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APPLICATIONS OF QUANTUM INTEGRABLE SYSTEMS

OLALLA A. CASTRO-ALVAREDO AND ANDREAS FRING

Institut für Theoretische Physik, Freie Universität Berlin,
Arnimallee 14, D-14195 Berlin, Germany
E-mail: olalla/fring@physik.fu-berlin.de

We present two applications of quantum integrable systems. First, we predict that
it is possible to generate high harmonics from solid state devices by demonstrating
that the emission spectrum of a minimally coupled laser field of frequency ω to an
impurity system of a quantum wire, contains multiples of the incoming frequency.
Second, by evaluating expressions for the conductance in the high temperature
regime we show that the characteristic filling fractions of the Jain sequence, which
occur in the fractional quantum Hall effect, can be obtained from quantum wires
which are described by minimal affine Toda field theories.

Dedicated to A.A. Belavin on his 60th birthday

1 Introduction

In the context of conformal and massive integrable quantum field theories an im-
pressive amount of non-perturbative techniques has been developed during the last
25 years. Needless to say that the contributions of the Landau school has always
been vital for that progress. The original motivation for considering such theories
was to use the lower dimensional set up as a testing ground for general conceptual
ideas and possibly to apply them in the context of string theory. As a consequence,
most of the work in this area is often of a rather formal mathematical nature and
lacks a link to direct physical application. So far this has not been a major issue,
but lately the experimental techniques have advanced to such an extent that one
can realistically hope to measure various physical quantities which can be predicted
based on the developed approaches.

Here we want to present two examples of such quantities. The first is concerned
with the prediction of harmonic spectra when a three dimensional laser field is cou-

pled to a one dimensional quantum wire1. To observe interesting phenomena in
this context one needs to consider impurity systems and the concepts of integra-
bility are so constraining that they lead one to consider mostly free systems with
impurities.

The second application we shall present is related to the computation of par-

ticular values of the conductance of a quantum wire2. There exist two established

theoretical descriptions to compute the conductance, the Kubo formula3,4, which
is the outcome of a dynamical linear-response theory and the Landauer-Büttinger

theory5, which is a semi-classical transport theory. In both descriptions one can
make full use of different non-perturbative techniques developed in the 1+1 dimen-
sional quantum field theory context. In the first approach one of the key quantities
involved is the current-current correlation function which can be obtained from a
form factor expansion6,7,8 and in the second approach one requires the density
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distributions which are accessible from a thermodynamic Bethe ansatz9 (TBA)
analysis. Here we will concentrate on the latter and show that the characteristic

Jain filling fractions10, which occur in the fractional quantum Hall effect11, can
be obtained from quantum wires which are described by minimal affine Toda field

theories12.

2 Harmonic generation

We commence by briefly explaining what harmonics are. The first experimental

evidence can be traced back to the early sixties13. Franken et al found that when
hitting a crystalline quartz with a weak ultraviolet laser beam of frequency ω, it
emits a frequency which is 2ω. Generalizing this phenomenon to higher multiples,
one says nowadays that high harmonic generation is the non-linear response of a
medium (a crystal, an atom, a gas, ...) to a laser field. The importance of harmonic
generation is related to the fact that it allows to convert infrared input radiation
of frequency ω into light in the extreme ultraviolet regime whose frequencies are

multiples of ω (even up to order ∼ 1000, see e.g.14 for a recent review). A typical
experimental spectrum is presented in figure 1.

Figure 1. Harmonic spectrum for Neon for a Ti:Sa laser with λ = 795nm. Measured at the Max
Born Institut Berlin [15].
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In gases, composed of atoms or small molecules, this phenomenon is well-understood
and, to some extent, even controllable in the sense that the frequency of the highest
harmonic, the so-called “cut-off”, visible in figure 1, can be tuned as well as the in-
tensities of particular groups of harmonics. In more complex systems, however, for
instance solids, or larger molecules, high-harmonic generation is still an open prob-
lem. This is due to the fact that, until a few years ago, such systems were expected
not to survive the strong laser fields one needs to produce such effects. However,
nowadays, with the advent of ultrashort pulses, there exist solid-state materials

whose damage threshold is beyond the required16 intensities of 1014W/cm2. As
a direct consequence, there is an increasing interest in such materials as potential
sources for high-harmonics. In fact, several groups are currently investigating this

phenomenon in systems such as thin crystals17,18, carbon nanotubes19, or organic

molecules20,21.
We will therefore try to answer here the question, whether it is possible to

generate harmonics from solid state devices and as a prototype of such a system
we study a quantum wire coupled to a laser field.

2.1 Constraints from integrability

In order to couple the laser field to the wire we need some seeds to attach the field
and therefore we are naturally led to consider impurity systems. Essential quantities
to compute are the transmission amplitudes. We commence by demonstrating how
integrability puts severe constraints onto them. One exploits here one of the great
advantages of integrability in 1+1 dimensional models, which is the well-known fact
that the n-particle scattering matrix factorises into two-particle S-matrices, which
can be determined by some constraining equations which are central to the entire

subject, the Yang-Baxter22 and bootstrap equations23. Similar equations hold in

the presence of a boundary24,25,26 or a defect27,28. It is clear that with regard
to the conductance a situation with a pure boundary, i.e. non-trivial effects on the
constrictions, or purely transmitting defects will be rather uninteresting and we
would like to consider the case when R and T are simultaneously non-vanishing. It
will turn out that for that situation the Yang-Baxter equations are so constraining
that not many integrable theories will be left to consider. Thus this section serves
essentially to motivate the study of the free Fermion, which after all is very close
to a realistic system of electrons propagating in quantum wires.

We label now particle types by Latin and degrees of freedom of the impurity
by Greek letters, the bulk scattering matrix by S, and the left/right reflection and
transmission amplitudes of the defect by R/R̃ and T/T̃ , respectively. Then the
transmission and reflection amplitudes are constrained by the “unitarity” relations

Rjβ
iα (θ)Rkγ

jβ (−θ) + T jβ
iα (θ)T̃ kγ

jβ (−θ) = δk
i δ

γ
α, (1)

Rjβ
iα (θ)T kγ

jβ (−θ) + T jβ
iα (θ)R̃kγ

jβ (−θ) = 0 , (2)

and the crossing-hermiticity relations

Rα
̄
(θ) = R̃α

̄
(−θ)∗ = Sj̄(2θ)R̃

α
j (iπ − θ) , (3)

Tα
̄

(θ) = T̃α
̄

(−θ)∗ = T̃α
j (iπ − θ) . (4)

Proceeding 6-th international workshop on CFT and IM (Chernogolovka, 2002) 3



The equations (1) and (2) also hold after performing a parity transformation, that
is for R↔ R̃ and T ↔ T̃ .

