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Abstract

Symonds’ proof of Benson’s regularity conjecture implies that the regularity of the
cohomology of a fusion system and that of the Hochschild cohomology of a p-block
of a finite group is at most zero. Using results of Benson, Greenlees, and Symonds,
we show that in both cases the regularity is equal to zero.

Let p be a prime and k an algebraically closed field of characteristic p. Given
a finite group G, a block algebra of kG is an indecomposable direct factor B of
kG as a k-algebra. A defect group of of a block algebra B of kG is a minimal
subgroup P of G such that B is isomorphic to a direct summand of B ⊗kP B as a
B-B-bimodule. The defect groups of B form a G-conjugacy class of p-subgroups
of G. The Hochschild cohomology of B is the algebra HH∗(B) = Ext∗B⊗kB

op(B),
where Bop is the opposite algebra of B, and where B is regarded as a B ⊗k B

op-
module via left and right multiplication. By a result of Gerstenhaber, the algebra
HH∗(B) is graded-commutative; that is, for homogeneous elements ζ ∈ HHm(B)
and η ∈ HHm(B) we have ηζ = (−1)nmζη, where m, n are nonnegative integers.
In particular, if p = 2, then HH∗(B) is commutative, and if p is odd, then the even
part HHev(B) = ⊕n≥0HH2n(B) is commutative and all homogeneous elements in
odd degrees square to zero. The extension of the Castelnuovo-Mumford regularity
to graded-commutative rings with generators in arbitrary positive degrees is due
to Benson [2, §4]. We follow the notational conventions in Symonds [18]. In
particular, if p is odd and T = ⊕n≥0T

n is a finitely generated graded-commutative
k-algebra and M a finitely generated graded T -module, we denote by reg(T,M)
the Castelnuovo-Mumford regularity of M as a graded T ev-module, where T ev =
⊕n≥0T

2n is the even part of T . We set reg(T ) = reg(T, T ); that is, reg(T ) is the
Castelnuovo-Mumford regularity of T as a graded T ev-module. See also [3] and [8]
for more background material and references. We note that Benson’s definition of
regularity uses the ring T instead of T ev, but the two definitions are equivalent.
This can be seen by noting that [18, Proposition 1.1] also holds for finitely generated
graded commutative k-algebras.

Theorem 0.1 Let G be a finite group and B a block algebra of kG. We have
reg(HH∗(B)) = 0.

This will be shown as a consequence of a statement on Scott modules. Given
a finite group G and a p-subgroup P of G, there is up to isomorphism a unique
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indecomposable kG-module Sc(G;P ) with vertex P and trivial source having a
quotient (or equivalently, a submodule) isomorphic to the trivial kG-module k. The
module Sc(G;P ) is called the Scott module of kG with vertex P . It is constructed
as follows: Frobenius reciprocity implies that HomkG(Ind

G
P (k), k)

∼= HomkP (k, k) ∼=
k, and hence IndGP (k) has up to isomorphism a unique direct summand Sc(G;P )
having k as a quotient. Since IndGP (k) is selfdual, the uniqueness of Sc(G;P )
implies that Sc(G;P ) is also selfdual, and hence Sc(G;P ) can also be characterised
as the unique summand, up to isomorphism, of IndGP (k) having a nonzero trivial
submodule. Moreover, it is not difficult to see that Sc(G;P ) has P has a vertex.
See [7] for more details on Scott modules, as well as [11] for connections between
Scott modules and fusion systems. For a finitely generated graded module X over
H∗(G; k) we denote by H∗,∗

m (X) the local cohomology with respect to the maximal
ideal of H∗(G; k) generated by all elements in positive degree. The first grading is
here the local cohomological grading, and the second is induced by the grading of
X.

Theorem 0.2 Let G be a finite group and P a p-subgroup of G. We have

reg(H∗(G; k);H∗(G;Sc(G;P ))) = 0 .

Remark 0.3 Using Benson’s reinterpretation in [1, §4], of the ‘last survivor’ from
[5, §7], applied to the Scott module instead of the trivial module, one can show
more precisely that

Hr,−r
m (H∗(G;Sc(G,P ))) 6= {0} ,

where r is the rank of P . It is not clear whether this property, or even the property
of having cohomology with regularity zero, characterises Scott modules amongst
trivial source modules.

