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Abstract 

Stochastic models for triangular data are derived and applied to claims reserving data. The 

standard actuarial technique, the so-called "chain-ladder technique" is given a sound statistical 

foundation and considered as a linear model. This linear model, the '"Chain Ladder Linear 

Model" is extended to encompass Bayesian, empirical Bayes and dynamic estimation. The 

empirical Bayes results are given a credibility theory interpretation, and the advantages and 

disadvantages of the various approaches are highlighted. Finally, the methods are extended to 

two-dimensional systems and results based on classical time series and Kalman filtering theory 

are produced. 

The empirical Bayes estimation results are very useful, practically, and can be compared to the 

Kalman filter estimates. They have the advantage that no prior information is required: the 

Kalman filter method requires the state and observation variances to be specified. For 

illustration purposes the estimates from the empirical Bayes procedure are used. The empirical 

Bayes results can also be compared with credibility theory estimators, although they retain the 

general statistical advantages of the linear modelling approach. 

For the classical theory, unbiased estimates of outstanding claims, reserves and variances are 

derived, and prediction intervals for total outstanding claims are produced. Maximum 

likelihood theory is utilised to derive the distributions of quantities relating to the column 

parameters which have actuarial interpretations. The row totals are also considered. Bayesian 

estimates of similar quantities are derived for the methods based on Bayes theory. 
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Chapter I 

Introduction 

1.0 Subject Matter 

This thesis is concerned with the evolution of processes on a lattice. The methods are 

applicable to a wide range of practical problems, for example in demography, medical statistics 

and age/period /cohort analysis. However, the application which has stimulated the research is 

the prediction of outstanding claims on a portfolio of general insurance policies. A complete 

survey of the literature on claims reserving was carried out by Lyons (1984). 

This thesis extends the standard actuarial technique, the "chain ladder technique" (described in 

Benjamin (1977) and Hossack, Pollard and Zehnwirth (1983) ) and derives more sophisticated 

procedures, bearing in mind that the chain ladder technique is the most widely used method. 

Therefore, a complete survey of the different methods which have been used will not be 

repeated here, but the specific papers relevant to this thesis will be considered. 

The most important paper on the statistical treatment of claims reserving is Kremer (1982) 

which noted the connection between the standard actuarial technique and the two-way analysis 

of variance linear model. It is this linear model, applied to claims reserving, which is examined 

in detail. This thesis develops the methods of claims reserving, based on linear models, without 

moving away from the chain ladder method (although the application of the methods to other 

models will also be considered). Classical maximum likelihood and unbiased estimates are 

derived. Bayesian and empirical Bayes estimates are derived and the latter interpreted within 

credibility theory and compared with dynamic estimates. The theory of Bayesian forecasting is 

extended to two-dimensional systems, and* two-dimensional stationary time series are 

considered. An information criterion for two-dimensional time series is derived, and the state 

space representation considered. 

Most of the examples in this thesis are based on a set of general insurance data, shown in 

figure 1.1. This data is taken from a paper by Taylor and Ashe (1983) and consists of claims 

from a portfolio of general insurance policies (the source of the data is not specified). 



Riaijr. - 11 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

290507 1001799 926219 1016654 750816 146923 495992 280405 

310608 1108250 776189 1562400 272482 352053 206286 

443160 693190 991983 769488 504851 470639 

396132 937085 847498 805037 705960 

440832 847631 1131398 1063269 

359480 1061648 1443370 

376686 986608 

344014 

with exposure factors 

610 721 697 621 600 552 543 503 525 420 

The exposures for each year of business are divided into the claims data before the analysis is 

carried out. 

This data set is used as a standard data set to test and compare the methods. The chain ladder 

technique is used to analyse data from most types of business, and the linear model can also be 

applied to most types of data. There are * some technical difficulties arising in certain 

circumstances, which are dealt with in chapter 6. 

The statistical aspects of the analysis of the data and prediction of reserves are concentrated 

on, and no distinction is made between the different possible sources of delay. In addition, no 

distinction is made between 'Incurred' and 'Incurred But Not Reported' (lBNR) Claims, and 

no 'accounting' methods such as Reid (1978 and Claims Reserving Manual(1989)) are 

considcred. 
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1.1 Summary of Methods Developed and Related Work 

Kremer (1982) showed that the chain ladder technique has the same structure as the two, -way 

analysis of variance linear model. The statistical foundations of the chain ladder technique are 

studied in detail in this thesis, and the methods of analysis of claims data are extended with 

particular reference to the two-way analysis of variance linear model. The paper by Kremer 

was an important first attempt to relate the chain ladder technique to standard statistical 

methods, but stopped short of using the full machinery of estimation theory. It aimed at 

producing estimates of outstanding claims which are as close as possible to those from the 

chain ladder technique. Chapter 2 of this thesis is devoted to a study of the relationship 

between the chain ladder technique and the two-way analysis of variance linear model and to 

the derivation of statistically sound estimates of outstanding claims, reserves and 'safe' 

reserves. Because of its intimate connection with the chain ladder technique, the two-way 

analysis of variance linear model will also be known as the chain ladder linear model. 

The linear model is applied to the logged data, and it is assumed that the data are lognormally 

distributed. A useful text on the lognormal distribution is Aitchison and Brown (1969). It is 

necessary to reverse the logarithmic transformation to produce estimates and forecasts on the 

original scale. Taylor and Ashe (1983) considered unbiased estimation, and derived results for 

linear transformations. In chapter 2, the results are extended to the (non-linear) logarithmic 

transformation inherent in the chain ladder linear model. The work of Finney (1942) and 

Bradu and Mundlak (1970) is drawn on to derive maximum likelihood and unbiased estimates 

of outstanding claims. Also contained in this chapter is the derivation of the distribution of the 

parameters of the chain ladder model using maximum likelihood theory. The computer 

programmes have been implemented in FORTRAN: specimen programmmes are reproduced in 

appendix 2. The methods of chapter 2 have also been implemented in GLIM (Baker and Nelder 

(1978)) by Renshaw (1989) and SuperCalc5 by the Commercial Union Assurance Company. 

See also Renshaw and Verrall (1989). Chapter 2, therefore, contains the classical estimation 

theory of claims reserving and derives 'safe' reserves using unbiased estimation. 

The statistical methods of claims reserving can be extended to accomodate various modelling 

assumptions. Chapter 3 uses hierarchical Bayes linear models to dcrive Bayes and empirical 

Bayes estimates of outstanding claims. The theory of hierarchical BaYes l1ricar models, dcrived 
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in, for example, Lindley and Smith (1972) and Smith (1973), has been considered in an 

insurance context by Klugman (1989). There is an alternative method which imposes a similar 

structure as the empirical Bayes method, but does not use the linear model. The empirical 

Bayes estimates can be regarded as 'credibility' estimates, and the alternative method applies 

the theory of credibility derived in the context of premium rate setting by Jewell (1975) and 

Buhlmann (1967) to the chain ladder technique. This method, derived by de VyIder (1982), is 

described in more detail by Goovaerts and Hoogstad (1987). The actuarial approaches of the 

chain ladder technique and credibility theory are combined to produce estimates of outstanding 

claims which have a credibility theory interpretation. The statistical advantages of the lincar 

model over the crude chain ladder technique are the same whether a classical or a Bayesian 

method is used. In a different context, Zeger, See and Diggle (1989) suggest an ernpirical Bayes 

approach to the analysis of AIDS data, which also contains a reporting delay. 

In chapter 4, another Bayesian method is considered and compared with the empirical Bayes 

method. This method is based on the Kalman filter which was also used in a claims reserving 

context by de Jong and Zehnwirth (1983). The causal structure is discussed in cliapter 5, and 

chapter 4 uses the 'wave form' of the Kalman filter which was suggested by de Jong and 

Zehnwirth and is natural for claims data. J. Q. Smith (1983) also used Bayesian forecasting to 

analyse claims data, applying dynamic generalised linear models to each row in the triangle. 

This chapter gives the dynamic form of the chain ladder linear model and compares the results 

with the empirical Bayes estimates. 

In chapter 5, the Bayesian methods based on the Kalman filter are extended to allow dynamic 

variation in both directions in the triangles. 'This draws on Givone and Roesser (1972 and 

1973), Fanasini and Marchesini (1976), Kung, Levy, Morf and Kailath (1977) and Porter and 

Aravena. (1986). It generalises to two dimensions the Bayesian forecasting models of Harrison 

and Stevens (1976), although the particular application here is to regression models. The chain 

ladder technique has been viewed as a time series model by Pater (1989) and Lernaire (1982), 

and structural time series models have been applied in the context of claims (iata by Harvey 

and Fernandes (1989). These use the theory of time series in one dimension. Ilowevcr, coliort 

data can be viewed as a two-dimensional process and chapter 5 extends the arialysis to include 

two-dimensional time series methods. These were first used in the context of nearc-st-ncighbour 
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models and agricultural field trials by Bartlett (1968), Bartlett and Besag (1969), Besag (1972) 

and Whittle (1954). In chapter 5, the use of two-dimensional time series is considered and an 

information criterion is derived. This is based on the papers by Akaike (1973 and 1976). 

Chapter 6 contains the conclusion and discusses the important practical issue of negative 

incremental values. The stability of predictions is also considered, and some ide-as for further 

research are given. 
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CHAPTER 2 

Line-ar Models and Claims Runoff Triangles 

2.0 Introduction 

If claims runoff triangles are to be analysed statistically, as a data analysis exercise, it is 

desirable to express them as linear models. If the claims are analysed using a model for c-ach 

row, then it may be straightforward to write down a linear model: this is considered in section 

2.6. The use of linear models to analyse the data by row can give useful insights into the 

nature of the data, but it is the linear model which is close to the chain ladder technique which 

is of greatest interest to actuaries. This linear model, whose connection with the chain ladder 

technique was first identified by Kremer (1982), is described in sections 2.2 and 2.3. 

The data are assumed to be lognormally distributed and is first logged before a linear model is 

applied. The transformation from the raw data to the logged data is, obviously, 

straightforward, but the reverse transformation, once the analysis has been carried out, is not 

simple. This is dealt with in section 2.4. The process is represented in the following diagram: 

Figure 2.1 

Linear 
Models 

Prediction from linear models when the data are lognormally distributed was first considered 

by Finney (1942). Finney considered a sample of independently, identically distributed data, 

and the theory was generalised to a sample of independently, but not necessarily identically 

distributed data by Bradu and Mundlak (1970). Subsequent papers have considered the 

properties of the estimators in more detail. Section 2.8 applies maximum likelihood theory to 

the chain ladder parameters. 

12 
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2.1 Linear Models 

The linear model to be considered is 

.y= 
Xd 

wherey is a data vector of length n, 

,a 
is a parameter vector of length p, 

X is an (nxp) design matrix 

and e is an error vector of length n. 

e is assumed to have mean zero and variance-covariance matrix E. 

(2.1.1) 

The minimum variance linear unbiased estimators of the parameters, V, are the weighted least- 

squares estimators, ý, where 

ý=( xlr, -Ix )-I xlr, -Iv. (2.1.2) 

If the errors, fý, are assumed to be jointly normally distributed, then the estimators, A, are also 

the maximum likelihood estimators. Since a logarithmic transformation will be applied to the 

data, the reverse transformation to estimate actual claims will depend on the estimation 

method being used. One estimator can be obtained by simply substituting the estimators into 

the equations: this is used in the lemmas which show the similarity between the chain ladder 

technique and a certain linear model. Howev'er, these estimators, and indeed the maximum 

likelihood estimators, are biased, and it may be better to use unbiased estimators. This is 

discussed more fully in section 2.4. If the errors are assumed to be uncorrelated with equal 

variance then equation (2.1.2) simplifies to 

(xlx)-l xlx 

which is a form which will be also be used. 

