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ABSTRACT 

This study explores the congestion dependence relationship among links using 

microsimulation, based on data from a real road network.  The work is motivated by recent 

innovations to improve the reliability of Dynamic Route Guidance (DRG) systems.  The 

reliability of DRG systems can be significantly enhanced by adding a function to predict the 

congestion in the road network.  This paper also talks about the application of spatial 

econometrics modelling to congestion prediction, by using historical Traffic Message 

Channel (TMC) data stored in the vehicle navigation unit.  The nature of TMC data is in the 

form of a time series of geo-referenced congestion warning messages which is generally 

collected from various traffic sources.  The prediction of future congestion could be based on 

the previous year of TMC data.  Synthetic TMC data generated by microscopic traffic 

simulation for the network of Coventry are used in this study.  The feasibility of using spatial 

mailto:jh205@imperial.ac.uk
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econometrics modelling techniques to predict congestion is explored.  Results are presented 

at the end.   

 

1. INTRODUCTION 

 

As Dynamic Route Guidance systems are a rapidly growing market, more sophisticated 

systems are continuously being developed, including more advanced functions. In recent 

research work [1], [2], [3] and [4], a new Dynamic Route Guidance algorithm was developed, 

which, besides travel time, also takes travel time reliability into account. By defining 

reliability as the probability that a link will be uncongested, the algorithm uses a penalty 

procedure to, where possible, exclude from the route search links classified as unreliable, 

under the assumption that a link’s state is a binary variable, reliable or unreliable. The level 

of link congestion is chosen to measure reliability. 

 

Congestion data are required in many new dynamic route guidance systems.  At present, car 

navigation systems from Garmin, Tomtom and other suppliers can be supplied with 

congestion warning messages via the Traffic Message Channel (TMC), provided that the 

driver has subscribed for the service.  These warnings can then be displayed on the in-vehicle 

map in the form of triangles (see Fig. 1) and can cause the route recommended to the driver 

to be modified.  However, this data relates to congestion that has already happened and has 

been detected by traffic monitoring systems. The quality of guidance could be significantly 

improved if accurate short-term predictions of congestion were also available.  Then the route 

could be sought which would take encountered, rather than current, network conditions into 

account.  The congestion prediction in the context of this paper means the prediction of 

congestion events on certain links of a route at n unit of time ahead.   
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As current vehicle navigation systems are limited to detect incidences of congestion, there is 

no guarantee that the recommended route will turn out to be congestion-free or indeed avoid 

sites of undetected congestion. Since congestion often propagates in predictable ways and is 

recurrent, reasonably accurate short-term forecasts of congestion should be possible.    

 

 

 

 

 

 

Fig. 1: In-vehicle display of a BMW 

 

The aim of this paper is first to explore the congestion dependence relationships among links 

and then investigate the potential for using spatial econometrics models to predict the 

congestion propagation and dissemination on the road network for eventual use in car 

navigation systems. Link reliability, failure dependence relationships and congestion 

propagation, which form the basis of the study presented here, are first reviewed.  By using a 

case study of a real road network for the City of Coventry in the UK, the impact of 

congestion on neighbouring links as well as the propagation and dissipation of congestion are 

studied.  A congestion forecasting framework based on link speed data is established.  Results 

are presented at the end.   

 



 4 

2. BACKGROUND 

2.1. Failure dependence relationship 

The concept of link failure is derived from the definition of link reliability and represents the 

state of being unacceptably congested, which in the case of a road network means that the 

travel time on the link is longer than a preset threshold.  Links in a real road network, 

however, do not usually fail independently. When a link fails or is degraded, the adjacent 

links or the links in the same area are also likely to be affected by the same degradation, 

although with a lag. In order to propose a more reliable path for the travellers, link failure 

dependence relationships should be taken into account in a robust route guidance algorithm.  

 

Only a few studies on link failure dependence have been carried out so far. [1] introduced the 

idea of link failure dependence by defining three possible types of failure dependence 

between two links. Considering two links i and j, if the performance of link i deteriorates, 

then link j is positively failure dependent on i if its performance also deteriorates. 

Alternatively, j is negatively failure dependent on i if a deterioration of the performance of i 

results in an improvement of the performance of j, and if a deterioration of the performance 

of i leaves the performance of j unaffected, then i and j are failure independent. In order to 

quantify the degree of failure dependence, [1] introduce a failure dependence coefficient ij, 

where -1< ij <1.  