For F a saturated fusion system on a finite p-group P , we denote by H∗(P ; k)F

the graded subalgebra of H∗(P ; k) consisting of all elements ζ satisfying ResPQ(ζ) =
Resϕ(ζ) for any subgroup Q of P and any morphism ϕ : Q → P in F . If F is the
fusion system of a finite group G on one of its Sylow-p-subgroups P , thenH∗(P ; k)F

is isomorphic toH∗(G; k) through the restriction map ResGP , by the characterisation
of H∗(G; k) in terms of stable elements due to Cartan and Eilenberg. In that case
we have reg(H∗(P ; k)F ) = 0 by [18, Corollary 0.2]. If F is the fusion system of a
block algebra B of kG on a defect group P , thenH∗(P ; k)F is the block cohomology
H∗(B) as defined in [14, Definition 5.1]. It is not known whether all block fusion
systems arise as fusion systems of finite groups. There are examples of fusion
systems which arise neither from finite groups nor from blocks; see [10], [13].

Theorem 0.4 Let F be a saturated fusion system on a finite p-group P . We have

reg(H∗(P ; k)F ) = 0 .

The key ingredients for proving the above results are Greenlees’ local cohomology
spectral sequence [9, Theorem 2.1], results and techniques in work of Benson [1],
[2], [4], and Symonds’ proof in [18] of Benson’s regularity conjecture. We use the
properties of the regularity from [18, §1] and [19, §2].
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Lemma 0.5 Let G be a finite group and V an indecomposable trivial source kG-
module. Then reg(H∗(G; k);H∗(G;V )) ≤ 0.

Proof Since V is a direct summand of IndGP (k), we have

reg(H∗(G; k);H∗(G;V )) ≤ reg(H∗(G; k);H∗(G; IndGP (k)) .

By [12, Lemma 4], the right side is equal to reg(H∗(P ; k)), hence zero by [18,
Corollary 0.2]. �

Lemma 0.6 Let G be a finite group and V a finitely generated kG-module. If
H0(G;V ) 6= {0}, then reg(H∗(G; k);H∗(G;V )) ≥ 0.

Proof It follows from the assumption H0(G;V ) 6= {0} and Greenlees’ spectral
sequence [9, Theorem 2.1] that there is an integer s such that Hs,−s

m (H∗(G;V )) 6=
{0}, which implies the result. �

Proof of Theorem 0.2 Set V = Sc(G;P ). By Lemma 0.5 we have

reg(H∗(G; k); Ext∗kG(k;V )) ≤ 0.

Since V has a nonzero trivial submodule, we have H0(G;V ) 6= {0}, and hence the
other inequality follows from Lemma 0.6. �

Theorem 0.1 will be a consequence of Theorem 0.2 and the following well-known
observation (for which we include a proof for the convenience of the reader; the
block theoretic background material can be found in [20]).

Lemma 0.7 Let G be a finite group, B a block algebra of kG and P a defect group
of B. As a module over kG with respect to the conjugation action of G on B,
the kG-module B has an indecomposable direct summand isomorphic to the Scott
module Sc(G;P ).

Proof Since the conjugation action of G on B induces the trivial action on Z(B)
and since Z(B) 6= {0}, it follows that the kG-module B has a nonzero trivial
submodule. Moreover, B is a direct summand of kG, hence B is a p-permutation
kG-module, and the vertices of the indecomposable direct summands of B are
conjugate to subgroups of P . Thus B has a Scott module with a vertex contained
in P as a direct summand. Since Z(B) is not contained in the kernel of the Brauer
homomorphism BrP , it follows that B has a direct summand isomorphic to the
Scott module Sc(G;P ). �

Proof of Theorem 0.1 By [12, Proposition 5] we have reg(HH∗(B)) ≤ 0. Recall
that HH∗(kG) is an H∗(G; k)-module via the diagonal induction map, and we have
a canonical graded isomorphism HH∗(B) ∼= H∗(G;B) as H∗(G;B)-modules where
G acts on B by conjugation; see e. g. [17, (3.2)]. It follows from [12, Lemma 4]
that

reg(HH∗(B)) = reg(H∗(G; k);H∗(G;B)) .
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By Lemma 0.7, the kG-module B has a direct summand isomorphic to V =
Sc(G;P ), where P is a defect group of B. Thus as an H∗(G; k)-module, H∗(G;B)
has a direct summand isomorphic to H∗(G;V ). It follows that

reg(HH∗(B)) ≥ reg(H∗(G; k);H∗(G;V )) = 0 ,

where the last equality is from Theorem 0.2. This completes the proof of Theorem
0.1. �

Remark 0.8 The above proof can be adapted to show that the regularity of the
stable quotient HH∗(B) of HH∗(B) also equals zero. Recall that HH∗(B) is the
quotient of HH∗(B) by the ideal Zpr(B) = TrG1 (B) of Z(B) ∼= HH0(B). Note that
Zpr(B) is concentrated in degree 0. Alternatively, HH∗(B) may be defined as the
non-negative part of the Tate Hochschild cohomology of B. Our interest inHH∗(B)
comes from the fact that Tate Hochschild cohomology of symmetric algebras is
an invariant of stable equivalence of Morita type. We briefly indicate how the
regularity of HH∗(B) may be calculated. Let B = ⊕iMi be a decomposition of B
into a direct sum of indecomposable kG-modules Mi, where G acts by conjugation
on B. The canonical graded H∗(G; k)-module isomorphism HH∗(B) ∼= H∗(G;B)
induces an isomorphism

HH0(B) ∼= H0(G;B) = ⊕i H
0(G;Mi)

in degree zero. Composing this with the the canonical isomorphisms Z(B) ∼=
HH0(B) and H0(G;Mi) ∼= MG

i , it is easy to check that the image of Zpr(B) in
⊕iM

G
i is ⊕iTr

G
1 (Mi). Since B is a p-permutation kG-module, TrG1 (Mi) is non-zero

precisely if Mi is isomorphic to the Scott module Sc(G; 1) (which is a projective
cover of the trivial kG-module). Let M ′ denote the sum of all Mi’s in the above
decomposition which are isomorphic to Sc(G, 1) and let M ′′ be the complement of
M ′ in B with respect to the above decomposition. Since Zpr(B) is concentrated in
degree zero, we have a direct sum decomposition HH∗(B) ∼= ⊕H∗(G;M ′′)⊕Zpr(B)
as H∗(G; k)-modules. In particular,

reg(H∗(G; k);HH∗(B)) = max{reg(H∗(G; k);H∗(G;M ′′)), reg(H∗(G; k);Zpr(B))}.

We may assume that a defect group P of B is non-trivial. By Lemma 0.7,
M ′′ contains a direct summand isomorphic to Sc(G;P ). Hence by Theorem 0.2
reg(H∗(G; k);H∗(G;M ′′)) ≥ 0. It follows from Theorem 0.1 and the above dis-
played equation that HH∗(B) ∼= H∗(G;M ′′) has regularity zero.

Proof of Theorem 0.4 By [18, Proposition 6.1] we have reg(H∗(P ; k)F ) ≤ 0. For
the other inequality we follow the arguments in [1, §3, §4], applied to transfer maps
using fusion stable bisets. For Q a subgroup of P and ϕ : Q → P an injective group
homomorphism, we denote by P ×(Q,ϕ) P the P -P -biset of equivalence classes in
P × P with respect to the relation (uw, v) ∼ (u, ϕ(w)v), where u, v ∈ P , and w ∈
Q. The kP -kP -bimodule having P ×(Q,ϕ) P as a k-basis is canonically isomorphic
to kP ⊗kQ (ϕkP ). This biset gives rise to a transfer map trP×(Q,ϕ)P on H∗(P ; k)
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obtained by composing the restriction map resP
ϕ(Q) : H

∗(P ; k) → H∗(ϕ(Q); k), the

isomorphism H∗(ϕ(Q); k) ∼= H∗(Q; k) induced by ϕ, and the transfer map trPQ :
H∗(Q; k) → H∗(P ; k). Let X be an F-stable P -P -biset satisfying the conclusions
of [6, Proposition 5.5]. That is, every transitive subbiset of X is isomorphic to
P ×(Q,ϕ) P for some subgroup Q of P and some group homomorphism ϕ : Q → P
belonging to F , the integer |X|/|P | is prime to p, and for any subgroup Q of P
and any group homomorphism ϕ : Q → P in F , the Q-P -bisets ϕX and QX (resp.
the P -Q-bisets XQ and Xϕ) are isomorphic. By taking the sum, over the transitive
subbisets P ×(Q,ϕ)P , of the transfer maps trP×(Q,ϕ)P , we obtain a transfer map trX
on H∗(P ; k). Following [15, Proposition 3.2], the map trX acts as multiplication

