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SUMMARY 

Numerical techniques are suggested in this paper, in order to improve the 

computational efficiency of the Spectral Boundary Integral Method, initiated by 

Clamond & Grue [D. Clamond and J. Grue. A fast method for fully nonlinear 

water-wave computations. J. Fluid Mech. 2001; 447: 337-355] for simulating 

nonlinear water waves. This method involves dealing with the high order 

convolutions by using Fourier Transform or Inverse Fourier Transform and evaluating 

the integrals with weakly singular integrands. A de-singularity technique is proposed 

here to help efficiently evaluating the integrals with weak singularity. An anti-aliasing 

technique is developed in this paper to overcome the aliasing problem associated with 

Fourier Transform or Inverse Fourier Transform with a limited resolution. This paper 

also presents a technique for determining a critical value of the free surface, under 

which the integrals can be neglected. Numerical tests are carried out on the numerical 

techniques and on the improved method equipped with the techniques. The tests will 

demonstrate that the improved method can significantly accelerate the computation, in 

particular when waves are strongly nonlinear. 

 

KEYWORDS: nonlinear water waves; boundary integral method; de-singularity 

technique; anti-aliasing technique; spectral method 

 

1. INTRODUCTION 

For centuries, the gravity water wave problems have been studied extensively. In 

order to describe and solve the problems, various approaches have been introduced. 

The potential wave theory, which assumes the fluid is inviscid and irrotational, has 

been widely adopted in the studies of this subject. The early contributions came from 

pioneer researchers and their linear theories, such as Airy [5], Lamb [6], Lighthill [7] 

and so on. The Stokes wave theory [8] was another milestone to the wave theories. 

The equations derived by Boussinesq [9], and Korteweg & DE Vries [10] initiated the 

studies on waves in shallow water. In 1960s, when Benjamin & Feir [11] published 

their astonishing discovery of the existence of instability in a perturbed uniform wave 

train, nonlinear waves began to draw extensive attentions from researchers such as 

Benney & Roskes [12], Chu & Mei [13], Davey & Stewartson [14], Hasimoto & Ono 

[15], Dysthe [16] and so on. Besides, the impressive work of the derivation of the 

mode coupling equation by Zakharov [17], and his nonlinear Schrödinger equation, 
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opened another door for studying nonlinear water waves. 

Fully nonlinear analysis did not start until the emerging of advanced computing 

technologies. The Boundary Element Method (BEM) was first introduced by 

Longuet-Higgins & Cokelet [18], who started a new era to model the fully nonlinear 

waves numerically. It was successfully applied to simulate two-dimensional (2D) 

overturning waves. The algorithm of BEM was later improved by Grilli et al. [19], 

Dold [20] and many others. Meanwhile, Wu & Eatock-Taylor [22, 23] proposed the 

Finite Element Method (FEM) to study the interaction between water waves and 

structures. This method was later extended to 3D cases by Ma [24] and Ma et al. [25, 

26]. More recently, Yan & Ma [28, 29] and Ma & Yan [27, 30] introduced a new mesh 

strategy and proposed the Quasi Arbitrary Lagrangian-Eulerian Finite Element 

Method (QALE-FEM). The results obtained by using this method for 2D and 3D 

overturning and other strong nonlinear waves are impressive. On the other hand, 

Dommermuth & Yue [31] developed a tool, known as the Higher-Order Spectral 

Method (HOS), which was able to model waves effectively with the help of Fast 

Fourier Transform (FFT). However, this method was built on the assumption that the 

Taylor expansion of the velocity potential at the free surface was convergent. Due to 

this, the method does not work well when the waves are quite steep [31]. Nicholls [32] 

proposed a numerical model called Spectral Continuation Method to study the 

traveling water waves. In this method, the Dirichlet-Neumann operator was 

approximated by an assumed analytic function of the free surface elevation and was 

expanded into Taylor series. Due to the fact that the evaluation of the higher order 

terms is highly recursive and impractical, they chose to only use the 5th order in 

practice. As a consequence, this method is incapable to capture the higher order 

nonlinearities. Clamond & Grue [1] proposed a novel method based on a boundary 

integral method and FFT. Fructus et al. [4] made one step further extending this 

method to 3D cases. The method has been summarized by Grue & Fructus [40]. In 

this method, the Neumann operator was introduced and expressed in terms of the free 

surface and the velocity potential. The kinematic and dynamic boundary conditions 

were reformulated into the skew-symmetric form after applying the Fourier transform. 

The free surface and velocity potential are updated through integrating the equations 

with respect to time, which requires the velocity on the free surface. The velocity on 

the free surface is decomposed into convolution parts (to 3rd order in [4]) and 

integration parts. Convolution parts are evaluated by FFT, and the integration parts 

have kernels decaying quickly along the distance between the source and field points 

but their integrands are weakly singular. The property of the kernels enables the local 

integration to be estimated within a limited range (e.g., two characteristic wave 

lengths, say 𝑋 − 𝐿0 to 𝑋 + 𝐿0), instead of (−∞, ∞). Even though the integration 

range is carefully selected, integration parts still remain as the most time consuming 

parts in the whole numerical scheme. Furthermore, Grue [3] brought the formulation 

of the boundary integrals to convolutions up to the 7th order. With this formulation, 

the most expensive integration parts were neglected, which leaded to a very fast 

solution for the velocity on the free surface. Obviously, one can only do so for 

moderate steep waves. Based on the literature, the following issues need to be 
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addressed to make the method more robust and efficient:  

a) Weak singularity in the integrals requires to be dealt with carefully. Fructus et 

al. [4] have proposed a method for this. They suggested that the weak 

singularity was eliminated by evaluating the integrals at a shifted point 𝑿 +

1

2
∆𝑿, rather than at the singular point. This method was found to give good 

results when the grids used are sufficiently fine. However, fine grids require 

relatively long computational time. Ideally, the similar results can be obtained 

by using relatively coarse grids.   

b) Though the solutions for removing aliasing problems involved in the 

convolutions up to the 4th order have been proposed by Fructus et al. [4], it is 

found that the method did not work well for the convolutions of 5th or higher 

order. However, the technique of removing aliasing problems for higher-order 

convolutions was not proposed yet.  

c) When the boundary integrals are evaluated with the convolutions up to the 7th 

order and the integration parts are neglected as suggested by Grue [3], one 

needs to know the critical value of the free surface gradient, under which the 

approach with neglecting integration parts can give sufficiently accurate 

results but cannot do so beyond this. The critical free surface gradient deserves 

a study which has not been carried out yet.  

 

This paper will present the numerical techniques to address the above issues. With 

these technique, the method described in [1-4] becomes more computational efficient 

and more robust. For convenience, the method described in [1-4] is named as Spectral 

Boundary Integral Method in this paper. 

2. MATHEMATICAL FORMULATIONS 

2.1. The prognostic equation 
The fully nonlinear potential theory requires the kinematic and dynamic boundary 

conditions at the free surface to be satisfied. In the dimensionless form [31], they are 

 
𝜕𝜂

𝜕𝑇
=

𝜕𝜙

𝜕𝑍
− ∇𝜙 ∙ ∇𝜂 (1) 

 
𝜕𝜙

𝜕𝑇
+ 𝜂 +

1

2
(∇𝜙 ∙ ∇𝜙 +

𝜕𝜙

𝜕𝑍

2

) + 𝑝 = 0 (2) 

where ∇=
𝜕

𝜕𝑿
=

𝜕

𝜕𝑋
𝑖 +

𝜕

𝜕𝑌
𝑗 is the horizontal gradient operator, and 𝜂 is the elevation 

of the free surface, 𝜙 is the velocity potential, 𝑝 is the pressure on the free surface 

and 𝑝 = 0 if it is not specified. Among the variables in the equations above, 𝜂, 𝑿 

and 𝑍  have been non-dimensionalized by multiplying 𝐾0 , 𝜙  by multiplying 

√𝐾0
3/𝑔 , 𝑝  by multiplying 𝐾0/(𝜌𝑔) , and 𝑇  by multiplying Ω0 . 𝐾0  is the 

characteristic wave number, Ω0 the corresponding circular frequency (Ω0 = √𝑔𝐾0), 
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𝜌 the density of the fluid and 𝑔 the gravity acceleration. The wave number of the 

most energetic component in the spectrum at the beginning of the simulation is 

chosen as the characteristic wave number 𝐾0. After introducing the new variable in 

Neumann form representing the vertical velocity, 𝑉 =
𝜕𝜙

𝜕𝑛
√1 + |∇𝜂|2, where 𝑛 is 

the normal vector of the free surface, Equation (1) and (2) become 

 𝜕𝜂

𝜕𝑇
− 𝑉 = 0 (3) 

 
𝜕�̃�

𝜕𝑇
+ 𝜂 +

1

2
(|∇�̃�|

2
−

(𝑉 + ∇𝜂 ∙ ∇�̃�)
2

1 + |∇𝜂|2
) + 𝑝 = 0 (4) 

where �̃� denotes the velocity potential on the free surface �̃�(𝑿, 𝑇) = 𝜙(𝑿, 𝑍 =

𝜂(𝑿, 𝑇), 𝑇). One should note that derivatives of �̃� in Equation (3) & (4) are different 

from these of 𝜙 in Equations (1) & (2). They satisfy the relation 

 ∇�̃� = (∇𝜙)|𝑍=𝜂 + (
𝜕𝜙

𝜕𝑍
)|

𝑍=𝜂
∇𝜂 (5) 

 
𝜕�̃�

𝜕𝑇
= (

𝜕𝜙

𝜕𝑇
)|

𝑍=𝜂
+ (

𝜕𝜙

𝜕𝑍
)|

𝑍=𝜂

𝜕𝜂

𝜕𝑇
 (6) 

Following [4], the Fourier transform and the inverse Fourier transform are defined 

as (take the velocity potential on the free surface for example) 

 

�̂�(𝑲, 𝑇) = 𝐹{�̃�} = ∫ �̃�(𝑿, 𝑇)𝑒−𝑖𝑲∙𝑿𝑑𝑿
𝑆0

 

