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Abstract

For a general singular system Se[E,A,B] with an associated pen-
cil T (S), a complete classification of the right polynomial vector pairs
(x(s), u(s)), connected with the Nr{T (s)} rational vector space, is given
according to the proper-nonproper property, characterising the relation-
ship of the degrees of those two vectors. An integral part of the classi-
fication of right pairs is the development of the notions of canonical and
normal minimal bases for Nr{T (s)} and Nr{R(s)} rational vector spaces,
where R(s) is the state restriction pencil of Se[E,A,B]. It is shown that
the notions of canonical and normal minimal bases are equivalent; the
first notion characterises the pure algebraic aspect of the classification,
whereas the second is intimately connected to the real geometry properties
and the underlying generation mechanism of the proper and nonproper
state vectors x(s). The results presented, highlight both the algebraic
and geometric properties of the partitioning of the set of reachability in-
dices; the classification of all proper and nonproper polynomial vectors
x(s) induces a corresponding classification for the reachability spaces to
proper-nonproper and results related to the possible dimensions feedback-
spectra assignment properties of them are also given. The classification
of minimal bases introduces new feedback invariants for singular systems,
based on the real geometry of polynomial minimal bases, and provides
an extension of the standard theory for proper systems [2] to the case of
singular systems.
Nicos Karcanias dedicates this paper to Alistair MacFarlane FRS who
has motivated him to explore the relationships between geometric and al-
gebraic methods in feedback control. Alistair MacFarlane was throughout
his career interested in exploring the links between geometry and frequency
response methods.
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1 Introduction

The algebraic notion of polynomial bases of rational vector spaces [3] is central
in the study of structure and solvability of linear system problems [3], [4],[5],
[6], [7], [8], [9] (and references therein). In the context of state space theory,
important rational vector spaces emerge as null spaces of matrix pencils [10]
[12] the polynomial vectors in such vector spaces characterise important system
theory concepts, such as those of controllability subspaces [2],[11], [12], [25], [26]
and their Forney degrees define corresponding types of invariant indices, such
as the controllability, observability indices [8], output nulling indices [13] etc.
The recent developments in the theory of singular systems [14], and especially
in the area of feedback invariants and canonical forms [15],[24], under different
types of state space transformations, has motivated the study of a further clas-
sification of the polynomial vectors associated with the matrix pencil generated
rational vector spaces. For proper (regular state space) systems, there is an
important relationship between the degrees of the state and input polynomial
vectors of the right null space of the state controllability pencil, known as ”plus
one” property [2]. It has been observed that the ”plus one” property breaks
down in the case of singular systems and this has led to the classification of the
input and state polynomial vector pairs into proper (satisfying the ”plus one”
property) and non-proper (violating the ”plus one” property) [15], [16], [17],
[19]. The classification of state-input polynomial pairs into proper-nonproper,
introduces a classification of minimal indices (reachability indices) which defines
new invariants under the general feedback transformation group [15]; this clas-
sification has been studied in terms of the properties of the recursive subspace
algorithms [16], [19] in terms of the elementary transformations which lead to
the definition of feedback canonical forms [15], and in terms of the properties of
canonical minimal bases [17] associated with the singular system. The aim of
this paper is to fully develop the algebraic and geometric properties of canonical
minimal bases of singular systems, introduce new feedback invariants, discuss
methods for their construction and provide a complete classification of all state
polynomial vectors and their associated invariant subspaces.
The current work is within the general framework of developing the algebraic
tools linked to matrix pencil theory which enable the characterisation of geo-
metric concepts using as vehicle matrix pencils [27], [22], [23] and the properties
of minimal bases [3], [17], [21].

The present work is based on the properties of the real geometry and invari-
ant spaces associated with rational vector spaces [20], and in particular those
corresponding to matrix pencils [21], [23]. The analysis is greatly simplified
by considering the input-restricted system [22], which enables the development
of the properties of state polynomial vectors of S(E,A,B), whereas the non-
properness is simply characterised by the fact that nonproper state vectors are
generated by vectors in Nr(E). The overall classification of minimal bases ac-
cording to the proper-nonproper property, is based on the study of the parti-
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tioning of the family of high coefficient invariant spaces of the system by Nr(E)
which in turn implies an invariant partitioning of the ordered minimal bases
and leads in a natural way to the definition of normal minimal bases; the latter
are shown to be equivalent to the notion of canonical minimal bases [17] and
their construction reveals the partitioning of the reachability indices into the
nonproper-proper sets, which goes hand in hand with the decomposition of the
maximal prime state module M∗ as a direct sum of a nonproper and a proper
maximal submoduleM∗E and M̃∗E respectively.The structure of theM∗E , M̃∗E is
described by the nesting of the corresponding nonproper, proper prime submod-
ules, each one of them characterising the family of nonproper, proper vectors of
a given maximal degree. It is shown thatM∗,M∗E are uniquely defined, but not
M̃∗E ; however, any M̃∗E is characterised by the same set of dynamical indices,
which are the proper reachability indices of the system. The supporting spaces
of the polynomial vectors inM∗E , M̃∗E define the nonproper-proper reachability
spaces of the system; the properties of such spaces are intimately connected to
the structure of the canonical minimal bases, from which both feedback invariant
and spectrum assignment properties of these spaces may be inferred. Although
the present study is based on the S(E,A,B) singular system, the results may
be readily extended to the case of S(E,A,C), S(E,A,B,C) systems.

The paper is structured as follows: in Section 2 we provide some background
definitions and results on the relationship between the invariants of the state-
input system pencil and the corresponding restriction pencil, whereas in Section
3 we expand the previous results, introduce the classification of state-input poly-
nomial pairs into proper-nonproper, and define the notion of canonical bases. In
Section 4 we summarise some results from [21] on the structure of matrix pencil
generated rational vector spaces and in particular those properties related to
the real geometry and invariants of such spaces, as well as the generation of
polynomial vectors. In section 5 we consider the problem of generating com-
plete sets of polynomial vectors based on a given system of progenitor spaces;
the results in Section 5 are specialised to the case where the progenitor spaces
are subspaces of Nr(E) and this leads to the presentation of the main results,
given in Section 6 and dealing with the properties, invariant spaces and mod-
ules associated with the normal bases. The relationship between normal and
canonical bases is also examined in Section 6, where methods for constructing
such bases are also considered.

Throughout the paper we denote: R, C, R(s), the real, complex numbers,
rational functions respectively. Rn[s], Rm×n[s] are the n × 1, m × n vectors,
matrices with elements from the ring of polynomials R[s]. If T (s) = sF −G ∈
Rm×n[s] is a matrix pencil, then Ψ(T ) , {D∞(T );Df (T ); Ic(T ); Ir(T )} denotes
the set of Kronecker invariants of T (s) [10], and in particular, D∞(T ), Df (T )
are the sets of infinite, finite elementary divisors (IED, FED) and Ic(T ), Ir(T )
are the sets of column, row minimal indices (CMI, RMI). If H is a matrix (map),
then ρ(H) denotes its rank, Nr{H}, Nl{H}, R{H} denote the right, left null
space and range correspondingly. If V is a vector space, then dimV denotes
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its dimension, V a basis matrix for V and v− a general vector. If t(s) ∈ R[s],

then ϑ[t(s)] denotes its degree. Finally, if n is a positive integer, then n =
{1, 2, . . . , n}.

2 Statement of the Problem and Background
Definition and Results

We consider the family of singular systems Se described by

Se : Eẋ = Ax+Bu,E,A ∈ Rn×n, B ∈ Rn×l, ρ(B) = l < n (1)

The family of such systems is denoted by Σl,n and every system in Σl,n is defined
by the triplet (E,A,B), or algebraically in terms of the associated system pencil.

T (s) = [sE −A,−B] ∈ Rn×(n+l)[s] (2)

We shall denote by Πl,n the family of pencils corresponding to Σl,n. Consider
now the set of ordered pairs

HD = {h = (W,Q(s)) : W ∈ Rn×n, |W | 6= 0 (3)

Q(s) =

[
V 0

FP + sF G

]
∈ R(n+l)×(n+l)[s],

|Q(s)| = c ∈ R− {0}, V ∈ Rn×n, G ∈ Rl×l} (4)

and define onHD the composition rule ∗ : HD×HD → HD : ∀hi = (Wi, Qi(s)), i =
1, 2 we have

h1 ∗ h2 = (W1, Q1(s)) ∗ (W2, Q2(s)) = (W1W2, Q2(s)Q1(s)) (5)

(HD, ∗) is a group, referred to as Linear Dynamic Feedback Group and will
be simply denoted by HD. If FD = 0, or FP = FD = 0 then the resulting
subgroups of HD are denoted by H,HC and are referred to as state-feedback-(or
Brunovsky-)group, coordinate transformation group respectively. The action of
HD on Σl,n is defined as an action on Πl,n by: ◦ : HD ×Πl,n → Πl,n : ∀h ∈ HD

and T (s) ∈ Πl,n, then

h ◦ T (s) = T ′(s) = W [sE −A,−B]

[
V 0

FP + sFD G

]
= [sE′ −A′,−B′] (6)

We shall denote by HD(Se), H(Se), HC(Se) the equivalence classes or orbits of
Se, or corresponding T (s), under the action of the HD, H,HC respectively. Note
that every h ∈ HD is uniquely defined by the ordered set h = (W,V,G, FP , FD)
and thus the elements ofHD, H,HC may be denoted by h = (W,V,G, FP , FD), h =
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(W,V,G, FP ), h = (W,V,G) respectively (· denotes the ordered set representa-
tion).

If N ∈ R(n+l)×n, B† ∈ Rl×n is pair of a left annihilator, left inverse of B
respectively (NB = 0, B†B = Il, ρ(N) = n − l), then (1) may be equivalently
represented [22],[23], by:

Ser : NEx = NAx (7)

u = B†{Ex−Ax} (8)

The differential system Se defined by (7) is known as input-space restricted state
model and represents the state trajectory generating mechanism of Se [23]. In
fact, for every solution of Sre (generated by an initial condition) the input which
together with the initial condition generates this trajectory of Se is defined in
(8). The pencil R(s) = sNE−NA is known as a restriction pencil [22],[23] and
its importance is demonstrated by the following result.

Lemma 2.1. For any Se ∈ Σl,n and any pair hC = (W, In, Il) ∈ HC reduces
T (s) to

hC ◦ T (s) = WT (s) =

[
sNE −NA 0
sB† −B†A −Il

]
,W =

[
N
B†

]
∈ Rn×n, |W | 6= 0

(9)
Furthermore, there exists h = (W ′, V ′, Il) ∈ HC such that

hC ◦T (s) = W ′T (s)

[
V ′ 0
0 Il

]
=

[
Rk(s) 0

sB′
†
E′ −B′†A′ Il

]
,W ′ =

[
N ′

B′
†

]
(10)

where (N ′, B′
†
) is another pair of left annihilator and inverse of B and Rk(s)

is the Kronecker canonical form of R(s) = sNE −NA.

Proof. It is clear that for every (N,B†) pair W ∈ Rn×n, |W | 6= 0, and that
WT (s) is in the form (9). If we select any (N,B†) pair, then there exist (L, V )
pair of strict equivalence transformations such that L(sNE−NA)V = Rk(s) is
in Kronecker form. Clearly from (9) we have[

L 0
0 In−l

] [
sNE −NA 0
sB†E′ −B†A Il

] [
V 0
0 Il

]
=

[
Rk(s) 0

sB†E′ −B†A′ −Il

]
(11)

and since LN = N ′ is another left annihilator (L ∈ R(n−l)×(n−l), |L| 6= 0) the
result is established.

�

We shall refer to (9) as a restriction form and to (10) as a normal restriction
form of T (s). Clearly, these forms are not uniquely defined, however, the nor-
mal restriction form may be considered as a ”pseudo-canonical”, since RK(s) is
in Kronecker form. Using the above lemma we may state:
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Proposition 2.1. For any Se ∈ Σl,n, let hC = (W ′, V ′, Il) ∈ HC be a trans-
formation that reduces T (s) to its normal restriction form hC ◦T (s) as in (10),

where W ′ is defined by the (N ′, B′
†
) pair. Then, if

h = (W ′, V ′, Il,−B′
†
AV ′) ∈ H,hD = (W ′, V ′, Il,−B′

†
AV ′, B′

†
EV ′) ∈ HD

(12)

h ◦ T (s) =

[
RK(s) 0

sB′
t
EV ′ −Il

]
= T̃ (s) ∈ H(Se) (13)

hD ◦ T (s) =

[
RK(s) 0

0 −Il

]
= T̃

∗
(s) ∈ HD(Se) (14)

�

The proof follows immediately from Lemma 2.1 and the definition. The form
defined by (12) is a ”pseudo-canonical” form under the H group, since B′

†
EV ′

is not uniquely defined. From (14) we have the following important result.

