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The Approximate Determinantal Assignment
Problem

John Leventides∗, George Petroulakis† and Nicos Karcanias‡

August 31, 2013

Abstract

The Determinantal Assignment Problem (DAP) has been introduced
as the unifying description of all frequency assignment problems in linear
systems and it is studied in a projective space setting. This is a multi-linear
nature problem and its solution is equivalent to finding real intersections
between a linear space, associated with the polynomials to be assigned,
and the Grassmann variety of the projective space. This paper introduces
a new relaxed version of the problem where the computation of the ap-
proximate solution, referred to as the approximate DAP, is reduced to a
distance problem between a point in the projective space from the Grass-
mann variety Gm(Rn). The cases G2(Rn) and its Hodge-dual Gn−2(Rn)
are examined and a closed form solution to the distance problem is given
based on the skew-symmetric matrix description of multivectors via the gap
metric. A new algorithm for the calculation of the approximate solution is
given and stability radius results are used to investigate the acceptability
of the resulting perturbed solutions.

Key words. Algebraic Control Theory, Frequency Assignment Problems, Exte-
rior Algebra, Approximation.

1 Introduction

The Determinantal Assignment Problem (DAP) belongs to the family of algebraic
synthesis methods and has emerged as the abstract problem formulation of pole,
zero assignment of linear systems [Kar. 1]. This approach has unified the study
of frequency assignment problems (pole, zero) of multivariable systems under
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constant, dynamic centralized, or decentralized control structure, [Kar. 2]. This
problem is equivalent to finding solutions to an inherently non-linear problem
which has a determinantal character demonstrating the significance of exterior
algebra and classical algebraic geometry for this family of control problems.

The multilinear nature of DAP has suggested, [Kar. 1], an Exterior Algebra
framework for its study. Specifically, in [Kar. 1] it has been proved that DAP may
be reduced to a linear problem of zero assignment of polynomial combinants, de-
scribed by the solutions of the linear system Ph = a where P is the corresponding
Plücker matrix [Kar. 1] and a standard problem of multi-linear algebra expressed
by the decomposability of the multivector h, [Mar. 1]. The solution of the linear
sub-problem, defines a linear space in a projective space whereas decomposability
is characterized by the set of Quadratic Plücker Relations (QPR), which define
the Grassmann variety of a related projective space [Hod. 1]. Thus, the solv-
ability of DAP is reduced to a problem of finding real intersections between the
linear variety and the Grassmann variety. This novel Exterior Algebra-Algebraic
Geometry method, has provided, [Kar. 1], a number of invariants, such as the
Plücker Matrices and Grassmann vectors, suitable for the characterization of ra-
tional vector spaces and the solvability of control problems, in both generic and
non-generic cases, and it is flexible as far as handling dynamic schemes, as well as
structurally constrained compensation schemes, [Gia. 1]. An additional advan-
tage of this framework is that it provides a unifying computational framework
for finding the solutions, when such solutions exist.

The above approach for the study of DAP in a projective, rather than an affine
space setting, as in [Bro. 1], [Mart. 1], among others, provides a computational
approach that relies on exterior algebra and on the explicit description of the
Grassmann variety in terms of the QPR, which allows its formulation as a distance
problem between varieties in the (real) projective space. This may transform the
problem of exact intersection to a problem of “approximate intersection”, i.e.,
small distance -via a suitable metric- between varieties, thus transform the exact
DAP synthesis method to a DAP design methodology, where approximate solu-
tions to the exact problem are sought. This enables the derivation of solutions,
even for non-generic cases and handles problems of model uncertainty, as well as
approximate solutions to the cases where generically there is no solution of the
exact problem.

We propose the distance problem

Ĥε := {ĥ ∈ Gq(Rn) : dist(ĥ,K) ≤ ε} (1.1)

where K is described by the solutions of a linear system and Gq(Rn) the Grass-
mann variety described by the set of QPR, as a relaxation of the exact intersection
problem, which is referred to as the approximate DAP. This extension makes the
investigation relevant to problems where there are no real intersections and thus
approximate solutions are sought. Note that a solution to the approximate prob-
lem produces an approximate polynomial that will be assigned and this requires
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studying the stability properties of this perturbed polynomial, which are very
important for the perturbed solutions to be acceptable.

In this paper, we consider the solution of problem (1.1) and the stability
properties of the “approximate” polynomial â(s) that corresponds to an approx-
imation ĥ. Our approach views the problem as a minimization problem between
a solution z(x) of a linear problem and the Grassmann variety G2(Rn), i.e.,

min
x
g(z(x), G2(Rn)) (1.2)

where g is the gap, [Wey. 1], between the parameterized multivector z(x) in
the projective space and the Grassmann variety with x being the vector of free
parameters that describe the linear variety K. It is shown that the solution of
(1.2) is implied by the solution of minz g(z,G2(Rn)) when z is constant, i.e., least
distance of a fixed point from the Grassmann variety.

The methodology used for the computation of the above minimizers is based
on the best decomposable approximation of multivectors, [Delav. 1], [Kar. 3],
[Yok. 1], in the vicinity of a parametric multivector in the projective space. All
results are given in closed-form formulae and further connection with similar
optimization-approximation problems and techniques is provided. Simplifica-
tions of the results are also given in case of specific Grassmann varieties. Our
suggestion can be used independently of generic or exact solvability conditions.

The paper is organized in the following way: In section 2, we present some
preliminary definitions and results concerning DAP and how these imply the ap-
proximate DAP. In section 3 it is shown how the approximate DAP is formulated
and solved for a constant and fixed point z ∈ ∧2(Rn). Specifically, in 3.1 we use
some primary results with regard to antisymmetric matrices and multi-vector de-
composability in order to derive a specific formula for our problem, the so called
prime decomposition of 2-vectors. In section 3.2, we apply the previous results
to the related projective space and new upper-lower bounds are obtained for the
gap between a point in the projective and the Grassmann variety. In section 3.3
the same problem is studied when z ∈ ∧n−2(Rn). In Section 4, solutions are given
for parameterized multivectors: In section 4.1, the approximate DAP is solved
for z(x) and for special cases it is shown that the solution is reduced to the opti-
mization of a 4th order polynomial constrained to the unit sphere. The stability
of the “approximate” polynomial â(s), implied by ĥ is examined in section 4.2
via stability radius type results. Finally, an algorithm for direct calculations and
applications on the above results is presented in section 4.3.