Depending now on the choice of the initial asymptotic condition one can
derive the following two non-equivalent sets of generalized Yang-Baxter equa-
tions by exploiting the associativity of the extended Zamolodchikov-Faddeev

algebra24,25,26,27,28

S(θ12)[I ⊗Rβ
α(θ1)]S(θ̂12)[I ⊗Rγ

β(θ2)] = [I ⊗Rβ
α(θ2)]S(θ̂12)[I ⊗Rγ

β(θ1)]S(θ12),(5)

S(θ12)[I ⊗Rβ
α(θ1)]S(θ̂12)[I ⊗ T γ

β (θ2)] = Rγ
β(θ1) ⊗ T β

α (θ2), (6)

S(θ12)[T
β
α (θ2) ⊗ T γ

β (θ1)] = [T β
α (θ1) ⊗ T γ

β (θ2)]S(θ12), (7)

and

Rβ
α(θ1) ⊗ R̃γ

β(θ2) = Rγ
β(θ1) ⊗ R̃β

α(θ2), (8)

[T β
α (θ2) ⊗ I]S(θ̂12)[R̃

γ
β(θ1) ⊗ I]S(θ12) = T γ

β (θ2) ⊗ R̃β
α(θ1), (9)

[I ⊗ T̃ β
α (θ2)]S(θ̂12)[I ⊗Rγ

β(θ1)]S(θ12) = Rβ
α(θ1) ⊗ T̃ γ

β (θ2), (10)

[T β
α (θ1) ⊗ I]S(θ̂12)[T̃

γ
β (θ2) ⊗ I] = [I ⊗ T̃ β

α (θ2)]S(θ̂12)[I ⊗ T γ
β (θ1)]. (11)

We used here the convention (A⊗B)kl
ij = Ak

iB
l
j for the tensor product and abbre-

viated the rapidity sum θ̂12 = θ1 + θ2 and difference θ12 = θ1 − θ2. Once again the
same equations also hold for R ↔ R̃ and T ↔ T̃ .

Apart from some discrepancies in the indices the equations (5)-(7) correspond
to a more simplified, in the sense that there were no degrees of freedom in the
defect and parity invariance is assumed, set of equations considered previously

in27. For diagonal scattering it was argued in27 that one can only have reflection

and transmission simultaneously when S = ±1. In28 a more general set up which
includes all degrees of freedom was studied. A second set of equations (8)-(11),
which is not equivalent to (5)-(7) was found. It was shown that in the absence of
degrees of freedom in the defect no theory which has a non-diagonal bulk scattering
matrix admits simultaneous reflection and transmission. This result even holds
for the completely general case including degrees of freedom in the defect upon
a mild assumption on the commutativity of R and T in these variables. It was

further shown that besides S = ±1 also the Federbush model29 and the generalized

coupled Federbush models30 allow for R 6= 0 and T 6= 0. However, when treating
non-relativistic theories, the amplitutes depend only on the individual rapidities,
such that one can find non-trivial solutions with R 6= 0 and T 6= 0 even when the

bulk theory is not free31.

2.1.1 Multiple impurity systems

The most interest situation in impurity systems arises when instead of a single
one considers multiple defects, since that leads to the occurrence of resonance phe-
nomena and when the number of defects tends to infinity even to band structures.
Assuming that the distance between the defects is small in comparison to the length
of the wire one can easily construct the transmission and reflection amplitudes of
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the multiple defect system from the knowledge of the corresponding quantities in
the single defect system. For instance for two defects one obtains

Tαβ
i (θ) =

Tα
i (θ)T β

i (θ)

1 −Rβ
i (θ)R̃α

i (θ)
, Rαβ

i (θ) = Rα
i (θ) +

Rβ
i (θ)Tα

i (θ)T̃α
i (θ)

1 −Rβ
i (θ)R̃α

i (θ)
, (12)

T̃αβ
i (θ) =

T̃α
i (θ)T̃ β

i (θ)

1 −Rβ
i (θ)R̃α

i (θ)
, R̃αβ

i (θ) = R̃β
i (θ) +

Rα
i (θ)T β

i (θ)T̃ β
i (θ)

1 −Rβ
i (θ)R̃α

i (θ)
. (13)

These expressions allow for a direct intuitive understanding, for instance we note
that the term [1 − Rβ

i (θ)R̃α
i (θ)]−1 =

∑∞
n=1(R

β
i (θ)R̃α

i (θ))n simply results from the
infinite number of reflections which we have in-between the two defects. This is of
course well known from Fabry-Perot type devices of classical and quantum optics.
For the case T = T̃ , R = R̃ the expressions (12) and (13) coincide with the formulae

proposed in32. When absorbing the space dependent phase factor into the defect

matrices, the explicit example presented in27 for the free Fermion perturbed with
the energy operator agree almost for T = T̃ , R = R̃ with the general formulae (12).

They disagree in the sense that the equality of Rαβ
i (θ) and R̃αβ

i (θ) does not hold

for generic α, β as stated in27.
It is now straightforward to generalize the expressions for an arbitrary number

of defects, say n, in a recursive manner

T ~α
i (θ) =

Tα1...αk

i (θ)T
αk+1...αn

i (θ)

1 − R̃α1...αk

i (θ)R
αk+1...αn

i (θ)
, 1 < k < n , (14)

R~α
i (θ) = Rα1...αk

i (θ) +
R

αk+1...αn

i (θ)Tα1...αk

i (θ)T̃α1...αk

i (θ)

1 − R̃α1...αk

i (θ)R
αk+1...αn

i (θ)
, 1 < k < n . (15)

We encoded here the defect degrees of freedom into the vector ~α={α1, · · · , αn}.
Similar expressions also hold for T̃ ~α

i (θ) = T̃α1...αn

i (θ) and R̃~α
i (θ) = R̃α1...αn

i (θ).
Alternatively, we can define, in analogy to standard quantum mechanical meth-

ods (see e.g.33), a transmission matrix which takes the particle i from one side of
the defect of type α to the other

Mi
α(θ) =

(

Tα
i (θ)−1 −Rα

i (θ)Tα
i (θ)−1

−Rα
i (−θ)Tα

i (−θ)−1 Tα
i (−θ)−1

)

. (16)

Then alternatively to the recursive way (14) and (15), we can also compute the
multi-defect transmission and reflection amplitudes as

T ~α
i (θ) =

(

n
∏

k=1

Mi
αk

(θ)

)−1

11

, R~α
i (θ) = −

(

n
∏

k=1

Mi
αk

(θ)

)

12

(

n
∏

k=1

Mi
αk

(θ)

)−1

11

.

(17)
This formulation has the virtue that it is more suitable for numerical computations,
since it just involves matrix multiplications rather than recurrence operations. In
addition, it allows for an elegant analytical computation of the band structures for
n→ ∞, which we will however not comment upon any further.
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2.2 Constraints from potential scattering theory

As we argued above, in order to obtain a non-trivial conductance we are lead by
integrability to consider free theories, possibly with some exotic statistics. Trying
to be as close as possible to some realistic situation, i.e. electrons, we consider first

the free Fermion, which, with a line of defect, was first treated in34. Thereafter it

has also been considered in35,27 and36 from different points of view. In34,35,27

the defect line was taken to be of the form of the energy operator and in36 also a

perturbation in form of a single Fermion has been considered. In37 we treated a
much wider class of possible defects.

