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Abstract 

Monitoring the preservation of security and 
dependability (S&D) properties during the operation 
of systems at runtime is an important verification 
measure that can increase system resilience. However 
it does not always provide sufficient scope for taking 
control actions against violations as it only detects 
problems after they occur. In this paper, we describe a 
proactive monitoring approach that detects potential 
violations of S&D properties, called “threats”, and 
discuss the results of an initial evaluation of it. 

 
I. INTRODUCTION 

 
Monitoring security and dependability (S&D) 

properties during the operation of software systems is 
widely accepted as a measure of runtime verification 
that can increase system resilience to dependability 
failures and security attacks. Runtime monitoring of 
S&D properties is particularly important for systems 
that deploy distributed components running and 
communicating over heterogeneous infrastructures and 
networks dynamically (e.g., web service based, mobile  
and/or ambient intelligence systems). This is because, 
as the operational conditions of these systems change, 
the S&D mechanisms used by the systems and their 
components may become ineffective and, when this 
happens, the systems need to adapt or replace the 
deployed S&D mechanisms to ensure the preservation 
of the desired S&D properties. 

To address the monitoring needs of such systems, 
we have developed a monitoring framework, called 
EVEREST (EVEnt RESoning Toolkit). EVEREST 
supports the monitoring of different types of S&D 
properties (e.g., confidentiality, availability and 
integrity) that are expressed as rules in an Event 
Calculus [10] based language called EC-Assertion 
[4][8]. The rules expressing such properties are checked 
against streams of runtime events that EVEREST 
receives from event captors associated with the 
different components of the monitored system. 

EVEREST has been developed as part of the runtime 
platform of the EU F7 project SERENITY project and 
to enable monitoring with distributed events, it supports 
the synchronisation of the clocks of event captors and 
optimised event management. When it detects a 
violation of an S&D property, EVEREST reports the 
violation to the runtime platform of SERENITY which 
has responsibility for taking control action (e.g., 
deactivate or replace the system components that have 
caused the violation). 

Whilst the core monitoring capabilities of 
EVEREST are effective for detecting violations of 
S&D properties once they have occurred, post-mortem 
detection does not always provide sufficient scope for 
taking control actions that could contain or repair a 
violation. To address this shortcoming, we have 
extended EVEREST with mechanisms that enable it to 
detect potential violations of S&D properties, called 
S&D threats, and measure how likely is for them to 
occur. An S&D threat report can be used by the runtime 
platform for triggering automatic preventive actions for 
violations (e.g., deactivate the component that causes 
the problem or block any further interactions with it). 

To detect S&D threats, EVEREST determines 
patterns of runtime events that would violate different 
monitoring rules and uses them to monitor the threat 
likelihood of different rules. More specifically, as 
runtime events arrive they are matched with rules and if 
a match is found the events are used to partially 
instantiate the rules. Then, for each partially instantiated 
rule, EVEREST computes a belief indicating how likely 
it is for the missing events of the rule to occur. These 
beliefs are computed based on functions founded in the 
Dempster-Shafer (DS) theory of evidence [12]. The 
reason for adopting the DS theory is due to uncertainty 
regarding the genuineness of the runtime events 
received by EVEREST − an event may, for example, be 
the result of an attack or failure. This uncertainty makes 
the use of classic probabilistic reasoning inappropriate. 
EVEREST assesses the genuineness of events based on 
the generation of possible explanations for them and the 



availability of evidence confirming the plausibility of 
these explanations.  

In the rest of this paper, we present our approach for 
S&D threat detection and give the results of an initial 
experimental evaluation of it. More specifically, 
Section II presents an overview of EVEREST; Section 
III outlines threat detection using an example; Section 
IV presents the functions used to estimate threat beliefs; 
Section V presents belief graphs which are used to 
combine belief functions; Section VI presents an initial 
evaluation of our approach; Section VII presents related 
work; and, finally, Section VIII provides conclusions 
and outlines directions for future work. 

 
II. EVEREST: AN OVERVIEW 

A detailed description of the core monitoring 
capabilities of EVEREST is beyond the scope of this 
paper and may be found in [4]. It is however important 
to explain how the threat detection mechanisms that we 
describe in this paper are connected to other 
components of the toolkit. Thus, in the following we 
provide an overview of EVEREST and discuss threat 
detection in its context. 

As shown in Figure 1, EVEREST has five main 
functional components, namely an Event Collector, a 
Monitor, a Diagnosis Tool (DT), a Threat Detection 
Tool (TDT), and a Manager. 
 

 
Figure 1. The architecture of EVEREST 

The event collector provides the API for the 
notification of events that are captured by event captors 
associated with the system that is being monitored and 
its components, and notifies these events to the Monitor 
and TDT.  