Throughout this paper the following notation is adopted: Scalars are denoted
by lower-case letters, e.g., a, b, etc. Vectors and q-vectors (multivectors) are
written as lower underline case letters, e.g., x, y, etc. All q-vectors in this article
are considered elements of the set ∧q(Rn) or its Hodge-dual, [Mar. 1], ∧n−q(Rn)
where q ≤ n. The respective Hodge-star operator for an n-dimensional oriented
vector space V will be denoted as (·)∗. The wedge or exterior product between
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multivectors a, b is denoted as a ∧ b. Matrices will be denoted in upper case
letters, e.g., X, Y , etc. The right and the left kernel a matrix A, are denoted
respectively by Nr(A), N`(A). To denote the compound matrix of a matrix A,
i.e., all the q × q minors of A we use the notation Cq(A). A q-vector in ∧q(Rn)
written as a1∧a2∧· · ·∧aq, with ai in Rn, i = 1, ..., n, will be called decomposable
[Mar. 1], and equivalently a1 ∧ a2 ∧ · · · ∧ aq = Cq(A), A := [a1, a2, ..., aq]. The

Grassmann variety of a real projective space P(nq)−1 (R), i.e., the variety of the

decomposable vectors of P(nq)−1 (R), is denoted as Gq(Rn).

2 Background Results

The constant Determinantal Assignment Problem has been defined, [Kar. 1], as
the problem of the derivation of a matrix H ∈ H, H = {H ∈ Rq×n, q ≤ n} with
rankH = q, such that

det (H ·M(s)) = a(s) (2.1)

where M(s) is a given polynomial matrix in Rn×q[s] with rank{M(s)} = q and
a(s) is an arbitrary polynomial polynomial of an appropriate degree d. If H is
a polynomial matrix, problem (2.1) is usually called Dynamical DAP. However,
since all dynamics can be shifted from H(s) to M(s), (2.1) is usually referred to
as the Determinantal Assignment Problem (DAP) and its difficulty is mainly due
to the multi-linear nature of the problem as this is described by its determinantal
character.

Remark 2.1. The degree of the polynomial a(s) depends firstly on the order of
M(s), [For. 1], and secondly, on the structure of H. However, in most of our
problems the degree of a(s) is equal to the order of M(s).

Remark 2.2. For an n-state, k-input, m-output linear system described by the
S(A,B,C,D) state space description, or the transfer function G(s) represented
by the coprime Matrix Fractional Description (MFD) G(s) = D−1L (s)NL(s) =
D−1R (s)NR(s), DAP takes the following forms:

i) Pole Assignment by State Feedback. If F ∈ Rn×k is a state feedback, then
the closed-loop characteristic polynomial is

aF (s) = det(sIn − A−BF ) = det(M(s)F̃ )

where M(s) = [sIn − A,−B], F̃ = [In, F
t]t.

ii) Pole assignment by constant output feedback. If K ∈ Rm×k is an output
feedback, then the closed-loop characteristic polynomial is

aK(s) = det(DL(s) +NL(s)K) = det(DR(s) +KNR(s)) =
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= det(K̃RTR(s)) = det(TL(s)K̃L)

where

TL(s) = [DL(s), NL(s)], TR(s) =

[
DR(s)
NR(s)

]
, K̃L = [Im, K

t]t, K̃R = [Ik, K]

More forms, such as the design of an n-state observer and the zero assignment
by squaring down may be found in [Kar. 1].

Algebraic techniques have provided both exact solvability conditions, [Lev.1],
[Lev. 2] and generic solvability conditions, [Byr. 1], [Lev. 2], [Mart. 1], whereas
geometric methodologies have used Schubert calculus/Enumerative Geometry,
[Bro. 1] and projective geometry techniques, [Kar. 1]. The projective methodol-
ogy in [Lev.1], [Lev. 2] has provided for the first time a systematic procedure for
finding solutions to such nonlinear problems using a blow-up methodology, known
as Global Linearization which has the significant advantage over the affine space
approach [Byr. 1], [Mart. 1] that it does not just interpret DAP as an intersection
problem between a linear and the Grassmann variety of a projective space, but
also provides a computational framework that is suitable for computing solutions.
From that aspect, eqn.(2.1) is reduced to:

i) Linear subproblem. Suppose that h is free. Find the conditions under which

vectors h ∈ R1×(nq) exist such that

< h,m(s) >= a(s)⇔ ht · P = at (2.2)

where P ∈ R(nq)×(d+1) is the Plücker matrix of the vector space col-span {M(s)},
i.e., the matrix whose i-th row is formed by the coefficients of the polyno-
mials in the i-th coordinate of m(s) and d is the order of M(s).

ii) Multilinear subproblem. Assume that the above linear subproblem is solv-

able and K ⊆ P(nq)−1 (R) be the family of the solution vectors h of (2.2).
Then find whether there exists h ∈ K such that h is decomposable. If such
vector exists, determine the matrix H ∈ Rq×n such that Cq(H) = cht, c ∈
R∗.

where ht := ht1 ∧ · · · ∧ htq ∈ R1×(nq), m(s) := m1(s) ∧ · · · ∧mq(s) ∈ R(nq)×1 and

H =


ht1
ht2
...
htq

 , M(s) = [m1(s),m2(s), ...,mq(s)]
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Therefore, if H̃ is the set of solutions of (2.1), then

H̃ = K ∩Gq(Rn) (2.3)

and H̃, may be approximated by the following set

Ĥε := {ĥ ∈ Gq(Rn) : dist(ĥ,K) ≤ ε} (2.4)

where K is described by the solutions of the linear system (2.2) and Gq(Rn) by
the set of QPR. Then

H̃ =
⋂
ε≥0

Ĥε (2.5)

Defining Ĥε represents a relaxation of the exact intersection problem, and it is
referred to as approximate DAP.