Theorem 2.1. Let Se ∈ Σl,n and let Ψ(R) be the set of strict equivalence in-
variants of R(s) = sNE − NA. The set {l,Ψ(R)} is a complete invariant of
the HD(Se) class and T ∗(s) in (14) is a canonical form.

Proof. The invariance of Ψ(R) is already known (see [22],[23]). If Se, S
′
e ∈

Σl,n and they have the same Ψ(R), then by Proposition (2.1) we have that there
exist h, h′D ∈ HD such that hD ◦ T (s) = h′D ◦T ′(s) and thus S′e ∈ HD(Se).
Clearly then, T ∗(s) is a canonical form.

�

An alternative proof of the completeness property has been given in [15]. The
above results demonstrate that Se characterise the orbit HD(Se) and not just
the individual system Se;S

r
e may thus be also referred to as a ”feedback free”

description. The invariants of R(s) completely characterise the orbit HD(Se),
but they are not complete for the H(Se), HC(Se) orbits. The study of relation-
ships between the invariants of R(s) and T (s) is an essential part in our effort
to establish the relationships between the sets of CMI, RMI and corresponding
minimal bases of the pencils R(s) and T (s) and thus provide a deeper under-
standing of their algebraic, geometric and feedback properties. Some general
properties of the invariants of R(s) and T (s) are examined next.

3 Relationships Between the Invariants of the
System and Restriction Pencils: Preliminary
Results

In this section, some general properties of the R(s) and T (s) pencils (describing
relationships between their invariants) are first derived and then a classification
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of the pairs of the polynomial vectors (x(s), u(s)) associated with Nr{T (s)}
is introduced. The results described here provide the background for the de-
velopment of the algebraic and geometric classification of CMI and associated
minimal bases discussed in the following sections. Throughout the paper we
assume that ρ = ρR(s){T (s)} 6 n and it is not necessarily equal to n. Systems
with ρ = n are called normal, whereas those with ρ < n are called degenerate
[18];in the following we make no distinction between those two cases. We first
note:

Remark 3.1. The pencil T (s) and any of its restriction forms are strict equivalent
and thus they have the same set of invariants.

�

Some general relationships between R(s) and T (s) are given below.

Proposition 3.1. For the pencils T (s), R(s) the following properties hold true:

(i) If r = ρR(s){R(s)}, then ρ = ρR(s){T (s)} = r + l.

(ii) Df (R) = Df (T ).

(iii) Every minimal basis matrix YT (s) of Nl{T (s)} may be expressed as YT (s) =
YR(s)N where YR(s) is a minimal basis matrix for Nl{(R(s))} and vice
versa. Thus, Ir(R) = Ir(S).

(iv) dim Nr{T (s)} = dim Nr{R(s)} = n+ l−ρ = n− r = p and thus R(s) and
T (s) have the same number of CMI.

Proof. (i), (ii), (iv). By Proposition (2.1), T (s) and T ∗(s) areR[s]−equivalent
and thus they have the same Smith form and rank over R(s). From the block
diagonal structure of T ∗(s), parts (i) and (ii) follow immediately. Part (iv) is a
consequence of part (i).
(iii). If y(s)t ∈ Nl{T (s)}, then we may write

y(s)t = [ỹ
1

(s)t, ỹ
2

(s)t]

[
N
B†

]
,W =

[
N
B†

]
(15)

where (N,B†) is any pair of annihilator and inverse defined on B and thus
y(s)tT (s) = 0 implies

ỹ
1

(s)t, ỹ
2

(s)t]

[
sNE −NA 0
sB†E −B†A −Il

]
= 0⇔

{
ỹ
1

(s)
t
(sNE −NA) = 0

ỹ
2

(s)
t

= 0

(16)
and thus

y(s)t = ỹ
1

(s)tN, ỹ
1

(s)tR(s) = 0 (17)

From (15) and (17) and the fact that W ∈ Rn×n, |W | 6= 0, it follows that any
two minimal bases YT (s), YR(s) for T (s) and R(s) are related by

YT (s) = [YR(s), 0]W = YR(s)N (18)

and thus they also have the same set of RMI.
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�

It is clear from the above result that as far as FED and RMI the two pencils
carry the same (or equivalent) information. The relationship between their CMI
and associated minimal bases is examined in this paper, whereas the respective
relationships between their IED has been considered in [23]. As far as the
number of the IED of R(s) and T (s) we have the following result.

Proposition 3.2. Let Se = (E,A,B) ∈ Σl,n and denote by ρ = ρR(s){T (s)},r =
ρR(s){R(s)}. If nIED(·) denotes the numbers of the IED of a pencil, then:

nIED(T ) = ρ− ρ(E) (19)

nIED(R) = r − ρ(NE) = ρ− l − ρ([E,B]) (20)

nIED(T ) = nIED(R) + ρ([E,B])− ρ(E) (21)

and
nIED(T ) = nIED(R), if and only if , Im(B) ⊆ Im(E) (22)

Proof. For any pencil P (s) = sF − G,nRMI(P ) + nIED(P ) = dim Nl(F ),
where nRMI(·), nIED(·) denote total numbers of RMI, IED respectively. From
the above identity and part (i) of Proposition 3.1, conditions (15) the first two
parts of (20) are established. Note that ρ([E,B]) = l+ρ(NE) and thus the last
part of (20) follows. The rest of the result follows from (21) and (22).

�

Throughout the rest of the paper we consider the properties of the rational vec-
tor spaces XT , Nr{t(s)},XR , Nr{R(s)} defined over R(s). It is known [3],
that the study of properties of rational vector spaces may be reduced to a study
of polynomial vector bases; thus, in the following we consider the properties of
polynomial vectors in XT .

Consider a pair (x(s), u(s)), x(s) ∈ Rn[s], u(s) ∈ Rl[s] such that:

[sE −A,−B]

[
x(s)
u(s)

]
= 0⇔ T (s)z(s) = 0 (23)

The pair (x(s), u(s)) will be called a right pair of Se and (23) may be equivalently
expressed as:

(sNE −NA)x(s) = 0 (24)

u(s) = B†(sE −A)x(s) (25)

Remark 3.2. From (25) we have that ϑ[u(s)] 6 ϑ[x(s)] + 1, where ϑ[·] denotes
the degree of the polynomial vector (max of degrees of its elements). For proper
systems,|E| 6= 0 and thus the above relationship holds only as equality [2]; for
singular systems however the sign ”6” holds in general.
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Definition 3.1. Let z(s) ∈ XT ∩ R(n+l)[s] and (x(s), u(s)) be the associ-
ated right pair. The vector z(s), or the pair (x(s), u(s)) is called proper, if
ϑ[u(s)] = ϑ[x(s)] + 1 and nonproper, if ϑ[u(s)] 6 ϑ[x(s)].

For proper systems, it is known [2] that all pairs are proper; the properties of
the proper pairs are intimately related to important dynamic and feedback sys-
tem properties [2], [11], [22]. The extension of the classical results (developed
for proper systems) to the singular systems case requires the development of
the algebraic and geometric aspects of the proper-nonproper pair classification,
which is considered here.

By Remark 3.2, it follows that a right pair (x(s), u(s)) with ϑ[x(s)] = k may
be represented as:

x(s) = x0 +s x1 + . . .+ sk xk, x−
k
6= 0, u(s) = u0 +s u1 + . . .+ sk+1 uk+1 (26)

We shall denote by xh = xk , [x(s)]h, x
l = x0 [x(s)]l and shall refer to k as

the essential degree and xh, xl as the generators, cogenerators of the pair. The
characterisation of the proper-nonproper pairs is given in the following result.

Proposition 3.3. Let (x(s), u(s)) be a right pair with generator xh = xk and
essential degree k.

(i) The pair is proper, if and only if there exists uk+1 ∈ Rl 6= 0, such that

E xk = B uk+1 (27)

(ii) The pair is nonproper, if and only if xk ∈ Nr(E). Furthermore

ϑ[u(s)] = ϑ[x(s)]− µ = k − µ, µ = 0, 1, . . . (28)

if and only if the following conditions are satisfied

E xk = 0, E xk−1 = Axk, . . . , E xk−µ = Axk−µ, E xk−µ+1−Axk−µ = B uk−µ 6= 0
(29)

�

The proof follows immediately from the definition. From the above result we
have some further properties:

Remark 3.3. If (N,B†) is any pair of a left annihilator and inverse of B, then
the right pair (x(s), u(s)) with generator xh is

(i) proper, if and only if
NE xh = 0, B†E xh 6= 0 (30)
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(ii) nonproper, if and only if

NE xh = 0, B†E xh = 0 (31)

�

Remark 3.4. The generators xh of proper pairs are vectors such that 0 6= E xh ∈
R(B), whereas those of the nonproper pairs are vectors in Nr(E). However, not
every vector in Nr(E) generates a right nonproper pair.

�

Remark 3.5. If (x(s), u(s)) is a nonproper pair and ϑ[u(s)] = k− µ = ϑ[x(s)]−
µ, µ = 0, 1, . . . then the vectors {xk, xk+1, . . . , xk+µ} define a Jordan chain at
s =∞ for the pair (or pencil sE-A), if they are linearly independent.

From the above remark we have a characterisation of the possible degrees of
u(s) vectors.

Remark 3.6. Let {qi, i ∈ τ} be the set of degrees of IED of sE−A. If (x(s), u(s))
is a nonproper pair with essential degree k, then

k + 1 < ϑ[u(s)] 6 k + 1− q, q ∈ {q1, . . . , qτ} (32)

�

The question that naturally arises is whether the property of a pair to be proper,
or nonproper is invariant under transformations of the H, or HD type. Note
that if h ∈ HD and h = (W,V,G, FP , FD), then the pair defined by (x(s), u(s)),
where

x′(s) = V x(s), u′(s) = FPx(s) + sFDx(s) +Gu(s) (33)

will be referred to as the h−equivalent pair of (x(s), u(s)) and it is a right pair
for the system associated with T ′(s) = h ◦ T (s). The preservation, or non-
preservation of the classification of h−equivalent pairs, will be referred to as
invariance or non-invariance of the proper, nonproper property under H, or HD

group action. The following result is readily established and stated without
proof.

Proposition 3.4. Let Se ∈ Σl,n and (x(s), u(s)) be a right pair of Se. Then,

(i) If (x(s), u(s)) is proper, for all S′e ∈ H(Se) the equivalent pairs are also
proper.

(ii) If (x(s), u(s)) is nonproper, then for all S′e ∈ H(Se) the equivalent pairs
are also nonproper. Furthermore, if S′e is a generic element of H(Se) and
(x′(s), u′(s)) is the equivalent pair, then ϑ[x′(s)] = ϑ[u′(s)].

Remark 3.7. The proper-nonproper classification of right pairs is not invariant
under HD−transformations. Thus, as it has been already stated by Theorem
(2.1), this classification does not provide any new invariants underHD−equivalence;
however, it may provide new invariants under the H− transformation group.
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Proposition 3.4 suggests that since the classification is invariant under the
H−group, it introduces some new invariants for the H(Se) class. Defining
the properties of this new set of invariants is the aim of the paper. The classi-
fication of proper-nonproper pairs may be reduced to an equivalent problem of
classifying minimal bases [3], since any polynomial vector may be expressed as
a linear combination of vectors of such bases. Thus, we may define [17]:

Definition 3.2. Let Ẑ(s) = [. . . , ẑi(s), . . .] ∈ R(n+m)×p[s] be a minimal basis
matrix (MBM) [3] of XT ,dim XT = p, where ẑi(s) = [xi (s)t, ui (s)t]t.

(i) If we partition Ẑ(s), according to the partitioning of T (s), i.e.

Ẑ(s) =

[
X̂(s)

Û(s)

]
, X̂(s) ∈ Rn×p[s], Û(s) ∈ Rl×p[s] (34)

then X̂(s), Û(s) are referred to as state-, input-parts and Ẑ(s) as (n, l)−partitioned;

(ii) If Ẑ(s) is (n, l)−partitioned and its columns are ordered such as

Ẑ(s) = [Z(s); Z̃(s)] =

[
X(s) X̃(s)

U(s) Ũ(s)

]
=

[
X̂(s)

Û(s)

]
(35)

where the pairs corresponding to the columns of Z̃(s), Z(s) are proper,
nonproper respectively, and the columns in Z̃(s), Z(s) are ordered accord-
ing to ascending degrees, then Ẑ(s) is called E−ordered ;

(iii) If Ẑ(s) is an E−ordered basis and its state part X̂(s) is a minimal basis
itself, then Ẑ(s), as well as X̂(s) are called canonical.

