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Nearest common root of polynomials, approximate Greatest Common Divisor

and the structured singular value

G. Halikias∗, G. Galanis∗, N. Karcanias∗ and E. Milonidis∗

Abstract

In this paper the following problem is considered: Given two co-prime polynomials, find the smallest

perturbation in the magnitude of their coefficients, such that the perturbed polynomials have a

common root. It is shown that the problem is equivalent to the calculation of the structured singular

value of a matrix arising in robust control and a numerical solution to the problem is developed.

A simple numerical example illustrates the effectiveness of the method for two polynomials of low

degree. Finally, problems involving the calculation of the approximate greatest common divisor

(GCD) of univariate polynomials are considered, by proposing a generalization of the definition of

the structured singular value involving additional rank constraints.

Keywords: Approximate common root of polynomials, approximate GCD, Sylvester resultant

matrix, structured singular value, distance to singularity, structured approximations.

1. Introduction

The computation of the greatest common divisor (GCD) of two polynomials a(s) and b(s) is a non-

generic problem, in the sense that a generic pair of polynomials is co-prime, i.e. has greatest common

divisor equal to one. Thus, the notion of approximate common factors and approximate GCD’s has

to be introduced for the purpose of effective numerical calculations [1], [2], [3], [7], [10], [28], [30].

In the context of Systems and Control applications, the main motivation for developing non-generic

techniques for calculating the nearest common root and the approximate GCD of polynomials arises

from the study of almost zeros [18]. The numerical computation of the GCD of two (or more)

polynomials in a robust way has been considered by many researchers using a variety of methodologies,

such as ERES [27], extended ERES [27], matrix pencil methods [21], optimization techniques based

on total least squares or alternating projection algorithms [9], Pade approximations [30] and “rank-

revealing” matrix factorizations [10]. The common characteristic of all these techniques is that they

transform exact procedures to their numerical versions. However, most of the above methods suffer

from two fundamental limitations: (i) infinitesimally-small perturbations are typically assumed, and

(ii) the structure of the Sylvester resultant matrix on which the solution is based is ignored. A

numerical example given later in this work shows that these assumptions may lead to gross under-

estimation of the distance to the nearest common root and the corresponding approximate GCD

polynomial.

In this paper, we formalize the notion of “approximate co-primeness” of two polynomials, by

considering the minimum-norm perturbation in the polynomial’s coefficient vectors such that the
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perturbed polynomials have a common root. The calculation of the minimal perturbation is shown to

correspond to the distance of a structured matrix from singularity, or, equivalently to the calculation

of the structured singular value (µ) of a matrix under repeated scalar perturbations. An alternative

notion of approximation based on the Frobenius norm and the “spherical structured singular value”

of a matrix [8], [22], [31], [33], [34], is also briefly discussed. In contrast to alternative methods, our

approach gives a precise meaning to the notion of approximate common roots of polynomials and the

related notion of the “strength of approximation” of the approximate GCD of polynomials.

Problems involving the structured singular value of a matrix have been extensively studied in the

context of robust-stability and robust-performance design of control systems, and efficient methods

have been developed for its numerical solution. Although the problem is computationally NP hard

[5], [16], tight bounds have been reported in the robust control literature using exclusively convex

programming techniques. In a recent work [17] tests have been developed for certifying the absence

of a duality gap between the structured singular value and its convex upper bound, along with a

systematic procedure for reducing the duality gap when this is non-zero.

The approximate GCD problem has numerous applications in Numerical Mathematics and Engineering

and various techniques and algorithms have been proposed for its solution. Recent work in this area

includes references [4], [23], [24] and [25]. The general approach followed in these papers formulates

the approximate GCD problem as a structured least-squares approximation which can be solved

numerically (e.g. via a Newton-like iterative procedure). The structure of the approximation problem

is captured by the “displacement structure” of the Sylvester or Bezout matrix corresponding to the

polynomials whose (approximate) GCD is sought. There is no guarantee that this procedure results

in the globally optimum solution and the overall algorithm relies on a number of heuristics and

“almost” rank-revealing matrix factorizations [4]. The resulting algorithms presented have typically

low complexity and, from the several numerical experiments performed so far, they appear to be robust

and numerically stable [4], although “small” perturbations in the polynomials’ coefficients are only

considered. Quadratic (least-squares type) norms can only be used to quantify perturbation size in

the polynomials’ coefficients.

The method proposed in this work is motivated by structured perturbation problems in the area of

robust control. Uncertainty in the polynomials’ coefficients is captured via block-diagonal matrix

perturbations consisting of (repeated) uncertain scalar parameters. The approach is not limited

to“small” perturbations in the polynomials’ coefficients and general vector norms can be used in

principle to represent uncertainty (in the paper quadratic and l∞ norms are considered). The resulting

optimization is non-convex and computationally demanding for large problems, although tight convex

bounds (and techniques for improving them) have been reported in the literature [16], [17], [14], [20],

[22], [29], [33], [34], [35]. Algorithms combining the technique presented in this work with aspects of

[24] and [25] also seem possible and will be reported in a future publication.

The layout of the paper is as follows: Section 2 surveys the theory of structured approximations

arising in robust control theory, by reviewing the definitions and basic results related to the structured

singular value (µ). To avoid unnecessary complications, the main aspects of the theory are presented

in a simplified form, relevant to the problem addressed here, i.e. only repeated scalar uncertainties

are considered in the corresponding uncertainty structure used in the definition of the structured
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singular value. The main results of the paper are included in sections 3 and 4. Section 3 formulates

the polynomial nearest common-root problem in an equivalent framework involving the distance of a

matrix to singularity, subject to structured perturbations in its elements; this is shown to be equivalent

to the calculation of a structured singular value (µ) of a matrix constructed from the coefficients of

the two polynomials. Extensions to the case of more than two polynomials is possible via the theory

of generalized resultants [3], [15], [19], [27]. Section 4 generalizes the “nearest common-root” problem

to the computation of the approximate GCD, using two methods: The first, involves the sequential

extraction of all roots of the approximate GCD, combined with polynomial division at each iteration,

which terminates when an approximate numerical tolerance specification is satisfied. The second

approach, which is theoretically more satisfying, proposes the extraction of the approximate GCD in a

single step, by solving an optimization problem which corresponds to the minimization of a structured

singular value of a matrix under additional rank constraints. This is reducible to a standard structured

distance-to-singularity problem using the displacement structure [4], [24], [25] of the Sylvester resultant

matrix associated with the problem. The main conclusions of the paper, along with suggestions for

further work, appear in section 5.

