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Abstract: This paper uses problem decomposition to show that optimal dynamic home energy prices can be used to 

reduce the cost of supplying energy, while at the same time reducing the cost of energy for the home users. 

The paper makes no specific recommendations on the nature of energy pricing, but shows that energy prices 

can normally be found that not only result in optimal energy consumption schedules for the energy 

provider’s problem and are economically viable for the energy provider, but also reduce total users energy 

costs. Following this, the paper presents a heuristic real-time algorithm for demand management using 

home appliance scheduling. The presented algorithm ensures users’ privacy by requiring users to only 

communicate their aggregate energy consumption schedules to the energy provider at each iteration of the 

algorithm. The performance of the algorithm is evaluated using a comprehensive probabilistic user demand 

model which is based on real user data from energy provider E.ON. The simulation results show potential 

reduction of up to 17% of the mean peak-to-average power estimate, reducing the user daily energy cost for 

up to 14%.  

1 INTRODUCTION 

The emergence of smart homes enables energy 

providers to develop sophisticated energy 

management solutions, in attempt to optimise energy 

production while providing home users with 

increased comfort and potential cost reduction. The 

future smart homes will be equipped with a range of 

control devices and sensing/actuating systems 

capable of working together in automatic way to 

perform some pre-defined functions. Over the past 

decade, the majority of technical challenges for the 

home hardware and software solutions have been 

solved, and a range of commercial products is 

available. For energy providers, the greatest 

remaining challenges lie in: (1) development of 

intelligent resource management algorithms to 

optimise the energy consumption, both at the single-

household level and at the large-scale level; (2) 

establishing increased level of trust with the user by 

ensuring that the users’ energy consumption data is 

kept secret. This paper addresses both of these issues 

by providing an optimal distributed algorithm for 

home appliance scheduling without the need for 

sharing detailed information on daily use of home 

appliances.  

The process of resource optimisation in home 

energy networks has been generating research 

interest for several decades now, and in the recent 

years it has been accelerated by the technological 

advances in sensor networks, smart meters and 

actuator systems. In an ideal smart home model, the 

historical consumption data, real-time 

measurements, pricing, ambient and social aspects 

are all used as inputs to optimisation algorithms 

which calculate the optimal home appliance energy 

consumption schedule. Traditionally, the problem of 

optimal use of home energy has been approached in 

two ways: (1) reducing consumption, or (2) shifting 

consumption.  The process of consumption shifting, 

also called demand management, or load 

management, has been practices by the industry for 

several decades, using different forms of load 

control (Fahrioglu, 2000, Palensky 2011, Siano 



 

2014). The existing solutions use variable pricing to 

generate incentives to home users to shift their 

consumption from peak periods, thus reducing the 

need to start additional generators, which presents a 

major cost factor for energy providers.  

There is a number of research works that take on 

this challenge, and develop algorithms and network 

protocols for optimal demand management. For 

example, Li, Chen and Low (Li, 2011) show that 

there exist time-varying prices that can align 

individual optimality with social optimality. In their 

model, the utility company collects forecasts of total 

demands from all customers, and then sets the prices 

to the marginal cost. Each customer updates its 

demand and charging schedule. Similarly, Pedrasa, 

Spooner and MacGill (Pedrasa, 2010) present a 

solution which enables end-users to assign values to 

desired energy services, and then schedule the 

resources to maximise the users’ benefits. They 

propose the use of particle swarm optimisation, 

because of simple implementation. They do not, 

however, test their solution on large-scale systems 

and do not prove the optimality of the solution. 