Obviously, every MBM of XT may be reordered and become an E−ordered
MBM; however, any E−ordered MBM is not necessarily canonical. The classifi-
cation and study of properties of canonical MBMs is one of the main objectives
of this paper. Some preliminary properties of the (n, l)−partitioned MBMs of
XT are discussed next. We first note that for any Ẑ(s) matrix, T (s)Ẑ(s) = 0 is
equivalent to

(sNE −NA)X̂(s) = 0 (36)

Û(s) = B†(sE −A)X̂(s) (37)

From the above we have:

Proposition 3.5. Let Ẑ(s) = [X̂(s)t, Û(s)t]t ∈ R(n+l)×p[s] be an (n, l)−partitioned
matrix, such that T (s)Ẑ(s) = 0. Then,

(i) Ẑ(s) is an R[s]−basis of X rT , if and only if X̂(s) is an R[s]−basis of XR.

(ii) Ẑ(s) is a least degree basis [5] of XT , if and only if X̂(s) is a least degree
basis of XR.
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Proof.

(i) If Ẑ(s) is a basis matrix for XT , but X̂(s) loses rank over R[s], then ∃v(s) ∈
Rp[s] such that X̂(s)v(s) = 0; thus, from (37) follows that Ẑ(s)v(s) =
0 which leads to a contradiction. By Proposition (3.1), it is clear that
dim XT = dim XR = n+ l− ρ = n− r = p and thus X̂(s) is a basis of XR,
since it satisfies (37), and has τ independent columns. If X̂(s) is a basis
matrix of XR, then it has rank p and obviously Ẑ(s) has also rank p. By
Prop. (3.1), the sufficiency is established.

(ii) If X̂(s) is least degree, i.e. has no finite zeros, then obviously Ẑ(s) has
no finite zeros. Assume now that Ẑ(s) is least degree, but X̂(s) is not;
since X̂(s) has finite zeros, say z ∈ C is one of them, then ∃v ∈ Cp such
that X̂(z)v = 0; by (37) and for s = z we have that Û(z)v = 0 and thus
Ẑ(z)v = 0 which leads to a contradiction. This completes the proof.

�

Remark 3.8. If Ẑ(s) defines a canonical minimal basis (MB) of XT , then its
state part X̂(s) defines an MB for XR. If X̂(s) defines a MB of XR and Û(s)
is defined by (37), then Ẑ(s) = [X̂(s)t, Û(s)t]t is a least degree basis of XT but
not necessarily a MB.

�

The question that naturally arises is to determine the conditions under which
an E−ordered MB is also canonical, or equivalently the conditions under which
an MB of XR may be extended to an MB of XT . Note that the key tool for this
investigation are the geometric properties of the generators of the right pairs;
the properties of the generators form an integral part of the theory of algebraic
and geometric invariants of matrix pencils [20] which are summarised in the
following section.

4 Geometric and Algebraic Invariants of Ratio-
nal Vector Spaces Associated with Matrix Pen-
cils

It is evident from the characterisation of the proper, non-proper pairs that the
geometry of the space of generators of such pairs, plays an essential role in the
classification process. The geometry of the generators spaces is part of a theory
of geometric and algebraic invariants of rational vector spaces [20], and matrix
pencils in particular [21]. In this section we review some of the basic concepts
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and results from the algebraic and geometric theory of invariants associated
with matrix pencil generated minimal bases, which are of importance in our
present task; a full treatment of the topic may be found in [20],[21].

Let X be an R(s)−vector space of Rq(s) with dimX = p. The setM? of all
polynomial vectors x(s) of X,x(s) ∈ Rq[s] ∩X, is an R[s] maximal Noetherian
module [1]. A basis matrix X(s) ∈ Rq×p[s] which has no finite zeros and it is
column reduced [8] is called a Minimal Basis Matrix (MBM) [3]. Minimal bases
of X are not uniquely defined, but all of them have the same column degrees,
known as Forney dynamical indices; this set is an invariant of X [3] and may
be represented as an ordered set, i.e.

I(X ) , {(εi, ρi), i ∈ µ, 0 6 ε1 < . . . < εµ} (38)

where εi denotes the distinct values of the degrees and ρi the multiplicity of
εi. I(X ) may be referred to as the index and the set (I(X )) = {(εi, i ∈ µ)} as
the list of X ; clearly, p = dimX =

∑µ
i=1 ρ. Any MBM of X , X(s), is called an

ordered -MBM (OMBM), if it may be expressed as

X(s) = [X1(s), . . . , Xµ(s)], Xi(s) = [. . . , xij(s), . . .] ∈ Rq×ρi [s] (39)

where ϑ[xij(s)] = εi,∀j ∈ ρ
i
, i ∈ µ. Any two OMBMs are related as shown

below [6], [7]:

Lemma 4.1. Let X(s), X ′(s) ∈ Rq×p[s] and assume that X(s) is an OMBM
of X with index I(X ) as in (38). X ′(s) is an OMBM of X if and only if there
exists W (s) ∈ Rp×p[s], R[s]−unimodular, such that

X ′(s) = X(s)W (s) (40)

where W (s) is an I(X)−structured matrix defined by:

W (s) =

ρ1 — ρ2 — ρ3 — . . . — ρµ
↔ ↔ ↔ ↔ ↔

W1 W12(s) W13(s) . . . W1µ(s)
0 W2 W23(s) . . . W2µ(s)
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . Wµ−1,µ(s)

0 . . . . . . 0 Wµ


l ρ1
l ρ2

...
l ρµ−1
l ρµ

(41)

with Wi ∈ Rρi×ρi , i ∈ µ, |Wi| 6= 0, and Wij(s) = spijWij + . . . + W ′ij ∈
Rρi×ρj [s], pij 6 εj − εi, but otherwise arbitrary.

�

If T (s) = [x1(s), . . . , xp(s)] ∈ Rp×q[s] and x−
h

i
, x−

`

i
denote the high-low coeffi-

cient vectors of xi(s), then we shall denote by [T (s)]h = Th = [xh1 , . . . , x
h
p ] and

by [T (s)]l = T l = [xl1, . . . , x
l
p]. For any OMBM we may define:
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Definition 4.1. Let X ∈ Rq(s) be an R[s]−vector-space with index I(X ) as
in (38) and let X(s) = [X1(s), . . . , Xµ(s)] ∈ Rp×q[s] be an OMBM of X . If we
denote by Xi)(s) = [X1(s), . . . , Xi(s)], we may define:

(i) The set of R[s]−prime modules {Mi, i ∈ µ}, by

Mi = colspR[s]{Xi)(s)}, i = 1, 2, . . . , µ (42)

(ii) If Xi,h = [Xi)(s)]h, Xi,l = [Xi)(s)]l ∈ Rp×q, we define the sets of high-low

coefficient spaces {Pi, i ∈ µ}, {P̂i, i ∈ µ} by

Pi = col.sp{Xi,h}, P̂i col.spR{Xi,l}, i = 1, 2, . . . , µ (43)

If V is any subspace of Pi (or P̂i), where V /∈ Pi−1(P̂i−1), then εi is called
the order of V and is denoted by γ(V) = εi.

(iii) IfXk(s) = [xk,1(s), . . . , xk,ρk ], k ∈ µ, ϑ[xk,j(s)] = εk,∀j ∈ ρk, and xk,j(s) =

xk,j0 + . . .+ sεk xk,jεk , then Skj = spR{xk,j0 , . . . , xk,jεk } is the supporting space
of xk,j(s). We may define the set of prime spaces {Ri, i ∈ µ} by

Ri =

i∑
k=1

ρk∑
j=1

Skj ,∀i = 1, 2, . . . , µ (44)

The importance of the above concepts is described below.

Theorem 4.1. [20] Let X ∈ Rq(s), dimX = q, I(X ) be its index (as in (38))
and let {Mi, i ∈ µ}, {Pi, i ∈ µ}, {P̂i, i ∈ µ}, {Ri, i ∈ µ} be the sets associated
with an OMBM X(s) of X . The following properties hold true:

(i) The modules Mi and the spaces Pi, P̂i,Ri are invariants of X , for all i =
1, . . . , µ and they satisfy the chain conditions

M1 ⊂M2 ⊂ . . . ⊂Mµ =M? (45)

P1 ⊂ P2 ⊂ . . . ⊂ Pµ = P?, P̂1 ⊂ P̂2 ⊂ . . . ⊂ P̂µ = P̂
?

(46)

R1 ⊂ R2 ⊂ . . . ⊂ Rµ = R? (47)

(ii) If X(s) is any OMBM of X and Xi)(s), Xi,h, Xi,l are the associated matri-
ces (see Definition 4.1), then Mi has Xi)(s) as an OMBM and dynamical
indices Ii = {(εj , ρj), j ∈ i, 0 6 ε1 < . . . < εi}. The spaces Pi, P̂i,Ri are

invariants of Mi and Xi,h, Xi,l are bases matrices of Pi, P̂i respectively.
Furthermore Pi, P̂i are proper subspaces of Ri and

dimPi = dim P̂i =

i∑
j=1

ρj = pi,∀i ∈ µ (48)
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The spaces P?, P̂
?
,R? are called the maximal-high, maximal-low, maximal

prime-spaces of X , whereasM? is the maximal R[s]−module in X . The index Ii
will be referred to as the i−th partial index of X and Xi)(s) as the i−th partial
OMBM of the OMBM X(s) of X . Note that by invariants of X (orM) we mean
”basis free, independent” invariants. Some further properties highlighting the
significance of the above concepts are given below [20].

Corollary 4.1. Let x(s) = sk xh + . . .+xl ∈ X and SX = sp{xh, . . . , xl} be its
supporting space. The following properties hold true:

(i) If x(s) ∈ Mi, then Sx ∈ Ri, xh ∈ Pi and xl ∈ P̂i; furthermore, Ri is the
minimal subspace that contains all Sx, for which x(s) ∈Mi.

(ii) For every xh ∈ Pi(xl ∈ P̂i), there exists x(s) ∈ Mi such that [x(s)]h =
xh([x(s)]l = xl).

�

The above results also apply to the case of matrix pencil generated rational
vector spaces. Thus if sF−G ∈ Rt×q[s], we shall denote by Xr = Nr{sF−G} ∈
Rq(s)(Xl = Nl{sF −G} ∈ Rt(s)) and the results apply also to Xr(Xl). Matrix
pencil generated rational vector spaces have richer properties as it is shown next.
We first define:

Definition 4.2. Let < X >= {xi(s) : xi(s) ∈ Rq[s], ϑ[xi(s)] = di, i ∈ τ} and
let Si be the supporting space of xi(s),∀i ∈ τ . We define:

(i) xi(s) as prime, if dimSi = di + 1.

(ii) < X > as a proper set, if the corresponding set {Si, i ∈ τ is linearly
independent; otherwise, it is called nonproper.

(iii) < X > as a complete set, if it is proper and every xi(s) ∈< X > is prime.

Remark 4.1. Every complete set < X > is linearly independent over R[s], the
corresponding matrix X(s) = [x1(s), . . . , xτ (s)] has no zeros and it is column
reduced; that is, it is a minimal basis. The converse is not always true; that
is any minimal basis of any rational vector space, does not necessarily define a
complete set.

�

We consider next the space Xr, dimXr = p and with index I(Xr). Note that
I(Xr) is the ordered set of CMI of sF −G and thus we may also denote I(Xr)
by Ic(F,G). Some further properties of Xr are described below [21].

Theorem 4.2. Let sF −G ∈ Rt×q[s], Ic(F,G) = {(di, ri), i ∈ n, 0 6 d1 < . . . <
dn} and {Ri, i ∈ n} be the set of prime spaces Xr. Then,

(i) Any R[s]−minimal basis of Xr is complete.
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(ii) If X(s) = [. . . , Xi(s), . . .], Xi(s) = [. . . , xij(s), . . .], ϑ[xij(s)] = di, j ∈ ri, i ∈
n, is any OMBM of Xr and Sij denotes the supporting spaces of xij(s),
then

Rk = S1
1 ⊕ . . .⊕ S1

r1 ⊕ . . .⊕ S
k
1 ⊕ . . .⊕ Skrk (49)

dimRk =

k∑
i=1

ri(di + 1) = τk (50)

�

The completeness of any OMBM of Xr is the distinguishing feature of matrix
pencil generated rational vector spaces, and has important implications on the
relationships between Pk, P̂k,Rk, as well as the construction of their bases.

Some further properties of the R?,P?, P̂
?

spaces are stated next [21]:

Corollary 4.2. Let sF − G be a singular pencil and R?,P?, P̂
?

be the spaces
associated with Xr. Then,

Nr{G} ∩ R? = P̂
?
,Nr{F} ∩ R? = P? (51)

Nr{G} ∩ Nr{F} = P̂
?
∩P? = S (52)

Furthermore, if d1 is the smallest CMI and ri its multiplicity,then S 6= {0} and
dimS = r1 if and only if d1 = 0.