The Monitor checks if the received runtime events 
violate monitoring rules that specify the S&D properties 
of interest. This component has been implemented as an 
Event Calculus reasoning engine and detects only 
violations that have definitively occurred without 
attempting to diagnose whether the events that have 
caused these violations are genuine. The latter analysis 

is the responsibility of the diagnosis tool (DT). DT 
assesses the genuineness of runtime events and 
computes a belief measure for them. These belief 
measures are stored in an event database and become 
accessible to the threat detection tool. 

The threat detection tool (TDT) receives the same 
stream of runtime events as the monitor but, instead of 
checking for definite violations of S&D rules, it checks 
for potential violations and computes belief measures 
indicating the likelihood of such violations. 

The Monitor and TDT operate in parallel and store 
their results in a violations database. This database is 
accessed by the Manager which retrieves definite 
violations and/or threat signals for potential violations 
and reports them to external components (e.g. the 
system that is being monitored) in a pull or push mode 
(push notifications of monitoring results are generated 
when external components subscribe for these results). 

 
III. S&D THREATS: AN EXAMPLE 

To comprehend the mechanisms for threat detection 
in the rest of the paper, consider the following example 
of a monitoring rule:  
Rule-1: 
∀ _U: User; _C1, _C2: Client; 
 _C3: Server; t1, t2:Time 

Happens(e(_e1,_C1,_C3,REQ,login(_U,_C1),_C1
),t1,ℜ(t1,t1)) ∧ 

Happens(e(_e2,_C2,_C3,REQ,login(_U,_C2),_C2
),t2,ℜ(t1,t2)) ∧ _C1 ≠_C2 

⇒ ∃ t3: Time 
Happens(e(_e3,_C1,_C3,REQ,logout(_U,_C1), 

_C1),t3,ℜ(t1+1,t2+1)) 

Rule-1 is specified to monitor the logging activity of 
the users of a system that is accessible from different 
distributed client devices. The rule states that if a user 
_U logs on the system from some client device _C1 
(i.e., when the event e(_e1, _C1, _C3, REQ, login(_U, 
_C1), _C1) happens)  and later he/she logs on from 
another device _C2 (i.e., when the event e(_e2, _C2, 
_C3, REQ, login(_U, _C2), _C2) happens), by the time 
of the second login (t2), he/she must have logged out 
from the first device (i.e., an event e(_e3, _C1, _C3, 
REQ, logout(_U, _C1), _C1) must have occurred). 

Monitoring Rule-1 can be used to prevent users 
from logging on from different devices simultaneously 
and, therefore, reduces the scope for masquerading 
attacks. Simultaneous logging provides scope for such 
attacks since a user who is logged on from different 
devices simultaneously may leave one of them 
unattended. When this happens, however, some other 
user may start using the unattended device with _U’s 
credentials. Blocking logging attempts that violate 
Rule-1 would prevent such cases. Furthermore, 
monitoring Rule-1 could detect cases where some user 
gets hold of the credentials of another user _U and tries 
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to use them to log on with the identity of _U at the 
same time when _U is logged from a different device. 

Rule-1 above is specified in the rule language of 
EVEREST that is based Event Calculus [10]. In this 
language, S&D properties are expressed as rules of the 
form B⇒H. The meaning of such rules is that when 
their head H is True their body B must be True as well. 
Rules of this form are used to specify conditions about 
the patterns of events that should occur in a system and 
their effects onto the system and its environment state. 
The occurrence of an event in a rule is specified by the 
predicate Happens(E,t1,ℜ(t1,t3)). This predicate 
expresses that an event E of instantaneous duration 
occurs at some time point t1 that is within the time 
range (t2, t3]. An event E is specified by a term of the 
form e(_id, _s, _r, [REQ|RES], _sig, _c) where _id is 
the identifier of the event, _s is the identifier of the 
component that has sent the event (event sender), _r is 
the identifier of the component which the event was 
sent to (event receiver), REQ(RES) are constants 
indicating whether the event is a request (REQ) or a 
response (RES) from the sender, _sig is the signature 
of the event (e.g., the signature of an operation if the 
event represents an operation call or response as in 
Rule 1), and _c is the identifier of the component from 
which the event was captured (i.e., typically the sender 
or the receiver of the event)1.  

The detection of threats w.r.t. specific monitoring 
rules at runtime is based on the computation of a belief 
in the potential occurrence of runtime events that 
would violate the rules. The pattern of events that can 
violate a rule is determined by negating the rule and 
getting its violation signature (i.e., B∧¬H for a rule of 
the form B⇒H). The belief in a potential rule violation 
is computed from beliefs in the genuineness of the 
events that have already occurred and match the rule’s 
violation signature, and beliefs in the potential 
occurrence of events which appear in the signature but 
have not occurred yet. 