The distributional properties of the maximum likelihood estimators, ý, are well-known. 

13 



Assuming that the errors are independently, identically distributed with variance o, 21 

0,2 (XIX)-l 

2.2 The Chain Ladder Technique as a Linear Model 

Kremer (1982) showed that the chain ladder technique is very similar to a two-way analysis 

of variance and investigated the properties of the estimators. This section describes the 

connection between the actuarial and statistical methods. Assuming a triangular data set 

(without loss of generality) the cumulative claims data, to which the chain ladder technique is 

applied, are 

I cii : j=l It-i+ I} (2.2.1) 

The differenced. data, to which the analysis of variance model is applied, are 

fzij : j=l 
It-i+l} 

where Zij -- Cij - Ci, j-l 

Zil = Cil 

j>2 

The chain ladder technique is based on the model 

(2.2.2) 

E( Cij )= Aj Ci, j-l j=2,..., t. (2.2.3) 

A, is estimated by Aj , where 

cij 
Ai= 

t-j+l 
(2.2.4) 

cjli-l 

14 



The expected ultimate loss, E( Cit ), is estimated by multiplying the latest loss, Ci,, 
-j, j , b. v 

the appropriate estimated A-values : 

t 

estimate of E( Cit ) -- ( 11 Aj ) Ci, t_i+l j=t-i+2 
(2.2.5) 

This is illustrated in example 2.5 and the results are compared with those from the analysis of 

variance method. 

The chain ladder technique produces forecasts which have a row effect and a column effect. 

The column effect is obviously due to the parameters I Aj ; j=2,..., t 1. There is also a row 

effect since the estimates for each row dep-end not only on the parameters I Aj ; j=2,..., t 1, but 

also on the row twing considered. The latest cumulative claims, Ci,, 
-i+,, can be considered as 

the row effect. This leads to consideration of other models which have row and column effects, 

in particular the two-way analysis of variance model. The connection is first made with a 

multiplicative model. This uses the non-cumulative data, Zjj , and models them according to: 

E( Zij )= Ui Sj (2.2.6) 

where Uj is a parameter for row i, 

Sj is a parameter for column 

A multiplicative error structure is assumed. 

t 

Also L Si (2.2.7) 
j=1 

Sj is the expected proportion of ultimate claims which occur in the jth development year. 

Uj is the expected total ultimate claim amount for business year i (neglecting any tail factor). 

The estimates of Uj will be compared with the estimates of E( Ci, ) in equation (2.2.5) and 

Sj and Aj will be related to each other. 

15 



The analysis of variance estimators are based on the model (2.2.6): 

E(Zij )= UiSj 

and the chain ladder technique is based on the model (2.2.3): 

E (Cii )= Aj Ci7j-l 

In terms of the models, ignoring for the moment the estimation of the parameters, this simply 

represents a reparameterisation. 

Under the chain ladder model, the expected claim total for business year i is 

t 
11 Aj Ci, t-i+i (2.2.8) 

j=t-i+2 

and the expected claim amount in development year t-i+2 is 

At-i+2 Ci, 
t-i+l - Ci, 

t-i+l 
(2.2.9) 

The equivalent quantities under the multiplicative m(Ael, (2.2.6) are 

ui (2.2.10) 

andUi St-i+2 

Equating (2.2.8) and (2.2.9) with (2.2.10) and (2-2.11), respectively, gives: 

At-i+2 
St-i+2 

t 
fl Aj 

j=i i+2 

16 



The expected claim amount for development year t-i+3 under each model is: 

At-i+3 At-i+2 Ci, 
t-i+l - At-i+2 Ci, 

t-i+l 
(2.2.12) 

and Ui St-i+3 (2.2.13) 

which give 

At-i+3 
t 

11 

j=t-i+3 

In general, 

si 
Al 

t (2.2.14) 
fl 
I=j 

Considering year of business t, the expected total claim amount under each model is: 

1 
Ai 

1 
cti 

and Ut . 

The claim amount in development year 1, Ct, , is modelled by Ut S, , and so it can be seen 

that: 

t 

1=2 

(2.2.15) 

1-1 



To summarise, the chain ladder model (2.2.3) is equivalent to the multiplicative mcKiel given 

by equation (2.2-6) with the following relationships between the parameters: 

II At 
1=2 

Si IIA, W( Aj 
I=j 

Ui = E(Cit) 

Equations (2.2.4) and (2.2.5) give the estimators of I Aj ; j=2,..., t } and E( Cjj ). Estimators 

of I Si ; i=l,..., t I and I Uj ; j=l,..., t } can be obtained by applying a linear model to the 

logged incremental claims data. Taking logs of both sides of equation (2.2.6), and assuming 

that the incremental claims are positive: 

Yij ) --= p+ ai + 3j 

where Yij = log Zi, - 

(2.2.16) 

and the errors now have an additive structure and are assumed to have me-an zero. 

The errors will also be assumed to be identically distributed with variance o, 2, although this 

distributional assumption can be relaxed. 

Kremer (1982) defines p as the mean of the log Uj's and log Sj's , so that the restriction 

tt 

Lai L93 = i=l j=l 

is imposed. 

is 



An alternative assumption is that or, = 61 = 0. In this case 

Ori = log Ui - log U, 

Pj = log Sj - log S, 

/I = logul +logs,. 

(2.2.17) 

(2.2.18) 

(2.2.19) 

The latter set of assumptions are more appropriate for the more sophisticated techniques which 

will be introduced in later chapters and so they will also be used in this chapter. It is 

emphasised that the prediction and estimation of the claims is unaffected by the choice of 

assumptions. 

The assumption that eii are independently, identically distributed with variance a2 will be 

used, so that the estimators are given by equation (2.1.3). 

Now equation (2.2.16) can be written in the form of equation (2.1.1). Suppose, for example, 

there are three years of data. 

Then 

Yll 1 0 0 0 0 ell 
P 

Y12 1 0 0 1 0 + e12 
02 

Y21 1 0 0 0 e2l 
03 

Y13 1 0 0 0 1 e13 

132 
Y22 1 1 0 1 0 

tO 

e22 

Y31 1 0 1 0 0 LJ e3l 

The forms of the parameter vector and the design matrix are clear. 

(2.2.20) 

The following lemma, due to Kremer (1982), gives the normal equations for the chain Wider 

linear model. 
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2.2.1 Lemma 

For n years data, the best linear unbiased estimators of p, ai , 8j are the solutions of 

1 t-i+l 1 t-j+l 

-i+l 
E( Ylj t-j+l Yij 

(i=22 
... It) 

1 t-j+l 1 t-i+l 

t-j + yij t-i+i yi, 

0=2,..., t) 

t-i+l 
E (Yij - &i 

Proof 

The normal equations, (2.1.3), are 

t-i+l - t-i+l 

(t-i+1)A + (t-i+l)äi ßj =E yij j=2 j=l 

(i = 2,... It) 

t-i+l t-j+l 
r, &i + (t-j+l)#j yij 
i=2 

0=2,..., t) 

ttt t-i+l 

L (t-i+l)&i + ý, ' (t-j+l)#j 1: Yjj 
i=2 j=2 j=l 

(2.2.1.1) 

(2.2.1.2) 

(2.2.1.3) 

(2.2.1.4) 

(2.2.1.5) 

(2.2.1.6) 

Noting that &I = ý, = 0, equations (2.2.1.6) and (2.2.1.3) are equivalent. 

20 



Also equations (2.2.1.4) and (2.2-1.5) can be written as 

6t i-F1 i+l yij 
j=l 

t-j+l 

ji+Tl (Yij 

(2.2.1.7) 

(2.2.1.8) 

Substituting equation (2.2.1.7) into equation (2.2.1.8) and vice versa gives equations (2.2.1.1) 

and (2.2.1.2). 

2.3 Relationship between the estimators of the linear model and the chain ladder model 

The previous section derived the relationship between the parameters of the multiplicative 

model and the chain ladder technique. The parameters are estimated in different ways 

according to which method is used, and this section is devoted to examining the relationships 

between the estimators of the parameters. 

This section contains two lemmas. The first deals with the estimation of S, and Uj - the 

parameters of the multiplicative model - using the chain ladder technique. The second lcmina 

derives the estimators of Sj and Uj using the two-way analysis of variance model. The two sets 

of estimators are then shown to be similar. Thus, it will be shown that the chain ladder 

method will produce results which are similar to those produced by the analysis of variance 

method. The latter has been studied in great depth in the statistical literature, and in the 

remaining chapters the methods will be based on the analysis of variance version of the chain 

ladder technique. The analysis of variance method has the advantage of a great deal of 

theoretical background, and this theory will be applied to insurance data, bearing in mind that 

the main method in use in the industry is the chain ladder method. 
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2.3.1 Lemma 

if 
-1 

nl 

'=1 

and A, is estimated by Aj , where 

cii 

Cii-i 

then the estimators of Sj , 
ýj 

, satisfy the relationship 

yij 
t 

t 
Ci, t-i+11(1- ý 9, ) 

-t+2 

Also, the estimate of Uj is Uj, where 

t-i+l 

zij 
Ui 

si 
j=l 

Proof 

Equations (2.3.1.1) and (2.3.1.2) imply that 

11 \ 
l=J 

i 

99 

j=2,..., t. 

(2.3.1.1) 

(2.3.1.2) 

(2.3.1-3) 

(2.3.1.4) 



t-i+l 
cij - cij-1 

(2-3.1-5) 
t-j+l t E cii rl Aj 
i=l I=j+l 

Now, it can be shown by induction that 

t-j+l t-i+l 
- cii Ci, t-i+l Aj (2.3.1.6) 

(See Kremer). 

Substituting equation (2.3.1.6) into equation (2.3.1.5) gives 

t-i+l 

zij 
t i+l t 

Ci, t-i+il ri A, fl A, 

t-j+l 

E zij 
t-j+l 

i=l 
t 

(2.3.1.7) 
Ci, t-i+l A, 

I=t-i+2 

It can also be shown by induction that 

[t1t 

fl A)S, 
I=k I=k 

This is true for k=2 by virtue of equation (2.2.15) and the relationship 

1=2 
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Suppose it is true for k. Then for k+l: 

t 
L 

-91 +Sk 
I=k 

t rl 1 A-+ 1] 
Ak 

t =k 11 A, 
I=k 

(2-3.1.8) 
ll=k+l 

11 

Hence, by induction, the result holds. 

Substituting this result into (2.3.1.7) gives: 

zij 
si t 

(2.3.1.9) 

IJ; +2 

as required. 

t-i+l 
Now, since Ci, t-i+l = 1: zij 

j=l 

tt 

and fl Aj 1: Sj 
j=t i+2 j=t-i+2 

the estimate of total expected outstanding claims for row i, 

t 
rl 

j=t-i+2 

can be written as 

zij 
t 

Es 
j=t-i+2 

2.1 



Thi, s can be written as 

zij 

si 

t t-i+l- 

since 1-L Sj -ES 
j=t-i+2 3=1 

2.3.2 Lemma 

(2-3-1.10) 

Using the estimation method of lemma 2.2.1, an estimate of total expected claims for acciderit 

year i, tj 
, is given by 

= 

[ti+1 

11t+1 

where wi = 

t 
Lwj 

j=l 

t-j+l 

t-j+l Ft-i+l t-i+l -i+l 
i=l =1 1=1 
ri 

if, 
zill fl 

t-i+l 

H Zi 
1 

F th fi j=l 
ur er, i t-i+l 

(2.3.2.1) 

(2.3.2.2) 

(2.3.2-3) 
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This lemma can be used to show that the estimates of expected total outstanding claims for 

each row have similar forms using each method, and can be expected to behave in similar 

ways. The estimate of Uj is obtained by "hatting" the parameters in the identity 

a-pI )3j 
Ui e'eEe j=l 

which is derived in the proof of this lemma. The resulting estimate of Uj is not the maximum 

likelihood estimate, neither is it unbiased, but it does serve the purpose of illustrating the 

similarity between the chain ladder technique and the two-way analysis of variance. 

