

City, University of London Institutional Repository

Citation: Solomon, J. A. (2015). Connecting psychophysical performance to neuronal

response properties II: Contrast decoding and detection. Journal of Vision, 15(6), 9. doi:
10.1167/15.6.9

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/6533/

Link to published version: https://doi.org/10.1167/15.6.9

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Supplementary Appendices May & Solomon 1

Supplementary appendices for “Connecting
psychophysical performance to neuronal response
properties II: Contrast decoding and detection”

Keith A. May
Centre for Applied Vision Research,
City University London, London, UK.

Joshua A. Solomon
Centre for Applied Vision Research,
City University London, London, UK

Appendix A: Main symbols

b Base of logarithm when Michelson contrast,

c, is expressed as log contrast, x

c Michelson contrast

1 2c Naka-Rushton function parameter: semi-

saturation contrast

1 3c The Michelson contrast for which the output

of the Naka-Rushton function exceeds 0r by

max 3r

H A function (used with subscripts) that ap-

pears in the approximations of the Fisher in-

formation (see Appendix E)

J Fisher information

j Integer index of the neurons in a population

K The number of neurons being monitored by

the observer

N Random variable representing the number

of spikes produced by a neuron

n The value of N on a particular stimulus

presentation

N Vector of random variables representing the

number of spikes produced by each neuron

in the population

n The value of N on a particular stimulus

presentation

P Probability

q Naka-Rushton function parameter: expo-

nent, which determines tuning sharpness

R Random variable representing the mean re-

sponse of a neuron

()r x The neuron’s tuning function, which gives

the value of R on a particular stimulus pres-

entation

0r Naka-Rushton function parameter: sponta-

neous firing rate

maxr Naka-Rushton function parameter: maxi-

mum increment from 0r

T Number of trials

nu Parameter of the “approximate” probability

distribution used in Appendix E

v Parameter that appears in the expressions

for the “approximate” probability distribu-

tion (Appendix E) and ()xτ%

X Random variable representing the stimulus

log Michelson contrast

x The value of X on a particular stimulus

presentation

X̂ Random variable representing the estimated

stimulus level after decoding the spike

counts

x̂ The value of X̂ for a particular stimulus

presentation

z Naka-Rushton function parameter: log

semi-saturation contrast

α Weibull “threshold” parameter

β Weibull “slope” or “shape” parameter

λ Weibull “lapse rate” parameter

Supplementary Appendices May & Solomon 2

Gσ Standard deviation of the gain signal in Go-

ris et al.’s neuronal spiking model

()xτ% General estimate of the precision for decod-

ing stimulus x, which can be parameterized

to apply to the Poisson, Goris, Tolhurst, or

Consul-Jain spiking processes

Tolhurst ()xτ Analytical estimate of the decoding preci-

sion for the Tolhurst spiking process, which

can be substantially more accurate than

()xτ% when the mean spike count of the

most informative neurons is very low

C-J ()xτ Analytical estimate of the decoding preci-

sion for the Consul-Jain spiking process,

which can be substantially more accurate

than ()xτ% when the mean spike count of the

most informative neurons is very low

Ω Recursive function used in the closed-form

expression for the Tolhurst likelihood func-

tion

Appendix B: Finite series
expansion of the Tolhurst
likelihood function

The finite series expansion of the Tolhurst likelihood

function is derived in Theorem 1, below. As a prelude to

this theorem, we will find it useful to define a function,

()n ξΩ , given by

0

1
()

!

n

n
e

µ
ξ

µ

µ
ξ ξ

µ

∞

=

Ω = ∑ . (B.1)

First, consider the case of 0n = . In this case, we have

0

0

1 1
()

!e

µ
ξ

µ

ξ ξ
µ

∞

=

Ω = ∑ . (B.2)

The summation in Equation (B.2) is the series expansion

of eξ , and so we have

0 () 1ξΩ = . (B.3)

Lemma 1 derives a recursive expression for ()n ξΩ for

any integer 0n > .

Lemma 1. For all integers 0n > ,

1

0

1
() ()

n

n k

k

n

k
ξ ξ ξ

−

=

−
Ω = Ω

 ∑ , where
1n

k

−

 is the kth

coefficient of the binomial expansion of degree 1n − .

Proof. For 0n > , the first term of the infinite series

expansion of ()n ξΩ given by Equation (B.1) is 0, because

this term includes multiplication by nµ , which is 0 for the

first term (since 0µ =). Thus, we can start the series at

1µ = :

1

1
()

!

n

n
e

µ
ξ

µ

µ
ξ ξ

µ

∞

=

Ω = ∑ . (B.4)

Now, since 0µ ≠ in Equation (B.4), we can divide the top

and bottom of each term in the series by µ to give

1

1

1
()

(1)!

n

n
e

µ
ξ

µ

µ
ξ ξ

µ

∞ −

=

Ω =
−∑ . (B.5)

Let us define ν as

1ν µ= − . (B.6)

Then,

1
1

0

1 (1)
()

!

n

n
e

ν
ξ

ν

ν
ξ ξ

ν

∞ −
+

=

+
Ω = ∑ (B.7)

1

0

(1)
()

!
n

n

e

ν
ξ

ν

ξ
ξ ν

ξ
ν

∞ −

=

=Ω
+∑ (B.8)

Since 0n > , we can expand 1(1)nν −+ in Equation (B.8)

using the binomial expansion:

1

0

0

1

()
!

n
k

k
n

n

k

e

ν
ξ

ν

ν
ξ

ξ ξ
ν

−∞

=

=

−

 Ω =

∑∑ . (B.9)