In the case of Rule-1, the violation signature that is 
produced by negating the rule is: 
∀ _U: User; _C1, _C2: Client; 
 _C3: Server; t1, t2:Time 

Happens(e(_e1,_C1,_C3,REQ,login(_U,_C1),_C1
),t1,ℜ(t1,t1)) ∧ 

Happens(e(_e2,_C2,_C3,REQ,login(_U,_C2),_C2
),t2,ℜ(t1,t2)) ∧ _C1 ≠_C2 ∧ 

∀ t3: Time 
¬Happens(e(_e3,_C1,_C3,REQ,logout(_U,_C1), 

_C1),t3,ℜ(t1+1,t2+1)) 
Thus, the detection of threats for this rule during 

monitoring would need to be assessed in the following 
cases: 

                                                           
1 A full description of the rule language of EVEREST is given in [4]. 

(a) When a login event matching e(_e1,…) but no login 
event matching e(_e2,…) have been received. In 
this case, the threat for the rule would be a 
combined measure of the belief that the event _e1 
which has been matched with the rule is genuine, 
the belief that an event _e2 matching the rule will 
occur within the time range (t1, t2], and the belief 
that no event matching the event _e3 will occur in 
the range (t1, t2]. 

(b) When a login event matching e(_e2,…) but no login 
event matching e(_e1,…) has been received. In this 
case, the threat likelihood of the rule would be a 
combined measure of the belief that the event _e2 
which has already been matched with the rule is 
genuine, the belief that an event of type e(_e1,…) 
matching the rule has already occurred within the 
time range (latestTime(captor(_e1)), t2] 2  but not 
received by EVEREST yet, and the belief that an 
event matching e(_e3,…) will occur in the range 
(latestTime(captor(_e1)), t2]. 

(c) When a login event matching e(_e1,…) and a login 
event matching e(_e2,…) have been received by the 
monitor. In this case, the threat likelihood the rule 
would be a combined measure of the beliefs that 
the e(_e1,…) and e(_e2,…) events are genuine and 
the belief that no event of type e(_e3,…) matching 
the rule will occur in the time range (t1, t2]. 

(d) When a login event matching e(_e1,…) and an 
event matching e(_e2,…) have been received by the 
monitor and an event E has been received from the 
event captor that should have sent e(_e3,…) at 
some time point t’ > t2 indicating that e(_e3,…) 
will not arrive. The absence of e(_e3,…) could be 
derived from E in this case using the principle of 
negation as failure (NAF). More specifically, since 
t’ > t2 TDT knows that it cannot receive any event 
with a timestamp earlier than t’ from the same 
captor and therefore earlier than t2 (the 
communication channels between captors and 
EVEREST follow the TCP/IP protocol). Thus, in 
this case, the threat likelihood of the rule would be 
a combined measure of the belief that the e(_e1,…) 
and e(_e2,…) events that have been matched with 
the rule and the event E which provides the basis 
for deriving ¬ e(_e3,…) are genuine. 

The functions that we use to measure the above beliefs 
are discussed in the following. 
 

IV. BELIEF FUNCTIONS 
The calculation of the overall belief in a potential 

rule threat requires the combination of basic beliefs of 
three types: 

                                                           
2 latestTime(captor(e)) is the timestamp of the latest event that has 
been received from the captor that is expected to generate e. 



1. Basic beliefs in the genuineness of occurred events 
(like _e1 and _e2 in case (c) above), 

2. Basic beliefs in the occurrence of an event of a 
specific type within a time range that is determined 
by another event (i.e., basic belief of seeing an 
event like _e2 after an event _e1 has occurred as in 
case (a) above), and 

3. Basic beliefs in the validity of the derivation of the 
negation of an event when another event’s 
occurrence indicates that the time range within 
which the former event should have occurred has 
elapsed (i.e., basic belief in events like ¬e(_e3,…) 
given another event E as in case (d) above). 

A. Basic belief in event genuineness 
The calculation of basic belief in the genuineness of 

events is based on the approach described in [11]. 
According to this approach, an event received by 
EVEREST is genuine if there is at least one valid 
explanation for it. The possible alternative explanations 
of an event e are generated from assumptions about the 
system that is being monitored. Assumptions are 
expressed as EC formulas having the same form as 
monitoring rules but are used for abductive and 
deductive reasoning without being checked as rules. 
Given an event e that needs to be explained at time t, 
the explanations generation process finds recursively all 
the assumptions of the form Hn⇐ Bn, Hn-1⇐Bn-1, …, 
H1⇐B1 where e matches with Hn and Bi matches with 
Hi-1 for all i=n…2. For all the different chains of such 
formulas that may exist, B1 is a possible explanation of 
e. The belief in the validity of this explanation is then 
computed by establishing all the runtime events (other 
than e) that should have occurred as a consequence of 
B1 if the latter was true and computing the basic belief 
in at least of one of these events being genuine. The set 
of the consequences of B1 is formally defined as: 
Cons(B1) = {ec | {B1, Events(t − DW, t) |− ec and e≠ec)) 

where DW is parameter denoting the period of time of 
interest in diagnosis, called diagnosis window. 

Given the set of possible explanations EXP(e) of an 
event e and the consequence set Cons(x) of each 
element x of EXP(e), the basic belief in the genuineness 
of e is computed by the function m(e) in Figure 2. 

