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1. INTRODUCTION

Most financial and economic time series feature strong persistence over time. However,

long memory (LM) behavior may arise as a spurious effect of the presence of either struc-

tural breaks or slow switching regimes. Several papers have attempted to disentangle

LM and structural changes. Diebold and Inoue (2001) provide both theoretical justifi-

cation and Monte Carlo evidence showing that a time series with structural breaks can

induce a strong persistence in the autocorrelation function and hence generate spuri-

ous LM. Granger and Hyung (2004) find that an occasional-break model and an I(d)

model equally well explain the absolute stock returns series. Smith (2005) shows that the

Geweke and Porter-Hudak (1983) (GPH) estimator, when applied to stationary short-

memory processes with a slowly varying level, erroneously detects the presence of LM.

Choi and Zivot (2007) find that the persistence in the forward discount series for five G7

countries is considerably reduced when adjusted for multiple breaks. Yet, the evidence

of LM cannot be rejected.

Though important both in finance and economics, the issue of discriminating between

genuine and spurious LM has been partly neglected by the empirical literature due to the

lack of sound theoretical guidelines. The main contribution of this paper is twofold. First,

we develop two theoretical results, relevant to empirical work, related to long standing

topics in finance and economics. In particular, we evaluate the impact of spurious LM

on a) the elasticity of stock price to volatility and b) on aggregating micro series.

In the empirical literature, the realized measure of volatility is modelled as a highly

persistent stationary process (see Andersen et al., 2001, 2003). Yet, Hyung et al. (2007)

claim that LM in realized volatility can arise due to spurious phenomena. Baillie and

Kapetanios (2007) and McAleer and Medeiros (2008) show that nonlinearities in the LM

component may spuriously increase the degree of persistence. Christensen and Nielsen
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(2007) demonstrate that the presence of a LM in realized volatility, in conjunction with a

positive risk-return tradeoff, entails a rather modest elasticity of stock prices with respect

to volatility changes. This is a surprising result, because one would expect shocks to

volatility to have a long-lasting effect on stock prices. However, Christensen and Nielsen

(2007) do not consider the possibility that volatility may follow a spurious LM process.

In Section 2.1, we develop a counterexample to evaluate the impact of spurious LM on

volatility in the framework of Christensen and Nielsen (2007).

With respect to the aggregation issue, our analysis is inspired by the results of Granger

(1980), Zaffaroni (2004) and Souza (2008), and is relevant for empirical works on inflation.

In the literature there is no consensus on whether aggregate inflation, measured as a

cross-sectional mean of sectoral CPI indexes, is a fractional integrated process, as shown

in Altissimo et al. (2009), rather than a regime switching process, as in Benati (2008). In

addition, Altissimo et al. (2009) observe low persistence at the level of sectoral inflation

but high persistence in the aggregate inflation. In Section 2.2, we highlight how cross-

sectional aggregation may generate spurious persistence in the data.

Given that an important step for robust inference and sound empirical applications

is the identification of the genuine property of the series, the second contribution of this

paper is to offer some guidelines to practitioners on the appropriate use of suitable tests.

We undertake an extensive Monte Carlo study and check the overall performance of the

available testing procedures to distinguish between true and spurious LM. To the best of

our knowledge, five testing procedures have been proposed with the null of true stationary

LM. Ohanissian et al. (2007) develop a test to distinguish between true and spurious LM

based on the invariance principle of the LM parameter for temporal aggregates. Authors

find that the exchange rate volatility is driven by a true LM process. Dolado et al. (2005)

propose a time-domain test to verify whether a process is I(d), against the alternative

of being I(0) with deterministic components subject to structural breaks at known or
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unknown dates. The test is applied to the study of U.S. real GNP and absolute values

and squared values of S&P 500 returns, and in both cases the null of I(d) cannot be

rejected at the conventional significance levels. Shimotsu (2006) proposes two simple tests

for true versus spurious LM. The first is a Wald test comparing the degree of persistence

over different subsamples, whereas the second test is based on the d-th differenced series.

The tests are applied to the daily realized volatility of the S&P 500 index. Despite the

presence of infrequent structural breaks in the data, the results do not provide strong

evidence against the hypothesis of genuine LM. Finally, Qu (2011) introduces a new test

extending the results of Perron and Qu (2010) on the analysis of the components of the

periodogram estimates. The test is used to study monthly temperature, monthly US

inflation, exchange rates realized volatility and log squared S&P daily returns series. The

null of true LM is rejected in all the cases but in the exchange rates realized volatility

series.

The remainder of the paper is organized as follows. In Section 2, we show the impor-

tance of distinguishing between genuine and spurious LM in volatility; in addition, we

explore how spurious LM could arise as a consequence of cross-sectional aggregation of

short memory time series. Section 3 reports results of several Monte Carlo experiments

involving the five statistical tests. Sizes and the powers of the tests are compared un-

der several alternatives allowing for short memory, structural breaks and spurious LM

processes. Section 4 concludes and offers some guidelines for empirical work.

2. TWO EXAMPLES OF POTENTIAL SPURIOUS LONG

MEMORY

In this section, we first evaluate the impact of a spurious LM process for volatility on the

results of Christensen and Nielsen (2007). Next, we consider some aggregation issues as
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in Altissimo et al. (2009) and Davidson and Sibbertsen (2005), and we show that it is

possible to end up with a spurious LM aggregate series, even if the single cross-sectional

units do not exhibit (spurious) LM.

2.1. The Effect of Spurious Long Memory in Volatility on Stock Prices

Poterba and Summers (1986) study the elasticity of asset values with respect to volatility

shocks, under the assumption that volatility follows a short-memory process. Christensen

and Nielsen (2007) generalize their results to the case of a LM process, but do not consider

the case of spurious LM. We consider the impact on the price elasticity of a spurious LM

process for volatility.

Consider a stock price, Pt, satisfying

Et(Pt+1)− Pt +Dt

Pt
= rf + αt,

where rf is the constant risk-free rate, Dt the dividend paid at time t and αt the equity

risk premium at time t, assumed to be linear in the variance

αt = γσ2
t .

Poterba and Summers (1986) show that if the variance follows a stationary AR(1) process

σ2
t+1 − σ̄2 = ρ(σ2

t − σ̄2) + µt,

then the elasticity of the stock market price with respect to volatility is

d logPt

d log σ2
t

= − ᾱ

1 + rf + ᾱ− ρ(1 + g)
, (1)

where g is the constant growth rate of expected dividends and ᾱ the mean risk premium.
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Christensen and Nielsen (2007) derive the elasticity of the stock price with respect to

volatility when the variance follows an ARFIMA process. They show that for such LM

processes, the impact of volatility shocks on stock prices is small.

Let us consider instead a simple spurious LM process, i.e. an AR(1) process with a

break in the coefficients. Let yt = σ2
t − σ̄2. Then volatility evolves according to

yt+1 =
[
ρ1I(t<TB) + ρ2I(t≥TB)

]
yt + µt, (2)

where TB is the break date and I is the indicator function.

The following proposition gives the elasticity of the stock price with respect to volatil-

ity for process (2)

Proposition 1. Suppose the stock return volatility is governed by (2), with break date

TB, then at time TB − k the elasticity of the stock level with respect to volatility, at the

mean values of the risk premium and the dividend yield, is

d logPt

d log σ2
t

=





− ᾱ
1+rf+ᾱ−ρ2(1+g) for k = 0,−1, . . .

−ᾱ




1−
(

1+g

1+rf+ᾱ
ρ1

)k+1

1+rf+ᾱ−ρ1(1+g) +
ρ2ρk1

(

1+g

1+rf+ᾱ

)k+1

1+rf+ᾱ−ρ2(1+g)


 for k = 1, 2, . . .

(3)

Proof. From the chain rule it follows

dPt

dσ2
t

= Et




∞∑

j=0

dPt

dαt+j

dαt+j

dαt

dαt

dσ2
t


 .