Zakariazadeh, Jadid and Siano (Zakariazadeh, 2014) 

propose a multi-objective framework, based on 

augmented ε-constraint method, to minimize the 

total operational costs and emissions and to generate 

Pareto-optimal solutions for the energy and reserve 

scheduling problem. In the work of Ramchurn et al 

(Ramchurn, 2011, Vytelingum, 2010) decentralised 

demand side management is realised through the 

process of cooperation between the smart meters 

(‘agents’). The meters receive the costs of 

generating electricity to the consumers, and use 

learning mechanisms to gradually adapt the agents’ 

deferrable energy load based on the predicted market 

prices for the next day. Similar approach is also 

taken by (Mohsenian-Rad, 2010), (Ganu, 2012), and 

(Ibars, 2010) . In these solutions the end-users are 

somehow made to voluntarily adjust their 

consumption. (Mohsenian-Rad, 2010) formulates an 

energy consumption scheduling game, where the 

players are the users and their strategies are the daily 

schedules of their household appliances and loads. 

Similarly, (Ibars, 2010) bases the solution on a 

network congestion game, which can be 

demonstrated to converge in a finite number of steps 

to a pure Nash equilibrium solution. (Jain, 2013) 

goes one step further, by applying the concept of 

bargaining / auctioning of energy resources on the 

smart grid including electric vehicles.  

It is important to stress that most of these works, 

including ours, rely on consumer’s willingness to 

act. In other words, the end-user benefit is always 

modelled through cost, and optimality of the 

scheduling is based on the process of cost 

minimisation. The mechanism of costing allows the 

users to react, in their own interest. Dynamic pricing 

and its drawbacks are analysed in great detail in the 

past research, e.g. in (Borenstein, 2002) and 

(Roozbehani, 2010). In a response to this, (Wijaya, 

2013) proposes an interesting approach to cut the 

peak to average energy ratio explicitly from the 

supply side. The resulting load cuts are then 

distributed among consumers by the means of a 

multiunit auction which is done by an intelligent 

agent on behalf of the consumer. 

In this paper, we decompose the provider and the 

user optimization problem to prove that, if energy 

prices are set as optimal consistency prices, the 

energy provider’s revenue at optimal energy 

consumption levels is greater than the variable cost 

of supplying energy. This motivates the design of a 

heuristic real-time algorithm where at every timeslot 

each appliance energy consumption is updated 

according to the real-time energy price and 

estimated price of operating each appliance.  The 

home can then use this to calculate the optimal 

energy consumption schedule. The paper makes no 

specific recommendations on the nature of energy 

pricing, but shows  that energy prices can normally 

be found that not only result in optimal energy 

consumption schedules for the energy provider’s 

problem and are economically viable for the energy 

provider, but also reduce total users energy costs. 

The paper shows that optimal dynamic energy prices 

can be used to pass on the reduction in the cost of 

supplying energy to the users, when sufficiently 

scaled down. This provides financial incentives to 

users to subscribe to the smart home scheme. The 

presented algorithm ensures users’ privacy by 

requiring users to only communicate their aggregate 

energy consumption schedules to the energy 

provider at each iteration of algorithm.  

To evaluate the performance of the optimisation 

algorithm, we use a comprehensive consumer 

demand model to compute the quantitative benefits 

of the algorithm. The model is described in section 

4; it is based on appliance definition, user profile 

generation and daily appliance use determination, 

and is based on real user data from energy provider 

E.ON and the UK Government Report on home 

energy use (Zimmermann, 2012). The performance 

evaluation of the new algorithms is done using 

simulation, the details of which are given in section 

5.  

The simulation results show that applying the 

new optimisation algorithm, it is possible to reduce 



 

the mean power peak to average ratio (PAR) 

between 0.16 and 0.35 with 99% probability. That is 

between 7.83% and 17.02% of the original time 

series mean PAR estimate. Furthermore, 

optimisation reduces average user daily energy cost 

between 3.54% and 14.72% of its original time 

series mean estimate with 99% probability. 
 It is worth noting that reading and understanding 
the simulation results for the large-scale home 
energy networks is very difficult, as averaging the 
benefits of optimal energy supply gives only a part 
of the full picture. It is for this reason that we 
believe that the best practical use of the research 
results presented in this paper is to integrate them in 
the development of energy consumption 
visualisation tools for the individual users and for 
the energy supplier. Visualisation of energy 
consumption (Goodwin, 2013) will enable better 
understanding of the pattern of energy use and the 
consequence of optimisation and optimal appliance 
schedules. 