 

The calculation of ij is carried out using a so-called topological failure dependence 

approach, according to which it is assumed that links are failure dependent because of their 

location. For instance, if link j is located directly upstream to the incident link i or is an 

alternative to it, it is very likely that its performance will have a high positive correlation with 

the performance of link i and j will therefore be positively failure dependent on i. Conversely, 
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if j is located directly downstream of the incident link i, it is very likely that it will be 

negatively failure dependent on i, because it will benefit from the bottleneck effect of the 

incident. Thus, depending on the location of the link in question, the failure dependence 

coefficient between them varies accordingly.  

 

2.2. Congestion propagation  

Through the study of link failure dependence relationship, we further find one interesting 

aspect of congestion, which is its propagation.  It tends to propagate in a direction opposite to 

the flow of traffic.  Its propagation has been studied in previous research [5].  The results 

shed light on the phenomenon of progressive link failure which characterises the propagation 

of congestion, where failure is characterised by a collapse in link speed.  Fig. 2 illustrate the 

situation at the time of the initial link failure (circled on left) and 30 minutes later on the right 

(red indicates link failure).  So if we study the pattern of congestion generation, propagation 

and dissipation, in other words the dependent relationship among these link speeds, we could 

predict when congestion is likely to arise on a certain link.  However, this dependent 

relationship is complicated, since links speeds are usually spatially and temporally correlated 

with each other.    

 

Fig. 2(a): Initial link failure Fig. 2(b): Link failure after 30 minutes 
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Inter-dependencies in link speeds depend on network topology.  The incidence of congestion 

on a certain link depends on its location and distance from the initial congested link.  The 

blockage of the initially congested link usually results in the congestion of the upstream links.  

The distance to that initial congested link and the extent of shared flow determine the degree 

of impact.  On the other hand, downstream links usually appear to be less congested when the 

traffic is blocked upstream.  In previous link reliability studies, [1] categorise this geometrical 

relationship into three types: positively dependent, negatively dependent and independent.  

This can be quantified by the so-called  failure dependency coefficient, which has mentioned 

above.  This is elsewhere used to find reliable routes for dynamic route guidance.     

 

Link speeds on the network are also autocorrelated. The speed on a link at a particular period 

t is determined by the state of the link at previous periods, t-1, t-2, etc.  For example, if we 

know a link is congested in the previous period, there is a high probability that the link will 

be congested in next period.     

 

2.3. Congestion incidence prediction models 

As can be found in the literature, a large number of traffic prediction models exist.  Broadly 

speaking, there are two types of prediction models in terms of their methodological 

approaches: simulation-based models and data-driven models.   

 

Simulation-based approaches make use of traffic flow simulation models, derived from traffic 

flow theory, to predict the traffic conditions on the route of interest.  Many simulation 

software tools have been developed, the most notable of which are DynaMIT [6] and 

SAVaNT [7].  DynaMIT was developed to predict the inductive travel time on a route of 
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interest, its underlying model being based on driver behaviour assumptions such as car 

following, gap acceptance and risk avoidance.  SAVaNT, on the other hand, is used to predict 

link travel times in decentralized route guidance architectures, its underlying model being 

based on driver behaviour.   

 

Data-driven approaches refer to a broader category of congestion prediction models.  These 

approaches include general statistical models [8], neural network models [9] and machine 

learning models [10].  General statistical methods have been used by many researchers [8] to 

develop journey time forecasting models, on a link-by-link basis.  These methods have been 

proven to be relatively simple and robust, and as they usually do not require many input 

parameters, they are efficient in their operation.   In the model proposed by Hounsell and 

Ishtiaq [8], the required parameters are only incident severity and location in the network, 

from which the forecasted journey time on the incident link and on affected links can be 

generated.  Other statistical models also include time series models [11], ARIMA 

(AutoRegressive Integrated Moving Average) models for predicting traffic flow [12], and 

Bayesian travel time prediction models [13].   

 

In this paper, we adopt the spatial econometrics approach.  Spatial econometrics is a subfield 

of econometrics that deals with the treatment of spatial interaction (spatial autocorrelation) 

and spatial structure (spatial heterogeneity) in regression models for cross-sectional and panel 

data [14].  Spatial dependence can be defined as the existence of a functional relationship 

between what happens at one point in space and what happens elsewhere.   

