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One of the major goals of sensory neuroscience is to 
understand how an organism’s perceptual abilities 
relate to the underlying physiology.  To this end, we 
derived equations to estimate the best possible 
psychophysical discrimination performance, given the 
properties of the neurons carrying the sensory code.  
We set up a generic sensory coding model with 
neurons characterized by their tuning function to the 
stimulus and the random process that generates 
spikes.  The tuning function was a Gaussian function 
or a sigmoid (Naka-Rushton) function.  Spikes were 
generated using Poisson spiking processes whose 
rates were modulated by a multiplicative, gamma-
distributed gain signal that was shared between 
neurons.  This doubly stochastic process generates 
realistic levels of neuronal variability and a realistic 
correlation structure within the population.  Using 
Fisher information as a close approximation of the 
model’s decoding precision, we derived equations to 
predict the model’s discrimination performance from 
the neuronal parameters.  We then verified the 
accuracy of our equations using Monte Carlo 
simulations.  Our work has two major benefits.  
Firstly, we can quickly calculate the performance of 
physiologically plausible population coding models 
by evaluating simple equations, which makes it easy 
to fit the model to psychophysical data.  Secondly, the 
equations revealed some remarkably straightforward 
relationships between psychophysical discrimination 
performance and the parameters of the neuronal 
population, and give deep insights into the 
relationships between an organism’s perceptual 
abilities and the properties of the neurons on which 
those abilities depend. 

 

 

 

 

Introduction 

 

The key motivation behind this work is to facilitate 

the construction of physiologically plausible models of 

psychophysical performance that are mathematically trac-

table.  Pioneering work in the 1960s and 70s led to a stan-

dard type of model of early vision consisting of a bank of 

independent channels selective for different stimulus fea-

ture values (Graham, 1989).  Within each channel, the 

signal strength increased (often nonlinearly) with stimulus 

contrast.  Performance was limited by the addition of 

(usually Gaussian) noise somewhere in the model.  This 

kind of model has the advantage of mathematical simplic-

ity: The relationships between the model’s parameters and 

its psychophysical performance can be described by sim-

ple mathematical expressions, allowing us (1) to easily fit 

the model to data, and (2) to understand why the model 

behaves as it does.  Unfortunately, it has become increas-

ingly clear that the connection between real neurons and 

the psychophysical channels in this kind of model is tenu-

ous at best (Goris, Putzeys, Wagemans, & Wichmann, 

2013).  Recent modelling work has shown that more 

physiologically plausible population-coding models of 

early vision can provide a unified account of many diverse 

psychophysical phenomena, while at the same time pro-

viding a stronger connection with physiology than has 

traditionally been the case (Goris et al., 2013).  However, 

the complexity of this kind of model can sometimes ob-

scure the relationships between properties of the model 

and characteristics of performance, making it difficult to 

understand the model’s behaviour.  In this paper, we de-

scribe sensory coding models that have a close connection 

to physiology but are nevertheless simple enough to be 

described by equations that reveal straightforward rela-

tionships between the neuronal parameters and psycho-

physical performance. 
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We assume a generic sensory coding model in which 

the observer monitors a set of spiking neurons and makes 

a maximum-likelihood estimate of the stimulus from the 

set of spike counts generated by those neurons.  Thus, we 

find the best possible decoding performance that the en-

coding scheme allows.  The reciprocal of the variance of 

the estimated stimulus values is called the precision.  The 

precision determines the expected performance on percep-

tual tasks, and so, if we can estimate the precision from 

the neuronal parameters, then we can estimate task 

performance. 

For an unbiased maximum-likelihood decoder, the 

precision cannot exceed a quantity called the Fisher in-

formation.  This limit is known as the Cramér-Rao bound 

(Cramér, 1946; Rao, 1945; see Dayan & Abbott, 2001, pp. 

120-121).  For a reasonable spike rate or number of neu-

rons, the precision of the generic sensory coding model 

that we describe in this paper is actually very close to the 

Cramér-Rao bound, so we can use the Fisher information 

as an approximation of the decoding precision.  The Fisher 

information is calculated from the properties of the neu-

rons, and therefore forms a bridge between the neuronal 

properties and perceptual performance. 

For each model parameterization that we studied, we 

set up a Monte Carlo simulation which showed that the 

model’s performance is very close to that predicted from 

the Fisher information. We used two measures of model 

performance: One was the precision, defined earlier, and 

the other was the discrimination threshold in a simulated 

2-alternative forced-choice (2AFC) discrimination ex-

periment.  Both were very well predicted from the Fisher 

information. 

Our work has two main benefits.  One is a practical 

one: We can quickly calculate the performance of realistic 

population coding models by evaluating simple equations, 

rather than using slow and laborious Monte Carlo simula-

tions, which can be difficult and error-prone to program.  

This allows us to quickly fit the model to data.  The sec-

ond benefit is that the equations give a deep insight into 

the relationships between psychophysical performance 

and the properties of the neurons that carry the sensory 

code, showing us why these relationships occur, and how 

generally they apply. 

Our equations give the upper limit on the possible 

psychophysical performance level, given the neuronal pa-

rameters.  There is plenty of evidence that human percep-

tual performance falls far short of the maximum level that 

is theoretically possible (Banks, Geisler, & Bennett, 1987; 

Geisler, 1989; Pelli, 1990; Pelli & Farell, 1999; Dakin, 

2001; Pelli, Burns, Farell, & Moore-Page, 2006; Morgan, 

Chubb, & Solomon, 2008; Solomon, 2010).  Nevertheless, 

there are several reasons why it is useful to know this 

theoretical limit, and we outline these reasons in remain-

der of this Introduction. 

Firstly, knowing the theoretical maximum perform-

ance allows us to compare different encoding schemes.  

By “encoding scheme”, we mean the population of neu-

rons that are used to encode the stimulus.  It is of great 

interest to know why neurons have the properties that they 

do, and a lot of progress has been made by showing that 

observed physiological properties reflect encoding strate-

gies that are optimal in some way (Laughlin, 1981; Srini-

vasan, Laughlin, & Dubs, 1982; Atick & Redlich, 1990, 

1992; Atick, 1992; Atick, Li, & Redlich, 1992, 1993; 

Tadmor & Tolhurst, 2000).  Given a particular encoding 

scheme, the psychophysical performance will depend on 

how appropriate the decoding algorithm is for that particu-

lar encoding scheme (Beck, Ma, Pitkow, Latham, & 

Pouget, 2012).  A fair way to compare two encoding 

schemes is to compare the maximum performance that 

each encoding scheme allows. 

A second reason for wanting to know the maximum 

performance level that a set of neurons can support is that 

this knowledge allows us to perform sequential ideal ob-

server analysis.  This approach, developed by Geisler 

(1989), calculates the efficiency with which the informa-

tion at each stage is processed.  Roughly speaking, effi-

ciency is the proportion of the available information that 

the observer appears to use. If we have a sufficiently good 

model of processing up to a particular point in the process-

ing stream, we can construct an ideal observer for process-

ing the information known to exist at that point, and then 

compare the ideal observer’s performance against that of a 

real observer.  An efficiency of 1 would mean that the real 

observer’s performance matched that of the ideal observer, 

so no further information was lost beyond that point in the 

processing stream.  We can proceed like this from very 

early stages, e.g. the optics of the eye, through to later 

stages, seeing at each stage what proportion of the avail-

able information is lost by later stages of processing.  To 

perform this kind of analysis, we need to be able to calcu-

late the best possible performance allowed by the informa-

tion at each stage. 

Sometimes, it is not necessary to calculate the abso-

lute efficiency.  A third reason why it is useful to know 

the maximum performance theoretically possible is that it 

can explain patterns of performance.  If we assume that, 

after a certain point in the processing stream, efficiency is 

constant across different stimulus values, then we can pre-

dict the detection or discrimination threshold up to a 

multiplicative factor.  This kind of approach has been used 

to explain observed patterns of psychophysical perform-

ance, such as the shapes of the contrast sensitivity function 

and wavelength discrimination function (Banks et al., 

1987; Geisler, 1989; Zhaoping, Geisler, & May, 2011).  If 

we know the proportions of neurons of different types at a 

particular point in the processing stream, we can calculate 

the decoding precision up to a multiplicative factor; as-
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suming constant efficiency of processing beyond that 

point, this gives us the expected variance of the decoded 

stimulus values (and hence discrimination thresholds) up 

to a multiplicative factor.  As we will show, the neuronal 

parameters (or functions of the neuronal parameters) have 

multiplicative effects on the decoding precision, and thus 

will have the same effect on the ideal decoder’s perform-

ance as they will on the performance of the decoder with 

constant inefficiency. 

Many of the derivations and technical details are in-

cluded in appendices in the supplementary information.  

Each supplementary appendix is labelled with a letter.   

Equations and figures in an appendix are labelled with the 

appendix’s letter, followed by a dot, followed by the equa-

tion or figure number within that appendix.  Supplemen-

tary Appendix A provides a list of the main symbols used 

in the text, and their meanings. 
 

The sensory coding model 

 

Throughout this paper, we represent random variables 

using upper case letters, and their values on particular tri-

als
1
 using corresponding lower case letters.  X is a random 

variable representing the stimulus level, and its value is x.  

R is a random variable representing a neuron’s mean 

number of spikes, and its value is ( )r x , the output of the 

neuron’s tuning function, which gives the neuron’s mean 

spike count for a given stimulus, x (note that the tuning 

function’s output is often measured in spikes per second, 

but we find it more convenient to use units of spikes, 

without making assumptions about the time period over 

which the neuron’s output is integrated; this is equivalent 

to measuring the output in spikes per unit of time using 

units of time scaled so that the spike integration period is 

one unit).  N is a random variable representing the spike 

count of a neuron, i.e. the number of spikes produced by 

the neuron, and n is its value on a particular trial.  Because 

we will often be dealing with populations of neurons, we 

use bold letters, N and n, to represent vectors holding the 

spike counts of all the neurons in the population.  N is a 

random variable representing the population response, and 

n is its value on a particular trial. 

We assume a generic sensory coding model that has 

three elements: (1) a tuning function, ( )r x , for each neu-

ron, which specifies the neuron’s mean spike count for a 

given stimulus, x; (2) a random process that generates 

spikes at the given mean rate; (3) a method of decoding 

the spike counts of the neurons to give an estimate of the 

stimulus.  We now describe each of these processes in 

turn. 

 

The tuning function 

 

In this paper, we consider two different tuning func-

tions, the Naka-Rushton function and the Gaussian func-

tion.  Both have parameters 0r , maxr , z, q, and b, which 

serve the same or analogous purposes in the two functions. 

 

The Naka-Rushton tuning function 

 For visual stimulus contrast, the tuning function is 

called the contrast-response function.  It usually has a 

sigmoidal shape that is well described by the Naka-

Rushton function, also known as the hyperbolic ratio func-

tion (Naka & Rushton, 1966; Albrecht & Hamilton, 1982): 

max
N-R 0

1 2

( )
q

q q

r c
r c r

c c
= +

+
. (1) 

c is the contrast in linear (e.g. Michelson) units, 0r  is the 

spontaneous firing rate in response to zero contrast, and 

maxr  is the asymptotic increment from 0r  as contrast in-

creases.  The term 1 2c , called the semi-saturation con-

trast, is the contrast for which the mean response exceeds 

0r  by max 2r .  We use a left subscript on ( )r ⋅  to indicate 
the form of the tuning function, in this case “N-R” for 

“Naka-Rushton”. 

Examples of the Naka-Rushton function are plotted in 

Figure 1A.  Some readers may not think of the Naka-

Rushton function as a “tuning function”, but we use the 

latter term in its most general sense, to mean the function 

that gives the mean response for a particular stimulus 

value. 

For our purposes, it is convenient to represent the con-

trast in units of log Michelson contrast, so the stimulus 

value, x, is given by 

logbx c= , (2) 

which gives 

xc b= . (3) 

Using Equation (3) to substitute for c in Equation (1), we 

can re-express the Naka-Rushton function as a function of 

log contrast, x: 

max
N-R 0( )

qx

qz qx

r b
r x r

b b
= +

+
, (4) 

where 

1 2logbz c= . (5) 
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Figure 1.  Tuning functions.  (A) Three Naka-Rushton functions, with q equal to 1, 2, and 4.  Each function has 1 2 0.1c = .  1 2( )r c  

falls halfway between 0r  and 0 maxr r+ .  (B) The same three Naka-Rushton functions as in (A), plotted as functions of log10 contrast.  

The log semi-saturation contrast is given by 1z = − .  (C) Three Gaussian tuning functions, with 1z = −  and q equal to 1, 2, and 4. 

 

Figure 1B plots the Naka-Rushton function as a func-

tion of log contrast.  On the log contrast scale, the gradient 

of the Naka-Rushton function peaks at a log contrast of 

x z= .  In what follows, whenever we use the term “con-

trast” without specifying the units, we mean “log Michel-

son contrast”.  In all our simulations, we used log to base 

10 (i.e. 10b = ), but our equations are derived for any b. 

 

The Gaussian tuning function 

We will use z to represent the stimulus value corre-

sponding to the centre (peak) of the tuning function.  This 

is analogous to the semi-saturation contrast, z, which is at 

the centre (peak of gradient) of the Naka-Rushton con-

trast-response function when expressed in terms of log 

contrast.  The Gaussian tuning function is given by 

{ }2Gauss max 0( ) exp [ ( )]r x r q x z r= − − + , (6) 

where x is a value along the (unspecified) stimulus dimen-

sion, maxr  is the maximum increment from the spontane-

ous firing rate, 0r , and q is a “tuning sharpness” parame-

ter, analogous to the exponent, q, of the Naka-Rushton 

function.  As before, the left subscript on ( )r x  (in this 

case, “Gauss”, for Gaussian) indicates the form of the tun-

ing function.  Examples of the Gaussian tuning function 

are plotted in Figure 1C. 

If tuningσ  is the standard deviation of the Gaussian 

tuning function, then its bandwidth (full width at half 

height), w, is given by 2 2
tuning(8ln 2)w σ= .  Thus, we have 

tuning

1 2 ln 2

2
q

wσ
= = . (7) 

If x is measured in units that are the log to base b of the 

physical stimulus units, then w will also be in logb  units.  

We can convert w to octaves (i.e., 2log  units) by multi-

plying by 2log b  (this is because 2 2log log logb y b y× = ).  

If ω is the bandwidth in octaves, then 

2

ln
log

ln 2

w b
w bω = = . (8) 

Using Equation (8) to substitute for w in Equation (7) 

gives 

2ln

ln 2

b
q

ω
= . (9) 

 

The random process for spike generation 

 

In our model, the spikes are generated by a model of 

neuronal spiking recently proposed by Goris, Movshon 

and Simoncelli (2014).  Each model neuron has a Poisson 

spiking process whose mean spike rate is modulated by a 

multiplicative gain mechanism that is also a random proc-

ess, so the overall spiking process is a doubly stochastic 

Poisson process.  Specifically, for each model neuron, the 

rate of its Poisson spiking process is determined by the 
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output of its tuning curve, ( )r x , multiplied by a gain value 

that changes randomly from trial to trial.  We let G repre-

sent the gain random variable, and let g represent its value 

on a particular trial.  The spiking distribution conditioned 

on the gain is an ordinary Poisson distribution: 

( | ( ), )P N n R r x G g= = = =  

( ( ))
exp( ( ))

!

ngr x
gr x

n
− . (10) 

In Goris et al.’s (2014) spiking model, the gain values 

are sampled from a gamma distribution with a mean of 1, 

and standard deviation that is a free parameter, Gσ .  The 

gamma gain distribution and Poisson spiking distribution 

combine to produce a gamma-Poisson mixture distribution 

that has the form of a negative binomial distribution of 

spike counts, given by 

( | ( ))P N n R r x= = =  

2

2 2

2 ( 1 )2

( 1 ) ( ( ))

! (1 ) ( ( ) 1) G

n
G G

n
G G

n r x

n r x
σ

σ σ

σ σ +

Γ +
×

Γ +
, (11) 

where ( )Γ ⋅  is the gamma function.  The distribution in 

Equation (11) fits well to the spike distributions obtained 

in physiological recordings (see Goris et al., 2014, Figure 

1c and 1d).  Because the mean gain is 1, the mean of the 

spike distribution in Equation (11) is ( )r x . 

Goris et al. (2014) allowed both the spiking process 

and the gain process to be correlated between neurons.  