The first term inside the expectation is the derivative in an infinite order Taylor expansion

of Pt around ᾱ, and is given by equation (6) of Poterba and Summers (1986) as

dPt

dαt+j
= − Dt(1 + g)j

(1 + rf + ᾱ)j+1(rf + ᾱ− g)
.
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The second term is

dαt+j

dαt
=

dyt+j

dyt
= ρj1I(t≤TB−j) +

j−1∑

h=1

ρj−h
1 ρh2I(t=TB−(j−h)) + ρj2I(t≥TB)

and the third one

dαt

dσ2
t

= γ.

Setting Kt = −γDt/[(1 + rf + ᾱ)(rf + ᾱ − g)] and c = (1 + g)/(1 + rf + ᾱ), this means

that for k = 1, 2, . . .

∞∑

j=0

dPt

dαt+j

dαt+j

dαt

dαt

dσ2
t

= Kt

∞∑

j=0

cj
[
ρj1I(j∈{0,...,k}) + ρk1ρ

j−k
2 I(j∈{k+1,k+2,...})

]

= Kt




k∑

j=0

(cρ1)
j + ρk1ρ2c

k+1
k∑

j=0

(cρ2)
j


 = Kt

[
1− (cρ1)

k+1

1− cρ1
+

ρk1ρ2c
k+1

1− cρ2

]
.

For k = 0,−1, . . ., instead

∞∑

j=0

dPt

dαt+j

dαt+j

dαt

dαt

dσ2
t

= Kt

∞∑

j=0

(cρ2)
j =

Kt

1− cρ2
.

For every k the desired result is obtained by noting that

d logPt

d log σ2
t

=
σ2
t

Pt

dPt

dσ2
t

and by setting the risk premium αt and the dividend yield Dt/Pt equal to their mean

values, ᾱ and rf + ᾱ− g respectively.

Contrary to the models of Poterba and Summers (1986) and Christensen and Nielsen

(2007), under (2) the elasticity is not constant over time, but it depends on the distance

between t and the break date TB.

To evaluate the theoretical relevance of Proposition 1, we undertake a small numerical
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exercise. We calculate expression (3) by considering the same values for rf , g and ᾱ as

in Christensen and Nielsen (2007). This allows us to measure the impact of k (i.e. how

far behind is t from the break date TB) and ρ1 and ρ2 on the elasticity. Note that for the

above parameters, the elasticity estimates range from −0.006, when d = 0, to −0.028415

when d = 0.49 in an ARFIMA(0,d,0) for the volatility process (see Table 1 of Christensen

and Nielsen, 2007, p. 688).

Table 1, Panel A, reports the stock price elasticity for alternative values of k. The

first column refers to ρ1 = 0.6, ρ2 = 0.6 and TB = 90. The second column refers to

ρ1 = 0.7, ρ2 = 0.99, TB = 160. In Panel B, we report the average LM parameter obtained

simulating 1,000 time series according to (2), using the same sample size of the realized

variance used in the original paper. It is worth noticing that when the break occurs in

the middle of the sample, the elasticity is close to the one obtained by Christensen and

Nielsen (2007). However, when the break occurs near the end of the sample the elasticity

(in absolute value) we obtain is much larger. For a comparison, with d = 0.3 Christensen

and Nielsen (2007) obtain an elasticity equal to −0.015.

[Table 1 about here.]

2.2. Cross-Sectional Aggregation and Spurious Long Memory

The analysis of this section is based on the aggregation of time series as in Granger

(1980), Zaffaroni (2004), and Souza (2008). In particular, Zaffaroni (2004) studies the

effect of the averaging of ARMA processes with a common and an idiosyncratic shock,

with random coefficients. The author derives conditions that induce LM on the aggregate

series. A similar aggregation exercise is proposed by Altissimo et al. (2009) and applied

to CPI indexes. Their model explains the low persistence observed at the level of sectoral

inflation and high persistence of the aggregate inflation. Genuine LM arises as the effect

of aggregation also in the nonlinear model studied by Davidson and Sibbertsen (2005). In
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what follows, we study a simple case in which cross-sectional aggregation may generate

spurious LM in the data.

Let us assume now that the series, yit follows the process

yit = αitI(t<TB) + βitI(t≥TB) + ut + eit, i = 1, . . . , n t = 1, . . . , T (4)

where the common shock ut is an i.i.d. sequence (0, σ2
u), the idiosyncratic shock eit is

an i.i.d. sequence (0, σ2
i ) for any i and t. For any i and t, the αit (βit) are i.i.d. with

probability density fα (fβ) over the support (−1, 1).

It is possible to choose the distributions fα and fβ so that

1. The n units do not show LM, but

2. The aggregate Yn,t = n−1
∑n

i=1 yit is a spurious (stationary) LM process

We perform a Monte Carlo experiment in which we simulate M = 1, 000 times series

yit for each i = 1, . . . , n = 500 and t = 1, . . . , T = 500 according to model (4). The

random variables αit have a Beta distribution with parameters a1 = 2 and b1 = 0.52

whereas the random variables βit are distributed according to a Beta distribution with

parameters a2 = 4.5 and b2 = 0.78. Further, we chose σu = 0.05 and sampled the

standard deviations σi independently from a uniform distribution on (0.2, 0.4). For each

Monte Carlo replication we build the aggregate time series Yn,t and estimated the LM

parameter d using the local Whittle (LW) estimator for the aggregate and the n individual

components. In addition, to detect the presence of spurious LM, we perform the test

based on the profiled LW likelihood (LWL) with ǫ = 0.02 on the n+ 1 time series at our

disposal. (See Appendix A, Section A.5 for details on the test.) In Table 2, we report

the average value of the LM parameter for Yn,t (mean(d)) across the M replications, the

average value of the mean LM parameter for the components (mean(d̄)) across the M

replicas, the percentage of rejections of the null of true LM for the aggregate and the
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average percentage of rejections of the null of true LM for the single components.

[Table 2 about here.]

In the next section, we undertake a comprehensive Monte Carlo simulation exercise

to compare the performance of five tests constructed under the null of true LM versus the

alternative of spurious long memory due to level shifts or breaks. The tests are briefly

reviewed in Appendix A.

3. TESTS AGAINST SPURIOUS LONG MEMORY: A

MONTE CARLO COMPARISON

In this section, the size and the power of the five tests against spurious LM are evaluated

under several alternatives, from a number of stochastic processes, e.g. the random level

shift, the Stopbreak and the Markov-Switching model, to breaking processes. We evaluate

the performance of the tests, allowing for a wide range of sizes and dates of the breaks.

In this way not only we identify the best tests in terms of overall performance, we also

describe their behavior under several features and show how each of them may modify

the reliability of the tests. Thus we are able to suggest the best choices for the test given

the underlying DGP.

Sections 3.1 and 3.2 report the empirical size and power of the five testing procedures,

respectively. Throughout the paper, for the “Temporal Aggregation” test of Ohanissian

et al. (2007) we set the number of aggregation levels to N = 4 and the aggregation levels

to nj = 2j for j = 0, . . . , N − 1. For the “Sample Splitting” test of Shimotsu (2006), the

number of subsamples considered is N = 2. We also consider N = 4 and N = 8 but we

do not report the results given they are dominated by the N = 2 case. For the LWL test

of Qu (2011), the trimming parameter is set equal to ǫ = 0.02 or ǫ = 0.05. For the GPH

and the LW estimates, the bandwidth is m = [T 0.5], where T denotes the sample size.
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3.1. Evaluation of the empirical size of the tests

We simulate 10,000 series of dimension T = 200, 600, 1000, 2000 and 5000 using three

DGPs:

1. ARFIMA(0,d,0) with d = 0.4;

2. ARFIMA(1,d,0) with d = 0.4, ρ = 0.4

3. ARFIMA(0,d,1) with d = 0.4, θ = 0.4,

where ρ and θ denote the autoregressive and the moving average coefficient, respectively.

Table 3 reports the rejection frequencies for the five tests using a 5% confidence level.

