracy of the threat
detection signals and the latter indicates the time that is
available for reaction before the definite violation of an
monitoring rule is detected.

For the evaluation we executed 8 different
experiments having 2000 events each. The events for
each experiment were generated randomly by
simulating the workflow of LBACS, assuming that the
event inter-arrival time had a normal distribution with a
mean of 1 second and a variance of 0.3, 0.6, and 0.9
seconds. The different variance values (VV) were used
to create different event sets that imposed different
stress conditions for the monitor (the smaller the VV
the more stressing the monitoring conditions). The eight
experiments varied also in terms of the used size of the
diagnosis window (DW) and event sample size (SS)
(i.e., the size of the set Log(Ej) in the computation of
the mi|j conditional beliefs) as shown in Table 2. The
monitoring rules that were used in the experiments to
detect threats are described in detail in [13].

D. Threat reaction time
Table 2 shows the minimum, maximum and average

timeliness measures for S&D threat detection in the
different experiments (in seconds) as well as the

proportion of S&D threat signals with positive and
negative timeliness measures (see columns pos (%) and
neg (%), respectively). A negative time period indicates
that TDT computed its threat belief after a threat
occurring and vice versa.

Table 2 Threat reaction time (secs)
EXP VV DW SS pos

%
neg
%

ave
TRT

max
TRT

min
TRT

1 0.3 15000 10 77.54 21.51 9.3 852.5 -4.2

2 0.3 20000 15 73.21 26.53 10.4 753.9 -4.5

3 0.5 15000 10 80.18 19.02 12.5 1137.0 -1.9

4 0.5 20000 15 72.08 27.39 13.2 1110.7 -3

5 0.6 15000 10 79.45 20.03 12.3 1077.2 -2.3

6 0.6 20000 15 74.87 24.74 14.0 1077.2 -29

7 0.9 15000 10 80.24 18.85 13.6 1077.2 -3

8 0.9 20000 15 74.87 24.74 14.1 1077.2 -29

As shown in the table, in 70% to 80% of the cases S&D
threat detection signals were produced prior to the
actual violations and the mean reaction time of these
signals ranged from 9.3 to 14.1 seconds. These results
indicate that on average the detection of S&D threats
was timely and provided scope for triggering automatic
preventive actions for violations (e.g., deactivate the
component that causes the problem or block any further
interactions with it).

E. Precision
Figure 6 shows the average, maximum and

minimum precision measures for the threat signals
generated for different monitoring rules in the different
experiments (see the series AvePR, MaxPR and MinPR,
respectively).

Precision

76
77

78
79

80
81

82
83

1 2 3 4 5 6 7 8

Experiment

P
re

ci
si

on Min PR (%)
Ave PR (%)
Max PR (%)

Figure 6. Precision of threat signals

As shown in the figure, precision was high on
average with about 79% to 82% of the threat detection
signals corresponding to eventual rule violations.
Furthermore, as indicated by the minimum and
maximum precision measures, precision did not vary
significantly across the different experiments. Also,
precision was not affected significantly by the size of
the diagnosis window (DW) and the conditional belief
event sample size (SS). In particular, a marginal
increase in precision was observed when the sizes of

DW and SS were increased. This can be evidenced by
contrasting the precision measures of exp 1 and exp 2,
exp 3 and exp 4, exp 5 and exp 6, and exp 7 and exp 8
(these experiment pairs vary in terms of the size of DW
and SS but have the same VR as shown in Table 2).
This effect of DW and SS on precision was expected as
larger DW and ES provided a wider evidence basis for
estimating more accurate beliefs. It should, however, be
noted that in no case the increase in precision due to
increases in DW and ES was larger than 1.8% (i.e., the
largest increase that was observed in the case of exp 7
and exp 8). Hence, our approach is not overly sensitive
to DW and ES.

VII. RELATED WORK
Our approach to threat detection is related to

intrusion detection [2][7]. Most intrusion detection
systems, however, only detect malicious actions that
have already happened (intrusions) whilst our approach
to threat detection tries to predict violations.

Approaches to intrusion detection are classified as
anomaly-based or misuse-based [7]. Anomaly-based
approaches [1][2][4] assume that attacks involve,
somehow, abnormal behaviour of the system, and
threats and intrusions are detected as deviations from
normality. Misuse-based approaches [3][6][9], on the
other hand, are based on models of known attacks. The
threat detection approach presented here is essentially
anomaly-based. In particular, it is model or
specification-based [1][4] as threats and intrusions are
detected as deviations from a model of the normal
behaviour of the system. Our approach is similar to [1]
in protecting system assets and building monitoring
policies with the goal of protecting them.