�

Some further invariant spaces of Xr may be introduced by using the structure
of Toeplitz representations of OMBMs [21]. The Toeplitz representation of
OMBMs is essential in deriving some of the properties of the polynomial vectors
in Xr and its most essential features are summarised below [20], [21]:

Definition 4.3. Let X(s) = [X1(s), . . . , Xn(s)] be an OMBM of X with index
I(X ) = {(di, ri), i ∈ n} and let Xj(s) = sdjXj

dj
+. . .+sXj

1 +Xj
0 ∈ Rq×rj [s],∀j ∈

µ. We may define:

(i) For every k > dj , with fj = k − dj > 0, we define

T kdj (Xj) =



Xj
dj

0 . . . 0
...

. . .
. . . 0

Xj
0

. . .
. . . 0

0
. . .

. . . Xj
dj

...
. . .

. . .
...

0 · · · 0 Xj
0


︸︷︷︸

fj − blocks

 fj − blocks

∈ R(k+1)q×(fj+1)rj

(53)
as the k−th Toeplitz matrix of Xj(s).
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(ii) For all k : dj 6 k < dj+1 we define the matrix

T kI (X) = [T kd1(X1); . . . ;T kdj (Xj)] ∈ R(k+1)q×φjk (54)

where φjk =
∑j
i=1 (k+1−di)ri, as the k-Toeplitz matrix of X(s). If k = dn,

then T dnI = (X)TnI (X) is called the normal Toeplitz matrix (nTm) of X(s)
and has dimensions (dn + 1)q × φ, where φ = φndn =

∑n
i=1 (dn + 1− di)ri

is called the dynamic order of X .

Lemma 4.2. [20] For any OMBM X(s) of X and k : di = max{dj 6 k},

ρ(T kI (X )) = φik =

i∑
j=1

(k + 1− dj)rj (55)

The importance of the Toeplitz representation of OMBMs is illustrated by
the following result [20]:

Proposition 4.1. Let X(s) = [X1(s), . . . , Xµ(s)] be an OMBM of X ∈ Rq(s), dimX =
p with I(X ) = {(di, ri), i ∈ n}. If x(s) = sk xk + . . .+ s x1 +x0 ∈ Rq[s], xk 6= 0,
then x(s) ∈ X , if and only if either of the following equivalent conditions hold
true:

(i) x(s) may be expressed as

x(s) =

µ∑
i=1

Xi(s) ai(s), ai(s) ∈ Rri [s] (56)

where ϑ[ai(s)] 6 k − di, if k > di and ai(s) = 0 if k < di.

(ii) If we denote by z(x) = [xtk, . . . , x
t
1, x

t
0]t ∈ Rq(k+1), then

z(x) = [T kd1(X1), . . . , T kdi(Xi)] ai,k (57)

where di = max{dj : k > dj} and ai,k some real vector.

�

The above result expresses the conditions for polynomial vectors to be in X ; in
particular, part (ii) expresses a fundamental isomorphism between vectors of
Rq[s] ∩ X and real vectors in the column space of k−Toeplitz matrices. Some
further properties of the polynomial vectors of Rq[s] are examined next.
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5 Generation of Complete Sets of Polynomial
Vectors with Given High Coefficient Spaces

For a given matrix pencil sF − G ∈ Rt×q[s], any minimal basis of Xr =
Nr{sF −G} defines a complete set of polynomial vectors.The study of the gen-
eration and properties of complete sets of polynomial vectors of Xr, which have
a given high coefficient space, is motivated by the need to classify the proper-
nonproper pairs. This problem is examined in this section. The results provide
the necessary tools needed for the classification of minimal bases of singular sys-
tems, when the pencil considered is the restriction pencil R(s) = sNE − NA.
The general case of the pencil sF − G is considered here and the results also
apply to R(s). We use the same definitions and notation for the invariants of
Xr as was done for the general case of a rational vector space X . Specifically,
I(Xr) = I = {(di, ri), i ∈ η, 0 6 d1 < · · · < dη} denotes the index,(I) = {di, i ∈
η} the list and [I] = {. . . , di, . . . , di : ri , i ∈ η} the explicit representation
of I. If X(s) = [X1(s), . . . , Xn(s)] is an OMBM of Xr,Xi(s) ∈ Rq×ri [s], then
{Mi, i ∈ η}, {Pi, i ∈ η}, {P̂i, i ∈ η}, {Ri, i ∈ η} will denote the corresponding
sets of invariant-modules, spaces of Xr.

The generation of complete sets of polynomial vectors of Xr having a given
generator and common degree is considered first.

Proposition 5.1. Let Ik = {(di, ri)i ∈ k} be the k−th partial index of Xr and
Mk,Pk be the corresponding prime module, space. The following properties hold
true:

(i) For every xr ∈ Pk, there exists x(s) = x0 + . . . + sr xr ∈ Mk with r = dk;
furthermore, if xr ∈ Pk and xr /∈ Pk−1 any vector x(s) in Mk generated
by xr has ϑ[x(s)] = dk and it is prime.

(ii) If {xjr, j ∈ µ, µ 6 rk} is a linearly independent set such that Vr = spR{xjr, j ∈
µ} ∈ Pk,Vr∩Pk−1 = {0} then there exists a vector set {xj(s) = xj0 + . . .+

sr xjr, r = dk, j ∈ µ : xj(s) ∈ Mk,∀j ∈ µ}; furthermore, any such vector
set is complete.

Proof. (i) Let X(s) = [. . . , Xi(s), . . .], Xi(s) = sdiXi
di

+ . . .+sXi
1 +Xi

0, i ∈ n
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be an OMBM of Xr and let T dkI (X) be the dk−th Toeplitz matrix, where

T dkI (X) =



X1
d1

0 . . . 0 . . . Xk
dk

X1
d1−1 X1

d1

. . .
... . . . Xk

dk−1
...

. . .
. . . 0

...

X1
0

. . .
. . . X1

d1
. . .

...

0
. . .

. . . X1
d1−1

...
...

. . .
. . .

...
...

0 . . . 0 X1
0 . . . Xk

0


=



T 1
dk

. . . T kdk
T 1
dk−1 . . . T kdk−1
... . . .

...

... . . .
...

T 1
0 . . . T k0


(58)

If xr ∈ Pk, there exist vectors {b0,1, . . . , b0,k} such that

xr = [X1
d1 ; . . . ;X1

dk
]

 b0,1
...
b0,k

 (59)

with the above selection of b0,1, . . . , b0,k we may always define a polynomial
vector x(s) = sr xr + . . .+s x1 +x0, r = dk, the coefficients of which are defined
by  xr

...
x0

 = T dkI (X)

 a1
...
ak

 , ai =


b0,i
b1,i

...
bdk−di,i

 , i ∈ k− (60)

where bj,i, j 6= 0 are appropriate dimension vectors, but otherwise arbitrary; the

dimensions of these vectors are consistent with the block structure of T dkI . By
Proposition 4.1, x(s) ∈Mk, xr = [x(s)]h ∈ Pk and ϑ[x(s)] = dk.

If x(s) is constructed as above and xr /∈ Pk−1, then clearly b0,k 6= 0, since

[X1
d1
, . . . , Xi

di
] is a basis matrix forPi. If x(s) is not prime, there exist scalars

{ci, i = 0, 1, . . . , r, r = dk} not all of them zero, such that
∑r
i=0 ci xi = 0; by

(58) and the structure of T dkI (X), it follows that the latter is equivalent to

Xk
dk
fk
dk

+ . . .+Xk
0 f

k

0
+ . . .+X1

d1 f
1

d1
+ . . .+X1

0 f
1

0
= 0 (61)

where f i
j

are appropriate combinations of the bi,j vectors, defined from the ci

and the Toeplitz structure. Since X(s) is an OMBM associated with a pencil,
it defines a complete set of polynomials and thus (59) yields f i

j
= 0 for all

j = 0, . . . , di and i ∈ k. From the structure of T dkI (X) it follows that

fk
j

= cj b0,k = 0,∀j = 0, 1, . . . , dk (62)
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and since b0,k 6= 0, we have that cj = 0,∀j = 0, 1, . . . , r = dk which contradicts
the linear dependence assumption. Thus, any x(s) constructed by (57) and (58)
is prime, as long as xr ∈ Pk and xr /∈ Pk−1.
(ii) By part(i), we may always define a set {xj(s) : xj(s) = xj0 + . . .+ sr xjr, r =

dk, xj(s) ∈ Mk, j ∈ µ} of prime vectors which are generated by xjr ∈ Pk, but

with xjr /∈ Pk−1. If P (s) = [x1(s), . . . , xµ(s)], then [P (s)]h = Ph = [x1, . . . , xµr ]

and it is clear that ρR(s)(P (s)) = ρ(Ph) = µ and thus the {xj(s), j ∈ µ} set is
linearly independent. To prove that the set is complete, assume the opposite,
that is the set {xji , i = 0, 1, . . . , r, j ∈ µ} of all coefficient vectors is linearly
dependent; then, there exist scalars {cj,i, i = 0, 1, . . . , r, j ∈ µ}, not all of them
zero, such that

µ∑
j=1

r∑
i=0

cj,i x
j
i = 0 (63)

where for every j ∈ µ, the vectors xji , i = 0, 1, . . . , r = dk are defined in terms
of (58), which together with (56) and (61) leads to

T 1
r {

µ∑
j=1

cj,r aj,1}+ T 2
r {

µ∑
j=1

cj,r aj,2}+ . . .+ T kr {
µ∑
j=1

cj,r aj,k}+

+T 1
r−1{

µ∑
j=1

cj,r−1 aj,1}+ T 2
r−1{

µ∑
j=1

cj,r−1 aj,2}+ . . .+ T kr−1{
µ∑
j=1

cj,r−1 aj,k}+

+T 1
0 {

µ∑
j=1

cj,r0 aj,1}+ T 2
0 {

µ∑
j=1

cj,r0 aj,2}+ . . .+ T k0 {
µ∑
j=1

cj,r0 aj,k} (64)

where the matrices T ij are defined by the partitioning of T dkI (X) as shown in

(56). Note that for all t = 0, 1, . . . , r, T kt = Xk
t and that

spR{[T 1
r , . . . , T

k−1
r , . . . , T 1

0 , . . . , T
k−1
0 ]} ∩ spR{[T kr , . . . , T k0 ]} = {0} (65)

thus, from (63), (62) and the completeness of X(s) we have:

µ∑
j=1

cj,t aj,k = 0, t = 0, 1, . . . , r = dk (66)

Note that since xjr /∈ Pk−1, it follows that for ∀j ∈ µ, aj,k 6= 0. We shall prove
next that the set {aj,k, j ∈ µ} is linearly independent. Let us assume that (64)
holds true for at least a set of non-zero cj,t corresponding to a fixed t. Then,

x?r =

µ∑
j=1

cj,t x
j
r = [X1

d1 , 0, . . . , 0](

µ∑
j=1

cj,t aj,1) + . . .+

+[Xk−1
dk−1

, 0, . . . , 0](

µ∑
j=1

cj,t aj,k−1) + [Xk
dk

](

µ∑
j=1

cj,t aj,k) ∈ Pk−1,
(67)
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since (64) holds true and [X1
d1
, . . . , Xk−1

dk−1
] is a basis matrix of Pk−1. Given that

there exists an x?r ∈ Vr, x?r 6= 0 and x?r ∈ Pk−1, it follows that Vr ∩ Pk−1 6= {0}
and this leads to a contradiction; thus, the vectors {a−

j,k
, j ∈ µ} are linearly

independent and (64) implies that cj,t = 0,∀j ∈ µ, t = 0, 1, . . . , r. The latter
clearly shows that the set {xj(s), j ∈ µ} is complete.

�

The linearly independent set or vectors Bi = {xji,di , j ∈ µi} for which Vi =

spR{xji,di , j ∈ µi} satisfies the conditions

Vi ⊆ Pi,Vi ∩ Pi−1 = {0} and µi = dimVi 6 ri (68)

will be called a (di, µi)−progenitor set and Vi a (di, µi)−progenitor space. From
the proof of Proposition 5.1 we also have the following results:

Remark 5.1. If Bi = {xji,di , j ∈ µ
i
} is a (di, µi)−progenitor set there exist

families of complete polynomial vector sets Ti each one of them generated by
Bi. Every set Ti = {xji (s) = sdi xji,di + . . . + s xji,1 +xji,0, j ∈ µi} generated by
Bi is given by

xji,di
...

xji,1
xji,0

 = T diI (X)


aj1
...
...

aji

 , ajk =


bj0,k
bj1,k

...

bjdi−dk,k

 , k ∈ i, j ∈ µ (69)

where T diI (X) is the di−Toeplitz matrix of any OMBM of Xr, the vectors

{bj0,1, . . . , b
j
0,i} are uniquely defined by

xji,di = [X1
d1 ; . . . ;Xi

di ]

 bj0,1
. . .

bj0,i

 (70)

and the rest of the vectors bja,k, a = 1, . . . , dj − dk, j ∈ µk arbitrary.