Proof 

Equations (2.2.17) to (2.2.19) imply that 

ot ui 

e U, 
(2.3.2.4) 

si 
(2.3.2.5) 

gl- 

and ell UlS, (2.3.2.6) 

tt 
Since ý, ' Si Ee 

j=l j=l 

This, together with equations (2.3.2.4) and (2.3.2.6) give: 

a- 11 t 
ui e, eEe (2.3.2.7) 

j=l 

Now let w, =e 
ýj 

; then equation (2.2.1.2) is equivalent to equation (2.3.2.2). 

The BLUE estimate of a, +p is obtained from equation (2.2.1.7). Substituting dic (-tirnatcs 

of ai + it and 8j into equation (2.3.2.7) gives the estimate of Uj in equation (2.3.2.1). 
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Now, equation (2.3.2-5) implies that 

w 
Ewl 
1=1 

and so equations (2.3.2.1) and (2.3.2.2) can be written as 

11 züi I-i+l 

- u i 

j=l 

and ýi= 
t-j+1 Ft-i+l 

fl fl 
i=l 1=1 

t-j+l 1 

fl zi 
t-i+l 

fl 
t-i+l t-j471 

I 

1=1 
11 

1 (2.3-2-8) 

Now, if all the geometric means are replaced by arithmetic means in equation (2.3.2.8), the 

recurrence relation for the estimators of Si becomes the same as that in lemma 2.3.1. Similarly 

the estimators of Uj are equivalent if geometric means are replaced by arithmetic means. Thus 

the two estimation methods, the chain ladder method and the linear model, will produce 

similar results. The structure of the models is identical and the onlY difference is the estimation 

technique. It can be argued that the linear model estimates are best in a statistical sense, btit it 

should be emphasised that in using the linear model instead of the crude chain ladder 

technique, there are no radical changes. 

2.4 Unbiased Estimation of Reserves, and Variances of Reserves. 

It has been shown that the chain ladder model can be considered as a two-way analysis of 

variance. This linear model, and other linear models, can be used effectively for analysirig 

claims data and producing estimates of expected total outstanding claims for each year of 

business. The methods have in common the assumption that the data is lognorrnally 

distributed, and the linear models are therefore applied to the logged incrernental cl; tirns mtlicr 

than the raw incremental claims data. The problem ffierefore arisk,.,, of reversMv, the log 
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transformation to produce estimates on the original male. It is this problem which is addressed 

in this section; in particular the unbiasedness of the estimates is considered. It is important 

that estimates should be unbiased in order that they are aiming at the correct targct and do 

not yield values which consistently under- or over-estimate. It is also important to consider 

unbiased estimation of the standard errors of the estimates of expected total outstanding 

claims, in order that some measure of the order of the errors can be attached to the 

predictions. The procedure for analysing claims data using logline-ar models is illustrated by 

figure 2.1. 

The final stage in this procedure - reversing the log transformation - is considered here and 

unbiased estimates of total outstanding claims are derived. Unbiased estimates of the variances 

of these estimates are also derived. The theory is applied to some claims data using the 

analysis of variance linear model and the unbiased estimates compared with some alternatives. 

In order to make the analysis more easily assimilable, a sample of independently, ideritically 

distributed observations is considered first. The theory is then extended to the more general 

case of independent, but not necessarily identically distributed observations. It is the more 

general theory which is applicable to claims data. 

2.4.1 Estimation for Independently, Identically Distributed Data 

Suppose the data consists of n independently, identically distributed observations which are 

lognormally distributed. 

i. e. Z, , ... , Z,, are independent 

and Zi - lognormal. 

Suppose also that E( Zi )=0. (2.4.1.1) 

The aim is to estimate 0 and to find the mean square error (or variance, if the estimate is 

unbiased) of the estimate. One way of proceeding towards the estimation of 0 is to take logs of 

the data and analyse the resulting sample using normal distribution t1wory. 'I'lus is an 

approach which can be generalised to data which is not identically distributed and so Is tlie 
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most appropriate for claims data. 

Let Yi = log Zi (i = n). 

Since Zi has a lognormal distribution, Yj has a normal distribution. 

Suppose Yj -N( ji , o, 2 ). 

Then 0= exp (p+ 5lor' 2 

The maximum likelihood estimates of p and o, 2 are 

yi 

(yi 

(2.4.1.2) 

(2.4.1.3) 

and the may-imurn likelihood estimate of 0 can be obtained by substituting ý and &2 into 

equation (2.4.1.3): 

exp + 1&2 
2 

Now P and &2 are independent and 

01 A-N(ß, h-) 

&2 
X2 

ol 
2 n-1 

The moment generating functions of these distributions are 

2 

exp ( pt exp ( lit +Io, t2 2n 

(2.4.1.4) 
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2 (D- 1) 

and E(exp(nLt)) 
]21 

2 
ol 

2 1-2t 

Hence EE( exp E( exp (1 &' )) 2 

la 
21- 1(n-l) 

exp + 
1-2ff 

2 

2n 

1 0,2 �2 
]-! (n-1) 

= exp (ß+2) ex n2-n2 

>0. 

(by independence) 

This result, which was derived by Finney (1941), shows that the maximum likelihood estimate 

of 0 is biased. 

It can be seen that 

lim exp 
(n-1) 

.2 exp 0'2 
n --- 0,00 

1n22 

[ 
1_ ýZ2 

]-1(11-1) 
( 0,2 

and lim 
00 -2 exp n--+ n2 

so that lim E0 and b is asymptotically unbiased. In a claims reserving context, n n --)- 00 

is generally not large and the bias in the maximum likelihood estimate can be quite serious. 

This is illustrated in example 2.5. 

In order to correct for the bias, Finney introduced the function gm (t), where 

00 

gm (t )=I: 
k=O 

_mk 
(m + 2k) tk 

m+2)... (m+ 2k k! 

and m is the degrees of freedom associated with & 2. In this case m -- n-1. 

(2.4.1.5) 
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It can be shown that an unbiased estimate of 0 is ý where 

=exp(P)gm( 1 82 2(l 
A) (2.4.1.6) 

and s2=nn1 &2 is an unbiased estimate of 0,2 . Again it can be seen that 

exp gM (I (1_1) S2 exp +1 &2 as n --+ oo. 2n2 

One advantage of the use of linear models is that standard errors of the parameter estimates 

can be produced. These can be used to find standard errors on the original unlogged scale. The 

variance of ý iS r2, where 

02)-(E(0))2. 

An unbiased estimate of E(ý2) is obviously ý2 (since the expectation of this is E( j2 )) 

and 

exp (p+1o, 2 

= exp ( 211 + 0,2 ). 

By analogy with the unbiased estimation of 0, an unbiased estimate of 

exp ( 2p + 0,2 ) 

is exp ( 2A ) gm ( (1-j2j) s2). 

.2- Thus an unbiased estimate of 7- is 

2r( gM (I (I _ 
1) 82 ) )2 _ gM ( (1 

_ 
2) S2 iý = exp ( 2p )2nn 
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The values of the unbiased estimates of 0, i, and of r21-? 2, for the more general are 

illustrated in example 2.5. For comparison purposes, the corresponding maximum likelihood 

estimates are also found. The maicimurn likelihood estimate Of the variance of the maximum 

likelihood estimate of 0, ý? is 

&2 &2 &2 
-2 exp ( 2A +n exP nn 

2.4.2 Unbiased Estimation for Claims Runoff Triangles 

A claims runoff triangle consisting of incremental claims (assumed positive) is now considered. 

It is assumed that the data have been adjusted for inflation and exposure. Zij is incremental 

claims in row i, column 

Let Oij =E( Zij ). (2.4.2.1) 

Estimates of Oij are required along with standard errors of these estimates. In particular, 

estimates of I Oij : i=l,..., t ; j=t-i+2,..., t } are required, as these are the estimates of the 

expected outstanding claims. The row totals of the estimates also have to be considered, as 

these are the estimates of the expected total outstanding claims for each year of business. 

The data available for the estimation of the parameters in the linear model are: 

Zil Z12 
... ... 

Z21 Z22 
... 

Z2, 
t-I 

zt-i, 
i 

ZI-1,2 

Zit 

I zij : i=11 ... lti=ll .... t-i+l ) are assumed to be independently, lognormally distr, butcd. 
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Let Yij = log Zi,. 

Then Yjj are independently normally distributed. 

Suppose that I Yij : j=l,..., t-i+l } are modelled by 

E (Yij) = -Xij 
8 

Var ( Yij )=o, 

(2.4.2.2) 

(2.4.2.3) 

(2.4.2.4) 

where Xjj is a row vector of explanatory variables and ý is a column vector of parameters, 

both oflength p. 

This is a linear model and encompasses (among others) the analysis of variance model 

suggested by Kremer. 

The linear model for the whole triangle is 

E (Y) = X, 3 

where X is an (rixp) matrix whose rows are Xjj 

and Y is the vector of observations. 

(2.4.2.5) 

n is the number of observations ( for a triangular array n=2! t(t+') ), and the errors are 

assumed to be independently, identically normally distributed. 
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For example, applying the two-way analysis of variance model to a 3A triangle gives 

I 

Yll 1 0 0 0 0 
P- 

Y21 1 1 0 0 0 
Cf2 

Y12 1 0 1 0 0 
82 

Y31 1 0 0 1 0 
Cr3 

Y22 1 1 1 0 0 83 j 
Y13 1 0 0 0 1 

The expected value of the lognormally distributed data, Oij , is related to the mean and 

variance of the normally distributed data by 

exp +10,2 (2.4.2.6) ij 2 

Thus the maximum likelihood estimate of Oij is 

exp 

where 2=( X'X )-' XY 

&2 xp- Ay- 
- Xý 

and 

(2.4.2.7) 

The general theory of estimation from linear models when the data is lognormally distributed 

was considered by Bradu and Mundlak (1970). It can be shown that an unbiased estimate of 

exp ( Zd + ao, 2 ) 

for any row vector Z of length p and scalar a, is 

)-I zl ) S2 exp ( Z, 2) gm 
[(a- 

ý' Z, (2-4.2-8) 
2- 

WX 
-I 

where s' is an unbiased estimate of U2 and m is the number of degrees of freedom associated 



with s2. 

s2-nnp &2 

=p (Y- - X'a ), (Y- - Xý ) 

and m= n- 

Thus an unbiased estimate of Oij is Oij , where 

Oij = exp ( Xij ý) gm 
[ 12 (1- Xj (XIX)-1 2ýI, 2 ]. (2.4.2.9) i 

Note that Var (2)= (X/X)-l 0,2 

and hence Var ( Xii Xij (XIX)-l Xlj 0,2. 
-i 

It can therefore be seen that 

Xij (XIX)-l Xlj S2 
-i 

is an estimate of Var ( Xjj 

2 The variance of the unbiased estimate of Oij , 
ýjj 

I is T-ij. 7 where 

7-i2j = Var ( ýjj ) 

E( 2E (2.4.2.10) ii 

ý 
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-2 An unbiased estimate of E( ýii ) is oi, and 

(E( Oij ) )2 =0 i2j 

exp ( 2Xij P. 2 +a 

iS ;ý2 Hence an unbiased estimate of r? j , usiDg equations (2.4.2.9) and (2.4.2.8) j, where 

iý? - = exp(2Xjjý Xlj )82))2_gM((, li )S2 
_)[(gm 

(51 (1 -Xjj (X'X)-i -2Xi 2 -i -j 
(Xlx)-l xi G 

The results for identically distributed data can be recovered by setting Xij =1 (noting that 

X'X = n) and 8=p. 