Applying the distributive rule [i.e. ()a b c ab ac+ = +] to

Equation (B.9), we get

1

0 0

1

()
!

n
k

n

k

n

k

e

ν
ξ

ν

ν
ξ

ξ ξ
ν

∞ −

= =

−

 Ω = ∑∑ . (B.10)

Supplementary Appendices May & Solomon 3

Rearranging the order of summation gives

1

0 0

1

()
!

n
k

n

k

n

k

e

ν
ξ

ν

ν
ξ

ξ ξ
ν

− ∞

= =

−

 Ω = ∑∑ . (B.11)

Applying the distributive rule again gives

1

0 0

1 1
()

!

n
k

n

k

n

k e

ν
ξ

ν

ν
ξ ξ ξ

ν

− ∞

= =

 − Ω =
∑ ∑ (B.12)

1

0

)(()
1

n

kn

k

n

k
ξξ ξ

−

=

−
Ω

Ω =

∑ . □ (B.13)

The finite series expansion of each ()n ξΩ is a poly-

nomial of degree n. As examples, Equations (B.14) to

(B.19) give full, non-recursive expressions for ()n ξΩ for

n = 0 to 5.

0 () 1ξΩ = (B.14)

1()ξ ξΩ = (B.15)

2
2 ()ξ ξ ξΩ = + (B.16)

3 2
3() 3ξ ξ ξ ξΩ = + + (B.17)

4 3 2
4 () 6 7ξ ξ ξ ξ ξΩ = + + + (B.18)

5 4 3 2
5 () 10 25 15ξ ξ ξ ξ ξ ξΩ = + + + + . (B.19)

The polynomial coefficients for any ()n ξΩ can be calcu-

lated using the MATLAB program,

OmegaCoefficients, given in Appendix C.

Lemma 1 shows how to express the infinite series ex-

pansion in Equation (B.1) as a finite series, given in Equa-

tion (B.13). We now prove Theorem 1, which uses

Lemma 1 to express the Tolhurst likelihood function as a

finite series. To reduce notational clutter, we will use the

single letter r, instead of ()r x , to represent the mean spike

rate.

Theorem 1.
(1 1)

Tolhurst (|) ()
!

r e

n

e
P N n R r r e

n

−

= = = Ω .

Proof. Using Equation (4) of the main paper to ex-

pand the expression for the Poisson distribution in Equa-

tion (5), we have

Tolhurst (|)P N n R r= =

0
! !

n
rr

e e
n

µ
µ

µ

µ
µ

∞
− −

=

=∑ (B.20)

0

()
! !

r ne
r e

n

µ

µ

µ
µ

∞−

=

= ∑ (B.21)

0

1
()

! !

r r e n

r e

e e
r e

n e

µ

µ

µ
µ

∞−

=

= × ∑ (B.22)

(1 1)

()
!

r e

n

e
r e

n

−

= Ω . □ (B.23)

Equation (B.23) can be evaluated for any r and n us-

ing the MATLAB program, PTolhurst, given in Appen-

dix D.

Appendix C: Software for calcu-

lating the coefficients of ΩΩΩΩn

In this appendix, we give two MATLAB programs for

calculating the coefficients of the Ω function, ()n ξΩ .

The programs both implement the recursive definition of

()n ξΩ , given in Equation (B.13).

The first program, OmegaCoefficientsRecur-

sive, uses a recursive algorithm that outputs the coeffi-

cients of ()n ξΩ . The program is easy to follow because

it is exactly analogous to the recursive definition of the Ω
function. However, for large n, it is epically inefficient, as

it keeps recalculating the coefficients of Ω functions of
lower degree.

The second program, OmegaCoefficients, uses a

non-recursive algorithm that calculates each set of coeffi-

cients once, and then stores them for future use. This pro-

gram is less easy to follow, as it contains an outer loop,

and is not exactly analogous to the recursive definition of

the Ω function, but it is much more efficient. Because the
program stores the coefficients of each Ω function from

0 ()ξΩ to ()n ξΩ , it outputs the coefficients of all of these

Omega functions, rather than just the coefficients of

()n ξΩ .

Supplementary Appendices May & Solomon 4

function C = OmegaCoefficientsRecursive(n)

% Returns C, the vector of coefficients of the Omega function of degree n.

% C has n+1 terms, as the Omega function is a polynomial of degree n.

% n must be a scalar integer.

if n == 0

 % Omega(0, x) = 1 for all x, i.e. a polynomial of degree 0 with coefficient 1

 C = 1;

else

 % set up one coefficient for every term in the n-degree polynomial

 C = zeros(1,n+1);

 for k = 0:(n-1)

 % For each k in the summation in Equation (33), find the

 % coefficients of the Omega function of degree k.

 Ck = OmegaCoefficientsRecursive(k);

 % Then shift the coefficients along one position in the polynomial

 % (i.e. one power of x, because the omega function is multiplied by

 % x in Equation (33), so the coefficient of the mth term from the

 % right in in the old Omega function becomes the coefficient of the

 % (m+1)th term from the right in the new Omega function.

 % Also, pad out slots to the left to make n+1 coefficients.

 % Then multiply by the binomial coefficient, as in Equation (33),

 % and add to the total value of each coefficient.

 C = C + (factorial(n-1) / (factorial(k) * factorial(n-1-k))) * ...

 [zeros([1,n-1-k]), Ck, 0];

 end

end

function C = OmegaCoefficients(n)

% Returns C, the matrix of coefficients of Omega functions of degree 0 to n.

% Row m+1 of C gives the coefficients for the Omega function of degree m

% C has n+1 columns, as the highest-degree Omega function is a polynomial of

% degree n.