The covariance between the spike rates of neurons i and j 

is then given by 

cov[ , ]i jN N =  

( ) ( ) ( ) ( )
ij ij i jP i j G G G i jr x r x r x r xρ ρ σ σ+ , (12) 

where ( )ir x  and ( )jr x  are the outputs of the tuning curves 

of neurons i and j given a stimulus x, 
iG

σ  and Gjσ  are the 

standard deviations of the two neurons’ gain processes, 

ijP
ρ  is the Pearson correlation between the two neurons’ 

Poisson spiking processes, and 
ijGρ  is the Pearson corre-

lation between the two neurons’ gain processes.  If we let 

i j=  in Equation (12), then we obtain the variance of neu-

ron j: 

2var[ ] cov[ , ] ( ) ( ( ))
jj j j j G jN N N r x r xσ= = + . (13) 

This can be converted to the neuron’s Fano factor (i.e. the 

ratio of variance to mean) by dividing by the mean re-

sponse, ( )jr x : 

2Fano factor [ ] 1 ( )
jj G jN r xσ= + . (14) 

Equation (14) shows that the model neuron’s Fano factor 

is an affine (i.e., straight line) function of the spike rate, 

with gradient equal to the variance of the gain process: 

The Fano factor is around 1 for very low spike rates, and 

increases linearly with the spike rate. 

In order to meet our stated goal of mathematical sim-

plicity, we imposed three restrictions on the aforemen-

tioned parameters: 

1. each neuron has the same gain standard deviation, 
which is set as a model parameter, Gσ ; 

2. 1
ijGρ =  for all ,i j ; 

3. 0
ijP

ρ =  for all i j≠ . 

The second and third restrictions state, respectively, that 

each neuron shares the same fluctuating gain signal, and 

each neuron’s Poisson spiking process is independent.  

This is an extreme version of Goris et al.’s (2014) model, 

but it seems not too far from the truth for many pairs of 

neurons: Very high-quality electrophysiological re-

cordings indicate that, in awake monkeys whose only task 

is to fixate the stimulus, V1 neurons “show virtually no 

correlated variability” (Ecker et al., 2010, p. 584), sug-

gesting that 
ijP

ρ  is usually close to zero.  Ecker et al. 

(2014) argued that the very much higher correlations 

shown in other circumstances, especially under anesthesia, 

can be accounted for by a single gain variable that varies 

from trial to trial.  They showed that a simple model with 

independent Poisson spiking processes and a single ran-

dom gain signal shared between all the neurons was able 

to capture the dependence of spike count correlations on 

firing rate and tuning similarity shown by real neurons.  

Thus, a model very similar to ours, in which 0
ijP

ρ =  and 

1
ijGρ = , has been shown to account for real neuronal 

data. 

These restrictions help us to simplify the analysis of 

the model considerably.  Firstly, instead of specifying the 

entire covariance matrix of the population, we can just 

specify the gain standard deviation, Gσ .  The covariance 

matrix itself still has a complicated structure because each 

term in the covariance matrix depends on Gσ  and the sen-

sitivities of the two neurons to the stimulus, but all of this 

complexity can be reduced to a single scalar random vari-

able, G, with a single parameter, Gσ .  Secondly, as ex-
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plained above, we aim to calculate the performance of the 

decoder that makes best use of the encoded signals; and 

the best possible decoder will have access to the shared 

gain signal.  If 0
ijP

ρ = , then, although the neurons’ spike 

counts are correlated due to the shared gain signal, the 

conditional spiking probabilities (conditioned upon the 

gain signal) are independent.  Thus, a decoder that knows 

the gain signal can express the spike distributions as inde-

pendent Poisson distributions, which considerably simpli-

fies both the maximum-likelihood decoding algorithm and 

our mathematical analysis of its performance.  We also 

investigated the performance of two suboptimal decoders 

that did not know the gain signal.  Loss of knowledge of 

the gain signal greatly impaired performance with the 

Naka-Rushton tuning function but, with the Gaussian tun-

ing function, decoding performance was only slightly af-

fected. 

With the three restrictions listed above, we can rewrite 

Equation (12) as 

2cov[ , ] ( ) ( )i j G i jN N r x r xσ= . (15) 

The Pearson correlation between the two neurons’ spike 

counts is then given by 

cov[ , ]

var[ ]var[ ]

i j
ij

i j

N N

N N
ρ =  (16) 

     2

2 2

( ) ( )

(1 ( ))(1 ( ))

i j
G

G i G j

r x r x

r x r x
σ

σ σ
=

+ +
. (17) 

As noted by Goris et al. (2014), their model elegantly 

captures two key physiological findings, which both fol-

low from their equations: Pair-wise correlations generally 

increase with both firing rate (de la Rocha, Doiron, Shea-

Brown, Josic, & Reyes, 2007; Ecker et al., 2010, 2014; 

Cohen & Kohn, 2011) and tuning similarity (van Kan, 

Scobey, & Gabor, 1985; Zohary, Shadlen, & Newsome, 

1994; Smith & Kohn, 2008; Ecker et al., 2010, 2014).  

Supplementary Appendix B confirms that, for nonzero 

Gσ , both of these characteristics emerge naturally from 

Equation (17).  The dependence of ijρ  on tuning similar-

ity is particularly noteworthy, since, in our parameteriza-

tions of the model, we have forced the Poisson and gain 

correlations, 
ijP

ρ  and 
ijGρ , to be constant across all pairs 

of neurons, regardless of tuning similarity. 

  

 

 

The decoding method 

 

In our sensory coding model, a stimulus triggers a set 

of spike counts, n, in the neurons being monitored by the 

observer: n is a vector holding the spike counts of all the 

different neurons.  We investigated three methods for de-

coding these spike counts. 

The first is a maximum-likelihood method that uses 

knowledge of the gain signal to express the spike distribu-

tions as independent Poisson distributions; in this case, 

maximum-likelihood decoding is straightforward because 

the likelihood function for the population response is sim-

ply the product of the likelihood functions for the individ-

ual responses.  We call this the “Known Gain” method. 

We were also interested in finding out how well the 

spike counts could be decoded without knowledge of the 

gain signal, to see how critically the accuracy of our equa-

tions depended on the assumption that the gain signal is 

known.  If the decoder does not know the gain signal, then 

it can only express the spike distributions as correlated 

gamma-Poisson mixture distributions.  Maximum-

likelihood decoding in this case would require an expres-

sion for the multivariate gamma-Poisson mixture distribu-

tion, so that we could calculate the likelihood function for 

the population response.  Unfortunately, a closed-form 

expression for this distribution beyond the bivariate case is 

not known, so we used two suboptimal methods, which 

we refer to collectively as the “Unknown Gain” methods.  

The first of these methods simply ignores the correlations 

and decodes the neurons as if they were independent (an 

approach also taken by Goris et al., 2013).  This approach 

is not always suboptimal: Averbeck, Latham and Pouget 

(2006) showed that, even in cases where correlations 

cause a large performance deficit, it can still be optimal to 

decode the neuronal responses as if they were independent 

(see Averbeck et al.’s Figure 3a).  More generally, how-

ever, it is more informative to decode correlated neurons 

as a group rather than individually.  The second of our 

“Unknown Gain” methods uses an analytical form for the 

bivariate gamma-Poisson mixture distribution to decode 

the population in a way that takes into account all pairwise 

statistical dependencies, but not higher-order dependen-

cies.  We refer to these two “Unknown Gain” methods as 

the “Univariate” and “Bivariate” methods, respectively.  

We find that the “Bivariate” method performs better than 

the “Univariate” method.  Surprisingly, when the tuning 

function is a Gaussian, both methods are almost as good 

as the “Known Gain” method. 

 

The “Known Gain” decoder 

Here, the spike counts of the neurons are decoded us-

ing a maximum-likelihood method in which the gain sig-

nal is known.  In maximum-likelihood decoding, we find 
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the stimulus value, x, which had the highest probability of 

giving rise to the obtained set of spike counts, i.e. the 

value of x that maximizes the probability 

( | , )P X x G g= = =N n .  Because of the statistical inde-

pendence of the spiking distributions conditioned on the 

gain signal, we can write 

( | , )P X x G g= = =N n  

                
1

( | , )
K

j j

j

P N n X x G g
=

= = = =∏  (18) 

                
1

( | ( ), )
K

j j j j

j

P N n R r x G g
=

= = = =∏ . (19) 

where K is the number of neurons, and the neurons are 

indexed by j.  The second equality (Equation (19)) arises 

because each ( )jr x  is a deterministic function of the 

stimulus value, x.  For large populations, the product in 

Equation (19) can be too small to represent using floating-

point values on a standard computer, so instead we calcu-

lated the logarithm of this value, which peaks at the same 

x-value, and is given by  

ln ( | , )P X x G g= = =N n  

                
1

ln ( | ( ), )
K

j j j j

j

P N n R r x G g
=

= = = =∑ . (20) 

The probability in each term in Equation (20) is evaluated 

using Equation (10), and the decoder uses the simplex 

search method (Nelder & Mead, 1965) to find the stimulus 

value, x, that maximizes this sum. 

 

The “Univariate” (Unknown Gain) decoder 

Without knowledge of the gain signal, the spiking dis-

tributions are negative binomial distributions with the 

form given in Equation (11).  The “Univariate” decoder 

decodes the spike counts as if they were independent.  

Thus, we found the stimulus value, x, that maximized the 

sum of log probabilities, 
1
ln ( | ( ))

K
j j j jj

P N n R r x
=

= =∑ , 

where the probability in each term is evaluated using 

Equation (11). 

The “Univariate” decoder is not as good as the 

“Bivariate” decoder (described next), and our principal 

motivation for including it was to confirm that the 

“Bivariate” decoder did indeed perform better. 

 

The “Bivariate” (Unknown Gain) decoder 

Arbous & Kerrich (1951) derived an expression for 

the bivariate gamma-Poisson mixture distribution, which 

gives the joint probability of the spike counts of any pair 

of neurons in our restricted parameterizations of Goris et 

al’s (2014) spiking model.  Substituting our variables for 

the corresponding variables or expressions in Arbous & 

Kerrich’s Equation (5.11), we obtain 

( , | )i i j jP N n N n X x= = =  

     ( , | ( ), ( ))i i j j i i j jP N n N n R r x R r x= = = = =  (21) 

     

2

2

( 1 )

! ! (1 )

i j G

i j G

n n

n n

σ

σ

Γ + +
= ×

Γ
 

2

2

12

( ) ( ) ( )

( ( ( ) ( )) 1)

i j ji

i j G

n n nn
G i j

n n

G i j

r x r x

r x r x
σ

σ

σ

+

+ +
+ +

. (22) 

Here, we have deliberately expressed Arbous & Kerrich’s 

equation in a form that makes explicit the many parallels 

between the expressions for the bivariate and univariate 

distributions (Equations (22) and (11), respectively). 

To decode the neuronal population, we took each 

pairwise combination of neurons, and calculated the like-

lihood for that pair, using Equation (22).  The estimated 

stimulus value, x, was that which maximized the sum of 

log-likelihoods across all pairs of neurons.  Thus, we de-

coded the population as if each pair of neurons was statis-

tically independent from each other pair.  As noted earlier, 

this decoding method takes account of pairwise statistical 

dependencies, but not higher-order dependencies. 

 

Parameterizing the population 

 

In principle, every parameter of every neuron in the 

population could vary independently.  However, to maxi-

mize the simplicity of the model, we consider two simpler, 

more restricted classes of parameterization. 

 

The “Constant” parameterization 

To begin with, we consider a very simple class of 

parameterizations: maxr , 0r , q and Gσ  are each constant 

across different neurons, and the tuning curve centres, z, 

are equally spaced along the log stimulus axis, with con-

stant spacing, zδ , between values of minz  and maxz .  We 

define a density parameter, h, equal to 1 zδ .  The model 

thus has seven parameters: maxr , 0r , q, Gσ , h, minz  and 
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maxz .  Since each of these parameters is assumed to be 

constant across different neurons, we call this the “Con-

stant” parameterization. 

One important property of the “Constant” parameteri-

zation is that, if the stimulus value, x, is the logarithm of 

the physical stimulus level, ξ, then the model will show 

Weber’s Law behaviour.  The reason for this is that, with 

all the parameters constant, if we move from a low stimu-

lus value to a high stimulus value, we are faced with an 

identical decoding situation, but just shifted along the x-

axis: The tuning functions have the same shape and den-

sity, and the noise properties are the same.  Thus, the stan-

dard deviation of the decoded value of x will be constant 

across stimulus levels.  This means that xθ∆ , the just-

noticeable difference in x, will be constant.  If pξ  is the 

“pedestal” stimulus (i.e. the lower of the two stimuli to be 

discriminated) expressed in physical units, and θξ∆  is the 

just-noticeable difference in physical units for a pedestal 

of pξ , then ( ) ( )log logb p b pxθ θξ ξ ξ∆ = + ∆ − .  This can 

be rearranged to give 1
x

p b θ
θξ ξ ∆∆ = − , which is con-

stant for constant xθ∆ .  Thus, the Weber fraction, 

pθξ ξ∆ , is constant, which is the definition of Weber’s 

Law. 

 

The “Exponential” parameterization 

Although Weber’s Law has often been found in su-

prathreshold discrimination experiments, the Weber frac-

tion for contrast discrimination generally decreases with 

increasing conrtast, to give a slope of around 0.6-0.7 when 

the threshold difference of Michelson contrasts is plotted 

as a function of the pedestal Michelson contrast on log-log 

axes (Legge, 1981; Meese, Georgeson, & Baker, 2006).  

This is often referred to as the “near-miss to Weber’s 

Law”.  To capture this behaviour, we used a parameteriza-

tion in which h, maxr , and q can increase with the tuning 

function’s position along the log stimulus axis.  Specifi-

cally, we let h, maxr , and q vary as exponential functions 

of tuning function position, z: 

exp( )h hh k m z=  (23) 

max maxmax exp( )r rr k m z=  (24) 

exp( )q qq k m z= . (25) 

hk , 
maxrk  and qk  are parameters that give the values of h, 

maxr , and q when 0z = ; hm , 
maxrm  and qm   are parame-

ters that determine how rapidly h, maxr  and q change as a 

function of z.  We call this the “Exponential” parameteri-

zation.  It is a generalization of the “Constant” parameteri-

zation: The “Constant” parameterization is the “Exponen-

tial” parameterization with 
max

0h r qm m m= = = .  For 

simplicity, we will assume that 0 maxr r  is constant in the 

“Exponential” parameterization.  As before, z falls be-

tween minz and maxz .  Supplementary Appendix C shows 

how to generate a set of z values when h varies exponen-

tially across the stimulus axis. 

 

Predicting model performance 

 

As noted in the Introduction, the decoding precision 

(i.e. the reciprocal of the variance of the decoded stimulus 

value, X̂ ) is closely approximated by the Fisher informa-

tion.  In this section, we derive expressions for the Fisher 

information for decoding the neurons using the “known 

gain” decoder.  On each trial, the tuning curve of each 

neuron in our model is multiplied by the gain signal, g, so 

the effective tuning curve for neuron j on that trial is 

( )jgr x .  If the decoder knows the gain signal, then it 

knows the effective tuning curve, ( )jgr x , and it can ex-

press the spiking distributions as independent Poisson dis-

tributions.  For a set of independent Poisson-spiking neu-

rons with tuning curves ( )jgr x , the Fisher information is 

given by 

2

1

( )
( , )

( )

K

j

j

j

r x
J x g g

r x

=

′
= ∑ , (26) 

where ( )jr x′  is the first derivative of neuron j’s tuning 

curve, with respect to x (see Dayan & Abbott, 2001, chap-

ter 3).  Thus, the variance of the estimated stimulus value, 

X̂ , on trials with stimulus x and gain g will be approxi-

mated by 

1 1ˆvar[ | ]
( , ) ( ,1)

X G g
J x g gJ x

= ≈ = . (27)     

Over all trials with stimulus x, the variance will be given 

by 

1ˆvar[ ] mean
( ,1)

X
GJ x

 
≈  

 
 (28) 

            
mean[1 ]

( ,1)

G

J x
= . (29) 
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Thus, the precision, ( )xτ , for decoding a stimulus with 

value x, is given by 

( ,1)
( )

mean[1 ]

J x
x

G
τ ≈ . (30) 

Supplementary Appendix D shows that, for the 

gamma distributed gain signal in Goris et al.’s (2014) 

model, 2mean[1 ] 1 (1 )GG σ= − , giving 

2( ) (1 ) ( ,1)Gx J xτ σ≈ − . (31) 

From Relation (31), we have 2( ) ( ,1 )Gx J xτ σ≈ − .  In-

terestingly, 21 Gσ−  is the value of the gain with the highest 

probability density.  Thus, the decoding precision is the 

modal value of the Fisher information across trials, not the 

mean. 