The “Temporal Aggregation” test has an empirical size which is very close to the

theoretical 5% even in small samples. The “Sample Splitting” test is over sized whereas

the SB-FDF and the LWL are much more conservative tests since they under-reject the

null. The “Differencing” test shows a very low size in its PP version and slight under-

rejection in the KPSS case. With respect to the sample size, the LWL test has a very

low size in small sample and then it converges to the theoretical size when the sample

size increases. The SB-FDF and the “Differencing” - KPSS case are characterized by a

moderate increase in their size with larger samples whereas the “Sample Splitting” and

the “Differencing” - PP case are almost constant across the different sample sizes. Finally,

the presence of either an autoregressive or a moving average component does not alter

the results.

[Table 3 about here.]

3.2. Evaluation of the empirical power of the tests

Section 3.2.1 is devoted to the analysis of size-adjusted powers when the underlying

process is subject to a structural break, which spuriously induces LM. In Section 3.2.2,
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we evaluate the performance of the tests under several alternative break models. The size-

adjustment is motivated by the fact that we are comparing tests with different behavior

in terms of size, as shown in the previous section. In Appendix B, we report the size-

unadjusted power of the tests, which shows very similar pattern of the size-adjusted one.

3.2.1 Case A: The impact of the location and the size of the break

In this section, we evaluate the size-adjusted power of the five tests under several struc-

tural break model alternatives that spuriously induce LM. To understand the size-adjusted

power sensitivity to break size and timing of the break, we simulate 10000 series of di-

mension T = 200, 600, 1000, 2000 and 5000 using the data generating processes Yt =

α2DUt(η) + ut. We consider different break intensities, i.e., a small (α2 = 0.25), a

medium (α2 = 0.5) and a large break (α2 = 0.75), and different break times (i.e., break

in the first quarter, in the middle and in the last quarter of the sample).

Table 4 reports the rejection frequencies for the five tests using a 5% confidence level.

The size-adjusted power of the tests as a function of the number of observations in the

time series is plotted in Figures 1–3.

[Table 4 and Figures 1–3 about here.]

The LWL test presents the highest rate of rejection, despite its weakness in detecting

breaks in presence of small break size and sample size not sufficiently large. When the

trimming parameter is set to ǫ = 0.05, the test achieves a good power in small samples

and poor results in larger ones, namely for T ≥ 1000. Our results confirm Qu’s suggestion

to choose ǫ = 0.02 as a good compromise between size and power. The second best is the

SB-FDF test which detects both large and small breaks. The “Temporal Aggregation”,

the “Sample Splitting” and the “Differencing” tests show less power. For the former,

the rate of rejection of the null is between 1% and 2% in small samples and between
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5% and 30% when T = 5000. Such a poor performance is due to the fact that the

number of aggregation levels (N = 4 in the experiment) considered is not big enough.

However, increasing N results in aggregated series whose sample size is too limited to

provide valid GPH estimates. The “Sample Splitting” has a low rate of rejection in small

samples but its power improves in large samples, whereas the “Differencing” test in both

its KPSS and Phillips-Perron versions gives very poor results, with a power almost equal

to zero. Those results are a direct consequence of the choice of the spectral bandwidth.

Indeed, the power of the tests increases when a larger number of frequencies is considered.

Overall, the larger the break, the higher the fractional parameter and the better the tests

power, the only exception being the “Sample Splitting” test. Note that the power of the

“Sample Splitting” test decreases dramatically when the break is in the middle of the

sample, that is, when the breaking and the splitting time coincide, since we used N = 2.

In this way, the splitting cancels out the effects of the break and therefore the test can

hardly detect the presence of a change in the series. Finally, the location of the break

has insignificant effects on the power of the test.

3.2.2 Case B: The impact of alternative break models

To further understand the size-adjusted power of the five tests, we extend our analysis

by considering models that generate spurious LM. The four alternative data generating

processes are:

1. Nonstationary random level shift model (RLS-NS): Xt = µt + ǫt, ǫt ∼ i.i.d.N(0, 5),

µt = µt−1 + vtηt, vt ∼ i.i.d.Binomial(1, 0.002), ηt ∼ i.i.d.N(0, 1).

2. Stationary random level shift model (RLS-S): Xt = µt + ǫt, ǫt ∼ i.i.d.N(0, 1),

µt = (1− vt)µt−1 + vtηt, vt ∼ i.i.d.Binomial(1, 0.003), ηt ∼ i.i.d.N(0, 1).

3. STOPBREAK model (STOPBREAK): Xt = µt+ ǫt, ǫt ∼ i.i.d.N(0, 1), µt = µt−1+
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ǫ2t−1

180+ǫ2t−1
ǫt−1.

4. Markov-Switching model (MS-IID): Xt ∼ i.i.d.N(−1, 6.253) if st = 0 and Xt ∼

i.i.d.N(1, 2.543) if st = 1, where st is a Markov process with transition probabilities

p01 = p10 = 0.02.

We generate spurious LM processes via the above four alternative break models widely

used in finance and macroeconomics, in particular to model realized volatility and infla-

tion, respectively. The RLS-NS and RLS-S processes are used by Perron and Qu (2010)

for modeling stock returns volatility. The values of the parameters chosen to generate

the Binomial random variable in both the RLS-NS and RLS-S models imply infrequent

breaks in the mean, a genuine feature of financial time series, with the RLS-NS and the

RLS-S models having on average a level shift every 500 and 334 observations, respec-

tively. Perron and Qu (2010) document that daily S&P 500 returns are characterized

by level shifts every 535 observations. The STOPBREAK process of Engle and Smith

(1999) generates time series subject to random structural shifts at random intervals. The

authors show that this kind of process may describe the behavior of stock prices that

move together for periods of time and then jump apart occasionally. We follow Shimotsu

(2006) in choosing the parameters of this process to induce a spurious LM pattern. Under

our parameterization, the conditional mean of the process is subject to rare changes that

have permanent effects on it. Finally, for the MS-IID model, in our simulation exercise

we use transition probabilities which at the same time accurately reflect empirical work

and generate spurious LM. In particular, we use the Markov transition probabilities esti-

mated in Evans and Wachtel (1993) where the near unity values of all diagonal elements

of the transition matrix are needed to generate spurious LM, as documented by Diebold

and Inoue (2001). The near unity property of all probabilities of permanence is not un-

common in modeling financial and economic time series. For instance, Cai (1994) fits a
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two-state switching-regime ARCH to monthly returns and estimates transition probabili-

ties of 0.0122 and 0.0598. Hamilton and Susmel (1994) evaluate the transition matrix of a

similar model with three states to study the volatility of weekly stock returns estimating

diagonal elements that range from 0.9831 to 0.9924. Markov switching process have been

applied to inflation as well, with changes in regimes that capture the different behavior

of inflation expectations across different monetary regimes, as discussed in Benati (2008).

Even for inflation, there is empirical evidence towards diagonal elements of the transition

matrix that are near unity. For instance, Evans and Wachtel (1993) fit a two state MS-IID

model to quarterly inflation and report a probability of remaining in either states close

to 98 percent. Evans and Lewis (1995) give further evidence to this result estimating

Markov transition probabilities of 0.064 and 0.039. Probabilities of permanence close

to one imply rare and long-lasting shifts in inflation. This is in line with the results of

Cogley and Sargent (2001, 2005), where the zero frequency component of the spectral

density of inflation is accounted for most of the decline of inflation persistence during the

last decades.

As in the previous exercise, we simulate 10000 series of dimension T = 200, 600, 1000, 2000

and 5000 for each of the alternative break models.

Table 5 reports the rejection frequencies for the five tests using a 5% confidence level.

In Figure 4, we plot the tests size-adjusted power of the tests against T .

[Table 5 and Figure 4 about here.]

The best performance is achieved by the two LWL tests, with an average power

converging to 0.9 in large samples. The test with the trimming parameter ǫ = 0.02

dominates the ǫ = 0.05-based test, even if the latter achieves better results in small

samples, as already noted in Section 3.2.1. The second best is the SB-FDF test, with

results similar to the LWL in the RLS-NS and in the Stopbreak model. Yet, the test

continues to show poor power when the Markov Switching model generates spurious LM.
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The “Temporal Aggregation” test has rejection frequencies ranging between 7% and 30%

for T = 2000, and between 35% and 83% for T = 5000. For the “Sample Splitting” test

the rejection frequencies are between 10% and 20% when T = 2000 and between 10% and

43% when T = 5000. Overall, the “Differencing” test has a low power, and the KPSS

version of this test achieves a larger power than the Phillips-Perron in all models but the

Markov Switching.