The notation used in the paper is standard and is summarized here for convenience. If n is a positive

integer, then n = {1, 2, . . . , n}. R and C denote the fields of real and complex numbers, respectively.

Rn and Cn are the n-dimensional vector spaces over R and C, respectively, while Rm×n and Cm×n the

spaces of m× n matrices over R and C, respectively. If A is a m× n matrix (either real or complex)

R(A) denotes the range (column span) of A and N (A) denotes the (right) null-space (kernel) of

A. It is well known that R(A) is a subspace of Rm (Cm) and that N (A) is a subspace of Rn

(Cn). Further, rank(A) := dim(R(A)), null(A) := dim(N (A)) and from the rank-nullity theorem

rank(A) + null(A) = n. If A is a square matrix, λ(A) denotes its spectrum (set of eigenvalues) and

ρ(A) = max{|z| : z ∈ λ(A)} is the spectral radius of A. For A ∈ Cm×n, A′ denotes the transpose

of A and A∗ the complex conjugate transpose of A. A matrix A ∈ Cn×n is Hermitian if A = A∗. A

Hermitian matrix A is said to be positive definite (A > 0) if x∗Ax > 0 for all x ̸= 0. In this case

A has a spectral decomposition A = UΛU∗ with U unitary and Λ = diag(Λ) > 0. Writing Λ in

full as Λ = diag(λ1, λ2, . . . , λn), we define Λ1/2 := diag(
√
λ1,

√
λ2, . . . ,

√
λn) and A1/2 = UΛ1/2U∗, so

that A = A1/2A1/2 with A1/2 Hermitian and positive-definite. A1/2 is referred to as the Hermitian

square-root of A; we also denote A−1/2 = (A1/2)−1. For A ∈ Cm×n, the singular values of A

are denoted as σi(A), i = 1, 2, . . . ,min(m,n), ordered in non-increasing order of magnitude, i.e.,

σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin(m,n)(A) ≥ 0. The spectral norm of a matrix (induced Euclidian norm)

is its largest singular value and is also denoted as ∥A∥ := σ1(A). We also make use of the Frobenius

norm of a matrix, denoted as ∥A∥F . If A ∈ Cn×n and U is a nonempty set of n × n matrices, then

AU := {AU : U ∈ U}. 1n×n denotes the n×nmatrix with all n2 elements equal to 1. For two matrices

A and B, A ◦ B denotes the Hadamard (element-wise) product and A ⊗ B the Kronecker product

of the two matrices. If A ∈ Cm×n, vec(A) denotes the mn-dimensional column vector obtained by

“stacking” the columns of A one after the other. Let a(s) = ans
n+an−1s

n−1+ . . .+a0 be a polynomial

in s with either complex or real coefficients ai. The degree of a(s) is ∂a(s) = n, provided an ̸= 0. By

convention, if a(s) ≡ 0, ∂a(s) = −∞.
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2. Problem definition and the structured singular value

The main problem considered in this paper is the following:

Problem 2.1: Let a0(s) and b0(s) be two monic and co-prime polynomials with complex coefficients,

such that ∂a0(s) = m and ∂b0(s) = n. What is the complex perturbation of minimum magnitude in

the coefficients of a0(s) and b0(s) so that the perturbed polynomials have a common root? �

Formally write:

a0(s) = sm + αm−1s
m−1 + αm−2s

m−2 + . . .+ α0 (1)

and

b0(s) = sn + βn−1s
n−1 + βn−2s

n−2 + . . .+ β0 (2)

and assume that the coefficients {αi, i = 0, 1, . . . ,m−1} and {βi, i = 0, 1, . . . , n−1} are subjected to

complex perturbations δ0, δ1, . . . , δm−1 and ϵ0, ϵ1, . . . , ϵn−1, respectively, i.e. the perturbed polynomials

are:

a(s; δ0, . . . , δm−1) = sm + (αm−1 + δm−1)s
m−1 + (αm−2 + δm−2)s

m−2 + . . .+ (α0 + δ0) (3)

and

b(s; ϵ0, . . . , ϵn−1) = sn + (βn−1 + ϵn−1)s
n−1 + (βn−2 + ϵn−1)s

n−1 + . . .+ (β0 + ϵ0) (4)

respectively. Let also:

γ = max{ |δ0|, |δ1|, . . . , |δm−1|, |ϵ0|, |ϵ1|, . . . , |ϵn−1| } (5)

Then Problem 2.1 is equivalent to: min γ such that the two polynomials a(s; δ0, . . . , δm−1) and

b(s; ϵ0, . . . , ϵn−1) have a common root.

It is shown in section 3 that Problem 2.1 is equivalent to the calculation of the structured singular

value (µ) of an appropriate matrix. This is a problem arising in robust control which has been analyzed

extensively over recent years [14], [17], [29], [33], [34]. A generalization of Problem 2.1 involving the

computation of the numerical GCD of two polynomials is also introduced at a later section and is

shown to correspond to the calculation of a generalized structured singular value subject to additional

rank constraints (see section 4).

The remaining part of this section defines the structured singular value (µ) for a special class of

uncertainty structures, relevant to the polynomial approximate common-root problem and reviews

the relevant theory, first developed for the solution of stabilization problems in the area of robust

control [14], [29], [33], [34]. We start by introducing the definition of the complex structured singular

value for repeated scalar uncertainties. This specializes the more general definition given in [29], which

also takes into account matrix (block) uncertainties. These are ignored in our exposition, as they are

not relevant for the problems addressed in this paper.

