

City, University of London Institutional Repository

Citation: Siveroni, I., Zisman, A. & Spanoudakis, G. (2008). Property specification and

static verification of UML models. Paper presented at the Availability, Reliability and
Security, 2008. ARES 08. Third International Conference on, 4 - 7 Mar 2008, Barcelona,
Spain.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/635/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Property Specification and Static Verification of UML Models

Igor Siveroni, Andrea Zisman and George Spanoudakis
Department of Computing, City University ∗

London EC1V 0HB, United Kingdom
{siveroni,a.zisman,gespan}@soi.city.ac.uk

Abstract

We present a Static Verification Tool (SVT), a system that
performs static verification on UML models composed of
UML class and state machine diagrams. Additionally, the
SVT allows the user to add extra behavior specification in
the form of guards and effects by defining a small action lan-
guage. UML models are checked against properties writ-
ten in a special-purpose property language that allows the
user to specify linear temporal logic formulas that explicitly
reason about UML components. Thus, the SVT provides a
strong foundation for the design of reliable systems and a
step towards model-driven security

1. Introduction

Secure software engineering is a new research area con-
cerned with the integration of security and software engi-
neering. Among other things, it proposes that security and
system reliability requirements should be considered from
the early stages of the software development cycle, that is,
from the design and modeling stage. The Unified Modeling
language (UML) has become the standard notation for the
analysis and design of object-oriented software and systems
[10], and, moreover, several extensions have been proposed
to include application specific notions and deal with differ-
ent type of requirements, both quantitative and qualitative.
Furthermore, the use of UML models, given their simplicity
and high level of abstraction, provides a great opportunity
for the application of formal methods and automated veri-
fication techniques. The combination of UML models and
formal verification techniques is , therefore, extremely at-
tractive.

The work presented in this paper proposes the specifica-
tion of security and system reliability aspects, and the use
of formal verification techniques, from the early stages of

∗This work was supported by the European Commission under the In-
formation Society Technologies Programme as part of the project PEPERS
(contract IST-26901)

the software development. We present a Static Verification
Tool (SVT), a system that provides a strong foundation for
model-driven design of secure and reliable systems.

The SVT uses UML models composed of UML class di-
agrams and UML state machine diagrams. Additionally, the
SVT allows the user to add extra behavior specification in
the form of guards and effects - the SVT defines and imple-
ments a small language for this purpose. UML models are
checked against security and general application properties
written in a special-purpose property language that allows
the user to specify linear temporal logic formulas that rea-
son about UML machine states and transitions as well as
field values and message passing. The results of simulation
runs and the static verification process are sent back to the
user in the form of execution traces of the model’s UML
state-machines.

Our main contributions are (1) the translation of UML
models - including the special guard/effect language - into
Spin/Promela models that are amenable for model check-
ing and (2) the definition and translation of an expressive
property language designed to reason about temporal and
general properties of UML state machines. Future work in-
cludes extensions in the property language to handle notions
of secrecy and access control policies, together with the im-
plementation of attacker models.

2. Framework

The Static Verification Tool (SVT) is based on the static
verification framework defined in [18]. The main aim of this
framework is to support the design and analysis of abstract
behavioral system specification. The SVT implements a
subset of the framework components, namely, the (a) De-
sign Model Constructor, (b) Property Editor, (c) Verifiers,
(d) Results Visualization and (e) Translators components.

The Design Model Constructor component is responsi-
ble for the construction of abstract design models of the sys-
tem. We use UML models [10] for the specification of the
structural and behavioral elements of the systems to be ver-
ified. We integrate an existing UML case tool to assist with

the construction of such design models. The Property Edi-
tor allows the user to build the properties to the verified by
the SVT. These properties are specified using an extended
and user-friendly version of linear temporal logic (LTL) [2]
tailored to reason about objects and state machines. We
have chosen to use model checking as our main verifica-
tion technique and, in particular, the Verifiers component
uses SPIN [5], a generic model checking tool that has been
applied to the verification of several control and software
systems. SPINs specification language, Promela, is similar
to C and supports message passing channels, essential for
the modeling of distributed systems. Furthermore, SPIN
uses an on-the-fly model checker thus avoiding the need to
construct a global state graph. The mix of flexibility and
efficiency, together with its ability to specify properties as
LTL formulas and automata, makes SPIN an ideal target
system.