3 Distances between a Constant Point and De-

composable Multivectors

In this section, we start with the study of the distance of a point from the
Grassmann variety, where the point is considered as fixed. The results of this
analysis will be very helpful when afterwards the point will be considered as being
a member of the linear variety K.

3.1 The Prime Decomposition of a 2-vector

Most optimization problems that concern Grassmann manifolds are resolved into
multilinear SVD problems, [Delat. 1], [Delav. 1], [Kol. 1], [Sav. 1], [Yok. 1]. A
first step is to decompose the multi-vector or the tensor into a sum of lower-rank
tensors. In this section we prove a very useful formula for a 2-vector decompo-
sition along with some new properties. We will need the exact matrix form of a
2-vector first.

Definition 3.1. Let z ∈ ∧2(Rn), y
1
, y

2
∈ Rn and f(y

1
, y

2
) =< z, y

1
∧ y

2
> be a

bilinear form, from Rn×Rn to R with respect to y
1
, y

2
. We define as Tz ∈ Rn×n

the matrix representation of f , i.e.,

< z, y
1
∧ y

2
>= yt

1
· Tz · y2 (3.1)

The skew-symmetric matrix Tz now easily follows.

Lemma 3.1. For every multivector z ∈ ∧2(Rn), Tz is given by

Tz =


0 z12 z13 · · · z1,n
−z12 0 z23 · · · z2,n

...
...

... · · · ...
−z1,n−1 · · · −zn−2,n−1 0 zn−1,n
−z1,n −z2,n · · · −zn−1,n 0

 (3.2)
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Proof. If {ei ∧ ej}1≤i<j≤n an orthonormal basis of ∧2(Rn) then we have that
z =

∑
1≤i<j≤n zijei ∧ ej, where zij are the components of z known as Plücker

coordinates, [Hod. 1]. Therefore,

f(ei, ej) =< z, ei ∧ ej >= zij, f(ej, ei) =< z, ej ∧ ei >= −zij

and f(ei, ei) = 0. Hence, Tz readily follows.

Lemma 3.2. [Gan. 1] Every skew-symmetric matrix has k := [n/2] imaginary
eigenvalues, ±iσ1, ...,±iσk with σk ≥ σk−1 ≥ · · · ≥ σ1 ≥ 0, corresponding to the
complex eigenvectors e2k ± ie2k−1, ..., e2 ± ie1 when n = 2k and 0,±iσ1, ...,±iσk,
e2k+1, e2k±ie2k−1, ..., e2±ie1 when n is odd, where {ej}2kj=1, {ej}2k+1

j=1 are orthonor-
mal bases for Rn when n = 2k, n = 2k + 1, respectively.

For the rest of the paper, σi will denote the imaginary part of the eigenvalues
of Tz and ei the corresponding vectors obtained by the eigenvectors of Tz.

Theorem 3.1. Let z ∈ ∧2(Rn). Then z is expressed as:

z = σkxk + σk−1xk−1 + ...+ σ1x1 (3.3)

where xk := e2k ∧ e2k−1, ..., x1 := e2 ∧ e1.

Proof. Following [Gan. 1], Tz, is written as

[
e2k, e2k−1, . . . , e2, e1

]
· block-diag

{[
0 σi
−σi 0

]}k
i=1

·


et2k
et2k−1

...
et2
et1


if n = 2k, or

[
e2k+1, e2k, . . . , e2, e1

]
· block-diag

{
0,

[
0 σk
−σk 0

]
, ...,

[
0 σ1
−σ1 0

]}
·


et2k+1

et2k
...
et2
et1


if n = 2k + 1. When n = 2k, we obtain:

Tz = σk(e2ke
t
2k−1 − e2k−1et2k) + · · ·+ σ1(e2e

t
1 − e1et2) =

= σkTe2k∧e2k−1
+ · · ·+ σ1Te2∧e1

Hence, z = σkxk + σk−1xk−1 + ... + σ1x1. The proof is similar for the extra zero
eigenvalue, when n = 2k + 1.
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The decomposition defined by (3.3) will be referred as the prime decomposition
of z.

Corollary 3.1. (Properties of the Prime Decomposition) Let z ∈ ∧2(Rn) and let
us denote

z ∧ z ∧ · · · ∧ z︸ ︷︷ ︸
k−times

≡ z∧k (3.4)

1) If σ1, σ2, ..., σk are the imaginary parts of the eigenvalues of Tz, then

z =
k∑
i=1

σixi, z ∧ z = 2!
∑
j>i

σiσjxi ∧ xj, ..., (3.5)

z∧µ = µ!
∑

1≤i1<...<iµ≤k

σi1σi2 · · ·σiµxi1 ∧ xi2 ∧ ... ∧ xiµ , 2 ≤ µ ≤ k, ..., (3.6)

z∧k = k!σ1σ2 · · ·σkx1 ∧ x2 ∧ ... ∧ xk (3.7)

2) The characteristic polynomial of Tz is given by

ϕ(λ) =


λn + ‖z‖2λn−2 +

‖z ∧ z‖2

(2!)2
λn−4 + · · · ‖z

∧k‖2

(k!)2
, n = 2k

λn + ‖z‖2λn−2 +
‖z ∧ z‖2

(2!)2
λn−4 + · · · ‖z

∧k‖2

(k!)2
λ, n = 2k + 1

(3.8)

3) The best decomposable approximation of z is given by ẑ = σkxk with

‖z − ẑ‖ =
√
σ2
k−1 + σ2

k−2 + ...+ σ2
1 (3.9)

4) z is decomposable if and only if z ∧ z = 0 ∈ ∧4(Rn).

Proof. 1) For k=2 and with the use of the prime decomposition we have that

z ∧ z =

(
k∑
i=1

σixi

)
∧

(
k∑
i=1

σixi

)
=

= σkσk−1xk ∧ xk−1 + ...+ σkσ1xk ∧ x1+
+ σk−1σkxk−1 ∧ xk + ...+ σk−1σ1xk−1 ∧ x1 + ...