To better understand the poor performance of the “Sample Splitting” and the “Dif-

ferencing” tests, we replicate the Monte Carlo analysis allowing for two different choices

of spectral bandwidth, namely m =
[
T 0.7

]
and m =

[
T 0.9

]
. The choice of these two

bandwidths follows from the Monte Carlo studies of Shimotsu (2006) and aims to show

test reliability only at such high frequencies. We use the same structural break processes

of Section 3.2.1 with the same sample size of the previous experiment. The results, not re-

ported here but are available from the authors upon request, show reliable performance of

the tests only when large spectral bands are considered. Furthermore, the N = 2 version

of the “Sample Splitting” shows better performance than the N = 4 and N = 8 cases,

whereas all three versions give a poor power whenever the date of the break coincides

with the splitting date. The “Differencing” test in its KPSS version provides very good

results whereas the Phillips-Perron version gives a zero power. This result, together with

the near to unity power of the KPSS version, implies that the “Differencing” test wrongly

detects the structural break processes as I(1) processes. Thus, the very strong power is

obtained with a over-differencing procedure, due to a bias in the fractional parameter

estimates rooted in the choice of the spectral bandwidth, as well noticed by Robinson

(1994, 1995).
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4. CONCLUSIONS

Long memory in financial time series could arise as a spurious effect due to omitted

level shifts or structural breaks. This paper has two main contributions. First, we

developed some theoretical results on how a spurious LM volatility process affects the

elasticity of the stock market price with respect to volatility; we also showed that spurious

persistence in the data can be the effect of cross-sectional aggregation of units exhibiting

a common and an idiosyncratic shock. The second main contribution is the evaluation

of the performance of the five available tests against spurious LM. We studied their size

and power via an extensive Monte Carlo experiment, that accommodates a wide range of

possible alternatives, from genuine LM processes to series subject to breaks with different

sizes and dates and a number of alternative stochastic processes, e.g. the random level

shift , the Stopbreak and the Markov-switching model. Overall the best performances

are given by the LWL test proposed by Qu (2011), with the SB-FDF of Dolado et al.

(2005) as second best.

Our theoretical results highlight the important consequence of a spurious LM volatility

and how spurious LM may arise when aggregating data. In addition, from the simulation

study some useful guidelines for empirical work can be drawn. All tests achieved a

suitable power function with sample size T ≥ 1000. Thus, whereas we can apply the

tests in financial time series, their application in economic time series with small samples

needs further studies. Moreover, the larger the break, the higher the power, whereas the

date of the break has almost no influence on the power of the tests. Even if occasional

large breaks induce LM, the presence of small breaks has to be dealt with a lot of care.

We suggest the joint implementation of the LWL and the SB-FDF tests, to achieve a

suitable compromise between power against pure and alternative breaking models.

The findings in this paper suggest some further developments. For instance it is
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interesting to compare the asymptotic efficiency of the available test on spurious LM and

compute the analytical bias in the fractional parameter as a function of the number, the

size and the date of breaks. Further, since many economic and financial time series are

non-stationary, an extension to such cases maybe useful for practical purposes. We leave

these developments to future work.

APPENDICES

A. TESTING FOR TRUE VS SPURIOUS LONG MEM-

ORY

In this section, we briefly review the five existing procedures to test for true versus

spurious LM in stationary processes1. We refer to the original version of the papers for

a more detailed description of the tests.

A.1. A Test Based on Temporal Aggregation

A direct implication of the scaling and self-similarity properties of the fractional Brownian

motion (Mandelbrot and Van Ness, 1968) is that the stochastic process presents the same

memory at all levels of sampling frequency. A formal test procedure which exploits

the invariance of the LM parameter for temporal aggregates of the process under the

null of true LM is proposed by Ohanissian et al. (2007). The test is applicable to a

1It is worth noticing that a number of tests, constructed under the null hypothesis of occasional breaks,
are available in the literature. Bisaglia and Gerolimetto (2009) propose a test procedures based on the
Box-Pierce and Ljung-Box statistics, while Berkes et al. (2006) construct a test based on the CUSUM
statistic. Mayoral (2012) develops a time-domain test for non-stationary processes, under the null of
I(d) versus I(0) plus trends and/or breaks. Rea et al. (2009) study the performance of the atheoretical
regression trees procedure to identify breaks in LM processes. Finally, Kapetanios and Shin (2011) propose
a Wald test under the null of nonstationary LM against the alternative of exponential smooth transition
autoregressive processes.
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stationary mean zero Gaussian LM time series {Yt}. The spectral density is assumed to

be f(λ) = |1− e−iλ|−2df∗(λ), 0 < d < 0.5, where f∗(·) denotes the spectral density of the

short memory component of {Yt}t=1,...,T and is assumed to be continuous, bounded from

above, bounded away from zero, twice differentiable with the second derivative bounded

in a neighborhood of zero. This assumption allows the use of the GPH estimator to avoid

many potential mis-specification issues involving the short memory component. Let n

and T/n be finite positive integers. The n-period non-overlapping aggregates of the time

series Yt are defined as

Z(n)
s =

n∑

τ=1

Yn(s−1)+τ for s = 1, . . . ,
T

n
.

With the convention that a superscript (n) on any statistic represents the corresponding

statistic for the n-temporally aggregated data, let

I
(n)
j =

n

2πT

∣∣∣∣∣
T∑

s=1

Ys exp
([ s

n

]
iλjn

)∣∣∣∣∣

2

=
n

2πT

T∑

s=1

T∑

t=1

YsYt cos

(
λjn

([ s
n

]
−
[
t

n

]))

where λj = 2πj
T , for j = 1, ..., Tn , and [·] denotes the integer part operator. The peri-

odogram of the n-temporally aggregated series, I(n) can be expressed in terms of the

periodogram of the entire series, I
(1)
j :

I
(n)
j = nI

(1)
j + Y ′BjY

where Y = (Y1, . . . , YT )
′, Bj = [bj(s, t)]1≤s,t≤T and

bj(s, t) =
n

2πT

(
cos

(
λjn

([ s
n

]
−
[
t

n

]))
− cos (λjn)

)
.
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Given the bandwidth parameter m(n), the GPH estimate of the LM parameter for the

n-temporally aggregated data is

d̂(n) = − 1

2
∑m(n)

j=1

(
a
(n)
j

)2
m(n)∑

j=1

a
(n)
j log I

(n)
j ,

with

a
(n)
j = log |sin (λjn)| −

1

m(n)

m(n)∑

j=1

log |sin (λjn)| .

The number of ordinates of the GPH estimator depends on the length of the series

and since temporal aggregation decreases the length of the series, we have m(n1) >

m(n2) for n1 < n2 and also the frequencies are not the same: λ
(n1)
j 6= λ

(n2)
j for n1 6= n2

and λ
(kn)
j = λ

(n)
kj .