�̃�(𝑿, 𝑇) = 𝐹−1{�̂�} =
1

4𝜋2
∫ �̂�(𝑲, 𝑇)𝑒𝑖𝑲∙𝑿𝑑𝑲

𝑆0

 

(7) 

where 𝑲 is the wave number and 𝑆0 is the projection of the whole free surface on 

the horizontal plane. After applying Fourier transform, Equations (3) & (4) lead to the 

following skew-symmetric prognostic equation 

 
𝜕�⃗⃗⃗�

𝜕𝑇
+ 𝐴�⃗⃗⃗� + �⃗⃗� = �⃗⃗⃗� (8) 

where 

 

�⃗⃗⃗� = (
𝐾𝐹{𝜂}

𝐾Ω𝐹{�̃�}
), 𝐴 = [

0 −Ω
Ω 0

], �⃗⃗� = (
0

𝐾Ω𝐹{𝑝}), �⃗⃗⃗� =

(
𝐾𝐹{𝐺1}

𝐾Ω𝐹{𝐺2}
) 

𝐹{𝐺1} = 𝐹{𝑉} − 𝐾𝐹{�̃�} 

𝐹{𝐺2} = 𝐹 {
1

2
[
(𝑉 + ∇𝜂 ∙ ∇�̃�)

2

1 + |∇𝜂|2
− |∇�̃�|

2
]} 

(9) 
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and 𝛺 = √𝐾, 𝐾 = |𝑲|. The solution to Equation (8) is given as 

 �⃗⃗⃗�(𝑇) = 𝑒−𝐴(𝑇−𝑇0) ∫ 𝑒𝐴(𝑇−𝑇0)(�⃗⃗⃗� − �⃗⃗�)𝑑𝑇
𝑇

𝑇0

+ 𝑒−𝐴(𝑇−𝑇0)�⃗⃗⃗�(𝑇0) (10) 

where 

 𝑒𝐴∆𝑇 = [
cos Ω∆𝑇 − sin Ω∆𝑇

sin Ω∆𝑇 cos Ω∆𝑇
] (11) 

According to Clamond and Fructus [33], this time integrator is linearly stable and 

exact. The six-stage embedded 5th order Runge-Kutta method is adopted to solve the 

equation numerically. The solution can be written as 

 

�⃗⃗⃗�(4) = 𝑒−𝐴(𝑇−𝑇0) [�⃗⃗⃗�(𝑇0) + ∑ 𝛼𝑖𝜅𝑖

6

𝑖=1

] 

�⃗⃗⃗�(5) = 𝑒−𝐴(𝑇−𝑇0) [�⃗⃗⃗�(𝑇0) + ∑ 𝛽𝑖𝜅𝑖

6

𝑖=1

] 

(12) 

where coefficients 𝛼𝑖  and 𝛽𝑖  can be found in [34], and 𝜅𝑖  is the Runge-Kutta 

increment at each stage. The superscripts (4) and (5) represent the 4th order and 5th 

order solution of the Runge-Kutta time integrator respectively. The time step size is 

self-adaptive which is determined by imposing the following condition 

 𝐸𝑟𝑟𝑇 =
∫[|𝜂(5) − 𝜂(4)| + |�̃�(5) − �̃�(4)|] 𝑑𝑿

∫[|𝜂(5)| + |�̃�(5)|]𝑑𝑿
< 𝑇𝑜𝑙𝑇 (13) 

where 𝐸𝑟𝑟𝑇 is the relative error between the 4th and 5th order solutions and 𝑇𝑜𝑙𝑇 is 

the tolerance. Using the equation, one can obtain the optimised time step size ∆𝑇𝑜𝑝𝑡 

as a function of 𝐸𝑟𝑟𝑇, as suggested in [33].  

2.2. The boundary integral solver 
One can find the solutions from Equation (10) for the wave elevation (𝜂) and velocity 

potential (�̃�) on the free surface if the velocity 𝑉 on the free surface is given. To 

obtain 𝑉, one needs to solve the Laplace equation governing the velocity potential in 

the whole fluid domain, which can be transferred to a boundary integral equation 

using the Green’s theorem. The procedure and methodology is well known and so 

details will not be given here. Only the result of the boundary integral equation in [18] 

is written out as follows for completeness,   

 ∬
1

𝑟

𝜕𝜙′

𝜕𝑛′𝑆

𝑑𝑆′ = 2𝜋�̃� + ∬ �̃�′
𝜕

𝜕𝑛′

1

𝑟𝑆

𝑑𝑆′ (14) 

where S is the area of the instantaneous free surface, the variables with the prime 

indicate those at source point (𝑿′, 𝑍′), the variables without the prime are those at 

field point (𝑿, 𝑍), 𝑟 = √𝑅2 + (𝑍′ − 𝑍)2 and 𝑅 = |𝑹| = |𝑿′ − 𝑿|, 𝑆′ denotes the 

segment of 𝑆(𝑿′, 𝑍′). Using 𝑑𝑆′ = √1 + |∇𝜂|2𝑑𝑿′, the above integral can be written 
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as 

 ∫
𝑉′

𝑟
𝑑𝑿′

𝑆0

= 2𝜋�̃� + ∫ �̃�′√1 + |∇′𝜂′|2
𝜕

𝜕𝑛′

1

𝑟
𝑑𝑿′

𝑆0

 (15) 

where 𝑆0 is the projection of 𝑆′ on to the horizontal plane, which is the same as in 

Equation (7). After introducing a new variable 𝐷 =
𝜂′−𝜂

𝑅
, the above equation becomes 

(details could be found in [1, 4]) 

 

∫
𝑉′

𝑅
𝑑𝑿′

𝑆0

= 2𝜋�̃� + ∫ (𝜂′ − 𝜂)∇′�̃�′ ∙ ∇′
1

𝑅
𝑑𝑿′

𝑆0

− ∫ �̃�′ [
1

(1 + 𝐷2)3/2
− 1] ∇′ ∙ [(𝜂′ − 𝜂)∇′

1

𝑅
] 𝑑𝑿′

𝑆0

− ∫
𝑉′

𝑅
(

1

√1 + 𝐷2
− 1) 𝑑𝑿′

𝑆0

 

(16) 

The velocity 𝑉 can be split into four parts, i.e., 𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4. Each part is 

given by 

 𝑉1 = 𝐹−1 {𝐾𝐹{�̃�}} (17) 

 𝑉2 = −𝐹−1{𝐾𝐹{𝜂𝑉1}} − ∇ ∙ (𝜂∇�̃�) (18) 

 

𝑉3 = 𝑉3,𝐼
′ = 𝐹−1 {

𝐾

2𝜋
𝐹 {∫ �̃�′∇′ ∙ [(𝜂′ − 𝜂)∇′

1

𝑅
] Γ1(D)𝑑𝑿′

𝑆0

}} 

= 𝐹−1 {
𝐾

2𝜋
𝐹 {∫ �̃�′

(𝜂′ − 𝜂) − 𝑹 ∙ ∇′𝜂′

𝑅3
Γ1(D)𝑑𝑿′

𝑆0

}} 

(19) 

 𝑉4 = 𝐹−1 {
𝐾

2𝜋
𝐹 {∫

𝑉′

𝑅
(1 −

1

√1 + 𝐷2
) 𝑑𝑿′

𝑆0

}} (20) 

where 

 Γ1(D) = 1 −
1

(1 + 𝐷2)3/2
 (21) 

Fructus et al. [4] had expanded the expression of 𝑉4 to the 3rd order convolutions, 

plus a remaining integration term, that is 

𝑉4 = 𝑉4
(1)

+ 𝑉4,𝐼
′  

= 𝐹−1 {−
𝐾

2
[𝐾𝐹{𝜂2𝑉} − 2𝐹 {𝜂𝐹−1{𝐾𝐹{𝜂𝑉}}} + 𝐹 {𝜂2𝐹−1{𝐾𝐹{𝑉}}}]} 

+𝐹−1 {
𝐾

2𝜋
𝐹 {∫

𝑉′

𝑅
Υ1(𝐷)𝑑𝑿′}} 

(22) 
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where 

 Υ1(𝐷) = 1 −
1

√1 + 𝐷2
−

1

2
𝐷2 (23) 

𝑉4
(1)

 denotes the 3rd order convolutions in the first curly-bracket term and 𝑉4,𝐼′ 

represents the remaining integration part in the second curly-bracket term on the right 

of Equation (22). Note that the determination of 𝑉1, 𝑉2 and 𝑉3 is explicit while the 

determination of 𝑉4 is implicit and needs iterations.  

During iteration for finding 𝑉4, the initial value of 𝑉4 is firstly estimated by letting 

𝑉 = 𝑉1 + 𝑉2 and assuming  

 𝐸𝑟𝑟𝐵 =
∫|𝑉𝐼𝑡𝑒𝑟 − 𝑉𝐼𝑡𝑒𝑟+1|𝑑𝑿

∫|𝑉𝐼𝑡𝑒𝑟+1|𝑑𝑿
< 𝑇𝑜𝑙𝐵 (24) 

with 𝑉𝐼𝑡𝑒𝑟 and 𝑉𝐼𝑡𝑒𝑟+1 being the values of the velocity 𝑉 at the two successive 

iterations.  

It is noted here that based on the definition of 𝐷 =
𝜂′−𝜂

𝑅
, one obtains that 𝐷 →

𝜕𝜂/𝜕𝑅 or |𝐷| → |∇𝜂| if 𝑅 → 0. Thus 𝐷 represents the local gradient of waves or 

wave steepness and reflects their nonlinearity. The maximum of 𝐷 is determined by 

|𝐷|𝑚𝑎𝑥 = |𝜕𝜂/𝜕𝑅 |𝑚𝑎𝑥, where |𝜕𝜂/𝜕𝑅 |𝑚𝑎𝑥 is the maximum gradient of the free 

surface in the spatial domain and may change with time. 