2.4.3. Unbiased Estimates of Total Outstanding Claims 

The purpose of the analysis of the claims data is to produce estimates of tfie cxjxýcted total 

outstanding claims, Ri , for each year of business, and the total outstanding claims, It, for the 

whole triangle. 

An unbiased estimate of Ri is ki 
, where 

t 

Ri Oij 
j=t-i+2 

The variance of ki can be calculated as follows: 

t 

Var ( fti Var E ýjj I 
j=t-i+2 

I 

t 

Var ( ýjj +2E Cov ( oij , Oij. 
j=t-i+2 

[ 

k=i+l 

Now 

Cov ( Oij , OiL. E( Oij Oij. E( Oij )E( OiL. 

(2.4.3.1) 

(2.4.3.2) 
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and an unbiased estimate of this can be obtained using the same method as that which was 

used to find f 2. in section 2.4.2. ij 

It can be shown that if 

7'ijk = COV ( Oij 
, 

Oik 

an unbiased estimate of -rijk is f jjL. , where 

[gM(1(1-X� (XIX)-1 Xtj)S2)gM(1(1 1 2) , rijk: -",: exp«2ýii +2ýik)ý-) --xik (xlx) 
ik )S 2 -i 2 Xi 

I 
-gM((l - ý(Xij +Xik)(X'X)-, (Xij +Xik)) s 

(2.4-3-3) 

Hence an unbiased estimate of Var ( Aj ) is 

t2t 
1: ii +2L fýjjk (2.4-3.4) 

j=t-i+2 

[ 

k=j+l 

I 

By extending the limits of the summations, the total outstanding claims for the whole triangle 

can also be considered. 

2.4.4 Prediction Intervals 

Having found an unbiased estimate of total outstanding claims, it is now possible to produce a 

prediction interval for total outstanding claims. The purpose of the analysis so far has been to 

produce an estimate of total outstanding claims and an estimate of the variance of this 

estimate. It is often desirable to find a 'safe' value which is unlikely to be exceeded by the total 

actual claims. 

Let R= total outstanding claims for the whole triangle 

and R be an unbiased estimate of E( R). 
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Suppose that a 95% upper confidence bound on R is required. i. e. it is required to rind a value, 

k, such that 

P (R <A+ k) = 0.95 (2.4.4.1) 

i. e. find k such that 

P (R -A< k) = 0.95. (2.4.4.2) 

Since R is an unbiased estimate of E(R), 

E(ft) = E(R) (2.4.4.2) 

and hence 

E(R- ft )=0. (2.4.4.3) 

Also, R is based on past data and is thus independent of R under the assumptions of the 

model. Thus 

Var (R -A)= Var (R) + Var (ft). (2.4.4.4) 

In section 2.4.3, an unbiased estimate of Var(R) was derived and it is possible to derive an 

unbiased estimate of Var(R) using the theory which was used in that section. By 

independence, 

tt 

Var (R) = E, E Var(Zij) 
i=2 j=t-i+2 

(2.4.4.5) 

and an unbiased estimate of Var(Zij) is required. This can be derived as follows, using the 

method of section 2.4.2. 
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Zjj has a lognormal distribution, and the variance of this distribution is given bY: 

Var(Zij) = exp(2Xijd + or 2) (exp ( 0,2)_ 1) 

= exp(2Xijd + 20,2) 
- exp (2X ijd + 0,2) (2.4.4.6) 

Hence, applying equation (2.4.2.8), an unbiased esti mate of Var (Zij) is 

exp(2Xjjýfgm (2 (1 -Xij (X'X)-l Xlj )82)_gM((, Xlj )S2 
-i -2Xij (X'X)-l 

-i 
(2.4.4.7) 

It is not inappropriate to use a Normal approximation since R and ft are, typically, 

combinations of a reasonably large number of lognormally distributed random variables. Thus 

a 95% upper bound on total outstanding claims can be found: 

R+1.645 ý Var(R) + Var(R) (2.4.4.8) 

ýVar(R) + Var(A) is the root me-an square error of prediction, and an unbiased estimate 

is used. (It can be compared with the posterior estimate of the variance of the total 

outstanding claims in the chapters devoted to Bayesian theory. ) It is very important to note 

that the theory of prediction intervals is only valid since unbiased estimators have been used. 

2.5 Example 

This example illustrates and compares the two most basic methods of claims reserving 

considered in this thesis: the chain ladder method and the two-way analysis of variance. nis 

gives an opportunity to compare the two. For the analysis of variance model, both the 

unbiased and maximum likelihood estimates of outstanding claims are given. The results in the 

example will be compared, in chapter 3, with the Bayes and empirical Bayes results. The data 

used is that from Taylor and Ashe (1983). The estimates of the paranicters in the analysis of 

variance model and their standard errors are shown in figure 2.2. 
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F; uiirs- ') ') 

Estimate Standard error 
Overall mean 6.106 0.165 
Row parameters 0.194 0.161 

0.149 0.168 

0.153 0.176 

0.299 0.186 

0.412 0.198 

0.508 0.214 

0.673 0.239 

0.495 0.281 

0.602 0.379 

Column parameters 0.911 0.161 

0.939 0.168 

0.965 0.176 

0.383 0.186 

-0.005 0.198 

-0-118 0.214 

-0.439 0.239 

-0.054 0.281 

-1.393 0.379 

The standard errors are obtained from the estimates of the variance-covariance matrix of tlic 

parameter estimates: 

(xIx -1 &2 

where &2 is the estimate of the residual variance. For this example, &2 = 0.116. 

Since the data is in the form of a triangle (there are the same number of rows and columns) 

and the matrix X is based solely on the design, the standard errors are the same for each row 

and column parameter. 

The row parameters are contained within a much smaller range than the column pararnetcrs: 
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(0.149,0.673) compared with (-1.393,0.965). This has consequences for the ernpiric-ad Bayes 

estimation method described in chapter 3. It can also be seen that there is an indication that 

the row parameters follow an increasing trend and this will be remarked on further in chapter I 

when the Kalman filter method is described. 

It is to be expected that the row parameters should be contained within a fairly small range, 

since the rows are expected to be similar. Any pattern in the row parameters gi-ves an insight 

into, and depends upon, the particular claims experience. It is thus quite common to observe 

that the row parameters lie in a small range, but not typical that they follow a trend. 

The fitted values for the analysis of variance model are shown in figure 2.3. These are the 

unbiased estimates and are shown with the actual observations for comparison. In this figure, 

and in all similar ones in future, the top entries are the estimates and those underneath arc the 

actual observations. 
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Figure 2.3 

286170 711785 731359 750301 418911 283724 252756 182559 266237 67948 

357848 766940 610542 482940 527326 574398 146342 139950 227229 679,18 

410587 1021245 1049329 1076506 601040 407078 362646 261930 381987 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

379337 943516 969461 994572 555294 376094 335044 241994 

290507 1001799 926219 1016654 750816 146923 495992 280405 

339233 843767 866971 889425 496588 336334 299624 

310608 1108250 776189 1562400 272482 352053 206286 

378676 941872 967773 992840 554327 375439 

443160 693190 991983 769488 504851 470639 

389421 968599 995234 1021012 570056 

396132 937085 847498 805037 705960 

420963 1047052 1075844 1103710 

440832 847631 1131398 1063269 

457887 1138894 1170213 

359480 1061648 1443370 

396651 986582 

376686 986608 

344014 

344014 

Figure 2.4 shows a plot of residuals (fitted value - actual value) against fitted value. 
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Figure 2.4 
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There is no discernible pattern in the residuals, and they seem to be randomly scattered, so 

there is no cause to question the model on the basis of this plot. Of course, it is po&sible to look 

further into a residual analysis and study the plots of residuals against year of business and 

delay. This is considered further using the GLIM system, by Renshaw (1989). 'rhe main 

purpose of this thesis is to extend the possible analyses by using Bayes, empirical Bayes and 

recursive Bayes methods, rather than to find the most appropriate linear model to fit, and so 

the residual analysis will be mainly restricted to plots similar to figure 2.4. 

Of most interest to practitioners are the predicted outstanding claims for each year of btisiness, 

which are the row totals of predicted values. Figure 2.5 shows the maximum likclihood 

predictions of the outstanding claims in the lower triangle, and figure 2.6 shows the unbiased 

predictions. The method does not produce anY predictions for the first row, and each row 

contains one more predicted value. 

Fiv, nre 2.5 

101269 

357398 93599 

217465 319835 83761 

335047 243001 357392 93597 

386433 345088 250283 368102 96402 

617309 418743 373941 271209 398880 104462 

1206369 674243 457364 408430 296223 435668 114097 

1026594 1053911 589034 399564 356813 258787 380610 99678 

888831 913640 937951 524224 355600 317554 230313 338732 88710 



Figure 2.6 

96238 

350362 888-11 

215218 313105 7939-1 

332848 240075 349268 8856,1 

384305 342028 246696 358900 91006 

613257 415031 369373 266419 387593 98281 

1193906 666126 450811 401216 289387 421005 106752 

1006382 1031734 575643 389575 346716 250077 363813 922,18 

844677 867203 889047 496032 335695 298762 215487 313486 79483 

It can be seen that the maximum likelihood estimates are all higher than the unbiased 

estimates, as was to be expected. 

The total predicted outstanding claims for each year of business (the row totals of the 

predicted outstanding claims) are shown in figure 2.7. There are three estirnates given, the 

maximum likelihood and unbiased estimates from the analysis of variance model, and tlie 

chain ladder estimate. 
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Analysis of Variance 

Row Maximum Likelihood 

2 101269 

3 

4 

5 

6 

7 

8 

9 

10 

450997 

621061 

1029037 

1446307 

2184544 

3592393 

4164990 

4595556 

Unbiased 

96238 

439203 

607717 

1010755 

1422934 

2149953 

3529202 

4056189 

4339873 

Chain Ladder 

94630 

464668 

702101 

965576 

1412202 

2176089 

3897142 

4289473 

4618035 

It can be seen that the maximum likelihood estimates differ most significantly from the 

unbiased estimates in the early and late rows. The estimates for the middle rows are the closest 

together, which is where the number of observations used in the estimation is the greatest. The 

maximum likelihood estimate is asymptotically unbiased, and the greater the number of 

observations used to estimate the parameters, the closer are the two. The chain ladder 

estimates are sometimes higher and sometimes lower than the analysis of variance estimates. 

There is nothing significant that can be inferred from the differences. This confirms that the 

crude chain ladder method is a reasonable 'rough and ready' method for calculating 

outstanding claims, although the more proper method, statistically, is the analysis of variance 

method (using unbiased estimation). 

The total predicted outstanding claims are: 

Analysis of Maximum Likelihood 

Variance Unbiased 

Chain Laddcr 

18186154 

17652064 

18619916 
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The following table shows the unbiased estimates of the total outstanding claims for cacti ), car 

of business, the standard errors of these estimates and the root mean square error of prediction. 

This table can be used in setting safe reserves, and gives an idea of the likely, variation of 

outstanding claims. 

Unbiased Standard Mean Square Error 

Estimate Error Of Prediction 

96238 35105 47202 

439203 108804 163217 

607717 127616 182847 

1010755 195739 269224 

1422934 273082 357593 

2149953 429669 538533 

3529202 775256 942851 

4056189 1052049 1197009 

4339873 1534943 1631306 

The unbiased estimate of total outstanding claims is 17652064 and the root me-an square error 

of prediction is 2759258. Thus a 95% upper bound on total outstanding claims is 

17652064 + 1.645 x 2759258 = 22191043 

This is a 'safe' reserve for this triangle according to the chain ladder linear model using 

unbiased estimation. 