Let us consider the Lagrangian density for a complex free Fermion ψ with ℓ
defectsa

L = ψ̄(iγµ∂µ −m)ψ +

ℓ
∑

n=1

Dαn(ψ̄, ψ, ∂tψ̄, ∂tψ)δ(x − xn) . (18)

The defect is described here by the functions Dαn(ψ̄, ψ, ∂tψ̄, ∂tψ), which we assume
to be linear in the Fermi fields ψ̄,ψ and their time derivatives. We can now pro-
ceed in analogy to standard quantum mechanical potential scattering theory (see

also35,27,36) and construct the amplitudes by adequate matching conditions on the
field. We consider first a single defect at the origin which suffices, since multiple
defect amplitudes can be constructed from the single defect ones, according to the
arguments of the previous section. We decompose the fields of the bulk theory
as ψ(x) = Θ(x) ψ+(x) + Θ(−x) ψ−(x), with Θ(x) being the Heavyside unit step
function, and substitute this ansatz into the equations of motion. As a match-
ing condition we read off the factors of the delta function and hence obtain the
constraints

iγ1(ψ+(x) − ψ−(x))|x=0 =
∂D
∂ψ̄(x)

∣

∣

∣

∣

x=0

− ∂

∂t

[

∂D
∂(∂tψ̄(x))

]∣

∣

∣

∣

x=0

. (19)

We then use for the left (−) and right (+) parts of ψ the well-known Fourier
decomposition of the free field

ψf
j (x) =

∫

dθ√
4π

(

aj(θ)uj(θ)e
−ipj ·x + a†

̄
(θ)vj(θ)e

ipj ·x
)

, (20)

with the Weyl spinors

uj(θ) = −iγ5vj(θ) =

√

mj

2

(

e−θ/2

eθ/2

)

(21)

aWe use the conventions:

xµ = (x0, x1), pµ = (m cosh θ,m sinh θ), g00 = −g11 = ε01 = −ε10 = 1,

γ0 =

(

0 1
1 0

)

, γ1 =

(

0 1
−1 0

)

, γ5 = γ0γ1, ψα =

(

ψ
(1)
α

ψ
(2)
α

)

, ψ̄α = ψ†
α
γ0 .

We adopt relativistic units 1 = c = ~ = m ≈ e2137 as mostly used in the particle physics
context rather than atomic units 1 = e = ~ = m ≈ c/137 more natural in atomic physics.
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and substitute them into the constraint (19). Treating the equations obtained in this
manner componentwise, stripping off the integrals, one can bring them thereafter
into the form

aj,−(θ) = R
j
(θ)aj,−(−θ) + T

j
(θ)aj,+(θ) , (22)

which defines the reflection and transmission amplitudes in an obvious manner.
When parity invariance is broken, the corresponding amplitudes from the right to
the left do not have to be identical and we also have

aj,+(−θ) = T̃
j
(θ)aj,−(−θ) + R̃j(θ)aj,+(θ) . (23)

The creation and annihilation operators a†i (θ) and ai(θ) satisfy the usual fermionic

anti-commutation relations {ai(θ1), aj(θ2)} = 0, {ai(θ1), a
†
j(θ2)} = 2πδijδ(θ12). In

this way one may construct the R’s and T ’s for any concrete defect which is of
the generic form as described in (18). After the construction one may convince
oneself that the expressions found this way indeed satisfy the consistency equations
like unitarity (1), (2) and crossing (3), (4). Unfortunately the equations (1)-(4)
can not be employed for the construction, since they are not restrictive enough by
themselves to determine the R’s and T ’s. We consider now some concrete example:

2.2.1 Impurities of Luttinger liquid type D(ψ̄, ψ) = ψ̄(g1 + g2γ
0)ψ

Luttinger liquids38 are of great interest in condensed matter physics, which is one
of the motivations for our concrete choice of the defect D(ψ̄, ψ) = ψ̄(g1 + g2γ

0)ψ.
When taking the conformal limit of the defect one obtains an impurity which played

a role in this context, see e.g.39, after eliminating the bosonic number counting
operator. In the way outlined above, we compute the related transmission and
reflection amplitudes

Rj(θ, g1, g2,−y) = R̃j(θ, g1, g2, y) =
4i(g2 + g1 cosh θ)e2iym sinh θ

(4 + g2
1 − g2

2) sinh θ − 4i(g1 + g2 cosh θ)
,(24)

R̄(θ, g1, g2,−y) = R̃̄(θ, g1, g2, y) =
4i(g1 − g2 cosh θ)e−2iym sinh θ

(4 + g2
1 − g2

2) sinh θ − 4i(g1 − g2 cosh θ)
,(25)

Tj(θ, g1, g2) = T̃j(θ, g1, g2) =
(4 + g2

2 − g2
1) sinh θ

(4 + g2
1 − g2

2) sinh θ − 4i(g1 + g2 cosh θ)
, (26)

T̄(θ, g1, g2) = T̃̄(θ, g1, g2) =
(4 + g2

2 − g2
1) sinh θ

(4 + g2
1 − g2

2) sinh θ − 4i(g1 − g2 cosh θ)
. (27)

In the limit limg2→0 D(ψ̄, ψ) = g1ψ̄ψ, we recover the related results for the T/T̃ ’s

and R/R̃’s for the energy defect operator. For this type of defect we present |T |2
and |R|2 in figure 2 with varying parameters in order to illustrate some of the
characteristics of these functions.

Part (a) of figure 2 confirms the unitarity relation (1). Part (b) and (c) show the
typical resonances of a double defect, which become stretched out and pronounced
with respect to the energy when the distance becomes smaller and the coupling
constant increases, respectively. Part (d) exhibits a general feature, that is when
the number of defects is increased, for fixed distance between the outermost defects,
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the resonances become more and more dense in that region such that one may speak
of energy bands.

Figure 2. (a) Single defect with varying coupling constant. |T |2 and |R|2 correspond to curves
starting at 0 and 1 of the same line type, respectively. (b) Double defect with varying distance y .
(c) Double defect with varying effective coupling constant B = arcsin(−4g1/(4+ g21)). (d) Double
defect ≡ dotted line, eight defects ≡ solid line.

2.3 Laser fields interacting with quantum wires

Let us now consider a more complex situation in which a three dimensional laser
field hits the quantum wire polarized in such a way that it has a vector field com-

ponent along the wire. Since the work of Weyl40, one knows that matter may be
coupled to light by means of a local gauge transformation, which reflects itself in
the usual minimal coupling prescription, i.e. ∂µ → ∂µ − ieAµ, with Aµ being the
vector gauge potential. The free Fermions in the wire are then described by the
Lagrangian density

LA = ψ̄(iγµ∂µ −m+ eγµAµ)ψ . (28)

When the laser field is switched on, we can solve the equation of motion associated
to (28)

(iγµ∂µ −m+ eγµAµ)ψ = 0 (29)

Proceeding 6-th international workshop on CFT and IM (Chernogolovka, 2002) 8



by a Gordon-Volkov type solution41

ψA
j (x, t) = exp

[

ie

∫ x

dsA1(s, t)

]

ψf
j (x, t) = exp

[

ie

∫ t

dsA0(x, s)

]

ψf
j (x, t) . (30)

Using now a linearly polarized laser field along the direction of the wire, the vector
potential can typically be taken in the dipole approximation to be a superposition
of monochromatic light with frequency ω, i.e.