As discussed in [11], m (e) is defined as a DS basic 
belief function (also known as mass or basic belief 
assignment in the context of DS theory). The use of DS 
theory is because for some explanation consequences it 
might not be possible to establish with certainty 
whether they are confirmed by runtime events. This 
phenomenon arises in cases where the runtime event 
that would confirm an explanation consequence is 
expected to occur at some time point t but as the 
timestamp of the last event that was received from the 
relevant captor (i.e., lastTime(captor(e))) is less than t, 
it is impossible to establish with certainty whether the 
event has indeed occurred. Such cases arise due to 
communication channel delays – an event E might have 
occurred but not received by EVEREST yet when its 
occurrence needs to be established due to delays in the 
communication channel that transmits the event from 
the relevant event captor to the framework. Classic 
probabilities are unable to represent this uncertainty 
and, hence, we use DS beliefs. 

B. Basic belief in potential event occurrences 
The second type of basic belief functions that we 

use in threat detection measure the likelihood of the 
potential occurrence or not of an event Ei, which has 
not occurred yet, when another event Ej that Ei is 
temporally constrained by has occurred. The likelihood 
of such conditional event occurrences is measured by 
the basic belief function mi|j(X) in Figure 2. In the 
definition of this function: 
• Log(Ej) is a randomly selected sample of N events 

of type Ej in the event log up to the time point when 
mi|j is calculated.  
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Figure 2. Basic belief functions for event genuineness and threat detection 



• Log(Ei|e) is the set of the events of type Ei in the 
event log that have occurred within the time period 
determined by e and up to the time point when mi|j 
is calculated 

• I (I∈ ℘(Log(Ei|e))) is an element set in the 
powerset of Log(Ei|ej) 

• m(e) is the basic belief function defined in Part (A) 
of Figure 2 in the case of non negated events Ej. 
According to the above definition, mi|j(X) measures 

the basic belief in the occurrence of a genuine event of 
type Ei within the time range determined by events of 
type Ej, as the average belief of seeing a genuine event 
of type Ei within the time range determined by a 
genuine event of type Ej. More specifically, for each 
occurrence of an Ej event, mi|j(X) calculates the basic 
belief of seeing at least one genuine event of type Ei 
within the period determined by Ej. Assuming that the 
set of such Ei events is Log(Ei|ej), this basic belief is 
calculated by the following formula: 

∑ ∏≠∧℘∈ ∈
+−φIeELogI Ie k

I
ji k

em))|((
1|| )()1(  

The above formula measures the basic belief in at 
least one of the events in Log(Ei|ej) being a genuine 
event, i.e., an event that has at least one explanation 
confirmed by other events in the log of the system, and 
uses the basic belief in the genuineness of individual 
events m(Ei) for positive events. Thus, mi|j(X) discounts 
occurrences of events of type Ei which are not 
considered to be genuine, and the higher the number of 
genuine events of type Ei within the period determined 
by an Ej event, the larger the basic belief in the 
occurrence of at least one genuine event of type Ei that 
it generates. It should also be noted that mi|j(X) takes 
into account the basic belief in the genuineness of each 
occurrence of an event of type Ej within the relevant 
period (i.e., mi(ej)) and uses it to discount the evidence 
arising from Ej events which are not considered to be 
genuine themselves.   

C. Basic belief in negated events 
 The basic belief functions that we have introduced 

so far do not cover cases where the absence of an event 
is deduced by the NAF principle. As we discussed 
earlier, EVEREST uses this principle to deduce the 
absence of an event E (i.e., ¬E) that is expected to 
occur within a specific time range [tL, tU] when it 
receives another event E’ from the event captor that 
should sent E with a timestamp t’ that is greater than tU 
(t’ > tU) and has not received E up to that point. 
Considering, however, that the event E’ which triggers 
the application of the NAF principle in such cases 
might not be a genuine event itself, it is necessary to 
estimate a basic belief in the conjecture of ¬E. The 
function that measures this basic belief is the function 
mNAF

j|i in Figure 2. 
 
 