The use of the mean square errors of prediction is discussed further in tfie concluding cliaptcr. 
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2.6 Row by Row linear models 

An approach which has been found useful by many practitioners is to model the triangle row 

by row. Sometimes completely separate models are applied to each row, sometimes the same 

model is applied to each row and sometimes the separate models which are applied to each row 

are related in some way. The latter approach provides a useful and intuitively appealing 

compromise between separate models and the same model for each row: the methods for 

relating the rows together are derived in chapters 3 and 4. In this chapter the methodology 

which enables the basic models to be fitted, either to each row separately or to all together, 

will be described. 

The data in each row is: 

yii 

Yi2 

Yj 

Yi, 
t-i+l 

and the triangle consists of 

I Yi 

Y1 2 

yl 
t 

The three cases referred to above can, in general, be written as a linear model: 

Yi = Xi P-i + ti 

where Xi is the design matrix for row i, 

. 
di is the parameter vector, of dimension p, for row i 
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and ej is a vector of independent errors which are assumed to be normal wah mean zero. 

One example of the many row models which have been suggested is that used by Zchnwirth 

(1985). This can be written in the form : 

zij = tcj j 
bi 

exp( -yj (i -I )) Rij 

where Pc i, bi, -y i are parameters ( -y i<0) 

andRi, is a multiplicative error with me-an 1. 

Taking logs, equation (2.6.2) can be written as a linear model: 

Yij = log Ki + bi log j+ -yi (j-1) 

(2.6.2) 

= vi + bi log i+ -yi (i-1)+ e-ij (2.6-3) 

where vi = log ici 

and eij are independent errors with mean zero. 

It will also be assumed that the errors are identically distributed, although this is not necessary 

and should be checked by looking at the residual plots. 

Referring back to equation (2.6.1), 

lii 

i= 6 

-Ii 

and the form of Xi is: 

00 

log2 1 

log3 2 

log(t-i+ 1) t-i 
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For the whole triangle, equation (2.6.1) gives the linear model: 

Xi 
X2 

y X3 
+e (2.6.4) 

t 
xt 

and the least-squares estimates of 21 , ... , Pt-2 can be produced using the standard equations 

given in section 2.1. The last two rows have fewer observations than parameters and estimation 

is not possible. In the analysis here, the last two rows have simply been omitted, although it 

would be possible to assume that 

9-t : ":: 9-t-1 : ý:: P-t-2 

SI 

and proceed. 

A simpler model is obtained if it is assumed that 

81 : -- P-2 =-- *** = It -- P (say) 

Then Y= 

X, 

X2 

xt 

This is the model which is used in example 2.7. 

(2.6.5) 

(2.6.6) 

Between these two models (given by equations (2.6.4) and (2.6.6)) come the models in which 

the parameters are related in some way. One possibility is to assume that they follow some 

dynamic evolution and model accordingly; another is to assume that they are independent 

observations from a common distribution and use a credibility theory approach. Each of these 

possibilities is described further in subsequent chapters. The methodology of unbiased 

estimation, which has been derived in relation to the chain ladder linear model above, can Im, 
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applied to any loglinear model, including the row models which are under consideration in this 

section. 

2.7 Example 

The simpler model given by equation (2.6.5) in which the parameters for each row are assumed 

to be identical is applied to the Taylor and Ashe data in this example. The model for each row 

is the gamma curve, given by equation (2.6.2), although it is emphasised that the niethods 

apply to any linear model which is applied to the data row by row. The estimates of the 

parameters and their standard errors are given in figure 2.9: 

Fivure 2.9 

Parameter Estimate Standard Error 

v 6.545 0.120 

b 1.877 0.244 

7 -0.663 0.070 

The residual variance is 0.162. 

The fitted values, using unbiased estimation, are shown in figure 2.10, figure 2.11 shows a plot 

of the residuals against fitted values, figure 2.12 shows a plot of residuals against dclay and 

figure 2.13 shows the predicted values for the lower triangle, again using unbiased estimation. 

51 



LN-- ri in 

457014 868795 957642 846543 663122 480927 330482 218137 139514 S6971 
357848 766940 610542 482940 527326 574398 146342 139950 227229 67,91S 

540175 1026887 1131902 1000586 783788 568440 390619 257831 164901 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

522195 992705 1094224 967279 757698 549518 377616 249249 

290507 1001799 926219 1016654 750816 146923 495992 280405 

465255 884461 974911 861808 675079 489600 336441 

310608 1108250 776189 1562400 272482 352053 206286 

449522 854552 941943 832665 652251 473043 

443160 693190 991983 769488 504851 470639 

413560 786188 866588 766052 600071 

396132 937085 847498 805037 705960 

406817 773370 852459 753562 

440832 847631 1131398 1063269 

376849 716399 789662 

359480 1061648 1443370 

393332 747733 

376686 986608 

314665 

344014 
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Figurc 2.12 
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Figure 2.13 

102797 

159112 9ý, ý, ")75 

222071 112030 88539 

325064 214561 137227 855,15 

435200 299059 197396 1262-19 78702 

590287 428104 294183 194178 124190 77-118 

698051 546804 396568 272512 179874 115042 71715 

824200 728582 570719 413913 284431 187741 120074 7-1852 

598186 659360 582865 456575 331130 227545 150193 96059 59882 

This is a more rigid model than the analysis of variance model - there are far fewer parameters 

- and it can be seen from the plot of residuals against delay (figure 2.12) that although the fit 

is quite gocýd for the later delay years, the first two show some evidence of cyclical deviation. 

The exponential runoff of the claims is well fitted by the gamma curve (which behaves like ari 

exponential curve for large values of j), but the early years do not fit well. It may be bettcr to 

replace this linear model by another row by row model which retains the exponential runoff, 

but which does not impose the gamma curve on the earlY years. This is illustrated in figure 

2.14. 

Figure 2.14 

- 
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The alternative linear model implied by this is: 

a if j=1 

yii P if j=2 

7C-7i if >2 

This has been used by Swedish actuaries (see Claims Reserving Manual vol. 2). 

Returning to the gamma curve, figure 2.15 shows the unbiased estimates of total outstanding 

claims for each year of business together with the maximum likelihood estimates and the crude 

chain ladder estimates. 

Figure 2.15 

Row Maximum Likelihood Unbiased Chain Ladder 

2 104202 102797 94630 

3 261211 258787 464668 

4 455258 452640 702101 

5 764741 762398 965576 

6 1138039 1136606 1412202 

7 1708762 1708361 2176089 

8 2279985 2280566 3897142 

9 3202840 3204512 4289473 

10 3159459 3161796 4618035 

The unbiased estimates of total outstanding claims for each year of business and the root mean 

square errors of prediction are shown in figure 2.16. 
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Figure 2.16 

Unbiased Mean Square Error 

Estimate Of Prediction 

102797 46345 

258787 88072 

452640 130660 

762398 194920 

1136606 263932 

1708361 366839 

2280566 457833 

3204512 601910 

3161796 551115 

The unbiased estimate of total outstanding claims is 13068463 and the root mean square error 

of prediction is 1342038. Thus a 95% upper bound on total outstanding claims is 

13068463 + 1.645 x 1342038 = 15276116 

It can be seen that the predicted outstanding claims are lower than the predicted outstanding 

claims using the analysis of variance model in example 2.5. 

This is in part due to the fact that only three parameters are used and the standard errors of 

these parameters are smaller than the standard errors of the parameters of the analysis of 

variance model. In that model each parameter has a different number of data points from 

which it is estimated. In particular, the last row parameter has only one data value which can 

be used in its estimation and each previous row parameter has one more data point which can 

be used. Thus the standard errors, which are a function of the design matrix, are larger and 

this contributes to the estimates. 

As previously stated, the main purpose of this thesis is to derive more sophisticat, ed Csti ination 



procedures rather than compare individual linear models. It is therefore more relevant to 

compare this example with the Bayesian methods of the later chapters when they are applied 

to the same row by row linear model. 

2.8 Maximum Likelihood Estimation 

When considering outstanding claims, it is important to use unbiased estimators. However, 

when comparing several sets of runoff patterns it is simpler to use maximum likelihood theory 

since unbiasedness is not critical. There are two sets of parameters whose distributions can 

usefully be found: the development factors, I Aj :j=2,... ,t}, and the proportions of 
t 

ultimate claims, I Sj j=1t; LSII}. It has already been shown that the 
j=1 

following relationship between the proportions of ultimate claims and the development factors 

holds: 

Sl 
t1 

L 
1=2 

Aj 
t E A, 

I=j 

It was also shown, in theorem 2.3.2, that the proportions of ultimate claims are related to the 

>2) 

(2.8.1) 

(2.8.2) 

column parameters of the linear model as follows 

e 
ßj 

7t 01 
Ee 
l=1 

i=1,... , 
(2.8.3) 

where #I =0 by derinition. 

58 



Finally, the relationship between the parameters of the chain ladder and linear models is given 

in the following theorem. 

Theorem 2.8.1 

Suppose that the claims are modelled by equations (2.2.3) and (2.2-16). Then the following 

relationships between the parameters hold: 

e 
ftj 

Proof 

In order to show that equation (2.8.1.1) holds, it is first necessary to establish the following 

(2.8.1.1) 

relationship between the parameters of the chain ladder and multiplicative models: 

S, 

st 
(i ýt) (2.8.1.2) 

At -1 i- St 
(2-8-1.3) 

This can be proved by induction. Consider first At . From equation (2.8.2), 

At 
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Thus At - St At =I 

and At =1 i- st, 

Now suppose that equation (2-8-1.2) holds for At I ... I Aj+j . From equation (2.8.2), 

Aj -1 

Aj 

Aj -1t 
A --- S, using the assumption of the induction. 

j 

tt 

Thus SI=Aj(l-r 
, 

S, - Sj 
I=i+l I=j+l 

and A 

which completes the proof of equation (2.8.1.2) by induction. 

Substituting for Sj from equation (2.8.3) into equations (2.8.1.2) and (2.8.1.3) gives: 

e 
ßk 

1-Z 
I=j t r, e 

ßk 

k=I 
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t t 
Le e 

t ß, t ß, Ee - Ee 
l=1 I=j 

Le 

Ee 
1=1 

=1e 
ßj 

j-i 
e 
fl, 

and At =1 Pt 
e- 
t 

t 
Ee 
t-1 Ee 
1=1 

1 eßt 

l=1 

which completes the proof of the theorem. 

The parameters of the additive model can be estimated by least squares, which is equi,,, alcnt to 

maximum likelihood estimation if the errors are assumed to be independently, norrnally 

distributed. The varianCe-covariance matrix of the parameter estimates can be obtained from 
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the Fisher information matrix by differentiating the log-likelihood a second time. Further 

details of the theory of maximum likelihood which is used in this section can be found in Cox 

and Hinkley (1974). 

Since maximum likelihood estimates are invariant under parameter transformations, the 

maximum likelihood estimates of the development factors and the proportions of ultimate 

claims can be obtained by substituting the estimates of 1 3j :j=1,... ,t; P, =0) into 

equations (2.8.3) and (2.8.4). In addition to the parameter estimates, it is useful to have 

standard errors of the parameter estimates which can be obtained by maximum likelihood 

theory. The particular advantage of using maximum likelihood estimation is that the second 

moments are relatively straightforward to obtain. Denoting the variance-covariance matrix of 

I pj : by V(d), the variance-covariance matrix of 

Aj j=2tI and I Sj j=1t S3 -=II are given by 
j=l 

(ý2A 
(2-8.4) 

09 

and V -0-S v (2) -S) (2.8-5) 
ao 

It is thus necessary to obtain the matrices of the first derivatives of the respective parameter 

vectors. 
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The O, k)th element of 
22 

can be obtained from equation (2-8.1.1) and is given by: 
(U) 

k>i 

aAi 
- 

ßj 

- Öflk - j-, fl, 

- eßießL. 
i-i ß, 

k 

Aj -1k= 

-( xi -1)( A't -1)k<i 

(2.8.6) 

Similarly, the G, k)th element of 
S) 

can be obtained from equation (2.8.3) and is given by: 
49 

(2,0 
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ee 

e 

asi 

'9 ßk 

e 
ßj t 

eß, -A 
k 

Sj Sk k 

sj (1- sj k 

(2-8.7) 

Estimates of the variance-covariance matrices can be obtained by substituting estimates of the 

parameters into equations (2.8.4) and (2.8.5). 