A(t) := A1(t) =
1

x

∫ t

0

dsA0(s) = −1

2

∫ t

0

dsE(s) = −E0

2

∫ t

0

dsf(s) cos(ωs) (31)

with f(t) being an arbitrary enveloping function equal to zero for t < 0 and t > τ ,
such that τ denotes the pulse length. In the following we will always take f(t) =
Θ(t)Θ(τ − t) , with Θ(x) being again the Heavyside unit step function. The second
equality in (31), A0(x, t) = xȦ(t), follows from the fact that we have to solve (30).

We want to comment on the validity of the dipole approximation in this context.
It consists usually in neglecting the spatial dependence of the laser field, which
is justified when xω < c = 1, where x is a representative scale of the problem
considered. In the context of atomic physics this is typically the Bohr radius. In the
problem investigated here, this approximation has to hold over the full spatial range
in which the Fermion follows the electric field. We can estimate this classically, in
which case the maximal amplitude is eE0/ω

2 and therefore the following constraint
has to hold

(

eE0

ω

)2

= 4Up < 1 , (32)

for the dipole approximation to be valid. Due to the fact that x is a function
of ω, we have now a lower bound on the frequency rather than an upper one as
is more common in the context of atomic physics. We have also introduced here
the ponderomotive energy Up for monochromatic light, that is the average kinetic
energy transferred from the laser field to the electron in the wire.

The solutions to the equations of motion of the free system and the one which
includes the laser field are then related by a factor similar to the gauge transfor-
mation from the length to the velocity gauge

ψA
j (x, t) = exp [ixeA(t)]ψf

j (x) . (33)

In an analogous fashion one may use the same minimal coupling procedure also to
couple in addition the laser field to the defect. One has to invoke the equation of
motion in order to carry this out. For convenience we assume now that the defect
is linear in the fields ψ̄ and ψ. The Lagrangian density for a complex free Fermion
ψ with ℓ defects Dα(ψ̄, ψ,Aµ) of type α at the position xn subjected to a laser field
then reads

LAD = LA +

ℓ
∑

n=1

Dαn(ψ̄, ψ,Aµ) δ(x− xn) . (34)

Considering for simplicity first the case of a single defect situated at x = 0, the
solution to the equation of motion resulting from (34) is taken to be of the form
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ψA
j (x, t) = Θ(x)ψA

j,+(x, t)+Θ(−x)ψA
j,−(x, t) , which means as before we distinguish

here by notation the solutions (33) on the left and right of the defect, ψA
j,−(x, t) and

ψA
j,+(x, t), respectively. Proceeding as before, the matching condition reads now

iγ1(ψA
j,+(x, t) − ψA

j,−(x, t))|x=0 =
∂DAD(ψ̄, ψ,Aµ)

∂ψ̄A
j (x, t)

∣

∣

∣

∣

∣

x=0

. (35)

It is clear, that in this case the transmission and reflection amplitudes will in
addition to θ and g also depend on the characteristic parameters of the laser field

T (θ, g, E0, ω, t) and R(θ, g, E0, ω, t) . (36)

It is clear that the laser field can be used to control the conductance. For instance
defects which have transmission amplitudes of the form as the solid line in figure 1
(c), can be used as optically controllable switching devices. We can now turn to the
central question which we address here, namely whether it is possible to generate
harmonics in quantum wires.

2.4 Analysis of the transmission amplitudes

In order to answer that question, we first have to study the spectrum of frequencies
which is filtered out by the defect while the laser pulse is non-zero. The Fourier
transforms of the reflection and transmission probabilities provide exactly this in-
formation

T (Ω, θ, E0, ω, τ) =
1

τ

∫ τ

0

dt|T (θ, E0, ω, t)|2 cos(Ωt), (37)

R(Ω, θ, E0, ω, τ) =
1

τ

∫ τ

0

dt|R(θ, E0, ω, t)|2 cos(Ωt). (38)

When parity is preserved for the reflection and transmission amplitudes, that is for
real defects with D∗ = D, we have |T |2 + |R|2 = 1, and it suffices to consider T in
the following.

2.4.1 Type I defects

Many features can be understood analytically. Taking the laser field in form of
monochromatic light in the dipole approximation (31), we may naturally assume
that the transmission probability for some particular defects can be expanded as

|TI(θ, Up, ω, t)|2 =

∞
∑

k=0

t2k(θ)(4Up)
k sin2k(ωt). (39)

We shall refer to defects which admit such an expansion as “type I defects”. Assum-
ing that the coefficients t2k(θ) become at most 1, we have to restrict our attention
to the regime 4Up < 1 in order for this expansion to be meaningful for all t. Note
that this is no further limitation, since it is precisely the same constraint as already
encountered for the validity of the dipole approximation (32). The functional de-
pendence of (39) will turn out to hold for various explicit defects considered below.
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Based on this equation, we compute for such type of defect

TI(Ω, θ, Up, ω, τ) =

∞
∑

k=0

(2k)!(Up)
k sin(τΩ)t2k(θ)

τΩ
∏k

l=1[l
2 − (Ω/2ω)2]

. (40)

It is clear from this expression that type I defects will preferably let even multiples
of the basic frequency ω pass, whose amplitudes will depend on the coefficients
t2k(θ). When we choose the pulse length to be integer cycles, i.e. τ = 2πn/ω for
n ∈ Z, the expression in (40) reduces even further. The values at even multiples of
the basic frequency are simply

TI(2nω, θ, Up) = (−1)n
∞
∑

k=0

t2k(θ) (Up)
k

(

2k
k − n

)

, (41)

which becomes independent of the pulse length τ . Notice also that the dependence
on E0 and ω occurs in the combination of the ponderomotive energy Up. Further
statements require the precise form of the coefficients t2k(θ) and can only be made
with regard to a more concrete form of the defect.

2.4.2 Type II defects

Clearly, not all defects are of the form (39) and we have to consider also expansions
of the type

|TII(θ, E0/e, ω, t)|2 =

∞
∑

k,p=0

tp2k(θ)
E2k+p

0

ω2k
cosp(ωt) sin2k(ωt). (42)

We shall refer to defects which admit such an expansion as “type II defects”. In
this case we obtain

TII(Ω, θ, E0/e, ω, τ) =
∞
∑

k,p=0

p
∑

l=0

(

p
l

)

Ω sin(τΩ)

(−1)l+1τω2+2k
E2k+2p

0

×











(2k + 2l)!t2p
2k(θ)

k+l
∏

q=0
[(2q)2 − (Ω

ω )2]

+
(2k + 2l)!t2p+1

2k (θ)E0

k+l+1
∏

q=1
[(2q − 1)2 − (Ω

ω )2]











.(43)

We observe from this expression that type II defects will filter out all multiples of
ω. For the pulse being once again of integer cycle length, this reduces to

TII(2nω, θ, Up, E0) =

∞
∑

k,p=0

p
∑

l=0

(−1)l+nt2p
2k(θ)

22l−2p
(Up)

k+p
E2p

0

(

p
l

)(

2k + 2l
k + l − n

)

(44)
and

TII((2n− 1)ω, θ, E0/e) =

∞
∑

k,p=0

p
∑

l=0

(−1)l+n+1 t
2p+1
2k (θ)

22l−2p+1
(Up)

k+p

×
(

p
l

)

(2k + 2l)!(2n− 1)E2p+1
0

(l + k − n+ 1)!(l + n+ k)!
, (45)
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which are again independent of τ . We observe that in this case we can not combine
the E0 and ω into a Up.