Table 1. Combinations of basic belief functions for Rule 1 

# Event  _e1 Event  _e2 Event  
¬_e3 

Required 
Combinations 

1 received received derived by 
NAF 

(m1 ⊕ m2) ⊕ 
mNAF

3|u 

2 received received not derived 
by NAF 

(m1 ⊕ m2) ⊕ 
m3|2 

(m1 ⊕ m2) ⊕ 
m3|1 

3 received not received derived by 
NAF 

(m1 ⊕ m2|1) ⊕ 
mNAF

3|u 

4 received not received not derived 
by NAF 

(m1 ⊕ m2|1) ⊕ 
m3|1 

5 not received received derived by 
NAF 

(m2 ⊕ m1|2) ⊕ 
mNAF

3|u 

6 not received received not derived 
by NAF 

(m2 ⊕ m1|2) ⊕ 
m3|2 

7 not received not received derived by 
NAF 

Cannot be 
estimated 

8 not received not received not derived 
by NAF 

Cannot be 
estimated 

 
The basic belief functions introduced above are 

combined at runtime in order to compute the overall 
threat belief for a rule.  The exact combination that is 
used at each stage of the monitoring process depends on 
the events that have been received by TDT. It is also 
determined by the principle that the computation of the 
overall threat belief should be based on all the runtime 
events that can be matched with the rule or used to 
derive the absence of a negated event in it. Based on 
this principle, the different combinations of basic belief 
functions that would be required in the case of Rule 1 
depending on the set of events that have been received 
by TDT are summarised in Table 1. The operator ⊕ in 
this table denotes the combination of two basic belief 
functions using the rule of the orthogonal sum of the 
DS theory [12]. According to this rule, the combined 
basic belief that is generated by the combination two 
basic belief functions of m1 and m2 is given by the 
formula: 
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V. CALCULATION OF THREAT BELIEFS THROUGH 

BELIEF GRAPHS 
To represent the different ways of combining basic 

belief functions at run time in order to calculate the 
overall belief in a monitoring rule threat, TDT 
constructs a belief graph for each rule. The vertices of 
this graph represent the different event occurrence 
predicates in the violation signature of the rule (i.e., the 
Happens predicates) and the directed labelled edges 
between the vertices indicate dependencies between 
the time variables of these events. The edges of the 
graph are derived from the boundaries of the time 
variables of the rule predicates. These boundaries 
constrain the predicate time variables and, hence, the 



occurrence of events expressed by the predicates in the 
rule. The graph edges indicate how evidence can be 
propagated at runtime by combining the different basic 
belief functions which are associated with the observed 
events.  

The algorithm that constructs belief graphs is 
shown in Figure 3. Initially, this algorithm constructs a 
start node to represent the starting point of the 
accumulation of evidence at runtime (see line 2). Then 
for each event in the rule, it constructs a node to 
represent the occurrence of the event at runtime (line 4) 
and identifies the dependencies of the event to other 
events (line 5). An event Ej is taken to depend on all 
other events Ei whose time variables appear in the 
expressions that define the lower and upper bound of 
the time variable of Ej. Based on these dependencies, 
the algorithm creates a directed edge from all the events 
Ei that Ej depends on towards Ej (see line 9). These 
edges indicate the paths for obtaining a basic belief for 
Ej when any of the events Ei is observed. Also an 
opposite edge from Ej to each of the events Ei is created 
if Ej is not a negated event (see lines 10-12). The latter 
edges are used when Ej is observed before the events Ei 
and indicate how the basic belief in events Ei can be 
computed from Ej. 

 
Construct_DS_Belief_Graph(R, DSGR) 
 /* R is the violation signature (negated form) of a monitoring rule */ 
1. find all n events ei in R  
2. construct a node representing the starting point in the assessment 

of the threat belief of R, called “Start” node. 
3. for each event ei (i ≤ n)  do 
4.  construct a node for ei and store the mapping of the time 

 variable of this event as  M(ti)= ei  
5.  build a list TVARSi of all time variables tk appearing in the 

 lower and upper bound of  the time variable ti of  ei. 
6. end for 
7. for each event ei (i ≤ n)  do 
8.  for each time variable t ∈ TVARSi such that t ≠ ti do 
9.   Construct an edge to ei from ep=M(t), labelled by mi|p,  
10.   if ei is not a negated event then 
11.    Construct an edge mp|i from ei to ep=M(t)    
12.   end if 
13.  end for 
14.  if ei  is not a negated event then 
15.   construct an edge from the “Start” node to ei, labelled  

  by the basic belief mi of ei. 
16.  else if ei  has a time range defined by constant values then 
17.   construct an edge from the “Start” node to ei, labelled  

  by the basic belief mNAF
i|<x> of ei 

18.  end if 
19. end for 
end Construct_DS_Belief_Graph 

Figure 3. Algorithm for constructing DS belief graphs 

Note that no backward edges are constructed from 
an event Ej to the events that this event depends on if Ej 
is a negated event (see condition in line 10). This is 
because negated events can only be derived through the 
application of the NAF principle when their ranges 
have fully determined boundaries. Fully determined 
boundaries, however, will not be possible to have for Ej 

unless Ei has already occurred. Hence, it will not be 
possible to derive the truth value of Ej before that of Ei 
and, therefore, compute a basic belief for the latter 
event based on the basic belief of the former. The label 
attached by the algorithm on an edge from an event Ei 
to an event Ej is the basic conditional belief function 
mi|j, i.e., the function that provides the basic degree of 
belief in the potential occurrence (or not) of Ej given 
that Ei has already occurred. 