 

There are mainly two causes of spatial dependence: measurement errors and spatial 

interaction phenomena.  Regarding the former, spatial dependence is a by-product of 
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measurement errors from observations in contiguous spatial units.  In most empirical studies, 

data is only collected at an aggregate scale and there may be little correspondence between 

the spatial scopes of the phenomenon and the spatial units of observations.  As a 

consequence, measurement errors are likely.  Regarding the latter cause, spatial dependence 

occurs due to the existence of a variety of spatial interaction phenomena.  As a result, what is 

observed at one point is determined by what happens elsewhere in the system.  This can 

formally be expressed in the following equation: 

 

)...,,( 321 Ni yyyyfy   

i  S, where S as the set containing all spatial units of observations 

 

Every observation of a variable y at i is related formally through function f to the magnitudes 

of the variable in other spatial units of the system.  In this study, we are more concerned 

about the second case of spatial dependence, as this type of dependence is more likely to 

appear in a road network. 

 

Spatial heterogeneity can be seen as a lack of structural stability of the various phenomena 

over space.  In road networks, for example, according to the road hierarchy, accidents 

occurring on different roads will have different effects on the network, such that major roads 

tend to have a higher impact than minor roads.  Therefore, different functional forms should 

be considered in the model.  The easiest way to illustrate spatial heterogeneity is to express it 

by the following expression: 

),,( ititititit xfy   

where i = spatial unit of observation, 

t = time period 
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The fit is a time-space specific functional relationship, which explains the dependent variable 

yit in terms of a vector of independent variables xit, a vector of parameters βit, and an error 

term εit.   

 

Spatial econometrics models saw widespread application after Anselin’s description of the 

method [14].  The broad application of spatial analysis in the transportation and urban 

planning fields is reviewed in [15].  Mainly, one branch of study is concerned with the 

explicit accounting for the spatial structure assumptions inherent in aggregation, such as 

defining travel zones.  Another is for correlations in statistical models of spatially interacting 

processes like network flows and land uses.  Recent applications in the field of transportation 

have been made in long-term land use models by Zhou et al [16] and in short-term location 

choice by Zhao & Bhat, Guo & Bhat [17], [18].  The work of Aerts et al [19] is an example of 

spatial autocorrelation analysis of incidents on networks.  A spatial correlation model is used 

by Bernard et al [20] to establish the correlation of link travel speed. 

 

3. CASE STUDY OF COVENTRY CITY MODEL 

3.1. Description of the model 

In order to generate useful database for this study, we used the Coventry city traffic 

simulation model.  The model represents the existing traffic situation during a weekday 

afternoon peak hour (17:00 – 18:00) in 2004 [21].  A sudden road closure caused by an 

incident or vehicle breakdown is artificially created on the city ring road, in order to generate 

the congestion data for the analysis.  The incidence link is denoted as the ‘failed link’ on the 

map.  Then the following 8 links are selected for analysis.  In Fig. 3 colour is used to identify 
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the links analysed.  The traffic flows in an anticlockwise direction on the selected links, so 

these links are all upstream links of the incidence link. 

 

The road closed for duration of 30 minutes and reopened at 17:30.  The whole simulation 

period is from 16:30 to 18:30, which is 2 hours.  Therefore, we could be able to look at the 

three stages (incident-free, congestion propagation and congestion dissipation).  

 

 

Figure 3: location of links 

 

3.2. Database 

Analogue speed data is used in this study to investigate the propagation of congestion and 

therefore predict the congestion.  The state of the link can be very well characterised by the 

speed on that link.  The lower the speed, the more severe the state of congestion is on that 

link.   
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Speeds on the 8 selected links are collected.  The average speed of vehicles travelled on the 

links is recorded for 3 minutes interval over 2 hours, giving 40 observations for each link.  

That leads to a cross-sectional (N=8) time series (T=40) panel data set with a total of 320 

(NxT) observations.   

 

However, there are 3 observations of speed missing on link 25 during the highly congested 

period, as the simulation software could not estimate the travel time on that link since the 

speed was zero or nearly so.  Other data missing is due to the nature of the data.  For 

example, our independent variable Vi,t-1, speed lag on the link i at time t-1.  The first value of 

this variable will naturally be missing.  An example of the structure of the data is shown in 

Table 1. 