The structured singular value of a matrix M is defined as follows:

Problem 2.2: (structured singular value). Let M ∈ Cn×n and define the “structured” set:

∆ = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs) : δi ∈ C, i = 1, 2, . . . , s} (6)

4



where the ri are positive integers such that
∑s

i=1 ri = n. The structured singular value of M (relative

to ∆) is defined as:

µ∆(M) =
1

min{∥∆∥ : ∆ ∈ ∆, det(In −M∆) = 0}
(7)

unless no ∆ ∈ ∆ makes In −M∆ singular, in which case µ∆(M) = 0. Here ∥ · ∥ denotes the spectral

norm of a matrix (largest singular value). The problem is to calculate µ∆(M) and, provided that

µ∆(M) ̸= 0, to find a ∆ ∈ ∆ of minimal norm such that det(In −M∆) = 0. �

Remark 2.1: A more general definition of the structured singular value is given in [29] and includes

both scalar and matrix uncertainty blocks in a block-diagonal structure. These are not considered

here as matrix perturbations are not relevant for GCD problems. The definition is further generalized

in [14] to include non-square uncertainty blocks and general induced norms (e.g., p-norms where

1 ≤ p ≤ ∞). Although this more general formulation could have been followed here, general p-norms

are difficult to compute [12] and so we have restricted the definition and all subsequent results to

spectral (induced Euclidian) norms only. The use of the Frobenius norm and the real uncertainty case

are briefly discussed at a later section of the paper. �

Remark 2.2: Equivalently to the definition in Problem 2.2, the structured singular value of M ∈ Cn×n

can also be defined as:

µ∆(M) =

[
min ∥∆∥ : ∆ ∈ ∆, det

(
In ∆

M In

)
= 0

]−1

Note also that it is possible to define the structured singular value µ∆(M) with a more general

uncertainty structure ∆ compared to the one used in the definition of Problem 2.2. In this case,

the minimum in the definition of µ∆(M) must be replaced by an infimum. This is because it is not

possible, in general, to guarantee that the constraint set {∆ ∈ ∆ : det(In − M∆) = 0} is closed

and non-empty, so that it contains at least one ∆ ∈ ∆ of minimum norm. This is in contrast to the

problems considered in this work for which ∆ is a subspace of Cn×n (and hence closed), and ∆0 ∈ ∆

of sufficiently large norm always exists such that det(In −M∆0) = 0, so that µ∆(M) > 0. �

Remark 2.3: Note that in the definition of the structured singular value µ∆(M) both M and ∆ are

assumed to be complex-valued. It can be shown [29] that if M is actually real, µ∆(M) is not affected

if ∆ is further restricted to be real (in addition to the constraint ∆ ∈ ∆). For a discussion of the “real

structured singular-value” problem (M ∈ Cn×n and ∆ ∈ ∆ ∩Rn×n) see [14]. �

Upper and lower bounds of the structured singular value can be established via the following Lemma:

Lemma 2.1 [14], [29]: Let ∆ denote the subspace of Cn×n defined in equation (6). Then for every

M in Cn×n,

ρ(M) ≤ µ∆(M) ≤ ∥M∥ (8)

where ρ(·) denotes the spectral radius and ∥ · ∥ the spectral norm of a matrix.

Introduce the structured ball of unit radius B∆ = {∆ ∈ ∆ : ∥∆∥ ≤ 1} and the set

Q = {Q ∈ Cn×n : QQ∗ = In} ∩∆ (9)
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i.e., the group of all unitary matrices with the structure inherited from the set ∆ defined in equation

(6). Define also the complementary-structure set:

D = {diag[D1, D2, . . . , Ds] : Di ∈ Cri×ri , Di = D∗
i > 0, i = 1, 2, . . . , s} (10)

Note that for every ∆ ∈ ∆, D ∈ D and Q ∈ Q we have: (i) Q∗ ∈ Q, (ii) Q∆ ∈ ∆, (iii) ∆Q ∈ ∆,

(iv) ∥Q∆∥ = ∥∆Q∥ = ∥∆∥ and (v) D1/2∆ = ∆D1/2. We also have the following alternative

characterization of µ∆(M):

Lemma 2.2 [14]: For all M ∈ Cn×n and ∆ defined in equation (6),

µ∆(M) = max
∆∈B∆

ρ(∆M) = max
∆∈∆, ∆̸=0

ρ(∆M)

∥∆∥
(11)

If µ∆(M) > 0 we have:

µ∆(M)−1 = min
∆∈∆, ρ(∆M)≥1

∥∆∥ = min
∆∈∆, ρ(∆M)=1

∥∆∥ (12)

The characterization of µ∆(M) given in equation (11) as µ∆(M) = max∆∈B∆
ρ(∆M) can be expressed

as a maximum over a much smaller set (compared to B∆).

Theorem 2.1 [29]: For any M ∈ Cn×n and ∆ defined in equation (6), we have

max
Q∈Q

ρ(MQ) = max
∆∈B∆

ρ(M∆) = µ∆(M)

where Q is defined in equation (9).

The results presented in this section are summarized by the following Theorem:

Theorem 2.2: For all Q ∈ Q, D ∈ D:

max
Q∈Q

ρ(MQ) = max
∆∈B∆

ρ(M∆) = µ∆(M) ≤ inf
D∈D

∥D1/2MD−1/2∥ := µ∆(M)

Remark 2.4: The equality µ∆(M) = max{ρ(QM) : Q ∈ Q} suggests a possible optimization

algorithm for calculating the structured singular value. Unfortunately, the function ρ(QM) typically

has many local maxima which are not global [29] and hence its maximization can only produce a lower

bound of µ∆(M). The right-hand side inequality is in fact more interesting as a means of estimating

µ∆(M). The following result shows that the function D → ∥D1/2MD−1/2∥ has convex level sets:

Proposition 2.1 [29]: Let M ∈ Cn×n be given, along with a scaling set D and β > 0. Then the

sub-level set

Sβ(D) = {D ∈ D : ∥D1/2MD−1/2∥ < β}

is convex.