% n must be a scalar integer.

C = zeros(n+1,n+1); % n+1 Omega functions (rows) and n+1 coefficients (columns)

% Omega(0, x) = 1 for all x, i.e. a polynomial of degree 0, with coefficient 1

C(1,n+1) = 1;

% calculate coefficients of each omega function of degree 1 to n

for m = 1:n

 for k = 0:(m-1)

 % For each k in the summation in Equation (33), find the

 % coefficients of the Omega function of degree k

 Ck = C(k+1,:);

 % Then shift the coefficients along one position in the polynomial

 % (i.e. one power of x, because the omega function is multiplied by

 % x in Equation (33), so the coefficient of the mth term from the

 % right in in the old Omega function becomes the coefficient of the

 % (m+1)th term from the right in the new Omega function.

 % Then multiply by the binomial coefficient, as in Equation (33),

 % and add to the total value of each coefficient.

 C(m+1,:) = C(m+1,:) + ...

 (factorial(m-1) / (factorial(k) * factorial(m-1-k))) * ...

 [Ck(2:end), 0];

 end

end

Supplementary Appendices May & Solomon 5

Appendix D: Software for calcu-
lating the Tolhurst likelihood
function

In this appendix, we give two MATLAB programs for

calculating the Tolhurst likelihood function,

Tolhurst (|)P N n R r= = . Each program calls a program

that calculates the relevant Ω function and then calculates
the Tolhurst likelihood function from this as in Equation

(B.23) (strictly speaking these “programs” are MATLAB

functions, but we use the term “program” here to avoid

confusion with the mathematical functions that are being

calculated). As with the programs for calculating the co-

efficients of the Ω function, we present recursive and non-
recursive versions. Again, the recursive version is easier

to follow, but too inefficient to be of practical use other

than for small values of n. The recursive version,

PTolhurstRecursive(n,r), gives

Tolhurst (|)P N n R r= = for a scalar integer n, and any size

matrix of r values. The non-recursive version, PTol-

hurst(n,r), calculates Tolhurst (|)P N m R r= = for all

integers, m, between 0 and n, inclusive. n must be a scalar

integer. r must be a real scalar or row vector. Row m+1

of the output gives Tolhurst (|)P N m R r= = for each ele-

ment of the input argument, r.

function P = PTolhurstRecursive(n,r)

% Returns probability of n for the Tolhurst process, given a mean of r.

% n must be a scalar integer.

% r can be a real scalar or matrix of any size or number of dimensions.

% The output, P, has the same size and number of dimensions as r.

e = exp(1);

P = (exp(r*(1/e - 1))/factorial(n)) .* OmegaRecursive(n, r/e);

function y = OmegaRecursive(n,x)

if n == 0

 y = 1;

else

 y = 0;

 for k = 0:(n-1)

 y = y + (factorial(n-1) / (factorial(k) * factorial(n-1-k))) * OmegaRecursive(k,x);

 end

 y = x .* y;

end

function P = PTolhurst(n,r)

% Returns probability of 0 to n for the Tolhurst process, given a mean r.

% n must be a scalar integer.

% r can be a real scalar or row vector.

% The (m+1)th row of P gives P(N = m | R = r) for each element in the input argument, r.

e = exp(1);

P = exp(repmat(r,[n+1,1])*(1/e - 1)) ./ ...

 repmat(factorial([0:n]'),[1,length(r)]) .* Omega(n,r/e);

function y = Omega(n,x)

% Note, Omega(m,x) is stored in row m+1 or Omegas

Omegas = zeros(n+1,length(x));

Omegas(1,:) = ones(1,length(x));

% calculate Omega(m,:) for each m = 1:n

for m = 1:n

 k = [0:(m-1)]';

 % Calculate binomial coefficients

 C = (factorial(m-1) ./ (factorial(k) .* factorial(m-1-k)));

 C = repmat(C, [1,length(x)]);

 Omegas(m+1,:) = x .* sum(C .* Omegas([0:(m-1)]+1,:),1);

end

y = Omegas;

Supplementary Appendices May & Solomon 6

Appendix E: Approximations of
the Fisher information for non-
Poisson-spiking neurons

A derivation of an exact formula for the Fisher infor-

mation of a neuron with a Tolhurst or Consul-Jain spiking

process turned out to be intractable, so we closely ap-

proximated both of these distributions using a different

expression, for which an analytical expression for the

Fisher information could be derived. We use the term

“approximate distribution” to refer to the expression that

we used to approximate the Tolhurst and Consul-Jain dis-

tributions. The approximate distribution is given by

Approx (| ())P N n R r x= =

()Poisson | ()nu P N n v R r x v= = = . (E.1)

[]()
()

exp(())
(1)

n v

n

r x v
u r x v

n v
= −

Γ +
. (E.2)

In Equation (E.2), we have to express the Poisson distribu-

tion using the continuous gamma function, (1)n vΓ + ,

instead of the factorial, ()!n v , so that it can be evaluated

for non-integer values of n v . This approximate distribu-

tion has a parameter v, and an infinite set of parameters,

nu , one for each possible value of n (the integers 0 to ∞).

However, it turns out that the values of the nu parameters

have no effect on the Fisher information (this comes about

because the Fisher information is the average negative 2nd

derivative of the log-likelihood function – the log function

converts multiplicative constants, nu , into additive con-

stants, which have no effect on the derivative). Thus, we

can proceed as if ApproxP was parameterized only by v.