Following the generation of edges between events, 
the algorithm constructs edges from the Start node of 
the graph to the nodes representing the non negated 
events of the rule (see lines 14−20). These edges are 
labelled by the basic belief function for the genuineness 
of the event Ei that they point to. Negated events, on the 
other hand, are linked with the Start node only if they 
have a time range defined by constant values in the rule 
and, therefore, it is possible to establish their absence or 
not prior the seeing any other event at runtime (see 
conditions in lines 14 and 17). The edge linking the 
Start node with a negated event Ei is labelled by the 
basic belief function mNAF

i|<x>. This function is partially 
determined and bound to the identifier of the specific 
event Ej that triggers the application of the NAF 
principle to derive the absence of Ei creating a fully 
determined function mNAF

i|j for estimating the basic 
belief in ¬Ei.  
 

Figure 4. Belief graph for Rule 1 

An example of a DS belief graph is shown in Figure 
4. The graph represents the different paths of combining 
the basic belief functions for the events of Rule 1 and 
reflects the time dependencies between the different 
events. The occurrence of E2 in the rule, for instance, 
depends on the occurrence of E1 since the range of the 
time variable of E2 (i.e., ℜ(t1,t2)) refers to the time 
variable of E1 but not vice versa (the range ℜ(t1,t1) of t1 
indicates that E1 is an event with a not constrained time 
variable). Thus, an edge from E1 to E2 labelled by m2|1 
has been inserted in the graph as well as another edge 
from E2 to E1 labelled by m1|2. Similarly, as the time 
range of the event ¬E3 (i.e., ℜ(t1+1,t2−1)) refers to the 
time variables t1 and t2 of the events E1 and E2, the 
graph contains edges from E1 to ¬E3 and E2 to ¬E3. 
Note, however, that the graph does not contain an edge 
from ¬E3 to E2 or from ¬E3 to E1 as the former event 
cannot be derived by NAF unless E1 and E2 are received 

E1 E2 

S 

m2|1 m3|2 

m1|2 

m2 m1 

 ¬E3 

m3|1 



first. Finally, the graph includes edges from the starting 
node to E1 and E2. These edges are labelled by m1 and 
m2 representing the basic belief functions that are to be 
used when the occurrence or absence of the events E1 or 
E2 is established from the starting node. 

At runtime, belief graphs are used to record the 
events matched with a given rule and determine the 
combination(s) of basic belief functions that will be 
needed to compute the overall threat belief for the rule. 
In general, given a set of received and a set of unknown 
events, the overall belief for a rule is evaluated by 
combining the basic beliefs of the received events that 
match with the rule’s violation signature and the 
conditional beliefs for the unknown events. It should be 
noted that in such cases, there may be more than one 
known events in the graph which are linked directly 
with an unknown one. If this is the case, the conditional 
belief in the unknown event mi|j is computed by 
considering all paths which start from some known 
event Ei and end in the unknown event Ej, without 
passing through any other known events (this ensures 
that known events will not be considered as supporting 
evidence for unknown ones multiple times). The 
algorithm for evaluating the overall belief in a rule 
threat given a belief graph is shown in Figure 5. 

 
Compute_Threat_Belief(Ei, DSGR, R) 

1. find the sets of the known events KE and the set of the 
unknown events UE in DSGR 

2. m = basic_belief (<start, Ei>) 
3. CombinedBPA = {} 

/* combine the basic beliefs of events in KE */ 
4. for each Ek in KE do 
5.  m = m ⊕  basic_belief (<start, Ek>) 
6. CombinedBPA = CombinedBPA ∪ basic_belief (<start, 

Ek>) 
7. end for 
8. for each ej ∈ UE do  
9.  insert all the paths from ei to ej, which do not include any 

 event in KE, into Pij 
10.  for each p ∈ Pij do 

/* combine the BPAs of paths to unknown events */ 
11.   for each edge L in p do 
12.    if basic_belief (L) ∉  CombinedBPA then 
13.     m = m ⊕  basic_belief (L) 
14.     CombinedBPA = CombinedBPA ∪  

    basic_belief (L) 
15.    end if 
16.   end for 
17.  end for 
18. end for 
19. mark Ei as a known event in DSGR 
20. return (m(events(¬R), m(events(R))) 

end Compute_Threat_Belief 
Figure 5. Algorithm for computing overall threat belief 

To demonstrate the estimation of the threat beliefs 
consider Rule 1 again and the following sequence of 
events: 
• Happens(e(e100,Lap30,Lap30,REQ, 

login(User1,Lap30),Lap20),80,ℜ(80,80)) 