In order to present the results of the verification process,
the framework contains a Result Visualization Component
that shows the parts of the design models involved in a prop-
erty violation. This is achieved by displaying a step-by-step
execution trace of simulations and error trails. Finally, the
framework contains Translators to support the mappings
from UML design models into SPIN/Promela models, and
from properties expressed in the extended LTL property lan-
guage into the specification language used by the verifica-
tion tools.

The SVT is implemented in Java and is packaged as
an Eclipse plug-in that runs along the Papyrus UML [13]
graphical modeler. The plug-in will be made available at
the PEPERS project site (www.pepers.org).

3 The Static Verification Tool (SVT)

3.1 UML Diagrams

The UML models used by the SVT are defined by two
types of UML diagrams: class diagrams, which define the
structure of the model, and state chart diagrams, which
specify the behavior of each of the defined classes. A valid
UML model, made of a single class diagram and a single
state chart diagram per class, must be a correctly typed ele-
ment of Model as defined in Figure 1 and Figure 1.

The structure of the UML models used by the SVT is
defined in Figure 1. A model is made of a set of class and
object declarations. Class declarations (C) correspond to
the classes defined by the class diagram while object decla-
rations bind object names (o) to class names (c). Figure 2
shows the class diagram of a UML model (our chosen ex-
ample) that declares two classes: Sender and Receiver. The
current implementation automatically generates one object
declaration per class e.g. it declares objects oSender and
oReceiver from the sample class diagram.

Model = (o : c)+ C+ , o ∈ OName
C ∈ Class = c SF ∗ F ∗ M∗ SM
F ∈ Field = f : τ

SF ∈ SField = sf : τ [v] , v ∈ BValue
M ∈ Operation = [τr] m (x : τ)∗ , x ∈ Par

τ ∈ Type = Basic | c

SM ∈ Machine = s0 sf s+ T ∗ , s ∈ State
T ∈ Transition = t s1 s2 [m] [g] ac∗

g ∈ Guard = BExp
ac ∈ Action := v = e; | call v.m(e∗);

if b then ac∗ else ac∗ fi;
v ::= c.sf | o.f | f | x

e ∈ Exp := a | b , aOp ∈ {+,−, ∗, /}
a ∈ AExp := a aOp a | (a) | v | Int
b ∈ AExp := not b | b bOp b | v | (b)

a cOp a | true | false
bOp ∈ {and, or, implies}, cOp ∈ {<,≤, >,≥}

Figure 1. UML Model Definition

A class is made of zero or more field (F) and operation
(M) declarations, plus a Machine component. Fields are of
basic UML type (result field in Sender) or reference type
(peer field of type Sender in Receiver). In addition, static
fields (SF) can be assigned default values e.g. number field
in Receiver has default value 2. An operation (M) is de-
fined by its return value, name (m) and list of argument
declarations. Our sample model declares two operations,
receiveValue, with a single argument of type Integer (not
shown), and getValue in class Sender.

Machine (Figure 1) denotes the state machine defined by
the state chart diagram associated to it. The SVT deals with
flat, non-hierarchical state machines, that is, state machines
with a single region. Therefore, state machines are com-
posed solely by an initial state, a final state, and two finite
sets of states and transitions. A state (s) is defined by its
name. A transition, denoted by s1 → s2, is composed by its
name (t), source state s1 and target state s2. Additionally,
a transition may carry annotations of the form m[f]/ac∗ to
indicate the presence of trigger, guard and effect elements.
A trigger defines the event (operation m) that triggers the
execution of the transition. The guard defines the condition
that must be satisfied before the transition is executed, and

Sender
- result: Integer
+ peer: Receiver
+ receiveValue(inValue)

Receiver
+ value: Integer
+ peer: Sender
+ number: Integer = 2
+ getValue()

Figure 2. Example: UML Class Diagram

SenderxS0 tkSf

�� ��S1
�� ��S2

�� ��S3

�� ��S4

6

/ iniS

-
/ call peer.getvalue()

-
receiveValue / result=inValue

?