In this paper, we consider 2-alternative forced-choice 

discrimination experiments, in which observers have to 

discriminate a “pedestal” stimulus value from a slightly 

higher stimulus value.  If x is the log to base b of the 

physical stimulus value, ξ, then, if the pedestal stimulus 

value is pξ , and the difference in physical stimulus values 

at threshold is θξ∆ , then the Weber fraction, W, is defined 

as 

pW θξ ξ= ∆ . (32) 

Appendix E shows that, in this case, the Weber fraction is 

approximated by 

( )12 ( )
1

px P
W b

θτ −Φ
≈ − , (33) 

where Φ is the integral of a Gaussian with unit area and 

variance and zero mean, and Pθ  is the proportion of cor-

rect responses that defines the threshold level.  We can 

then calculate the Weber fraction by using Equation (31) 

to substitute for ( )xτ  in Equation (33). 

In summary, to predict the model’s performance, we 

first calculate ( ,1)J x , the Fisher information that would 

occur when the gain is 1.  Then we multiply this by 
21 Gσ−  to give ( )xτ , the overall precision when the gain 

varies with standard deviation Gσ  (Equation (31)).  We 

can then calculate the Weber fraction from the precision 

using Relation (33).  The next two sections derive various 

expressions for ( ,1)J x  for different model parameteriza-

tions.  The first of these two sections derives exact expres-

sions; the second section derives compact approximations 

of these expressions, which can often give a better insight 

into the way that the different neuronal parameters are 

related to perceptual performance in a population coding 

model. 

 

Exact expressions for the Fisher 
information 

 

Using the Naka-Rushton function (Equation (4)) to 

expand ( )jr x  in Equation (26), we get 

N-R ( ,1)J x =  

( )

( ) ( )( )( )
2 2 ( )

max

3

0 max
1

ln

K
q z x

qz qx qx qz qx

j

r q b b

b b b r r b b

+

=
+ + +∑ ,(34) 

where the parameters on the right hand side are the neu-

ronal parameters of the Naka-Rushton function from 

Equation (4), and can vary from neuron to neuron (strictly 

speaking, each parameter should be indexed by the neuron 

number, j, but we omit these indices for clarity).  The left 

subscript on N-R ( ,1)J x  indicates the form of the tuning 

function, in this case “N-R” for Naka-Rushton.  When 

0 0r = , Equation (34) reduces to 

( )

( )

2 (2 )
max

N-R 3

1

ln
( ,1)

K
q z x

qz qx

j

r q b b
J x

b b

+

=

=
+∑     if 0 0r = .

 (35) 

Going through a similar process for the Gaussian tun-

ing function, we obtain 

Gauss ( ,1)J x =  

     
( ){ }

( )

2
2 2

max

2
0 max

1

( )exp [ ( )]
4

exp [ ( )]

K

j

r q x z q x z

q x z r r
=

− − −

− − +∑ , (36) 

which reduces to  

( )4 2 2
Gauss max

1

( ,1) 4 ( ) exp [ ( )]

K

j

J x r q x z q x z

=

= − − −∑  

     if 0 0r = .   (37) 

Equations (34) to (37) are good for fitting the model 

to psychophysical data, but each of these equations is a 
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sum with one term for each neuron, and this complexity 

can make it difficult to see how the different neuronal pa-

rameters are related to perceptual performance in a popu-

lation coding model.  We therefore derived approxima-

tions to these equations by approximating the sum using 

an integral.  This allowed us to write down the Fisher in-

formation for the whole population in a single compact 

expression.  We call these expressions “integral approxi-

mations”.  To distinguish these from the true Fisher in-

formation expressions, we use the letter I to represent 

them, rather than J (think of I for Integral approximation).   

These approximations are described in the next sec-

tion.  We consider three classes of parameterization: The 

“Constant” parameterization with either the Naka-Rushton 

or the Gaussian tuning function, and the “Exponential” 

parameterization with the Naka-Rushton tuning function.  

For each of these, we derive an integral approximation of 

the Fisher information.  Any of these expressions for 

Fisher information can be used in place of ( ,1)J x  in 

Equation (31) to predict the decoding precision. 

 

Integral approximations of the 
Fisher information 

The “Constant Naka-Rushton” parameteriza-
tion 

 

The “Constant Naka-Rushton” parameterization is the 

“Constant” parameterization that uses the Naka-Rushton 

tuning function.  Since all the parameters except z are con-

stant, and 1z hδ = , we can rearrange the right hand side 

of Equation (34) to give 

( )2 2
N-R max( ,1) ln qxJ x r q b b h= ×  

( ) ( )( )( )
2

3

0 max

qz

qz qx qx qz qx

z

b
z

b b b r r b b

δ
+ + +∑ . 

 (38) 

As 0zδ → , the right hand side of Equation (38) can be 

approximated by an integral, which we call ConstN-R ( ,1)I x .  

As long as the stimulus value, x, is sufficiently far from 

the edges of the range of z-values, we can take the limits 

of z to be ±∞ , giving 

( )2Const 2
N-R max( ,1) ln qxI x r q b b h= ×  

( ) ( )( )( )
2

3

0 max

qz

qz qx qx qz qx

b
dz

b b b r r b b

∞

−∞
+ + +∫ . 

 (39) 

We used Mathematica (Wolfram Research) to solve the 

integral, and obtained 

( )Const
N-R max 0 max

ln( )
( ,1)

2

b
I x r qh Q r r= × × , (40) 

where 

( ) ( )1 2 1 1 ln 1 1 0
( )

1 0

y y y y
Q y

y

  + − + + >  = 
=

.(41) 

 

Figure 2 plots ( )0 maxQ r r  for 0 max0 1r r≤ ≤ , and it can 

be seen that ( )0 maxQ r r  smoothly decreases with increas-

ing 0 maxr r .  Thus, as 0r  increases from 0, ConstN-R ( ,1)I x  

undergoes a multiplicative attenuation that is a function 

only of the ratio, 0 maxr r .  Because the attenuation is a 

function of the ratio, 0 maxr r , rather than 0r  alone, we 

will often take this ratio to be a model parameter, rather 

than 0r .  We refer to this ratio as the “relative spontaneous 

firing rate”.  When 0 0r = , ( )0 max 1Q r r = , and Equation 

(40) reduces to 

Const
N-R max

ln( )
( ,1)

2

b
I x r qh= ×      if 0 0r =  (42) 

The ln( ) 2b  part of this expression is just a constant that 

depends on the arbitrary choice of base of logarithm that 

we use to represent contrast (and reduces to 1 for 2b e= ).  

The interesting part is maxr qh : This is the simplest expres-

sion that we could possibly imagine, given that the Fisher 

information has to increase with increasing maxr , q and h.  

Equation (42) therefore reveals a remarkably straightfor-

ward relationship between the Fisher information and the 

neuronal parameters. 

Note that both expressions for ConstN-R ( ,1)I x  (Equations 

(40) and (42)) are independent of the stimulus value, x.  

From Equation (33), this leads to a constant Weber frac-

tion, i.e. Weber’s Law. 
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Figure 2.  Attenuation of Fisher information for non-zero 0r .  The 

curve plots ( )0 maxQ r r  as defined in Equation (41). 

The “Constant Gaussian” parameterization 

 

The “Constant Gaussian” parameterization is the 

“Constant” parameterization that uses the Gaussian tuning 

function.  We begin by assuming that 0 0r = .  Since all the 

parameters except z are constant, and 1z hδ = , we can 

rearrange the right hand side of Equation (37) to give  

Gauss ( ,1)J x =  

{ }4 2 2
max4 ( ) exp [ ( )]

z

r q h x z q x z zδ− − −∑ . (43) 

When 0zδ → , the right hand side of Equation (43) can be 

approximated by an integral, which we call ConstGauss ( ,1)I x : 

Const
Gauss ( ,1)I x =  

( )4 2 2
max4 ( ) exp [ ( )]r q h x z q x z dz

∞

−∞

− − −∫  

if 0 0r = . (44) 

The integral in Equation (44) is a standard definite inte-

gral, and Equation (44) reduces to 

Const
Gauss max( ,1) 2I x r hqπ= ×      if 0 0r = . (45) 

Equation (45) applies only to the case of 0 0r =  be-

cause we started with Equation (37).  If instead we start 

with Equation (36), we obtain an expression that applies to 

all 0r : 

Gauss ( ,1)J x =  

{ }
{ }

2 2

4
max 2

0 max

( ) exp 2[ ( )]
4

exp [ ( )]
z

x z q x z
r q h z

q x z r r
δ

− − −

− − +∑ . (46) 

When 0zδ → , the right hand side of Equation (46) can be 

approximated by an integral: 

4
Gauss max( ,1) 4 ( )J x r q h S q≈ × , (47) 

where 

{ }
{ }

2 2

2
0 max

( ) exp 2[ ( )]
( )

exp [ ( )]

x z q x z
S q dz

q x z r r

∞

−∞

− − −
=

− − +∫ . (48) 

In Supplementary Appendix F, we show that 

3

(1)
( )

S
S q

q
= . (49) 

Using Equation (49) to substitute for ( )S q  in Equation 

(47), we obtain 

Gauss max( ,1) 4 (1)J x r qh S≈ × . (50) 

We can write (1)S  as 

( )
( )
2 2

2
0 max

exp 2
(1)

exp

z z
S dz

z r r

∞

−∞

−
=

− +∫ . (51) 

Note that we were able to drop the x that appears in the 

function being integrated, because this just shifts the func-

tion horizontally by a finite amount, x, along the z-axis but 

does not change its integral between infinite limits; so 

(1)S  is a function of 0 maxr r  only.  Unfortunately, for 

0 0r > , we cannot find a closed form expression for (1)S .  

However, for the range of relative spontaneous firing rates 

likely to occur, we have found that it can be very closely 

approximated by 

( )0 max
(1)

2

Q r r
S

π
≈ , (52) 

where the function, Q, is defined in Equation (41).  Sup-

plementary Appendix F shows that, for 

0 max0 0.119r r< < , the approximation on the right hand 
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side of Relation (52) slightly overestimates (1)S  by a fac-

tor that never exceeds 0.7% of the true value; for 

0 max 0.120r r > , the right hand side of Relation (52) un-

derestimates (1)S , but not by much: Even for 0 maxr r  as 

high as 1, the underestimation is only about 3%, and the 

underestimation is always less than 6% of (1)S .  Using 

Relation (52) to substitute for (1)S  in Relation (50), we 

obtain our integral approximation, ConstGauss ( ,1)I x  for any 0r : 

( )Const
Gauss max 0 max( ,1) 2I x r qh Q r rπ= × × . (53) 

Note that, apart from having a different multiplicative 

constant ( 2 π  instead of ln( ) 2b ), Equation (53) is iden-

tical to Equation (40), which gives the corresponding ex-

pression for the Naka-Rushton tuning function.  Similarly, 
Const
Gauss ( ,1)I x  is independent of x, which leads to Weber’s 

Law. 

 

The “Exponential Naka-Rushton” parame-
terization 

 

The “Exponential Naka-Rushton” parameterization is 

the “Exponential” parameterization that uses the Naka-

Rushton tuning function.  We begin by assuming that 

0 0r = ,  so the Fisher information is given by Equation 

(35).  For now, let us also assume that q is constant, while 

h and maxr  vary with z, according to Equations (23) and 

(24).  Then we can rearrange the right hand side of Equa-

tion (35) to give 

( )
( )

2
2 max

N-R 3
( ,1) ln

qz
qx

qz qx

z

r b
J x q b b

b b

=
+∑ . (54) 

Using Equation (24) to substitute for maxr  in Equation 

(54), we have 

( )
( )

max

max

2
2

N-R 3

exp( )
( ,1) ln

qz
rqx

r
qz qx

z

m z b
J x k q b b

b b

=
+∑ .

 (55) 

To convert to an integral, we need to transform the z 

values so that the transformed values, ζ, are equally 
spaced.  Supplementary Appendix C shows that an appro-

priate transformation is given by  

hm z

h

e

m
ζ = , (56) 

giving 

ln( )h hz m mζ= . (57) 

Using Equation (57) to substitute for z in Equation (55), 

we obtain 

( )
max

2
N-R ( ,1) ln qx

rJ x k q b b= ×  

( )
max 2 ln( )

3
ln( )

( ) r h h h

h h

m m q m m
h

q m m qx

m b

b b

ζ

ζ

ζ

ζ

+∑ . (58) 

As shown in Supplementary Appendix C, the definition of 

ζ in Equation (56) causes the neurons to be separated in 
equal steps of size 1 hkδζ =  along the ζ axis when h var-
ies exponentially with z according to Equation (23).  Thus, 

we have 

( )
max

2
N-R ( ,1) ln qx

r hJ x k k q b b= ×  

( )
max 2 ln( )

3
ln( )

( ) r h h h

h h

m m q m m
h

q m m qx

m b

b b

ζ

ζ

ζ

ζ
δζ

+∑ . (59) 

As 0δζ → , the right hand side of Relation (59) can be 

approximated by an integral, which we call 
Exp
N-R ( ,1)I x : 

( )
max

2Exp
N-R ( ,1) ln qx

r hI x k k q b b= ×  

( )
max 2 ln( )

3
ln( )

0

( ) r h h h

h h

m m q m m
h

q m m qx

m b
d

b b

ζ

ζ

ζ
ζ

∞

+∫ . (60) 

The limits of 0 and ∞  on the integral arise because, as 

before, we assume that the stimulus value, x, is far from 

the ends of the range of z-values, and so the limits of z are 

effectively ±∞ ; from Equation (56), as z→−∞ , 0ζ → , 

and, as z→∞ , ζ →∞ .  In Supplementary Appendix G, 

we derive an expression for the integral in Equation (60).  

This integral has a finite solution if 
max

ln h rq b m m> + , in 

which case the solution is given by Equation (G.18).  Us-

ing Equation (G.18) to substitute for the integral in Equa-

tion (60), and simplifying, we obtain 

( )
( )

maxExp
N-R

1
( ,1)

2sin

mx
r hk k m m e

I x
m

π γ

π γ

+
= . (61) 

where 
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maxh rm m m= +  (62) 

and 

lnq bγ = , (63) 

subject to the restriction that 

mγ > . (64) 

It can be shown that 
Exp Const

N-RN-R ( ,1) ( ,1)I x I x→  as 

0m→ , which is essential because, if the “m” parameters 

are all zero, then the “Exponential” parameterization re-

duces to the “Constant” parameterization. 

Equation (61) shows two notable features.  Firstly, the 

Fisher information is an exponential function of x: Spe-

cifically, when exp( )hh m z∝  and 
maxmax exp( )rr m z∝ , 

the Fisher information is proportional to 

max
exp[( ) ]h rm m x+ .  Secondly, 

Exp
N-R ( ,1)I x  is a function of 

the sum of hm  and 
maxrm , regardless of their individual 

values.  Thus, hm  and 
maxrm  can be exactly traded off 

against each other, and the Fisher information will not 

change, as long as 
maxh rm m+  remains constant. 

Equation (61) assumes that q is constant (i.e., 

0qm = ).  Allowing q to vary with z greatly complicates 

the integral, and we were unable to solve it, so instead we 

used an approximation.  First, we extend the definition of 

γ (Equation (63)) as follows: 

exp( ) lnq qk m x bγ = . (65) 

Here, q is treated as a function of x, but using the parame-

ters that define how it varies with z (Equation (25)); how-

ever, the approximation is good enough because the per-

formance for a log contrast of x will be dominated by the 

neurons with z close to x.  If we then use Equation (65) 

instead of Equation (63) to substitute for γ in Equation 
(61), we obtain a very good approximation of the Fisher 

information when q varies as an exponential function of z. 

Equation (61) also assumes 0 0r = .  We found that in-

creasing 0r  causes an approximately multiplicative at-

tenuation that is close to the factor ( )0 maxQ r r  (Equation 

(41)), derived for the “Constant” parameterization.  Thus, 

even though the Q function was not derived for the “Ex-

ponential” parameterization, we can borrow it to approxi-

mate the effect of nonzero 0r  for this parameterization: 

Exp
N-R ( ,1)I x =  

     
( )
( )

( )max
0 max

1 exp( )

2sin

r hk k m m mx
Q r r

m

π γ

π γ

+
× , (66) 

where m is given by Equation (62), and γ is given by 
Equation (65). 