+ σ2σkx2 ∧ xk + ...+ σ2σ1x2 ∧ x1+
+ σ1σkx1 ∧ xk + ...+ σ1σ2x1 ∧ x2 =

= 2!
∑
j>i

σiσjxi ∧ xj
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Suppose that (3.6) holds true. Then

z∧(µ+1) = z∧µ ∧ z =

µ!
∑

1≤i1<...<iµ≤k

σi1 · · ·σiµxi1 ∧ ... ∧ xiµ

 ∧ k∑
i=1

σixi =

= (µ+ 1)µ!
∑

1≤i1<...<iµ+1≤k

σi1 · · ·σiµ+1xi1 ∧ ... ∧ xiµ+1

which proves the result.

2) If n = 2k, from the spectral decomposition of Tz we have that

ϕ(λ) = (λ2 + σ2
1)(λ2 + σ2

2) · · · (λ2 + σ2
k) =

= λn + (σ2
1 + · · ·+ σ2

k)λ
n−1 + · · ·+ (σ2

1 · · ·σ2
k)

Similarly, if n is odd:

ϕ(λ) = (λ2 + σ2
1)(λ2 + σ2

2) · · · (λ2 + σ2
k)λ =

= λn + (σ2
1 + · · ·+ σ2

k)λ
n−1 + · · ·+ (σ2

1 · · ·σ2
k)λ

The result now follows, due to the equations (3.5)-(3.7).

3) Let D∧2(Rn) denote the subsets of decomposable vectors in ∧2(Rn) and x ∈
D∧2(Rn). Then,

min
x∈D∧2(Rn)

‖x− z‖2 = min
x∈D∧2(Rn)

{
‖z‖2 + ‖x‖2 − 2 < z, x >

}
(3.10)

Thus (3.10) is minimized at x1 =< z, x > x/‖x‖2 for some decomposable
vector x. Hence,

min
x∈D∧2(Rn)

‖x− z‖2 = min
x∈D∧2(Rn),‖x‖=1

{
‖z‖2− < z, x >2

}
=

= ‖z‖2 − max
x∈D∧2(Rn),‖x‖=1

< z, x >2

We are therefore aiming to maximize < z, x > when x = y
1
∧ y

2
where

y
1
, y

2
are orthonormal. Thus,

max
y
1
,y

2

| < z, y
1
∧ y

2
> | = max

y
1
,y

2

< yt
1
Tz, y2 >= max

‖y
1
‖=1

〈
yt
1
Tz,

yt
1
Tz

‖yt
1
Tz‖

〉
=

= max
‖y

1
‖=1
‖yt

1
Tz‖ = σk

Thus, (3.10) implies

‖x− z‖2 ≥ σ2
k + σ2

k−1 + · · ·+ σ2
1 + ‖x‖2 − 2σk · ‖x‖ ≥

9



≥ σ2
k−1 + σ2

k−2 + · · ·+ σ2
1 + (σk − ‖x)‖)2 ≥

≥ σ2
k−1 + σ2

k−2 + · · ·+ σ2
1

Hence, ẑ = σkxk realizes the least distance from all decomposable multi-
vectors, which is given by eqn.(3.9).

4) (⇒) If z is decomposable then z = a ∧ b, a, b ∈ Rn. Hence, z ∧ z =
a ∧ b ∧ a ∧ b = 0.

(⇐) If z ∧ z = 0, then from the prime decomposition we have that
σiσj = 0, for all (i, j), j > i pairs. This means that k − 1 the number
σi have to be zero. Due to 0 ≤ σ1 ≤ σ2 ≤ ... ≤ σk, we have that
σ1, ..., σk−1 = 0. Therefore, z = σk · xk.

Remark 3.1. A similar problem to Corollary 3.1-(3) is addressed at [Eck. 1]
with the use of the SVD for lower matrix-rank approximations. Also, a different
proof of Corollary 3.1-(4) may be found in [Hit. 1]. Clearly, eqn.(3.3) implies
significant simplifications to both of these problems.

Furthermore, Corollary 3.1-(3) implies the derivation of the QPR in the
∧2(Rn) case in a rather straight-forward way, contrary to the classical formu-
lae [Hod. 1]. We may illustrate this by the following example.

Example 3.1. We examine the non-trivial case n = 5. Then

z = z1e1 ∧ e2 + z2e1 ∧ e3 + z3e1 ∧ e4 + z4e1 ∧ e5 + z5e2 ∧ e3+
+ z6e2 ∧ e4 + z7e2 ∧ e5 + z8e3 ∧ e4 + z9e3 ∧ e5 + z10e4 ∧ e5

Hence,

z ∧ z = 0⇔ (z1z8 − z2z6 + z3z5)e1 ∧ e2 ∧ e3 ∧ e4 + (z1z9 − z2z7 + z4z5)e1∧
∧ e2 ∧ e3 ∧ e5 + (z1z10 − z3z7 + z4z6)e1 ∧ e2 ∧ e4 ∧ e5 + (z2z10 − z3z9+
+ z4z8)e1 ∧ e3 ∧ e4 ∧ e5 + (z5z10 − z6z9 + z7z8)e2 ∧ e3 ∧ e4 ∧ e5 = 0

The second order homogeneous equations

z1z8 − z2z6 + z3z5 = 0, z1z9 − z2z7 + z4z5 = 0, z1z10 − z3z7 + z4z6 = 0,

z2z10 − z3z9 + z4z8 = 0, z5z10 − z6z9 + z7z8 = 0

are the Quadratic Plucker Relations (QPR) that define the Grassmann variety of
the projective space P 9(R).
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3.2 Optimization in the Projective Space

If g denotes the gap between a point and the Grassmann variety in the projective

space P(n2)(R) and gap(·, ·) the gap metric between two points in P(n2)(R), we will
calculate g (z,G2(Rn)), i.e., the best decomposable approximation representative
ẑ of a given 2-vector representative z for the respective equivalence classes and
proceed to further simplifications of the result for specific Grassmann varieties.
In the following, for notational simplicity, we identify z ≡ span{z}. The uni-
tary properties of distances in a projective space, [Wey. 1], imply the following
definition.