2 SYSTEM MODEL 

We start by presenting a model for energy users 

and energy provider. The user is modeled as an 

operator of a set of home appliances which operate 

over a finite scheduling time horizon. The user’s 

objective is to choose feasible energy consumption 

schedule so as to minimize the cost of energy. The 

provider, on the other hand, benefits from selling 

units of energy to the users. Critically, the objective 

of the provider is to minimize the cost of supplying 

the energy consumed by the users by shifting the 

total energy consumed during the time horizon.  
We consider a smart power network comprising 

a set of   users served by an energy provider who 
participates in the wholesale energy market. Each 
user is equipped with a smart meter capable of 
scheduling energy consumption of appliances, and 
smart meters are connected to the energy provider 
via a communication link. In the following sections, 
we describe how users and the energy provider are 
modeled. 

Users: We assume each user     operates a set of 
   appliances including photovoltaic (PV) 
appliances, which are operated over a finite 
scheduling time horizon (e.g. a day) divided into 
timeslots (e.g. 15 minutes). We denote by   the set 
of timeslots in the scheduling time horizon. For each 
user    , we denote by     

  the energy 
consumption scheduled for appliance      at time 
   , where negative values of     

  represent power 
generation. Let      (    

     ) be the energy 

consumption schedule vector for appliance     , 
and     (         ) be the energy consumption 
schedules for all appliances. We also denote the 
cardinality of sets by capital letters, e.g.   | |  
and   | |. We assume that each appliance      
requires a total energy of      during the scheduling 
horizon, i.e. 

∑     
                 (1) 

In addition, we assume that each appliance   
   can use a minimum power level of     

     
 and a 

maximum power level of     
     

at timeslot    , i.e. 

    
          

      
                 (2) 

Clearly, if appliance      is non-controllable 
then     

          
          

 ,      and ∑     
     

    . 

User Optimisation Problem: Let   be the unit price 
of energy at time    , which is set by the energy 
provider. We assume that users cannot sell their 
excess generated energy to the energy provider. 
Given the energy price vector   (      ), the 
objective of user     is to then choose feasible 
energy consumption schedules    so as to minimize 
total energy costs, i.e. to solve the following 
optimization problem: 

 

   
  

∑      ( ∑     
   

    

)

   

 

 
s.t. (1) and (2)                           (3) 

Evidently, optimal solution of (3) is dependent on 
the energy prices set by the energy provider. 

 
Energy Provider: The energy provider is 
characterized by its energy cost function and its 
optimization objectives. The cost function   ( ) 
represents the cost for the energy provider to supply 
    units of energy at time     and is widely 
assumed to be increasing and strictly convex (see 
e.g. (Li, 2011) and (Mohsenian-Rad, 2010) As an 
example, the energy cost function for thermal 
generators is shown to be quadratic as follows 
(Mohsenian-Rad, 2010):  
 

  ( )     
                          (4) 

 
where         and     . 

 
Optimisation Objectives: Since by constraint (1) 
users’ energy demands during the scheduling 
horizon are fixed, we define the energy provider’s 
objective as to minimize the cost of supplying the 
energy consumed by the users by shifting the total 

N



 

energy consumption at each time slot, i.e. to solve 
the following optimization problem 

   
 

∑   (∑    ( ∑     
   

    

)

   

)

   

 

s.t. (1) and (2)                                            (5) 
 
where   (      ). The optimization problem 
(5) is convex and can be solved by the energy 
provider in a centralized fashion, providing that 
users energy demand constraints are available to the 
energy provider. Alternatively, (5) can be solved 
jointly by the energy provider and users using a 
distributed algorithm. In either way, appropriate 
energy pricing schemes have to be designed to 
ensure user participation by providing financial 
incentives. 