2.3. Numerical implementation 
Based on the descriptions in [1, 2, 4], we draw out the flow chart in Figure 1 to 

illustrate the whole numerical scheme and procedure of the spectral boundary integral 

method. In this figure, the gradient of the free surface ∇𝜂 and the velocity potential 

∇�̃� are estimated by Fourier and its inverse transform  

 ∇𝜂 = 𝐹−1{𝑖𝑲𝐹{𝜂}}    𝑎𝑛𝑑   ∇�̃� = 𝐹−1 {𝑖𝑲𝐹{�̃�}} (25) 

It is noted that the most time consuming parts are the boundary integral modules 

involved in Equation (19) and (22). Our main contributions in this paper lie in 

developing robust numerical techniques to significantly accelerate the procedure.  
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Figure 1. Flow chart for the numerical implementation of Spectral Boundary Integral Method 

2.4. Schemes for estimating 𝑉3 and 𝑉4 
Fructus et al. [4] had expanded the expression of 𝑉4, and replaced the main part with 

convolutions to the 3rd order as indicated above. Grue [3] brought the expressions of 

both 𝑉3 and 𝑉4 to convolutions of the 6th and 7th order respectively. We repeat the 

expanding procedures and have obtained the equivalent but slightly different results, 

given by (refer to appendix for details) 

 
𝑉3 = 𝑉3,𝐶 + 𝑉3,𝐼 = 𝑉3

(1)
⏟
4𝑡ℎ 

+ 𝑉3
(2)

⏟
6𝑡ℎ

+ 𝑉3,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 
(26) 
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 𝑉4 = 𝑉4,𝐶 + 𝑉4,𝐼 = 𝑉4
(1)

⏟
3𝑟𝑑

+ 𝑉4
(2)

⏟
5𝑡ℎ

+ 𝑉4
(3)

⏟
7𝑡ℎ

+ 𝑉4,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 
(27) 

 

𝑉3,𝐼 = 𝐹−1 {
𝐾

2𝜋
𝐹 {∫ �̃�′

(𝜂′ − 𝜂) − 𝑹 ∙ ∇′𝜂′

𝑅3
Γ2(D)𝑑𝑿′}} (28) 

 

𝑉4,𝐼 = 𝐹−1 {
𝐾

2𝜋
𝐹 {∫

𝑉′

𝑅
Υ2(𝐷)𝑑𝑿′}} (29) 

where  

 
Γ2(D) = 1 −

1

(1 + 𝐷2)3/2
−

3

2
𝐷2 +

15

8
𝐷4 (30) 

 
Υ2(𝐷) = 1 −

1

√1 + 𝐷2
−

1

2
𝐷2 +

3

8
𝐷4 −

5

16
𝐷6 (31) 

𝑉3,𝐶 = 𝑉3
(1)

+ 𝑉3
(2)

 and 𝑉4,𝐶 = 𝑉4
(1)

+ 𝑉4
(2)

+ 𝑉4
(3)

 are convolution parts and the 

order of each convolution is labelled at the bottom of each term. The order of the 

convolution is defined in this way, for example, 𝐹{𝑉𝜂𝐼−1}~𝑂(𝜀𝐼), as the 𝐼𝑡ℎ order, 

where 𝜀 = 𝐾0𝐴 is the characteristic wave steepness and 𝐴 is the wave amplitude. 

When the steepness is small, the order of the integration parts 𝑉3,𝐼 and 𝑉4,𝐼 are 

insignificant compared with the convolution parts, and so can be neglected. Generally, 

three approaches of estimating 𝑉3 and 𝑉4 are suggested, as summarized in Table I. 

 

Table I. Schemes of the boundary integral solver 

Scheme 1 𝑉3 = 𝑉3,𝐼′ 𝑉4 = 𝑉4
(1)

+ 𝑉4,𝐼′ 

Scheme 2 𝑉3 = 𝑉3,𝐶 𝑉4 = 𝑉4,𝐶 

Scheme 3 𝑉3 = 𝑉3,𝐶 + 𝑉3,𝐼 𝑉4 = 𝑉4,𝐶 + 𝑉4,𝐼 

 

In Scheme 1, 𝑉3  is estimated with integration. 𝑉4  is expanded to 3rd order 

convolution plus integration term. In Scheme 2, 𝑉3 and 𝑉4 are expanded to the 6th 

and 7th order convolutions respectively, but ignoring both 𝑉3,𝐼 and 𝑉4,𝐼. Scheme 3 is 

the same as Scheme 2, except the integration parts are included.  

It is understood that Scheme 1 and Scheme 3 are equivalent. However, Scheme 3 

requires more computational efforts over Scheme 1 on calculating the convolution 

parts, thus this scheme is only used as benchmark to quantify the difference between 

Scheme 1 and Scheme 2. In addition, Scheme 2 is the most efficient but is only valid 

when 𝐷 is not too big. Assume there exist a critical value 𝐷𝑐, under which the 

velocity can be solved by Scheme 2; otherwise by Scheme 1, the boundary integral 

solver module in Figure 1 can be replaced by the flow chart in Figure 2.  

It is noted here that the evaluation of integration parts in Schemes 1 and 3 

necessitate the computation of the integrals which have a weakly singular integrand. 

This paper will suggest an improved numerical technique for evaluating the integrals. 
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In addition, Fructus et al. [4] applied Scheme 1 to Stokes waves while Grue [3] 

employed Scheme 2 to simulate 3D wave fields, as indicated above. One of main 

contributions of this paper is to suggest mixing the two schemes together and more 

importantly to develop a technique for quantitatively determining the critical value 

𝐷𝑐, so that the computation can automatically switch to Scheme 1 or Scheme 2 

according to the instantaneous value of |𝐷|𝑚𝑎𝑥 , significantly accelerating the 

computation of wave fields. The details about this will be presented in the later 

section below. 

 

 

Figure 2. The flow chart of the numerical scheme for solving the boundary integral equation 

3. DE-SINGULARITY TECHNIQUE 

As mentioned in previous section, the integrals in Equations (19), (22), (28) and (29) 

have weak singular integrands. Such singularity is an inherited problem for all 

methods based on the boundary integrals dealing with gravity water waves, from 

when they were introduced by Longuet-Higgins & Cokelet [18] in their study on the 

2D overturning waves. In their paper, the normal velocity 𝜙𝑛  appeared in 

∫ 𝜙𝑛 ln 𝑠 𝑑𝑠, where 𝑠 is the arc-length on the boundary, was expanded at 𝑠 = 0 and 

𝑠𝑖 ln 𝑠 was integrated analytically. Grilli et al. [19] dealt with the singular integrals by 

using so called ‘singularity extraction’ method for their normal boundary element 

method applying to 3D wave problems. In the approach, they introduced the polar 

coordinates and then transformed the principle integration to a regular integration.  

For the Spectral Boundary Integral Method, Fructus et al. [4] suggested evaluating 

the integrands at nodes 𝑿 +
1

2
∆𝑿, and shifting back to regular nodes through Fourier 

interpolation. This method is equivalent to evaluating the integrations without 
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considering the elements around the singular points so that the contributions to the 

integration coming from this area are neglected. The smaller of the neglected area is, 

the more accurate the numerical integration is. In other words, to achieve high 

accuracy of results, the number of elements splitting the free surface has to be large. 

This can decelerate the computational process. In this paper, an alternative technique 

is suggested to evaluate the singular integrals for the the spectral boundary integral 

method. 

3.1. Weakly singular integral in 𝑉4 
Similar to the strategy by Grilli et al. [19], we re-write the integration part of 𝑉4 

around the singular point as 

 lim
𝜎→0

∫
𝑉′Υ𝑖

𝑅
𝑑𝑿′

𝑆−𝜎

= lim
𝜎→0

∫
𝑓(𝑿′)

𝑅
𝑑𝑿′

𝑆−𝜎

 (32) 

where Υ𝑖 is given by Equation (23) or (31), 𝜎 is an area surrounding the singular 

point. Using the local polar coordinates illustrated in Figure 3, the right hand side of 

Equation (32) can be rewritten as 

 

lim
𝜎→0

∫
𝑓(𝑿′)

𝑅
𝑑𝑿′

𝑆−𝜎

= lim
𝛿→0

∫ ∫ 𝑓(𝑅, 𝜃)𝑑𝑅𝑑𝜃
𝜌(𝜃)

𝛿

2𝜋

0

= ∫ ∫ 𝑓(𝑅, 𝜃)𝑑𝑅𝑑𝜃
𝜌(𝜃)

0

2𝜋

0

 

(33) 

where 𝜌(𝜃) and 𝛿 are the radius of the area 𝑆 and 𝜎 respectively, and  

 𝑓(𝑿′) = 𝑓(𝑅, 𝜃) = 𝑉′Υ𝑖 (34) 

with 𝐷 →
𝜕𝜂

𝜕𝑋
𝑐𝑜𝑠𝜃 +

𝜕𝜂

𝜕𝑌
𝑠𝑖𝑛𝜃  for 𝑅 → 0. The expression in Equation (34) is not 

singular 𝑅 → 0. For each value of 𝜃 from 0 to 2𝜋, one can assume 𝑓(𝑅, 𝜃) vary 

linearly along 𝑅. Thus a two point trapezium rule is enough for evaluation. 
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Figure 3. The local polar coordinates for the elements near the singular point 

3.2. Weakly singular integral in 𝑉3 
Following the same strategy, this weakly singular integral around the singular point in 

the expression of 𝑉3 is written as 

 lim
𝜎→0

∫
�̃�(𝑿′)

𝑅2
𝑑𝑿′

𝑆−𝜎

= lim
𝜎→0

∫
𝑔(𝑅, 𝜃)

𝑅
𝑑𝑅𝑑𝜃

𝑆−𝜎

 (35) 

where  

 𝑔(𝑅, 𝜃) = �̃�(𝑿′) = �̃�′ (𝐷 −
𝑹 ∙ ∇′𝜂′

𝑅
) Γi (36) 

and Γi is defined by Equation (21) or (30). Note that lim
𝑅→0

(
𝑹∙∇′𝜂′

𝑅
− 𝐷) = 0, which 

means 𝑔(𝑅 = 0, 𝜃) = 0. Thus, in order to evaluate the integral numerically, we 

approximate 𝑔(𝑅, 𝜃) with the first order Taylor series 

 𝑔(𝑅, 𝜃) = 𝑔(0, 𝜃) +
𝜕𝑔

𝜕𝑅
(0, 𝜃)𝑅 + O(𝑅2) (37) 

Then we have 

 ∫ ∫
𝑔(𝑅, 𝜃)

𝑅
𝑑𝑅𝑑𝜃

𝜌(𝜃)

0

2𝜋

0

= ∫ ∫
𝜕𝑔

𝜕𝑅
(0, 𝜃)𝑑𝑅𝑑𝜃

𝜌(𝜃)

0

2𝜋

0

= ∫ 𝑔(𝑅 = 𝜌, 𝜃)𝑑𝜃
2𝜋

0

 (38) 

which provides a solution for converting the weakly singular integration to a regular 

integration, as there is no singularity in 
𝜕𝑔

𝜕𝑅
(0, 𝜃).  To achieve it, the first order 
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approximation to 𝑔(𝑅, 𝜃) has been used so that the integration with respect to 𝑅 

leads to 𝑔(𝑅 = 𝜌, 𝜃) . The last integral in Eq. (38) is estimated by using one 

dimensional trapezium rule.  