The only purpose of fitting the nu parameters is to verify

that ApproxP is good approximation. Note that, for many

values of v, it may be impossible to find a set of parame-

ters, nu , for which Approx0
(| ())

n
P N n R r x

∞
=

= =∑ is ex-

actly equal to 1 for all ()r x , and so ApproxP is not techni-

cally a probability distribution. However, it can provide a

sufficiently close fit to the true Tolhurst and Consul-Jain

distributions for it to generate a good approximation of the

Fisher information.

Appendix F shows that, assuming ApproxP is a prob-

ability distribution generating a neuron’s spikes, the Fisher

information, J, is given by

21 ()

()

r x
J

v r x

′
= × . (E.3)

Fisher information for the Tolhurst process

Using Equation (B.14) of Appendix B to substitute for

()nΩ ⋅ in Equation (B.23) when 0n = , we obtain

Tolhurst (0 | ())P N R r x= =

(1 1) ()e r xe −= (E.4)

Poisson (0 | (1 1) ())P N R e r x= = = − , (E.5)

which has the form of ApproxP with 1 (1 1)v e= − . For

0n > , we cannot express the Tolhurst distribution exactly

in the form of ApproxP , but we can closely approximate it

for all n except 1n = . For 1n > , we have found that

Tolhurst (| ())P N n R r x= = ≈

()Poisson 2 | () 2nu P N n R r x= = , (E.6)

n
nu

2 0.5007

3 0.5024

4 0.5018

5 0.5015

6 0.5014

7 0.5012

8 0.5011

9 0.5010

10 0.5009

11 0.5008

Table E.1. Parameters that minimize the error in the approxima-

tion of the Tolhurst distribution given by Relation (E.6). These

parameters were fitted by using Equation (E.2) to evaluate the

right hand side of Relation (E.6) over a range of ()r x from 0 to

100 in steps of 0.01, and comparing with the true Tolhurst distri-

bution (the left hand side of Relation (E.6), given by Equation

(B.23)) for the same values of ()r x . We found the nu parame-

ters that minimized the sum of squared differences between the

left and right sides of Relation (E.6). All decimal expansions are

shown to an accuracy of 4 significant figures.

Supplementary Appendices May & Solomon 7

Figure E.1. The Tolhurst likelihood functions (thin, coloured curves), plotted against the best-fitting approximations (thick, black

curves). ()r x is the mean number of spikes elicited by stimulus x. For 1n = , the approximation is described by Relation (E.7). For

1n > , the approximation is described by Relation (E.6) with parameter values, nu , given in Table E.1.

with best-fitting nu values given in Table E.1 for 2n = to

11. This has the form of ApproxP with 2v = . For 1n = ,

there is no really good approximation of the Tolhurst

process that has the form of ApproxP ; the best (least-

squares) approximation is

Tolhurst (1| ())P N R r x= = ≈

()Poisson0.4106 1 2.306 | () 2.306P N R r x× = = ,(E.7)

which has the form of ApproxP with 2.306v = . Figure E.1

plots the true Tolhurst likelihood functions against the

approximations given by Relations (E.6) and (E.7).

So, for a proportion (0)P N = of trials, the Tolhurst

distribution is ApproxP with 1 (1 1)v e= − , for which the

Fisher information (given by Equation (E.3)) is
2(1 1) () ()e r x r x′− ; for a proportion (1)P N = of trials,

the Tolhurst distribution is reasonably well approximated

by ApproxP with 2.306v = , for which the Fisher informa-

tion is []2() 2.306 ()r x r x′ ; for the remaining proportion of

trials, []1 (0) (1)P N P N− = − = , the Tolhurst distribution

is well approximated by ApproxP with 2v = , for which the

Fisher information is []2() 2 ()r x r x′ . Since the Fisher

information is a trial-averaged quantity (the average nega-

tive 2nd derivative of the log-likelihood function), we can

calculate it separately for these three different scenarios

(0n = , 1n = and 1n >), and then average them, weighted

according to their probabilities, to give a close approxima-

tion of the Fisher information for a single Tolhurst-spiking

neuron:

(1)
(1 1) (0)

2.306

P N
J e P N

=≈ − = + +

21 (0) (1) ()

2 ()

P N P N r x

r x

′− = − =

. (E.8)

Supplementary Appendices May & Solomon 8

Equation (E.4) gives an expression for (0)P N = for the

Tolhurst distribution. Using Equation (B.15) of Appendix

B to substitute for ()nΩ ⋅ in Equation (B.23) when 1n = ,

we get an expression for (1)P N = :

(1 1) () 1
Tolhurst (1| ()) () e r xP N R r x r x e − −= = = . (E.9)

Using Equations (E.4) and (E.9) to substitute for

(0)P N = and (1)P N = in Relation (E.8), we obtain

2

Tolhurst

()
()

()

r x
J H x

r x

′
≈ × , (E.10)

where

Tolhurst

1 1 0.06630 ()
()

2

r x
H x

e

+ × = − ×

1
exp[()(1 1)]

2
r x e − + . (E.11)

For a population of statistically independent neurons,

the Fisher information is the sum of the Fisher information

of the individual neurons. This gives us an accurate ap-

proximation of the decoding precision for a population of

independent Tolhurst-spiking neurons:

2

Tolhurst Tolhurst

1

()
() ()

()

K

j

j

j

r x
x H x

r x
τ

=

′
= ×∑ . (E.12)

Tolhurst ()H x is plotted in Figure 4 of the main paper. For

()r x of around 5 spikes or more, Tolhurst () 0.5H x ≈ , and

so Tolhurst ()xτ is close to ()xτ% (defined in Equation (11)

of the main paper) with 2v = . Figure 8 of the main paper

demonstrates that Tolhurst ()xτ is substantially more accu-

rate than ()xτ% for very low spike rates.