3 OPTIMISATION ALGORITHM 

Since the objective function in the energy 
provider’s optimisation problem (5) is not strictly 
convex in x, computation of primal optimal 
solutions from the dual optimal solutions may not be 
possible (Boyd, 2004). As here we adopt a dual 
decomposition approach, we use the generalization 
of proximal minimization algorithm proposed by 
(Lin, 2006) that can be applied to the problems with 
similar form as (5). First, using the auxiliary vector 
  (       ), where    (          ), 
     (    

     ), we transform the optimization 
problem (5) into the following equivalent form  

 

      ∑(  (∑ ∑     
 

       

)  
 

   

∑ ∑ (    
      

 )
 

       

)

   

 

s.t. (1) and (2)        (6) 
 

where         . Let x
*  

be the optimal solution 
of (5). Then      and      is the optimal 
solution of (6). The optimization problem (6) can 
then be solved using the algorithm as presented in 
(Lin, 2006): 
 

Algorithm A: Fix    . At     iteration: 

1. Fix    ( ) and estimate the solution of 

the dual problem of (6) by applying 

gradient method on dual variable   for   

iterations.  

2. Let  (     )   (   ). Let  ( ) be the 

primal variable associated with the dual 

variable  (   ). Set  
    

 (   )      
 ( )    (    

 ( )      
 ( )) 

               ,     (7) 

 
where             . 
 

We now focus on development of a distributed 
algorithm for step 1 of algorithm A at     iteration. 
Note that optimization problem (6) is strictly convex 
when z is fixed. Introducing the auxiliary variable 

 

   ∑ ∑     
                                       (8) 

The optimization problem becomes  

      ∑(  (  )  
 

   
∑ ∑ (    

      
 ( ))

 

       

)

   

 

s.t. (1), (2)      and (8)                      (9) 

The Lagrangian after relaxation of constraint (8) 

is  (ρ,y,x) ∑ (  (  )  
 

  
∑ ∑ (    

            

    
 ( ))

 

   (∑ ∑     
           )), where   is 

the vector of consistency prices. The dual problem is 

then  

     ( ) (10) 

where 

 ( )     
   

 (     )   

s.t. (1) and (2)                 (11) 

Since (9) is strictly convex, the dual function 
(11) is differentiable and its gradient is given by 
(Bertsekas, 1999):  

 

  ( )  ∑ ∑     
 ( )    ( )             (12) 

where ( ( )  ( )) is the solution of (11) given 
 (   ). The dual problem (10) can then be solved 
using gradient method as follows 
 

  (     )    (   )   

   (∑ ∑     
 (   )    (   )       )       (13) 

where ( (   )  (   )) denote the solution of (11) 
given  (   ). Let the primal-dual pair (     ) 
denote the stationary point of algorithm A defined 
by  

         
 

 (          ) 
s.t. (1), (2)      

 

  
  ∑ ∑     

   

       

         



 

By KKT optimality conditions (Boyd, 2004) for 
any stationary point (     )   is the optimal 
solution of (6). It is shown in (Lin, 2006) that when 
   in (13) is small enough, algorithm A converges to 
a stationary point (     ). 

The dual function  ( ) can be decomposed into 
two subproblems  ( )    ( )    ( ), where 

 

  ( )      ∑ (  (  )      )                 (14) 

and 

  ( )      ∑ ∑ ∑ (      
  

 

   
(    

            

     
 ( ))

 
), s.t. (1), (2)                                (15) 

Subproblem (6) is an unconstrained convex 
minimisation problem and due to the strict convexity 
of       , has a unique solution. Let  ( ) be the 
unique solution of (14). Then  

 
     

 (  (  ))                             (16) 
Thus 

  (  )    
   (  )                         (17) 

 
Equation (17) can be computed by the energy 

provider for each timeslot     independently, 
given the associated consistency price 
    Subproblem (15) can be decomposed into 
optimisation problems for individual users:  

 
  ( )  ∑        ( ), where 
 

    ( )       
∑ ∑ (      

  
 

   
(    

         

    
 ( ))

 
)  s.t. (1), (2)               (18) 

It can be noted that at the stationary point of 
algorithm A the quadratic term in the objective 
function of (18) is zero and (18) is equivalent to the 
user optimization problem (3) with       Hence, 
optimal consistency prices can be interpreted as 
energy prices that encourage users to opt for optimal 
energy consumption schedules for the energy 
provider’s problem (5), in order to minimise their 
energy costs under these prices. We will show later 
in the next section that reduction in the cost of 
energy supply as a result of solving (5) can be 
passed on to the users, if energy prices   are based 
on adequately scaled down optimal consistency 
prices   .  