 

3.3. Effectiveness of the de-singular techniques for evaluating 𝑉3 and 𝑉4 
In order to show how effective the above de-singular techniques are, the cases for 

Stokes waves presented in [4] are tested in this section. To model the case, the initial 

free surface elevation and velocity potential on the free surface are calculated by 

using the Fenton’s numerical solver [35] up to 7th order with the wave steepness of 

𝜀 = 𝜋𝐻/𝐿 = 0.2985 (𝐻 is the wave height and 𝐿 = 2𝜋 is the wave length) in a 

spatial domain of 2𝐿 × 2𝐿. In addition, our numerical tests indicate that any value of 

𝑇𝑜𝑙𝐵 ≤ 1𝐸 − 5 in Equation (24) leads to almost the same results and so the value of 

𝑇𝑜𝑙𝐵 is taken as 1𝐸 − 5 hereafter.   

The specific values of 𝑉3 and 𝑉4 are time-dependent. We will first examine the 

effectiveness of the de-singularity technique using the profiles of 𝑉3 and 𝑉4 at the 

first time step. These profiles obtained by the methods with or without the 

de-singularity technique are shown in Figure 4 for different numbers of elements 

represented by the resolution. The profiles are normalized by 𝑉30 and 𝑉40, which are 

the maxima of 𝑉3 and 𝑉4 corresponding to the resolution 210*210. The results for the 

case without the de-singularity technique are obtained by using the same method as in 

[4], that is, the singularity is avoided by evaluating the integrands of 𝑉3 and 𝑉4 at a 

shifted point (𝑿 +
1

2
∆𝑿). As the de-singularity techniques are relevant only to the 

integration parts in 𝑉3 and 𝑉4, the results plotted are only these parts in 𝑉3 and 𝑉4. 

As can be seen from Figure 4, without the de-singularity technique, the peak values of 

both 𝑉3  and 𝑉4  are significantly under-estimated when the resolution is not 

sufficiently high. With increase of the resolution, the profiles of 𝑉3 and 𝑉4 gradually 

coincide with each other. Specifically, at the resolution of 29*29, the difference 

between them becomes negligible. This demonstrates that the approach proposed in [4] 

can give accurate results but requires higher resolution. In order to shed more light on 

the performance of the techniques, their errors are analyzed using the following 

equations 

 

 

𝐸𝑟𝑟𝑜𝑟{𝑉3} =
∫ |𝑉3 − 𝑉3

(𝑁=210)
| 𝑑𝑋

∫ |𝑉3
(𝑁=210)

| 𝑑𝑋
 

𝐸𝑟𝑟𝑜𝑟{𝑉4} =
∫ |𝑉4 − 𝑉4

(𝑁=210)
| 𝑑𝑋

∫ |𝑉4
(𝑁=210)

| 𝑑𝑋
 

(39) 

where 𝑉3

(𝑁=210)
 and 𝑉4

(𝑁=210)
 are the values of 𝑉3  and 𝑉4  calculated using 

resolution of 210*210, and the integrations are made over the whole projected free 

surface. The errors against the different resolutions are shown in Figure 5. It can be 

seen that the error corresponding to the results obtained by using the de-singularity 
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technique for the resolution of 26*26 is as small as that obtained without the 

de-singularity technique for the resolution of 210*210, while the error from the method 

without the de-singularity technique for the resolution of 26*26 is more than 6 times 

larger than the latter. This further demonstrates that the de-singularity technique help 

achieving the similar results with much low resolution or achieving the results with 

higher accuracy by using the same resolution, compared to the approach suggested in 

[4], which also leads to exact results but with relatively slower convergent rate. 
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Figure 4. Profiles of 𝑉3 and 𝑉4  

Solid: with de-singularity technique; Dash: without de-singularity technique  

 
(a) 

 
(b) 

Figure 5. Relative error of the profiles of 𝑉3(a) and 𝑉4(b) 

Solid: with de-singularity technique; Dash: without de-singularity technique 

 

Next, the effects of the de-singularity technique on overall wave propagation of a 

long period will be examined. The same waves for Figure 4 and Figure 5 are 

considered but simulated in different sizes (2𝐿 × 2𝐿, 4𝐿 × 2𝐿 and 8𝐿 × 2𝐿) of the 

spatial domain. To simulate these cases, the resolution used is 26*26, 27*26 and 28*26, 

(i.e., the number of elements per wave length is the same), respectively. The wave 

profiles after the simulation of 1000𝑇0  (𝑇0  is the wave period output by the 

Fenton’s numerical solver [35], which is 6.0095 in this case) are plotted in Figure 6. If 

there would be no error, the profiles after the propagation of 1000𝑇0 should coincide 
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with the initial profile (the dotted line in the figure). One can see from this figure that 

the profile obtained without the de-singularity technique has a large phase shift (about 

20 degree), while that obtained with the de-singularity technique has only a small 

phase shift (about 4 degree). The phase shift is gradually accumulated during the 

simulation. The variation of the phase shift with time is depicted in Figure 7 for 

different sizes of spatial domain. It clearly shows that the phase shift varies linearly 

with time and eventual values are almost the same for different domains. In addition, 

the effects of 𝑇𝑜𝑙𝑇 used in Equation (13) are also shown in this figure and in Table 

II. All the information confirms that 𝑇𝑜𝑙𝑇 = 1𝐸 − 7 is sufficiently small to give 

consistent results. 

 

Table II. Phase shift with different experimental conditions  

Phase shift 

(degree) 

𝑇𝑜𝑙𝑇 = 1𝐸 − 6 𝑇𝑜𝑙𝑇 = 1𝐸 − 7 𝑇𝑜𝑙𝑇 = 1𝐸 − 8 

o × √ o × √ o × √ 

2𝐿 × 2𝐿 domain -56 19.52 4.33 16 19.60 4.26 18 19.61 4.25 

4𝐿 × 2𝐿 domain - 19.56 4.29 - 19.60 4.25 - 19.61 4.25 

8𝐿 × 2𝐿 domain - 19.58 4.26 - 19.61 4.25 - 19.61 4.25 

Note: ‘o’ result from Fructus et al.[4]; ‘×’ without de-singularity technique; ‘√’ with 

de-singularity technique 

 

To further examine the effectiveness of the new de-singularity technique 

quantitatively, the errors defined in two different ways are introduced below:  

a) The total phase shift error  

 𝐸𝑟𝑟1 = 100
|∆𝜑|

2𝜋
 (40) 

b) The mean phase shift error per wave period 

 𝐸𝑟𝑟2 =
𝐸𝑟𝑟1

𝑁𝑡𝑜
 (41) 

where ∆𝜑 is the total phase shift in radians over the whole period of simulation and 

𝑁𝑡𝑜 is the total number of wave periods of simulation, which is 1000 in this case. 

The errors of the same case as in Figure 6(a) for the domain size of 2𝐿 × 2𝐿 but 

obtained using different resolutions are plotted in Figure 8(a), where the number of 

horizontal axis represents the power (n) of 2n (the same employed hereafter). In 

addition, the CPU time against different errors for running all the simulations up to 

1000𝑇0 on a workstation equipped with the Intel Xeon E5-2630 v2 of 2.6GHz 

processor are depicted in Figure 8(b). All figures involving the CPU time appears in 

this paper are based on the same workstation. The results clearly show that for the 

case with the wave steepness of 𝜀 = 0.2985, use of the de-singularity technique 

allows considerably lower resolution or requires much less CPU time to achieve the 

same level of accuracy, compared without use of the de-singularity technique. For 

example, to achieve the results with an error of about 2.5% in terms of 𝐸𝑟𝑟1 needs 

the resolution of 25*25 and the CPU time of 2*103 seconds with use of the 

de-singularity technique; otherwise, it needs the resolution of 27*27 and the CPU time 

of about 1*104 seconds. 
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The ratio of the minimum resolutions and corresponding CPU time needed to 

achieve the error less than 2.5% by the methods with and without use of the 

de-singularity technique are shown in Figure 9. The ratio in this figure is calculated in 

the way that the value of the method without the de-singularity technique is divided 

by that of the method with the de-singularity technique. The figure demonstrates that 

the minimum resolution and corresponding CPU time used by the two methods with 

and without the de-singularity technique are almost the same for the cases with small 

wave steepness. However, for the cases with larger wave steepness (specifically, 𝜀 ≥

0.2), the method with use of the de-singularity technique needs much less resolution 

and CPU time than the one without use of the de-singularity technique. For example, 

for the case of 𝜀 = 0.36, the CPU time required by the method with use of the 

de-singularity technique is only 1% of that without it to yield the results at the said 

error level. All the above information evidences that the de-singularity technique is 

particularly effective for modelling strong nonlinear waves in terms of the resolution 

and so the CPU time required. 