A technical note is that the parameter P, (which is defined to be zero) has to be included in 

the matrix of partial derivatives in equation (2.8.5) since there are n parameters in the vector 

S. The variance-covariance matrix of the parameters of the additive model which is obtained 

from a standard least squares analysis has to augmented to include an extra row and column, 

all of whose entries are zero. This is not necessary for equation (2.8.4). 

2.9. Example 

The method described in section 2.8 is of use when comparing several different sets of data and 

therefore a different example will be used than in other sections for illustration purposes. The 

method is applied to six sets of employers' liability data which have been obtained from the 

DTI returns. The names of the companies to which the data apply have been suppressed, and 

it should be commented that this mathematical analysis is only one part of the process by 

which reserves arc set. In particular, the DTI data are gross of reinsurance. 'I'lic results here 
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should therefore be regarded as a statistical analysis which would give further information to 

the claims reserver who would use the other information available. 

We now consider the parameter estimates for each of the three models in turn. Beginning with 

the additive model the estimates of the column parameters 2tI and their 

standard errors are given in the following figure: 

COMPANY: 

1 

1.796 0.121 1.748 0.148 2.236 0.249 1.846 0.248 1.941 0.201 2.010 0.082 

1.848 0.126 1.857 0.155 2.080 0.261 2.260 0.260 2.248 0.211 2.246 0.086 

1.669 0.133 1.654 0.163 1.978 0.273 2.159 0.272 2.204 0.221 2.129 0.091 

1.413 0.139 1.400 0.171 1.725 0.287 1.986 0.286 1.981 0.232 1.863 0.095 

0.994 0.147 1.200 0.180 1.535 0.303 1.535 0.302 1.514 0.245 1.485 0.100 

0.615 0.155 0.705 0.190 1.057 0.320 1.235 0.319 0.788 0.259 1.050 0.106 

0.415 0.164 0.339 0.201 0.667 0.338 0.644 0.337 0.227 0.274 0.782 0.112 

0.038 0.175 0.025 0.215 -0.099 0.360 0.222 0.359 -0-540 0.291 0.234 0.120 

-0.812 0.189 -0.407 0.232 -0.300 0.390 0.047 0.388 -0.993 0.315 0.155 0.129 

-0.915 0.212 -1.821 0.260 -0.715 0.437 0.382 0.435 -1.311 0.353 -0.324 0.145 

-2.513 0.264 -1.492 0.323 -1.708 0.543 -0.896 0.541 -3.206 0.439 -0.304 0.180 

Before going on to the parameters which have a physical interpretation, it should be noticed 

that it is already possible to see some differences between the companies. In particuar, the 

standard errors of the parameters are larger for some companies (3 and 4) than for others (6). 

This will be mirrored in the parameter estimates and standard errors of the other models. 

Next, consider the chain ladder model. The estimates of the development factors 

I Aj :j=2,... ?t} and their standard errors are given in following table: 
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COMPANY: 

13 

7.027 0.727 6.742 0.850 10.36 2.327 7.332 1.569 7.963 1.401 8.466 0.616 

1.904 0.101 1.950 0.130 1.773 0.181 2.307 0.300 2.189 0.222 2.117 0.086 

1.397 0.041 1.398 0.050 1.394 0.084 1.512 0.109 1.520 0.090 1.469 0.033 

1.220 0.022 1.221 0.027 1.219 0.046 1.285 0.059 1.274 0.046 1.245 0.017 

1.119 0.012 1.148 0.019 1.149 0.032 1.141 0.030 1.135 0.023 1.135 0.009 

1.073 0.008 1.079 0.010 1.080 0.018 1.092 0.020 1.057 0.010 1.077 0.006 

1.055 0.006 1.051 0.007 1.050 0.012 1.047 0.011 1.031 0.006 1.055 0.004 

1.036 0.005 1.035 0.006 1.022 0.006 1.029 0.008 1.014 0.003 1.030 0.003 

1.015 0.002 1.022 0.004 1.018 0.005 1.024 0.007 1.009 0.002 1.027 0.003 

1.013 0.002 1.005 0.001 1.012 0.004 1.032 0.011 1.006 0.002 1.016 0.002 

1.003 0.001 1.007 0.002 1.004 0.002 1.009 0.004 1.001 0.000 1.016 0.003 

Finally, consider the multiplicative model. The estimates of the proportions of ultimate claims 

_, 
Sj =1} and their standard errors are in each development year I Sj jt 

j=1 

given in the following table: 
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COMPANY: 

I 

0.032 0.003 

0.196 0.016 

0.206 0.015 

0.172 0.013 

0.133 0.011 

0.088 0.008 

0.060 0.006 

0.049 0.005 

0.034 0.004 

0.014 0.002 

0.013 0.002 

0.003 0.001 

2 

0.032 0.004 

0.184 0.019 

0.205 0.019 

0.167 0.015 

0.130 0.013 

0.106 0.011 

0.065 0.007 

0.045 0.006 

0.033 0.005 

0.021 0.004 

0.005 0.001 

0.007 0.002 

3 

0.023 0.005 

0.218 0.036 

0.186 0.029 

0.168 0.026 

0.131 0.021 

0.108 0.019 

0.067 0.013 

0.045 0.010 

0.021 0.005 

0.017 0.005 

0.011 0.004 

0.004 0.002 

4 

0.021 0.005 

0.135 0.025 

0.204 0.032 

0.184 0.028 

0.155 0.024 

0.099 0.017 

0.073 0.014 

0.040 0.009 

0.027 0.007 

0.022 0.006 

0.031 0.011 

0.009 0.004 

5 

0.023 0.004 

0.162 0.023 

0.220 0.027 

0.211 0.025 

0.169 0.022 

0.106 0.015 

0.051 0.008 

0.029 0.005 

0.014 0.003 

0.009 0.002 

0.006 0.002 

0.001 0.000 

6 

0.022 0.002) 

0.162 0.010 

0.205 0.011 

0.182 0.009 

0.140 0.007 

0.096 0.006 

0.062 0.004 

0.0,17 0.003 

0.027 0.002 

0.025 0.002 

0.016 0.002 

0.016 0.002 

The runoff patterns of the companies can be compared using the two tables above. For 

example, I and 2 seem quite similar, and some of the companies have more runoff in later 

development years than others. The standard errors can also be compared, with the same 

conclusions as above. 
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CHAPTER 3 

Bayesian Linear Models and Credibility Theory 

3.0 Introduction 

Bayes estimates for the linear model were investigated by Lindley and Smith (1972) and 

also Smith (1973). In the actuarial literature, the recent paper by Klugman (1989) has studied 

the use of hierarchical linear models in a rating context. It has already been seen that many, of 

the models commonly used to analyse claims runoff triangles can be regarded as linear r-no-dels, 

and we now analyse these models from a Bayesian point of view. This analysis has two 

purposes: firstly the practitioner may have some information, from other data for example, 

which can be used to specify a prior distribution for the parameters in the model and secon(Ily 

the Bayesian analysis gives rise in a natural way to estimators which have a credibility theory 

interpretation. 

In the first case the prior distribution is set by the practitioner and the usual prior-posterior 

analysis can be carried out. The models which we are using assume normal (really log-normal) 

distributions, and so it is only necessary to specify the mean and variance of the prior 

distribution (which is also normal). For example, if there is a lot of eviderice to suggest that 

the row parameters are all 0.1, a normal distribution with me-an 0.1 and small variance can be 

used as prior. If there is not much prior information, the prior variance can be sct larger. 

Indeed, in the limit, as the prior variance becomes large, we revert back to ordinary least- 

squares estimation of the parameters. 

In the second case, we will be using empirical priors. Thus the estimation will be empirical 

Bayes and we will assume that certain of the parameters are exchangeable. The l6storical 

requirement that credibility estimators be linear will also be considered and we could claim to 

have credibility formulae. The situation has some similarities with credibility estimators of risk 

premiums in that we can regard the rows in a runoff triangle as a set of risks and proceed as 

Buhlmann (1967) - see Goovaerts and Hoogstad (1987) for a full description of Buldmann's 

method. In the case of claims runoff triangles the rows contain differcnt nurnix-rs of clernerits, 

and there are also the column parameters to contend with. This approacli, starting from 

credibility premiums and working through to a credibility theory for loss ruiioff trianglý, was 

suggested by De Vylder (1982) - again see Goovacrts and floogstad (19S7) for an cxposItIon of 



the method. The present method starts from runoff triangles and proceeds to credibility 

formulae via the linear models. One of the major advantages of the linear model approach is 

that standard errors of the estimates are also produced. 

For consisteincy, the constraints 

ct 1 -- 
#1 = 

on the first stage distribution have been retained. This also facilitates the comparison with the 

recursive approaches described in later chapters. It does, however, introduce a slight degree of 

assyrnmetry into the prior distribution and it might be considered more approl)riate to tise a 

constraint such as 

E Cti =E 3j = 

It is also possible to apply the constraint at the second stage and use the foliowing prior 

distribution: 

ai e,., N(0,0,2 )i= 11 
1 

t. 
a 

The affect of the exchangeability assumption is similar whichever constraint is used: the 

estimates are shrunk towards a central value and stability is introduced. The arriount of 

shrinkage is greatest where the number of observations is small. 
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3.1 Bayesian Estimation for Linear Models: Two Stage Models 

This section will follow Lindley and Smith (1972). The linear model, described in chapter 

2, which contains the models under consideration can be written 

. yl. d - N(Xd, E) (3.1.1) 

where y is a data vector of length n, 

.2 
is a parameter vector of length p, 

X is an (nxp) design matrix 

and E is an (nxn) dispersion matrix. 

For a Bayesian formulation we need a prior distribution on the parameter vector 2. In ., icw of 

what is to come later in this section we will call this a second stage prior distribution. The 

second stage prior distribution is 

P-101 0-.. 0 N( All, , 
C, ) 

where 0, is a vector of hyperparameters of length pl, 

A, is a (pxpl) matrix 

and C, is a (pxp) dispersion matrix. 

In a straightforward Bayesian analysis, A, is an identity matrix, 21 contains the prior 

estimates of the parameters and C, is taken as a diagonal matrix with variances inversely 

proportional to the believed accuracy of the estimates. 
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3.1.1 Lemma 

The posterior distribution of the parameters is 

. 
Qly - N( Bb, B) (3-1.1-1) 

where B-1 = XfE-'X + Cl 

and b= Xf E-ly + C, 'A,!, 

Proof 

Bayes theorem states that the posterior density of . 
01y, f( VIy) is related to the prior density 

of P, f(, O ) and the conditional density of y, f( y Jd ), by 

f Co- 1 y-) cy- f( y- 1A) f(fl ) 

oc expl - ý1[ (Y- Hence f(. 21. y -X. -)'E 2 

oc expl-! [. d'X'E-'Xd - 2. d'X'E-ly +, O_'C-l 3-2, &T'A, ý, ] 
21 

2, dlb] 

Completing the square we have 

--Bb)'B-1 
(. d oc expf-! [(. 2 2 

which is the density of a normal distribution with me-an Bb and variance B. 