The user optimization problem (18) can be 
further decomposed into optimisation problems for 
individual appliances as  

 

    ( )  ∑       ( )    
, where 

      ( )         
∑ ( 

 
    

  
 

   

(    
     

    
 ( ))

 

)  s.t. (1), (2)                                           (19) 

Using dual decomposition, (19) can be 
decoupled into appliance optimization problem for 
each time slot. The Lagrangian after relaxation of 
constraint (1) is  

 (         )  ∑(      
  

 

   
(    

      
 ( ))

 

)

   

     (     ∑     
 

      

) 

where      is the Lagrange variable associated with 
constraint (1) or price of operating appliance   
  . The dual problem is then  
 

       
      (    )                         (20) 

where  

      (    )         
 (         )  s.t. (2)           (21) 

The dual function (21) can be decoupled into 
appliance optimization problems for each time slot:  

 

      (    )  ∑       
 

   (    )          , where 

      
 (    )         

 (       )    
  

 

   
(    

      
 ( ))

 

 s.t.(2)                                   (22) 

 
Let     

 (    )  be the solution of (22). Then 
 

    
 (    )  [  (       )      

 ( )]
    

     

    
     

       (23) 

We consider two measures of performance, 
namely, peak- to-average ratio (PAR) and average 
user daily energy cost, to evaluate the benefits of 
optimization to the energy provider and users, 
respectively. PAR is defined as the ratio of daily 
peak to average load, and used here as a measure of 
variation of aggregate daily energy consumption. It 
is defined by  

    
       (∑ ∑     

 
       )

∑ ∑            
                      (24) 

The average user daily energy cost is defined as 
the daily cost of supplying energy divided by the 
number of users, and used to measure the minimum 
possible daily energy cost that can be passed on to a 
user on average:  



 

∑   (∑    (∑     
       )   )   

 
                           (25) 

Considering this solution, the proposed approach 
for solving the energy provider’s optimization 
problem (5) can then be summarized as the 
following distributed algorithm: 

 
Algorithm A: Fix    . At     iteration: 

1. Fix    ( ) and run algorithm S for K 

iterations. 

2. Let  (     )   (   ). Let  ( ) be the 

primal variable associated with the dual 

variable  (   ). Set 
    

 (   )      
 ( )    (    

 ( )      
 ( ))  

                                        (26) 
 
Where            . 
 

Algorithm S: At     iteration: 

1. Given the consistency prices  (   ), each 

user       

computes: 

 the price of operating each appliance 

    (   ),     , by solving (20)  

 appliance energy consumption schedule 

    
 (   ),     ,       , using (23), and 

communicates its aggregate energy 

consumption schedule ∑     
 (   )    

, 

      ,  to the energy provider. 

2. Given the consistency prices  (   ), the 

energy provider computes: 

 the auxiliary variable   (   ),     , using 

(17), 

 updates the consistency price   (   ), 

given the aggregate energy 

 consumption schedules for all users    

∑ ∑     
 (   )        and   (   ) ,    , 

according to the gradient algorithm (13). 
 
Note that the proposed algorithm ensures users’ 

privacy by requiring users to only communicate their 
aggregate energy consumption schedules to the 
energy provider at every iteration of algorithm S. 
Note also that, with the exception of computation of 
    (   ),     , all the computations can be 
further decoupled across individual timeslots. This 
motivates the heuristic real-time algorithm presented 
in the following sections where at every timeslot 
each appliance energy consumption is updated 
according to the real-time energy price and 
estimated price of operating each appliance 
    (   ),     . 