[result ≤ 5]

ltfive
�

�
�

�
�

�
�	

[result > 5]

gtfive

� multiply

/ result=result*5

Receiver tkRf

xR0
�� ��R1

�� ��R2

-
/ iniR

?

getValue

� final

/ call peer.receiveValue(value)

Figure 3. Sender/Receiver State Machines

the effect lists the set of actions that are executed together
with the change of state. Figure 3 shows the state chart dia-
grams associated to the Sender and Receiver classes of our
example.

UML leaves the syntax and semantics of guards and ef-
fects unspecified. We introduce a small action language,
defined by the syntactic class Action in Figure 1, in order
to model object state changes and message passing.

An effect is a sequence of actions executed atomically.
Guards are boolean expressions that deal with variables de-
noting static fields (c.f), fields of external objects (o.f), lo-
cal fields (f) and argument variables (x). Variables values
are modified by assignment actions v = e; while guards and
effects can be combined conditional actions (if-then-else).
Going back to our example, effects iniS and iniR, labeling
transitions S0→S1 and R0→R1, respectively, are defined
as follows:

result = 2*Receiver.number; peer = oReceiver;
value = Receiver.number; peer = oSender

Objects communicate via messages, sent by call ac-
tions and received as triggers. Messages are sent by call
actions and placed in the receiver’s queue of incoming
events. There are two types of transitions: completion
(no trigger) and triggered transitions. Completion tran-
sitions are checked (for guards) and executed first. If
there are no completion transitions available, and the cur-
rent state is the source of, at least, one triggered transi-
tion, the state machine removes an event from the incom-
ing queue and looks for a matching triggered transition
(valid guard included) to execute. If there is no matching
transition, the event/message is dropped. If there is more
than one executable transition, the machine picks one non-
deterministically. If the input queue is empty, the state ma-
chine blocks.

P ::= ultl P | P bltlP | (P) | o.dropped
uml [.{ b }] | vq | aq | true | false

ultl ::= always | eventually | next | not
bltl ::= until | bOp
uml ::= call(v, v,m | ∗) | state(o, s) | trans(o, t)

vq ::= c.sf | o.f
aq := aq aOp aq | (aq) | vq | Int

Figure 4. Property Language Syntax

Going back to our example, transition R2→Rf
in class Receiver is executed together with effect
call peer.receiveValue(value); which sends message receive-
Value, with argument value, to the object pointed by peer
i.e. oSender. On the Sender’s side, receiveValue is first
removed from the queue of incoming messages and then
matched against the transitions that start from the current
state. Only a transition whose trigger matches receiveValue
will be executed. In our case, the current state should be
S2 and, therefore, S2→S3 is executed. The semantics of
guards and effects is implemented by the translation de-
scribed in Section 3.4.

3.2 Property Specification

LTL is a popular formalism well suited not only for the
verification of general system requirements, but also for the
specification of security and reliability properties. However,
in order to be useful in the context of UML models, LTL
has to be able to explicitli reason about transition execution,
states, class values and messages. In this section we define
an extension of LTL that tackles these problems.

The SVT performs verification of UML models against
properties specified in a property language based on linear
temporal logic (LTL) [2]. The SVT property language (Fig-
ure 4) is made of predicate logic terms (including UML spe-
cific predicates and variables) mixed with temporal logic
operators. Examples of non-temporal formulas follow:

(oSender.result < 6) and (oSender.result > 0)
(5 < oReceiver.value) implies (oSender.result = 5)

All variables (fields and arguments) must be qualified by
an object or class (static fields) name. For example, syntax-
oSender.result refers to the field result of class Sender.

Linear temporal logic reasons about the validity of pred-
icates over all execution traces of the model. The LTL op-
erators used by the SVF are always, eventually and until.
For example, the formula always oSender.result < 100
is true if the field result belonging to the oSender
object is less than 100 on all execution states, and
eventually (oSender.return = 7) is true if return becomes 7
at least once in all possible executions.