The Bayes estimate of d (assuming a quadratic loss function) is the posterior mean, A, wf6ch 

is the solution of 

xir-1 -'A, 01 (xlr, -lx + ci 12 + Ci 
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X'F, -'XA C, 'A, 01 

using te normal equations (2.1.2). 

is the least-squares estimate of 

Then 

(X'F, -'X Cl')-' + Cl-'A, 21] 

Equation (3.1.1.4) shows that the Bayes estimate is a weighted average of the le, &A-squares 

estimate, ý, and the prior me-an, Ali,, with weights proportional to the precision of each. It 

can be written in the usual way as a credibility formula: 

Z. 2 + (1-z)A, 01 

where z= (X'E-'X + C, l)-'X'E-'X :z is the credibility factor. 

As Cj-1-+ 0, z--+ 1 and the estimate is based entirely on the data: the estimate is the leaA- 

squares estimate. 

In least squares estimation theory it is necessary to have an extra restriction since X'E-'X is 

often singular. For example, in the chain-ladder model we need I: ai -- E, 3 
i=0. 

In the Bayesian analysis this is not necessary since 

xlr, -Ix +cl 1 

is I in general, non-singular if Cj-1 -+ 0. For comparison purposes the restraint will be retained 

in all cases. 

The alternative constraint, and the one which will be used in all future cases, is 

al = fl, = 
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3.2 Bayesian Estimation for Linear Models : Three Stage Niodels 

In order to get an empirical Bayes formula, it is necessary to have a further prior 

distribution. The reason for this, and the way in which it if; used will become clear in section 

3.6. We define a prior distribution for a vector of hyperparameters: 

11 112 N(A2221 C2) 

where 02 is a P2 - dimensional vector 

A2 is a (P1 X P2) -dimensional matrix 

C2 is a (P2 X P2) - dimensional matrix. 

We now have the following lemma: 

3.2.1 Lemma 

Suppose that 

. YIP - N(Xj2, E) 

, 
dlll , N(Al 11, Cl) 

11 112 ' N(A2 12 
1 

C2) 

Then the posterior distribution of 0 is 

AX9 12 - N(Dd, D) 

where D-1 Xlr, -'X + [Cl + AlC2 A'11-1 (3.2.1.2) 

and d X'E-ly + [Cl + AlC2A 
I ]-l AlA202 (3.2.1-3) 

Proof 

N(AIA 1C2 
I 

16 
12112 222 ? 

C1 +AA, 

Hence, using lemma 3.1.1, the posterior distribution of P is N(Dd , D) where 1) an(] 4 are 

given by equations (3.2.1.2) and (3.2.1-3). 
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Again, it can be seen that the Bayesian estimate (the Posterior mean) is a weighted average of 

the least-squares estimate and the prior mean: 

A' [Xlr, -'X + (Cl +AlC2 D-11-1 [X'E-'XA + (C, +AlC2A')-'A, A2221 

(3.2.2) 

This is a credibility formula with credibility factor 

[X'E-'X + (Cl + AlC2A', )-l 1-1 xlr, -lx 

It can be seen that the weight given to the least-squares estimate depends on Xlr, -'X, which is 

the inverse of the dispersion matrix of A and the weight given to the prior mean depends on its 

dispersion matrix. 

When the three-stage Bayesian model is used, a vague third-stage prior distribution will be 

used. In other words, C2-1 will always be 0. Since it is not easy to see what happens to the 

posterior variance when C21 -+ 0 with repect to the usual norm and equation (3.2.1.2) is used, 

the following matrix identity is used: 

[Cl + AlC2A'l ]-l = Cýl - CT'Al (All Cý'Aj + Cýl )-'All CT' 11121 

Thus 

D-1 = xlr, -Ix + ci 1-C, 'A, (A, C, 'A, +C21)-'A, Cll (3.2.3) 

The proof of the following lemma is now clear. 

3.2.2 Lemma 

suppose YI'd N(Xg ,E) 

f 12, - N(A121, C, 

21122 ý N(A222) C2 
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and C2, 

Then the posterior distribution of a Iy is 

I1 0-11 N(Do! do , DO) 

where DO' X'E-'X+Ci-l-C-l'A, (AC, 'Al )-i AlCl 

and do = 

(3.2.2.1) 

(3.2.2.2) 

This is the form which we will use for empirical Bayes estimation of the parameters. Tliese 

estimators have an interpretation in credibility theory similar to the estimators used in 

premium setting by Buhlmann. The credibility interpretation will be left until we consider the 

models which are used for claims analysis. 

3.2.3 Variance Estimation 

In the preceding sections it has been assumed that the variances and covariances are 

known. This can be an unrealistic assumption: for example, when using an empirical Bayes 

approach, the dispersion matrix of yl, 3 is not known. It is thus necessary to have a method of 

estimating the variance- covari an ce matrices. Unfortunately, the usual procedure of putting a 

prior on the variances and integrating does not lead to tractable solutions and it is necessary to 

make a simplifying approximation. 

Following Lindley and Smith (1972), the modes of the joint distribution are used to estimate 

the parameters and the variances. Of course, since normal distributions are being used, this 

gives the same estimators for the parameters as already derived. It also produces variance 

estimates which are functions of the parameter estimates. An iterative procedure is uscxi, 

iterating between the parameter estimates assuming that the variances are known and the 

variance estimates assuming the parameters are known. Each case is difrercnt and the 
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procedure will be described in each of the applications. 

3.3 Bayesian Estimation for Claims Runoff Triangles 

Suppose that Zk, has a lognormal distribution with parameters 0 and a, and that the postcrior 

distribution of 0, given D, is normal with mean m and variance -r 2. 

log Zkj 10 
-N(0, a2) 

o%. o N(m, 7- 
2) 

Suppose also that o, 2 and r2 are known. Then 

M+ 
1 

01 
2+172 

E (Zkl I D) e22 

and Var(Zkl ID)= e 
2m+o- 2 

+7- 
2(e 

0' 
2 

+7 
2_1) 

Proof 

E(zkl 1 D) =: E OID 
(E( Zkl 1 0, D)) 

o+ 1 01 

=E OID (e 

1072 

e2E OID ( eo 

IU2 M+lr2 
c2e2 using the m. g. f. of the normal distribution 

M+ 10,2 
+172 

e2 



Var ( Zi, 1 1D)=E OID ( Var ( Zkl 10 
,D))+ Var OID (E( Zkl 10 

,D)) 

o+ 10,2 

=E OID ( e20+o, ( ed7 -1))+ Var OID (e 

20+u 2u2 
20+o, 2 o+ 10,2 

=E OID (e(e+E 
OID (e)-(E 

OID (e2) 

2 IU2 

e2o' E OID ( e20 )+(e2E 
OID ( eo 

20r2 2m+2 r2 
10,2 M+ 17.2 

ee-(e2e2)2 

= . 
2m+-r 2 

+01 
2(e72 

+01 
2_1) 

Similar methods can be used to calculate the other elements of the covariance 

matrix, Cov ( ZLj 
, 

Zp,, ID). 

The Bayes estimate of outstanding claims for year of business i is 

1: E(ZijlD) 
j>n-i+l 

and the Bayes estimate of the variance is 

(3.3.1) 

Var ( Zij ID)+2E Cov ( Zij 7 ZiL ID (3-3.2) 
j>n-i k>j 

3.3.1 Example 

The Bayesian estimation method gives different results from the estirnatiori 

described in chapter 2, even if no prior information is assumed. In order to the iiffoct of 
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the prior assumptions, it is useful to have the results of a Bayesian analysis when no prior 

information is used, and these are given in this example. The parameter estimates are the same 

as those in the least-squares analysis, given in figure 2.2, and so are not repeated here. Tfic 

fitted values are shown in figure 3.1 and the predicted outstanding claims are shown in figure 

3.2. These can be compared with the results in figures 2.3,2.6 and 2.7. 

Figure 3.1 

277449 690094 709643 729030 407880 277109 248060 180660 267966 72013 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

398075 990124 1018171 1045987 585212 397587 355909 259205 384468 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

368073 915501 941434 967154 541106 367622 329085 239669 

290507 1001799 926219 1016654 750816 146923 495992 280405 

329616 819847 843071 866103 484570 329212 294701 

310608 1108250 776189 1562400 272482 352053 206286 

368704 917069 943047 968811 542034 368252 

443160 693190 991983 769488 504851 470639 

380341 946016 972814 999391 559142 

396132 937085 847498 805037 705960 

413142 1027599 1056708 1085577 

440832 847631 1131398 1063269 

453123 1127043 1158969 

359480 1061648 1443370 

399227 992989 

376686 986608 

364596 

344014 



110927 

37 95 (), S 102650 

228731 340091 91968 

351067 256033 38068.1 102968 

404479 362429 264319 39300.1 106300 

646825 439787 394066 287392 427310 115580 

1268870 710402 483014 432799 315640 169311 1269,10 

1090101 1120657 627422 426594 382246 278771 41,1.192 112113 

973601 1001989 1030076 576709 392113 351349 256238 380990 103051 

The following table shows the Bayesian estimates of total outstanding claims for each year of 

business, together with the Bayesian estimate of the standard error of these. 

Figure 3.3 

Predicted Standard 

Outstanding Error 

Claims 

110927 60216 

482157 189896 

660810 210040 

1090752 304721 

1530532 401125 

2310959 601536 

3806976 1056660 

4452396 1375446 

5066116 2049337 
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The Bayesian estimate of total outstanding claims is 19511632 and the Bayesian c,. tirnate of 

the standard error of total outstanding claims is 3194056. As before, a normal distribution can 

be used to find an upper 95% confidence bound on total outstanding claims: 

19 511632 + 1.645 x3 194 056 = 24 765 854 

This is a little higher than the unbiased estimate, reflecting the upward bias of the Bayesian 

estimate. 

3.3.2 Example 

This example gives the results from the row model in example 2.7, using the Bayesian 

estimates. The parameter estimates are unchanged and are given in figure 2.8. Figure 3.4 shows 

the fitted values, together with the actual observations, and figure 3.5 the predicted 

outstanding claims. 
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Figure 3.4 

424619 803551 886061 783212 613300 444817 306000 202511 130117 81676 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

501886 949771 1047295 925731 724900 525759 361682 239361 153794 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

485179 918156 1012434 894916 700770 508258 349642 231393 

290507 1001799 926219 1016654 750816 146923 495992 280405 

432276 818041 902039 797336 624359 452838 311518 

310608 1108250 776189 1562400 272482 352053 206286 

417658 790378 871536 770372 603246 437525 

443160 693190 991983 769488 504851 470639 

384245 727148 801813 708743 554986 

396132 937085 847498 805037 705960 

377980 715292 788740 697187 

440832 847631 1131398 1063269 

350137 662600 730637 

359480 1061648 1443370 

365451 691581 

376686 986608 

292361 

344014 
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Figure 3.5 

106553 

162966 103007 

224939 1.15197 91775 

327529 217332 110287 SS671 

437548 301327 199946 129064 81578 

593410 430414 296414 196686 126959 80218 

702233 549697 398708 274579 182197 117607 74336 

829253 732947 573739 416147 286588 190166 122751 77587 

601399 663402 586358 458991 332917 229271 152133 98201 62070 

Figure 3.6 shows the predicted outstanding claims for each year of btisiness together with the 

Bayes estimate of the standard error of the total outstanding claims. 

Predicted Standard 

Outstanding Error 

Claims 

106553 49779 

265973 92808 

461911 135618 

773820 200088 

1149463 269032 

1724132 372619 

2299357 464456 

3229178 610154 

3184742 558099 

The Bayes estimate of total outstanding claims is 13195129 and thc standard error is 

2163719. 