 

Fitting the model to psycho-
physical data 

 

In this section, we test the accuracy of our equations 

by comparing their predictions against the true perform-

ance of the model, determined from Monte Carlo simula-

tions.  In principle, we could make this comparison for 

any set of model parameters.  However, we are most inter-

ested in testing the accuracy of our equations when the 

model’s performance is close to human levels.  The 

Cramér-Rao bound given by the Fisher information can 

substantially overestimate the decoding precision when 

the performance level or number of neurons is low (Xie, 

2002; May & Solomon, 2014); if the Fisher information 

deviated substantially from the model’s decoding preci-

sion at performance levels shown by humans, then our 

equations would be of little value.  It is therefore impor-

tant to verify that our equations closely predict the 

model’s decoding precision for the performance levels 

shown by observers in psychophysical tasks.  The best 

way to be sure of this is to compare the simulations and 

equations at human performance levels, i.e. to fit the 

model to psychophysical data. 

Because the model performance can be estimated so 

quickly from the equations, we used the equations to fit 

the model to psychophysical data, and then we carried out 

Monte Carlo simulations using the fitted parameter values.  

This section therefore serves two purposes: As well as 

validating our equations for relevant performance levels, it 

provides a demonstration of how our equations can be 

used to fit the generic sensory coding model to psycho-

physical data. 

The parameters were fitted to the psychophysical data 

using the simplex algorithm to minimize the sum of 

squared differences between predicted and actual log dis-

crimination thresholds.  On each iteration of the fitting 

procedure, the population of neurons was set up as de-

scribed in Supplementary Appendix C; then the exact 

Fisher information for each pedestal level was found, us-

ing Equation (34) or (36) as appropriate, and this was used 

to calculate the precision, ( )xτ , using Equation (31); the 

precision was then used to calculate the Weber fraction, 

W, using Equation (33) with Pθ  set to the threshold per-

formance level that had been used in the psychophysical 
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study; the predicted Weber fraction was multiplied by the 

pedestal level to give the predicted threshold ( fθ∆  in 

Figure 3, or cθ∆  in Figures 5 and 6).  We took the loga-

rithms of these predicted thresholds and found the sum of 

squared differences between the predicted log thresholds 

and the log thresholds from the psychophysical data.  The 

simplex algorithm adjusted the model parameters to 

minimize this sum. 

 

Modelling Weber’s Law with Gaussian-tuned 
neurons: The “Constant Gaussian” parame-
terization 

 

As noted above, the “Constant” parameterizations 

give rise to Weber’s law.  Mayer and Kim’s (1986) data 

on spatial frequency discrimination conform to Weber’s 

Law, and spatial frequency tuning functions in primary 

visual cortex are approximately Gaussian functions of log 

spatial frequency (De Valois, Albrecht, & Thorell, 1982), 

so it is appropriate to fit the “Constant Gaussian” parame-

terization to Mayer & Kim’s data.  These data are plotted 

as black triangles in Figure 3. 

In the case of Weber’s Law for spatial frequency dis-

crimination, if the pedestal frequency is pf  and the fre-

quency difference at threshold is fθ∆ , then the plot of 

fθ∆  against pf  on log-log axes will be a straight line of 

gradient 1.  There is only one degree of freedom in this 

plot – the vertical position – so we needed only one free 

parameter to fit the data.  Our approach was to hold all the 

model parameters constant except for the density, h, and 

fit h to the psychophysical data. 

For the modelling shown in Figure 3, we set the tun-

ing bandwidth, ω, to 1.5 octaves, which is close to the 
median value found physiologically (De Valois et al., 

1982); q was then calculated from ω using Equation (9).  
We set 0 maxr r  to 0.03 for all the modelling; the rationale 

for this choice was that Geisler and Albrecht (1997) found 

that the median 0r  for a 200 ms stimulus was 0.17 for 

monkey V1 neurons, which is 0.03 when expressed as a 

proportion of median max 5.7r =  spikes for neurons tuned 

to the stimulus.  Different columns of panels in Figure 3 

show results for different combinations of Gσ  and maxr  

(as indicated above each panel in the top row).  The values 

of Gσ  = 0.2 or 0.4 are close to the mean values obtained 

by Goris et al. (2014) for awake and anaesthetized mon-

keys, respectively.  The lower value of max 4r =  was close 

to the median value (5.7 spikes) reported by Geisler and 

Albrecht (1997) for a 200 ms stimulus, and the purpose of 

the higher value ( max 16r = ) was to show how this affects 

the size of the neuronal correlations and Fano factors. 

Having fitted h, we constructed a set of model neurons 

with z equally spaced along the log spatial frequency axis 

between min 0.3z = −  and max 1.7z =  with spacing 

1z hδ = .  Then we performed Monte Carlo Simulations.  

The full details of the Monte Carlo simulations are given 

in Supplementary Appendix H, but, briefly, they were car-

ried out as follows.  First, we sampled a large number of 

points along the stimulus (x) axis.  For each stimulus 

value, x, we used the stochastic spiking model to generate 

10,000 sets of spike counts, and decoded each set of spike 

counts to give 10,000 estimated stimulus levels.  The de-

coding precision was then calculated as the reciprocal of 

the variance of the stimulus estimates (decoding precision 

for the “known gain” decoder is plotted as blue circles in 

the top row of panels in Figure 3).  The stimulus estimates 

were also used to simulate a 2AFC discrimination task 

(described in detail in Supplementary Appendix H).  

2AFC trials consisted of two stimulus presentations, each 

with a different randomly generated gain value, g.  The 

lower stimulus value was the pedestal, and the higher 

value was the target.  On each 2AFC trial, the model se-

lected as the target the stimulus with the highest estimated 

value, and we found the proportion of correct responses 

for each combination of pedestal and target.  For each 

pedestal, we fitted a Weibull psychometric function (May 

& Solomon, 2013) to the model’s proportion-correct data 

and obtained a discrimination threshold from the fitted 

function as described in Supplementary Appendix H.  The 

discrimination thresholds for the “known gain” decoder 

are plotted as blue circles in the bottom row of panels in 

Figure 3. 

The red lines in the top row of panels give the pre-

dicted decoding precision, calculated from the Fisher in-

formation, Gauss ( ,1)J x , using Equations (31) and (36).  

Table 1 shows that the true decoding precision obtained 

from the Monte Carlo simulations with known gain differs 

from the predicted value by less than 0.5%.  This close 

match confirms that the Fisher information gives a suffi-

ciently close approximation of decoding precision to allow 

us to calculate model performance and gain insights into 

the relationships between physiology and behaviour. 

The red lines in the bottom row of panels show the 

discrimination thresholds predicted from Gauss ( ,1)J x  us-

ing Relation (33) with 0.75Pθ = .  It was these predicted 

thresholds that were used to fit the model to Mayer & 

Kim’s data in the first place, so it is no surprise that they 

fit well to Mayer & Kim’s data.  What is more important 

is how accurately the thresholds predicted from the Fisher 

information match those obtained from the Monte Carlo 

simulations with the “Known Gain” decoder (compare the 
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red lines against the blue circles in the bottom row of 

Figure 6). 

The thick, grey lines in the top row of Figure 3 plot 

the precision predicted from the integral approximation of 

the Fisher information, ConstGauss ( ,1)I x , as defined in Equation 

(53).  The thick, grey lines in the bottom row plot the 

thresholds predicted from ConstGauss ( ,1)I x .  The integral ap-

proximation of the Fisher information differs from the true 

Fisher information by less than 1% (see Table 1), and pro-

vides a better insight into the relationship between psy-

chophysical performance and the neuronal parameters 

than we get from Gauss ( ,1)J x , which is a sum with one 

term for each neuron. 

In the Monte Carlo simulations described so far, the 

decoder knew the gain on each stimulus presentation. We 

also carried out analogous simulations using the “Univari-

ate” and “Bivariate” decoders, which did not know the 

gain signal.  These decoders were applied to the same 

simulated spike data as the “Known Gain” decoder – it 

was just the decoding algorithm that differed.  Table 1 

shows that, for three of the four conditions, the precision 

of the “Bivariate” decoder was within 2% of the value 

predicted from the Fisher information.  For the most 

physiologically plausible condition ( 0.2Gσ = , max 4r = ), 

the “Bivariate” decoder’s performance was not reliably 

distinguishable from the predicted value with the number 

of trials that we used; even on the “Bivariate” decoder’s 

worst condition ( 0.4Gσ = , max 16r = ), its precision was 

within 6% of the value predicted from the Fisher informa-

tion.  This is remarkably close, considering that the 

Fisher-information-based estimate assumes that the de-

coder knows the gain signal on each trial and is perform-

ing maximum-likelihood estimation; in reality, the 

“Bivariate” decoder does not know the gain signal, and is 

not a maximum-likelihood decoder, as it can only take 

account of pairwise statistical dependencies.  The true 

maximum-likelihood decoder for the “Unknown Gain” 

situation would almost certainly yield a precision even 

closer to the predicted value. 

Why should knowledge of the gain signal yield so lit-

tle benefit?  For a Gaussian-tuned neuron, increasing the 

gain has a similar effect to moving the stimulus value to-

wards the peak of the neuron’s tuning curve.  In response 

to an unknown change of gain, neurons with tuning peaks 

either side of the true stimulus value will tend to pull the 

decoded stimulus value in opposite directions, so the ef-

fects largely cancel out, and gain fluctuations have little 

effect on the decoded stimulus values, even when the gain 

value is unknown to the decoder.  Because the gain signal 

conveys so little extra information, we can relax the as-

sumption that the gain signal is known, and our equations 

still predict performance closely. 

The closeness of the “Bivariate” and “Univariate” de-

coders’ precision values shows that it is not even particu-

larly important for the decoder to take into account pair-

wise statistical dependencies.  The “Univariate” decoder 

decodes the neuronal responses as if they were entirely 

independent of one another, yet, for three of the four con-

ditions, the precision of the “Univariate” decoder was 

within 1 or 2% of the value predicted from the Fisher in-

formation. 

We also analyzed the spike counts generated by the 

model to check that they showed the expected Fano fac-

tors and spike count correlations.  As already noted, the 

Fano factor of these model neurons depends on the mean 

spike rate and the standard deviation of the gain: Equation 

(14) shows that the plot of Fano factor against mean spike 

rate should be a straight line, with gradient 2
Gσ , passing 

through the point (0,1).  Figure 4 confirms that our model 

neurons do show this relationship.  Figure 5 confirms that 

the spike count correlations between pairs of model neu-

rons follow the pattern predicted by Equation (17).  The 

ranges covered by the thick, pink lines in Figures 4 and 5 

approximately indicate the ranges of Fano factors and cor-

relations that occur in each parameterization

 

 0.2Gσ = , max 4r =  0.2Gσ = , max 16r =  0.4Gσ = , max 4r =  0.4Gσ = , max 16r =  

2 Const
Gauss(1 ) ( ,1)G I xσ− ×  1.0067 1.0067 1.0067 1.0067 

“Known gain” 0.9957 0.9983 0.9983 0.9996 

“Bivariate” 0.9973 0.9863 0.9883 0.9447 

“Univariate”  0.9944 0.9833 0.9833 0.9100 
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Table 1.  Precision scores expressed as a proportion of the precision predicted from Gauss ( ,1)J x  for the “Constant Gaussian” parame-

terizations of Figure 3.  For each of the 104 stimulus levels, x, between 0.6 and 0.8, we expressed the precision for each decoder as a 

proportion of that predicted from Gauss ( ,1)J x .  The table shows the mean value of this proportion for each condition and decoder.  The 

top row shows the precision predicted from 
Const
Gauss ( ,1)I x , expressed as a proportion in the same way.  Each value in the table is the 

mean of 104 ratios.  For each ratio, the precisions were calculated from 10,000 trials, except for the “Bivariate” decoder on the two con-

ditions with max 4r = .  These conditions had a very large number of neurons, so the “Bivariate” decoding algorithm, which calculated a 

likelihood for every pair of neurons, was very slow.  Due to time constraints, we were only able to decode 4,200 of the 10,000 trials for 

0.2Gσ = , max 4r = , and 3,500 of the 10,000 trials for 0.4Gσ = , max 4r = .  The slightly higher precision score for the “Bivariate” 

than “Known Gain” decoder for 0.2Gσ = , max 4r =  is a result of sampling error due to the smaller number of trials. 
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Figure 3.  Fitting the “Constant Gaussian-tuned” parameterization to data from Mayer and Kim (1986).  The black triangles in the bottom 
panels show Mayer and Kim’s (1986) spatial frequency discrimination data for their subject MJ, condition R 2PFC, transcribed from 
their Figure 7.  Mayer and Kim’s data actually show the difference in spatial frequency between the 0.25 point and 0.75 point of the 
psychometric function.  The “pedestal” frequency should fall halfway between these points, so we halved their thresholds to obtain 

fθ∆ , the difference between target and pedestal at a threshold performance level of 0.75Pθ = .  Four of the model’s parameters were 

fixed as follows: min 0.3z = − , max 1.7z = , 0 max 0.03r r = , 1.5ω =  octaves.  maxr  and Gσ  were set as indicated above the top of 

each panel in the top row.  The remaining parameter, h, was fitted to Mayer and Kim’s data; the fitted values are shown in the top pan-

els.  Having fitted this parameter, we carried out Monte Carlo simulations as described in the text and in Supplementary Appendix H.  
The blue circles in the top row of panels plot the decoding precision from the Monte Carlo simulations using the “Known Gain” decoder.  

These points show decoding precision for every 30th value along the x-axis that we calculated.   The rest are omitted from the figure for 

clarity, although the stimulus estimates for these x-values were used in the 2AFC simulations, where we needed a fairly fine sampling 

of the x-axis to fit the psychometric function, and hence find the discrimination threshold.  The red lines in the top row of panels plot the 

precision predicted from the Fisher information, Gauss ( ,1)J x  (Equation (36)), while the thick, grey lines plot the precision predicted 

from the integral approximation of the Fisher information, 
Const
Gauss ( ,1)I x  (Equation (53)); in both cases, we converted ω to q, using Equa-

tion (9), before applying equation (36) or (53).  The predicted precision is found by multiplying the Fisher information by 
21 Gσ−  (see 

Equation (31)).  In the bottom row, the blue circles plot the thresholds, fθ∆ , obtained from the Monte Carlo simulations of the 2AFC 

discrimination task with the “Known Gain” decoder.  The red lines in the bottom row plot the thresholds predicted from Gauss ( ,1)J x  

using Relation (33) with 0.75Pθ = .  The thick, grey lines plot the thresholds predicted in the same way, except using 
Const
Gauss ( ,1)I x  to 

approximate the Fisher information.  Note that the abscissas in the top row are identical to those on the bottom row, i.e. each position 
on the abscissa in the top row represents the same stimulus as the same position on the abscissa in the bottom row.  On the top row, 
we have marked the abscissas with log units since the precision is calculated from the values in these units; in the bottom row we have 
marked the abscissas with linear units, to be compatible with the threshold, which is defined as the difference of spatial frequencies. 

 

 
 

Figure 4.  Fano factors of the neurons in the modelling of Figure 3.  Each panel in this figure shows the Fano factors for the parameteri-

zation in the corresponding column of panels in Figure 3.  For each model neuron, and each stimulus level, we found the mean and 

variance of the spike count across the 10,000 repetitions.  We divided the variance by the mean to give the Fano factor (we had to ex-

clude from this analysis combinations of neuron and stimulus level for which the neuron never fired).  Because of the large number dif-

ferent combinations of neuron and stimulus level (> 10
5
 in each panel), there were too many points to plot as individual dots, so we 

sorted the points in order of mean spike rate, and then chunked them into groups of 1,000.  The thick, pink lines plot the average mean 

spike rate against the average Fano factor for each group.  The black line in each plot is the predicted relationship between mean and 

Fano factor given by Equation (14). 
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Figure 5.  Spike count correlations between pairs of neurons in the modelling of Figure 3.  Each panel in this figure shows the correla-

tions for the parameterization in the corresponding column of panels in Figure 3.  Because of the large number of pairs of neurons, we 

just analyzed the responses to the stimulus level in the middle of the range of stimuli used in the modelling.  For each pair of model 

neurons, we found the Pearson correlation between the spike counts of the two neurons across the 10,000 repetitions (we omitted from 

this analysis all pairs of neurons for which either neuron gave no spikes across all 10,000 repetitions).  We then sorted the data points 

in order of the predicted correlation given by Equation (17), and chunked them into groups of 1,000.  The thick, pink lines plot the mean 

predicted correlation against the mean actual correlation for each group.  The black lines plot the outcome that would occur if the actual 

correlation were always exactly equal to the predicted correlation. 