Remark 2.5: Proposition 2.1 above suggests that calculating the infimizing scaling matrix D can be

performed via an iterative procedure (“D-iteration”) or any convex algorithm that can accommodate
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Linear Matrix Inequality (LMI) constraints. Extensive computational experience suggests that the

bound is often adequate for applications in robust control [29]. This is important since the computation

of µ is an NP-hard problem [5]. If µ∆(M) denotes the convex upper bound of µ∆(M) and M ∈ Cn×n,

it has been shown that the ratio gn := µ∆(M)/µ∆(M) grows no faster than a linear function of n. In

[17] a systematic method is proposed for reducing the duality gap µ∆(M) − µ∆(M), by solving (at

least approximately) a structured singular value problem of reduced rank compared to the original

problem.

3. Minimum l∞ distance to common root of polynomials

The main theory of structured approximation problems and the structured singular value has been

outlined in section 2. In this section we establish the equivalence between Problem 2.1 and Problem

2.2. First we need the following result which relates the existence of common factors of two polynomials

to the rank of their corresponding Sylvester resultant matrix:

Theorem 3.1: Consider the monic polynomials a(s) and b(s) with ∂a(s) = m and ∂b(s) = n and let

Rm,n(a, b) be their Sylvester resultant matrix,

Rm,n(a, b) =



1 αm−1 αm−2 · · · α0 0 · · · 0

0 1 αm−1 · · · α1 α0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...

0 0 · · · 1 αm−1 · · · α1 α0

1 βn−1 βn−2 · · · β0 0 · · · 0

0 1 βn−1 · · · β1 β0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...

0 0 · · · 1 βn−1 · · · β1 β0


(13)

Then, if ϕ(s) denotes the GCD of a(s) and b(s) the following properties hold true:

1. rank(Rm,n(a, b)) = n+m− ∂ϕ(s).

2. The polynomials a(s) and b(s) are co-prime if and only if rank(Rm,n(a, b)) = n+m.

3. The GCD ϕ(s) is invariant under elementary row operations on Rm,n(a, b). Furthermore, if we

reduce Rm,n(a, b) to its row echelon form, the last non-vanishing row defines the coefficients of

ϕ(s).

Proof: See [1, 27, 15]. �

Using Theorem 3.1, the equivalence of Problem 2.1 and Problem 2.2 can now be established:

Theorem 3.2: Let a0(s) and b0(s) be two co-prime polynomials defined in equations (1) and (2),

respectively. Then, Problem 2.1 is equivalent to Problem 2.2 by defining:

1. The structured set ∆ as:

∆ = {diag(δm−1In, δm−2In, . . . , δ0In, ϵn−1Im, ϵm−2Im, . . . , ϵ0Im) : δi ∈ C, ϵi ∈ C} (14)

i.e., s = m+ n, ri = n for 1 ≤ i ≤ m and ri = m for m+ 1 ≤ i ≤ m+ n.
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2. M = −ZR−1
m,n(a0, b0)Θ where:

Θ =

(
In In · · · In On,m On,m · · · On,m

Om,n Om,n · · · Om,n Im Im · · · Im

)
∈ Rn+m,2nm (15)

Z ′ =
(

(Z0
nm)′ (Z1

nm)′ · · · (Zm−1
nm )′ (Z0

mn)
′ (Z1

mn)
′ · · · (Zn−1

mn )′
)
∈ Rn+m,2nm (16)

in which:

Zk
nm =

(
On,k+1 In On,m−k−1

)
for k = 0, 1, . . . ,m− 1 (17)

and Rm,n(a0, b0) denotes the (non-singular) Sylvester’s resultant matrix of polynomials a0(s) and

b0(s) defined in Theorem 3.1.

3. With the above definitions:

γ∗ =
1

µ∆(M)
(18)

where γ∗ denotes the minimum-magnitude complex perturbation in the coefficients of the

polynomials a0(s) and b0(s) such that the perturbed polynomials a(s) and b(s) defined in equations

(3) and (4), respectively, have a common root.

Proof: Since a0(s) and b0(s) are assumed co-prime, their Sylvester resultant matrix Rm,n(a0, b0) is

nonsingular. The Sylvester resultant matrix Rm,n(a, b) of the perturbed polynomials a(s; δ0, . . . , δm−1)

and b(s; ϵ0, . . . , ϵn−1) can be decomposed as Rm,n(a, b) = Rm,n(a0, b0) + E where E denotes the

“perturbation matrix”:

E =



0 δm−1 δm−2 · · · δ0 0 · · · 0

0 0 δm−1 · · · δ1 δ0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...

0 0 · · · 0 δm−1 · · · δ1 δ0

0 ϵn−1 ϵn−2 · · · ϵ0 0 · · · 0

0 0 ϵn−1 · · · ϵ1 ϵ0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...

0 0 · · · 0 ϵn−1 · · · ϵ1 ϵ0


(19)

Matrix E can now be factored as E = Θ∆Z where Θ and Z are defined in (15) and (16) respectively,

and

∆ = diag(δm−1In, δm−2In, . . . , δ0In, ϵn−1Im, ϵm−2Im, . . . , ϵ0Im) (20)

Clearly ∆ ∈ ∆, i.e. it has a block-diagonal structure with s = m+n, ri = n for 1 ≤ i ≤ m and ri = m

for m+ 1 ≤ i ≤ m+ n. Note also that:

γ = max{ |δ0|, |δ1|, . . . , |δm−1|, |ϵ0|, |ϵ1|, . . . , |ϵn−1| } = ∥∆∥ (21)

Since the resultant Sylvester matrixRm,n(a, b) loses rank if and only if the polynomials a(s; δ0, . . . , δm−1)

and b(s; ϵ0, . . . , ϵm−1) have a common root, Problem 2.1 is equivalent to:

min ∥∆∥ such that det(Rm,n(a0, b0) + Θ∆Z) = 0 and ∆ ∈ ∆ (22)
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Using the matrix identity

det(I +BC) = det(I + CB) (23)

which holds for any two matrices B and C of compatible dimensions, and the fact that Rm,n(a0, b0)

is non-singular, we have that:

det(Rm,n(a0, b0) + Θ∆Z) = 0 ⇔ det(I + ZR−1
m,n(a0, b0)Θ∆) = 0 ⇔ det(I −M∆) = 0 (24)

Hence Problem 2.1 becomes:

min{∥∆∥ : det(I −M∆) = 0, ∆ ∈ ∆ } (25)

which is equivalent to Problem 2.2, the minimum being µ−1
∆ (M). �

For the problem considered in this section there is always a ∆ ∈ ∆ of sufficiently large norm such

that det(In −M∆) = 0. This is formally established in the following result.