Let N denote the fixed, but arbitrarily large, number of aggregation levels and

(n1, n2, . . . , nN ) the fixed, but arbitrarily large, aggregation levels for the N series such

that n1 < n2 < . . . < nN . Ohanissian et al. (2007) show that, if the growth rate of

the ordinates of the GPH estimator is such that m(n) = o(T
2−4d

3 ) as T → ∞, for any

aggregation level n, then the joint distribution of the GPH estimates of the aggregated

series is asymptotically normal. Furthermore, authors prove that, asymptotically, the

covariance between any two GPH estimates obtained using temporally aggregated series

equals the variance of the lesser aggregated series:

4m(ni)
(
Cov(d̂(ni), d̂(nj))−Var(d̂(ni))

)
= o(1) as T → ∞ for 1 ≤ i < j ≤ N. (5)

Equation (5) allows us to compute the theoretical covariance matrix. When the time

series of interest is relatively small, the approximation suggested by GPH should be used
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instead:

Varapprox.(d̂
(ni) − d) =


24

m(ni)∑

j=1

(
a
(ni)
j

)2


−1

π2. (6)

Let d̂N = (d̂(n1), d̂(n2), . . . , d̂(nN ))′ be the N -dimensional vector of the estimated LM

parameters, and dN = (d(n1), d(n2), . . . , d(nN ))′ be the constant N -dimensional vector of

the actual LM parameters. The null hypothesis is

H0 : d
(n1) = d(n2) = . . . = d(nN ) = d

and it can be tested by considering the quadratic form

W =
(
d̂N − dN

)′
Λ−1

(
d̂N − dN

)
∼ χ2(N)

where Λ is the asymptotic covariance matrix that follows from (6). Note that for the

asymptotic covariance matrix to be invertible the asymptotic variances of each individual

GPH estimate must differ. This can be achieved by using a different number of ordinates

for the estimation of each temporally aggregated series. Since in practice d is unknown

the mean value of the estimates is used and the test statistic to implement is

ŴN = (P d̂N )′(PΛP ′)−1(P d̂N ) ∼ χ2(N − 1)

where

P =




1− 1
N − 1

N − 1
N · · · − 1

N − 1
N

− 1
N 1− 1

N − 1
N · · · − 1

N − 1
N

· · · · · · · · · · · · · · · · · ·

− 1
N − 1

N − 1
N · · · 1− 1

N − 1
N




.

Since P d̂ is N(0, PΛP ′), the test statistic ŴN has an asymptotic χ2(N − 1) distribution
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under H0.

A.2. The Structural Break–Fractional Dickey–Fuller Test

The Structural Break–Fractional Dickey–Fuller (SB–FDF) test is developed in Dolado

et al. (2005). Under the null, the process of interest is I(d), d ∈ (0, 1). Under the

alternative, the process is I(0) with one structural break. To account for structural

breaks, the process is assumed to be described by the following equation:

Yt = AB(t) +
atI(t>0)

∆d − φL
(7)

where AB(t) is a linear deterministic trend function that may contain breaks at the

unknown date TB, at is a stationary I(0) process, L the lag operator ∆ = 1 − L, and I

the indicator function. Under the null H0 : φ = 0, whereas φ < 0 means that the process

is I(0) and it is subject to the regime shifts defined by AB(t). Rearranging (7) yields:

∆dYt = φYt−1 +∆dAB(t)− φAB(t− 1) + εt (8)

where εt = atI(t>0). The SB–FDF test of I(d) vs. I(0) in the presence of structural

breaks is simply given by the t-ratio of the coefficient φ in the regression model (8). The

definition of AB(t) we consider is AB(t) = µ0 + (µ1 − µ0)DUt(η) which corresponds to

the so-called crash hypothesis. Here DUt(η) := I(t>TB), where TB, usually expressed as a

fraction of the sample size, TB = ηT , is the date of the break. Dolado et al. (2005) prove

that for a process generated by (7) with at ∼ i.i.d(0, σ2) the asymptotic distribution of

the test statistic under the null of φ = 0, when φ is estimated by OLS is non-standard if

d ∈ (0.5, 1) and standard normal if d ∈ (0, 0.5).

When, more realistically, the break date TB is unknown, one may choose the break

point that gives the least favorable result for the null hypothesis of I(d) using the SB-
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FDF test in (8). Therefore, following Andrews (1993), the t-statistic of the coefficient φ

is computed for the values of η ∈ (0.15, 0.85) and the most negative value is chosen:

t̂φ̂ = inf
η∈(0.15,0.85)

tφ̂(η).

The choice of η ∈ (0.15, 0.85) guarantees the uniform consistency of the test statistics

and rules failures of the continuous mapping theorem out. Dolado et al. (2005) show that

under the null and when µ0 = µ1, the asymptotic distribution of t̂φ̂ is again non-standard

if d ∈ (0.5, 1) and standard normal if d ∈ (0, 0.5). In the former case, the simulated

critical values are provided by Dolado et al. (2005, Appendix B). The test reject the

null of genuine LM when t̂φ̂ < kinf,α, where kinf,α is the simulated critical value at the

significance level α.

A.3. A Test Based on Sample Splitting

The test proposed by Shimotsu (2006) is constructed by splitting the sample into b

subsamples, estimating d for each subsample and computing how these estimates differ

from the full sample estimate. Under the null of true LM each subsample follows an I(d)

process with the same value of the LM parameter d.

Let N and T/N be finite positive integers. The sample {Ys}s=1,...,T is split into

N blocks, so that each block has T/N observations. The author suggests to compute

the local Whittle (LW) estimator (Robinson, 1995) for each block of observations using

m/N periodogram ordinates, m being the number of periodogram ordinates used for the

estimation of d in the full sample. Let d̃ be the LW estimator of d ∈ (−0.5, 0.5) computed

from the whole sample and d̃(ni), (i = 1, 2, . . . , N), be the LW estimator of d computed
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from the ith block of the observations, {Yt : t = (ni − 1)T/N + 1, . . . , niT/N}:

d̃(ni) = arg min
− 1

2
<d< 1

2



log


N
m

m/N∑

j=1

λ̃2d
j I

(ni)
j


− 2d

N

m

m/N∑

j=1

log λ̃j



 i = 1, . . . , N

I
(ni)
j =

N

2πT

∣∣∣∣∣∣

niT/N∑

s=(ni−1)T/N+1

Ys exp
(
isλ̃j

)
∣∣∣∣∣∣

2

,

where λ̃j = 2πjN
T , for j = 1, . . . , T/N . The test statistic under the null of genuine long

memory is then given by

W̃N = (Ad̂N )′(AΥA′)+(Ad̂N )

where d̃N is a the N + 1 column vector

d̃N =

(
d̃− d d̃(1) − d · · · d̃(N) − d

)′
,

Υ =
(

1 ι′N
ιN IN

)
is the covariance matrix of d̃N and A = [ ιN | − IN ]. Here ιN denotes

a N × 1 vector of ones, IN is the identity matrix of dimension N and P+ denotes the

pseudo-inverse of the matrix P . Note also that AΥA′ = NIN − ιN ι′N . The test statistic

W̃N has a chi-squared limiting distribution with N − 1 degrees of freedom. In case of

non-stationary LM, the test is based on the version of the LW estimator introduced in

Shimotsu and Phillips (2005).

A.4. Test using dth Differencing

An alternative test proposed by Shimotsu (2006) is based on the fact that if an I(d)

process is differenced d times, then the resulting time series is trivially an I(0) process.

The test is constructed by demeaning the data and applying the Phillips-Perron (PP)

unit root test or the KPSS test to its d̂th difference, d̂ being a consistent estimate of d.

24



Some care is needed in demeaning the data. Assuming that Yt follows a truncated I(d)

process with initialization at t = 0:

Yt − µ = (1− L)−dutI(t≥1)

where µ denotes either the mean of Yt in case d < 1/2 or the initial condition of Yt in

case d > 1/2, Shimotsu (2006) shows that

(1− L)−d

(
Yt − T−1

T∑

t=1

Yt

)
= ut +OP(T

d−1/2t−d) (9)

given that T−1
∑T

t=1 Yt − µ = OP(T
d−1/2). Hence, if d ≥ 1, the second term on the right

of (9) has a nonnegligible effect on the sample statistics of the dth differenced demeaned

data.

To circumvent the problem, the author suggests to estimate µ using a linear combi-

nation of the sample mean and Y1:

µ̂(d) =
w(d)

T

T∑

t=1

Yt + (1− w(d))Y1 (10)

where w(d) is a is a smooth weight function such that w(d) = 1 for d ≤ 1/2 and w(d) = 0

for d ≥ 3/4. For suitable choices of the weight function, we refer to Shimotsu (2006).

Once the data has been demeaned using (10) to estimate the mean, it is possible to

compute the d̂th differenced series Ut:

Ut = (1− L)d̂(Yt − µ̂(d̂)) =
t−1∑

k=0

Γ(k − d̂)

Γ(−d̂)k!
(Yt−k − µ̂(d̂)).