 

 

Modelling Weber’s Law for suprathreshold 
contrast discrimination: The “Constant Naka-
Rushton” parameterization 

 

The “Constant” parameterization yields Weber’s Law, 

and the Naka-Rushton function is the tuning function for 

contrast.  Thus, it is appropriate to fit the “Constant Naka-

Rushton” parameterization to the data from a contrast dis-

crimination experiment that gave rise to Weber’s Law.  

Although contrast discrimination generally shows a near-

miss to Weber’s Law (Legge, 1981; Meese et al., 2006), 

there have been some reports of Weber’s Law for contrast 

discrimination (Swift & Smith, 1983; Bird, Henning, & 

Wichmann, 2002).  We fitted the model to some of Bird et 

al.’s (2002) data (which are plotted as black triangles in 

Figure 6), and carried out simulations analogous to those 

in Figure 3, but using the Naka-Rushton tuning function 

instead of the Gaussian.  The model parameters are given 

in the caption of Figure 6.  In this simulation, we only 

considered psychophysical data from pedestals that were 

clearly suprathreshold: Very low contrasts would fall be-

low the range of semi-saturation contrasts found physio-

logically, and would not stimulate many neurons, and, in 

these circumstances, the Fisher information is unlikely to 

be close to the decoding precision, and cannot be used for 

estimating the model’s psychophysical performance. 

The blue circles in Figure 6 show the “Known Gain” 

decoder’s decoding precision and discrimination thresh-

olds; these are very well predicted from both the true 

Fisher information expressions (thin, red lines in Figure 6) 

and the integral approximations (thick, grey lines).  Table 

2 shows that, in each case, the true decoding precision is 

within 2 or 3% of that predicted from the Fisher informa-

tion.  The integral approximation of the Fisher information 

is exceptionally close to the true Fisher information. 

Table 2 shows that, unlike with Gaussian tuning func-

tions, both “Unknown Gain” decoders were much worse 

than the “Known Gain” decoder.  The “Bivariate” decoder 

does better than the “Univariate” decoder but, in both 

cases, the gain fluctuations have a catastrophic effect on 

decoding precision.  It is easy to see why this happens.  

For any Naka-Rushton-tuned neuron, an increase in gain 

has the same effect as an increase in contrast, so, if the 

gain is unknown, then random gain fluctuations will be 

interpreted as fluctuations in contrast, and, on each stimu-

lus presentation, the decoded contrast will be biased in the 

direction of the gain value on that stimulus presentation, 

leading to inaccurate estimation. 
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Figure 6.  Fitting the “Constant Naka-Rushton” parameterization to data from Bird et al. (2002).  The black triangles in the bottom pan-
els show Bird et al.’s (2002) contrast discrimination data for their subject GBH, for 4.19 c/deg sine wave gratings, transcribed from their 

Figure 3b.  Four of the model’s parameters were fixed as follows: 3q = , 0 max 0.03r r = , min 3z = − , max 1z =  ( 3q =  is close to the 

mean value found physiologically – see May & Solomon, 2014, Table 1).  maxr  and Gσ  were set as indicated above the top of each 

panel in the top row .  The remaining parameter, h, was fitted to Bird et al.’s data; the fitted values are shown in the top panels.  Monte 

Carlo simulations were conducted in a similar way to those in Figure 3, except using the Naka-Rushton tuning function.  All plotting 
conventions are the same as or analogous to those in Figure 3.  The blue circles plot Monte Carlo simulation results for every 18th 

value along the x-axis that we calculated (the rest are omitted from the figure for clarity, although the stimulus estimates for these x-
values were used for fitting psychometric functions in the 2AFC simulations).  The red lines plot performance predicted from the true 

Fisher information, N-R ( ,1)J x  (Equation (34)), while the thick, grey lines plot performance predicted from the integral approximation of 

the Fisher information, 
Const
N-R ( ,1)I x  (Equation (40)).  Precision was predicted by multiplying the Fisher information by 

21 Gσ−  (see 

Equation (31)).  Predicted discrimination threshold was derived from the predicted precision using Relation (33) with 0.75Pθ = . 
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 0.2Gσ = , max 4r =  0.2Gσ = , max 16r =  0.4Gσ = , max 4r =  0.4Gσ = , max 16r =  

2 Const
N-R(1 ) ( ,1)G I xσ− ×  1.000002 1.000002 1.000002 1.000003 

“Known gain” 0.9804  0.9782  0.9738 0.9736 

“Bivariate” 0.3897 0.4852 0.09312 0.2162 

“Univariate” 0.3574 0.3776 0.06974 0.09887 

Table 2.  Precision scores expressed as a proportion of the precision predicted from N-R ( ,1)J x  for the “Constant Naka-Rushton” 

parameterizations of Figure 6.  For each of the 139 stimulus levels, x, between −1.5 and −0.5, we expressed the precision for each de-

coder as a proportion of that predicted from N-R ( ,1)J x .  The table shows the mean value of this proportion for each condition and 

decoder.  The top row shows the precision predicted from 
Const
N-R ( ,1)I x , expressed as a proportion in the same way.  Each value in the 

table is the mean of 139 ratios.  For each ratio, the precisions were calculated from 10,000 trials. 

Modelling the near-miss to Weber’s Law for 
contrast discrimination: The “Exponential 
Naka-Rushton” parameterization 

 

The black triangles in the bottom row of Figure 7 

show human contrast discrimination data from Meese et 

al. (2006).  The log-log slope is clearly shallower than that 

obtained by Bird et al., plotted in Figure 6.  We fitted the 

“Exponential Naka-Rushton” parameterization to Meese 

et al.’s data by using the Fisher information to predict the 

model’s thresholds, as described earlier, and performed 

similar Monte Carlo simulations (see Supplementary Ap-

pendix H).  The psychophysical data have two degrees of 

freedom: the height and slope of the log-log plot of 

threshold against pedestal.  Thus, we now needed two de-

grees of freedom in our model fit.  In all the parameteriza-

tions in Figure 7, we fitted the parameter hk , which gives 

the density for a stimulus value of 0x = .  Each column of 

Figure 7 uses a different choice of which other parame-

ter(s) to fit.  In column (A), we fitted hm , so that h varied 

with z, and set the other m-parameters (
maxrm  and qm ) to 

zero, so that maxr  and q were constant across the neurons 

(equal to 
maxrk  and qk , respectively).  In column (B), we 

fitted 
maxrm , so that maxr  varied with z, and set the other 

m-parameters ( hm  and qm ) to zero.  In column (C), we 

fitted qm , so that q varied with z, and set the other m-

parameters ( hm  and 
maxrm ) to zero.  In column (D), we 

fitted all three m-parameters, subject to the constraint that 

maxh r qm m m= = ; thus, there were still only two degrees 

of freedom in the fit, but all three parameters, h, maxr  and 

q, varied with z.  In each parameterization, all the parame-

ters that were not fitted were set to reasonable values (see 

the caption of Figure 7 for these values). 

Note that the individual fitted m-parameter values in 

column (D) are approximately one third of the values ob-

tained when only one of the three parameters was fitted, 

indicating that the contribution of all three of these pa-

rameters to the Fisher information is additive.  The precise 

additivity of hm  and 
maxrm was proved analytically ear-

lier, and the fitting results in column (D) suggest that this 

additivity also applies to qm , at least approximately. 

The plotting conventions in Figure 7 are the same as 

in Figure 6.  The top row shows predicted and actual pre-

cision, while the bottom row shows 2AFC discrimination 

thresholds.  Blue circles show the precision and thresholds 

from the Monte Carlo simulations with the “Known Gain” 

decoder; thin, red curves show the precision and thresh-

olds predicted from the true Fisher information, 

N-R ( ,1)J x  (Equation (34)); thick, grey curves show the 

precision and thresholds predicted from the integral ap-

proximation of the Fisher information, 
Exp
N-R ( ,1)I x  (Equa-

tion (66)).  Thresholds were predicted from the Fisher in-

formation using Relation (33) with 

1 0.5/ 0.816...P eθ = − = , which was the performance level 

that defined the threshold in Meese et al.’s study.  These 

threshold predictions map out almost straight lines on the 

log-log plots, which fit well to Meese et al.’s data. 

Recall that the derivation of 
Exp
N-R ( ,1)I x was exactly 

correct only when 0 0qr m= = (i.e. zero spontaneous firing 

rate, and q constant with respect to z).  When either 0 0r ≠  

or 0qm ≠  (as is the case in each panel of Figure 7), the 

integral was intractable, so we used workarounds to give 

an approximate expression.  Nevertheless, Table 3 shows 

that the precision predicted from the integral approxima-

tions of the Fisher information never differed by more 

than about 6% from that predicted from the true Fisher 

information.  Meanwhile, the actual precision from the 

“Known Gain” decoder was never more than 6% lower 

than that predicted from the Fisher information.  As with 

our other simulations of contrast discrimination, the per-

formance of the “Unknown Gain” decoders was much 

worse than that of the “Known Gain” decoder.
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Figure 7.  Fitting  the “Exponential Naka-Rushton” parameterization to data from Meese et al. (2006).  Meese et al.’s data are plotted as 
black triangles in the bottom row of this figure (these data are from Meese et al.’s Binocular condition, plotted as squares in their Figure 

5, and kindly supplied by Tim Meese).  Each column of panels gives the data for one parameterization.  In each case, 0.2Gσ = , 

0 max 0.03r r = , min 3z = − , and max 1z = .  We fitted two parameter values to the data (fitted values are given in the top panel), and 

chose reasonable values for the others.  One of the fitted parameters was always hk .  The other fitted and fixed parameters in the dif-

ferent parameterizations were as follows.  (A) hm  was fitted, so that h varied with z, and we set 
max

0r qm m= = , 
max

5.7rk = , and 

3qk = .  (B) 
maxrm was fitted, so that maxr  varied with z, and we set 0h qm m= = , 

max
16rk = , and 3qk = .  (C) qm  was fitted, so 

that q varied with z, and we set 
max

0h rm m= = , 
max

5.7rk = , and 7qk = .  (D) hm , 
maxrm  and qm  were fitted, subject to the con-

straint that 
maxh r qm m m= = , so that  h, maxr  and q varied with z, and we set 

max
8rk = , and 4qk = .  Plotting conventions are the 

same as in Figure 6.  N-R ( ,1)J x  was calculated using Equation (34), and 
Exp
N-R ( ,1)I x  was calculated using Equation (66).  Predicted 

discrimination threshold was predicted from each Fisher information expression using Relation (33) with 1 0.5/ 0.816...P eθ = − =  .  

Blue circles plot performance for every 18th stimulus level that we evaluated. 
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 h varied 
maxr  varied q varied h, maxr  & q varied 

Exp2
N-R(1 ) ( ,1)G I xσ− ×  1.0602 1.0606 0.9848 1.0558 

“Known gain” 0.9407 0.9416 0.9544 0.9509 

“Bivariate” 0.4605 0.4575 0.3623 0.4538 

“Univariate” 0.4510 0.4385 0.3302 0.4334 

 

Table 3.  Precision scores expressed as a proportion of the precision predicted from N-R ( ,1)J x  for the “Exponential Naka-Rushton” 

parameterizations of Figure 7.  For each of the 191 stimulus levels, x, between −1.5 and −0.5, we expressed the precision for each de-

coder as a proportion of that predicted from N-R ( ,1)J x .  The table shows the mean value of this proportion for each condition and 

decoder.  The top row shows the precision predicted from 
Exp
N-R ( ,1)I x , expressed as a proportion in the same way.  Each value in the 

table is the mean of 191 ratios.  For each ratio, the precisions were calculated from 10,000 trials. 

 

Discussion 

 

The purpose of this study was to construct psycho-

physical models whose performance could easily be con-

nected to the parameters of the neurons that encode the 

stimulus.  We used a parameterization of Goris et al.’s 

(2014) model of neuronal spiking, in which each neuron 

has an independent Poisson spiking process, and the spike 

rate of each neuron is modulated by a multiplicative, 

gamma-distributed gain signal that is shared between all 

the neurons.  The individual neurons were characterized 

by the parameters of their tuning function: 0r  (spontane-

ous spike rate), maxr  (maximum increment in spike rate 

from 0r ), q (tuning sharpness), and z (position along the 

stimulus axis).  Tuning functions could be sigmoidal 

(Naka-Rushton) or Gaussian.  The population of neurons 

was characterized by the density, h, of neurons along the 

stimulus axis.  The gain fluctuations (parameterized by the 

standard deviation, Gσ ) had both neuron-specific and 

population-wide effects.  The neuron-specific effects of 

the gain fluctuations were the Fano factors (Figure 4), and 

the population-wide effects were the spike count correla-

tions that resulted from having the neurons share the same 

gain signal (Figure 5); both effects arise from Equation 

(12), which describes the covariance matrix for a popula-

tion of model neurons of this kind. 

Model performance was calculated analytically by us-

ing the neuronal parameters to calculate the Fisher infor-

mation, from which we can estimate the decoding preci-

sion.  Although one can always find the performance level 

by setting up a Monte Carlo simulation (Clatworthy, 

Chirimuuta, Lauritzen, & Tolhurst, 2003; Chirimuuta, 

Clatworthy, & Tolhurst, 2003; Chirimuuta & Tolhurst, 

2005), the long time required to complete the simulations 

for a single parameter set makes it difficult to fit the 

model to data (Chirimuuta & Tolhurst, 2005) and this 

method provides little insight into why the observed pat-

terns of results were obtained, or whether the results gen-

eralize to other parameterizations of the model.  Our work 

solves all of these problems by providing fairly simple 

equations that can be evaluated to give a close approxima-

tion of the decoding precision, and thus discrimination 

threshold. 

Our expressions for the decoding precision were de-

rived assuming that the decoder knows the gain signal, g.  

In this case, we can derive the Fisher information as if the 

neurons were statistically independent; we then take the 

Fisher information for the case of 1g =  and multiply it by 

21 Gσ−  to obtain the predicted decoding precision (Equa-

tion (31)).  This predicted decoding precision is the modal 

value of the Fisher information across all stimulus presen-

tations.  As discussed later, with Gaussian tuning curves, 

we can relax the assumption that the decoder knows the 

gain signal, and our equations still provide an accurate 

prediction of the model’s performance. 

We derived two kinds of expression for the Fisher in-

formation.  One was an exact expression (represented by 

the letter J), which consists of a sum with one term for 

each neuron.  The other kind of expression (represented by 

the letter I) approximates this sum using an integral.  

These integral approximations are much more compact, 

and can help to shed light on the relationships between 

psychophysical performance and the neuronal parameters. 

We outlined two basic types of parameterization of the 

generic sensory coding model: the “Constant” and “Expo-

nential” parameterizations.  In the “Constant” parameteri-

zation, all the neuronal parameters are constant with re-

spect to z, and z is distributed with constant density along 

the stimulus axis.  Our integral approximations revealed 

some particularly simple relationships between Fisher in-

formation and the neuronal parameters for the “Constant” 
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parameterization.  For both Naka-Rushton and Gaussian 

tuning functions, if 0 maxr r  is held constant, the Fisher 

information is proportional to maxr qh  (see Equation (40) 

for the Naka-Rushton function and Relation (50) for the 

Gaussian tuning function).  For the Naka-Rushton tuning 

function, the Fisher information is proportional to a de-

creasing function of the relative spontaneous firing rate, 

0 maxr r , which we call Q (see Equation (41) and Figure 

2); as 0r  increases, the Fisher information undergoes a 

multiplicative attenuation that is a function only of the 

ratio 0 maxr r .  The same effect holds to a very close ap-

proximation for the Gaussian tuning function (see Sup-

plementary Appendix F).  Another feature of the “Con-

stant” parameterization is that the Fisher information is 

constant across the stimulus axis (i.e. it is independent of 

x).  Because of this, if x is the logarithm of the physical 

stimulus value, then performance of the “Constant” 

parameterization will obey Weber’s Law (discrimination 

threshold proportional to pedestal).  We used the exact 

Fisher information expressions to fit the “Constant” 

parameterizations of the model to real psychophysical data 

that conformed to Weber’s Law: Mayer and Kim’s (1986) 

spatial frequency discrimination data (Figure 3) and Bird 

et al.’s (2002) suprathreshold contrast discrimination data 

(Figure 6).  In all cases, the thresholds predicted from the 

Fisher information expressions gave excellent matches to 

the thresholds obtained from Monte Carlo simulations. 