Lemma 3.1: Consider Problem 2.2 with ∆ and M as defined in the statement of Theorem 3.2. Then

µ∆(M) > 0 and hence,

µ∆(M)−1 = min
∆∈∆, ρ(∆M)≥1

∥∆∥ = min
∆∈∆, ρ(∆M)=1

∥∆∥ (26)

Proof: Since the polynomials a0(s) and b0(s) are assumed co-prime and since there is always a

perturbation of finite modulus such that the two perturbed polynomials a(s) and b(s) have a common

root, γ∗ defined in Theorem 3.2 is a finite positive number. Note that an immediate bound for

γ∗ is γ∗ ≤ max(|α0|, |β0|), corresponding to a perturbation in the constant coefficients of the two

polynomials for which the two perturbed polynomials have a common root at the origin. Note also

that since a0(s) and b0(s) are assumed co-prime, at least one of |α0| or |β0| is positive. From the

equivalence between Problems 2.1 and 2.2 established in Theorem 3.2 we thus have

µ∆(M) ≥ 1

max(|α0|, |β0|)
> 0

Since µ∆(M) ̸= 0, Lemma 2.2 implies that (26) holds. �

Remark 3.1: The inverse of the structured singular value µ−1
∆ (M) is an exact measure of the “strength

of approximation” for the problem of finding the nearest common root of two co-prime polynomials

which are subjected to perturbations in their coefficients. This is equivalent to the problem of

calculating the numerical GCD of degree one of the two polynomials. Previous work in this area

has proposed the inverse of the smallest singular value of the Sylvester resultant matrix Rm,n(a0, b0)

as a measure of the strength of approximation [10], [19], [21]. However, as is well known, the smallest

singular value of a matrix measures only the distance to singularity of the matrix when this is subjected

to unstructured perturbations, i.e.,

σm+n(Rm,n(a, b)) = min{∥∆∥ : ∆ ∈ C(m+n)×(m+n), det(Rm,n(a, b) + ∆) = 0}

Hence σ−1
m+n(Rm,n(a, b)) as a measure of the “strength of approximation” ignores the uncertainty

structure entering the resultant matrix due to perturbations in the coefficients of the two polynomials
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(see equation 19). As shown in a numerical example included later in this section, the difference

between these two measures can be significant. The exact notion of the “strength of approximation”

used in this work can be easily generalized, if we assume that only a subset of the polynomial coefficients

are subjected to perturbations or if we take into account “correlations” between the coefficients’

perturbations. �

Remark 3.2: The proof of Theorem 3.2 is based on the observation that the perturbation matrix

E can be factored in the form E = Θ∆Z where Θ and Z are constant matrices and ∆ is a linear

subspace of diagonal matrices. In fact this is always possible when the uncertainty enters the data in

affine form [14]: Consider the general affine structure:

δ = (δ1, . . . , δN ) → A(δ1, . . . , δN ) = A0 +

N∑
i=1

δiAi, δ ∈ CN

where the matrices Ai ∈ CN×N are given. Let Ai = ΘiZi be arbitrary factorizations with Θi ∈ Cn×li

and Zi ∈ Cli×n. Then setting

Θ = (Θ1 Θ2 . . . ΘN ), Z ′ = (Z ′
1 Z

′
2 . . . Z

′
N )′ and ∆(δ) = diag(δ1Il1 , δ2Il2 , . . . , δNIlN )

we obtain

A(δ1, . . . , δN ) = A+Θ∆(δ)Z

in which ∆(δ) is diagonal. In fact, as can be seen from the above derivation, the assumption that A

is a square matrix is not required. Hence the method can be extended to generalized resultants of an

arbitrary number of polynomials for which coefficient perturbations also enter in affine form. �

Remark 3.3: The formulation of Theorem 3.2 assumes that the data of the problem, i.e. the

coefficients of the two nominal polynomials and their perturbations, are complex. The result remains

identical if all data are assumed to be real (see Remark 2.3). The problem is more complicated if the

coefficients of the two nominal polynomials are complex and their perturbations are restricted to be

real. This case corresponds to the “real structured singular value” which is fully analyzed in [14].

Example 3.1: Let a0(s) = s3 + α2s
2 + α1s + α0 (m = 3) and b0(s) = s2 + β1s + β0 (n = 2). The

Sylvester resultant matrix of the perturbed polynomials a(s) and b(s) is:

R3,2(a, b) =


1 α2 + δ2 α1 + δ1 α0 + δ0 0

0 1 α2 + δ2 α1 + δ1 α0 + δ0

1 β1 + ϵ1 β0 + ϵ0 0 0

0 1 β1 + ϵ1 β0 + ϵ0 0

0 0 1 β1 + ϵ1 β0 + ϵ0

 (27)

which can be written as:

R3,2(a, b) = R3,2(a0, b0) + E =


1 α2 α1 α0 0

0 1 α2 α1 α0

1 β1 β0 0 0

0 1 β1 β0 0

0 0 1 β1 β0

+


0 δ2 δ1 δ0 0

0 0 δ2 δ1 δ0

0 ϵ1 ϵ0 0 0

0 0 ϵ1 ϵ0 0

0 0 0 ϵ1 ϵ0

 (28)
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The “perturbation” matrix E can be factored as:

E =


1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1




δ2I2 0 0 0 0

0 δ1I2 0 0 0

0 0 δ0I2 0 0

0 0 0 ϵ1I3 0

0 0 0 0 ϵ0I3





0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


which is of the required form E = Θ∆Z with ∆ ∈ ∆. The minimum coefficient perturbation is the
inverse of the structured singular value of the matrix:

M = −



0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




1 α2 α1 α0 0

0 1 α2 α1 α0

1 β1 β0 0 0

0 1 β1 β0 0

0 0 1 β1 β0



−1 
1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1



and can be computed using standard numerical techniques [33],[34].