Definition 3.2. The gap metric gap(z, x) between two multi-vectors z, x is given
by

gap(z, x) = |sin( ˆz, x)| = min
λ

∥∥∥∥ z

‖z‖
− x

‖x‖
· λ
∥∥∥∥ (3.11)

Theorem 3.2. The gap g between z and G2(Rn) is equal to

g (z,G2(Rn)) =

√
σ2
k−1 + σ2

k−2 + ...+ σ2
1

‖z‖
(3.12)

Proof. We have that

g (z,G2(Rn)) : = min
x∈G2(Rn)

gap(z, x) = min
x∈G2(Rn)

√
1− < z, x >2

‖x‖2‖z‖2
=

=

(
1− 1

‖z‖2
max

x∈G2(Rn)

< z, x >2

‖x‖2

) 1
2

=

√
1− σ2

k

‖z‖2
=

=

√
σ2
k−1 + σ2

k−2 + ...+ σ2
1

‖z‖

due to Corollary 3.1-(3).

Theorem 3.3. The maximum possible gap of a multi-vector z ∈ ∧2(Rn) from
G2(Rn) is equal to

max
z
g (z,G2(Rn)) =

√
1− 1

k
(3.13)

Proof. Using the result of Theorem 3.2 we have that

g (z,G2(Rn)) =

√
σ2
k−1 + σ2

k−2 + ...+ σ2
1√

σ2
k + σ2

k−1 + σ2
k−2 + ...+ σ2

1

=
1√

1 +
σ2
k

σ2
k−1+σ

2
k−2+...+σ

2
1

≤

11



≤ 1√
1 +

σ2
k

σ2
k+σ

2
k+σ

2
k+...+σ

2
k

=
1√

1 + 1
k−1

=

√
1− 1

k

Remark 3.2. Clearly, the minimization of g and consequently the multilinear
subproblem of DAP are equivalent to the maximization of the largest eigenvalue
of Tz, since g (z,G2(Rn)) =

√
1− σ2

max/‖z‖2. Note, that eigenvalue optimization
problems of this form are usually addressed algorithmically, e,g., [Lew. 1]. Hence,
Theorem 3.2 implies a closed-form solution for the optimization of the largest
eigenvalue of a skew-symmetric matrix as well.

Now, formula (3.12) can be further simplified if the set of QPR that describe
the respective Grassmann varieties is given. Next theorem concerns this case for
n = 5.

Theorem 3.4. The minimum gap between a 2-vector z ∈ ∧2(R5) and G2(R5) is
given by

g∧(z,G2(R5)) =

√∑
QPR2(z)∑10
i=1 z

2
i

(3.14)

Proof. The minimum gap is g(z, ẑ) = σ1/‖z‖ ≡ g(z), with ẑ = σ2e1∧e2, σ2 ≥ σ1.
From the prime decomposition of z we have that ‖z∧z‖ = ‖2σ1σ2e1∧e2∧e3∧e4‖.
Hence, if

g∧ :=
‖z ∧ z‖
‖z‖2

(3.15)

we have that

g∧ =
2σ1σ2
‖z‖2

=
2
√
‖z‖2 − σ2

1σ1
‖z‖2

= 2

√
1−

(
σ1
‖z‖

)2
σ1
‖z‖

=

= 2
√

1− g2(z)g(z) = 2
√
g2(z)(1− g2(z))

Since the function f(x) =
√
x2(1− x2) is increasing at [0,

√
2/2] we have that

the minimization of g is equivalent to the minimization of g∧. In other words,
the norm of the QPR over the norm of z can be used for minimization in ∧2(R5),
i.e.,

g∧(z,G2(R5)) =
‖z ∧ z‖
‖z‖2

=

√∑
QPR2(z)∑10
i=1 z

2
i

(3.16)

Theorem 3.4 implies the first important result; if a specific Grassmann vari-
ety is given, all distance computations are expressed in terms of z, which is a
remarkable simplification for Grassman optimization problems.
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3.3 Approximation in ∧n−2(Rn)

The results of the previous section may now be extended to the dual case. In
fact, the previous results imply calculations over Gn−2(Rn) and rely on the Hodge
?-operator, [Mar. 1]. This operator was firstly defined in order to generalize the
notion of the Laplacian on Riemannian manifolds.

Definition 3.3. The Hodge ?-operator, for an oriented n-dimensional vector
space V equipped with an inner product < ·, · >, is an operator defined as

∗ : ∧m(V )→ ∧n−m(V ) (3.17)

such that
a ∧ (b∗) =< a, b > w (3.18)

where a, b ∈ ∧m(V ), w ∈ ∧n(V ) defines the orientation on V and n > m.

We first consider some background results, [Mar. 1].

Lemma 3.3. The Hodge ?-operator is linear, one to one, onto and an isometry.

Lemma 3.4. Let D∧2(Rn), D∧n−2(Rn) denote the subsets of decomposable vectors
in ∧2(Rn), ∧n−2(Rn) respectively. Then ? : D∧2(Rn) → D∧n−2(Rn) is also one to
one and onto.

Next we use conjugacy in general vector spaces to study the minimization
problem for Gn−2(Rn).