Many studies of suprathreshold contrast discrimina-

tion have found a near-miss to Weber’s Law, where the 

plot of threshold against pedestal is a straight line with a 

slope of about 0.6-0.7 on a log-log plot.  We showed that 

this could be accounted for by allowing any of the maxr , 

q, or h parameters to vary exponentially with z.  The rates 

of increase were determined by parameters 
maxrm , qm  

and hm , respectively.  We call this the “Exponential” 

parameterization, and it is a generalization of the “Con-

stant” parameterization (The “Constant” parameterization 

is the “Exponential” parameterization with 

max
0r q hm m m= = = ).  Again, the integral approximation 

of the Fisher information (Equation (66)) revealed two 

features that were not explicit in the exact expressions.  

Firstly, the Fisher information for the “Exponential” 

parameterization is an exponential function of the stimulus 

level: It is proportional to exp( )mx , where 

maxh rm m m= + .  Secondly, the Fisher information is a 

function of the sum of 
maxrm  and hm , regardless of their 

individual values.  We also found that, as with the “Con-

stant” parameterizations, we could closely model the ef-

fect of 0r  by multiplying the Fisher information by 

( )0 maxQ r r  as defined in Equation (41).  We used the 

exact Fisher information expressions to fit the “Exponen-

tial Naka-Rushton” parameterization to Meese et al.’s 

(2006) contrast discrimination data.  The thresholds pre-

dicted from the Fisher information expressions gave a 

good match to the thresholds obtained from Monte Carlo 

simulations. 

The fact that we needed an exponential increase in at 

least one neuronal parameter with increasing semi-

saturation contrast shows that the physiological constraints 

imposed by the near-miss to Weber’s law are quite differ-

ent from those imposed by the true Weber’s Law, which 

results if all the neuronal parameters are constant.  This 

fact seems not to have been widely appreciated, because 

contrast discrimination performance is usually modelled 

using transducer models with additive noise (e.g., Wilson, 

1980; Legge & Foley, 1980; Meese et al., 2006), and the 

transducer only needs a slight tweak to alter its predictions 

from Weber’s Law to the near-miss. 

 

“Implicit” decorrelation when the gain is 
known 

 

In our model, if the decoder knows the gain signal, it 

can express the neuronal spike distributions as independ-

ent Poisson distributions.  This is a form of decorrelation, 

but the neurons’ responses are not changed, and are there-

fore not explicitly decorrelated.  The neuronal responses 

are correlated across all trials, but are uncorrelated within 

each subset of trials that share the same gain signal.  The 

decoder’s knowledge of the gain signal allows it to iden-

tify which uncorrelated subset of trials the current trial 

belongs to, so the neuronal spiking distributions, condi-

tioned on this knowledge, are statistically independent.  

The neurons have thus been decorrelated “implicitly” by 

virtue of the decoder’s knowledge of what caused the cor-

relations.  Given the finding that a large proportion of neu-

ronal variability is explained by fluctuating internal gain 

signals that can be shared between neurons (Ecker et al., 

2014; Goris, Movshon, & Simoncelli, 2014), it could be 

that many apparently correlated populations of neurons 

are implicitly uncorrelated to a large extent. 

 

Effect of correlations when the gain is un-
known 

 

Although knowledge of the gain signal can result in an 

implicit decorrelation of the neuronal responses, our simu-

lations with the Gaussian tuning curve show that it is not 

always necessary to know the gain in order to achieve 
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near-optimal performance.  The “Bivariate” decoder does 

not know the gain signal, and expresses each pair of neu-

ronal responses as a correlated gamma-Poisson mixture 

distribution.  Nevertheless, its decoding performance is 

nearly as good as that of the “Known Gain” decoder.  Fur-

thermore, performance was not much worse with the 

“Univariate” decoder, which knows nothing whatever 

about the correlation structure of the population.  This is 

highly convenient, as it means that, for Gaussian tuning 

curves, our analytical expressions for the model’s per-

formance are not restricted to the class of models for 

which the decoder knows the gain signal or even knows 

about the pairwise correlations. 

With the Naka-Rushton tuning function, a decoder 

that does not know the gain signal cannot distinguish 

changes in gain from changes in stimulus contrast, so the 

gain fluctuations greatly impair performance.  Because of 

this, for Naka-Rushton tuning curves, our analytical ex-

pressions for the model’s decoding performance only ap-

ply to the “Known Gain” decoder. 

So far, we have explained this difference between 

Gaussian and Naka-Rushton tuning curves intuitively: For 

the Naka-Rushton function, a change of gain will bias all 

the neurons’ likelihood functions in the same direction, 

leading to inaccurate decoding, whereas, for the Gaussian 

tuning function, neurons with tuning peaks either side of 

the true stimulus value will have their likelihood functions 

biased in opposite directions, so the effect of a gain fluc-

tuation cancels out, and the stimulus estimate is largely 

unaffected.  We can gain a more formal insight into this 

difference between the Gaussian and Naka-Rushton tuning 

functions by considering the Fisher information for decod-

ing a pair of our model neurons that share a gain signal 

unknown to the decoder.  In this two-neuron system, the 

likelihood function is given by Equation (22).  Supple-

mentary Appendix I shows that the Fisher information for 

decoding a stimulus of value x in this case is given by 

2 2 2
1 2 1 2

2
1 2 1 2

( ( )) ( ( )) ( ( ) ( ))

( ) ( ) ( ) ( ) 1 G

r x r x r x r x
J

r x r x r x r x σ

′ ′ ′ ′+
= + −

+ +
, (67) 

where 1( )r x  and 2 ( )r x are the tuning functions of the two 

neurons, and 1 ( )r x′  and 2 ( )r x′  are their first derivatives.  

If the tuning functions are Gaussian, then the slopes, 

1 ( )r x′  and 2 ( )r x′ , will often be opposite in sign, and will 

partially or completely cancel out in the third (subtractive) 

term of Equation (67).  When x falls exactly midway be-

tween the peaks of two identically shaped Gaussian tuning 

functions, the third term is zero, and the Fisher informa-

tion is the same as for two independent Poisson-spiking 

neurons (i.e. equivalent to 0Gσ = ); this gives an insight 

into why gain fluctuations have so little effect on decoding 

Gaussian-tuned neurons, even when the gain signal is un-

known.  On the other hand, the slopes of the Naka-

Rushton functions are always positive, and so they never 

cancel out in this way, so the third term of Equation (67) 

generally subtracts more from the Fisher information for 

Naka-Rushton-tuned neurons than it does for Gaussian-

tuned neurons. 

It is important not to read too much into this analysis, 

because the Fisher information can be a poor estimator of 

decoding precision when the number of neurons is small 

(Xie, 2002; May & Solomon, 2014; also see the discus-

sion of this issue in Supplementary Appendix I).  The key 

point is that, for Gaussian tuning functions, the Cramér-

Rao upper bound on the decoding precision can be inde-

pendent of the gain variance, whereas, for Naka-Rushton 

tuning functions, the upper bound on the precision will 

always decrease with increasing gain variance. 

 

Comparisons with other studies 

 

Sanborn and Dayan (2011) argued that the central 

puzzle for contrast discrimination at high contrast is that 

the near-miss to Weber’s Law for contrast discrimination 

is difficult to reconcile with neuronal noise.  They ex-

plained the near-miss to Weber’s Law using a model in 

which the neuronal noise was Gaussian with response 

variance that was nearly constant for low mean response 

levels, and nearly proportional to the mean response for 

high mean response levels; they called this the “hinge 

noise” model.  They set up a model in which the stimulus 

was encoded by a population of neurons with this form of 

noise.  Each neuron had a linear contrast-response func-

tion, and the neurons differed from each other in their sen-

sitivity to the stimulus orientation.  Sanborn and Dayan 

showed that optimal decoding of this population gave rise 

to a contrast discrimination function with a log-log slope 

of 0.84 at high contrasts, i.e. a near-miss to Weber’s Law. 

A weakness of Sanborn and Dayan’s model is that, al-

though it attempts to reconcile psychophysical and physio-

logical findings, none of the key elements of their model 

are physiologically plausible.  Firstly, the function map-

ping mean response to variance in their hinge noise model 

is quite unlike neuronal noise, which is proportional to the 

mean for low responses and proportional to the square of 

the mean for high responses, a relationship that is well 

captured by the gamma-Poisson mixture distribution that 

we used (see Goris et al., 2014).  Secondly, Sanborn and 

Dayan’s linear contrast-response function is quite different 

from those of real neurons, which are well described by 

the Naka-Rushton function (Albrecht & Hamilton, 1982).  

Thirdly, although Sanborn and Dayan’s model had a range 

of orientation channels, it had only one contrast channel.  
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In the visual cortex, neurons tend to be sensitive to 

changes in contrast over a relatively narrow contrast 

range, which suggests that the contrast code is distributed 

across a population of neurons with different semi-

saturation contrasts (Teo & Heeger, 1994; Clatworthy et 

al., 2003; Chirimuuta et al., 2003).  Our work shows that, 

if we adopt this more physiologically plausible notion, 

then the “central puzzle” raised by Sanborn and Dayan 

disappears: The effect of the pedestal on threshold de-

pends, not just on the form of noise, but also on the distri-

bution of the contrast-response functions along the con-

trast axis. 

Our approach of coding contrast across a range of 

model neurons with different semi-saturation contrasts 

was used by Chirimuuta and Tolhurst (2005) to model 

contrast discrimination, and indeed our work was origi-

nally inspired by theirs.  However, Chirimuuta and Tol-

hurst lacked an analytical description of their model’s per-

formance.  This seriously hampered their attempts to fit 

their model to psychophysical data, as they were only able 

to try a small number of model parameter sets due to the 

slowness of the Monte Carlo simulations.  In their Figure 

9A, they used a model with 8 Naka-Rushton-tuned neu-

rons.  Each neuron had 2q = , and there was additionally a 

threshold applied to the output of the Naka-Rushton func-

tion.  For each of the 8 neurons, maxr  and z were free pa-

rameters, and Chirimuuta and Tolhurst adjusted these 16 

parameters by hand to fit their psychophysical data.  Our 

analytical approach allows us to reduce the parameter set, 

and more importantly, to understand exactly what contri-

bution each parameter makes to the decoding precision.  

We can then fix most parameters to physiologically plau-

sible values, and adjust no more parameters than we need 

to fit the data (i.e. 1 parameter for fitting Weber’s Law 

and 2 parameters for fitting the near-miss to Weber’s 

Law). 

Our general approach to modelling psychophysical 

performance also has much in common with that of Goris 

et al. (2013) and Itti, Koch and Braun (2000).  In both 

cases, the stimulus was encoded over a population of 

model neurons, which were assumed to be decoded in a 

way that was optimal (or quasi-optimal) for the psycho-

physical task.  The emphasis in both of those studies was 

to explain a large set of data using a single model.  The 

emphasis in our study has been to derive mathematical 

relationships between the neuronal response properties 

and characteristics of performance. 

 

 

 

The distribution of neurons along the stimu-
lus axis 

 

Although our “Constant” and “Exponential” parame-

terizations of the model with Naka-Rushton tuning func-

tions are successful in giving rise to, respectively, Weber’s 

Law and the near-miss to it, one might object that these 

models cannot be right because the semi-saturation con-

trasts measured in physiological experiments have neither 

a constant, nor exponential, distribution on the log-

contrast axis – the distribution is close to Gaussian 

(Clatworthy et al., 2003, their Figure 6; also see May & 

Solomon, 2014, Supplementary Appendix I).  However, it 

is difficult to know which neurons are being used for a 

particular task; Clatworthy et al.’s distribution may in-

clude many neurons that do not contribute to contrast dis-

crimination performance.  In addition, it should be noted 

that Clatworthy et al.’s empirical distribution was com-

piled by pooling a large group of neurons, regardless of 

the neurons’ stimulus preferences.  Psychophysical con-

trast sensitivity (the reciprocal of detection threshold) var-

ies greatly across spatial and temporal frequency (Robson, 

1966), suggesting that the lowest semi-saturation contrast 

( minz ) would vary greatly between different subpopula-

tions tuned to different spatiotemporal frequency combi-

nations.  Even if the distribution of z was flat, say, be-

tween minz  and maxz  for each subpopulation, by pooling 

the subpopulations, we would be adding together distribu-

tions with different lower limits, creating the graded drop-

off that we see in the full population.  A similar argument 

could be made regarding the upper end of the distribution. 

 

Different kinds of noise 

 

In most psychophysical models, the noise is a random 

variable added to the model’s deterministic response, and 

so the variance of the noise is the variance of the model’s 

output signal.  In our model, the output signal is the esti-

mated stimulus value, and the variance on this output sig-

nal does not necessarily show the same characteristics as 

the noise on the neurons itself.  For example, in our 

model, the variance of the noise on a single neuron in-

creases with the mean response according to Equation 

(13): Variance is approximately proportional to the mean 

for low firing rates, and approximately proportional to the 

square of the mean for high firing rates.  However, for the 

“Constant” parameterization, the variance of the estimated 

log contrast is constant with respect to the stimulus level.  

Similarly, Sanborn and Dayan showed that, in their model, 

with a linear transducer and Gaussian noise with variance 

proportional to contrast, the variance of the stimulus esti-
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mate was proportional to contrast only at very high con-

trasts: At low contrasts, the variance of the stimulus esti-

mate was proportional to the square of the contrast.  In 

summary, with a population coding model, the 

characteristics of the noise on the model’s output are not 

necessarily similar to the characteristics of the noise 

shown by individual neurons. 

 

Physiological plausibility vs. mathematical 
tractability 

 

In any attempt to model brain processes, there is a 

tradeoff between physiological plausibility and mathe-

matical tractability.  As we make the model more and 

more realistic from a biological point of view, it becomes 

harder and harder to understand the model’s psychophysi-

cal behaviour.  Thus, when modelling psychophysical be-

haviour, it is not always desirable for the mechanisms of 

the model to be as realistic and complex as when we are 

modelling the behaviour of individual neurons. 

Traditionally, psychophysical performance has usually 

been modelled using very simple models, in which real-

valued signals are sent through a deterministic transducer, 

and (usually Gaussian) noise is added to the transducer’s 

output (e.g., Wilson, 1980; Legge & Foley, 1980; Meese 

et al., 2006).  This kind of model is straightforward to un-

derstand mathematically, and can provide a useful func-

tional description of the system, because the relationships 

between model characteristics and performance character-

istics are well understood (May & Solomon, 2013).  How-

ever, the transducer model is such a simplification of the 

biological reality that it may shed little light on the con-

nection between psychophysical performance and the 

properties of the neurons. 