• Happens(e(e101,Lap2,Lap2,REQ, 

login(User1,Lap2),Lap2),87,ℜ(87,87)) 
When it arrives at EVEREST, the first of these 

events (e100) can be matched with the nodes E1 or E2 
of the belief graph of Figure 4. Each of these matches 
produces a separate instantiation of the belief graph and 
leads to the estimation of different threat beliefs. When 
matching e100 with node E1, for instance, the threat 
belief will be computed by the combination of the basic 
belief functions (m1 ⊕ m2|1) ⊕ m3|1. Based on the 
definition of these functions in Section IV, it can be 
shown that the application of the rule of the orthogonal 
sum will result in the following functional form for (m1 
⊕ m2|1) ⊕ m3|2: 
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Thus, if we assume that: (i) the basic belief in the 
genuineness and non genuineness of e100 are k1 = 0.8 
and k1’ = 0.1, respectively (note that the sum of these 
two beliefs may be less than 1 in the DS theory); (ii) 
the basic conditional belief in observing or not a 
second genuine login event within 100 time units after 
the observation of e100 are k21 = 0.6 and  k21’ = 0.4, 
respectively; and (iii) the conditional basic belief in not 
observing a genuine logout event in the period of 100 
time units between two genuine login events are k31 = 
0.2 and k31’=0.6, respectively, the overall threat belief 
for the first instance of the rule will be: 
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The threat belief for the same rule instance will be 
updated when the event e101 arrives. Upon its arrival, 
e101 will be matched with the node E2 in the belief 
graph instance. Thus, according to the 
Compute_Threat_Likelihood algorithm, the overall 
threat belief will be estimated by the combination of the 
basic belief functions (m1⊕m2)⊕m3|2, which due to the 
rule of the orthogonal sum will be: 
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Thus, if the basic belief assignments in the 
genuineness of e101 (i.e., m2(Genuine(e101,…)) and the 
non genuineness of this event (i.e., 
m2(¬Genuine(e101,…)) are k2 =0.8 and k2’ = 0.2 
respectively, and  the overall threat likelihood will be: 

54.0)()( 3212|321 =¬∧∧⊗⊕ EEEmmm  
The increase in the overall threat belief in this case 

is due to the fact that the basic belief in E2 given by 
m2(X) is higher than the basic belief in E2 that is 
computed by the combination m1 ⊕ m2|1 (0.8 vs. 0.53). 

 



VI. EVALUATION 
The threat detection tool of EVEREST has 

undergone a preliminary evaluation whose objective 
was to estimate the timeliness and precision of the 
threat detection signals generated by the tool. This 
evaluation was based on the simulation of a location 
based access control  system (LBACS) that grants 
access to the computational resources of an enterprise 
(e.g., printers, intranet) from mobile devices, depending 
on the credentials of these devices and their exact 
location within the physical space of the enterprise.   

In the evaluation, timeliness was measured by the 
threat reaction time (TRT) of each threat signal. TRT 
was defined as the difference between the time when 
the monitor of EVEREST detected a violation of a 
monitoring rule (Tmon) and the time when TDT 
produced a threat signal corresponding to the same 
violation (Ttd), i.e., 

TRT = Tmon − Ttd 
Precision was defined as the proportion of the threat 

signals generated by TDT within a given range of threat 
belief values (BR) that corresponded to definite 
eventual violations of the relevant rules and measured 
by the formula: 

PR = TTSBR /(TTSBR + FTSBR) 
In this formula, TTSBR is the number of the threat 
signals with a belief in a given range (BR) that 
corresponded to eventual violations of the relevant rule 
detected by the EVEREST monitor (true signals), and 
FTSBR is the number of the threat signals with belief in 
a given range (BR) that did not correspond to an 
eventual violation of the relevant rule. Our focus on 
precision and timeliness was because the former of 
these measures indicates the accuracy of the threat 
detection signals and the latter indicates the time that is 
available for reaction before the definite violation of an 
monitoring rule is detected.  

For the evaluation we executed 8 different 
experiments having 2000 events each. The events for 
each experiment were generated randomly by 
simulating the workflow of LBACS, assuming that the 
event inter-arrival time had a normal distribution with a 
mean of 1 second and a variance of 0.3, 0.6, and 0.9 
seconds. The different variance values (VV) were used 
to create different event sets that imposed different 
stress conditions for the monitor (the smaller the VV 
the more stressing the monitoring conditions). The eight 
experiments varied also in terms of the used size of the 
diagnosis window (DW) and event sample size (SS) 
(i.e., the size of the set Log(Ej) in the computation of 
the mi|j conditional beliefs) as shown in Table 2. The 
monitoring rules that were used in the experiments to 
detect threats are described in detail in [13]. 

D. Threat reaction time 
Table 2 shows the minimum, maximum and average 

timeliness measures for S&D threat detection in the 
different experiments (in seconds) as well as the 

proportion of S&D threat signals with positive and 
negative timeliness measures (see columns pos (%) and 
neg (%), respectively). A negative time period indicates 
that TDT computed its threat belief after a threat 
occurring and vice versa.  