 

(a) Domain size: 2𝐿 × 2𝐿 
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(b) Domain size: 4𝐿 × 2𝐿 

 

(c) Domain size: 8𝐿 × 2𝐿 

Figure 6. Profiles of the free surfaces 

Dot: at initial moment; Dash: after simulation of 1000𝑇0 without de-singularity technique; 

Solid: after simulation of 1000𝑇0 with de-singularity technique 
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(e)                  

 

(f) 

Figure 7. Variation of the phase shift of wave profiles with time (a) in a domain of 2𝐿 × 2𝐿, 

𝑇𝑜𝑙𝑇 = 1𝐸 − 7; (b) in a domain of 2𝐿 × 2𝐿, 𝑇𝑜𝑙𝑇 = 1𝐸 − 8; (c) in a domain of 4𝐿 × 2𝐿, 

𝑇𝑜𝑙𝑇 = 1𝐸 − 7; (d) in a domain of 4𝐿 × 2𝐿, 𝑇𝑜𝑙𝑇 = 1𝐸 − 8; (e) in a domain of 8𝐿 × 2𝐿 

waves, 𝑇𝑜𝑙𝑇 = 1𝐸 − 7; (f) in a domain of 8𝐿 × 2𝐿, 𝑇𝑜𝑙𝑇 = 1𝐸 − 8 

 

(a)                  

 

(b) 

Figure 8. Error against resolution (a) and CPU time against Error (b) for the case with a 

domain of 2𝐿 × 2𝐿 and 𝜀 = 0.2985.  

Solid: with de-singularity technique; Dash: without de-singularity technique 

 

 

(a)                  

 

(b) 

Figure 9. Resolution (a) and CPU time ratio (b) to achieve 𝐸𝑟𝑟1 < 2.5% for different values 

of steepness (Ratio = value of the method without the de-singularity technique /value of the 
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method with the de-singularity technique) 

 

4. TECHNIQUES FOR ANTI-ALIASING (TAA) 

In addition to the integration parts discussed in the previous section, one needs to 

numerically calculate the convolution parts in the spectral method. For this purpose, 

the discrete Fast Fourier Transform (FFT) or its inverse transform is repeatedly 

performed on a limited number of N points. As well documented (e.g. [36]), the 

calculation of the convolutions (particularly the higher order ones involving more 

than two functions, like 𝑉3 and 𝑉4 in Section 2) in this way suffers aliasing errors 

when improper resolution is used [36]. The aliasing errors may be theoretically 

eliminated by using sufficiently high resolution to ensure that the wave component 

corresponding to the highest frequency or wave number is correctly sampled. 

However, use of high resolution requires high computational costs. Added to this, it is 

difficult to predict the highest frequency during the simulation of nonlinear waves 

because the components of higher frequency are continuously evolving during the 

simulation due to nonlinearity. Therefore, anti-aliasing techniques are necessary to 

model nonlinear water waves. As discussed in [36], there are largely two types of 

anti-aliasing techniques for general fluid problems: one based on truncation (or 

padding) and the other based on phase shifting.  

In the research for modelling nonlinear water waves, Dommermuth & Yue [31] dealt 

with the pseudo-spectral product involving two terms by doubling the width of the 

spectrum of each term and multiplying in physical domain. Then the spectrum of this 

product is truncated to the original width after applying Fourier transform. For 

products involving two or more terms, the multiplication is done successively where 

each factor is made aliasing-free before multiplied by the next term. Nicholls [32] and 

Xu & Guyenne [37] introduced a filter to remove the aliased components for |𝐾| >

𝜈|𝐾|𝑚𝑎𝑥 in spectrum domain, where 𝜈 is determined by the method consistent with 

[36]. Clamond & Grue [1] approximated the 3rd order convolution by doubling the 

spectra in order to remove the aliasing errors (4-half rule). All the techniques used in 

the cited papers are based on the truncation (or padding) technique. That is perhaps 

because the technique by using truncation (or padding) is more computationally 

efficient than that by using phase shifting. Three techniques will be discussed below. 

All of them are formed by using truncation (or padding). 

For the illustration purpose to aid our discussions below, Stokes wave with 𝜀 =

0.2985 similar to that Figure 6 but within a domain of 𝐿 × 𝐿 will be used. Other 

parameters will be given when necessary. Suppose the resolution of the surface 

elevation and velocity potential for FFT is 𝑁, and the width of their spectrum will be 

−𝑁/2~𝑁/2. In many figures below, the spectra are divided by the Fourier coefficient 

of 𝐾 = 1, and the quantities in the physical domain is normalized by its maxima. 

4.1. Anti-aliasing Techniques 
TAA1: (2/(I+1)-rule). The spectrum width of the 𝐼𝑡ℎ  order convolution will be 

truncated to 𝑁/(𝐼 + 1). This follows exactly the zero-padding method in [36]. For 
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example, in order to estimate 𝐹{𝜂2𝑉}, which is a part 𝑉4
(1)

 and is the 3rd order 

convolution, the spectrum of 𝜂 and 𝑉 will be truncated to −32/4~32/4 from the 

range of −32/2~32/2 as shown in Figure 10(a) for 𝑁 = 32, where the points 

circled out are padded as zero. Then the product of 𝜂2𝑉 is calculated in the physical 

spatial domain after applying inverse Fourier transform to give both 𝜂 and 𝑉, as 

shown in Figure 10(b) and (c). At last, the product of 𝜂2𝑉 is transformed back to 

spectral space and their spectra 𝐹{𝜂2𝑉} are truncated to – 32/4~32/4, which is 

illustrated in Figure 10(d). Similarly, to estimate 𝐹{𝑉𝜂6}, which is a part of 𝑉4
(3)

 and 

is the 7th order convolution. The spectra of 𝜂 and 𝑉 are truncated to – 32/8~32/8 

before calculating 𝑉𝜂6, as shown in Figure 10(e). After the multiplication of the 

functions in physical space (Figure 10(f) and (g)), the spectrum 𝐹{𝑉𝜂6} is truncated 

to −32/8~32/8 (Figure 10(h)).  

 

(a)                     

 

(b) 

 

(c)                     

 

(d) 
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(e)                     

 

(f) 

 

(g)   (h) 

Figure 10. Illustration of TAA1 

 

TAA2: (Repeated 2/4-rule). This technique was suggested and referred as repeated 

4-half rule by Clamond & Grue [1] and Fructus et al. [4]. The spectrum width of 

convolutions of the 2nd and 3rd order are truncated to −𝑁/4~𝑁/4. Convolutions of 

4th order and higher will be estimated using a repeated 2/4-rule, in which the 

convolution is broken down into several terms, each one being of lower than the 3rd 

order. Each individual term is estimated with 2/4-rule. For example, 𝐹{𝜂3∇�̃�} is 

firstly split into 𝐹{𝜂3} ∗ 𝐹{∇�̃�}. Applying the 2/4-rule (same as in TAA1) gives 𝜂3 

and ∇�̃� separately (Figure 11(a) – (d) and then 𝜂3∇�̃� (Figure 11(e)) in the physical 

space. After that, 𝐹{𝜂3∇�̃�} is computed by FFT and its spectrum is truncated to 

−𝑁/4~𝑁/4, as shown in Figure 11(f).   
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(a)                     

 

(b) 

 

(c)                     

 

(d) 

 

(e)                     

 

(f) 

Figure 11. Illustration of TAA2 

 

Although this technique may work in some cases, it is found not to be accurate 

generally. For example, when the technique is applied to evaluate 𝑉4
(2)

 (Appendix) of 

5th order convolution for a Stokes wave of 𝜀 = 0.3 in a domain of one wave length at 

the resolution of 25, the result in Figure 12 is obtained, where the solid line is the 

result obtained by using very high resolution (29) for which there should be no 
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aliasing error. It can be seen that TAA2 give incorrect approximation to 𝑉4
(2)

 at this 

resolution.   

 

Figure 12. Profiles of 𝑉4
(2)

 

 

TAA3: (Mixed 2/4-2/8-rule). This is a new technique suggested in this paper. For this 

technique, the convolutions of the 2nd and 3rd order are estimated using the 2/4-rule as 

in TAA1 and TAA2. The difference lies in dealing with the convolutions of 4th and 

higher order. To deal with these higher order convolutions, the spectrum of an 

individual function is padded as zero in the ranges of −𝑁~ − 𝑁/4 and 𝑁/4~𝑁, and 

then they are inversed to the physical domain. The products of the functions are found 

before transformed into spectral space. The resulting spectrum is truncated to 

−𝑁/4~𝑁/4 at last. For instance, to estimate 𝐹{𝑉𝜂6}, the spectrum of 𝑉 and 𝜂 is 

padded as zero except for the range of −32/4~32/4 within −32~32 as shown in 

Figure 13(a) and (b) for 𝑁 = 32 before they are inversed to physical space (Figure 

13(c)). Then their product (Figure 13(d)) is computed before transforming it to 

spectral space (Figure 13(e)). In the spectral space, the spectrum 𝐹{𝑉𝜂6} is truncated 

to −32/4~32/4 with all other points padded as zero. As this spectrum is truncated 

from the range of −32~32 to the range of −32/4~32/4, it actually follows the 

2/8-rule. The principle dealing with the higher order convolutions are similar to that 

of TAA1 but there are some differences: (1) the spectrum of an individual function 

covers the range of −𝑁~𝑁 in this technique rather than −𝑁/2~𝑁/2 in TAA1; (2) 

the range of spectrum for all high order (4th and higher) convolutions is the same but 

it is different for different order in TAA1 and (3) the nonzero width of the last 

spectrum is generally larger in TAA3 than in TAA1, which can be found by 

comparing Figure 10(h) with Figure 13(f). 
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(a)                    

 

(b) 

 

(c)                    

 

(d) 

 

(e)                    

 

(f) 

Figure 13. Illustration of TAA3 

 

4.2. Preliminary comparisons of different anti-aliasing techniques 
In order to show which one of three anti-aliasing techniques yields better results, 

preliminary comparative studies have been carried out and some results are presented 

and discussed in this sub-section. More comparison will be given in later sections. For 

this purpose, the convolution parts of 𝑉3 and 𝑉4 for the Stokes waves of different 

wave steepness within a domain of 𝐿 × 𝐿 at the first time step will be evaluated 
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using the above three anti-aliasing techniques and their results will be compared. The 

aliasing error will be estimated by 

 𝐸𝑟𝑟𝑜𝑟{𝑉3 + 𝑉4} =
∫ (|𝑉3,𝐶 

(𝑁=2𝑛)
− 𝑉3,𝐶 

(𝑁=29)
| + |𝑉4,𝐶 

(𝑁=2𝑛)
− 𝑉4,𝐶 

(𝑁=29)
|) 𝑑𝑿

∫|𝑉|𝑑𝑿
 (42) 

where 𝑉3,𝐶 
(𝑁=2𝑛)

 and 𝑉4,𝐶 
(𝑁=2𝑛)

 are the convolution parts of 𝑉3  and 𝑉4  with 

resolution of 2𝑛 ∗ 2𝑛  estimated by using one of three anti-aliasing techniques. 