Our approach has also characteristics of misuse-
based techniques. This is because it detects threats
from rule violation signatures, which could be viewed
as an attack model. It should be noted, however, that
we do not assume a complete attack model as, for
example, in [14]. Furthermore, the detection of threats
(potential attacks) in our approach is probabilistic and
is not based on model checking (as in [14]) or logic-
based reasoning techniques. Finally, we should note
that our approach is related to statistical attack
detection approaches which are based on Bayesian
networks (e.g., [9]), although it uses the alternative DS
theory for the reasons we discussed in Section IV.

VIII. CONCLUSIONS

In this paper, we have described an approach for the
runtime detection of S&D threats that we have
implemented as part of the EVEREST monitoring
framework. In this approach, when some runtime event
instantiates a monitoring rule expressing an S&D
property and can, therefore, possibly lead to a violation
of the rule, the event constitutes an S&D threat. To

enable concentration on S@D threats which are more
likely occur in some future state in the operation of a
system, our approach calculates the likelihood of a
potential violation of the given rule based on evidence
regarding the genuineness of the relevant events and
historical data about event co-occurrences. The actual
computations are based on basic belief functions
grounded in the DS theory of evidence. Our threat
detection approach has been implemented as an
extension of EVEREST and an initial empirical
evaluation of it has been carried out with positive
results.

Ongoing work focuses on the exploitation of non
time variable constraints between events whilst
computing conditional basic beliefs in event
occurrence. We are also evaluating the merit of our
approach in predicting violations of non S&D
properties for service based systems, as part of the EU
F7 project SLA@SOI. Our work in the latter area is
also concerned with the prediction of aggregate
properties (e.g., average service availability).

IX.REFERENCES

[1] Chari, S.N. and Cheng, P.-C., “Bluebox: a policy-driven, host-
based intrusion detection system”, ACM Transactions on
Information Systems Security 6(2):173-200, 2003.
[2] Denning, D. “An Intrusion Detection Model”, IEEE
Transactions on Software Engineering, 13(2): 222-232, 1987.
[3] Ilgun, K., R.A. Kemmerer, and P.A. Porras, “State transition
analysis: a rule-based intrusion detection system”, IEEE
Transactions on Software Engineering, 21(3):191-199, 1995
[4] Spanoudakis G, Kloukinas C. Mahbub K., “The SERENITY
Runtime Monitoring Framework”, In Security and Dependability for
Ambient Intelligence, (eds) Spanoudakis G., Mana A., Kokolakis,
Information Security Series, Springer, pp. 213-238, 2009
[5] Ko, C., M. Ruschitzka, and K. Levitt. “Execution monitoring
of security-critical programs in distributed systems: a Specification-
based approach”. IEEE Symp. on Security and Privacy, 1997.
[6] Kumar, S. and E.H. Spafford. “A Pattern Matching Model for
Misuse Intrusion Detection”. In 17th National Computer Security
Conference, pp. 11-21, 1994.
[7] Lazarevic, A., Kumar, V., Srivastava, J. “Intrusion detection:
a survey”, In Managing cyber-threats: issues approaches &
challenges, Springer, 2005.
[8] Spanoudakis, G., Mahbub, K., “Non intrusive monitoring of
service based systems”, Int. J. of Cooperative Inform. Systems,
15(3):325–358, 2006.
[9] Valdes, A. and K. Skinner Adaptive, “Model-based
Monitoring for Cyber Attack Detection”. In Recent Advances in
Intrusion Detection, pp. 80-92, 2000.
[10] Shanahan M. P. “The Event Calculus explained”. In Artificial
Intelligence Today, LNAI 1600:409–430, 1999.
[11] Spanoudakis G., Tsigkritis T., Kloukinas C., “2nd Version of
Diagnosis Prototype”, Deliverable A4.D5.2, SERENITY Project,
http://www.serenity-forum.org, 2009.
[12] Shafer G., “A Mathematical Theory of Evidence”, Princeton
University Press, 1975
[13] Armenteros-Pacheco A. et al, “Evaluation of the SERENITY
framework v2”, Deliverable A7.D5.4, SERENITY Project,
http://www.serenity-forum.org, 2009
[14] Sheyner O., Haines J., Jha S., Lippmann R., and Wing, J. M.
“Automated Generation and Analysis of Attack Graphs”, 2002 IEEE
Symposium on Security and Privacy, Washington, DC, 273, 2002.