Fisher information for the Consul-Jain proc-
ess

In this subsection, we derive an approximation of the

Fisher information for a Consul-Jain-spiking neuron using

analogous methods to the previous subsection.

Letting 0n = in Equation (6) of the main paper, we

obtain

C-J (0 | ())P N R r x= =

()exp ()r x F= − (E.13)

()Poisson 0 | ()P N F R r x F= = = , (E.14)

which has the form of ApproxP with v F= . For 0n > ,

we have found that, for Fano factors not too far above 1,

C-J (| ())P N n R r x= = ≈

()Poisson | ()nu P N n F R r x F= = , (E.15)

which has the form of ApproxP with v F= . Table E.2

gives the best-fitting nu values for 1n = to 11 when

1.5F = ; Figure E.2 plots the true Consul-Jain likelihood

functions for 1n = to 11, and their approximations given

by Relation (E.15).

n
nu

1 0.6948

2 0.6804

3 0.6757

4 0.6734

5 0.6720

6 0.6711

7 0.6704

8 0.6699

9 0.6696

10 0.6693

11 0.6690

Table E.2. Parameters that minimize the error in the approxima-

tion of the Consul-Jain likelihood function given by Relation

(E.15) for 1.5F = . These parameters were fitted by using

Equation (E.2) to evaluate the right hand side of Relation (E.15)

over a range of ()r x from 0 to 100 in steps of 0.01, and

comparing with the true Consul-Jain likelihood function (the left

hand side of Relation (E.15), given by Equation (6) of the main

paper) for the same values of ()r x . We found the nu

parameters that minimized the sum of squared differences be-

tween the left and right sides of Relation (E.15) when 1.5F = .

All decimal expansions are shown to an accuracy of 4 significant

figures.

Supplementary Appendices May & Solomon 9

Figure E.2. Consul-Jain likelihood functions with 1.5F = , plotted against best-fitting approximations from Relation (E.15). ()r x is the

mean number of spikes elicited by stimulus x. The thin, coloured curves plot the true Consul-Jain likelihood functions (Equation (6)) with

1.5F = ; the thick, black curves show the approximations given by the right hand side of Relation (E.15), with the nu parameter values

in Table E.2.

So, for a proportion (0)P N = of trials, the Consul-

Jain distribution is ApproxP with v F= , for which the

Fisher information (given by Equation (E.3)) is
2() ()r x Fr x ′ ; for the remaining proportion of trials,

[]1 (0)P N− = , the Consul-Jain distribution is well ap-

proximated by ApproxP with v F= , for which the Fisher

information is []2() ()r x Fr x′ . Since the Fisher informa-

tion is a trial-averaged quantity, we can calculate it sepa-

rately for these two different scenarios (0N = and

0N >), and then average them, weighted according to

their probabilities, to give a close approximation of the

Fisher information for a single, Consul-Jain-spiking neu-

ron:

2(0) 1 (0) ()

()

P N P N r x
J

F r xF

′= − =
≈ +

. (E.16)

Equation (E.13) shows that, for the Consul-Jain process,

()(0) exp ()P N r x F= = − . (E.17)

Using Equation (E.17) to substitute for (0)P N = in Rela-

tion (E.16), we obtain

2

C-J

()
()

()

r x
J H x

r x

′
≈ × (E.18)

where

() ()
C-J

exp () 1 exp ()
()

r x F r x F
H x

FF

− − −
= +

C-J

() 1 1 1
exp()

r x

F FF
H x

F

= − − +

. (E.19)

Supplementary Appendices May & Solomon 10

For a population of statistically independent neurons,

the Fisher information is the sum of the Fisher information

of the individual neurons. This gives us an accurate ap-

proximation of the decoding precision for a population of

independent Consul-Jain-spiking neurons:

2

C-J C-J

1

()
() ()

()

K

j

j

j

r x
x H x

r x
τ

=

′
= ×∑ . (E.20)

C-J ()H x is plotted in Figure E.3 for several different Fano

factors, F. For sufficiently high ()r x , C-J () 1H x F≈ , and

so C-J ()xτ is close to ()xτ% (defined in Equation (11) of

the main paper) with v F= . For Fano factors around the

top of the physiologically plausible range (around 3), the

mean spike count only needs to be about 7 spikes for ()xτ%

with v F= to be within 1% of C-J ()xτ .

Figure E.4 plots the true Fisher information (thin, col-

oured lines) as a function of contrast for a single Consul-

Jain-spiking neuron with 1.5F = (a typical value for cor-

tical neurons), and compares this against ()xτ% with v F=

(thick, black lines). ()xτ% provides an excellent approxi-

mation of the true Fisher information for moderate or high

spike rates, but starts to get inaccurate when the spike rate

gets very low. Figure E.5 plots the true Fisher information

against C-J ()xτ with the same Fano factor, 1.5F = .

C-J ()xτ provides an excellent match to the Fisher infor-

mation at all spike rates.

Figure E.3. Each different coloured line plots C-J ()H x as a

function of ()r x for a particular Fano factor, F, according to

Equation (E.19). This function approaches 1 F as

() 0r x → , and approaches 1 F as ()r x → ∞ .

Supplementary Appendices May & Solomon 11

Figure E.4. True Fisher information of a Consul-Jain-spiking neuron with 1.5F = , and the closed-form approximation given by ()xτ% .

The thin, coloured curves plot a single neuron’s true Fisher information for decoding contrast, calculated numerically (see Supplemen-

tary Appendix H for methods). The neuron had a Consul-Jain spiking process and a Naka-Rushton tuning function with 1z = − ,

3q = , and 0 0r = . The corresponding thick, black curves plot the approximations given by ()xτ% with 1.5v = (Equation (11) of the

main paper).