Finally, a stationarity test (PP or KPSS) is applied to the series Ut.
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A.5. A Test Based on The Local Whittle Likelihood

Qu (2011) proposes a test based on the profiled LW likelihood (LWL) function that

exploits the different behavior of true and spurious LM processes around some critical

frequencies. The mean of the spectral density of genuine long processes is proportional

to λ2
j uniformly for λj = o(1) whereas, in short memory processes, level shifts affect the

periodogram around a neighborhood of λj = O(T−1/2) frequencies, as shown by Perron

and Qu (2010). Generalizing this result, the author introduces a test based on the profiled

likelihood function of the LW estimator, within the Kolmogorov-Smirnov type test. The

statistic is based on a process of weighted periodograms to exploit the behavior of spurious

and genuine LM processes in their critical ranges, i.e. around λj = T−1/2. Consider the

LW likelihood function

Q (G, d) =
1

T

m∑

j=1

{
logGλ−2d

j +
Ij

Gλ−2d
j

}
, (11)

where λj =
2πj
T , for j = 1, ..., Tn . The profiled likelihood function is derived by minimizing

(11) with respect to G:

R (d) = logG (d)− 2d
1

m

m∑

j=1

log λj ,

where

G (d) =
1

m

m∑

j=1

λ2d
j Ij .

The test statistics is defined as

˜̃
W ǫ = sup

r∈[ǫ,1]




m∑

j=1

v2j




−1/2 ∣∣∣∣∣∣

[mr]∑

j=1

vj


 Ij

G(d̂)λ−2d̂
j

− 1



∣∣∣∣∣∣
,
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where

vj = log λj −
1

m

m∑

j=1

log λj ,

ǫ ∈ [0, 1] is a trimming parameter and d̂ is the LW estimate of the fractional parameter

computed with m frequency components. The presence of the trimming parameter ǫ

ensures a reliable asymptotic approximation even in small samples. The author suggests

to choose ǫ = 0.02, though ǫ = 0.05 performs well in small samples.

B. SIZE UNADJUSTED POWER OF THE TESTS

Table 6 reports the rejection frequencies in the case of a structural break model for the

five tests using a 5% confidence level. Table 7 reports the rejection frequencies for the

five tests using a 5% confidence level.

[Table 6 and 7 about here.]
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TABLE 1: Stock price elasticity using formula (3) for parameters rf = 0.035, g = 0.00087
and ᾱ = 0.006. In the bottom panel the average d estimate from simulating 1,000 time series
of length T = 180 for yt using (2) are reported. The d estimates are based on a bandwidth√
T .

Panel A: Elasticity

k ρ1 = 0.6, ρ2 = 0.6, TB = 90 ρ1 = 0.7, ρ2 = 0.99, TB = 160

≤ 0 -0.0315 -0.1197
1 -0.0240 -0.0863
2 -0.0196 -0.0638
3 -0.0171 -0.0487
4 -0.0156 -0.0386
5 -0.0148 -0.0317

Panel B: Long Memory Estimates

d̄ LW 0.2671 0.2834
d̄ ELW 0.2727 0.3158
d̄ FELW 0.2729 0.3197

TABLE 2: Long memory parameter estimates and LWL tests against spurious long memory
for the aggregate and the components. Results are based on M = 1, 000 Monte Carlo replicas.
‘mean(d)’ and ‘mean(d̄)’ are the average values across the M replicas of the long memory
parameter for the aggregate and of the average long memory parameter for the components.
The percentage of rejections of the null of true long memory for the aggregate and the the
components are also reported.

mean(d) 0.2765
mean(d̄) -0.0533

Rejections of H0 for Yn,t (%) 80.50%
Average Rejection of H0 for the components (%) 0.42%
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TABLE 3: Rejection frequencies for ARFIMA models. The rejection frequencies for an
ARFIMA(0,d,0), an ARFIMA(1,d,0) and an ARFIMA(0,d,1), with d = 0.4 and sample sizes
T = 200, 600, 1000, 2000, 5000 are reported. The autoregressive and the moving average coef-
ficient are both 0.4. Theoretical size is 5%.

mean
(

d̂
)

Temp. SB–FDF Sample Diff. Diff. LWL LWL
Aggreg. Split. PP KPSS ǫ = 0.02 ǫ = 0.05

ARFIMA(0,d,0), d = 0.4.

T = 200 0.3811 0.0461 0.0212 0.0913 0.0062 0.0300 0.0087 0.0096
T = 600 0.3950 0.0562 0.0256 0.0864 0.0071 0.0329 0.0113 0.0137
T = 1000 0.3929 0.0524 0.0294 0.0835 0.0097 0.0366 0.0181 0.0239
T = 2000 0.3960 0.0521 0.0328 0.0771 0.0121 0.0381 0.0248 0.0284
T = 5000 0.3977 0.0495 0.0411 0.0758 0.0218 0.0398 0.0455 0.0463

ARFIMA(1,d,0), d = ρ = 0.4.

T = 200 0.3926 0.0565 0.0165 0.0822 0.0012 0.0403 0.0097 0.0135
T = 600 0.4215 0.0572 0.0200 0.0813 0.0023 0.0389 0.0101 0.0164
T = 1000 0.4172 0.0567 0.0232 0.0784 0.0093 0.0421 0.0143 0.0188
T = 2000 0.4115 0.0573 0.0277 0.0759 0.0126 0.0409 0.0212 0.0257
T = 5000 0.3742 0.0571 0.0389 0.0702 0.0245 0.0414 0.0336 0.0417

ARFIMA(0,d,1), d = θ = 0.4.

T = 200 0.4056 0.0642 0.0201 0.0856 0.0137 0.0312 0.0091 0.0107
T = 600 0.4201 0.0634 0.0236 0.0831 0.0143 0.0328 0.0103 0.0126
T = 1000 0.4254 0.0611 0.0284 0.0816 0.0268 0.0354 0.0157 0.0194
T = 2000 0.4166 0.0586 0.0308 0.0793 0.0301 0.0376 0.0187 0.0259
T = 5000 0.3752 0.0579 0.0376 0.0771 0.0355 0.0392 0.0274 0.0314

NOTE: Temp. Aggreg. is the “Temporal Aggregation” test with N = 4 aggregation levels. SB-FDF is the
“Structural Break-Fractional Dickey-Fuller Test”. Sample Split. is the “Sample Splitting” test with b = 2

subsamples. Diff. KPSS denotes the KPSS d-th Differencing test whereas Diff. PP is its Phillips-Perron version.
LWL denotes the test based on the local Whittle likelihood. For each test the null is true long memory. For the

GPH and LW estimators the spectral bandwidth is m =
[√

T
]

. Results are based on 10000 Monte Carlo

replications.
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TABLE 4: Size-adjusted rejection frequencies at a 5% confidence level for a structural break
model.

mean
(

d̂
)

Temp. SB–FDF Sample Diff. Diff. LWL LWL
Aggreg. Split. PP KPSS ǫ = 0.02 ǫ = 0.05

Break - Quarter

Small First 0.0800 0.0249 0.2707 0.1331 0.0313 0.0037 0.0064 0.0089
Small Middle 0.1100 0.0263 0.3112 0.1287 0.0305 0.0024 0.0058 0.0093
Small Third 0.0800 0.0313 0.2688 0.1274 0.0486 0.0053 0.0047 0.0041
Medium First 0.2200 0.0307 0.4996 0.1792 0.0274 0.0008 0.0174 0.0266

T = 200 Medium Middle 0.2800 0.0191 0.5226 0.1309 0.0241 0.0006 0.0436 0.0606
Medium Third 0.2200 0.0199 0.5153 0.1800 0.0608 0.0011 0.0167 0.0143
Large First 0.3600 0.0254 0.5889 0.2464 0.0192 0.0003 0.1282 0.1341
Large Middle 0.4300 0.0228 0.5624 0.1246 0.0166 0.0007 0.2123 0.2567
Large Third 0.3700 0.0259 0.5825 0.2606 0.0699 0.0023 0.0396 0.0588