 

Table 1: Example of panel dataset 

Link id t Vi,t 

S  (speed on downstream 

link at time t) 

Vi,t-1 Vi,t-2 Vj, t-1 

10 1 37.0 30.3    

10 2 37.3 30.3 37.0  30.3 

10 3 35.9 28.9 37.3 37.0 30.3 

10 4 35.0 28.5 35.9 37.3 28.9 

10 5 36.5 30.3 35.0 35.9 28.5 

10 6 34.7 31.3 36.5 35.0 30.3 

10 7 35.9 29.4 34.7 36.5 31.3 

10 8 32.7 25.1 35.9 34.7 29.4 

10 9 36.5 24.4 32.7 35.9 25.1 

10 10 35.9 26.8 36.5 32.7 24.4 
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3.3. Method of analysis 

 

Here we use the simplified network diagram to illustrate the way that the analysis was carried 

out.   

 

  

Figure 4: network diagram 

 

The arrow in the diagram indicates the direction of traffic flow.  Suppose link i is the link in 

question, we wish to predict the average speed on link i at time t.  This is determined by 

various factors, most importantly: the speed on downstream link j in the previous time 

interval (Vj,t-1) as well as the speed on link i in the previous time intervals t-1 and t-2 ( Vi,t-1, 

Vi,t-2).   We used a panel data model to establish this relationship.  This is explained in the 

next chapter.  

 

4. RESULTS 

4.1. Introduction 

 

Panel data are observations on a cross-section of units, links in our case, on the network that 

are observed over a period.  The fundamental advantage of panel data models over cross-

section models is that they take into account autocorrelation as well as correlation between 

links [22].  Two types of panel data model are frequently encountered in the literature.  One 

is the fixed effects model while the other is the random effects model.  The main difference 

j i k 
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between these two models is whether or not the unobserved link effects are correlated with 

the regressors in the model.  The basic forms of two models are as follows: 

 

The fixed effects model is: 

 

T

it it i ity    x β  

 

where αi is a link-specific constant term and does not vary over time. The corresponding 

random effects model is: 

 

T

it it i ity u   x β  

 

where ui is a link-specific random element. Vector x represents the regressors and vector  

represents the parameters. 

 

The regressand and regressors of the model are listed below: 

 

Vi,t  

Vj,t-1  

Vi,t-1  

Vi,t-2  

 

= speed on link i at time t 

= speed on the most immediate downstream link at t-1  

= speed on the link i at time t-1 

= speed on the link i at time t-2 

 

The model captures both spatial and temporal autocorrelation.  However, because the panel 

data in our case has a small number of cross-sectional unit N and large T, if we use the 
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dynamic panel data model, its estimator, called the Arellano and Bond estimator, will not be 

efficient for our problem [23].  It is thought that the general panel data model is more 

appropriate to fit a dataset with small N and large T.    

 

In our case, both the random and fixed effects models will be fitted and then we use the 

Hausman test for random effects model to decide which model is more appropriate.   
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Panel data model 

 

Both the fixed and random effects models are fitted to the data.  The results are compared and 

Hausman test is carried out for the random effects model.  Table 2 shows that the chi-square 

test statistic is 24.42.  From Chi-square table, we find Prob (χ2>24.42) = 0.0000 with three 

degrees of freedom, showing that the difference is statistically significant.   Therefore the null 

hypothesis that the individual effects are uncorrelated with the other regressors in the model 

should be rejected.  So we would conclude that of the two alternatives we have considered, 

the fixed effects model is the better choice according to the Hausman test result.    

 

Table 2: Hausman test for random effects model 

Hausman 

test 

(b) (B) (b-B) 

sqrt(diag(V_b-

V_B)) 

FE RE Difference S.E. 

Vj,t-1 0.26 0.12 0.14 0.03 

Vi,t-1 0.88 0.98 -0.10 0.017 

Vi,t-2 -0.16 -0.14 -0.02 . 