Example 3.2: Here the effectiveness of the method is tested with a numerical example. Consider the

polynomials

a(s) = s3 − 6s2 + 11s− 6 and b(s) = s2 − 6s+ 8 (29)

with roots ra = {3, 2, 1} and rb = {4, 2} respectively. Since there is a common root (s = 2) the

resultant Sylvester matrix R3,2(a, b) is singular. The polynomials were perturbed to:

a0(s) = s3 − 6.05s2 + 11.1s− 5.95 and b0(s) = s2 − 6.06s+ 8.1 (30)

which have roots ra0 = {3.0512, 2.0454, 0.9534} and rb0 = {4.0301, 2.0099} respectively. The singular

values of the corresponding Sylvester resultant matrix,

R3,2(a0, b0) =


1 −6.05 11.1 −5.95 0

0 1 −6.05 11.1 −5.95

1 −6.04 8.1 0 0

0 1 −6.04 8.1 0

0 0 1 −6.04 8.1


were obtained as λ(R3,2(a0, b0)) = {22.7997, 12.3247, 5.4710, 0.2264, 0.0007} indicating a numerical

rank of 4 and, hence, an approximate GCD of degree one (Theorem 3.1), as expected.
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Next the results of Theorem 3.2 were applied to a0(s) and b0(s). Note that since the maximum

perturbation of the coefficients of a0(s) and b0(s) from those of a(s) and b(s) (which have a common

root) is 0.1, we expect that γ∗ ≤ 0.1.

Two functions from Matlab’s µ-optimization toolbox (mu.m and unwrap.m) were used to calculate

the structured singular value of matrix M and the corresponding minimum-norm singularizing

perturbation ∆0. The lower and upper bounds of the structured singular value were obtained as:

222.991497161 ≤ µ∆(M) =
1

γ∗
≤ 222.991497162

corresponding to γ∗ = 0.0044844759227. Note that although the smallest singular value of R3,2(a0, b0)

indicates numerical singularity, it is almost six times smaller than γ∗ which is the exact distance-to-

singularity measure since it takes into account the uncertainty structure of the problem.

It was checked that the singularizing perturbation ∆0 corresponding to µ∆(M) had the right structure

(i.e. ∆0 ∈ ∆) and in fact δ0 = δ1 = δ2 = −γ∗ and ϵ0 = ϵ1 = γ∗. Polynomials with a common factor

“nearest” to a0(s) and b0(s) were obtained with the help of ∆0 as:

â(s) = s3 − 6.05448447592s2 + 11.0955155241s− 5.95448447592, and

b̂(s) = s2 − 6.03551552408s+ 8.10448447592

The roots of â(s) and b̂(s) were calculated as:

r(â) = {3.07886773569, 2.01656975051, 0.959046989722}

and

r(b̂) = {4.01894577356, 2.01656975051}

respectively corresponding to an “optimal” approximate GCD, ϕ(s) = s− 2.01656975051.

The structured singular value introduced above optimizes the largest magnitude perturbation in the

polynomial coefficients. It is also possible to consider alternative perturbation norms, e.g. the

weighted Euclidean norm. In this case the corresponding distance-to-singularity measure is given

by the “spherical structured singular value” (spherical µ) introduced in [22], [31], [32]. A formal

definition follows:

Problem 3.1: (spherical structured singular value). Let M ∈ Cn×n and define the “structured” set:

∆ = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs) : δi ∈ C, i = 1, 2, . . . , s} (31)

where the ri are positive integers such that
∑s

i=1 ri = n. The spherical structured singular value of M

(relative to “structure” ∆) is defined as:

µf
∆(M) =

1

min{∥∆∥F : ∆ ∈ ∆, det(In −M∆) = 0}
(32)

unless no ∆ ∈ ∆ makes In − M∆ singular, in which case µf
∆(M) = 0. Here ∥ · ∥F denotes the

Frobenius norm of a matrix (i.e. ∥M∥2F =
∑

i,j |mij |2). �

The corresponding result in this case is as follows:
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Theorem 3.3 Let all variables be defined as in Theorem 3.2. Define also

γf =

√√√√n

m−1∑
i=0

|δi|2 +m

n−1∑
i=0

|ϵi|2 (33)

where m = ∂a0(s) and n = ∂b0(s). Then the minimum value of γf , γfmin, such that the perturbed

polynomials a(s) and b(s) defined in equations (3) and (4), respectively, have a common root is given

by:

γfmin =
1

µf
∆(M)

≥ 1

µf
∆

(34)

where M is defined in the statement of Theorem 3.2 part 2, and

µf
∆ := infD>0{γ : M∗(Q ◦D)M − γ2D < 0} =

√
ρ((M ′ ⊗M∗)diag(vec(Q))) (35)

where Q = diag{1n×n, . . . ,1n×n,1m×m, . . . ,1m×m}, in which the 1n×n blocks appear m times and the

1m×m appear n times.