Supplementary Appendices May & Solomon 12

Figure E.5. The same as Figure E.4, except that the thick, black curves plot the approximations given by C-J ()xτ (Equation (E.20)).

Supplementary Appendices May & Solomon 13

Appendix F: Fisher information
for the approximate spiking
distribution

The Fisher information, J, for a single neuron decod-

ing a stimulus of value x is given by the average negative

2nd derivative of the log-likelihood function:

2

2

ln (|)d P N n X x
J

dx

= =
= − , (F.1)

where y is the trial-averaged value of y. Since the

mean spike rate, ()r x , is a deterministic function of x, we

have

(|) (| ())P N n X x P N n R r x= = = = = . (F.2)

Substituting Equation (F.2) into (F.1), we obtain

2

2

ln (| ())d P N n R r x
J

dx

= =
= − . (F.3)

Suppose the neuron’s true likelihood function was

given by Approx (| ())P N n R r x= = , defined in Equation

(E.2). Then

Approxln (| ())P N n R r x= =

() ln(()) ()n v r x r x v= − +

() ln(1) ln
(() 1)

nun v v
n v

+ Γ +

 (F.4)

[]1
ln(()) () terms independent of n r x r x x

v
= − + .

 (F.5)

Note that the value of nu is irrelevant to the Fisher infor-

mation, because it gets absorbed into the “terms independ-

ent of x”, which disappear when we differentiate.

Differentiating twice with respect to x, we get

2
Approx

2

ln (| ())d P N n R r x

dx

= =
− =

2

1 () ()
()

() ()

r x r x
r x n

v r x r x

 ′′ ′ ′′ − −

. (F.6)

The trial-averaged value of this gives us the Fisher infor-

mation for this distribution:

2
1 () ()

()
() ()

r x r x
J r x n

v r x r x

 ′′ ′ ′′= − −
 (F.7)

2

1 () ()
()

() ()

r x r x
r x n

v r x r x
J

 ′′ ′ ′′ = − −

. (F.8)

The step from Equation (F.7) to (F.8) follows from the

fact that an b a n b+ = + for constant a and b (note

that, for a given x, the only term on the right hand side of

Equation (F.7) that varies across trials is n). Since ()r x is

the mean spike count, we have

()n r x= . (F.9)

Using Equation (F.9) to substitute for n in Equation

(F.8), we obtain

21 ()

()

r x
J

v r x

′
= × . (F.10)

Note that, for 1v = and 1nu = for all n, the “approximate”

probability distribution is exactly the Poisson, so an exact

expression for the Fisher information of the Poisson dis-

tribution is given by

2()

()

r x
J

r x

′
= (F.11)

(see also Dayan & Abbott, 2001, Chapter 3).

Appendix G: Estimating decoding
precision

Our estimates of decoding precision were obtained us-

ing methods essentially the same as those of Clatworthy et

al. (2003) and Chirimuuta et al. (2003). For each neuron,

j, in the population, we precalculated (|)j jP N n X x= =

for a large range of stimulus values, x, and spike counts,

jn . For each jn , x was varied in discrete steps of 0.01

from −3 to 0.1 (to be compatible with Clatworthy et al.).
For each x, jn took all integer values from 0 to a number

beyond which the maximum of (|)j jP N n X x= = over

all x was negligible. The precalculated likelihood func-

Supplementary Appendices May & Solomon 14

tions were used both to generate the spikes and to decode

them.

In each simulation, the precalculated values of

(|)j jP N n X x= = for each neuron, j, were given by

Tolhurst(|) (| ())j j j jP N n X x P N n R r x= = = = = .

 (G.1)

We used these values to precalculate the cumulative prob-

ability distributions as well. On each trial with stimulus

level x, each possible value of jn had a probability of oc-

currence given by Equation (G.1). This was achieved by

generating a random number sampled from a flat distribu-

tion between 0 and 1, and then finding the lowest jn for

which the cumulative probability distribution of jn was

greater than or equal to the random number.

After generating the spike counts, we used the precal-

culated likelihood functions to decode them. On each

trial, we needed to find the stimulus level, x, that maxi-

mized the stimulus likelihood, (|)P X x= =N n , where N

is a random variable representing the population response,

and n is its value. For statistically independent neurons,

(|)P X x= =N n is the product of (|)j jP N n X x= =

over the population (see Equation (8) of the main paper).

For large populations, this product can be too small to

represent using floating point values on a standard

computer, so instead we maximized ln (|)P X x= =N n

(which increases monotonically with (|)P X x= =N n ,

and therefore peaks at the same value of x).

ln (|)P X x= =N n is given by ln (|)j jj
P N n X x= =∑ .

The stimulus estimate, x̂ , was the value of x that

maximized the likelihood. we repeated this process

10,000 times for each stimulus value, x, and the precision

was calculated using Equation (10) of the main paper.

Appendix H: Numerical calcula-
tion of true Fisher information

For a single neuron, the general expression for the

Fisher information, J, can be written as

2
ln (|)d P N n X x

J
dx

= =
=

 (H.1)

where y is the trial-averaged value of y (see Dayan &

Abbott (2001), p. 109). Since the mean spike rate is a de-

terministic function of x, we have (|)P N n X x= =

(| ())P N n R r x= = = . The expression for

(| ())P N n R r x= = depends on the spiking process and

the tuning function, ()r x . To numerically calculate the

Fisher information for a single neuron, we first calculated

ln (| ())P N n R r x= = for all x from −3 to 0.1 in steps of
0.001xδ = , and for all integers, n, from 0 to M, where M

was high enough for the value of ln (| ())P N n R r x= = to

be negligible. For each n, we then numerically differenti-

ated ln (| ())P N n R r x= = with respect to x, to give, for

each x and n, a close approximation of the derivative,

ln (| ())d P N n R r x dx= = . This approximation is given

by

ln (| ()) ln (| ())

2

P N n R r x x P N n R r x x

x

δ δ
δ

= = + − = = −
.