     

Test: Ho: difference in coefficients not systematic 

chi2(3)=(b-B)'[(V_b-V_B)^(-1)](b-B)=24.42 

prob>chi2=0.0000 

 

 

This fixed effect model is therefore defined as: 

 

             ittititjiit VVVaV    2,1,1,                                                           (1)   
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i = 1,……, N; j = 1,……,N; t = 1,……, Ti  

 

Where as defined earlier Vit is the speed for an observation unit (link) i in a given period t (3-

minute intervals), i is a link-specific constant term in the model, which does not change over 

time, and it is the usual residual.   

 

In case of random effect model, the form can be defined as: 

 

            ititititjiit vVVVaV    2,1,1,                                                     (2) 

 

where 



v i is a link-specific random element.   

 

4.2. Model estimation results 

 

The fixed effects model is estimated by the OLS regression, the results of the estimation is 

shown in the Table 3: 

 

Table 3: Fixed effects model estimation results 

Model: Fixed effects  

Coef. t-value p-value 95% CI 

   

Lower 

limit 

Upper 

limit 

Vj,t-1 0.26 5.31 0.00 0.16 0.35 

Vi,t-1 0.88 13.94 0.00 0.75 1.00 

Vi,t-2 -0.16 -2.93 0.00 -0.27 -0.05 

Constant 0.94 1.72 0.09 -0.14 2.03 
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Observations 292     

Overall R-square 0.87     

 

From the estimation result, the p-value indicates that all coefficients are statistical significant 

from zero.  The coefficient of variable Vj,t-1 from estimation is 0.26 with a positive sign, 

indicating that the speed on link i is positively correlated with speed on the downstream link.  

This indicates that increasing speed by one unit on the downstream link will result in an 

increment of 0.26m/h speed on the current link i in the same period.   In the congestion 

situation, when the downstream link starts congested, the speed will be gradually reducing, 

consequently the speed on the following link will also be reduced.  The intuition is consistent 

with the estimated coefficient sign.   

 

Comparing the coefficients of Vi,t-1 and Vi,t-2, it appears the coefficient of Vi,t-1 is much higher 

than Vi,t-2 and has the opposite sign.  This indicates that the influence of Vi,t-1 is much higher 

than Vi,t-2 and that speeds tend to oscillate when perturbed.    

 

In order to inspect the goodness of fit of the model, we make a comparative plot between of 

the observed & fitted speeds on links 10 and 304.   

 



 18 

Observed vs Fitted for link 10
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Figure 5: Observed vs fitted speed on link 10 

 

Observed vs Fitted for link 304
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Figure 6: Observed vs fitted speed on link 304 

 

The estimated speeds are consistent with the observed speeds.  The estimated values follow 

the trend of actual speed changes.  However, there is one lag delay between fitted data and 

observed data.  This is due to prediction of our model largely relied on the value of one time 

lagged speed on the same link.  It is evident from the value of estimated coefficient imposing 
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upon the Vi,t-1, which is the largest among other coefficients.  This causes the result of fitted 

value highly correlated to the one time lagged value.  It is suggested that reducing the time 

interval may improve the model accuracy.   

 

 It also needs to be noted that the estimated values tend to underestimate the actual speed 

values, especially in periods before and after incident.  A possible explanation for this is 

because the model only has a few explanatory variables, it cannot capture all effects on the 

dependent variable. It may also be the case that the model form is misspecified with respect 

to the variables currently included. Hence, other models are being considered.    

 

4.3. Other models 

 

Other possible forms of model have also been explored in this study.  Potential explanatory 

variable Vj,t, the speed on the downstream link at time t, is included in these models.  The 

form of model B is as follows: 

 

ittititjiit VVVaV    2,1,,                                 (3) 

 

i  =1,……, N; j = 1,……,N; t = 1,……, Ti  

 

The model presumes the speed on link i depends on the speed on the downstream link 

simultaneously (that is Vjt) instead of speed of downstream link at time t-1 (that is Vjt-1).   

 

The model C will be: 
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ittititjtjiit VVVVaV    2,1,1,, '                    (4) 

i  =1,……, N; j = 1,……,N; t = 1,……, Ti  

 

This model assumes both the Vj,t  and Vj,t-1 affect the speed on link i at time t.   