Proposition 3.1. Let U, V be two finite dimensional vector spaces and T : U→
V a linear, “1-1”, onto isometry. If U1, V1 are two isometric subsets of U, V
respectively through T and

f(u) := arg min
u1∈U1

‖u− u1‖, g(u) := arg min
v1∈V1

‖u− v1‖ (3.19)

then
f(u) = T−1(g(T (u))) (3.20)

Proof. Following the standard properties of operators and duality in Banach
spaces, e.g., [Roc. 1], we have that

f(u) = arg min
u1∈U1

‖T (u)− T (u1)‖ = T−1
(

arg min
T (u1)∈V1

‖T (u)− T (u1)‖
)

=

= T−1(arg min
v1∈V1

‖T (u)− v1‖) = T−1(g(T (u)))

13



The above result may be described by the commutative diagram:

T
U −→ V

↓ f g ↓
U1 −→ V1

T

In our case, U, V are represented by ∧2(Rn), ∧n−2(Rn) and U1, V1 by D∧2(Rn)
and D∧n−2(Rn), respectively. Then the diagram above, shows how the minima for
D∧n−2(Rn) and D∧2(Rn) in Proposition 3.1 may be derived from each other. Hence,
if T ≡ ? the following result is established.

Corollary 3.2. For every z ∈ ∧n−2(Rn) the following equality holds:

min
a1,..,an−2∈Rn

‖z − a1 ∧ ... ∧ an−2‖ = min
b1,b2∈Rn

‖z∗ − b1 ∧ b2‖ (3.21)

The above may be illustrated by the following example:

Example 3.2. Let z = (6, 1, 7,−3,−11, 0,−5, 1, 8, 2)t ∈ ∧3(R5) ' R10. Then
z∗ = (2,−8, 1, 5, 0, 11,−3, 7,−1, 6)t ∈ ∧2(R5) ' R10. Hence,

Tz∗ =


0 2 −8 1 5
−2 0 0 11 −3

8 0 0 7 −1
−1 −11 −7 0 6
−5 3 1 −6 0


From the canonical form of Tz∗, we have

r = (−0.0785093, 0.094211, 0.549565, 0.204124, 0.800795)t,
b1 = (0.395816,−0.0925693,−0.0410099, 0.900056,−0.151586)t,
b2 = (−0.0182749,−0.613107,−0.616617, 0, 0.493507)t,
a1 = (0.236471, 0.760887,−0.527125, 0, 0.29542)t,
a2 = (−0.883693, 0.166455,−0.195497, 0.38501,−0.0701948)t

and σ2 = 8.16558, σ4 = 15.5988. Therefore,

σ2 · a1 ∧ a2 = (5.81187,−4.18115, 0.743424, 1.99617,−0.49817,

2.3921,−0.83766,−1.65719, 0.77373,−0.928749)t

and

σ4 · b1 ∧ b2 = (−3.81187,−3.81885, 0.256576, 3.00383, 0.49817,

8.6079,−2.16234, 8.65719,−1.77373, 6.92875)t

14



Hence,

σ2 · a1 ∧ a2 + σ4 · b1 ∧ b2 = (2,−8, 1, 5, 0, 11,−3, 7,−1, 6)t = z∗

and x = σ4 · b1 ∧ b2 is the best decomposable approximation of z∗. Thus

(σ4 · b1 ∧ b2)∗ = σ4 · a1 ∧ a2 ∧ r = (6.92874, 1.77373, 8.65719,−2.16234,

− 8.60789, 0.498171,−3.00383, 0.256576, 3.81885,−3.81187)t

is the best decomposable approximation of z.

4 Solutions on the Approximate DAP

In this section, z is obtained as a function z(x) of the degrees of freedom x that
describe the linear variety K of the linear system (2.2). Note that such linear
varieties are functions of the coefficients of the polynomial that is to be assigned.
The optimization problem (1.2) is solved and the solution leads to a perturbed
solution of the exact assignment problem associated with a new assignable poly-
nomial. A stability criterion is given to characterize the approximate polynomial
that corresponds to ẑ.

4.1 Least Distance between K and G2(Rn)

Here, the generalization of z into z(x) is considered and then used in order to
calculate the gap between the linear variety K and the Grassmann variety G2(Rn).

Proposition 4.1. Let x = (x1, ..., xd) be the vector of the d- free parameters that
define the linear variety K, d ∈ N. Then the least distance between K and G2(Rn)
is given by

min
x

√
σ2
k−1(x) + σ2

k−2(x) + ...+ σ2
1(x) subject to

k∑
i=1

σ2
i (x) = 1 (4.1)

where k := [n/2], σi(x) are the real parts of the i−th eigenvalue of Tz and z is
the parametric form of the linear variety K.

Proof. Let the determinantal assignment problem htP = at. Since the poles of
the system remain the same under scalar multiplication, we are interested for the
general solution of htP = λat, λ ∈ R. Therefore, if ht0 is a particular solution of
DAP then

ht = λht0 + κtV = [λ, κt]

[
ht0
V

]
(4.2)
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where V ∈ R(r−1)×(n2) is the matrix representation of N`(P ) and κt ∈ Rr−1 for

r = dim

(
row-span

{[
ht0
V

]})
. Hence, if (v1, v2, ..., vr) is an orthonormal basis

of the row-span

{[
ht0
V

]}
, then

z = x1v1 + x2v2 + · · ·+ xrvr ≡ z(x)

Thus, ‖z‖ = ‖x‖ = 1 and the result follows from Theorem 3.2.

Similarly to Theorem 3.2, eqn.(4.1) can be further simplified if specific Grass-
mann varieties are given. The following theorem is one of the main results of
this article, which characterizes the way the distance between the linear variety
K and specific Grassmann varieties may be computed.

Theorem 4.1. The least distance problem between the linear variety K and
G2(R5) is equivalent to the minimization of a 4th order homogeneous polynomial
F (x), constrained to the unit sphere.