�

Remark 5.2. If Bi = {xji,di , j ∈ µi} is a (di, µi)−progenitor set and

xji,di = [X1
di , 0, . . . , 0] aj1 +[X2

d2 , 0, . . . , 0] aj2 + . . .+ [Xi
di ] a

j
i (71)

then the set of vectors {aji , j ∈ µi} is linearly independent.

�
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The above two remarks follow immediately from the proof of Proposition
5.1. Any vector set Ti defined as in Remark 5.2 will be referred to as a
(di, µi)−normal set and the modules Ni = spR[s]{Ti} as the corresponding
(di, µi)−normal module generated by Ti. For the Ni modules we have the fol-
lowing properties:

Corollary 5.1. Let Bi be a (d1, µi)−progenitor set and let Vi, Ti,Ni be the
corresponding space, set, module respectively. Then,

(i) Ni is a maximal R[s]−module of rank µi 6 ri, indices I(Ni) = {(di, µi)},
high coefficient space, Vi and Ti is an OMB.

(ii) Ni ⊆Mi and Ni ∩Mi−1 = {0}.

Proof. (i) The completeness of the set Ti implies that Ti defines a minimal
basis (Remark 4.1); thus, the Ni module generated by Ti is a maximal Noethe-
rian and has indices {(di, µi)}, those defined Ti.
(ii) By Proposition 5.1 it is clear that Ni ⊆Mi. To prove that Ni∩Mi−1 = {0},
assume that there exists x(s) ∈ Ni such that x(s) ∈Mi−1. If x(s) = x0 + . . .+
sk xk, k > di, then clearly xk ∈ Vi, since Vi is the highest coefficient space of Ni
and xk ∈ Pi−1 since x(s) ∈ Mi−1; however, the last two conditions imply that
Vi ∩ Pi−1 6= {0} which leads to a contradiction.

�

Proposition 5.1 provides the means for a parametrisation of all (di, µi)−normal
sets generated by a given Bi set. To extend the above result to the case of
general progenitor sets we need some further definitions and notation.

Definition 5.1. Let I = {(di, ri), i ∈ η} be the index and {P} = {Pi, i ∈ η} be
the set of prime spaces of Xr.

(i) Any subset of I, will be called a character of I and will be denoted by
J = {(dνi , µνi), i ∈ ρ, dνi ∈ (I), µνi 6 rνi , 0 6 dνi < . . . < dνρ} if J 6= ∅.
Two characters J, J̃ , are said to be complementary if [J ] ∪ [J̃ ] = [I]

(ii) Any set of spaces {Y} = {Yi, i ∈ η} defined by

P1 = Y1,Pi = Pi−1 ⊕ Yi, i = 2, . . . , n, dimYi = ri (72)

will be called a system of generator spaces (SGSP) of Xr, I is its index
and Yi is a (di, ri)−generator space.

(iii) Let {Y} = {Yi, i ∈ n} be an SGSP and define the sets of subspaces

{V} = {Vi : Vi ⊆ Yi, dimVi = µi > 0, i ∈ η}

{Ṽ} = {Ṽi : Ṽi ⊆ Yi, dim Ṽi = τi > 0, i ∈ η} (73)

such that µi + τi = ri,∀i ∈ η and

22



(a) If µi > 0, τi > 0, then Yi = Vi ⊕ Ṽi.
(b) if µi = ri (or τi = ri) and τi = 0 (or µi = 0), then Vi = Yi (or

Ṽi = Yi) and Ṽi = {0}(Vi = {0}).

The spaces Vi, Ṽi are called complementary di-order progenitor spaces (di-
PSP) and {V} = {Vi, i ∈ η

−
}, {Ṽ} = {Ṽi, i ∈ η

−
} are said to be complemen-

tary systems of progenitor spaces (CPSP). The SGSP set {Y} = {Yi, i ∈
η
−
} that generates V, Ṽ is called the parent SGSP set. The subsets of V, Ṽ

defined by

〈V〉 = {Vk : Vk ∈ {V}, 6= {0},dimVk = µk, γ(Vk) = dk, k ∈ {v1, . . . , vρ}}〈
Ṽ
〉

= {Ṽp : Ṽp ∈ {Ṽ}, 6= {0},dim Ṽp = τρ, γ(Ṽp) = dp, p ∈ {σ1, . . . , σπ}}
(74)

are called the flags of the V, Ṽ respectively; the sets tr{V} = {v1, . . . , vρ} ∈
{η}, tr{Ṽ} = {σ1, . . . , σπ} ∈ {η}, {η} = {1, 2, . . . , n} are called the traces
of V, Ṽ and J = {(dvi , µvi), µvi > 0, i ∈ ρ

−
}, J̄ = {(dσj , τσj ), τσj > 0, j ∈ π−}

are their characteristics. The sets V, Ṽ, will be called the completions of
〈V〉 , < Ṽ > respectively.

(iv) An SPSP {V } is called complete, if = Yi,∀i ∈ η, where {Y} = {Yi, i ∈ η}
is an SGSP of Xr.

�

Remark 5.3. An SGSP set {Yi, i ∈ η} is not uniquely defined, but all such
systems have the same index I, and P? = Y1 ⊕ . . .⊕ Yη. For the subspaces Vi
of Yi we have that

Vi ⊆ Pi, and Vi ∩ Pi−1 = {0}, where P0 = {0} (75)

It is clear, that the characteristics of the complementary flags < V >,< Ṽ >
define complementary characters of I. From Remark 5.3 and Proposition 5.1
follows that we may extend Definition 5.3 as follows:

Definition 5.2. Let ({V}, {Ṽ}) be a pair of complementary SPSP of Xr with
characteristics J = {(dνi , µνi), i ∈ ρ}, J̃ = {(σνj , τνj ), j ∈ π} and flags < V >=

{Vνi , i ∈ ρ}, < Ṽ >= {Ṽσj , j ∈ π}.

(i) A basis set Bνi of Vνi is called a (dνi , µνi)−progenitor set and < B >=
{Bνi , i ∈ ρ} a J−system of progenitor sets (J-SPS). A J̃−SPS < B̃ >=

{Bσj , j ∈ π} is defined similarly for {Ṽ} and (< B >,< B̃ >) will be

referred to as complementary (J, J̃)−SPS.
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(ii) If Tνi = {xνij (s) : xνij (s) ∈ Mνi , ϑ[xνij ] = dνi , j ∈ µνi} is a (dνi , µνi) normal

set generated by Bνi (see Proposition 5.1), then Nνi = spR[s]{Tνi} is
called the (dνi , µνi)−normal module generated by Tνi . We shall refer to
< T >= {T̃ νi , i ∈ ρ} as J−systems of normal sets (J−-SNS), J−system
of normal modules (J−SNM) respectively of {V}. We may define similarly
the sets < T̃ >,< Ñ > from < Ṽ > and the pairs (< T >,< T̃ >), (<
N >,< Ñ >) will be called complementary (J, J̃)−SNS, (J, J̃)−SNM
respectively.

�

The properties of the sets defined above are examined next.

Lemma 5.1. Let {V} be an SPSP of XR and < V >= {Vνi , i ∈ ρ} its flag. The
set < V > is linearly independent.

Proof. The result is proved by induction. Assume that Vν1∩Vν2 6= {0}. Since
Vν1 ⊆ Pν1 and Pν1 ⊆ Pν2−1, it follows that Vν1 ⊆ Pν2−1 and Vν1 ∩ Vν2 6= {0}
implies that Pν2−1 ∩ Vν2 6= {0}; however, by definition Vν2 ∩ Pν2−1 = {0} and
this leads to a contradiction. Thus,Vν1∩Vν2 = {0} and Vν1 ,Vν2 are independent.
Consider now Vν1,ν2 = Vν1 ⊕Vν2 , which is clearly a subspace of Pν2 and assume
that Vν1,ν2 ∩ V3 6= {0}. Note that Vv1,v2 ⊆ Pv2 also implies Vv1,v2 ⊆ Pv3−1 and
this implies Pν3−1 ∩ Vν3 6= {0}; however, by definition Pν3−1 ∩ Vν3 = {0} and
thus we are led to a contradiction. Thus, Vν1,ν2 ∩ Vν3 = {0} and the spaces
{Vν1 ,Vν2 ,Vν3} are linearly independent. Consider next the space Vν1,ν2,ν3 =
Vν1⊕Vν2⊕Vν3 . The induction is rather obvious and following similar arguments
we prove that Vν1,ν2,ν3 ∩ Vν4 = {0}.

�

Remark 5.4. Let {V}, {Ṽ} be a pair of complementary SPSP and < V >=
{Vνi , i ∈ ρ}, < Ṽ >= {Vσj , j ∈ π} their corresponding flags. The set {< V >,<
Ṽ >} is linearly independent and

P? = Vνi ⊕ · · · ⊕ Vνρ ⊕ Ṽσ1
⊕ Ṽσπ (76)

�

The properties of < T >,< N > sets generated by B examined next.

Theorem 5.1. Let {V} be an SPSP of Xr, < V >= {Vνi , i ∈ ρ} its flag,
< B >= {Bνi , i ∈ ρ} a J-SPS for < V > and J = {(dνi , µνi), i ∈ ρ} be the
characteristic of {V }. The following properties hold true:

(i) An J-SNS < T >= {Tνi , i ∈ ρ}, generated by < B > is linearly independent,
as well as the corresponding J-SNM < N >= {Nνi , i ∈ ρ}.

(ii) If N ? = Nν1 ⊕ · · · ⊕ Nνρ then N ? is a maximal R[s]−module with J index
and < T >= {Tνi , i ∈ ρ} is an OMB of N ?.
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Proof. (i) By Proposition 5.1, it follows that for each i ∈ ρ the sets Tνi are
linearly independent. To prove that < T > is independent it is adequate to
prove that < N > is independent; this is proved by induction as shown below:

(a) Assume that Nνi ∩ Nν2 6= {0}. By Corollary 5.1, Nν1 ∩Mν1 = {0} and
sinceMν1 ⊆Mν2−1, it follows that Nν1 ⊆Mν2−1; thus, Nν1 ∩Nν2 6= {0}
implies that Nν2 ∩Mν2−1 6= {0}. By Corollary 5.1, Nν2 ∩Mν2−1 = {0}
and thus we are led to a contradiction. So we have that Nν1 ∩Nν2 = {0}.

(b) Consider now the module Nν1,ν2 = Nν1 ⊕ Nν2 ⊆ Mν2 and assume that
Nν1,ν2 ∩ Nν3 6= {0}. Since Nν1,ν2 ⊆ Mν2 ⊆ Mν3−1, it follows that Nν3 ∩
Mν3−1 6= {0}, which clearly leads to a contradiction (see Corollary 5.1).
Thus {Nν1 ,Nν2 ,Nν3} are linearly independent. The general step of the
induction follows along similar lines.

(ii) The module N ? = Nν1⊕· · ·⊕Nνρ is well defined and < T >= {Tνi , i ∈ ρ} is
a basis of N ?. To prove this result, it has to be shown that < T > is a minimal
basis; it is adequate to show that the set < T > is complete. Thus let Tνi =
{xjνi(s) = sdνi xjνi,dνi

+ . . . + s xjνi,1 +xjνi,0, j ∈ µνi} and X(s) = [. . . , Xi(s), . . .]

be any OMBM of Xr; by Remark 5.1 we have that
xjνi,dνi

...

xjνi,1
xjνi,0

 = T
dνρ
I (X)


ajνi,1

...

ajνi,νρ−1
ajνi,νρ

 , i ∈ η, j ∈ µνi (77)

where the Toeplitz matrix is defined for the largest of dνi , the dνρ . By Remark
5.2, the sets {ajνρ,νρ , j ∈ µνi} are linearly independent for all i ∈ η. The result

is now proved by induction as follows:

(a) Consider the set {Tνi , Tν2} and assume it not to be complete. The set
{xjνi,k, k = 0, 1, . . . , dνi , j ∈ µνi , i = 1, 2} is linearly dependent and there

exist scalars cjνi,k, not all of them zero, such that

µν1∑
j=1

dν1∑
k=0

cjν1,k x
j
ν1,k

+

µν2∑
j=1

dν2∑
k=0

cjν2,k x
j
ν2,k

= 0 (78)

Note that using (73) and the partitioned form of T
dν2
I (X), defined by (56), we

can express xjνi,k in terms of the ajνi,p, p = 1, . . . , ν2, i = 1, 2 vectors and the
block T pτ , p = 1, . . . , ν2, τ = 0, 1, . . . , dν2 . Taking into account the completeness
of X(s) that T ν2τ = Xν2

τ , τ = 0, 1, . . . , ν2 and using similar arguments as in the
proof of Proposition 5.1 (arguments following the analysis of (61)), it follows
that the coefficients of Xν2

τ , τ = 0, 1, . . . , dν2 (in the resulting equation after the
substitution) should be zero, i.e.