2.5 One particle approximation

In spite of the fact that we are dealing with a quantum field theory, it is known that
a one particle approximation to the Dirac equation is very useful and physically
sensible when the external forces vary only slowly on a scale of a few Compton

wavelengths, see e.g.42. We may therefore define the spinor wavefunctions

Ψj,u,θ(x, t) : = ψA
j (x, t)

∣

∣

∣
a†j(θ)

〉

√

2π2p0
j

=
e−i~pj ·~x
√

2πp0
j

uj(θ) (46)

Ψj,v,θ(x, t)
† : = ψA

j (x, t)†

∣

∣

∣a
†
j(θ)

〉

√

2π2p0
j

=
e−i~pj ·~x
√

2πp0
j

vj(θ)
† . (47)

With the help of these functions we obtain then for the defect system

ΨA
i,u,θ(x, t) : = ψA

i (x, t)

∣

∣

∣a
†
i,−(θ)

〉

√

2π2p0
i

= Θ(−x) [Ψi,u,θ(x, t) + Ψi,u,−θ(x, t)R
∗
i (θ)]

+Θ(x)T ∗
i
(θ)
[

Ψi,u,θ(x, t) + Ψi,u,−θ(x, t)R̃
∗
i
(−θ)

]

(48)

and the same function with u → v. Since this expression resembles a free wave,
it can not be normalized properly and we have to localize the wave in form of
a wave packet by multiplying with an additional function, g̃(p, t) in (20) and its
counterpart g(x, t) in (48), typically a Gaußian. Then for the function ΦA

i,u,θ(x, t) =

g(x, t)ΨA
i,u,θ(x, t), we can achieve that ‖Φ‖ = 1.

2.6 Harmonic spectra

We are now in the position to determine the emission spectrum for which we need
to compute the absolute value of the Fourier transform of the dipole moment

Xj,u,θ(Ω) =

∣

∣

∣

∣

∫ τ

0

dt
〈

ΦA
j,u,θ(x, t)

†xΦA
j,u,θ(x, t)

〉

exp iΩt

∣

∣

∣

∣

. (49)

We localize now the wave packet in a region much smaller than the classical estimate
for the maximal amplitude the electron will acquire when following the laser field.
We achieve this with a Gaußian g(x, t) = exp(−x2/∆), where ∆ ≪ eE0/ω

2.

2.7 An example: Impurity of energy operator type

As mentioned this type of defect, i.e. D(ψ̄, ψ) = gψ̄ψ(x) can be obtained in a limit
from the defect discussed in section 2.2.1. Coupling the vector potential minimally
to it yields

DAD(ψ̄, ψ,Aµ) = gψ̄(1 + e/mγµAµ)ψ , (50)

by invoking the equation of motion.
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2.7.1 Transmission amplitudes

We can now determine the reflection and transmission amplitudes as outlined above

Ri(θ, g, A/e, y) = R̃i(θ, g,−A/e,−y) = Rı̄(θ, g, A/e,−y) = R̃ı̄(θ, g,−A/e, y) =

[yȦ− cosh θ]e−2iy sinh θ

[1 − yȦ cosh θ] − i g
4 [ 4

g2 + 1 +A2 − y2Ȧ2] sinh θ
. (51)

We denoted the differentiation with respect to time by a dot. The transmission
amplitudes turn out to be

Ti(θ, g, A/e, y) = T̃i(θ, g,−A/e,−y) = Tı̄(θ, g,−A/e, y) = T̃ı̄(θ, g, A/e,−y) =

i
[

1 − y2Ȧ2 + (A− 2i
g )2
]

sinh θ

4
g [1 − yȦ cosh θ] − i[ 4

g2 + 1 +A2 − y2Ȧ2] sinh θ
. (52)

Locating the defect at y = 0, the derivative of A does not appear anymore explicitly
in (51) and (52), such that it is clear that this defect is of type I and admits an
expansion of the form (39). With the explicit expressions (51) and (52) at hand,
we can determine all the coefficients t2k(θ) in (39) analytically. For this purpose
let us first bring the transmission amplitude into the more symmetric form

|Ti(θ, g, A/e)|2 =
ã0(θ, g) + a2(θ, g)A

2 + a4(θ, g)A
4

a0(θ, g) + a2(θ, g)A2 + a4(θ, g)A4
, (53)

with

a0(θ, g) = 16g2 + (4 + g2)2 sinh2 θ, ã0(θ, g) = (g2 − 4)2 sinh2 θ, (54)

a2(θ, g) = 2g2(4 + g2) sinh2 θ, a4(θ, g) = g4 sinh2 θ. (55)

We can now expand |T (θ, g, A)|2 in powers of the field A(t) and identify the co-
efficients t2k(θ, g) in (39) thereafter. To achieve this we simply have to carry out
the series expansion of the denominator in (53). The latter admits the following
compact form

1

a0(θ, g) + a2(θ, g)A2 + a4(θ, g)A4
=

∞
∑

k=0

c2k(θ, g)A2k, (56)

with c0(θ, g) = 1/a0(θ, g) and

c2k(θ, g) = −c2k−2(θ, g)a2(θ, g) + c2k−4(θ, g)a4(θ, g)

a0(θ, g)
, (57)

for k > 0. We understand here that all coefficients c2k with k < 0 are vanishing,
such that from this formula all the coefficients c2k may be computed recursively.
Hence, by comparing with the series expansion (39), we find the following closed
formula for the coefficients t2k(θ, g)

t2k(θ, g) = [ã0(θ, g) − a0(θ, g)]c2k(θ, g) k > 0. (58)
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The first coefficients then simply read

t0(θ, g) =
ã0(θ, g)

a0(θ, g)
= |T (θ, E0 = 0)|2, (59)

t2(θ, g) =
a2(θ, g)

a0(θ, g)
[1 − t0(θ, g)] =

8g4(4 + g2) sinh2 2θ

(16g2 + (4 + g2)2 sinh2 θ)2
, (60)

t4(θ, g) =

[

a4(θ, g)

a2(θ, g)
− a2(θ, g)

a0(θ, g)

]

t2(θ, g), (61)

and so on. It is now clear how to obtain also the higher terms analytically, but
since they are rather cumbersome we do not report them here.

2.7.2 Transmission amplitudes

Having computed the coefficients t2k, we can evaluate the series (40) and (41) in
principle to any desired order. For some concrete values of the laser and defect
parameters the results of our evaluations are depicted in figure 3.