 (H.2)

The numerical value, numerical ()J x , of the Fisher informa-

tion was then calculated from this numerical derivative

using a discrete approximation of Equation (H.1):

numerical

0

() (| ())

M

n

J x P N n R r x

=

= = = ×∑

2
ln (| ()) ln (| ())

.
2

P N n R r x x P N n R r x x

x

δ δ
δ

= = + − = = −

 (H.3)

The weighted sum in Equation (H.3) approximates the

mean value of the squared derivative across trials.

Appendix I: Generating semi-
saturation contrasts for cat and
monkey populations of neurons

Our distributions of cat and monkey z values (i.e.

10 1 2log ()c values) were based on the histograms in Clat-

worthy et al.’s (2003) Figure 6, which show the distribu-

tions of semi-saturation contrasts obtained from fitting

Naka-Rushton functions to the contrast-response functions

of V1 neurons in many different physiological experi-

ments. These histograms show the number of neurons

falling into each bin of width 0.2zδ = 10log contrast

units. Clatworthy et al.’s Figure 6 plots the number of

neurons in each bin as a function of the z-value corre-

sponding to the centre of the bin, for cat and monkey

populations, and these distributions are re-plotted as filled

Supplementary Appendices May & Solomon 15

circles in our Figure I.1. We fitted smooth probability

density functions (PDFs) to these distributions, using a

maximum-likelihood fit.

For the cat data, the fitted PDF, cat ()f z was a single

Gaussian, with two parameters, the mean, µ, and the stan-
dard deviation, σ:

2

cat 2

1 ()
() exp

2 2

z
f z

µ
σ π σ

 −
= −

. (I.1)

Assuming cat ()f z is the true PDF, and the histogram bin

width, zδ , is small, the probability, ()P z , of a neuron

falling in a bin centred on z is closely approximated by

cat() ()P z f z zδ= . The log likelihood of the parameters

(,)µ σ is the log probability of the data given the parame-

ters, i.e. () ln ()
z
m z P z∑ , where summation is over the

bin centres, z, and ()m z is the number of neurons in the

bin centred on z. We found the parameters of the PDF

with the highest log likelihood, and these were given by

0.9928µ = − , and 0.3833σ = . This PDF is plotted as the

smooth curve in our Figure I.1A, scaled for the number of

neurons in the population.

The Monkey data in Clatworthy et al.’s Figure 6

showed two peaks, and so the distribution was fitted with

a PDF, monkey ()f z , formed from the sum of two Gaus-

sians:

1 2
monkey

1 2

() ()
()

() ()

f z f z
f z

f z f z dz

∞

−∞

+
=

+∫
, (I.2)

where

2
1

1 2
1

()
() exp

2

z
f z A

µ

σ

 −
= −

, (I.3)

2
2

2 2
2

()
() exp

2

z
f z

µ

σ

 −
= −

, (I.4)

and

1 2 1 2

1 2

1 2

() () () ()

2 2

() 2 .

f z f z dz f z dz f z dz

A

A

σ π σ π

σ σ π

∞ ∞ ∞

−∞ −∞ −∞

+ = +

= +

= +

∫ ∫ ∫

 (I.5)

The monkey PDF was fitted to Clatworthy et al.’s data

using the same maximum-likelihood method as for the cat

data, except that the monkey PDF had five parameters,

rather than two. The fitted values were 3.643A = ,

1 0.7247µ = − , 1 0.3985σ = , 2=0.6747µ , and

2 0.1927σ = . The scaled PDF is plotted as the smooth

curve in our Figure I.1B.

Figure I.1. Distributions of semi-saturation contrasts in V1. (A)

Cat data. (B) Monkey data. Filled circles show frequency data

from Clatworthy et al.’s (2003) Figure 6. Smooth curves show

the PDFs that we fitted to these data, vertically scaled for the

size of the population. The vertical scaling was performed by

taking the PDF, and then multiplying its height by M zδ× ,

where zδ is the width of each histogram bin (0.2), and M is the

number of neurons in Clatworthy et al.’s histogram (cats:

M = 138 neurons; monkey: M = 219 neurons). This scaling

meant that the function gave the expected number of neurons in

each bin. Magenta vertical lines indicate the 18 semi-saturation

contrasts used for each animal in Figure 7 of the main paper.

Supplementary Appendices May & Solomon 16

The smooth curves were truncated at 0z = at the top

end, to be compatible with Clatworthy et al, who excluded

all neurons with 1 2 1c > (i.e. 0z >). At the bottom end,

the monkey curve was truncated at 2z = − , and the cat

curve was truncated at 1.6z = − . The lower limit for the

monkey data corresponded to the centre of the leftmost

nonzero histogram bin in Clatworthy et al.’s Figure 6B.

The lower limit for the cat data corresponded to the centre

of the second-to-left nonzero histogram bin in Clatworthy

et al.’s cat data; the reason for this choice for the cat data

was that it gave a better fit to Clatworthy et al.’s accuracy

scores than setting it to the centre of the leftmost bin, al-

though both gave a good fit. The amplitudes of these

truncated PDFs were rescaled so that they integrated to 1

(making them true PDFs), and then we generated corre-

sponding cumulative distribution functions that varied

between 0 and 1. K z-values were then obtained by read-

ing off the z-values corresponding to cumulative

probabilities evenly spaced from 0 to 1, in steps of

1 (1)K − . These z-values are shown as vertical lines in

Figure I.1 for the example of 18K = , as used in Figure 7

of the main paper.