µν2∑
j=1

cjν2,k a
j
ν2,k

= 0,∀k = 0, 1, . . . , dν2 (79)
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however, by Remark 5.2, {ajν2,ν2 , j ∈ µν2} is linearly independent and thus (78)

implies cjν2,k = 0,∀j ∈ µν2 , k = 0, 1m. . . , dν2 . The latter conditions reduce (77)
to

µν1∑
j=1

dν1∑
k=0

cjν1,k x
j
ν1,k

= 0 (80)

The set Tν1 is however complete, as it has been established by Proposition 5.1,
and thus cjνi,k = 0,∀k = 0, 1, . . . , dνi , j ∈ µνi , i = 1, 2 which contradicts the
dependence of the vectors. Thus {Tν1 , Tν2} is complete. The general step of the
induction follows along similar lines.

�

For a given SPSP {V} with flag < V >, trace tr{V} and characteristic J , we
may define sets < B >,< T >,< N >, although not in a unique manner,
which are characterised by the tr{V} and J indices; any set Ω(V) = {< V >,<
B >,< T >,< N >} will be called a V (J)−system generated by < V >. A
V (J)−system is called complete, if < V > is complete, i.e. < V >= {Y} is an
SGSP. For complete sets J = I and we also have the result:

Corollary 5.2. If Ω(V) = {< V >,< B >,< T >,< N >} is complete, then

(i) For the set < V >= {Vi, i ∈ η} we have:

P1 = V1,Pk = Pk−1 ⊕ Vk, k = 2, . . . , η (81)

(ii) The set < T >=< Ti, i ∈ η > defines an OMB of Xr with index I.

(iii) For the set of modules < N >= {Ni, i ∈ η} we have:

M1 = N1,Mk =Mk−1 ⊕Nk, k = 2, . . . , η (82)

If Ω(V) = {< V >,< B >,< T >,< N >},Ω(Ṽ) = {< Ṽ >,< B̃ >,<
T̃ >,< Ñ >} are systems for which < V >,< Ṽ > are complementary, then
they are called complementary and clearly (< T >,< T̃ >), (< N >,< Ñ >)
are also complementary. We may define the union of complementary sets, as
follows:

Definition 5.3. For the Ω(V),Ω(Ṽ) complementary systems we may define
their union as the set

Ω(V, Ṽ) = {< V; Ṽ >,< B; B̃ >,< T ; T̃ >,< N ; Ñ >} (83)

where < V; Ṽ > {V?i , i ∈ η} = {Yi, i ∈ η} is the parent SGSP set of spaces

and < B; B̃ > the corresponding naturally ordered bases of < V ; Ṽ > formed
from the bases of < V >,< Ṽ >; the sets < T ; T̃ >= {T ?i , i ∈ η}, < N ; Ñ >=
{N ?

i , i ∈ η} are defined by:
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(a) If i ∈ tr{V} = {ν1, . . . , νρ} and i ∈ tr{Ṽ} = {σ1, . . . , σπ}, then:

T ?i = {Ti; T̃ i} and N ?
i = Ni ⊕ Ñi (84)

(b) If i ∈ tr{V} and i /∈ tr{Ṽ}, then T ?i = Ti and N ?
i = Ni.

(c) If i /∈ tr{V} and i ∈ tr{Ṽ}, then T ?i = T̃ i and N ?
i = Ñ i.

From the above definition it is clear that:

Remark 5.5. The union of two complementary sets Ω(V),Ω(Ṽ) is a set Ω(V; Ṽ)
which is complete.

�

The results presented in this section provide the means for the classification of
proper-nonproper vectors which is examined next.

6 A Classification of Minimal Bases and Indices
of Singular Systems

The characterisation of the vectors x(s) ∈ Xr∩Rn[s], where R(s) = sNE−NA,
according to whether xh = [x(s)]h ∈ Nr(E), or /∈ Nr(E) introduces a classifica-
tion of the OMBs of Xr according to the above property of the generator spaces.
The notion of a normal minimal basis of Xr is introduced here, using geometric
properties and it is shown to be an equivalent notion to that of a canonical
basis of XT . The properties of normal MBs are studied and new invariants are
introduced under the Brunovsky group. The most important of these invariants
is the partitioning of the index IC(R), and thus also of IC(T ) into two comple-
mentary subsets characterising the proper, nonproper properties of pairs. The
construction of normal MBs using algebraic and geometric tools is finally also
considered here.

It is assumed that IC(R) = I = {(di, ri), i ∈ η, 0 6 d1 < . . . < dη} is the
index of Xr, or set of CMF of R(s) and that {Pi, i ∈ η} is the set of high spaces
of Xr. The definition of special systems of progenitor spaces is the starting
point of our study here. For the system Se we introduce the following family of
spaces

Qi = Pi ∩Nr(E), i = 1, 2, . . . , η (85)

The family {Qi, i ∈ η} is uniquely defined by Se and since Pi ⊂ Pi+1 it follows
that Qi ⊆ Qi+1, i ∈ η. From this we have:

Remark 6.1. There exists a set of indices ΘE = {ν1, . . . , νρ} ⊆ {η}:

{0} = . . . = Qν1−1 ⊂ Qν1 = . . . = Qν2−1 ⊂ Qν2 = . . . = Qνρ−1 ⊂ Qνρ = . . . = Qη
(86)
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�

The set of indices ΘE = {ν1, . . . , νρ} is referred to as the E−trace of {η}; the
above property motivates the following definition:

Definition 6.1. Let I be the index of Xr; ΘE = {ν1, . . . , νρ} be the E−trace
and let µνi = dimQνi − dimQνi−1, i = 1, . . . , ρ,Qν0 = {0}.

(i) The set of indices JE = {(dνi , µνi), i ∈ ρ, 0 6 dνi < . . . < dνρ} is called the
E−characteristic of I = {(di, ri), i ∈ η}.

(ii) We define as an E−system of generator spaces any set of spaces < VE >
{Vν1 , . . . , Vνρ} defined by:

Vν1 = Qν1 ,Qνi = Qνi−1 ⊕ Vνi , i = 2, . . . , ρ (87)

Proposition 6.1. Let < VE >= {Vν1 , . . . ,Vνρ} be an E−system of vector
spaces. Then,

Vνi ∈ Pνi and Vνi ∩ Pνi−1 = {0},∀i ∈ ρ (88)

Furthermore Vνi is uniquely defined, γ(Vνi) = dνi and dimVνi = µνi ,∀i ∈ ρ.

Proof. By definition Vνi ⊆ Qνi∀i ∈ ρ with equality holding only for i = 1.
Since Qνi = Nr(E) ∩ Pνi ⊆ Pνi it is clear that Vνi ⊆ Pνi , i ∈ ρ. Note that
Vν1 = Qν1 and Qν1−1 = {0}. If Vν1 ∩ Pν1−1 6= {0}, then there exists x ∈ Vν1 ∩
Pν1−1, x 6= 0, such that x ∈ Nr(E); thus, since x ∈ Pν1−1 it follows thatQν1−1 =
Nr∩Pν1−1 6= {0}, which contradicts the assumption thatQν1−1 = {0}. It is thus
proved that Vν1∩Pν1−1 = {0}. Assume now that Vνi∩Pνi−1 6= {0}, i = 2, . . . , ρ.
Then, there exists x ∈ Vνi ∩ Pνi−1, x 6= 0, and thus x ∈ Nr(E), x ∈ Pνi−1 and
x ∈ Qνi−1; however, Qνi−1 = Qνi−1

(by (82)) and the existence of x ∈ Qνi−1

and x ∈ Vνi , x 6= 0, contradicts the independence of Qνi−1
,Vνi implied from

(83). Thus, x = 0 and Vνi ∩ Pνi−1 = {0}. The rest of the proof follows from
the definitions.

�

The set < VE > may be completed to the set of all indices {η} = {1, 2, . . . , η}
by defining:

{VE} = {Vi, i ∈ η : Vi = {0}, if i /∈ ΘE ,Vi = Vνj , if i = νj ∈ ΘE} (89)

{VE} is called the η−completion of < VE > defined by (83). In the context of
Definition 5.1, {VE} is a SPSP and will be called an E−system of progenitor
spaces (E-SPSP); the set < VE > is then the flag of {VE} and may be formally
described as:

< VE >= {Vk : Vk ∈ {VE} 6= {0}, dimVk = µk, γ(Vk) = dk, k ∈ ΘE} (90)
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Remark 6.2. An E-SPSP {VE} with < VE > flag is not uniquely defined apart
from its first non-zero element Vν1 the dimensions dimVνi = µνi 6 rνi , i ∈ ρ and
the E−trace ΘE = {ν1, . . . , νρ}. For every system < VE >, the spaces Vν1 , i ∈ ρ
are maximal dimension spaces of Rn which satisfy the conditions

Vνi ∈ Nr(E) ∩ Pνi = Qνi ,Vνi ∩Qνi−1 = {0} (91)

Qη = Nr(E) ∩ Pη = Vν1 ⊕ . . .⊕ Vνρ (92)

�

The above remark readily follows from the definitions and the results so far.
In the following, we shall denote by Z = X ⊕Y, the extended direct sum of two
vector spaces defined by Z = X ⊕Y if X ,Y 6= {0},Z = X if Y = {0} and Z = Y
if X = {0}. Using this notion, we may define for any E-SPSP {VE} = {Vi, i ∈ η}
a complementary {ṼE} = {Ṽi, i ∈ η} in the following manner:

P1 = V1⊕̇ Ṽ1,Pi = Pi−1 ⊕ (Vi⊕̇ Ṽi), i = 2, 3, . . . , η (93)

The set {ṼE} defined as above, is called an E−dual-system of progenitor spaces
(Ed-SPSP) and its flag (subset containing the nonzero spaces) is defined by

< ṼE >= {Ṽp : Vp ∈ {ṼE} 6= {0}, dim Ṽp = τp, γ(Ṽp) = dp, p ∈ Θ̃E} (94)

where Θ̃E = {σ1, . . . , σπ} is a subset of {η} = {1, 2, . . . , η} referred to as the
E−dual trace. The set of indices J̃E = {(dσi , τσi), i ∈ π, 0 6 dσ1 < . . . < dσπ}
is called the E-dual characteristic of I = {(d

i
, r
i
), i ∈ η} . From the definition

of Ed-SPSP we have:

Remark 6.3. If {ṼE = {Ṽi, i ∈ n} is an Ed-SPSP with < ṼE > flag, then
{Ṽ E} is not uniquely defined, but the E-dual trace Θ̃E = {σ1, . . . , σπ} and the
E-dual character J̃E = {(dk, τk), k ∈ Θ̃E} are uniquely defined. Furthermore,
the JE , J̃E characters are complementary, that is [JE ] ∪ [J̃E ] = [I], where I is
the index of XR; thus J̃E , Θ̃E are uniquely defined from JE ,ΘE respectively.

�

For any E-SPSP {VE} we can always define an Ed-SPSP {Ṽ E} (not in a unique
manner); the pair ({VE}, {ṼE}) is clearly complementary and shall be referred
to as an E−pair of SPSP. For any such pair we have the following properties:

Remark 6.4. Let ({VE}, {ṼE}) be an E-pair of SPSP. For ∀p ∈ Θ̃E the space
Ṽp ∈< ṼE > is a maximal dimension space that satisfies the conditions

Ṽp ⊂ Pp, Ṽp ∩Pp−1 = {0} and Ṽp ∩Nr(E) = {0},∀p ∈ Θ̃E (95)

Furthermore, if < VE >= {Vνi , i ∈ ρ}, < ṼE >= {Ṽσj , j ∈ π} and define

QE = Vν1 ⊕ . . .⊕ Vνρ , Q̃E Ṽσ1
⊕ . . .⊕ Ṽσπ (96)
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then
Pη = QE ⊕ Q̃E (97)

where QE is the maximal subspace of Pη that intersects with Nr(E) and thus

it is uniquely defined; Q̃E is a maximal dimension subspace of Pη for which

Q̃E ∩Nr(E) = {0}; Q̃E is not uniquely defined, but its dimension is uniquely
defined.