Figure 3. Fourier transform of the transmission probability for a single (a) and double (b) defect
with E0 = 2.0, g = 3.5, θ = 1.2, ω = 0.2. Harmonic emission spectrum for a single (c) and double
(d) defect with E0 = 2.0, g = 3.5, θ = 1.2, ω = 0.2, ∆ = 6.

The main observation from part (a) is that the defect acts as a filter selecting higher
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harmonics of even order of the laser frequency. Furthermore, from the zoom of the
peak regions, we see that there are satellite peaks appearing near the main harmon-
ics. They reduce their intensity when τ is increased, such that with longer pulse
length the harmonics become more and more pronounced. We also investigated
that for different frequencies ω the general structure will not change. Increasing
the field amplitude E0, simply lifts up the whole plot without altering very much
its overall structure. We support these findings in two alternative ways, either by
computing directly (37) numerically or, more instructively, by evaluating the sums
(40) and (41).

Part (b) shows the analysis for a double defect system with one defect situated
at x = 0 and the other at x = y. The double defect amplitudes are computed
directly from (12) and (13) with the expression for the single defect (51) and (52).
Since now both A and Ȧ appear explicitly in the formulae for the R’s and T ’s, it
is clear that the expansion of the double defect can not be of type I, but it turns
out to be of type II, i.e. of the form (42). Hence, we will now expect that besides
the even also the odd multiples of ω will be filtered out, which is indeed visible in
part (b) for various distances. Here we have only plotted a continuous spectrum for
y = 0.5, whereas for reasons of clarity, we only drew the enveloping function which
connects the maxima of the harmonics for the remaining distances. We observe
that now not only odd multiples of the frequency emerge in addition to the ones in
(a) as harmonics, but also that we obtain much higher harmonics and the cut-off is
shifted further to the ultraviolet. Furthermore, we observe a regular pattern in the
enveloping function, which appears to be independent of y. Similar patterns were
observed before in the literature, as for instance in the context of atomic physics

described by a Klein-Gordon formalism (see figure 2 in43).
Coming now to the main point of our analysis we would like to see how this

structure is reflected in the harmonic spectra. The result of the evaluation of (49)
is depicted in figure 3 parts (c) and (d). We observe a very similar spectrum as
we have already computed for the Fourier transform of the transmission amplitude,
which is not entirely surprising with regard to the expression (49). The cut-off
frequencies are essentially identical. From the comparison between X and the
enveloping function for T we deduce, that the term involving the transmission
amplitude clearly dominates the spectrum.

The important general deduction from these computations is of course that
harmonics of higher order do emerge in the emission spectrum of impurity systems,
such that harmonics can be generated from solid state devices.

2.7.3 Relativistic versus non-relativistic regime

In the previous sections we have been working in an intensity regime which is close to

the damage threshold of a solid, according to the experimental observations in16.
This allowed us to see the maximum effect with regard to harmonic generation
which at present might be visible from experiments. However, it is also interesting
to investigate situations which are not experimentally feasible at present and of
course lower intensity regimes.

In order to judge in which regime we are working and whether there are rel-
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ativistic effects, let us carry out various limits. First of all we recall a standard
estimation according to which the relativistic kinetic energy is close to the classical
one when one is dealing with velocities v2 ≪ 3/4c2. This is the same as saying
that the kinetic energy is much smaller than the rest mass Ekin ≪ m0c

2. Making
now a rough estimation for the system under consideration, we assume that the
total kinetic energy is the one obtained from the laser field, i.e. the ponderomotive
energy Up. We also ignore for this estimation any sophisticated corrections, such
as possible Doppler shifts in the frequency, etc. Then the non-relativistic regime is
characterized by the condition Up ≪ 1.

Based on our previous observation that T and X exhibit a very similar be-
haviour, it will be sufficient here to study only the T in the different regimes,
which will be easier than an investigation of the full emission spectrum (49). From
our analytic expression (41), we see that for a type I defect the quantity TI becomes
a function of Up, such that the regime will be the same when we rescale simultane-
ously E0 and ω. Accordingly we evaluate numerically the Fourier transform (11), or
equivalently compare against our analytical expression (41), and depict our results
in figure 4a.

Figure 4. Absolute value squared of the Fourier transform of the transmission probability. (a)
Single defect for various values of Up with g = 3.5, θ = 1.2. (b) Double defect for varying values
of E0 with g = 3.5, θ = 1.2, ω = 0.2.

We observe that when passing more and more towards the relativistic regime the
cut-off is increased. The other feature one recognizes is that the modulating struc-
ture in the enveloping function of the harmonics becomes more pronounced. One
should also note, in regard to (32), that the multipole structures might become
more and more important in the relativistic regime.

Let us now perform a similar computation for the double defect. From the
expressions (44) and (45) we see that now TII is not just a simple function of Up

and therefore even being in the same regime the behaviour will be different when E0

and ω are rescaled. We alter in that case the regimes by rescaling E0 and keeping
the frequency fixed. Our results are depicted in figure 4b.

Similar as for the single defect we see that the cut-off is increased and the
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modulating structure in the enveloping function becomes more emphasized when
we move towards the relativistic regime. In addition we note that the difference
between the even and odd harmonic becomes larger with increasing Up. This effect
is more extreme for the low order harmonics.

As a general observation we state that there are not any effects which seem to
be special to the relativistic regime, but the transition to that regime seems to be
rather smooth.

We will now consider a quite different application, which allows, however, to use
integrability not only in a constraining but in a completely constructive manner.

3 Fractional quantum Hall systems

The quantum44 and in particular the fractional11 quantum Hall effect have at-

tracted an enormous amount of attention both from theorist45 and experimental-

ists (for some very recent experiments see e.g.46). The key observation is that when
subjecting an electron gas confined to two space dimensions to a strong uniform
magnetic field, the transverse (Hall) conductance takes on preferably certain char-
acteristic values G = e2/hν, whereas the longitudinal conductance vanishes at these

plateaux in complete analogy to the classical Hall effect47. The filling fractions ν
are distinct universal, in the sense that they are independent of the geometry or
type of the material, rational numbers, which can be determined experimentally
to an extremely high precision. Many, but not all, of the experimentally observed

filling fractions are part of Jain’s famous sequence (see10 and references therein)

ν =
m

mp± 1
m, p/2 = 1, 2, 3, . . . (62)

which results as a theoretical prediction from a composite Fermion theory.
In the following we will show that these universal numbers also quantize the con-

ductance of quantum wires when described by minimal affine Toda field theories12.

3.1 Conductance in the high temperature regime

There exist two established theoretical descriptions to compute the conductance.
The first is based on a linear response theory in which one essentially needs the
Fourier transform of the current-current two-point correlation function. This so-

called Kubo formula3,4 has been adopted to a situation with a boundary48. How-
ever, since this set-up only captures effects coming from the constriction of the wire

a generalization which includes defects was needed, which we proposed in37 as

Gα(1/T ) = − lim
ω→0

1

2ωπ2

∫ ∞

−∞
dt eiωt 〈J(t)Zα J(0)〉T,m . (63)

Here the defect operator Zα enters in-between the two local currents J within
the temperature T and mass m dependent correlation function. The Matsubara
frequency is denoted by ω.