Table 2 Threat reaction time (secs) 
EXP VV DW SS pos

%
neg 
% 

ave 
TRT 

max
TRT

min
TRT

1 0.3 15000 10 77.54 21.51 9.3 852.5 -4.2 

2 0.3 20000 15 73.21 26.53 10.4 753.9 -4.5 

3 0.5 15000 10 80.18 19.02 12.5 1137.0 -1.9 

4 0.5 20000 15 72.08 27.39 13.2 1110.7 -3 

5 0.6 15000 10 79.45 20.03 12.3 1077.2 -2.3 

6 0.6 20000 15 74.87 24.74 14.0 1077.2 -29 

7 0.9 15000 10 80.24 18.85 13.6 1077.2 -3 

8 0.9 20000 15 74.87 24.74 14.1 1077.2 -29 

 
As shown in the table, in 70% to 80% of the cases S&D 
threat detection signals were produced prior to the 
actual violations and the mean reaction time of these 
signals ranged from 9.3 to 14.1 seconds. These results 
indicate that on average the detection of S&D threats 
was timely and provided scope for triggering automatic 
preventive actions for violations (e.g., deactivate the 
component that causes the problem or block any further 
interactions with it). 

E. Precision 
Figure 6 shows the average, maximum and 

minimum precision measures for the threat signals 
generated for different monitoring rules in the different 
experiments (see the series AvePR, MaxPR and MinPR, 
respectively).  
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Figure 6. Precision of threat signals 

As shown in the figure, precision was high on 
average with about 79% to 82% of the threat detection 
signals corresponding to eventual rule violations. 
Furthermore, as indicated by the minimum and 
maximum precision measures, precision did not vary 
significantly across the different experiments. Also, 
precision was not affected significantly by the size of 
the diagnosis window (DW) and the conditional belief 
event sample size (SS). In particular, a marginal 
increase in precision was observed when the sizes of 



DW and SS were increased. This can be evidenced by 
contrasting the precision measures of exp 1 and exp 2, 
exp 3 and exp 4, exp 5 and exp 6, and exp 7 and exp 8 
(these experiment pairs vary in terms of the size of DW 
and SS but have the same VR as shown in Table 2). 
This effect of DW and SS on precision was expected as 
larger DW and ES provided a wider evidence basis for 
estimating more accurate beliefs. It should, however, be 
noted that in no case the increase in precision due to 
increases in DW and ES was larger than 1.8% (i.e., the 
largest increase that was observed in the case of exp 7 
and exp 8). Hence, our approach is not overly sensitive 
to DW and ES. 

VII. RELATED WORK 
Our approach to threat detection is related to 

intrusion detection [2][7]. Most intrusion detection 
systems, however, only detect malicious actions that 
have already happened (intrusions) whilst our approach 
to threat detection tries to predict violations.  

Approaches to intrusion detection are classified as 
anomaly-based or misuse-based [7]. Anomaly-based 
approaches [1][2][4] assume that attacks involve, 
somehow, abnormal behaviour of the system, and 
threats and intrusions are detected as deviations from 
normality. Misuse-based approaches [3][6][9], on the 
other hand, are based on models of known attacks. The 
threat detection approach presented here is essentially 
anomaly-based. In particular, it is model or 
specification-based [1][4] as threats and intrusions are 
detected as deviations from a model of the normal 
behaviour of the system. Our approach is similar to [1] 
in protecting system assets and building monitoring 
policies with the goal of protecting them. 

Our approach has also characteristics of misuse-
based techniques. This is because it detects threats 
from rule violation signatures, which could be viewed 
as an attack model. It should be noted, however, that 
we do not assume a complete attack model as, for 
example, in [14]. Furthermore, the detection of threats 
(potential attacks) in our approach is probabilistic and 
is not based on model checking (as in [14]) or logic-
based reasoning techniques. Finally, we should note 
that our approach is related to statistical attack 
detection approaches which are based on Bayesian 
networks (e.g., [9]), although it uses the alternative DS 
theory for the reasons we discussed in Section IV. 

 
VIII. CONCLUSIONS 

In this paper, we have described an approach for the 
runtime detection of S&D threats that we have 
implemented as part of the EVEREST monitoring 
framework. In this approach, when some runtime event 
instantiates a monitoring rule expressing an S&D 
property and can, therefore, possibly lead to a violation 
of the rule, the event constitutes an S&D threat. To 

enable concentration on S@D threats which are more 
likely occur in some future state in the operation of a 
system, our approach calculates the likelihood of a 
potential violation of the given rule based on evidence 
regarding the genuineness of the relevant events and 
historical data about event co-occurrences. The actual 
computations are based on basic belief functions 
grounded in the DS theory of evidence. Our threat 
detection approach has been implemented as an 
extension of EVEREST and an initial empirical 
evaluation of it has been carried out with positive 
results. 

Ongoing work focuses on the exploitation of non 
time variable constraints between events whilst 
computing conditional basic beliefs in event 
occurrence. We are also evaluating the merit of our 
approach in predicting violations of non S&D 
properties for service based systems, as part of the EU 
F7 project SLA@SOI. Our work in the latter area is 
also concerned with the prediction of aggregate 
properties (e.g., average service availability).  
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