�

Any E-pair of SPSP ({VE}, {ṼE}) with (< VE >,< ṼE >) pair of flags is char-
acterised by (JE , J̃E) characteristics, referred to as the pair of E-characteristics
of I. Using the results of the previous section, we may define for any (< VE >
,< ṼE >) pair the sets

Ω(VE) = {< VE >;< BE >;< TE >;< NE >} (98)

Ω(ṼE) = {< ṼE >;< B̃E >;< T̃E >;< ÑE >} (99)

where (< BE >,< B̃E >), (< TE >,< T̃E >), (< NE >,< ÑE >) are E-
pairs of complementary systems of progenitor sets (SPS), normal sets (SNS),
and normal modules (SNM) respectively (see Definition 5.1). We may refer to
Ω(VE),Ω(ṼE) as an E−non-proper, E−proper system respectively of SE for
reasons that will become clear next, and to their union (Definition 5.7)

Ω(VE , Ṽ E) = {< VE ; Ṽ E >;< BE ; B̃E >;< TE ; T̃E >;< NE ; ÑE >} (100)

as an E-system of SE .

Remark 6.5. An E-system Ω(VE ; ṼE) is not uniquely defined on a given SE ;
however, all such systems have the same pair of E-characteristics (JE , J̃E).

�

We may state now one of the main results of this section, which demonstrates
the importance of the E-systems.

Theorem 6.1. Let Se ∈ Σl,n and Ω(VE , ṼE) be an E-system with a pair of

E-characteristics (JE , J̃E). The following properties hold true:

(i) The pair of E-characteristics (JE , J̃E) are invariants of the Brunovsky orbit
H(SE).

(ii) If (< TE >,< T̃E >) is the E-pair complementary SNS of Ω(VE , Ṽ E),
where < TE >= {Tνi , i ∈ ρ}, < T̃E >= {Tσj , j ∈ π} then:

(a) < TE ; T̃E >= {Tν1 ; . . . ;Tνρ ; T̃σ1
; . . . ; T̃σπ} is a minimal basis for

Nr{R(s)}.
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(b) If xνij (s) ∈ Tνi , j ∈ µ
νi
, i ∈ ρ, ϑ{xνij (s)} = dνi , x

σi
j (s) ∈ T̃σi , j ∈

τσi , ϑ{x
σi
j (s)} = dσi and define the vectors

uνij (s) = B†(sE −A)xνij (s), zνij (s) =

[
uνij (s)

xνij (s)

]
,∀j ∈ µ

νi
, i ∈ ρ

(101)

ũσij (s) = B†(sE −A) x̃σij (s), zσij (s) =

[
x̃σij (s)

ũσij (s)

]
,∀j ∈ τσi , i ∈ π

(102)
then the pairs (xνij (s), uνij (s)) for al j ∈ µ

νi
, i ∈ ρ are non-proper;

the pairs (x̃σij (s), ũσij (s)) for all j ∈ τσi , i ∈ π are proper and the set
defined by

ZE = {Zνi ; . . . ;Zνρ ; Z̃σ1
; . . . ; Z̃σπ} (103)

Zνi = {zνij (s), j ∈ µ
νi
}, Z̃σi = {z̃σij (s), j ∈ τσi (104)

is a minimal basis for Nr{T (s)}.

Proof. (i) The JE , J̃E sets may be computed from the dimensions of the set
of {Qi : i ∈ η} spaces. For the general S′E = H(Se) we have

[sE′ −A′,−B′] = W [sE −A,−B]

[
V 0
F G

]
(105)

If N is a left annihilator of B, then we may select a left annihilator of B′ as
N ′ = NW−1 and thus

R′(s) = sN ′E′−N ′A′ = NW−1{W (sE−A)V−WBF} = (sNE−NA)V = R(s)V
(106)

If {P1, . . . , Pn} are the high coefficient spaces of R(s) and {Pi, i ∈ n} are
bases matrices for them, then the high coefficient spaces for R′(s) are defined by
P ′i = col.sp{V −1Pi}, i ∈ n. If E⊥ is a basis matrix for Nr(E), then V −1E⊥ =
E ’⊥ is a basis matrix for Nr(E

′). Note that the spaces Qi = Nr(E)∩Pi, Q′i =
Nr(E

′) ∩ P ′i, i ∈ n are defined by:

Qi = Nr{
[
Pi
E

]
}, Q′i = Nr{

[
P ′i
E′

]
} = Nr{

[
V −1 0

0 V −1

] [
Pi
E

]
} (107)

and thus dimQi = dimQ′i,∀i ∈ n. Given that JE , J̃E are completely defined
by dimQi, i ∈ n, it follows that JE = J ′E , JE = J̃ ′E , where (J ′E , J̃

′
E) are the

E−characteristics associated with S′e.
(ii)

(a) Since (< VE >,< Ṽ E >) is an E−pair of SPSP, then the E−system
Ω(VE , Ṽ E) is complete and by Corollary 5.5, the set < TE , T̃E > defines
an OMB of Xr.
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(b) The pairs (xνij (s), uνij (s)) for ∀j ∈ µ
νi
, i ∈ ρ are non-proper, and the high

coefficient vector [xνij (s)] ∈ Vνi ⊂ Nr(E) whereas the pairs (xσij (s), uσij (s))

for ∀j ∈ τσi , i ∈ π are proper since [x
σνi (s)

j ]h ∈ Ṽ σi and thus not in Nr(Ẽ).
Consider now the ordered matrix

Ẑ(s) = [Zνi(s); . . . ;Zνρ(s); Z̃σ1
(s); . . . ; Z̃σπ (s)] = [Zηp(s), Zp(s)] (108)

=

[
Xν1(s); . . . ;Xνρ(s) X̃σ1 ; . . . ; X̃σπ (s)(106)

Uν1(s); . . . ;Uνρ(s) Ũσ1
; . . . ; Ũσπ (s)

]
=

[
X(s) X̃(s)(107)

U(s) Ũ(s)

]
=

[
X̂(s)

Û(s)

]
(109)

constructed from the pairs (xνij (s), uνij (s)),∀j ∈ µ
νi
, i ∈ ρ, (xσij (s), uσij (s)),∀j ∈

τσi(s), i ∈ π. By Proposition 3.5, it follows that since

û(s) = Bt(sE −A)X̂(s) (110)

and X̂(s) is an OMBM of Xr it follows that Ẑ(s) is an OMBM, it suffices to
show that it is column reduced. Let Xh[X(s)]h, Ũh [Ũ(s)]h, Ẑh [Ẑ(s)]h be the
high coefficient matrices. Since (X(s), U(s)) are non-proper and (X̃(s), Ũ(s))
are proper, it follows that:

Ẑh

[
Xh 0

D Ũh

]
(111)

where D is some appropriate matrix. However, Ũ(s) = Bt(sE − A)X̃(s) and
since (X̃(s), Ũ(s)) is proper, Ũh = BtE X̃h, X̃h [X̃(s)]h it follows that

Ẑh =

[
Xh 0

D BtE X̃h

]
(112)

From the block-diagonal structure of Ẑh, it follows that since Xh is full rank,
then Ẑh has full rank if and only if BtE X̃h has full rank. Note that BtE X̃h ∈
Rl×(l−q̃), q̃ =

∑π
i=1 τσi and thus loss of rank of BtE X̃h implies that there exists

v = 0 such that BtEX̂ = 0 by the definition of X̃h we also have that NE X̃h = 0
and thus NE X̃h v = 0. From the last two it follows that[

BtE X̃h

NE X̃h

]
v = 0⇔

[
Bt

N

]
E X̃h v = 0⇔ E X̃h v = 0 (113)

since the column of X̃h are linearly independent (111) implies that Nr(E) ∩
sp{X̃h} 6= {0}; however sp{X̃h} = Q̃E and by Remark 6.5 Nr(E) ∩ Q̃E = {0},
which leads to a contradiction. Thus,Ẑh has full rank and Ẑ(s) is an OMBM
of XT .

�

The above result establishes the existence of canonical minimal bases of XT .
The bases < TE ; T̃E >,ZE for XR, XT respectively, defined by the above result,
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have a special structure and shall be referred to as state-, composite-, normal
OMBs correspondingly. A state-normal OMB may always be extended to a
composite-normal OMB, which is always canonical; the reverse problem, that
is whether every canonical is also normal is examined next.

Proposition 6.2. Let Ẑ(s) be a canonical MB of XT with a state input par-
titioning (X(s), U(s); X̃(s), Ũ(s)), where X(s) ∈ Rn×p[s], X̃(s) ∈ Rn×(l−p), l =
dimXR = dimXT . If Xh[X̃(s)]h, then:

ρ(E X̃h) = l − p (114)

sp{Xh} = Nr(E) ∩ Pnandsp{X̃h} ∩Nr(E) = {0} (115)

Proof. Since (X(s), U(s)) is non-proper and (X̃(s), Ũ(s)) proper, then

Ẑh = [Ẑ(s)]h =

[
Xh 0

D Ũh

]
(116)

where Ũh = BtE X̃h, since Ũ(s) = Bt(sE − A)X̃(s) and from the properness
none of the columns of X̃h is in Nr(E). Since Z(s) is column proper and
ρ(Xh) = p, condition (116) implies that ρ(Ũh) = ρ(BtE X̃h) = l − p. Let us
now assume that ρ(E X̃h) < l−p. Then, there exists v 6= 0 such that E X̃h v = 0
from which it follows that

NE X̃h v = 0, BtE X̃h v = 0 (117)

The first of (116) is automatically satisfied (since NE X̃h = 0), whereas the
second implies that the l× (l− p) matrix BtE X̃h loses rank, which contradicts
the column properness of Ẑ(s). Thus,ρ(E X̃h) = 2p.
Note that [Xh, X̃h] is a basis matrix for Ph and thus ∀x ∈ Ph may be expressed
as

x = Xh v1 + X̃h v2 (118)

and thus the dimension of Nr(E)∩Pn is defined by the number of independent
vectors of the type (117) in Nr(E), i.e. the solutions of

Ex = 0 = EXh v1 +E X̃h v2 = E X̃h v2 (119)

By (113) however, ρ(E X̃h) = l− p implies that v1 = 0 and thus the dimension
of Nr(E)∩Pn is the dimension of v1, i.e. p. However, it is clear that sp{Xh} ⊆
Nr(E)∩Pn and since dimsp{Xh} = dimNr(E)∩Pn = p we have that sp{Xh} =
Nr(E) ∩ Pn. Given that ρ(E X̃h) = ρ(X̃h) = l − p, it follows that sp{X̃h} ∩
Nr(E) = {0}.

�

The above result is also valid for degenerate systems, i.e. systems with τ =
dimXT = dimXR > l as long as l > τ − p, p = dimQE . The reverse problem,
that is the link of canonical and normal MBs is considered next.
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Corollary 6.1. Let Ẑ(s) be an E−ordered MB of XT with state part X̂(s) =
[X(s), X̃(s)], where (X(s), U(s)) corresponds to non-proper pairs and (X̃(s), Ũ(s))
to proper pairs. The state part X̂(s) is a normal MB of XR, if and only if Ẑ(s)
is a canonical MB of XT .

Proof. By Theorem 6.2 it follows that if X̂(s) is normal, then it is an MB
for XR and may be extended to an MB Ẑ(s) of XT , which immediately makes
Ẑ(s) canonical; this proves that X̂(s) normal implies Ẑ(s) canonical. To prove
that Ẑ(s) canonical implies X̂(s) normal, we argue as follows: Ẑ(s) canonical
implies that X̂(s) is a minimal basis. Let us partition the ordered X̂(s) as

X̂(s) = [Xν′1(s), . . . , Xν′ρ(s); X̃σ′1(s), . . . , X̃σ′π (s)] = [X(s), X̃(s)] (120)

where Xν′1(s) ∈ Rn×µ
′
ν′i [s], X̃σ′j (s) ∈ R

n×τ ′σ′j [s] correspond to blocks of non-
proper, proper vectors with degrees dν′i , dσ′j respectively. The (119) partition-

ing of X̂(s) defines sets of indices

J ′ = {(dν′i , µ′ν′i), i ∈ ρ}, J̃
′ = {(dσ′j , τ ′σ′j ), j ∈ π} (121)

where it is also assumed that the blocks in X(s), X̃(s) are ordered according
to ascending degrees. We may now order the columns of X̂(s) according to
ascending degrees, that is:

X ′(s) = [X ′1(s); . . . ;X ′n(s)] (122)

where X ′i(s) ∈ Rn×ri [s] and all columns have the same degree di. These blocks
are formed as:

(i) If i = ν′k and ν′k /∈ {σ′1, . . . , σ′π}, then X ′i(s) = X ′ν′k ;

(ii) If i = σ′k and σ′k /∈ {ν′1, . . . , ν′ρ′}, then X ′i(s) = X̃σ′k(s);

(iii) If i = ν′k = σ′k, then X ′i(s) = [Xν′k(s), X̃σ′k(s)].