As discussed in the previous section, optimal 
energy consumption schedules for the energy 

provider’s problem (5) can be attained if energy 
prices are set as optimal consistency prices   , i.e. 
setting     , energy consumption schedules that 
are minimizers of the users optimization problem (3) 
are also minimizers of the energy provider’s 
problem (5). Moreover, as stated in the following 
theorem, the energy provider’s revenue based on 
energy prices    is greater than the variable cost of 
supplying energy, at optimal energy consumption 
levels. 

Theorem 1. If energy prices are set as optimal 
consistency prices   , the energy provider’s revenue 
at optimal energy consumption levels is greater than 
the variable cost of supplying energy, i.e. 

    
    (  

 )    ( )                          (27) 

Proof. Since we assumed that    is increasing and 
strictly convex, it follows from the first order 
condition for strict convexity (Boyd, 2004) that 

  
 (  

 )  
    (  

 )    ( )                          (28) 

replacing (16) in the above inequality then yields 
(27). 

However, we are interested in energy pricing 
scheme that not only results in optimal energy 
consumption schedules for the energy provider’s 
problem (5) and covers the variable cost of 
supplying energy, but also reduces or ideally 
minimizes users energy costs, in order to ensure 
users participation in the smart home scheme. 

To examine the existence of such scheme note 
that by the mean value theorem (Bertsekas, 1999) 
there exists   ̂       

 ) for all     such that 

  
 (  ̂)  

    (  
 )    ( )                          (29) 

It follows from (28) that there exists 0 < t < 1, 
for all    , such that 

    
 (  

 )    
 (  ̂)                                        (30) 

Let            {  }. Then, 

  
 (  

 )        
 (  

 )     
 (  ̂)                   (31) 

So, 

∑  
 (  

 )  
 

   

      ∑   
 (  

 )  
 

   

 

                          ∑   
 (  ̂)  

 

   

 

                   ∑   (  
 )    ( )              (32) 

The term on the right side of the above equality 

is the minimum daily cost of supplying energy and 



 

hence is the lower bound on the viable total users 

energy costs at optimal energy consumption levels. 

Note that users optimization problem (3) with 

energy prices        
  is equivalent to the case 

when      and thus result in optimal energy 

consumption schedules for the energy provider’s 

problem (5). The above inequality states that there 

exist energy prices that lead to optimal energy 

consumption schedules for the energy provider’s 

problem (5), economically viable for the energy 

provider and result in lower viable total users energy 

costs than with energy prices   , but not necessarily 

the minimum viable level. This implies that, unless 

the current energy consumption schedules are very 

close the levels that optimize the energy provider’s 

problem (5), energy prices can normally be found 

that not only result in optimal energy consumption 

schedules for the energy provider’s problem (5) and 

are economically viable for the energy provider, but 

also reduce total users energy costs. In the case of 

quadratic cost function (4), it follows from (29) that 

  ̂  
 

 
  

  ,     . If     in (4), then         

 

 
 , for all     . Thus, in this case energy prices 

  
 

 
   results in minimum total users energy costs 

at optimal energy consumption levels, while still 

economically viable for the energy provider. 

Notice that if the objective function in the energy 
provider’s problem (5) is scaled by a positive 
constant     , the resulting optimization problem 
is equivalent to (5) and hence the minimum cost of 
supplying energy, and by (16), optimal consistency 
prices    are also scaled by     . 

4 CONSUMER DEMAND MODEL 

To evaluate the algorithm performance in detail, 
it is necessary to use a comprehensive household 
consumer energy demand model. The model – 
developed specifically for this project - generates 
artificial consumption data, both for a single 
household and an entire neighbourhood. The model 
has been developed on the basis of real home user 
data generated at the E.ON testbed facility in the UK 
in 2012. 