The other possibility of determining the conductance is a generalization of the
Landauer-Büttinger transport theory picture. Within this framework a proposal
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for the conductance through a quantum wire with a defect (impurity) has been

made in49,50

Gα(1/T ) =
∑

i

lim
(µl

i
−µr

i
)→0

qi
2

∫ ∞

−∞
dθ
[

ρr
i (θ, T, µ

l
i)|Tα

i (θ) |2 − ρr
i (θ, T, µ

r
i )|T̃α

i (θ) |2
]

,

(64)

which we only modify to accommodate parity breaking37. This means we allow the
transmission amplitudes for a particle of type i with charge qi passing with rapidity
θ through a defect of type α from the left Tα

i (θ) and right T̃α
i (θ) to be different.

The density distribution function ρr
i (θ, T, µi) depends on the temperature T , and

the potential at the left µl
i and right µr

i constriction of the wire.
In both descriptions (63) and (64) one can employ non-perturbative methods

of integrable models, leading in (63) to an exact expression for the current-current

correlation functions 〈. . .〉T,m from a form factor6,7,8 expansion and in (64) for the

density distributions ρi from a thermodynamic Bethe ansatz9 analysis.
Here we will not consider (63) and only present a more detailed study of (64)

when impurities are absent and parity is preserved. In order to compute G in a one
dimensional quantum wire, we simply have to determine the difference of the static
charge distribution at the left and right constriction of the wire, which we assume to
be at the potentials µl

i and µr
i , respectively. Then, to obtain the direct current Ii for

each particle of type i with charge qi, we have to integrate the density distribution
functions ρr

i (θ, T, µi) of occupied states over the full range of the rapidities θ and
the conductance simply reads

G(1/T ) =
∑

i

lim
∆µi→0

1

∆µi
Ii(1/T,∆µi = µl

i − µr
i ) (65)

=
∑

i

lim
∆µi→0

qi
2∆µi

∞
∫

−∞

dθ
[

ρr
i (θ, T, µ

l
i) − ρr

i (θ, T, µ
l
i)
]

. (66)

Hence, the main task in this approach is to determine the density distribution
functions ρr

i (θ, T, µi) of occupied states. It is remarkable that in the context of
integrable models, despite the fact that these functions are neither Fermi-Dirac
nor Bose-Einstein, there exist approaches in which they can be computed non-

perturbatively, i.e. the thermodynamic Bethe ansatz9.
We briefly recall how this works. The central equations of the TBA relate the

total density of available states ρi(θ, r) for particles of type i with mass mi as
a function of the inverse temperature r = 1/T to the density of occupied states
ρr

i (θ, r)

ρi(θ, r) =
mi

2π
cosh θ +

∑

j

[ϕij ∗ ρr
j ](θ) . (67)

By (f ∗ g) (θ) := 1/(2π)
∫

dθ′f(θ − θ′)g(θ′) we denote as usual the convolution of
two functions. There are only two inputs into the entire TBA analysis: first the
dynamical interaction, which enters via the logarithmic derivative of the scattering
matrix ϕij(θ) = −id lnSij(θ)/dθ and an assumption on the statistical interaction
gij amongst the particles i and j on which we comment further below. For the
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moment we chose this interaction to be of fermionic type. The mutual ratio of
the two types of densities serves as the definition of the so-called pseudo-energies
εi(θ, r)

ρr
i (θ, r)

ρi(θ, r)
=

e−εi(θ,r)

1 + e−εi(θ,r)
, (68)

which have to be positive and real. At thermodynamic equilibrium they can be
computed from the non-linear integral equations

rmi cosh θ = εi(θ, r, µi) + rµi +
∑

j

[ϕij ∗ ln(1 + e−εj )](θ) , (69)

where r = m/T , ml → ml/m, µi → µi/m, with m being the mass of the lightest

particle in the model and chemical potential µi < 1. As pointed out already in9

(here just with the small modification of a chemical potential), the comparison
between (69) and (67) leads to the useful relation

ρi(θ, r, µi) =
1

2π

(

dεi(θ, r, µi)

dr
+ µi

)

∼ 1

2πr
ǫ(θ)

dεi(θ, r, µi)

dθ
. (70)

Here ǫ(θ) = Θ(θ) − Θ(−θ) is the unit step function, i.e. ǫ(θ) = 1 for θ > 0 and
ǫ(θ) = −1 for θ < 0. In equation (68), we assume that in the large rapidity regime
the density ρr

i (θ, r, µi) is dominated by the last expression in (70) and in the small
rapidity regime by the Fermi distribution function. Therefore, from (68) follows

ρr
i (θ, r, µi) =

e−εi(θ,r,µi)

1 + e−εi(θ,r,µi)
ρi(θ, r, µi) (71)

∼ 1

2πr
ǫ(θ)

d

dθ
ln [1 + exp(−εi(θ, r, µi))] . (72)

Using this expression in equation (66), we can approximate the direct current in
the ultraviolet by

lim
r→0

Ii(r,∆µi) ∼
qi

4πr

∞
∫

−∞

dθ ln

[

1 + exp(−εi(θ, r, µ
l
i))

1 + exp(−εi(θ, r, µr
i ))

]

dǫ(θ)

dθ
, (73)

after a partial integration. Taking now the potentials at the end of the wire to be
µr

i = −µl
i = µi/2 we carry out the limit ∆µi → 0 in (66) with the help l’Hospital’s

rule and the conductance becomes

lim
r→0

Gi(r) ∼
qi

2πr

∞
∫

−∞

dθ
1

1 + exp[εi(θ, r, 0)]

dεi(θ, r, µi/2)

dµi

∣

∣

∣

∣

µi=0

dǫ(θ)

dθ
. (74)

Noting that dǫ(θ)/dθ = 2δ(θ), we obtain

lim
r→0

Gi(r) ∼
qi
πr

1

1 + exp εi(0, r, 0)

dεi(0, r, µi/2)

dµi

∣

∣

∣

∣

µi=0

. (75)

The derivative dεi(0, r, µi/2)/dµi can be obtained by solving

dεi(0, r, µi/2)

dµk
= − r

2
δik +

∑

j

Nij
1

1 + exp εj(0, r, µi/2)]

dεj(0, r, µj/2)

dµk
, (76)
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which results from performing a constant TBA analysis on the µk-derivative of (69)

in the spirit of9. At this point only the asymptotic phases of the scattering matrix
enter via

Nij =
1

2πi
lim

θ→∞
[ln[Sij(−θ)/Sij(θ)]] . (77)

In principle we have now all quantities needed to compute the conductance, but
to solve (76) for the derivatives of the pseudo-energies is somewhat cumbersome,

see37,51 for such a computation. Nonetheless, we can elaborate more on equation
(76) and simplify the procedure further. For this purpose we introduce the quantity

Yij :=
1

r(1 + eεi)

dεi

dµj
, (78)

such that we can re-write equation (76) equivalently as

MijYjk =
δik
2

with Mij := Nij − (1 + eεi)δij (79)

where the pseudoenergies satisfy the constant TBA equations

e−εi =
∏

j

(1 + e−εj )Nij . (80)

Returning now to dimensional variables, i.e. replacing 1/2π → e2/h, the conduc-
tance at high temperature in terms of the filling fraction ν then simply results
to

G(0) =
e2

h
ν with ν =

1

2

∑

i,j

qi(M
−1)ij . (81)

This means we have reduced the entire problem to compute filling fractions simply
to the task of finding and inverting the matrix M . This is done in two steps:
First from the asymptotic phases of the scattering matrix we compute Nij and
subsequently we solve the constant TBA equations (80). Then it is a simple matter
of inverting the matrix (79) and performing the sums in (81).