by |X|
|P | on H∗(P ; k)F , hence Im(trX) = H∗(P ; k)F , and we have a direct sum

decomposition
H∗(P ; k) = H∗(P ; k)F ⊕ ker(trX)

as H∗(P ; k)F -modules. A similar decomposition holds for Tate cohomology, and
for homology (using either the canonical duality Hn(P ; k) ∼= Hn(P ; k)∨ or the
isomorphism Hn(P ; k) ∼= Ĥ−n−1(P ; k) obtained from composing the previous du-
ality with Tate duality). By [1, Equation (4.1)], the transfer map trPQ induces a
homomorphism of Greenlees’ local cohomology spectral sequences

H i,j
m H∗(Q, k)

(trP
Q
)∗

��

+3 H−i−j(Q; k)

(resP
Q
)∗

��

H i,j
m H∗(P ; k) +3 H−i−j(P ; k)

where (trPQ)∗ and (resPQ)∗ are the maps induced by trPQ and the inclusion Q → P ,
respectively. The isomorphism ϕ : Q → ϕ(Q) induces an obvious isomorphism of
spectral sequences

H i,j
m H∗(ϕ(Q), k)

∼=
��

+3 H−i−j(ϕ(Q); k)

∼=

��

H i,j
m H∗(Q; k) +3 H−i−j(Q; k)

Restriction and transfer on Tate cohomology are dual to each other under Tate
duality, and hence the dual version of [1, Equation (4.1)] implies that the restriction
resP

ϕ(Q) induces a homomorphism of spectral sequences

H i,j
m H∗(P, k)

(resP
ϕ(Q)

)∗
��

+3 H−i−j(P ; k)

(trP
ϕ(Q)

)∗

��

H i,j
m H∗(ϕ(Q); k) +3 H−i−j(ϕ(Q); k)

Composing the three diagrams above yields a homomorphism induced by trP×(Q,ϕ)P

on the spectral sequence for P , and taking the sum over all transitive subbisets of
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X yields a homomorphism of spectral sequences

H i,j
m H∗(P, k)

(trX)∗
��

+3 H−i−j(P ; k)

(trX∨ )∗

��

H i,j
m H∗(P ; k) +3 H−i−j(P ; k)

where X∨ is the P -P -biset X with the opposite action u · x · v = v−1xu−1 for
all u, v ∈ P and x ∈ X. One easily checks that X∨ is isomorphic to a dual
basis of X in the dual bimodule Homk(kX, k). By [6, Proposition 5.2], H∗(P ; k)
is finitely generated as a module over H∗(P ; k)F . Thus the local cohomology
spaces H i,j

m H∗(P ; k) can be calculated using for m the maximal ideal of positive
degree elements in H∗(P ; k)F instead of H∗(P ; k). It follows that trX induces a
homomorphism of spectral sequences

H i,j
m H∗(P, k)

(trX)∗
��

+3 H−i−j(P ; k)

(trX∨ )∗
��

H i,j
m H∗(P ; k)F +3 H−i−j(P ; k)F

For i = −j = r, where r is the rank of P , the edge homomorphism yields a
commutative diagram of the form

Hr,−r
m H∗(P ; k)

γP
//

(trX)∗
��

H0(P ; k)
∼=

//

(trX∨ )∗
��

k

·
|X|
|P |

��

Hr,−r
m H∗(P ; k)F

δF

// H0(P ; k)F ∼=
// k

where the right vertical map is multiplication on k by |X|
|P | . By [1, Theorem 4.1], the

map γP is surjective, and hence so is the map δF . In particular, Hr,−r
m H∗(P ; k)F 6=

{0}, whence the result. �

Remark 0.9 The fact that transfer and restriction on Tate cohomology are dual
to each other under Tate duality can be deduced from a more general duality for
transfer maps on Tate-Hochschild cohomology of symmetric algebras induced by
bimodules which are finitely generated projective as left and right modules (cf.
[16]).
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