If we now denote byX ’i
h , X

’j
h , X ’k

h the high coefficient matrices ofX ′i(s), Xj(s), X̃k(s)
and denote

X
i)
h [. . . , Xj

h, . . .], X̃
i)

h [. . . , X̃
j

h, . . .]∀j 6 i (123)

then since X ′(s) is an OMB of XR, Pisp[X
’1
h , . . . , X ’i

h ] and Qi = Nr(E)∩Pi =

sp{xi)h }, since E[X̃
σ1

h ; . . . ; X̃
σπ
h ] has full rank (by Proposition 115) and thus

E X̃
i)

h has also full rank. From the construction of Qi it follows that the set of
indices for which Qi−1 ⊂ Qi are precisely the indices {ν′1, . . . , ν′ρ}. For each
such index it is clear by the construction of the bases of Qi that

Qνi = Qνi−1 /∈ sp{X
ν′i
h } (124)

and thus the set {sp{Xν′i
h }, i ∈ ρ} is an E-SPSP, with the set {sp{X̃σ′i

h }, i ∈ π}
being its complementary set. Thus J = J ′ and J̃ = J̃ ′.
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�

An immediate consequence of Proposition 6.3 and Corollary 6.4 is the fol-
lowing result characterising canonical minimal bases.

Corollary 6.2. Let X̂(s) = [X(s); X̃(s)] be an MBM of Xr, where [X(s)]h =
[. . . , xi, . . .] = Xh, x

i
h ∈ Nr(E), [X̃(s)]h = [. . . , x̃jh, . . .] = X̃h, x̃

j
h /∈ Nr(E) and

the columns in X(s), X̃(s) are ordered according to ascending degrees. The MB
X̂(s) is normal, if and only if

sp{Xh} = Nr(E) ∩ Pn and sp{X̃h} ∩Nr(E) = {0} (125)

The above results show that the notions of canonical and normal OMBs are
equivalent. The natural partitioning of the indices I of XR into the pair of
E−characteristics JE , J̃E introduces new variants for the H(SE) orbit and this
is expressed by the following result.

Corollary 6.3. Let (JE , J̃E) be the pair of E−characteristics of XR, where
JE = {(dνi , µνi), i ∈ ρ, 0 6 dνi < . . . < dνρ}, J̃E = {(dσi , τσi), i ∈ π, 0 6 dσ1 <
. . . < dσπ}. Then,

(i) (JE , J̃E) defines a partitioning of the set of CMI, IC(R) in the sense:

IC(R) = JE∪̇ J̃E (126)

(ii) If J̃
?

E = {(dσi+1, τσi), i ∈ π}, then the pair (JE , J̃
?

E) defines a partitioning
of the set of CMI, IC(T ), in the sense:

IC(T ) = JE∪̇ J̃
?

E (127)

The above partitioning of IC(T ) is an invariant of H(SE) and common to all
canonical MBs of XT .

Note that ∪̇ indicates ”extended union” in the sense that if (di, pi) is in JE ,
or J̃E , then (di, pi) is in the union; if (di, µi) ∈ JE and (di, τi) ∈ J̃E , then

(di, µi + τi) appears in the union. The sets of indices are JE , J̃
?

E shall be called
the non-proper-, proper indices of SE respectively. Procedures for computing
these indices are suggested by the way they have been defined. In fact, we dis-
tinguish a geometric approach based on the geometric invariants of XR and an
algebraic approach based on the properties of canonical minimal bases.
Geometric Procedure: Let {Pi, i ∈ π} be the set of high coefficient spaces
(computed from any OMB of XR (see [21])) and define the sequence of spaces
{Qi : Qi = Nr(E)∩Pi, i ∈ n}. Given that Q1 ⊆ . . . ⊆ Qn, we may compute the
E−trace θE = {ν1, . . . , νρ} for which Qνi−1 ⊂ Qνi . For every νi ∈ θE we define
JE by

JE = {(dνi , µνi) : νi ∈ θE , dνi = γ(Pνi), µνi = dimQνi = dimQνi−1} (128)

35



The E−dual characteristic J̃E is then defined as the complementary of JE with
respect to the index I = {(di, ri), i ∈ n} of XR.
The algebraic approach relies on the construction of canonical or normal MBs
of XR from any OMB. We may state the following result.

Proposition 6.3. Let X ′(s) = [X ′1(s), . . . , X ′n(s)] be an OMBM of XR, with
index I = {(di, ri), i ∈ n, 0 6 d1 < . . . < dn} and let (JE , J̃E) be the E−pair
of characteristics of I, where JE = {(dνi , µνi), i ∈ ρ}, J̃E = {(dσj , τσj ), j ∈ π}.
There always exists an I−structured R[s]−unimodular matrix W (s) such that

X ′(s)W (s) = X̂(s) = [X̂1(s), . . . , X̂n(s)] (129)

where X̂(s) is a normal MB of XR such that:

(i) If i = νk and i /∈ {σ1, . . . , σπ}, then X̂i(s) = Xνk(s);

(ii) If i = σk and i /∈ {ν1, . . . , νρ}, then X̂i(s) = X̃σk(s);

(iii) If i = νk = σk, then X̂i(s) = [Xνk(s); X̃σk(s)].

and Xi(s), X̃j(s) are the blocks associated with the JE , J̃E characteristics re-
spectively.

Proof. The proof is constructive and the two general steps are described
below. We shall denote by Xh[X(s)]h.

Step 1: Let νi be the smallest integer such that Pνi ∩ Nr(E) 6= {0} whereas
Pν1−1 ∩Nr(E) = {0}. Two different bases for Pν1 may be defined by the
matrices

Pνi = [X ’h
1 ; . . . ;X ’h

ν1−1;X ’h
ν1 ], P ν1 = [X ’h

1 ; . . . ;X ’h
ν1−1;X ’h

ν1 ; X̃
h

ν1 ] (130)

where Xh
ν1 is a basis for Pν1 ∩Nr(E) and X̃

h

ν1 a complementary block such

that sp{X̃h

ν1} ∈ Pν1 , sp{X̃
h

ν1} ∩Nr(E) = {0}. Clearly:

P ν1 = Pν1


I Q1

I 0 Q2

. . .
...

0 I Qν1−1
0 Qν1

 , Qν1 ∈ Rrν1×rν1 , |Qν1 | 6= 0 (131)

If we now define the matrix

Wν1(s) =


Ir1 0 Q1s

dν1−d1

. . .
... 0

0 Irν1−1
Qν1−1s

dν1−dν1−1

0 Qν1
0 I

 (132)
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it is clear that

Xν1(s) = X ′(s)Wν1(s) = [X
ν1

(s);X ′ν1+1(s), . . . , X ′n(s)] (133)

X
ν1

(s) = [X̃1(s); . . . ; X̃ ′ν1−1;Xν1(s); X̃ν1(s)] (134)

where the blocks Xν1(s), X̃ν1(s) are generated by Xh
ν1 , X̃

h

ν1 respectively

and X̃i(s) = X ′i(s), i = 1, . . . , ν1−1. Since Pν1−1∩Nr(E) = {0}, it follows
that the matrixXν1(s) satisfies the conditions of a normal matrix up to the
ν1 index. The matrix Wν1(s) is clearly an I−structured R[s]−unimodular.

Step 2: Assume now that ν2 is the next index for which Qν2−1 ⊂ Qν2 , where
Qi = Nr(E) ∩ Pi. Starting from the Xν1(s) OMBM we consider two
different basis matrices for Pν2 as shown below

Pν2 = [P ν1 ; . . . ;X ’h
ν2−1;X ’h

ν2 ], P ν2 = [P ν1 ; . . . ;X ’h
ν2−1;X ’h

ν2 ; X̃
h

ν2 ] (135)

where since Qν1+1 = . . . = Qν2−1 it follows that the spaces sp{X ’h
i }, i =

ν1 + 1, . . . , ν2 − 1 have no intersection with Nr(E), Xh
ν2 is a matrix such

that sp{Xh
ν1}⊕sp{X

h
ν2} = Qν2 = Nr(E)∩Pν2 and X̃

h

ν2 is a complementary

column block such that sp{X̃h

ν2} ∩Nr(E) = {0} and sp{X̃h

ν2} ∈ Pν2 but
not in Pν2−1. Clearly,

P ν2 = Pν2


I Q′1

. . . 0
...

0 I Q′ν2−1
0 Qν2

 , Qν2 ∈ Rrν2×rν2 , |Qν2 | 6= 0 (136)

If we now define the matrix

Wν2(s) =


Ir1 0 Q1s

dν2−d1

. . .
... 0

0 I Q′ν2−1 s
dν2−dν2−1

Qν2
0 I

 (137)

It is clear that

Xν2(s) = Xν1(s)Wν2(s) = [X
ν2

(s);X ′ν2+1(s); . . . ;X ′n(s)] (138)

X
ν
(s) = [X

ν1
(s); X̃ν1+1(s); . . . ; X̃ν2−1(s);Xν2(s); X̃ν2(s)] (139)

where the blocks Xν2(s), X̃ν2(s) are generated by Xh
ν2 , X̃

h

ν2 respectively

and X̃i(s) = X ′i(s), i = ν1 + 1, . . . , ν2 + 1. Since sp{X ’h
i } ∩Nr(E) = {0}

for a normal matrix up to the ν2 index. It is clear that Wν2(s) is an
I−structured R[s]−unimodular. The general step of the construction is
obvious.
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The above result provides algebraic means for the reduction of any OMB of
XR to a normal OMB. Given that the proof of Proposition 6.7 is constructive,
the general steps used there, also provide an algorithmic procedure for the con-
struction of I−structured R[s]−unimodular matrices that reduces any OMB to
a normal one.
The construction of a normal OMB from any OMB of XR provides the means
for parametrising all proper and non-proper pairs for the linear system SE .
Given that such pairs characterise spaces of the linear system with reachability-
controllability properties [25], [26], the current algebraic construction extends
the algebraic characterisation of controllability subspaces [2], [11] to the case
of singular systems by defining them as the span of the coefficient vectors of
the state parts of the proper, non-proper pairs. This algebraic characterisation
based on the proper, non-proper pair characterisation is crucial in defining the
families of proper and non-proper reachability spaces for singular systems [26].

7 Conclusions

Singular system properties are intimately linked to the theory of invariants of
associated matrix pencils. The theory of minimal bases of the right (left) null
spaces of such pencils is critical in defining the properties of system invariants,
of the column minimal indices and row minimal indices type, whereas the prop-
erties of the vectors of the minimal bases define important geometric invariants
(controllability spaces [2], [11],[12], [26] ). An important difference between
the case of regular and singular systems is the classification of the state-input
pairs into proper and non-proper which lead to the notion of canonical minimal
bases of singular systems. This paper has developed the algebraic and geometric
properties of canonical minimal bases, introduced new feedback invariants and
provided algorithmic procedures for the computation of the invariants and the
construction of such bases. The link of the proper- non-proper classification
of right pairs to the definition of proper- non-proper reachability spaces [26]
and the construction of normal OMBs are central to the parameterisation of
the families of the proper and non-proper reachability spaces for singular sys-
tems. These spaces have assignability of spectra features and the study of these
properties under different feedback schemes (state, state and derivative feedback
etc) is currently under investigation. The use of the new invariants (proper-
non-proper classification of column indices) has already being demonstrated in
the construction of canonical forms under the different transformation groups
[15]; the feedback canonical form derived in [15] (generalization of the Kronecker
form for singular systems) was constructed using elementary transformations.
The current results on the construction of normal OMBs provide alternative
means for the systematic construction of the transformation that can be used
for this derivation and this is a topic under investigation. Of particular in-
terest is the further classification of canonical bases in terms of properties of
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the pivot indices [3],[8] and the study of the implications in the development
of canonical forms under the general coordination transformation group. The
significance of the pivot indices [8], [24], [28] to problems of system identifica-
tion suggests that such extensions to the case of singular systems may provide
the basis for a geometric characterisation of proper- non-proper pivot indices
by providing additional insight to such issues. A detailed study of the classi-
fication of minimal bases using the further properties of the pivot indices and
the investigation of such additional invariants to the properties of reachability
and controllability subspaces for the case of singular systems [25],[26] is a sub-
ject for further research. The results on normal OMBs and their construction
may be useful in the development of explicit solutions to control synthesis of
singular systems [27], [28] by providing geometric tools for the construction of
the feedback transformations.
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