Proof: The procedure for transforming the problem to a spherical structured singular value calculation

is essentially the same with the procedure in the proof of Theorem 3.2, on noting that if,

∆ = diag(δm−1In, δm−2In, . . . , δ0In, ϵn−1Im, ϵm−2Im, . . . , ϵ0Im) (36)

then

∥∆∥F =

√√√√n
m−1∑
i=0

|δi|2 +m
n−1∑
i=0

|ϵi|2 (37)

The fact that γfmin is the inverse of µf
∆(M) follows immediately from the definition given in Problem

3.1. Finally, the proof of the bound in equations (34) and (35) can be found in [31], [11]. �

4. Approximate GCD of polynomials

The technique developed in section 3 may be used to define a conceptual algorithm to calculate the

numerical GCD of any two polynomials a(s) and b(s). This sequentially extracts approximate common

factors ϕi(s) from the two polynomials, by calculating at each step a structured singular value µ∆(M)

of an appropriate matrix M and the corresponding minimum-norm singularizing matrix perturbation

∆0. After extracting each factor, the quotients ai+1(s) = ai(s)/ϕi(s) and bi+1(s) = bi(s)/ϕi(s)

are calculated, ignoring possible (small) remainders of the division. The procedure is initialized by

setting a0(s) = a(s), b0(s) = b(s), and iterates by constructing at each step of the algorithm the

reduced-dimension Sylvester matrix corresponding to the polynomial pair (ai+1(s), bi+1(s)), followed

by calculating a new (µ∆(M),∆0) pair, which in turn leads to the extraction of a new approximate

factor ϕi+1(s). The whole process is repeated until a tolerance condition is met (defined by the value

of µ∆(M)), at which stage the approximate GCD, ϕ(s), can be constructed by accumulating the

extracted common factors ϕi(s). Special care is needed in the real case, to ensure that any complex

roots in ϕ(s) appear in conjugate pairs.

The algorithm described above essentially consists of the repeated solution of a sub-problem, involving

the estimation of the distance to the nearest common root of polynomials whose coefficients are subject
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to perturbations. A clear disadvantage of the proposed method is that the optimality properties

associated with each sub-problem (which involves the extraction of a degree-one numerical GDC) are

lost when the algorithm is considered in total. Formally, we can restore optimality to the problem of

extracting a numerical GCD of arbitrary degree by formulating the following optimization problem:

Problem 4.1: Let a0(s) and b0(s) be two monic co-prime polynomials with complex coefficients with

∂a0(s) = m and ∂b0(s) = n defined as

a0(s) = sm + αm−1s
m−1 + αm−2s

m−2 + . . .+ α0 (38)

and

b0(s) = sn + βn−1s
n−1 + βn−2s

n−2 + . . .+ β0 (39)

and assume that the coefficients {αi}, i = 0, 1, . . . ,m − 1 and {βi}, i = 0, 1, . . . , n − 1, are subjected

to complex perturbations {δ0, δ1, . . . , δm−1} and {ϵ0, ϵ1, . . . , ϵn−1}, respectively, i.e. the perturbed

polynomials are:

a(s; δ0, . . . , δm−1) = sm + (αm−1 + δm−1)s
m−1 + (αm−2 + δm−2)s

m−2 + . . .+ (α0 + δ0) (40)

and

b(s; ϵ0, . . . , ϵn−1) = sn + (βn−1 + ϵn−1)s
n−1 + (βn−2 + ϵn−2)s

n−2 + . . .+ (β0 + ϵ0) (41)

respectively. Define also for each positive integer k, 0 < k ≤ min(m,n), the minimum infinity norm

of the coefficients’ perturbation vector:

γ(k) = min
∥∥∥( δ0 δ1 . . . δm−1 ϵ0 ϵ1 . . . ϵn−1

)∥∥∥
∞

= minmax{|δi−1| : i ∈ m} ∪ {|ϵi−1| : i ∈ n}

Then, the problem is to minimize γ(k) for each k, 0 ≤ k ≤ min(m,n)− 1, such that the two perturbed

polynomials a(s) and b(s) have at least k + 1 common roots. �

Compared to the iterative procedure described in the beginning of the section, Problem 4.1 is a more

elegant and precise definition of the numerical GCD and replaces the iterative algorithmic approach

by the solution of an optimization problem. To link this problem to our approach we need to refine

the definition of structured singular values by introducing rank (or equivalently nullity) constraints:

Definition 4.1: (Generalized structured singular value). Let M ∈ Cn×n and define the “structured”

set:

∆ = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs) : δi ∈ C, i = 1, 2, . . . , s}

where the ri are positive integers such that
∑s

i=1 ri = n. Note that ∆ is a subspace of Cn×n. The

generalized structured singular value of M relative to “structure” ∆ and for a non-negative integer k,

k ∈ {0, 1, . . . ,min(m,n)− 1}, is defined as:

µ̂∆,k(M) =
1

min{∥∆∥ : ∆ ∈ ∆, null(In −M∆) > k}
(42)

unless there does not exist a ∆ ∈ ∆ such that null(In −M∆) > k, in which case µ̂∆,k(M) = 0.
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It follows immediately from the definition that µ̂∆,0(M) = µ∆(M) and that µ̂∆,k(M) ≥ µ̂∆,k+1(M)

for each integer k ≥ 0. Further if for some integer k, µ̂∆,k(M) > 0 and µ̂∆,k+1(M) = 0, then any

∆ ∈ ∆ that minimizes the denominator in the RHS of equation (42) has null(In −M∆) = k + 1.

Theorem 4.1: Let a0(s) and b0(s) be two monic coprime polynomials of degrees ∂a0(s) = m and

∂b0(s) = n defined in equations (38) and (39) respectively. Let a(s) and b(s) be the two perturbed

polynomials defined in equations (40) and (41), and set

γ = max{ |δ0|, |δ1|, . . . , |δm−1|, |ϵ0|, |ϵ1|, . . . , |ϵn−1| } (43)

where {δi−1}, i ∈ m and {ϵi}, i ∈ n, denote the perturbations in the coefficients of a0(s) and b0(s),

respectively. Further, let γ∗(k) denote the the minimum value of γ such that a(s) and b(s) have a

common factor ϕ(s) of degree ∂ϕ(s) > k, k = 0, 1, . . . ,min(m,n)− 1. Then,

γ∗(k) =
1

µ̂∆,k(M)
(44)

where µ̂∆,k(M) denotes the generalized structured singular value of M = −ZR−1
m,n(a0, b0)Θ with respect

to the structure ∆ and Rm,n(a0, b0), Θ and Z are as defined in Theorem 3.2. Further, ϕ(s) may be

constructed from any ∆ ∈ ∆ which minimizes ∥∆∥ subject to the constraint null(In −M∆) > k.