In the work presented here, we have attempted to push 

our psychophysical modelling much closer towards 

physiological plausibility without losing the mathematical 

tractability that traditional models benefit from.  To allow 

mathematical analysis of our model, we had to make some 

simplifying assumptions.  Nevertheless, our model has 

realistic tuning functions or contrast-response functions, 

and responds with discrete, integer spike counts that are 

generated by a promising new model of neuronal variabil-

ity (Goris et al., 2014), which gives rise to a realistic cor-

relation structure in which correlations increase with spike 

rate and tuning similarity.  We derived equations that ac-

curately predict the model’s performance, and reveal sur-

prisingly simple relationships between psychophysical 

performance and the neuronal parameters. 
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Footnote 

 
1
In this paper, we use the word “trial” in two ways.  

Firstly, we use it in the way a physiologist would, to mean 

a stimulus presentation.  Secondly, we use it to mean a 

trial on a 2-alternative forced-choice psychophysical ex-

periment, on which the observer is presented with two 

stimuli, and has to make a response.  To distinguish these 

two meanings, we always refer to the latter type of trial as 

a “2AFC trial”. 
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Appendix A: Main symbols used 
in the text 

 

b Base of logarithm when x represents the log of 

the physical stimulus units 

c Michelson contrast 

pc  Pedestal Michelson contrast 

cθ∆  Threshold Michelson contrast difference be-

tween two stimuli on a 2AFC trial 

pf  Pedestal spatial frequency 

fθ∆  Threshold spatial frequency difference between 

two stimuli on a 2AFC trial  

G Random variable representing the gain signal in 

Goris et al.’s neuronal spiking model 

g The value of G on a particular stimulus presen-

tation 

h Density of neuronal tuning functions along the 

stimulus (x) axis, equal to 1 zδ  

I Integral approximation of the Fisher information 

(found by approximating the sum of Fisher in-

formation across neurons using an integral) 

i Integer index of the neurons in a population 

J Exact expression for the Fisher information 

j Integer index of the neurons in a population 

K The number of neurons being monitored by the 

observer 

hk  Parameter that sets the value of h when 0z =  in 

the “Exponential Naka-Rushton” parameteriza-

tion 

maxrk  Parameter that sets the value of maxr  when 

0z =  in the “Exponential Naka-Rushton” 

parameterization 

qk  Parameter that sets the value of q when 0z =  in 

the “Exponential Naka-Rushton” parameteriza-

tion 

hm  Parameter that controls how quickly h increases 

as an exponential function of z in the “Exponen-

tial Naka-Rushton” parameterization 

maxrm  Parameter that controls how quickly maxr  in-

creases as an exponential function of z in the 

“Exponential Naka-Rushton” parameterization 

qm  Parameter that controls how quickly q increases 

as an exponential function of z in the “Exponen-

tial Naka-Rushton” parameterization 

m 
maxh rm m+  

N Random variable representing the number of 

spikes produced by a neuron 

n The value of N on a particular stimulus presen-

tation 

N Vector of random variables representing the 

spikes produced by the population of neurons 

n The value of N on a particular stimulus presen-

tation 

P Probability 
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Pθ  Probability of a correct response at threshold 

performance level 

p Probability density 

Q Function that describes how Fisher information 

declines with increasing relative spontaneous 

firing rate, 0 maxr r  

q Tuning function parameter: tuning sharpness 

R Random variable representing the mean re-

sponse of a neuron 

( )r x  The neuron’s tuning function, which gives the 

value of R on a particular stimulus presentation 

0r  Tuning function parameter: spontaneous firing 

rate 

maxr  Tuning function parameter: maximum incre-

ment from 0r  

S An intractable definite integral (defined in 

Equation (48)), which forms part of the integral 

approximation of the Fisher information for the 

“Constant Gaussian” parameterization (see Ap-

pendix F) 

T A definite integral that forms part of the integral 

approximation of the Fisher information for the 

“Exponential Naka-Rushton” parameterization 

(see Appendix G) 

u Parameter of the gamma distribution for the 

gain signal (used in Appendix D) 

v Parameter of the gamma distribution for the 

gain signal (used in Appendix D) 

W Weber fraction 

w Tuning bandwidth of the Gaussian tuning func-

tion (full width at half height), in the same units 

as x 

ω Tuning bandwidth of the Gaussian tuning func-

tion (full width at half height) in octaves, as-

suming that x is the log of the physical stimulus 

value 

X Random variable representing the stimulus level 

x The value of X on a particular stimulus 

presentation 

X̂  Random variable representing the estimated 

stimulus level after decoding the spike counts 

x̂  The value of X̂  for a particular stimulus 

presentation 

px  Pedestal value of x 

x∆  Difference in x between two stimuli on a 2AFC 

trial 

xθ∆  x∆  at threshold 

z Tuning function parameter: stimulus value cor-

responding to the “middle” of the tuning func-

tion, i.e. the peak of the Gaussian function, or 

the log semi-saturation contrast for the Naka-

Rushton function 

zδ  Spacing between neighbouring z-values in the 

neuronal population, equal to 1 h  

γ lnq b  

ζ Transformation of z such that, if ζ has a uniform 
distribution, z has an exponential distribution 

ξ Unspecified physical stimulus units when x is 

the log of the physical stimulus units 

pξ  Pedestal value of ξ 

θξ∆  Threshold difference in ξ between two stimuli 
on a 2AFC trial 

ijρ  Pearson correlation between the spike counts of 

neurons i and j 

ijP
ρ  Pearson correlation between the Poisson spiking 

processes of neurons i and j in Goris, Movshon 

& Simoncelli’s (2014) neuronal spiking model 

ijGρ  Pearson correlation between the gain values of 

neurons i and j in Goris, Movshon & Simon-

celli’s (2014) neuronal spiking model 

σ Standard deviation 

Gσ  Standard deviation of the gain signal in Goris et 

al.’s neuronal spiking model 

tuningσ  Standard deviation of the Gaussian tuning func-

tion 

Φ The integral of a Gaussian with unit area and 

variance, and zero mean 
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Appendix B: Effects of tuning 
functions on correlations 

Effect of spike rate 

In this section, we prove that the neuronal correlation, 

ijρ , given by Equation (17) of the main text, always in-

creases with increases in mean firing rate of either neuron. 

First, let us keep ( )ir x  constant, while varying ( )jr x .  

Then, from Equation (17), 

ij A yρ = , (B.1) 

where A is a constant, given by 

2

2

( )

1 ( )

i
G

G i

r x
A

r x
σ

σ
=

+
, (B.2) 

and 

2

( )

1 ( )

j

G j

r x
y

r xσ
=

+
, (B.3) 

The derivative of y with respect to ( )jr x  is given by 

2 2

1

( ) (1 ( ))j G j

dy

dr x r xσ
=

+
, (B.4) 

which is always positive.  Then, since ijρ  must always 

increase monotonically with increases in y, ( )ij jd dr xρ  

must also be positive.  Therefore, increasing ( )jr x  while 

( )ir x  remains constant always causes ijρ  to increase.  The 

same argument applies to increasing ( )ir x  while ( )jr x  

remains constant.  Therefore, increasing ( )ir x  or ( )jr x  or 

both always causes ijρ  to increase. 

 

Effect of tuning similarity 

In this section, we prove that ijρ  increases with tuning 

similarity between the two neurons.  Since ijρ  is also af-

fected by the overall firing rate, we show the effect of in-

creasing the difference in mean spike rate while keeping 

the sum of mean spike rates constant.  Let us define S and 

D to be the sum and difference, respectively: 

( ) ( )i jS r x r x= +  (B.5) 

( ) ( )i jD r x r x= − . (B.6) 

Then, by expressing ( )ir x  and ( )jr x  in terms of S and D, 

and substituting into Equation (17), we obtain 

2

2

G
ij Y

σ
ρ = , (B.7) 

where 

2 2

2 2 4 2(1 2) 4G G

S D
Y

S Dσ σ

−
=

+ −
. (B.8) 

ijρ  and Y vary monotonically, and therefore both peak at 

the same D value, so the D that maximizes ijρ  is that for 

which 0dY dD = .  It is easily shown that 

0 0dY dD D= ⇒ = .  Thus, for a given sum of spike 

rates, the correlation is highest when the two neurons have 

identical tuning.  Figure B.1 plots ijρ  as a function of D 

for 10S =  and 0.2Gσ = . 

 

 

Figure B.1.  Correlation, ijρ , plotted as a function of D for 

10S =  and 0.2Gσ = , according to Equations (B.7) and (B.8). 

 

Appendix C: Setting up a popula-
tion of neurons 

 

The first stage of setting up a population of neurons 

was to calculate the log semi-saturation contrast, z, for 

each neuron.  In the “Constant” parameterizations, the 

other neuronal parameters ( maxr , q, and relative spontane-

ous firing rate, 0 maxr r ) were constant across the different 
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neurons.  In the “Exponential” parameterizations, maxr  

and q were allowed to vary as functions of z according to 

Equations (24) and (25), respectively. 

For all the simulations of contrast discrimination that 

we performed for this paper, the pedestal values were 

clearly suprathreshold, and within the range of semi-

saturation contrasts found physiologically.  For these ped-

estals, the actual values of minz  and maxz  in the model do 

not matter, as long as they are sufficiently far from the 

ends of the range of pedestals.  For our contrast discrimi-

nation simulations, minz  was −3, and the maxz  was as 

high as possible without exceeding 1.  This ensured that 

the stimulus values that we used (x from −2 to 0) were 
well away from the ends of the range of z-values, as as-

sumed by our equations.  These values of minz  and maxz  

correspond to Michelson contrasts of 0.001 and 10, re-

spectively; although a Michelson contrast greater than 1 is 

physically impossible, fitted Michelson semi-saturation 

contrasts of up to 12 have been obtained in physiological 

studies (Chirimuuta, et al., 2003) – in this case, the 

physiological data would have been collected only over 

the lower portion of the contrast-response function. 

  For our simulations of spatial frequency discrimina-

tion, minz  was set to −0.3 and maxz  was as high as possi-

ble without exceeding 1.7; these were sufficiently far from 

the edges of the range of log spatial frequency pedestals 

(0.4 and 1.2) for the performance to be negligibly affected 

by the values of minz  and maxz . 

For the “Constant” parameterizations, the z-values 

were equally spaced along the x-axis, with a spacing of 

1 h , starting at minz z= .  For the “Exponential” 

parameterizations, we had to place each z value along the 

x-axis so that the local density of neurons along the log 

contrast axis was given by exp( )h hh k m z= .  We defined a 

variable, ζ, that is related to z in such a way that a flat 
distribution of ζ maps onto the required distribution of z; 
we then stepped through the ζ-values in equal steps, and 
obtained the corresponding z-value for each ζ. 

First, we defined the (constant) step in ζ as 1 hkδζ = .  

Since ( )1 1 hm z
hz h k eδ = = , we have 

hm z
e zδζ δ= . (C.1) 

As 0δζ → , we have 

hm z
d e dzζ =∫ ∫  (C.2) 

and therefore 

hm z

h

e

m
ζ = , (C.3) 

giving 

ln( )h hz m mζ= . (C.4) 

We used Equation (C.3) with minz z=  and maxz z=  to 

give minζ  and maxζ , respectively.  Then we stepped from 

minζ  to maxζ  in equal steps of 1 hkδζ = , calculating the 

corresponding values of z using equation (C.4). 

 

Appendix D: Mean reciprocal of 
the gain 

 

In Goris et al.’s (2014) neuronal spiking model, the 

gain signal varies according to a gamma distribution: 

1 exp( )
( )

( )

u

u

g g v
p g

u v

− −
=

Γ
, (D.1) 

where the shape parameter, u, is given by 21 Gu σ= , and 

the scale parameter, v, is given by 2
Gv σ= .  This gives a 

distribution with a mean of 1 and a variance of 2
Gσ . 

The mean reciprocal of the gain is given by 

0

( )
mean[1 ]

p g
G dg

g

∞

= ∫  (D.2) 

2

0

1
exp( )

(
mean[1 ]

)

u

u
g g v g

u
G d

v

∞

−= −
Γ ∫  (D.3) 

1

1 ( 1)

( ) (1 )
mean[1 ]

u u

u

u v v
G

−

Γ −
= ×

Γ
 (D.4) 

1( 1) ( )

(
mea [

)
n 1 ]

u

u

u v

u
G

v

−Γ −
= ×

Γ
 (D.5) 

mean[1
1

]
1

1
G

u v
= ×

−
 (D.6) 

Letting 21 Gu σ=  and 2
Gv σ= , we obtain 

2

1
mean[1 ]

1 G

G
σ

=
−

. □ (D.7) 
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Appendix E: Relating decoding 
precision to 2AFC psychophysi-
cal performance 

 

In this appendix, we show how to convert the decod-

ing precision into a measure of psychophysical perform-

ance.  Our focus is on 2AFC tasks, one of the most preva-

lent psychophysical procedures.  On each trial of a 2AFC 

discrimination task, observers are presented with two 

stimuli (say, Stimulus 1 and Stimulus 2), with stimulus 

values 1x  and 2x .  The stimulus with the higher x value is 

called the target, and the task is to say which stimulus is 

the target. 

Let us suppose the observer performs this task by es-

timating the value of each stimulus, and choosing the 

stimulus with the highest estimated value.  We can for-

mally describe this process as follows.  Let 1̂x  and 2x̂  be 

the estimated x values of Stimuli 1 and 2, respectively.  

Define a decision variable, 1 2ˆ ˆd x x= − , and choose Stimu-

lus 1 if 0d > , choose Stimulus 2 if 0d < , and guess if 

0d = . 

Let us define x∆  to be the magnitude of the true dif-

ference between the stimulus values: 

1 2x x x∆ = − . (E.1) 

If the distributions of estimated stimulus values are Gaus-

sian and the estimates are unbiased (which, to a good ap-

proximation, are both the case for the model parameteriza-

tions that we consider in this paper), then the decision 

variable, d, will have a Gaussian distribution with mean 

1 2x x− .  As illustrated in Figure E.1, if the standard devia-

tion of the decision variable is dσ , then the probability of 

a correct response, as a function of x∆ , is given by 

( )(correct) dP x σ= Φ ∆ , (E.2) 

where Φ is the integral of a Gaussian with unit area and 
variance, and zero mean.  Thus, the discrimination thresh-

old, xθ∆  (i.e. the stimulus difference corresponding to the 

threshold proportion correct, Pθ ), is given by  

( )1
dx Pθ θσ −∆ = Φ . (E.3) 

The value of Pθ  that defines the threshold falls some-

where in the middle of the range 0.5 to 1; different studies 

use different values. 

It will often be useful to take x to be the logarithm of 

the physical stimulus value; in this case, xθ∆  is the 

threshold difference of log physical values.  To express 

the threshold in terms of physical stimulus values, ξ  

  
 

Figure E.1.  The probability of a correct response.  (A) The case 

of 1 2x x> .  The curve plots the probability density function of 

the decision variable, d, which is assumed to be a Gaussian with 

standard deviation, dσ .  In this case, the mean of d, i.e. 

1 2x x− , is given by x∆ .  The observer responds correctly (i.e. 

chooses Stimulus 1) when 0d > .  The probability of a correct 

response is given by the area of the shaded portion.  (B) The 

case of 2 1x x> .  In this case, the mean of d, i.e. 1 2x x− , is 

given by x−∆ .  The observer responds correctly (i.e. chooses 

Stimulus 2) when 0d < .  The probability of a correct response 

is again given by the area of the shaded portion.  The areas of 

the shaded portions in (A) and (B) are both the same as that in 

(C), which shows the integral of a Gaussian with zero mean and 

standard deviation dσ , between limits of −∞  and x∆ , i.e. 

( )dx σΦ ∆ . 
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(where logbx ξ= , giving xbξ = ), we need to convert 

xθ∆  to a difference of physical values at threshold, which 

we call θξ∆ .  If the lower stimulus value in physical units 

is pξ  (the subscript, p, standing for “pedestal”, the term 

often used to refer to the lower of two contrasts in a con-

trast discrimination experiment), then the higher stimulus 

value at threshold is p θξ ξ+ ∆ .  xθ∆  is then given by 

log ( ) log ( )b p b pxθ θξ ξ ξ∆ = + ∆ − . (E.4) 

Rearranging Equation (E.4) to make θξ∆  the subject, we 

get 

( 1)
x

pb θ
θξ ξ∆∆ = −  (E.5) 

( )1

( 1)d P
pb θσ

θ ξξ
−Φ −∆ = , (E.6) 

and so the Weber fraction, pW θξ ξ= ∆ , is given by 

( )1

1 1d Px
W b b θθ σ −Φ∆= − = − . (E.7) 

In summary, Equations (E.2) and (E.3) give, respec-

tively, the 2AFC proportion correct and the discrimination 

threshold, xθ∆ , as functions of dσ , where both xθ∆  and 

dσ  are measured in the same units as the stimulus value, 

x.  For some feature dimensions, such as orientation, we 

would take x to be the physical stimulus value.  For other 

feature dimensions, such as contrast or spatial frequency, 

it will turn out to be more appropriate to take x to be the 

logb  of the physical stimulus value.  In the latter case, the 

Weber fraction for physical stimulus units is given by 

Equation (E.7), which again is a function of dσ , where 

dσ  is measured in the same units as x, the log of the 

stimulus units. 

If we estimate dσ  using the Fisher information, then 

we obtain expressions that link all these psychophysical 

performance measures (proportion correct, discrimination 

threshold, Weber fraction) to the properties of the neurons. 