Proof. We saw that the case n = 5 has implied that the minimization of g∧ =
‖z∧z‖/‖z‖2, which may be used instead of the minimization of the gap g. Hence,
problem (4.1) can be transformed into

min
z
‖z ∧ z‖2 subject to ‖z‖ = 1 (4.3)

Therefore, due to eqn.(4.1) we obtain

‖z ∧ z‖2 =

∥∥∥∥∥
(

r∑
i=1

xivi

)
∧

(
r∑
i=1

xivi

)∥∥∥∥∥
2

=

∥∥∥∥∥
r∑

i,j=1

xixjvi ∧ vj

∥∥∥∥∥
2

=

=

〈
r∑

i,j=1

xixjvi ∧ vj,
r∑

%,µ=1

x%xµv% ∧ vµ

〉
=

=
∑

1≤i,j,%,µ≤r

xixjx%xµ〈vi ∧ vj, v% ∧ vµ〉 (4.4)

Eqn.(4.4) is a 4th order homogeneous polynomial F (x) in terms of xi, xj, x%, xµ.
Thus (4.1) is written as

min
x
F (x) subject to ‖x‖ = 1 (4.5)

If z = z(x) implied by the solution of (4.1) or (4.5) is decomposable, then
DAP is solved precisely. If z is not decomposable, its prime decomposition is
implemented in order to obtain the best decomposable approximation ẑ.
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4.2 Stability Criteria for the Approximate DAP

In this section we assume that the solution z(x) is not a decomposable multi-
vector, i.e., the gap between z(x) and the Grassmann variety in not zero. Then
a perturbed polynomial â(s) is derived such that ẑtP = ât, with respect to the
initial problem. We examine the stability properties of the resulting polynomial
â(s) and its distance from the nominal polynomial a(s) in eqn.(2.1), which we
intended to assign. For this study we are using the results on the stability radius
[Hin. 1].

Definition 4.1. If

a(α, s) = sn + an−1s
n−1 + · · · a1s+ a0, α = (1, an−1, ..., ao) (4.6)

is a Hurwitz polynomial written as, a(α, s) = a1(−s2)+sa2(−s2) where aj(−s2), j =
1, 2, are real polynomials in −s2, then the stability radius ra is given by

ra = min

{
a0,

(
max
ω2∈R+

f(ω2)

)−1/2}
(4.7)

where

f(ω2) =
1 + ω4 + · · ·+ ω2n−4

a21 (ω2) + a22 (ω2)
, if n = 2k

or

f(ω2) =
(1 + ω4 + · · ·+ ω2n−6) (1 + ω4 + · · ·ω2n−2)

a21 (ω2) (1 + ω4 + · · ·+ ω2n−6) + a22 (ω2) (1 + ω4 + · · ·+ ω2n−2)
, if n = 2k+1

From (4.7), we easily verify the following result.

Lemma 4.1. Let ‖·‖ be the Euclidean norm in Rn where n is the degree of a stable
polynomial a(s). If â(s) is the perturbed polynomial with respect to the coefficients
α of a and ‖a − â‖ ≤ rα, where a, â their coefficient-vectors respectively, then
â(s) is also stable.

The following criterion is now obtained, linking the decomposability of DAP
to its stability.

Theorem 4.2. Let z ∈ ∧2(Rn) be a 2-vector and ẑ be its best decomposable
approximation. If a, â are the coefficient-vectors of a(s), â(s) respectively, and
‖z − ẑ‖ ≤ rα/σP , where σP is the largest singular value of the Plücker matrix P
and a(s) is a stable polynomial, then â is also stable.

Proof. Let the spectral norm ‖A‖2 = max{λ : λ ∈ σ(AtA)}. From (4.7), the
stability radius rα is computable and due to the forms of the initial and the
approximate system, we immediately imply:

‖a− â‖ = ‖(z − ẑ)P‖ ≤ ‖P‖2
rα
σP

= rα

The result now follows from Lemma 4.1.
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Theorem 4.2 does not only provide the means to test whether the perturbed
solutions are at an acceptable distance from the original stable polynomial we
had to assign, but also constitutes a criterion for the stability of the perturbed
polynomial, without the calculation of its roots or their properties.

4.3 An Approximate DAP algorithm

We now consider the problem of approximate DAP that covers all related fre-
quency assignment, i.e. solve the system det (H ·M(s)) = a(s) in terms of H
when a(s) is Hurwitz. Let s1, s2, ..., sn, n > 6 be the roots of a(s). If z := Cm(H)
and V is the matrix representation of N`(P ), then DAP is transformed into

zt = λht0 + κtV = [λ, κt]

[
ht0
V

]
. If this is not possible, one has to find z such

that the gap between z and Gm(Rn) the least possible. Therefore, we have:

An Algorithm for the Approximate DAP

• Select si such that Re(si) < 0.

• Calculate an orthonormal matrix-basis [v1, ..., vr] for the linear problem htP = at.

Set f the vector of the corresponding degrees of freedom.

• Solve in terms of f the optimization problem minf g
(
f t · [v1, ..., vr], Gm(Rn)

)
and

let z0 = f
0
[v1, ..., vr] the optimal vector.

• If z0 is decomposable then obtain H by z0 := Cm(H). Else, decompose z0 via the
prime decomposition. A candidate solution is the decomposable vector σk ·e2k∧e2k−1.

Example 4.1. Let

M(s) =


(1 + s)4 0
−2 + s2 s3

1 + s3 s2

2s −2 + s
1 1


We select the stable polynomial a(s) = 9.80179+50.0464s+109.122s2+131.717s3+
95.06s4 + 41.02s5 + 9.8s6 + s7 whose roots are

s1 = −1.7, s2 = −1.6, s3 = −1.5, s4 = −1.4, s5 = −1.3, s6 = −1.2, s7 = −1.1

If P is the Plücker matrix, then the matrix representation of an orthonormal basis
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of htP = at is

[v1, v2, v3] =



0.0212483 0.0031971 0.0198759
0.14123 0.0008332 0.107242
0.179195 0.108632 0.267088
0.686415 0.311853 0.54408
0.017989 −0.0177103 −0.00803
0.058825 0.247088 −0.202414
−0.480937 0.505633 0.293198
0.142346 0.268904 −0.308593
−0.127068 0.700893 −0.219786
−0.452585 −0.101711 0.591784


The substitution of z := (f1, f2, f3) · [v1, v2, v3] to the gap g (formula (3.14))
implies the 4th order homogeneous polynomial