In the context of the fractional quantum Hall effect one encounters very often
particles which obey some exotic (anyonic) statistics. So far we have assumed our
particles to obey fermionic type statistics as this choice is most natural for the

investigated theories9. However, one can easily implement more general statistics

by adding a matrix gij to the N -matrix52.
The formula (81) reminds of course on the well-known expressions for the con-

ductance as may be found for instance in53,54. In that context it was found53,55

that Jain’s sequence (62) can be obtained simply from the (m×m)-matrix

Mij = p± δij . (82)

For this we have to take qi = 2 ∀ i in our expression (81). We will now demonstrate
that the sequence (62) can also be obtained in a more surprising way from fairly
complicated matrices, even with non-rational entries, which result directly in the
way indicated above, namely from a TBA analysis of minimal affine Toda field
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theories12. Each Toda theory is associated to a Lie algebra g of rank ℓ and it is

well known56 that in that case N is an (ℓ× ℓ)-matrix which is of the general form

Nij = δij − 2(K−1
g

)ij , (83)

where Kg is the Cartan matrix related to g (see e.g. 57). The solutions to the

constant TBA equations are also known58,56 for most cases. In the ultraviolet
limit these theories possess Virasoro central charge c = 2ℓ/(H + 2), with H being
the Coxeter number of the Lie algebra g.

3.2 Fractional filling fractions from minimal affine Toda field theory

Here we only reproduce the most important and stable subsequence of Jain’s hier-
archy, that is (62) for p = 2. Let us start with some concrete examples to illustrate
the working of our formulae. The first member of this series, that is filling fraction

ν = 1/3 is one of the best studied examples11,45,59 of the fractional quantum Hall
effect. We show now that this particular filling fraction results in the ultraviolet
limit from an A3-affine Toda field theory. Specializing the general expression (83)
to the A3-case, the solutions to the constant TBA equations (80) are simply

eε1 = eε3 = 2, eε2 = 3 . (84)

Then, the inverse of the M -matrix

Mij = δij − 2(K−1
A3

)ij − δij(1 + eεi) (85)

is computed to

M−1 =
1

36





11 −2 −1
−2 8 −2
−1 −2 11



 . (86)

From the fact that the Aℓ-minimal affine Toda field theories can also be viewed
as complex sine-Gordon models60, we know61 that the charges in this theory are
q1 = q3 = 1, q2 = 2, such that (81) yields

νA3
= 1/3 . (87)

This is not entirely surprising as it is known54 that the fractional quantum Hall
effect with this filling fraction can be described successfully in terms of a c = 1
conformal field theory (CFT), as in the case at hand. The next example, i.e. A5-
minimal affine Toda field theory, yields a less expected answer, even more since
the M -matrix contains non-rational entries. With (83) for A5 the solutions to the

constant TBA equations are58,56

eε1 = eε5 = 1 +
√

2, eε2 = eε4 = 2 + 2
√

2, eε3 = 3 + 2
√

2 . (88)

Assembling this into the M -matrix, it is clear that it will contain non-rational
entries. Evidently this matrix is not of the form (82) and certainly falls out of
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the classification scheme based on integral lattices62. Nonetheless, it will lead to a
distinct rational value for ν. We compute the inverse of M to

M−1 =























(

35
4 − 6

√
2
)

(

31
2
√

2
− 11

) (

7−5
√

2
4

) (

6 − 17
2
√

2

)

(

3
√

2 − 17
4

)

(

31
2
√

2
− 11

) (

15 − 21√
2

) (

7
√

2−10
4

)

(

6
√

2 − 17
2

)

(

6 − 17
2
√

2

)

(

7−5
√

2
4

) (

7
√

2−10
4

) (

9
4 − 3√

2

) (

7
√

2−10
4

) (

7−5
√

2
4

)

(

6 − 17
2
√

2

)

(

6
√

2 − 17
2

)

(

7
√

2−10
4

) (

15 − 21√
2

) (

31
2
√

2
− 11

)

(

3
√

2 − 17
4

)

(

6 − 17
2
√

2

) (

7−5
√

2
4

) (

31
2
√

2
− 11

)

(

35
4 − 6

√
2
)























. (89)

Remarkably when taking into account that61 q1 = q5 = 1, q2 = q4 = 2, q3 = 3, we
obtain by evaluating (81) for the matrix (89) the simple ratio

νA5
= 3/8 . (90)

We will now turn to the generic case. Taking the general solutions of the constant

TBA equations into account58,56 and using a generic expression for the inverse
of the Cartan matrix K−1

Aℓ
= min(i, j) − ij/(ℓ + 1) in (83), the M-matrix for an

A2ℓ+1-minimal affine Toda field theory can be written generically as

Mij =
ij

ℓ+ 1
− 2 min(i, j) − δij

sin
(

iπ
2ℓ+4

)

sin
(

(i+2)π
2ℓ+4

)

sin2
(

π
2ℓ+4

) . (91)

As already indicated by the previous example this matrix is not of the form (82)

and does not fit into the classification scheme proposed in62. According to61 we
have the charges

qi = q2ℓ+2−i and qi = i for i ≤ ℓ+ 1 . (92)

As can be guessed from (89), it is not evident how to express the inverse in terms
of a simple closed expression. We can, however, invert (91) case-by-case up to very
high rank and we obtain from (81) together with (92) the sequence

νA2ℓ+1
=

ℓ+ 1

2ℓ+ 4
. (93)

Taking now ℓ = 2m− 1, we obtain as a subsequence of this the most stable part of
Jain’s sequence (62) with p = 2

νA4m−1
=

m

2m+ 1
. (94)

In summary: The conductance of a quantum wire which is described by a massive
A2ℓ+1-minimal affine Toda field theory possesses in the high temperature regime,
in which the model turns into a conformal field theory with Virasoro central c =
(2ℓ + 1)/(ℓ + 2), a filling fraction equal to (93). In particular for ℓ = 2m − 1, we
obtain the Jain sequence (94).

In order to illustrate the main idea we just presented here the most stable of

the Jain sequence. To see how to obtain other sequences we refer the reader to2.

Proceeding 6-th international workshop on CFT and IM (Chernogolovka, 2002) 22



4 Conclusions

We have presented two concrete applications in which non-perturbative methods
developed in the context of integrable quantum field theories can be used to evaluate
physical quantities. We predict the generation of harmonic spectra from solid state
devices and show that filling fractions occurring in fractional quantum Hall systems
can be obtained from minimal affine Toda field theories.
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