LTL and predicate logic can be mixed with the special
predicates call, state and trans specific to UML state ma-

chines: call(o1,o2,m) checks if object o1 has made a call to
method m in object o2, state(o,s) checks if the current state
of object o is s and state(o,t) checks if transition t is executed
in object o. For example, given the following formulas:

P1 eventually state(oSender,S2)
P2 always (call(oSender,oReceiver,getValue) implies

(eventually call(oReceiver, oSender, receiveValue))
P3 always (state(oReceiver,R1) implies

(oSender.result > 100)
P4 always state(oSender,initial) implies

eventually trans(oReceiver,R2)
P1 checks if the state machine of oSender eventually

reaches state S2, P2 checks that all calls to getValue are
matched by a call to receiveValue, P3 is true if the value
of result in object oSender is always greater than 100 ev-
ery time oReceiver reaches state R1, and P4 will check that
transition R2 in oReceiver is always, at some point, exe-
cuted after oSender reaches state initial.

Of particular interest is the special (optional) scope con-
struct added to the call and state predicates. By writing
call(o1,o2,m).{ x < 2 } the user can reason about the argu-
ments of operations. Assuming x is declared as argument
of m, the predicate above will be true if there is a call on m
from o1 to o2 and the value of x is less than 2. Similarly,
there is no need to qualify local field f belonging to object o
in state(o,s){ f < 5 and f >= 0 }

Security properties, as defined by [15], can be specified
using our property language. For example, the property stat-
ing that the first call from o1 to o2 must be Read followed
by no calls to Send can be specified by writing:

call(o1,o2,*) .{method != Read} until (call(o1,o2.Read)
and always call(o1,o2,*).{method != Send})

3.3 Translating UML models into SPIN

The SVT translates the structural and behavioral aspects
of all loaded UML models into Promela, the modeling lan-
guage used by Spin. This is a rather complex process that,
together with the Property Editor, constitutes one of the
main contributions of the SVT.

The translation of UML models into Promela must not
only implement the semantics of UML state machines; it
must also provide the infrastructure to facilitate the verifi-
cation of properties that reason about state machines, in-
cluding the provision of variables to keep track of UML el-
ements such as states, transitions and messages.

Promela models are constructed from three basic types
of objects: processes, data objects and message channels.
Processes, instantiations of proctype declarations, are used
to define behavior. Given a UML model, the translator
generates a proctype declaration per class and instantiates
one process per object. Class fields and operation parame-
ters are implemented as data objects; the transformation de-

clares static fields as global variables while non-static fields
and method arguments are declared as local variables inside
the body of the process type declaration of the owning class.
Promela message channels are used to model the exchange
of data between processes. We use channels to model the
input and output queues of state machines, essential parts in
the implementation of triggers and method invocation.

A Promela model generated by the SVT has the follow-
ing structure:

<GlobalDeclarations> <ObjectDeclaration>
<StaticFieldsDeclaration> <ClassDeclaration>+
<CommProcessDeclaration> <InitProcess>

The <GlobalDeclarations> section declares the chan-
nels used for communication, special datatypes and
special global variables. <ObjectDeclaration> de-
clares the constants used to index model objects and
<StaticFieldsDeclaration> lists the static fields from all
classes they are all implemented as global variables.
Processes are declared next. The translator generates a
<ClassDeclaration> per class and a special proctype dec-
laration for Comm, the process in charge of message
traffic between objects. Finally, the code generated for
<initProcess> instantiates all the objects that take part of
the execution of the system.

The top level structure of the Promela model generated
for the Sender/Receiver example is shown in Figure 5. The
top part of the code corresponds to the global declarations
used by the model. The special Promela datatype mtype can
be used by the programmer to define constants in a similar
way as its done with an enumeration type. We use mtype
to assign constants (tokens) to operations which, in turn,
denote the triggers accepted by the transitions of the state
machines. In our example, tokens A0 and A1 denote opera-
tions receiveValue and getValue, respectively. Global vari-
ables numStarted and checkFlag are internal variables used
for object synchronization and model checking.