Small First 0.1324 0.0198 0.4499 0.1689 0.0254 0.0000 0.0099 0.0103
Small Middle 0.1657 0.0247 0.5732 0.1243 0.0271 0.0014 0.0234 0.0284
Small Third 0.1307 0.0203 0.4658 0.1594 0.0578 0.0035 0.0071 0.0076
Medium First 0.3003 0.0302 0.4914 0.3137 0.0130 0.0021 0.1896 0.2260

T = 600 Medium Middle 0.3471 0.0262 0.4826 0.1226 0.0104 0.0018 0.3354 0.3904
Medium Third 0.3003 0.0254 0.5269 0.3801 0.0791 0.0026 0.0795 0.1225
Large First 0.4319 0.0319 0.4732 0.5326 0.0066 0.0006 0.6413 0.6996
Large Middle 0.4722 0.0300 0.5655 0.1128 0.0065 0.0007 0.7446 0.7442
Large Third 0.4276 0.0358 0.6285 0.5899 0.0503 0.0019 0.3317 0.3827

Small First 0.1769 0.0228 0.4897 0.2877 0.0187 0.0031 0.0202 0.0462
Small Middle 0.2068 0.0234 0.6008 0.1303 0.0141 0.0014 0.0703 0.0689
Small Third 0.1749 0.0206 0.4314 0.2754 0.0434 0.0037 0.0188 0.0200
Medium First 0.3484 0.0315 0.4492 0.6186 0.0119 0.0000 0.4431 0.6005

T = 1000 Medium Middle 0.3852 0.0307 0.4505 0.1193 0.0086 0.0018 0.5958 0.7497
Medium Third 0.3493 0.0343 0.6416 0.6548 0.0521 0.0022 0.2413 0.2815
Large First 0.4686 0.0374 0.7354 0.7873 0.0087 0.0003 0.9822 0.9637
Large Middle 0.5010 0.0326 0.7190 0.1642 0.0069 0.0012 0.9663 0.9608
Large Third 0.4671 0.0397 0.7326 0.8106 0.0616 0.0007 0.8806 0.7451

Small First 0.2077 0.0270 0.4303 0.3515 0.0077 0.0008 0.1032 0.0991
Small Middle 0.2403 0.0256 0.5331 0.1436 0.0121 0.0034 0.2455 0.2670
Small Third 0.2089 0.0282 0.5094 0.3322 0.0276 0.0033 0.0804 0.0916
Medium First 0.3772 0.0329 0.5186 0.7108 0.0044 0.0015 0.9399 0.9193

T = 2000 Medium Middle 0.4080 0.0307 0.4763 0.1396 0.0048 0.0010 0.9151 0.9736
Medium Third 0.3758 0.0341 0.5112 0.8766 0.0233 0.0046 0.5883 0.6662
Large First 0.4828 0.0417 0.6607 0.8627 0.0036 0.0012 0.9890 0.9848
Large Middle 0.5091 0.0398 0.6318 0.2467 0.0078 0.0031 1.0000 1.0000
Large Third 0.4910 0.0505 0.5669 0.9005 0.0439 0.0000 0.9775 0.9519

Small First 0.2143 0.0488 0.4784 0.5947 0.0040 0.0023 0.4739 0.6410
Small Middle 0.2631 0.0624 0.6849 0.1360 0.0093 0.0108 0.7468 0.7848
Small Third 0.1968 0.0539 0.3987 0.6212 0.0031 0.0084 0.3364 0.3310
Medium First 0.3699 0.1017 0.6506 0.8857 0.0682 0.0000 1.0000 0.9874

T = 5000 Medium Middle 0.4112 0.1842 0.5550 0.1809 0.0827 0.0027 1.0000 0.9779
Medium Third 0.3723 0.1292 0.7583 0.9089 0.6598 0.0102 1.0000 0.9837
Large First 0.4866 0.1901 0.6302 0.9466 0.0036 0.0038 1.0000 1.0000
Large Middle 0.5049 0.2899 0.9001 0.2316 0.0069 0.0016 1.0000 1.0000
Large Third 0.4830 0.2804 0.6376 0.9111 0.0242 0.0022 1.0000 1.0000

NOTE: See note to Table 3.
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TABLE 5: Size-adjusted rejection frequencies at a 5% confidence level for spurious long
memory models.

mean
(

d̂
)

Temp. SB–FDF Sample Diff. Diff. LWL LWL
Aggreg. Split. PP KPSS ǫ = 0.02 ǫ = 0.05

T = 200

RLS-NS 0.1813 0.0213 0.0935 0.1114 0.0057 0.0070 0.0910 0.0998
RLS-S 0.1873 0.0173 0.0889 0.1240 0.0081 0.0105 0.0814 0.0936

STOPBREAK 0.1754 0.0208 0.1366 0.1209 0.0066 0.0201 0.1209 0.1025
MS-IID 0.3613 0.0198 0.2417 0.1174 0.2901 0.0836 0.0885 0.0834

T = 600

RLS-NS 0.1798 0.0335 0.1360 0.1480 0.0037 0.0491 0.1822 0.2118
RLS-S 0.1369 0.0374 0.1224 0.1378 0.0093 0.0803 0.1801 0.1803

STOPBREAK 0.3403 0.0333 0.3841 0.1241 0.0022 0.2221 0.1415 0.1216
MS-IID 0.4118 0.0389 0.3230 0.0599 0.3413 0.0961 0.1306 0.1101

T = 1000

RLS-NS 0.1575 0.0401 0.2771 0.1569 0.0090 0.1606 0.2587 0.2366
RLS-S 0.1463 0.0436 0.2509 0.1886 0.0041 0.1398 0.2700 0.2580

STOPBREAK 0.2490 0.0811 0.4993 0.1303 0.0012 0.3617 0.3446 0.3472
MS-IID 0.3930 0.0698 0.3076 0.0898 0.3586 0.1375 0.2102 0.2019

T = 2000

RLS-NS 0.1212 0.0772 0.5320 0.2002 0.0009 0.2460 0.5313 0.4582
RLS-S 0.1138 0.1456 0.4315 0.2557 0.0036 0.2113 0.5778 0.3709

STOPBREAK 0.3174 0.3005 0.7898 0.2344 0.0015 0.4349 0.7206 0.7700
MS-IID 0.3404 0.1743 0.1987 0.1056 0.2803 0.1986 0.5821 0.5631

T = 5000

RLS-NS 0.2465 0.3528 0.7317 0.3307 0.0006 0.6924 0.8536 0.8427
RLS-S 0.1952 0.4719 0.5981 0.4305 0.0028 0.5890 0.9202 0.8650

STOPBREAK 0.3324 0.8312 0.7903 0.3110 0.0029 0.6854 0.9555 0.9793
MS-IID 0.2356 0.3557 0.0566 0.1066 0.1972 0.4309 0.9125 0.9309

NOTE: See note to Table 3. In addition, RLS-NS denotes the Nonstationary random level shift model, RLS-S is
the stationary random level shift model, STOPBREAK is the model of Engle and Smith (1999) and MS-IID is

the Markov-Switching model.
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TABLE 6: Rejection frequencies at a 5% confidence level for a structural break model.

mean
(

d̂
)

Temp. SB–FDF Sample Diff. Diff. LWL LWL
Aggreg. Split. PP KPSS ǫ = 0.02 ǫ = 0.05

Break - Quarter

Small First 0.0800 0.0206 0.2390 0.0794 0.0169 0.0183 0.0390 0.0355
Small Middle 0.1100 0.0220 0.2795 0.0750 0.0177 0.0196 0.0396 0.0351
Small Third 0.0800 0.0270 0.2371 0.0737 0.0004 0.0167 0.0407 0.0403
Medium First 0.2200 0.0264 0.4679 0.1255 0.0208 0.0212 0.0280 0.0178