𝑉3,𝐶 

(𝑁=29)
 and 𝑉4,𝐶 

(𝑁=29)
 are the convolution parts of 𝑉3 and 𝑉4 computed by using a 

resolution of 29 ∗ 29, which is tested to be the resolution to eliminate the aliasing 

error without use of any anti-aliasing technique. The aliasing errors corresponding to 

three methods are plotted in Figure 14. It can be seen that the aliasing errors decrease 

with increase of resolution but they are larger for larger steepness. The TAA3 clearly 

over-performs relative to the other two techniques for stronger nonlinear waves, such 

as these with 𝜀 = 0.3 and 0.42. In these cases, the error of TAA3 is less than 1E-6 at 

the resolution of 26 ∗ 26 but the errors of other two is larger than 1E-6 at the 

resolution.    

To further demonstrate the fact, Figure 15(a) presents the minimum resolution 

required to achieve the results with error less than 1E-6 by the three different 

techniques. For the same purpose, Figure 15(b) gives the ratio of CPU time 

corresponding to the three techniques for evaluating the convolution parts of 𝑉3 and 

𝑉4 in one time step. The ratio is estimated by dividing the CPU time of each 

technique by the CPU time of TAA3. The results clearly indicate that the TAA3 is 

superior to the others in suppressing the aliasing errors, in particular in estimating the 

higher order convolutions. 

 

(a)                  

 

(b) 
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(c)                    

 

Figure 14. Aliasing error against different resolutions for different steepness 

TAA1 (a), TAA2 (b) and TAA3 (c) 

 

(a)                  

 

(b) 

Figure 15. Resolution (a) and CPU ratio (b) to achieve 𝐸𝑟𝑟𝑜𝑟{𝑉3 + 𝑉4} < 1E − 6 for 

different values of steepness (Ratio = value of the method with TAA1 or TAA2 /value of the 

method with TAA3) 

5. TECHNIQUE FOR DETERMINING THE CRITICAL VALUE 𝐷𝑐  

As indicated in Table I, one may use one of three schemes to evaluate the velocity 𝑉. 

Fructus et al. [4] used the Scheme 1 while Grue [3] employed Scheme 2 with 

excluding the estimation of the integral parts. Although more convolution terms need 

to be evaluated in Scheme 2 than Scheme 1, Scheme 2 is expected to be much more 

efficient as there is no need of evaluating integral parts. To demonstrate this, the ratio 

of CPU time taken by Scheme 1 to that of Scheme 2 is plotted in Figure 16. The 

results in this figure are obtained by using the two schemes to model the similar 

waves in Figure 6 up to a time of 1000𝑇0 in a domain of 2𝐿 ∗ 2𝐿 for different 

steepness. The resolution is selected such that 𝐸𝑟𝑟1 < 2.5%. One can see that 

Scheme 2 is more than 100 time faster when 𝜀 ≥ 0.25. It is noted that the numerical 

results show that |𝐷|𝑚𝑎𝑥 < 0.5 for 𝜀 ≤ 0.42 in the cases associated with Figure 16. 

In other words, one can just use Scheme 2 to achieve satisfactory results for cases like 

these.    
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However, it is not always true. This can be understood from the fact that Scheme 2 

is derived from Scheme 1 by expanding 𝑉3 and 𝑉4 up to the 7th order (𝜀7) as shown 

in Appendix. Based on this, Scheme 2 should be only accurate when the maximum 

gradient of the free surface is less than a critical value 𝐷𝑐. So far, such a critical value 

has not been quantified, which will be discussed in the following sections.  

 

 

Figure 16. Ratio of CPU time taken by Scheme 1 to that of Scheme 2 for 𝐸𝑟𝑟1 < 2.5% 

5.1. Estimation of magnitude of 𝐷𝑐 
As has been noted in section 2.1, 𝐷 represents the local gradient of waves and thus 

its maximum should have a similar order to the wave steepness 𝜀 if the wave does 

not reach the overturning point. In order to estimate the magnitude of 𝐷𝑐, we may 

assume that |𝐷|𝑚𝑎𝑥 ≈ 𝜀. In addition, the magnitude of 𝐷𝑐 must be related to the 

highest order of differences between Scheme 2 and Scheme 3 or Scheme 1. From 

Table I, the differences come from ignoring 𝑉3,𝐼 and 𝑉4,𝐼. From Equation (26) and 

(27), the leading order of 𝑉3,𝐼 and 𝑉4,𝐼 are 𝑂(𝜀8) and 𝑂(𝜀9) respectively. As the 

former is one order higher than the latter, the magnitude of 𝐷𝑐 may be estimated by 

using only 𝑉3,𝐼. To give more specific information about the order of 𝑉3,𝐼, it has been 

expanded in Appendix to  

 𝑉3,𝐼 = 𝑉3
(3)

+  𝑂(𝜀10) (43) 

where 𝑉3
(3)

 is given in Equation A. 8. To be more specific, let us consider a simple 

wave described by 𝜂 = 𝜀𝑐𝑜𝑠𝑋 and �̃� = 𝜀𝑠𝑖𝑛𝑋, for which 𝑉 = 𝜀𝑠𝑖𝑛𝑋. For this wave, 

one obtains, as shown in Equation A. 9, 

  

 𝑂(𝑉3,𝐼)~𝑂(𝑉3
(3)

)~
69

2560
𝜀8 sin(2𝑋) (44) 

Thus 

 𝑂 (
𝑉3,𝐼

𝑉
) ~

69

2560
𝜀7 (45) 

Generally, the error due to ignoring the 𝑉3,𝐼 and 𝑉4,𝐼 may be estimated by  

Page 28 of 42

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

 𝐸𝑟𝑟𝑜𝑟1{𝑉} =
𝑚𝑎𝑥|𝑉3

(3)
|

𝑚𝑎𝑥|𝑉|
 (46) 

It is clear that the order of 𝐸𝑟𝑟𝑜𝑟1{𝑉} is 𝑂(𝜀7). For the simple wave, it follows that 

 𝐸𝑟𝑟𝑜𝑟2{𝑉}~

69
2560

𝜀8

𝜀
=

69

2560
𝜀7 ≈

69

2560
|𝐷|𝑚𝑎𝑥

7  
(47) 

5.2. Values of 𝐷𝑐 determined by numerical tests 
In this subsection, tests will be carried out to further quantify the critical value 𝐷𝑐. To 

do so, the error of Scheme 2 is estimated by 

 𝐸𝑟𝑟𝑜𝑟3{𝑉} =
∫|𝑉(𝑠𝑐ℎ𝑒𝑚𝑒 2) − 𝑉(𝑠𝑐ℎ𝑒𝑚𝑒 3)|𝑑𝑋

∫|𝑉(𝑠𝑐ℎ𝑒𝑚𝑒 3)| 𝑑𝑋
 (48) 

where 𝑉(𝑠𝑐ℎ𝑒𝑚𝑒 3) is the profile of the velocity 𝑉 calculated by using Scheme 3 at 

an instant, which takes into account of all the terms, and 𝑉(𝑠𝑐ℎ𝑒𝑚𝑒 2) is the profile of 

velocity 𝑉 computed by Scheme 2 at the corresponding instant excluding the integral 

parts. The simulation is first carried out by using Scheme 3, and the data of 𝑉, �̃� and 

𝜂 at all time steps are saved in files. From these data, |𝐷|𝑚𝑎𝑥 is computed for every 

time step. Then Scheme 2 is employed to estimate the error in Equation (48), 

corresponding to the value of |𝐷|𝑚𝑎𝑥 at each time step. Using the information, one 

can find the critical value Dc for a specified error. The results for three cases will be 

presented below.  

The first case is about a Stokes wave steepened by a moving pressure on the surface. 

The initial wave of 𝜀 = 0.15 is obtained in the same way as for Figure 6. The 

domain covers one wave length (𝐿 × 𝐿) and is resolved by 27*27 points. The duration 

of the simulation is 5 wave periods (𝑇0). The pressure distribution on the free surface 

is specified as 

 𝑝(𝑋, 𝑇) = {
−𝑝0 sin(2𝜋𝑇/𝑇0) sin(𝑋 − 𝐶𝑇)    ,   0 ≤ 𝑇 ≤ 𝑇0/2
0                                                           ,    𝑇 > 𝑇0/2        

 (49) 

where 𝑝0 = 0.25 is the amplitude of the pressure and 𝐶 = 𝐿/𝑇0 is the wave phase 

speed. The wave profiles at some time steps (𝑇/𝑇0 = 0.1, 0.4 and 0.88) obtained by 

Scheme 3 are shown in Figure 17(a). It demonstrates that the free surface elevation 

gradually becomes steeper and steeper. The errors in Equations (46), (47) and (48) 

corresponding to the values of |𝐷|𝑚𝑎𝑥 are presented in Figure 17(b). It shows that 

the errors estimated for Scheme 2 using Equations (46) and (48) is less than 2E-4 and 

does not increases significantly when |𝐷|𝑚𝑎𝑥 ≤ 0.5, while it grows exponentially 

when |𝐷|𝑚𝑎𝑥 exceeds 0.5. In addition, the errors of Scheme 2 have the same trend as 

the expression of 
69

2560
|𝐷|𝑚𝑎𝑥

7  in Equation (47). Furthermore, the errors estimated by 

using Equation (46) are closely correlated with these of Equation (48).   