The model generates the consumption data of the 
households in the following three main steps (Figure 
1): (1) determining the household configuration (i.e. 

which appliances can be found in a household); (2) 
computing the daily use of each appliance (i.e. how 
many times is an appliance used on a certain day); 
(3) calculating the exact energy demand of each 
appliance (i.e. at what time is the appliance used on 
a certain day) 

The different steps of the consumer energy 
demand model are based on probabilistic approaches 
using basic appliance definitions for the generation 
of the consumption data. The general model 
structure uses some basic appliance definitions to 
generate the synthetic consumption data in three 
main steps: (1) Basic appliance definition; (2) User 
profile generation; (3) Daily appliance use 
determination.  

The most common household appliances can be 
classified according to a reduced number of 
simplified power level patterns (Yao, 2012, 
Richardson, 2010, Carpaneto, 2007). In the proposed 
model three different power level patterns for the 
approximation of the demand curve have been 
considered (Figure 2). Pattern 1 represents 
continuously running appliances with a constant 
power level, such as fridges or freezers. Pattern 2 
allows the approximation of occasionally operated 
appliances with possible non-zero energy 
consumption in standby operation such as washing 
machines or TVs. Finally, pattern 3 is used to 
approximate the power curve.  

The three simplified power level patterns were 
used in the development of a classification scheme 
based on different usage types. These usage types 
take into account factors such as frequency, duration 
and time of use of the considered appliances and 
allow a classification closely related to the customer 
habits.  

Figure 1. General structure of the developed 
consumer energy demand model 

 

 

 

 

Figure 2. Classification of household appliances by 
power level patterns 



 

The consumer energy demand model determines 
in the first step the configuration of one or several 
households. For most appliance types, the number of 
devices is computed using a probabilistic approach. 
However, exceptions have been considered for a few 
appliances. The computation of the number of 
devices of a certain appliance type is based on a 
binomial distribution in order to obtain certain 
variation around a desired average value. 

Finally, an important aspect of the model is 
consideration of exceptions. In our case, special care 
was taken: (1) to accurately represent lighting, (2) to 
exclude appliances which exist with gas and 
electricity connections; (3) to limit the sum of 
electric and gas space heaters to one device per 
household (This limitation is also used in the case of 
water heating appliances). For a detailed description 
of the developed usage types and a complete list of 
the considered appliances the reader is referred to 
(Gruber, 2012). 

The household consumer energy demand model 
is used in the remainder of the paper to simulate the 
representative households in order to evaluate the 
performance of the optimal algorithms presented in 
section 3.  Figure 3 shows the link between 
consumer demand model and aggregated demand 
optimisation algorithm, at each simulation 
replication. The appliance total daily energy 
requirements E  (             ) is computed 
from the daily energy consumption time series x 
generated by the proposed consumer demand model. 

5 IMPLEMENTATION AND 

SIMULATION RESULTS 

Having defined the model and the theoretical 
optimisation algorithm in the previous sections, in 
this section we focus on the actual implementation 
of the algorithm.  

Using the controllability and power level data 
from the basic appliance definition, minimum and 
maximum power levels       (    

             
     ) and,       (    

                 
 )  are set equal to the energy consumption time 
series for non-controllable appliances, and to the 
minimum and maximum power level for fully 
controllable appliances. Here, we refer to appliances 
with no operational timing constraints as fully 
controllable appliances. For partially controllable 
appliances the values of these parameters are set 
according to their specific constraints, as will be 
explained later in the simulation results. Given the 
values of parameters            , the optimal 

energy consumption schedules    are computed 
using the algorithm described in Section 3. Finally, 
daily estimates of mean performance measures are 
computed for the original energy consumption time 
series and its optimisation, given the values of x and 
   , respectively. 

The simulation experiment involved generation 
of energy consumption time series and its 
optimization for 100 users for 12 independent weeks 
during a typical winter season. For each week, 
energy consumption time series and its optimized 
version were generated separately for every 
weekday with sampling time of 15 minutes. The 
Peak to Average Ratio (PAR) and the average user 
daily energy cost were subsequently measured for 
each weekday and used to estimate their mean 
values for the week. In the optimisation model, the 
operation time of washing appliances were assumed 
to be flexible throughout the day and hence treated 
as a control variable. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Interface between consumer demand 
model and aggregated demand optimization results 

Table 1: PAR Values. 