Appendix J: Simulation methods
for 2AFC contrast detection tasks

The model was set up the same as for estimating de-

coding precision (Appendix G) except that the set of con-

trasts over which the likelihood functions were precalcu-

lated included zero Michelson contrast (i.e., x = −∞). For

Naka-Rushton exponent 1q = , the likelihood functions

were precalculated over values of x = −∞ and x = −7 to 0
in steps of 0.01, and the target log contrast ranged from −7
to 0 in steps of 0.05. For q = 2 to 5, the likelihood func-

tions were precalculated over values of x = −∞ and x = −5
to 0 in steps of 0.01, and the target log contrast ranged

from −5 to 0 in steps of 0.05.
q took values of 1, 2, 3, 4, or 5; maxr took values of 1,

2, 4, 8, or 16; the number of neurons, K, took values of 1,

2, 4, 8, 16, 32, 64, 128, 256, or 512. We simulated a

2AFC detection task with each combination of these pa-

rameters. For each combination, all the neurons had iden-

tical contrast-response functions, with 1 2 0.025c = .

On each 2AFC trial, we generated spikes for the given

target contrast as described in Appendix G. The zero-

contrast stimulus always gave zero spikes, because 0 0r =

in these stimulations. The model responded correctly on

2AFC trials on which the target elicited at least one spike;

for each contrast level, we counted up these 2AFC trials,

and then added half the remaining 2AFC trials, on which

the model would have had to guess (with 0.5 probability

of guessing correctly). This gave the model’s total num-

ber of “correct” responses, which we divided by the total

number of 2AFC trials (10,000) to give the proportion

correct. For each parameterization of the model, a 3-

parameter Weibull function (Equation (32) of the main

paper) was fitted to the proportion of correct responses as

a function of target Michelson contrast.

Appendix K: The additive noise
distribution that gives a Weibull
psychometric function

Here, we prove that, assuming that the response of

each detector, j, is a linear function of contrast plus a sam-

ple of additive, statistically independent noise, and the

observer detects the stimulus if at least one detector re-

sponds above its sensory threshold, jθ , then the ob-

server’s psychometric function will be a Weibull function

with slope β when the noise on each detector has a cumu-
lative distribution function (CDF), F, given by

1

() ()
exp ()j

j

E j
j j

F P E β

ε θ
ε ε

θ ε ε θ

>
= ≤ = − − ≤

.

 (K.1)

The term jE in Equation (K.1) is a random variable

representing the noise added to detector j. ε is a specific
instance of jE . By assumption, the response, jη , of each

detector, j, is given by

j j jc Eη α= + (K.2)

where jα is the reciprocal of that detector’s sensitivity to

the stimulus. Also, by assumption, the probability that the

observer detects the stimulus is the probability that not all

the responses fall below threshold:

()(detection) 1 j jP P j η θ= − ∀ ≤ (K.3)

()(detection) 1 j j jP j c EP α θ= − ∀ + ≤ (K.4)

()(detection) 1 j j jP jP E cθ α= − ∀ ≤ − (K.5)

()
1

(detection) 1
K

j j j

j

P EP cθ α
=

= − ≤ −∏ (K.6)

Supplementary Appendices May & Solomon 17

()
1

1(detection)
j

K

E j j

j

P F cθ α
=

= − −∏ , (K.7)

where K is the number of detectors.

Now, let us assume that the CDF of the noise,
jE

F , in

Equation (K.7) is given by Equation (K.1). Since both

contrast, c, and sensitivity, 1 jα , are nonnegative values,

we have 0jc α ≥ , and therefore j j jcθ α θ− ≤ .

Substituting j jcθ α− for ε in Equation (K.1), we obtain

() ()exp
jE j j jF c c

β
θ α α − = −

. (K.8)

Using Equation (K.8) to substitute for ()jE j jF cθ α− in

Equation (K.7) gives

()
1

(detection) 1 exp
K

j

j

P c
β

α
=

 = − −
∏ (K.9)

()(detection) 1 expP c
βα = − −

 (K.10)

where

1

1

K

j

j

β

βα α

−

−

=

 =

∑ . (K.11)

Thus, the psychometric function is a Weibull function

with threshold, α, determined from the sensitivities of the
individual detectors using exactly the same equation as

that of Quick. For application to 2AFC experiments,

Equation (K.10) must be corrected for guessing, which

yields Equation (22) of the main paper. □

Note that, since sensitivity is nonnegative, the contrast

threshold given by Equation (K.11) is always above zero,

and so Tyler and Chen’s (2000) argument that “high-

threshold probability summation fails for additive noise”

does not apply when the psychometric function has the

form of a Weibull function.

The noise probability density function (PDF) corre-

sponding to the CDF in Equation (K.1) can be found by

differentiating Equation (K.1) with respect to ε:

1() () exp ()
jE j jf β βε β θ ε θ ε− = − − − . (K.12)

This function is plotted in Figure K.1 for β = 1.3, 2, 4, and
8, with ε expressed in units such that 1jθ = . These are

the same functions as plotted in Figure 2b of Tyler and

Chen.

Figure K.1. The Weibull noise PDF, as defined in Equation

(K.12) for four values of β. ε is the noise on detector j, which is
expressed in units such that the detector’s sensory threshold,

jθ , is equal to 1.