T = 200 Medium Middle 0.2800 0.0148 0.4909 0.0772 0.0241 0.0214 0.0018 0.0162
Medium Third 0.2200 0.0156 0.4836 0.1263 0.0126 0.0209 0.0287 0.0301
Large First 0.3600 0.0211 0.5572 0.1927 0.0290 0.0217 0.0828 0.0897
Large Middle 0.4300 0.0185 0.5307 0.0709 0.0316 0.0213 0.1669 0.2123
Large Third 0.3700 0.0216 0.5508 0.2069 0.0217 0.0197 0.0058 0.0144

Small First 0.1324 0.0145 0.4162 0.1131 0.0258 0.0234 0.0384 0.0370
Small Middle 0.1657 0.0194 0.5395 0.0685 0.0241 0.0220 0.0249 0.0189
Small Third 0.1307 0.0150 0.4321 0.1036 0.0066 0.0199 0.0412 0.0397
Medium First 0.3003 0.0249 0.4577 0.2579 0.0382 0.0213 0.1413 0.1787

T = 600 Medium Middle 0.3471 0.0209 0.4489 0.0668 0.0408 0.0216 0.2871 0.3431
Medium Third 0.3003 0.0201 0.4932 0.3243 0.0279 0.0208 0.0312 0.0752
Large First 0.4319 0.0266 0.4395 0.4768 0.0446 0.0228 0.5930 0.6523
Large Middle 0.4722 0.0247 0.5318 0.0570 0.0447 0.0227 0.6963 0.6969
Large Third 0.4276 0.0305 0.5948 0.5341 0.0009 0.0215 0.2834 0.3354

Small First 0.1769 0.0173 0.4573 0.2299 0.0306 0.0194 0.0263 0.0007
Small Middle 0.2068 0.0179 0.5684 0.0725 0.0352 0.0211 0.0238 0.0235
Small Third 0.1749 0.0151 0.3990 0.2176 0.0059 0.0188 0.0277 0.0255
Medium First 0.3484 0.0260 0.4168 0.5608 0.0374 0.0225 0.3966 0.5551

T = 1000 Medium Middle 0.3852 0.0252 0.4181 0.0615 0.0407 0.0207 0.5493 0.7043
Medium Third 0.3493 0.0288 0.6092 0.5970 0.0028 0.0203 0.1948 0.2361
Large First 0.4686 0.0319 0.7030 0.7295 0.0406 0.0222 0.9357 0.9183
Large Middle 0.5010 0.0271 0.6866 0.1064 0.0424 0.0213 0.9198 0.9154
Large Third 0.4671 0.0342 0.7002 0.7528 0.0123 0.0218 0.8341 0.6997

Small First 0.2077 0.0213 0.3972 0.2916 0.0427 0.0222 0.0557 0.0526
Small Middle 0.2403 0.0199 0.5000 0.0837 0.0383 0.0196 0.1980 0.2205
Small Third 0.2089 0.0225 0.4763 0.2723 0.0228 0.0197 0.0329 0.0451
Medium First 0.3772 0.0272 0.4855 0.6509 0.0460 0.0215 0.8924 0.8728

T = 2000 Medium Middle 0.4080 0.0250 0.4432 0.0797 0.0456 0.0220 0.8676 0.9271
Medium Third 0.3758 0.0284 0.4781 0.8167 0.0271 0.0184 0.5408 0.6197
Large First 0.4828 0.0360 0.6276 0.8028 0.0468 0.0218 0.9415 0.9383
Large Middle 0.5091 0.0341 0.5987 0.1868 0.0426 0.0199 0.9525 0.9535
Large Third 0.4910 0.0448 0.5338 0.8406 0.0065 0.0230 0.9300 0.9054

Small First 0.2143 0.0441 0.4438 0.5328 0.0486 0.0217 0.4243 0.5925
Small Middle 0.2631 0.0577 0.6503 0.0741 0.0433 0.0132 0.6972 0.7363
Small Third 0.1968 0.0492 0.3641 0.5593 0.0495 0.0156 0.2868 0.2825
Medium First 0.3699 0.0970 0.6160 0.8238 0.0156 0.0240 0.9504 0.9389

T = 5000 Medium Middle 0.4112 0.1795 0.5204 0.1190 0.0301 0.0213 0.9505 0.9294
Medium Third 0.3723 0.1245 0.7237 0.8470 0.6072 0.0138 0.9614 0.9352
Large First 0.4866 0.1854 0.5956 0.8847 0.0490 0.0202 0.9578 0.9515
Large Middle 0.5049 0.2852 0.8655 0.1697 0.0457 0.0224 0.9531 0.9531
Large Third 0.4830 0.2757 0.6030 0.8492 0.0284 0.0218 0.9554 0.9529

NOTE: See note to Table 3.
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TABLE 7: Rejection frequencies at a 5% confidence level for spurious long memory models.

mean
(

d̂
)

Temp. SB–FDF Sample Diff. Diff. LWL LWL
Aggreg. Split. PP KPSS ǫ = 0.02 ǫ = 0.05

T = 200

RLS-NS 0.1813 0.0170 0.0618 0.0577 0.0425 0.0150 0.0456 0.0554
RLS-S 0.1873 0.0130 0.0572 0.0703 0.0401 0.0115 0.0360 0.0492

STOPBREAK 0.1754 0.0165 0.1049 0.0672 0.0416 0.0019 0.0755 0.0581
MS-IID 0.3613 0.0793 0.2584 0.0484 0.0474 0.0135 0.0650 0.0548

T = 600

RLS-NS 0.1798 0.0282 0.1023 0.0922 0.0475 0.0257 0.1339 0.1645
RLS-S 0.1369 0.0321 0.0887 0.0820 0.0419 0.0569 0.1318 0.1330

STOPBREAK 0.3403 0.0280 0.3504 0.0683 0.0490 0.1987 0.0932 0.0743
MS-IID 0.4118 0.0908 0.3076 0.0431 0.1986 0.0218 0.1293 0.1187

T = 1000

RLS-NS 0.1575 0.0346 0.2447 0.0991 0.0403 0.1381 0.2122 0.1912
RLS-S 0.1463 0.0381 0.2185 0.1308 0.0452 0.1173 0.2235 0.2126

STOPBREAK 0.2490 0.0756 0.4669 0.0725 0.0481 0.3392 0.2981 0.3018
MS-IID 0.3930 0.1320 0.3262 0.0459 0.3061 0.0194 0.2854 0.2674

T = 2000

RLS-NS 0.1212 0.0715 0.4989 0.1403 0.0495 0.2230 0.4838 0.4117
RLS-S 0.1138 0.1399 0.3984 0.1958 0.0468 0.1883 0.5303 0.3244

STOPBREAK 0.3174 0.2948 0.7567 0.1745 0.0489 0.4119 0.6731 0.7235
MS-IID 0.3404 0.1929 0.2472 0.0607 0.3614 0.0207 0.5945 0.5481

T = 5000

RLS-NS 0.2465 0.3481 0.6971 0.2688 0.0520 0.6684 0.8040 0.7942
RLS-S 0.1952 0.4672 0.5635 0.3686 0.0498 0.5650 0.8706 0.8165

STOPBREAK 0.3324 0.8265 0.7557 0.2491 0.0497 0.6614 0.9059 0.9308
MS-IID 0.2356 0.4262 0.1626 0.0624 0.5576 0.0190 0.8541 0.8687

NOTE: See note to Table 5.
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FIGURE 1: Size-adjusted power of the tests in the structural break model: Small break,
bandwidth m =

[
T 0.5

]
.
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FIGURE 2: Size-adjusted power of the tests in the structural break model: Medium break,
bandwidth m =

[
T 0.5

]
.
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FIGURE 3: Size-adjusted power of the tests in the structural break model: Large break,
bandwidth m =

[
T 0.5

]
.
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FIGURE 4: Size-adjusted power of the tests for spurious long memory models, bandwidth
m =

[
T 0.5

]
.
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(a) RLS-NS Model
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(b) RLS-S Model

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SAMPLE SIZE

T
E

S
T

 P
O

W
E

R

(c) Stopbreak Model
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(d) Markov Switching Model
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