Communication between processes is performed using
channels. The communication model used by the SVT
assigns two channels per object, one for incoming mes-
sages and another for outgoing messages. Object chan-
nels are stored in arrays inQ and outQ, of type chan, and
size NUMCHAN (number of objects). All messages have
the same structure, <operation, sender, receiver, p0,,pn>,
with p1,,pn carrying the values passed as arguments to the
method call. The maximum number of parameters in our
example is one and, thus, messages are of type mtype, byte,
byte, byte. Method calls are implemented by writing into
the sending object’s (we use variable pNum to keep track
of the objects process number) output queue while incom-
ing messages (triggers) are read from the receiving object’s
incoming queue. The SPIN code generated is:

outQ[pNum]!trigger(sender,receiver,prm0);
inQ[pNum]?trigger(sender,receiver,prm0);

/**** Declarations ****/
mtype = { A0, A1 };
#define QSIZE 2
#define NUMCHAN 2
chan inQ[NUMCHAN] = [QSIZE] of <message>;
chan inQ[NUMCHAN] = [QSIZE] of <message>;
chan outQ[NUMCHAN] = [QSIZE] of <message>;
chan inCom = [QSIZE] of <message>;
chan outCom = [QSIZE] of <message>;
byte numStarted=0;
bool checkFlag=true;

/* Object declarations */
#define oSender 0
#define oReceiver 1

/* Static fields Class Receiver */
byte Receiver static=2;

/**** Class Declarations ****/
/* Class number 0 */
proctype Sender(byte pNum) { <body> }

/* Class number 1 */
proctype Receiver(byte pNum) { <body> }

proctype Comm(byte pNum) {
byte trigger,receiver,sender;
byte prm0;

end2: atomic {
if
:: outQ[0]?trigger(sender,receiver,prm0) ->
inQ[receiver]!trigger(sender,receiver,prm0);
:: outQ[1]?trigger(sender,receiver,prm0) ->
inQ[receiver]!trigger(sender,receiver,prm0);
fi;
goto end2; }}

init {
atomic {

run Sender(oSender);
run Receiver(oReceiver);
run Comm(2)

}}
where <message> = {mtype,byte,byte,byte};

Figure 5. Sender/Receiver Promela Model

We have chosen to use a separate process, Comm,to han-
dle the traffic of messages between objects. This is an ap-
proach similar to the one used in [7]; like them, our inten-
tion is to use Comm to implement attacker models (future
work). The current implementation of Comm (Figure 5)
defines the process as an infinite loop that, at each itera-
tion, removes a message from the output queue of one of
the objects of the model and places it, untouched, in the
input queue of the matching receiver. If all output queues
are empty, the communication process blocks. If more than
one input queue has a pending message, Comm picks one
of them non-deterministically. By following this approach,
several kinds of attacks can be modeled with very little ef-
fort e.g. messages can be dropped, modified or replicated
by changing a few lines.

UML classes are translated into Promela processes that
implement the (non-static) structure specified by the class
diagram and the behavior defined by its state machine. We
describe class declarations by showing the details of the
code generated for class Receiver of our example (Figure 6

Objects are implemented as processes and are instanti-
ated by using the Promela operator run. Instantiation re-
quires one argument, pNum, the process number assigned
by the translator - see object declarations in Figure 5 - and
used as index to access the processs global data structures.
All declared processes are instantiated from inside the init
process, as listed in the bottom of Figure 5. For example,
object oReceiver of class Receiver is instantiated by execut-
ing run Receiver(oReceiver);.

Local declarations include non-static fields (value, peer),
parameters (prm0 denotes the single parameter used by the
class) and special variables to keep track of states, tran-
sitions (current and transition, respectively), and message
passing - all this variables are made available to the veri-
fication process and can be accessed by the property lan-
guage. The translator maps state, transition and operation
names to constants. For example, the initial state, assigned
to variable state before the execution of the classs body, has
value 1. SVT traces are generated by print statements of the
form printf(<t start ...) described in more detail in Section
3.5. All state machines must start together from their cor-
responding initial states. We enforce this by blocking each
process until all objects have executed the Synchronise sec-
tion.