F (f1, f2, f3) = 0.0276749f 4
1 − 0.0445024f 3

1 f2 + 0.050691f 2
1 f

2
2 + 0.0127932f1f

3
2+

+ 0.0018031f 4
2 − 0.0348223f 3

1 f3 − 0.0986078f 2
1 f2f3 − 0.0735073f1f

2
2 f3+

+ 0.013395f 3
2 f3 + 0.0052206f 2

1 f
2
3 + 0.0119637f1f2f

2
3 + 0.041775f 2

2 f
2
3−

− 0.0414718f 3
3 + 0.0414718f2f

3
3 + 0.054624f 4

3

Hence, we have

minF (f1, f2, f3) subject to f 2
1 + f 2

2 + f 2
3 = 1

The least gap is achieved at

(f1 = −0.711111, f2 = −0.348945, f3 = 0.610376)

where we get

z0 = (−0.0283575,−0.166179,−0.328359,−0.92903,−0.00117062,

− 0.00450339,−0.013399,−0.00669876,−0.0200615,−0.0038811)

Vector z is not decomposable since

(z ∧ z) /2 = (− 0.000174025,−0.000570197,

− 0.00010584, 0.000280932, 0) 6= 0

Therefore, we proceed to the calculation of its best decomposable approximation.
The spectral analysis of

Tz =


0 −0.0283575 −0.166179 −0.328359 −0.92903

0.0283575 0 −0.00117062 −0.00450339 −0.013399
0.166179 0.00117062 0 −0.00669876 −0.0200615
0.328359 0.00450339 0.00669876 0 −0.0038811
0.92903 0.013399 0.0200615 0.0038811 0
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will give
z = z1 + z2

where

z1 = σ4b1 ∧ b2 = (−0.0283592,−0.166177,−0.328363,−0.929028,−0.00177318,

− 0.00460241,−0.0133529,−0.00643763,−0.0201559,−0.00383742)

and

z2 = σ2a1 ∧ a2 = (1.86224 · 10−6,−2.04133 · 10−6, 4.24203 · 10−6,−1.19104 · 10−6,

− 0.0000669825, 0.0000990208,−0.0000469799,−0.000261124, 0.0000943383,

− 0.0000436849)

and σ2 = 0.00667496 < 1 = σ4. Hence, the closest decomposable vector to z is
z1, which can be re-written dy division by the first coordinate as:

v = (1, 5.85971, 11.5787, 32.7594, 0.0625258,

0.16229, 0.470849, 0.227004, 0.710735, 0.135315)

This corresponds to the 2× 5 matrix Ĥ

Ĥ =

(
1 0 −0.0625258 −0.16229 −0.470849
0 1 5.85971 11.5787 32.7594

)
The approximate matrix Ĥ implies the perturbed polynomial

â(s) = Ĥ ·M(s) = −9.83676− 28.2452s−−22.4508s2+

+ 13.8753s3 + 35.4504s4 + 24.9495s5 + 7.99053s6 + s7

whose roots are

(s1, s2, s3, s4, s5, s6, s7) = (−2.27804− 0.576901i,−2.27804 + 0.576901i,−1.34073−
− 0.809347i,−1.34073 + 0.809347i,−0.903325,−0.82816−
− 0.343749i,−0.82816 + 0.343749i)

Hence, â(s) is stable. Furthermore,

P =



0 0 0 1 4 6 4 1
0 0 1 4 6 4 1 0
−2 −7 −8 −2 2 1 0 0

1 4 6 4 1 0 0 0
0 0 −2 −1 1 0 −1 0
4 −2 −2 1 −2 0 0 0
−2 0 1 −1 0 0 0 0
−2 1 0 −4 1 0 0 0

1 0 −1 1 0 0 0 0
2 1 0 0 0 0 0 0
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and σP = 14.0414. The stability radius for p(s) = (s+ 1.7)(s+ 1.6)(s+ 1.5)(s+
1.4)(s+ 1.3)(s+ 1.2)(s+ 1.1) from (4.7) is rα = 7.3246 . Therefore,

‖z − ẑ‖ = 0.000673828 < 0.522663 =
rα
σP

Hence the approximate polynomial â(s) is stable, which verifies Theorem 4.2.

5 Conclusions

The approximate determinantal assignment problem has been defined and solved
as a distance problem between the Grassmann variety and a linear variety defined
by the properties of a desirable polynomial. The study of the problem was split
to three basic problems: (i) The distance problem of a point of the projective
space from the Grassmann variety; (ii) The extension of the above to the case
where we have the distance of a linear variety from the Grassmann variety; (iii)
The characterization of acceptability of the optimal distance solutions as far as
the nature of the resulting assigned polynomial. The key minimization problem
implied by the second problem (formulation of the (1.2) type), was addressed and
a closed form solution was derived, which is similar in nature to the first opti-
mization problem for a constant point in ∧2(Rn). The results of this approach
have been demonstrated via a DAP algorithm and can be easily specialized to
different types of frequency assignment, such as the output feedback. The poly-
nomials corresponding to the approximate solutions are at some distance from
the nominal polynomial and for solutions to be acceptable we need the resulting
polynomials to be stable. We have used the stability radius results [Hin. 1] to
derive a condition that can be used to check stability without root calculations.

The above results are based on the prime decomposition (3.3) of 2-vectors
which has implied significant simplifications, such as the formulation of DAP into
a 4th order polynomial minimization problem, constrained to the unit sphere for
the G2(R5) case. Moreover, this analysis has connected the approximate DAP
with similar optimization problems, such as eigenvalue maximization.

This approach has not been used before for general frequency assignment
problems and it may be implemented as a new pole placement method, that
uses no generic or exact solvability conditions. Future work will examine the
challenging case of generalization to Gq(Rn) and derive if possible similar closed-
form formulae, since higher order Grassmann-optimization problems are usually
solved numerically via algebraic geometry toolboxes [Eis. 1]. The difficulty in
q-decompositions, q ≥ 3, lies in the fact that the matrices which in our case
provide the representation of the points of the projective space, become q-tensors
and thus the multi-linear subproblem should be naturally examined via tensor
decomposition algorithms, [Kol. 1], [Sav. 1], which is the area of future research.
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