To further show this, the similar results for 𝑝0 = 0.22 and 0.3 are given in Figure 

18(a) and (b), which are consistent with the observation in Figure 17.  
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(a)                     

 

(b) 

Figure 17. Wave profiles at different instants (a) and numerical error against maximum 

gradient (b) for 𝑝0 = 0.25 

 

(a) 𝑝0 = 0.22             

 

(b) 𝑝0 = 0.3 

Figure 18. Numerical error against maximum gradient for different pressure amplitude 

 

 

The second case tested is related to a 2D Benjamin-Feir instability [11]. To do this 

test, the wave with 𝜀 = 0.22 generated as in Figure 6 is disturbed by  

 𝛿𝜂 = 0.105𝜀𝑐𝑜𝑠 (
9

8
𝑋 −

𝜋

4
) + 0.105𝜀𝑐𝑜𝑠 (

7

8
𝑋 −

𝜋

4
) (50) 

The domain covers 8𝐿 × 𝐿 which is resolved by 210*27 points. The duration of the 

simulation is about 30 wave periods. All the setup parameters are the same as in [1]. 

The free surface profiles at 𝑇/𝑇0 = 0 and 𝑇/𝑇0 = 23.61 obtained by Scheme 3 are 

shown in Figure 19(a). The profile at 𝑇/𝑇0 = 23.61 from [1], denoted by small 

circles, is also given and has a little visible difference from that calculated by the 

method of this paper. The errors of Scheme 2 estimated using Equation (48) are less 

than 2E-4 without significant increase when |𝐷|𝑚𝑎𝑥 ≤ 0.5 , while they grow 

exponentially when |𝐷|𝑚𝑎𝑥 exceeds 0.5 and agrees quite well with that given by 

Equations (46) and (47).  
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(a)                   

 

(b) 

Figure 19. Wave profiles at different instants (a) and numerical error against maximum 

gradient (b) 

The third case considered is about a wave of 𝜀 = 0.2985 generated as in Figure 6 

but perturbed by a directional side-band waves 

 𝛿𝜂 =
0.05𝜀

2
[𝑠𝑖𝑛(𝑲𝟏 ∙ 𝑿) + 𝑠𝑖𝑛(𝑲𝟐 ∙ 𝑿)] (51) 

where 𝑲𝟏 = (3/2, 4/3) and 𝑲𝟐 = (3/2, −4/3). The computational domain covers 

2𝐿 × 1.5𝐿 on transversal and longitudinal direction and is resolved by 28*28 points. 

The duration of the simulation is 18 wave periods. During the simulation, the waves 

grow into horse-shoe pattern eventually at 𝑇/𝑇0 = 17.8, as shown in Figure 20(a). 

The error of Scheme 2 is shown on the right in Figure 20(b). This again indicates that 

the error is insignificant when |𝐷|𝑚𝑎𝑥 ≤ 0.5.  

  

 

(a)                   

 

(b) 

Figure 20. Wave surface snapshot (left) and error against gradient (right) 

 

All the above cases for different kinds of wave evidence that one may take 0.5 as the 

critical value (𝐷𝑐) if the error of 2E-4 is acceptable, under which Scheme 2 may be 

applied with ignoring the integral parts in the velocity 𝑉. They evidence also that 

Equations (46) and (47) give a good estimation to the error of Scheme 2, though the 

former is derived using a higher order term and the latter using very simple waves. 
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Equation (46) is more general than Equation (47) as the former is not based on 

specific waves. In practice, one may take 𝐷𝑐 = 0.5 or use Equation (46) to determine 

𝐷𝑐  for a specified error. More generally, one may numerically estimate the error by 

using Equation (46). If using this way, the condition of |𝐷|𝑚𝑎𝑥 ≤ 𝐷𝑐 in Figure 2 

must be replaced by 𝐸𝑟𝑟𝑜𝑟1{𝑉} ≤ 𝐸𝑟𝑟𝑜𝑟𝑐, where 𝐸𝑟𝑟𝑜𝑟𝑐 is the tolerant error. 

6. OVERALL EFFICIENCY OF THE IMPROVED METHOD 

Up to now, three new techniques have been discussed. They are developed in order to 

accelerate the computation of the Spectral Boundary Integral Method originally 

proposed in [1-4]. In this section, the overall efficiency of the improved method 

equipped with the de-singularity technique for weakly singular integrals, the 

anti-aliasing technique and the mixed scheme (Figure 2) will be discussed. For this 

purpose, the convergent properties and CPU time of the method in [4] and the 

improved method of this paper will be compared. Both methods are employed to 

simulate the waves similar to that in Figure 20 but with different initial steepness, i.e, 

𝜀 = 0.1, 0.2 and 0.3, respectively. For each of the cases, different resolutions are 

used, which are 25*25, 26*26, 27*27 and 28*28. The simulation is carried out until 

𝑇/𝑇0 = 18.  

For this case, Fructus et al. [4] presented a quantitative result of the following ratio 

for 𝜀 = 0.2985  

 Ψ𝜖 =
|𝐹{𝜂}|(𝑲=(3/2,4/3),𝑇)

|𝐹{𝜂}|(𝑲=(1,0),𝑇=0)
 (52) 

where |𝐹{𝜂}|(𝑲=(3/2,4/3),𝑇) is the value of the spectrum at a time T corresponding to 

the first disturbed term with 𝑲 = (3/2, 4/3)  in Equation (51). Their result is 

re-produced in Figure 21. We also make a code based on the method in [4] and use it 

to compute the same case. The result from this code is marked as ‘Method in [4]’ in 

Figure 21. Both results are compared with the result from our improved method of the 

paper in the figure. The resolution we used for this case is 28*28. It can be seen that 

the present method produces almost the same result as the Method in [4]. However, 

the numerical results we calculated are slightly different from the data provided by [4]. 

The main reason would be due to difference in determining of time steps. The specific 

equation for estimating the error related to the adaptive step, like Equation (13), was 

not given in [4]. The time step may be different if the method for estimating the error 

is not same as Equation (13).   
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Figure 21. Evolution of perturbation components of 𝑲 = (3/2, 4/3) 

 

The free surface profiles at three sections (𝑌 = 3𝐿0/4, 𝑋 = 𝐿0 and 𝑋 = 4𝑌/3) 

obtained by the code based on the Method in [4] and our improved method are shown 

in Figure 22. There is no visible difference between them. Their quantitative 

difference is of ∫(|𝜂1 − 𝜂2|)𝑑𝑿 / ∫|𝜂2|𝑑𝑿 ≈ 0.2%, where 𝜂1  is the free surface 

elevation at 𝑇/𝑇0 = 18 obtained from the method in [4] and 𝜂2 is that from the 

improved method, both for resolution of 28*28. This demonstrates that both the 

methods will produce almost the same results when the resolution is sufficiently high. 

 
(a) 

 
(b) 
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(c) 

Figure 22. Free surface profiles at different section for 𝜀 = 0.3 

 

However, their convergent rate may be different. To examine this, we define the 

error of the wave elevation as  

 𝐸𝑟𝑟𝑜𝑟2{𝜂} =
∫(|𝜂(𝑁=2𝑛) − 𝜂𝐵|)𝑑𝑿

∫|𝜂𝐵|𝑑𝑿
 (53) 

where 𝜂(𝑁=2𝑛) is the solution obtained by using a method with resolution 2𝑛 ∗ 2𝑛 at 

𝑇/𝑇0 = 18 and 𝜂𝐵  is the solution with sufficiently high resolution. Here 𝜂𝐵  is 

selected as that for Figure 22. The errors of two methods corresponding to different 

initial steepness are plotted in  

 

(a)                     

 

(b) 
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(c)                     

 

Figure 233, together with the lines representing (∆𝑋)𝑠  where ∆𝑋  denotes the 

element size. It shows that the convergent rate of the improved method is closed to the 

4th order for all the cases.  

In addition, the CPU time used by the two methods to achieve the results with error 

less than 0.2% is also investigated. Figure 24 depicts the ratio of the CPU time used 

by the Method in [4] to that of the improved method. It indicates that for waves with 

moderate steepness (𝜀 ≤ 0.1), the CPU time of both the methods is similar. When the 

steepness increases, the advantage of the improve method over the Method in [4] is 

obvious. For instance, in the case of 𝜀 = 0.2985 ≈ 0.3, the ratio is more than 35. Of 

course, if the requirement on the accuracy is not so high, the CPU time ratio may not 

be thus large. We do examine the wave profiles with different errors. The profiles 

along the transversal direction corresponding to different error values are shown in 

Figure 25. It can be seen that the profile with an error of about 0.6% calculated by 

Equation (54) would be quite different. The error of about 0.2% is needed to achieve 

invisible result based on our observation.  

 

(a)                     

 

(b) 
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(c)                     

 

Figure 23. Convergent rate of different methods for 𝜀 = 0.1, 0.2 and 0.3 

 

 

Figure 24. CPU ratio against steepness at error less than 0.2% 

 
Figure 25. Profiles corresponding to different errors  

7. CONCLUSION 

This paper presents three numerical techniques in order to improve the computational 

efficiency of the spectral boundary integral method proposed and developed by 

Clamond & Grue [1], Grue [2, 3] and Fructus et al. [4] for simulating nonlinear water 

waves. The techniques include the de-singularity technique, the anti-aliasing 

technique and the technique for determining the critical value of the free surface 
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gradient for the mixed scheme illustrated in Figure 2. It has demonstrated that the 

improved method equipped with the techniques can significantly accelerate the 

computation, in particular in the cases with strong nonlinearity. In some cases, it has 

been observed to be more than 35 time faster than the method without the techniques. 