The remaining of the code implements the semantics of
state machines. The first part, <CompletionLoop> in Fig-
ure 6, implements the execution of transitions that do not
contain triggers i.e. completion transitions. Both com-
pletion transitions in Receiver are unguarded, with con-
ditional (current==stateNumber) used to select the com-
pletion transitions leaving from source state stateNumber.
Non-deterministic choice is applied if more then one tran-
sition is available. Note that the translation of actions

/* Class number 1 */
proctype Receiver(byte pNum) { atomic {
byte value,peer;
byte current = 1;
byte trigger,receiver,sender;
bool msgUnread=false;
byte transition=0;
byte prm0;

printf(”<t start . . . > \n”,pNum,current);
/* Synchronise */
numStarted++;
(numStarted >= 2); // blocking
checkFlag=false;
} // end atomic
LMAIN1:
atomic {
msgUnread=false;
<CompletionLoop>
goto LMAIN1;

LCOMPLETED1:
<ReadMessage>
<ExecuteTriggered>
goto LMAIN1;
LFINAL1: skip;
} }
<CompletionLoop>
if
:: (current == 1) ->

if
:: (true) ->

peer = oSender;
value = Receiver number;
current=2;
transition=8;

fi
:: (current == 3) ->
if
:: (true) -> /* call peer.receiveValue(value); */

trigger = A0; /* receiveValue symbol A0 */
sender = pNum;
receiver = peer;
prm0 = value;
outQ[pNum]!trigger(sender,receiver,prm0);
printf(”<t send . . .);
current=0;
transition=10;

fi
:: else -> goto LCOMPLETED1;
fi;
printf(”<t trans . . .);

Figure 6. Receiver class Promela code

is almost straightforward with the exception of the call
statement that uses the special syntax of channel writing.
<ReadMessage> implements message reading and param-
eter assignment. In our example, the code generated is:

if
:: (current == 0) -> goto LFINAL1;
:: else -> skip;
fi;
inQ[pNum]?trigger(sender,receiver,prm0);
if
:: (trigger == A1) -> { /* No arguments */

printf(”<t recv . . . > \n”,sender,receiver);
. . .
fi;

The code first checks if the final state has been reached.
If not, it reads on its input channel and blocks until a mes-
sage arrives. When the message arrives, the process un-
blocks and assigns, depending on the value of the trigger
(operation), the actual parameters to the corresponding for-
mals parameters. <ExecuteTriggered> implements the ex-
ecution of triggered transitions. It’s implemented as a con-
ditional which branches depending on the value of the cur-
rent state and trigger. The code generated for Receiver is:

if
:: (current == 2) ->

if
:: (trigger == A1) ->

current=3;
transition=9;

:: else -> msgUnread=true;
transition=1;

fi
fi;

The code above corresponds to the execution of transi-
tion R1→R2. The else branch flags the msgUnread vari-
able, indicating that the message was dropped, and executes
the special transition designated to indicate such cases.

Transition execution, effects included, must be per-
formed atomically. This is achieved by inserting the special
Promela atomic statement around the loops that implement
the state machine. This is of particular importance because
it defines the places where verification takes place; model
checking is performed (never automata) after the execution
of every atomic statement. Atomicity is broken when a pro-
cess blocks (message waiting) or when the code jumps out
of the scope of the atomic region. We use this fact and in-
troduce back jumps to LMAIN1 outside the atomic area in
order to make sure that checks are performed by the verifier
after the execution of each transition.

3.4 Translating properties into Spin LTL

Properties written in the property language defined in
Section B must be translated into the LTL version used by
Spin. The property language is more than just a syntax-

friendly version of LTL; it introduces new predicates and
variables that deal with UML elements and, furthermore,
addresses these elements by the names defined in the class
and state chart diagrams. Model checking is performed by
Spin on generated Promela models that work at a much
lower level of abstraction which, in turn, are checked
against never automata the latter can be generated from
Spin LTL formulas. The translation must bridge the gap be-
tween both representations. For example, given the formula

always state(oReceiver,R1) implies
eventually trans(oReceiver,final)

the SVT resolves all internal references, e.g. oReceiver and
R1 are mapped to the corresponding object and state, and
generates two outputs: a set of definitions and the Spin LTL
version of the formula. We get:

#define pp0 (Receiver:current==2)
#define pp1 (Receiver:transition==10)
!([]((pp0) -> (<>(pp1)))) // Spin LTL