PAR values weekday weekend 

original 2.16 1.78 

optimised 2.05 1.65 

 

Furthermore, the power level of heating and cold 
appliances were assumed to be adjustable within the 
range of 10% of their original time series values and 
treated as additional control variables. The daily 
energy requirement of these types of appliances was 
assumed to be fixed and equal to their daily usage 
generated by the consumer demand model. Power 
levels and operation times of the remaining 
appliances were set equal to their original time series 
values. The energy cost function was assumed to be 



 

of the form (4) with parameters           
         for all       

The simulation results indicate that the original 
time series peak loads during the late afternoon/early 
night at weekday are significantly higher than 
weekend as indicated by their respective PAR values 
of 2.16 and 1.78. In these examples, optimisation 
reduces the load variation resulting in PAR values of 
2.05 and 1.65 for the example weekday and 
weekend, respectively (Table 1).  

Figure 4 shows the resulting aggregate energy 
consumption time series and its optimisation for a 
typical weekday (similar results for weekend exist, 
the figure is omitted because of the space 
constraints). Figure 5 gives a better visualization of 
the benefit of optimization, using the load duration 
curve to show the gains made in the peak demand 
using out optimization algorithm. The load duration 
curve shows the energy consumption data by 15-
minute intervals, sorted in descending order. Results 
presented in Figures 4 and 5 show average values for 
100 households, with individual household gains 
greatly depending on the household model.  

 

 

 

 

 

 

 

 

 

 

Figure 4. Aggregate energy consumption time series 
and its optimisation for 100 users for a typical 
weekday 

The overall simulation results indicate that 
optimisation reduces mean PAR between 0.16 and 
0.35 with 99% probability. That is between 7.83% 
and 17.02% of the original time series mean PAR 
estimate. Notice that this is despite the fact that the 
optimisation objective was to minimise the quadratic 
energy cost function, rather than to minimise the 
PAR explicitly. Furthermore, optimisation reduces 
average user daily energy cost between 3.54% and 
14.72% of its original time series mean estimate 
with 99% probability, for all  γ>0 multiples of 
parameters       . 
 

 
Figure 5. Load Duration Curve for aggregate energy 
consumption for 100 users on a typical weekday  
 
 As it was mentioned in the Introduction section, 
averaging the benefits of optimal energy supply 
rarely gives the full picture. The optimisation 
presented in this paper can be used in the design and 
development of user visualisation tools. These tools 
can be used by home users to understand better the 
benefits of optimal appliance schedule at their home. 
For more details about the potential use of data 
visualisation in energy networks the reader is 
referred to (Goodwin, 2013).  
 
6 CONCLUSION  

This paper looks into the problem of optimal use of 
energy in homes. The paper uses problem 
decomposition to show that optimal dynamic home 
energy prices can be used to reduce the cost of 
supplying energy, while at the same time reducing 
the cost of energy for the home users. We provide a 
proof that if energy prices are set as optimal 
consistency prices, the energy provider’s revenue at 
optimal energy consumption levels is greater than 
the variable cost of supplying energy. This is then 
used to design a heuristic real-time algorithm for 
demand management using home appliance 
scheduling. The performance of the algorithm is 
evaluated using simulation, where a comprehensive 
model of home energy consumption is used.  

In terms of the future work, the focus will be on 
two issues: (1) the detailed performance evaluation 
of the presented algorithm, using concrete pricing 
idea, a larger variety of objective functions, 
including peak minimisation and optimisation of 
user comfort/discomfort, and realistic models of user 
reaction; (2) utilising the linear time complexity 
(O(n)) of our algorithm, which makes it suitable for 
performing  simulation on very large sets of data 
(entire city or country) using cluster/cloud 
computing in a very short time for interactive energy 
data analysis and visualisation. In our future work, 
we will aim to experiment with the efficiency of the 



 

algorithm for large-scale optimisation and 
visualisation of household energy use, to understand 
better the nature of the energy price from the user 
point of view. 
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