APPENDIX 

Equation (19) is re-written as 

 

𝐹{𝑉3} =
𝐾
2𝜋

𝐹 {∫ �̃�
′
[1 − (1 + 𝐷2

)
−3/2

] ∇′ ∙ [(𝜂′ − 𝜂)∇′ 1
𝑅

] 𝑑𝑿′

𝑆0

} A. 1 

The term involving in the local gradient is expanded in the Taylor series  

 
1 − (1 + 𝐷2)−3/2 =

3

2
𝐷2 −

15

8
𝐷4 +

35

16
𝐷6 … A. 2 

Using it, 𝑉3 becomes 

 
𝐹{𝑉3} =

𝐾
2𝜋

𝐹 {
3
2

∫ �̃�
′
𝐷2∇′ ∙ [(𝜂′ − 𝜂)∇′ 1

𝑅
] 𝑑𝑿′

−
15
8

∫ �̃�
′
𝐷4∇′ ∙ [(𝜂′ − 𝜂)∇′ 1

𝑅
] 𝑑𝑿′

+ ∫ �̃�
′
[1 − (1 + 𝐷2

)
−3/2

−
3
2

𝐷2 +
15
8

𝐷4
] ∇′

∙ [(𝜂′ − 𝜂)∇′ 1
𝑅

] 𝑑𝑿′
} 

= 𝐹{𝑉3
(1)

} + 𝐹{𝑉3
(2)

} + 𝐹{𝑉3,𝐼} 

A. 3 

 

where 

 
𝐹 {𝑉3

(1)
} = −

𝐾
6

[𝐾𝑖𝑲 ∙ 𝐹{𝜂3∇�̃�} − 3𝐹 {𝜂𝐹−1
{𝐾𝑖𝑲 ∙ 𝐹{𝜂2∇�̃�}}}

+ 3𝐹 {𝜂2𝐹−1
{𝐾𝑖𝑲 ∙ 𝐹{𝜂∇�̃�}}} + 𝐹 {𝜂3𝐹−1

{𝐾3𝐹{�̃�}}}] 

A. 4 

and 

 
𝐹 {𝑉3

(2)
} = −

𝐾
120

[𝑖𝑲𝐾3 ∙ 𝐹{𝜂5∇�̃�} − 5𝐹 {𝜂𝐹−1
{𝑖𝑲𝐾3 ∙ 𝐹{𝜂4∇�̃�}}}

+ 10𝐹 {𝜂2𝐹−1
{𝑖𝑲𝐾3 ∙ 𝐹{𝜂3∇�̃�}}}

− 10𝐹 {𝜂3𝐹−1
{𝑖𝑲𝐾3 ∙ 𝐹{𝜂2∇�̃�}}}

+ 5𝐹 {𝜂4𝐹−1
{𝑖𝑲𝐾3 ∙ 𝐹{𝜂∇�̃�}}}

+ 𝐹 {𝜂5𝐹−1
{𝐾5𝐹{�̃�}}}] 

A. 5 

 

Both Equations A. 4 and A. 5 differ from these by Grue [3], though it can be proven 

that they are equivalent. The corresponding equations in Grue [3] contain 7 and 11 
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terms in 𝑉3
(1)

 and 𝑉3
(2)

 , respectively. Therefore the equations above need less 

calculation.  

In order to estimate the leading order of 𝑉3,𝐼, the expansion goes further to the 8th 

order convolution 

 
𝐹{𝑉3,𝐼} =

𝐾
2𝜋

𝐹 {
35
16

∫ �̃�
′
∇′ ∙ [(𝜂′ − 𝜂)∇′ 1

𝑅
] 𝐷6𝑑𝑿′

+ ∫ �̃�
′
[1 − (1 + 𝐷2

)
−3/2

−
3
2

𝐷2 +
15
8

𝐷4 −
35
16

𝐷6
] ∇′

∙ [(𝜂′ − 𝜂)∇′ 1
𝑅

] 𝑑𝑿′
} 

= 𝐹 {𝑉3
(3)

} +
𝐾
2𝜋

𝐹 {∫ �̃�
′
[1 − (1 + 𝐷2

)
−3/2

−
3
2

𝐷2 +
15
8

𝐷4 −
35
16

𝐷6
] ∇′

∙ [(𝜂′ − 𝜂)∇′ 1
𝑅

] 𝑑𝑿′
} 

A. 6 

where 

 
𝐹 {𝑉3

(3)
} =

𝐾
2𝜋

𝐹 {
35
16

∫ �̃�
′
∇′ ∙ [(𝜂′ − 𝜂)∇′ 1

𝑅
] 𝐷6𝑑𝑿′

}

= −
𝐾

5040
[𝑖𝑲𝐾5 ∙ 𝐹{𝜂7∇�̃�} − 7𝐹 {𝜂𝐹−1

{𝑖𝑲𝐾5 ∙ 𝐹{𝜂6∇�̃�}}}

+ 21𝐹 {𝜂2𝐹−1
{𝑖𝑲𝐾5 ∙ 𝐹{𝜂5∇�̃�}}}

− 35𝐹 {𝜂3𝐹−1
{𝑖𝑲𝐾5 ∙ 𝐹{𝜂4∇�̃�}}}

+ 35𝐹 {𝜂4𝐹−1
{𝑖𝑲𝐾5 ∙ 𝐹{𝜂3∇�̃�}}}

− 21𝐹 {𝜂5𝐹−1
{𝑖𝑲𝐾5 ∙ 𝐹{𝜂2∇�̃�}}}

+ 7𝐹 {𝜂6𝐹−1
{𝑖𝑲𝐾5 ∙ 𝐹{𝜂∇�̃�}}} + 𝐹 {𝜂7𝐹−1

{𝐾7𝐹{�̃�}}}] 

A. 7 

Therefore 

 

𝑉3
(3)

= −
1

5040
𝐹−1 {𝑖𝑲𝐾6 ∙ 𝐹{𝜂7∇�̃�} − 7𝐾𝐹 {𝜂𝐹−1 {𝑖𝑲𝐾5 ∙ 𝐹{𝜂6∇�̃�}}}

+ 21𝐾𝐹 {𝜂2𝐹−1 {𝑖𝑲𝐾5 ∙ 𝐹{𝜂5∇�̃�}}}

− 35𝐾𝐹 {𝜂3𝐹−1 {𝑖𝑲𝐾5 ∙ 𝐹{𝜂4∇�̃�}}}

+ 35𝐾𝐹 {𝜂4𝐹−1 {𝑖𝑲𝐾5 ∙ 𝐹{𝜂3∇�̃�}}}

− 21𝐾𝐹 {𝜂5𝐹−1 {𝑖𝑲𝐾5 ∙ 𝐹{𝜂2∇�̃�}}}

+ 7𝐾𝐹 {𝜂6𝐹−1 {𝑖𝑲𝐾5 ∙ 𝐹{𝜂∇�̃�}}} + 𝐾𝐹 {𝜂7𝐹−1 {𝐾7𝐹{�̃�}}}} 

A. 8 

Page 38 of 42

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

For 𝜂 = 𝜀𝑐𝑜𝑠𝑋, �̃� = 𝜀𝑠𝑖𝑛𝑋 and 𝑉 = 𝜀𝑠𝑖𝑛𝑋, one obtains that 

 
𝑉3

(3)
= −

1

5040

𝜀8

128
[−17388 sin(2𝑋) + 3024 sin(4𝑋) − 12 sin(6𝑋)] 

~
69

2560
𝜀8 sin(2𝑋) 

A. 9 

Similarly, the local gradient term of 𝑉4 in Equation (20),  

 

𝑉4 = 𝐹−1 {
𝐾

2𝜋
𝐹 {∫

𝑉′

𝑅
(1 −

1

√1 + 𝐷2
) 𝑑𝑿′

𝑆0

}} A. 10 

can also be expanded in the Taylor series  

 
1 −

1

√1 + 𝐷2
=

1

2
𝐷2 −

3

8
𝐷4 +

5

16
𝐷6 + ⋯ A. 11 

Then this integration of 𝑉4 could be rewritten as 

 
𝐹{𝑉4} =

𝐾

2𝜋
𝐹 {∫

𝑉′

𝑅

1

2
𝐷2𝑑𝑿′ − ∫

𝑉′

𝑅

3

8
𝐷4𝑑𝑿′ + ∫

𝑉′

𝑅

5

16
𝐷6𝑑𝑿′

+ ∫
𝑉′

𝑅
(1 −

1

√1 + 𝐷2
−

1

2
𝐷2 +

3

8
𝐷4 −

5

16
𝐷6) 𝑑𝑿′} 

= 𝐹{𝑉4
(1)

} + 𝐹{𝑉4
(2)

} + 𝐹{𝑉4
(3)

} + 𝐹{𝑉4,𝐼} 

A. 12 

 

where 

 
𝐹{𝑉4

(1)
} = −

𝐾

2
[𝐾𝐹{𝜂2𝑉} − 2𝐹 {𝜂𝐹−1{𝐾𝐹{𝜂𝑉}}}

+ 𝐹 {𝜂2𝐹−1{𝐾𝐹{𝑉}}}] 

A. 13 

 
𝐹{𝑉4

(2)
} = −

𝐾

24
[𝐾3𝐹{𝑉𝜂4} − 4𝐹 {𝜂𝐹−1{𝐾3𝐹{𝑉𝜂3}}}

+ 6𝐹 {𝜂2𝐹−1{𝐾3𝐹{𝑉𝜂2}}}

− 4𝐹 {𝜂3𝐹−1{𝐾3𝐹{𝑉𝜂}}} + 𝐹 {𝜂4𝐹−1{𝐾3𝐹{𝑉}}}] 

A. 14 

 
𝐹{𝑉4

(3)
} =

−𝐾

720
[𝐾5𝐹{𝑉𝜂6} − 6𝐹 {𝜂𝐹−1{𝐾5𝐹{𝑉𝜂5}}}

+ 15𝐹 {𝜂2𝐹−1{𝐾5𝐹{𝑉𝜂4}}}

− 20𝐹 {𝜂3𝐹−1{𝐾5𝐹{𝑉𝜂3}}}

+ 15𝐹 {𝜂4𝐹−1{𝐾5𝐹{𝑉𝜂2}}}

− 6𝐹 {𝜂5𝐹−1{𝐾5𝐹{𝑉𝜂}}} + 𝐹 {𝜂6𝐹−1{𝐾5𝐹{𝑉}}}] 

A. 15 

 

𝐹{𝑉4
(1)

} is the same as that in Fructus et al [4]. The other two, corresponding to the 
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5th and 7th order convolutions are consistent with these in Grue [3]. The evaluation of 

𝑉4 is implicit due to the involvement of 𝑉 and needs to be determined by iterations.  
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