Spin LTL formulas can only deal with boolean variables
e.g. predicates like (x > 2) are not valid. Therefore, the
transformation has to generate special #define declarations
that name all boolean expressions and plug the new vari-
ables inside the generated Spin formula. In the example
above, pp0 and pp1 encode predicates state and trans, re-
spectively. Note that operators are translated into their LTL
counterparts e.g. [], <>, U; and formulas are written us-
ing the variables and values used by the generated Promela
model e.g. state R1 is denoted by 2. Note that we actually
get the negation of the initial formula. This is because the
verifier looks for places where the property does not hold
and, therefore, requires the negated condition as input. Sim-
ilarly, the translator takes as input the property

(always (state(oReceiver,R1)
implies (oSender.result > 100))

and generates:
#define pp0 (Receiver:current==2)
#define pp1 (Sender:result > 100)
!([]((pp0) -> (pp1))) // Spin LTL

The generated formula is then transformed into a Büchi
automata (never clause) using one of SPIN utilities and,
both definitions and never clause, are appended to the model
to form the never file.

3.5 Result Visualisation

The output generated by the Spin model checker is of lit-
tle use for the user since it is far removed from the level of
abstraction used to specify the system: UML models. Even
the simulation runs, displayed as a list of executed source
code lines, are difficult to decipher. This is expected; the
Spin model is the result of a translation from UML models
to Promela and, consequently, the results need to be trans-
lated back to UML notation.

We tackle this problem by generating SVT specific mes-
sages interweaved with Spins usual. The translated Promela
model contains a series of printf statements (see Section
3.4) that, when executed, generate a separate trace specif-
ically designed to show the execution of state machine tran-
sitions and message passing. The output of these statements
is mixed with other Spin messages that have to be filtered
out. Once this is done we get a sequence of tagged mes-
sages that are then processed by the SVT. A simulation run
of our example will generate, after filtering out unrelated
Spin output, the following text sequence:

<t start c=Receiver o=1 s=1 >
<t start c=Sender o=0 s=0 >
<t trans c=Sender o=0 s=1 >
<t send s=0 r=1 m=”getValue()” >
<t trans c=Sender o=0 s=2 > . . .

Clearly, most of the information shown above relates
to the internal representation of the UML model used by
the Promela model. A second phase is required, namely,
all Promela constants have to be translated back into UML
names. For example, state 2 in Sender must be transformed
back into R1. The resulting trace, with all constants mapped
back into UML names, uses the following format:

START o:Class state=S TRANS o:Class S1->S2
OUT: o1->o2 m(args) IN: o2<-o1 m(args)

START indicates that execution of object o has started in
state S. TRANS indicates that the transition that goes from
state S1 to state S2 in object o has been executed. OUT
and IN indicate that message m(args) has been sent from
object o1 to object o2, and received by o2, respectively. A
simulation trace for our example is shown in Figure 7-1.

Verification counterexamples are also displayed as exe-
cution traces. The result of checking

always (state(oReceiver,R1)
implies (oSender.result > 100)

against our sample model is shown in Figure 7-2. The out-
put basically says that verification stopped right after tran-
sition R0->R1 was executed on oReceiver. This is the first
time oReceiver gets to state R1 and the first time the com-
parison is made. The check fails and the verification process
stops.

4 Related and Future Work

The need to develop a more precise specification of UML
has been a concern [3] since its inception and adoption as
standard notation for object-oriented analysis and design by
the Object Management Group (OMG). As a result, several
formalizations have been proposed to model the behavioral
part of UML and, in particular, the formal specification of
the semantics of statechart diagrams [11, 17, 7]. Most of the
work on formalization of UML state machines has been in
the context of automated formal verification of systems and,

Trace 1:
START oSender:Sender state=S0

START oReceiver:Receiver state=R0
TRANS oSender:Sender S0->S1

TRANS oReceiver:Receiver R0->R1
OUT:oSender->oReceiver ”getValue()”
TRANS oSender:Sender S1->S2

IN:oReceiver¡-oSender ”getValue()”
TRANS oReceiver:Receiver R1->R2
OUT:oReceiver->oSender ”receiveValue(2)”
TRANS oReceiver:Receiver R2->Rf

IN:oSender<-oReceiver ”receiveValue(2)”
TRANS oSender:Sender S2->S3
TRANS oSender:Sender S3->S4
TRANS oSender:Sender S4->Sf
Trace 2:

START oReceiver:Receiver state=R0
START oSender:Sender state=S0

TRANS oReceiver:Receiver R0->R1

Figure 7. Sample Traces

in particular, model checking [8, 12, 14, 9]. A good num-
ber of these specifications have been used as input for Spin
translations. The automatic verification of UMLsec mod-
els, described in [6, 7], is the most thorough work on model
checking security requirements of UML models using Spin.
The Spin translation used in this paper resembles the one
defined in [6]; we both deal with non-hierarchical state ma-
chines, completion and triggered transitions are treated sep-
arately (in the main loop), and we both define a separate
process for message exchange. The latter is used to model
intruders in conjunction with a cryptographic action lan-
guage. Our main contribution with respect to the UMLsec
translation is that ours is fine-tuned for model checking of
properties that reason about UML elements. Jussila et.al.
[8], like us, model UML classes as processes and define
a separate action language but very little effort is put on
the verification of properties besides the basic checks per-
formed by Spin. The Hugo project [14] uses a Spin trans-
lation to verify collaboration diagrams against UML state
machines but unfortunately no further work is done with
other types of specification, such as LTL. Gnesi et.al. [4]
define a logic based on µ-ACTL, a temporal logic similar in
essence to our property language. However, our language
captures more UML features and presents them to the sys-
tem developer an a more user-friendly way. The work pre-
sented in this paper sets up the basis for future work in excit-
ing research areas. Our main goals include the extension of
UML models to include features such as synchronous mes-
sage passing and hierarchical state machines, and to further
develop the property language in conjunction with alterna-
tive specification techniques. In particular, we are interested
in the development of a graphical property editor, the ap-

plication of templates to property specification [1] and the
inclusion of UML stereotypes for the specification of se-
curity requirements using the UMLsec [6] profile, and Se-
cureUML [16] for access control policies. The latter in-
cludes the modeling of intruders and role-based access.

References

[1] M. Dwyer, G. Avrunim, and J. Corbett. Patterns in property
specifications for finite state verification. In International
Conference on Software Engineering (ICSE’99), 1999.

[2] E. Emerson. Temporal and modal logic. In J. V. Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume
B: Formal Models and Semantics. MIT Press, 1990.

[3] A. Evans et al. Making UML precise. In Formalizing UML.
Why? How, OOPSLA’98 Workshop Proceedings, 1998.

[4] S. Gnesi and F. Mazzanti. On the fly model checking of
communicating UML state machines. In ACIS. IEEE, 2004.

[5] G. Holzman. The Spin model checker: primer and reference
manual. Addison-Wesley, 2003.

[6] J. Jürgens. Secure Systems Development with UML.
Springer, 2004.

[7] J. Jürgens and P. Shabalin. Automatic verification of umlsec
models for security requirements. In SAC’02. ACM, 2002.

[8] T. Jussila, J. Dubrovin, T. Junttila, T. Latvala, and I. Por-
res. Model checking dynamic and hierarchical uml state
machines. In MoDeV2a, 2006.

[9] D. Latella, I. Majzik, and M. Massink. Automatic verifi-
cation of a behavioural subset of UML statechart diagrams
using the SPIN model-checker. Formal Aspects of Compu-
tation, 11(6), 1999.

[10] Object Management Group. http://www.uml.org.
[11] I. Paltor and J. Lilius. Formalising UML state machines for

model checking. In UML 1999. LNCS 1723, Springer, 1999.
[12] I. Paltor and J. Lilius. vUML: A tool for verifying UML

models. In ASE’99. IEEE, 1999.
[13] Papyrus UML. http://www.papyrusuml.org.
[14] T. Schäfer, A. Knapp, and S. Merz. Model checking UML

state machines and collaborations. In Workshop on Software
Model Checking. ENTCS, 55(3), 2001.

[15] F. Schneider. Enforceable security policies. ACM Transac-
tions on Information and Systems Security, 3(1), 2000.

[16] L. Torsten, D. Basin, and J. Doser. SecureUML: A UML-
based modellng language for model-driven security. In
UML’02. Springer-Verlag, 2002.

[17] M. von der Beeck. A structured operational semantics for
UML-statecharts. Software and System Modeling, 1(2),
2002.

[18] A. Zisman. A static verification framework for secure peer-
to-peer applications. In ICIW07. IEEE, 2007.