Let 
1̂x

σ  and 
2x̂

σ  be the standard deviations of the es-

timates, 1̂x  and 2x̂ .  The decision variable is the differ-

ence of these two estimates, so, if the two stimulus esti-

mates are statistically independent, the variance of the de-

cision variable is the sum of the variances of the two esti-

mates.  This gives 

1 2

2 2
ˆ ˆd x xσ σ σ= + . (E.8) 

Let us define ( )xτ  to be the precision with which the ob-

server can decode a stimulus with value x.  Then, by defi-

nition, 
1

2
ˆ1( ) 1 xxτ σ=  and 

2

2
ˆ2( ) 1 xxτ σ= .  Using these 

expressions to substitute for 
1

2
x̂σ  and 

2

2
x̂σ  in Equation 

(E.8), we obtain 

1 21 ( ) 1 ( )d x xσ τ τ= + . (E.9) 

Using Equations (E.1) and (E.9) to substitute for x∆  and 

dσ  in Equation (E.2), we get 

1 2

1 2

(correct)
1 ( ) 1 ( )

x x
P

x xτ τ

 −
= Φ 

 + 
. (E.10) 

We can use a similar approach to find a function that 

gives xθ∆  for a given pedestal, px , i.e. the lower of 1x  

and 2x .  To do this, we cannot use Equation (E.9), be-

cause that requires us to know both stimulus values at 

threshold, i.e. we have to know the threshold already.  To 

get around this problem, we can assume that the two stim-

uli are close enough at threshold for the precision to be 

about the same in both cases, so 

1 21 ( ) 1 ( ) 1 ( )px x xτ τ τ≈ ≈ . (E.11) 

Using Relation (E.11) to substitute for 11 ( )xτ  and 

21 ( )xτ  in Relation (E.9), we get  

2 ( )d pxσ τ≈ , (E.12) 

We can then use Relation (E.12) to substitute for dσ  in 

Equations (E.3) and (E.7) to give the threshold perform-

ance in terms of the precision for decoding the pedestal: 

( )12 ( )px x Pθ θτ −∆ ≈ Φ , (E.13) 

( )12 ( )
1

px P
W b

θτ −Φ
≈ − . (E.14) 

These can be inverted to give 

( )
2

1

( ) 2p

P
x

x

θ

θ
τ

− Φ
 ≈
 ∆ 

 (E.15) 

and 

( )
2

1

( ) 2
log ( 1)

p
b

P
x

W

θτ
− Φ

 ≈
 + 

. (E.16) 

If the threshold performance level is defined as 

0.760Pθ = , then we have 
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( )1 1 2Pθ
−Φ ≈     when 0.760Pθ = . (E.17) 

Using Relation (E.17) to substitute for ( )1 Pθ
−Φ  in Rela-

tions (E.13) to (E.16), we obtain some particularly simple 

expressions relating psychophysical performance to preci-

sion when 0.760Pθ = : 

1 ( )px xθ τ∆ ≈ , (E.18) 

1 ( )
1

px
W b

τ
≈ − , (E.19) 

2( ) 1 ( )px xθτ ≈ ∆ , (E.20) 

2( ) 1 [log ( 1)]p bx Wτ ≈ + . (E.21) 

In summary, Relation (E.10) describes the psychomet-

ric function for 2AFC discrimination in terms of the 

stimulus difference, 1 2x x− , and the precision with 

which each stimulus, x, can be decoded.  Relations (E.13) 

and (E.18) describe the relationship between Fisher infor-

mation and the threshold stimulus difference, xθ∆ .  x may 

be the physical stimulus value, or its logarithm.  In the 

latter case, Relations (E.14) and (E.19) give the Weber 

fraction, i.e. the ratio of stimulus difference to pedestal at 

threshold when the stimulus values are expressed in 

physical units (although, in these expressions, the preci-

sion, ( )pxτ , is still the reciprocal of the variance of de-

coded log stimulus values).  Relations (E.15) and (E.20) 

give the precision required to yield a threshold of xθ∆ .  

Relations (E.16) and (E.21) give the precision required to 

yield a Weber fraction of W. 

For Weber fractions of substantially less than 1, which 

tend to occur in real experiments, Relations (E.16) and 

(E.21) can be simplified because, for 1W << , 

log ( 1) ln( 1) ln lnb W W b W b+ = + ≈  (the near-equality is 

derived from the Mercator series, 2ln( 1) 2W W W+ = − +  
3 43 4W W−  ...), which approaches W for small W.  Sub-

stituting lnW b  for log ( 1)b W +  in Relation (E.16), we 

get 

( )
2

1

2

2 ln
( )p

P b
x

W

θ
τ

− Φ ≈ . (E.22) 

Thus, to reduce the Weber fraction by a factor of ϕ, we 

need to increase the precision by a factor of about 2ϕ . 

 

Appendix F: Investigating S(q) 

 

In this appendix, we investigate the function ( )S q  

that appears in Equation (48) of the main paper. 

First, we derive Equation (49): 

3

(1)
( )

S
S q

q
= . 

We can write ( )S q  as 

( ) ( )S q f z dz

∞

−∞

= ∫ , (F.1) 

where ( )f z  is a function of z given by 

( )
( )
2 2

2
0 max

exp 2( )
( )

exp ( )

z qz
f z

qz r r

−
=

− +
. (F.2) 

Let y qz= .  Then 

dy
q

dz
= . (F.3) 

Therefore,  

1
( ) ( )

dy
S q f z dz

q dz

∞

−∞

= ∫  (F.4) 

1
( )) (f y q dyS q

q

∞

−∞

= ∫  (F.5) 

( )
( )
2 2

3 2
0 max

exp 21

ex
)

p
(

y y
dy

q
S

y r r
q

∞

−∞

−
=

− +∫  (F.6) 

3

(
( )

1)S
S q

q
= . □ (F.7) 

Next, we verify the approximation of (1)S  given in Rela-

tion (52): 

( )0 max
(1)

2

Q r r
S

π
≈ , 

which can be rewritten as  
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( )0 max 2 (1) 1Q r r Sπ  ≈  . (F.8) 

We arrived at this approximation of (1)S  by hypothesiz-

ing that Equation (53) would be a close approximation of 

the right hand side of Relation (50), and then working 

back to Relation (52).  Figure F.1 plots the left hand side 

of Relation (F.8) for 0 max0.0001 10,000r r≤ ≤ .  The val-

ues of (1)S  were calculated by sampling ( )f z  in Equa-

tion (F.2) (with 1q = ) between 10z = −  and 10z = , at 

small intervals, 0.0001zδ = , adding up the function val-

ues, and multiplying the sum by zδ .  For 

0 max0 0.119r r< < , our approximation slightly overesti-

mates (1)S  by a factor that never exceeds 0.7% of (1)S  

(the peak of the function in Figure F.1 is 1.00687, which 

occurs at 0 max 0.0220r r = ).  For 

0 max0.120 10,000r r< < , our approximation underesti-

mates (1)S , but not by much: Even for 0 maxr r  as high as 

1, the underestimation is only about 3% of (1)S , and the 

underestimation is always less than 6% of (1)S . 

 

 

Figure F.1.  Testing the accuracy of our approximation of 

(1)S (Relation (52) of the main paper).  The curve plots the ap-

proximation as a proportion of (1)S  for different values of 

0 maxr r . 

 

 

 

 

 

Appendix G: Solving the integral 
in Equation (60) 

 

We needed to find the definite integral, T, given by 

( )
max 2 ln( )

3
ln( )

0

( ) r h h h

h h

m m q m m
h

q m m qx

m b
T d

b b

ζ

ζ

ζ
ζ

∞

=
+∫  (G.1) 

Mathematica was unable to solve this definite integral in 

the form presented in Equation (G.1).  It could produce the 

indefinite integral, but inserting ∞  into this expression 

gave an indeterminate form, and we could find no way of 

obtaining a determinate form using either substitution or 

l’Hôpital’s rule.  However, we found that, by making sub-

stitutions, we could rewrite Equation (G.1) in a form that 

Mathematica was able to solve. 

For convenience, we repeat Equation (C.4) (identical 

to Equation (57) of the main paper) here: 

ln( )h hz m mζ= . (G.2) 

This gives us 

h

d
m

dz

ζ
ζ= . (G.3) 

Next, let us define 

mze
y

m
= , (G.4) 

where 

maxh rm m m= + . (G.5) 

Then 

ln( ) ln( )h hm m z my mζ = = , (G.6) 

and, using Equation (G.2) to substitute for z in Equation 

(G.4), and rearranging, we obtain 

max( ) r hm m

h
h

my
m

m
ζ

ζ
= . (G.7) 

Also, 

0 0yζ = ⇒ = , (G.8) 

as ζ → ∞ , y→ ∞ ,  (G.9) 

hmd d dz

dy dz dy my

ζζ ζ
= × = . (G.10) 
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Using Equations (G.6) and (G.7) to substitute for 

ln( )h hm mζ  and max( ) r hm m

hm ζ  in Equation (G.1), we 

obtain 

( )
2 ln( )

3
ln( )

0

q my m

q my m qx h

b my
T d

m
b b

ζ
ζ

∞

= ×
+∫  (G.11) 

Using (G.8), (G.9) and (G.10) to change the integration 

variable in Equation (G.11) from ζ to y, we obtain 

( )
2 ln( )

3
ln( )

0

q my m

q my m qx

b
T dy

b b

∞

=
+∫  (G.12) 

If we define 

ln( )q b mη = , (G.13) 

then Equation (G.12) simplifies to 

( )
2

3

0

( )

( ) mx

my
T dy

my e

η

η η

∞

=
+∫ . (G.14) 

This integral converges (i.e. has a finite solution) for 

1η > .  Mathematica was able to solve it, and gave the an-

swer as 

1

3

(1 )( ) csc( )

2

mx mxe e m
T

η η η ηη π π η

η

− − −+
= , (G.15) 

which can be rewritten as 

( )
( )

( )

32 sin

m xm m e
T

m

γπ γ

γ π γ

−+
=  (G.16) 

where 

lnq bγ = . (G.17) 

The restriction 1η >  corresponds to mγ > . 

In conclusion, then, 

( )
max 2 ln( )

3
ln( )

0

( ) r h h h

h h

m m q m m
h

q m m qx

m b
d

b b

ζ

ζ

ζ
ζ

∞

=
+∫  

( )
( )

( )

32 sin

m xm m e

m

γπ γ

γ π γ

−+
, (G.18) 

where 

maxh rm m m= +  (G.19) 

and 

lnq bγ = , (G.20) 

provided that 

mγ > . (G.21) 

 

Appendix H: Simulation Methods 

 

Sampling the stimulus axis 
 

In each simulation of contrast discrimination, the 

stimulus value, x, fell between −2 and 0; for simulations of 
spatial frequency discrimination, x fell between 0.4 and 

1.2.  Between the lowest and highest stimulus level, the 

stimulus axis was sampled in steps of max 5τ , where 

maxτ  is the maximum predicted precision across the range 

of stimulus levels.   

 

Generating spike counts 

 

For each stimulus value, x, we simulated the presenta-

tion of 10,000 stimuli.  On each simulated stimulus pres-

entation, we sampled a pseudorandom gain value, g, from 

a Gamma distribution with mean 1 and standard deviation 

Gσ .  For each neuron, j, on that stimulus presentation, we 

sampled a pseudorandom spike count from an independent 

Poisson distribution with mean ( )jg r x× , where ( )jr x  is 

the output of neuron j’s tuning function, given by Equa-

tion (4) or (6) of the main paper, as appropriate. 

 

Decoding the spike counts 

 

The spike counts were decoded as described in the 

main paper. 

 

Evaluating model performance 

 

The model’s precision for each stimulus level, x, was 

defined as the reciprocal of the variance of estimated 

stimulus values across the 10,000 presentations of that 

stimulus level. 

We used the estimated stimulus values to simulate 

2AFC discrimination experiments.  For each value of x, 
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we took each numbered stimulus estimate (1 to 10,000) 

and compared it with the same numbered stimulus esti-

mate for all higher stimulus values.  Each comparison 

represented a trial in a 2AFC discrimination experiment, 

in which the lower-valued stimulus was the pedestal, and 

the higher-valued stimulus was the target.  The response 

was taken to be correct if the stimulus with higher x had a 

higher estimated x, and incorrect if the stimulus with 

higher x had a lower estimated x.  For each pair of stimuli, 

we then found the number of correct responses, and di-

vided by the total number of 2AFC trials for that pair (al-

ways 10,000).  This gave us a psychometric function of 

stimulus difference against probability correct for the 

model.  Assuming that the stimulus level, x, was the log of 

the physical stimulus values, we expressed each stimulus 

difference in physical stimulus units, and fitted a Weibull 

psychometric function (May & Solomon, 2013) to the 

model’s percent-correct data.  We used a Weibull function 

with two parameters: the “shape” parameter, β, and the 
“threshold” parameter, α, which gives the stimulus differ-
ence corresponding to a proportion correct of 

1 0.5 0.816...e− ≈ .  For the simulations of Meese et al.’s 

(2006) experiment, the discrimination threshold is simply 

given by α, since that is how Meese et al. defined it.  For 
the other simulations, the discrimination threshold was 

defined as the stimulus difference (in physical units) that 

corresponded to a proportion correct of 0.75 on the fitted 

Weibull function. 

 

Appendix I: Fisher information of 
the gamma-Poisson mixture 
distribution 

 

The Fisher information, J, for decoding stimulus x is 

given by the average negative 2nd derivative of the log-

likelihood function: 

2

2

ln ( | )d P X x
J

dx

= =
= −

N n
, (I.1) 

where y  is the trial-averaged value of y.  If there are just 

two neurons, i and j, then, from Equation (22) of the main 

paper, we have 

ln ( | )P X x A B C= = = + −N n  

+ terms independent of x, (I.2) 

where 

ln( )i iA n r= , (I.3) 

ln( )j jB n r= , (I.4) 

( ) ( )2 21 ln 1i j G i j GC n n r rσ σ= + + + + . (I.5) 

Note, we have used ir  and jr  in place of ( )ir x  and ( )jr x  

to reduce notational clutter.  Then, 

2 2 2 2

2 2 2 2

ln ( | )d P X x d A d B d C

dx dx dx dx

= =
= + −

N n
, (I.6) 

where 

22

2 2

[ ( ) ]i i i i

i

n r r rd A

dx r

′′ ′−
= , (I.7) 

22

2 2

[ ( ) ]j j j j

j

n r r rd B

dx r

′′ ′−
= , (I.8) 

( )( ) ( )
( )

2
2

2 2
2

1

1

i j G i j i j

i j G

r r r r r r
d C

dx r r

σ

σ

′′ ′′ ′ ′+ + + − +
=

+ +
 

( )21i j Gn n σ× + + . (I.9) 

To find the mean value of the negative 2nd derivative of 

the log-likelihood function, we make multiple usage of the 

following easily proved theorem: 

ay b a y b+ = + , (I.10) 

Because of Equation (I.10), the mean values of the expres-

sions in Equations (I.7) to (I.9) can be found simply by 

replacing in  and jn  with their mean values, which are ir  

and jr , respectively.  This gives us 

22

2

( )i
i

i

rd A
r

rdx

′
′′= − , (I.11) 

22

2

( )j
j

j

rd B
r

rdx

′
′′= − , (I.12) 

( )22

2 21

i j

i j

i j G

r r
d C

r r
dx r r σ

′ ′+
′′ ′′= + −

+ +
. (I.13) 

Thus, 
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2 2 2

2 2 2

d A d B d C
J

dx dx dx
= − − +  (I.14) 

( )222

2

( )( )

1

i jji

i j i j G

r rrr

r r
J

r r σ

′ ′+′′
= + −

+ +
. □ (I.15) 

It is important to note that, for this 2-neuron system, 

the Fisher information can greatly overestimate the decod-

ing precision.  Suppose that i jr r′ ′= −  at x (i.e. the tuning 

curve slopes are equal in magnitude and opposite in sign).  

Then, 

22 ( )( ) ji

i j

rr
J

r r

′′
= + . (I.16) 

Equation (I.16) gives the Cramér-Rao bound on the 

decoding precision when the gain is unknown.  This is 

higher than the decoding precision that we derived from 

the Cramér-Rao bound when the gain is known, which 

would be the value in Equation (I.16) multiplied by 
21 Gσ−  (see Relation (31) of the main paper).  This would 

seem to imply that decoding precision gets better if we 

ignore our knowledge of the gain level!  The resolution of 

this apparent paradox is that the Cramér-Rao bound is not 

a good estimate of the decoding precision when the num-

ber of neurons is small: It is an upper bound, but is not 

always achievable, even as the spike rate approaches 

infinity.  As a check, we set up a Monte Carlo simulation 

of a 2-neuron system like the one in this appendix for 

Gaussian-tuned neurons such that i jr r′ ′= −  at x.  We 

carried out maximum-likelihood decoding both with and 

without knowledge of the gain, and found that the 

decoding precision was consistently slightly better when 

the gain was known. 

 