 

The results of the two model estimations are as follows: 

 

Table 4: Other models estimation results 

Model: Fixed Effects  

Model B Model C 

Coef. t-value p-value Coef. t-value p-value 

Vj,t 0.27 7.65 0.00 0.24 5.51 0.00 

Vj,t-1 . . . 0.09 1.53 0.13 

Vi,t-1 0.85 14.52 0.00 0.82 13.30 0.00 

Vi,t-2 -0.12 -2.23 0.03 -0.13 -2.44 0.02 

Constant 0.40 0.75 0.45 0.39 0.73 0.47 

       

Observations 289   289   

Overall R-square 0.87   0.88   

 

 

From the results in Table 4, the coefficients in model B are statistically significant as 

suggested by the p-values, except the constant. The value of the coefficients emphasize the 

importance of each explanatory variables on the speed on link i at time t.  The coefficient of 

Vi,t-1is the highest among others.  It indicates the speed on link i at time t is largely dependent 

on the speed in the most previous time interval t-1 on the link i.  The finding is consistent 

with our basic model A.   
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Model C includes one more variable than models A and B. The estimation results show that 

the coefficient of Vj,t-1and constant term are statistically insignificantly different from zero. 

Again the coefficient of Vi,t-1is the highest among others. 

 

4.4. Comments on models 

 

All three models show that the speed Vit is largely dependent on the speed in the previous 

time interval on the same link.  This is shown by the value of the coefficient for Vi,t-1.  Model 

A’s Vi,t-1coefficient is 0.88, models B and C are 0.85 and 0.82 respectively, which are 

reassuringly consistent with each other.   

 

In terms of the prediction, only model A could be used to predict the speed on a link at future 

time period, because the model only requires information from past time periods, Vj,t-1 , Vi,t-1 

and Vi,t-2 .  Both models B and C involve the variable Vjt. That means we need to know the 

speed on the downstream link for the prediction period.  However, models B and C are still 

valuable as a comparison for model A and provide an insight into the problem.   

 

5. APPLICATION 

 

In in-vehicle route guidance, in order to provide the driver with a fast and reliable route, 

current and anticipated congestion have to be taken into account.  A recently developed route 

guidance approach, ARIAdNE [24], incorporates link travel time reliability in the search for a 

set of efficient, reliable, maximally disjoint paths. The main concept behind the operation of 
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ARIAdNE is the fact that specific links, classified as unreliable, are avoided as much as 

possible by the route finding algorithm, such that the probability of their inclusion in a route 

is low.  However, ARIAdNE currently lacks the ability to forecast future congestion.  The 

proposed spatial econometrics model in this study is expected to be used in conjunction with 

ARIAdNE to identify unreliable links, i.e. links on which congestion is likely to occur.  The 

model shall provide ARIAdNE with information on future traffic congestion, which will 

enable it to not only take into account the current traffic situation, but also to consider future 

traffic conditions, thus making it more robust.   

 

 The model presented in this paper is designed to run in parallel with ARIAdNE in the 

vehicle, such that a historical database of TMC incident messages will be stored in the 

system.  The model will first be estimated and calibrated off-line against the historical TMC 

data, and the calibrated model will then be taken on-board.  The model will then recursively 

update itself with the real-time TMC messages, as soon as they are received.  The predicted 

congestion information will be used to inform ARIAdNE which links are unreliable, such that 

they can be avoided by the route finding procedure.  

 

6. CONCLUSION 

 

The aim of this study was to set up econometric models to predict the congestion propagation 

and dissemination on the road network for eventual use in car navigation systems.  Before the 

modelling was carried out, the nature and causes of the problem are illustrated using a 

VISSIM model for Coventry.  The spatial and temporal nature of link congestion pointed to a 

spatial econometric approach.  Speed data for eight links was simulated.  Simple linear panel 

data models were fitted, with a view to gaining a model that could be used for forecasting.  
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The results showed that the fitted value of speed from model is fairly consistent with actual 

speed.  However, only a limited number of explanatory variables are considered in the model, 

so we could not explain all the variation of speed on the selected links.   

 

For the future work, other forms of model possibly involving more explanatory variables will 

be investigated.  Currently, the regression model has a simple linear form with spatial and 

autocorrelation. The support for alternative non-linear regression models will be explored.  

Special treatment for autocorrelation among variables should be further considered in the 

model, the suggested technique being co-integration.  Finally, we intend to build a model to 

forecast congestion along a route based on real TMC data.  
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