Proof: This is almost identical to the proof of Theorem 3.2, on noting that the transformations in

equation (24) do not change the nullity of the corresponding matrices. �

Theorem 4.1 suggests that the numerical GCD of two polynomials a(s) and b(s) can be obtained

by calculating successively µ̂D,k(M) for each k = 0, 1, . . . ,min(m,n) − 1, and checking if its value is

sufficiently large, which indicates the existence of a numerical GCD with degree at least k + 1. The

procedure terminates when either k = min(m,n)− 1 is reached (in which case the numerical GCD is

the polynomial of minimal degree among a(s) and b(s)), or when the generalized structured singular

value falls below a pre-specified tolerance level.

We can also state the following Lemma related to the approximate GCD of two polynomials:

Lemma 4.1: Consider two monic co-prime polynomials a0(s) and b0(s) as defined in Problem 4.1. In

the notation of Theorem 4.1 we have µ̂∆,k(M) > 0 for each k = 0, 1, . . . ,min(m,n)− 1.

Proof: Since the polynomials a0(s) and b0(s) are assumed co-prime, there is always a perturbation

of finite non-zero modulus such that a(s) and b(s) have a common root and thus γ∗(k) defined in

Theorem 4.1 is a positive number. Note that an immediate upper bound for γ∗(k) is:

γ∗0(k) ≤ max{|α0|, . . . , |αk|, |β0|, . . . , |βk|} (45)

corresponding to perturbations δi−1 = −αi−1 and ϵi−1 = −βi−1, i ∈ k + 1, in the coefficients of a0(s)

and b0(s), such that the two perturbed polynomials a(s) and b(s) have k + 1 common roots at the

origin. Since clearly the RHS of equation (45) is finite (for otherwise the two polynomials a(s) and

b(s) would not be co-prime) we have that

µ̂∆,k(M) ≥ 1

max{|α0|, . . . , |αk|, |β0|, . . . , |βk|}
> 0
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as required. �

An upper bound of µ̂∆,k(M) can be easily established (see Lemma 4.3) below in terms of the (k+1)-th

singular value of M . First we need the following result.

Lemma 4.2: Let M ∈ Cn×n. Then for every k ∈ n,

σk(M) = min{∥∆∥ : ∆ ∈ Cn×n, rank(M −∆) < k}

= [inf{∥∆∥ : ∆ ∈ Cn×n, null(In −∆M) ≥ k}]−1

where, by convention, inf(∅) = ∞ and ∞−1 = 0.

Proof: See [14] Theorem 4.3.13. �

Lemma 4.3: Let M ∈ Cn×n and let µ̂∆,k(M) be as defined in equation (42). Then µ̂∆,k(M) ≤
σk+1(M).

Proof: Assuming that µ̂∆,k(M) is positive,

µ̂−1
∆,k(M) = min{∥∆∥ : ∆ ∈ ∆, null(In −M∆) > k}

= min{∥∆∥ : ∆ ∈ ∆, rank(In −M∆) ≤ n− k}

≥ min{∥∆∥ : ∆ ∈ Cn×n, rank(In −M∆) ≤ n− k}

= σ−1
k+1(M)

as required. �

The bound of Lemma 4.3 can be sharpened as follows:

Lemma 4.4: Let M ∈ Cn×n and define the sets ∆ and D according to equations (6) and (10)

respectively. Then

µ̂∆,k(M) ≤ inf
D∈D

σk+1(DMD−1)

Proof: The Lemma is a straightforward generalization of the inequality in Theorem 2.2. For all

D ∈ D, ∆ ∈ ∆,

det(In −M∆) = det(In −MD−1/2∆D1/2) = det(In −D1/2MD−1/2∆)

since D commutes with ∆. Thus:

µ̂∆,k(M) = [min{∥∆∥ : ∆ ∈ ∆, null(In −M∆) > k}]−1

=
[
min{∥∆∥ : ∆ ∈ ∆, null(In −MD−1/2∆D1/2) > k}

]−1

=
[
min{∥∆∥ : ∆ ∈ ∆, null(In −D1/2MD−1/2∆) > k}

]−1

= µ̂∆,k(D
1/2MD−1/2)

Thus, using the result of Lemma 4.3

µ̂∆,k(M) = µ̂∆,k(D
1/2MD−1/2) ≤ σk+1(D

1/2MD−1/2)

16



for every ∆ ∈ ∆, and hence

µ̂∆,k(M) ≤ inf
D∈D

σk+1(DMD−1)

since D ∈ D if and only if D1/2 ∈ D. �

The effective numerical calculation of µ̂∆,k (or at least of tight upper and lower bounds) is a challenging

non-convex problem and will be investigated in future research. Exploiting the displacement structure

of the Sylvester matrix seems to be particularly relevant for this purpose [4], [24]. A further

generalization of our method involves the calculation of the approximate GCD of an arbitrary number

of polynomials (rather than just two). This problem can also be translated to our framework using

some recent results on generalized resultants [15] and will also be elaborated in future work.

5. Conclusions

In this paper we have proposed a new method for calculating numerically the approximate GCD

of two polynomials. It was shown that, for two co-prime polynomials, the problem of calculating

the smallest l∞-norm (weighted l2-norm) perturbation in the polynomials’ coefficient vector so that

the perturbed polynomials have a common root, is equivalent to the calculation of the structured

singular value (spherical structured singular value) of an appropriate matrix. This is a fundamental

problem in the area of robust control and various techniques have been successfully developed for its

solution. The effectiveness of one such method for calculating the GCD of low-degree polynomials has

been demonstrated via a numerical example. We have further shown that calculating the minimum

l∞-norm perturbation in the coefficient vector of two co-prime polynomials so that the perturbed

polynomials have a GCD of degree at least k, reduces to a structured singular value-type calculation

with additional rank constraints. This is a non-standard problem and developing effective algorithms

for its solution will be the topic of future research work, along with extensions of the method to

multiple polynomials.
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