S2 



3.4 Bayes Estimates for the Analysis of Variance Model 

In this section the use of two-stage Bayesian linear models which assume that there is 

some prior information is described. A prior distribution can be written down using the prior 

knowledge. It was shown in chapter 2 that the chain ladder linear model can be written as a 

linear model in the form: 

IP- 01.0 N( X. 2 
,E) 

and the prior information is quantified in the prior distribution on .2 

ß- li, rýlw N (A1. el , C, ) 

A situation which may occur is that there are similar sets of data available which give 

information on the individual parameters. In this case A, can be taken as an identity matrix, 

the prior estimates can be put into 01 and their variances into C1. In many cases C, will be a 

diagonal matrix of variances, although it is not necessary that the covariances are zero. In this 

case, the prior distribution becomes: 

112, flýo (3.4.1) 

Assuming that the errors are independent, E=o, 2 In- In is a square identity matrix of 

dimension (nxn). 

From lemma 3.1.1 it can be seen that the Bayes estimate of the parameter vector is the 

solutioni ýI Of 

(0, -2XIX + C-1 0, -2 XIX + C-1 0 
11 -1 

and the variance-covariance matrix of the estimates is 

Var(P 0, -2 1 xx + cl 

(3.4.2) 

(3-4.3) 
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The equation for 2 (3.4.2) can be written as a credibility formula: 

P- Zd +(1-Z) 01 (3-4.4) 

where z= (o, - 2XIX + C-ll)-10, -2XIX is the credibility factor. 

It is interesting to note that the credibility factor has been generalised into a credibility matrix, 

since z is a (pxp) matrix. There will be a subtle dependence of the elements in tlic Baye., 

estimator ý on cach of the elements in the least squares estimator. It is not possible to write a 

credibility formula separately for each factor in the form 

&I= Z)oi 

To estimate the variance o, 
21 the modal procedure described is used. The estirnate of (72 iS S2, 

where 

X2)1(. y - Xp)/(n+2) (3.4-5) 

Thus the equations which give the Bayes estimates are (3.4.2), with a2 replaced by S2 , and 

(3.4.5). 

The procedure begins with s2=0 and iterates between the solutions of 

(S-2 XIX +CI 
1Q 

S-2 XIX + C, 1 

-01 

and s2=(. Y -x2 )f (. Y_ - X2 )/(n + 2) 
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3.4.1 Example 

It is now possible to use standard Bayes theory to enter prior beliefs about the parameter 

values. These are entered in the usual way, as a prior distribution. This distribution can arise 

in several ways: a practitioner may be able to give information from past experience as to the 

values he expects for the parameters, or there may be sets of similar data which can be used to 

set up the prior distributions. The Institute of Actuaries General Insurance study group on 

claims runoff patterns has been carrying out extensive analyses of claims data, and one of their 

proposals is to produce tables of standard patterns. Tables of this sort could be used in the 

Bayesian analysis. 

To illustrate the method, the Taylor and Ashe data is re-analysed assuming that there is other 

information which should be taken into account. This information can be summarised in the 

following prior distribution on each row parameter: 

ai r- N(0.3 , 0.05 ) (3.4.1.1) 

The distribution of the overall me-an, p, and the distributions of the column paramcters, 

( #j ;j= 21 ... n ), remain unchanged. Also, it is assumed that the row parameters are 

independent (based on the prior information). 

Thus equation (3.4.1) can be written in this case as: 

, fl2j - 

0 
0.3 
0.3 

where 01 - 0.3 
0 

0 

L 
0.05 

and C, 0.05 
L 
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and L is large (in the limit infinite). 

The assumption is that there is no prior information on the overall mean and the column 

parameters, and hence the same distribution is used as would be used for least-squares analysis 

for these parameters. This distribution is a vague prior in which the variance is very large 

indicating that there is no prior knowledge. The prior distribution of the row parameters, not 

being vague and hence different from the least-squares analysis, affects the estimates of these 

parameters and has consequences for the estimates of the other parameters. 

The Bayes; estimates of the parameters and their standard errors are shown in figure 3.7: 

P; triirgb q7 

Bayes Least Squares Standard Error 

Estimate Estimate Of Bayes Estimate 

Overall mean 6.178 6.106 0.125 

Row Parameters 0.202 0.194 0.120 

0.168 0.149 0.123 

0.172 0.153 0.127 

0.276 0.299 0.133 

0.349 0.412 0.139 

0.400 0.508 0.147 

0.475 0.673 0.157 

0.360 0.495 0.172 

0.367 0.602 0.192 

Column Parameters 0.893 0.911 0.161 

0.910 0.939 0.168 

0.915 0.965 0.175 

0.318 0.383 0.184 

-0.081 -0.005 0.196 

-0.201 -0.118 0.212 

-0.520 -0.439 0.236 

-0.129 -0.054 0.277 

-1.465 -1.393 0.370 

These parameter estimates can be compared with the least-squares estimates from example 2.5. 

Perhaps it is easier to see how the prior assumptions have affected the estimates by looking at 
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figures 3.8 and 3.9. These show plots of the least-squares and Bayes estimates of the row and 

column parameters. 

Figure 3.8 
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Figure 3.9 
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The situation is complicated by the interaction of the parameter estimates and the effect of the 

Bayes prior distribution is not, in general, straightforward. It can be seen from the plot of the 

row parameters, figure 3.8, that the general effect is to draw these estimates towards the prior 

mean : these estimates certainly show less variation, and the row parameter estimates are a lot 

lower. The variation of the column parameters (looking at figure 3.9) remains about the same, 

but their values have altered slightly. This is entirely due to the change of prior assumptions 

on the row parameters and the interaction between the row and column parameters. The 

estimate of the overall mean has changed for the same reason. 

It can also be seen, by comparing figures 3.7 and 2.2 that the standard errors of the parameter 

estimates have been reduced. This is due to the extra prior information, and is an example of 

the usual property of Bayes estimates. That this should be the case is clear from equations 

(2.1.4) and (3.4-3). 

The fitted values are shown in figure 3.10 (with the observed values). 

89 



Figure 3.10 

296336 724378 737686 741606 409126 274988 244664 178781 266871 72202 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

430213 1051361 1070410 1075816 593327 398653 354525 258877 385940 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

402069 982569 1000359 1005399 554483 372548 331302 241911 

290507 1001799 926219 1016654 750816 146923 495992 280405 

359925 879570 895487 899990 496344 333480 296554 

310608 1108250 776189 1562400 272482 352053 206286 

386236 943859 960930 965753 532606 357839 

443160 693190 991983 769488 504851 470639 

382292 934212 951100 955864 527147 

396132 937085 847498 805037 705960 

396316 968471 985969 990898 

440832 847631 1131398 1063269 

396284 968382 985867 

359480 1061648 1443370 

369365 902588 

376686 986608 

298643 

344014 

90 



The predicted outstanding claims are shown in figure 3.11 and the row totals and their 

standard errors in figure 3.12. Also given in figure 3.12 are the row totals when there is no 

prior information, taken from figure 3.3. 

111748 

385439 104454 

231078 345129 93517 

339352 248041 370448 100365 

377571 335993 245581 366755 99352 

582502 391565 348440 254671 380312 103010 

1056177 582716 391702 348554 254746 380401 103018 

979747 985010 543442 365295 325047 237555 354704 96039 

778495 792825 797067 439740 295579 263002 192199 286951 77671 

Figure 3.12 

Bayesian Estimates Standard Error 

With Prior No Prior With Prior 

111748 110927 60516 

489893 482157 191702 

669724 660810 207990 

1058206 1090752 282991 

1425252 1530532 348013 

2060499 2310959 482661 

3117315 3806976 745547 

3886838 4452396 936372 

3923530 5066116 982585 

The Bayesian estimate of overall total outstanding claims is 16743004 and the Bayesian 
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estimate of the standard error of total outstanding claims is 1995669. 

These can be compared with the results for the analysis in which no prior information is 

assumed (example 3-3). Looking first at the standard errors of the estimates of outstanding 

claims for each year of business, it can be seen that these have been quite considerably reduced. 

This is because the prior information (which was fairly precise) gave tight estimates of the 

parameters. The effect of the prior estimates on the estimates of outstanding claims is clear: 

the estimates of the total outstanding claims for the later rows have been drawn down due to 

the effect of the prior mean. 

3.5 Bayes Estimates for Row Models 

The linear model which is applied to the data row by row, derived in section 2.3 is 

N(X. 2,0,2j) (3.5.1) 

Again, it is assumed that the errors are independently, identically distributed with variance a2. 

The matrix X consists of row vectors Xj, X27 
""Xt : 

X2 

L 
xt 

(assuming there are t rows in the triangle). 
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As in section 3.4, the prior distribution of the parameters is 

9-12, e,. - N(121, Cl) (3-5.2) 

where 01 contains the prior estimates of the parameters and C, (which is often diagonal) is 

their variance-covariance matrix. 

The Bayes estimate of the parameter vector is the solution, ý, of 

S-2XIX + C-1 -2 XIX lo 
1 

)A =8ý+ cl 
-1 

where is the least squares estimate of 

and s2=(. y -XP)'(. y - X2)/(n+2) 

This iterative procedure is illustrated in the following example. 

(3-5.3) 

3.5.1 Example 

Example 2.7 found the least-squares estimates of the parameters of the gamma model. It is 

now possible to incorporate prior belief about the parameter values in the estimates. For 

example, suppose that there is prior knowledge which can be quantified in the following prior 

distribution on the parameter vector 8: 

L00 

0 0.1 0 

000.1 

where L is large. 
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Thus the prior distributions of the three parameters are: 

6-N2,0.1 ) 

N -1,0.1 

and v has a vague prior distribution, so that it has been assumed that there is no prior 

knowledge about v. The parameters are assumed to be independent based on the prior 

information. 

The Bayes estimates of the parameters are shown in figure 3.13, along with their standard 

errors: 

Figure 3.13 

Bayes Least-Squares Bayes 

Parameter Estimate Estimate Standard Error 

v 6.523 6.545 0.108 

6 1.955 1.877 0.191 

-0.686 -0.663 0.056 

The residual variance is 0.162. 

It can be seen that the parameter estimates have been drawn towards the prior means. 

The fitted values are shown in figure 3.14. 
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V; crwp-a q 1A 

415330 810830 901911 796849 620557 446191 303625 198446 125769 77796 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

490906 958374 1066030 941850 733478 527383 358874 234557 148655 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

474565 926473 1030545 910498 709063 509828 346928 226749 

290507 1001799 926219 1016654 750816 146923 495992 280405 

422819 825451 918175 811219 631747 454237 309100 

310608 1108250 776189 1562400 272482 352053 206286 

408521 797538 887126 783786 610384 438876 

443160 693190 991983 769488 504851 470639 

375839 733735 816156 721083 561553 

396132 937085 847498 805037 705960 

369712 721771 802849 709327 

440832 847631 1131398 1063269 

342477 668602 743707 

359480 1061648 1443370 

357456 697845 

376686 986608 

285965 

344014 

Figure 3.15 shows the predicted values for the lower triangle. 
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Figure 3.15 

101191 

15732,1 97822 

220367 140169 87156 

325032 212915 135429 84209 

438944 299029 195882 124595 77472 

600335 431787 294154 192688 122564 76209 

714174 556112 399980 272485 178494 113535 70595 

843797 745410 580435 417474 284403 186301 118501 73682 

606902 675038 596328 464348 333979 227522 149041 94801 589,16 

Figure 3.16 shows the total predicted outstanding claims for each year of business, together 

with their standard errors. 

Figure 3.16 

Bayesian Estimates Standard Error 

With Prior No Prior With Prior 

101191 106553 46485 

255146 265973 87558 

447692 461911 130072 

757585 773820 195379 

1135922 1149463 266844 

1717737 1724132 373595 

2305374 2299357 468117 

3250003 3229178 615614 

3206904 3184742 562754 

The Bayesian estimate of total outstanding claims is 13177554 and the Bayesian estimate of 

the standard error of total outstanding claims is 2165948. 
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These values and the figures in the above table can be compared with the values in figure 3.6. 

In this case the fairly imprecise prior distribution which is close to the distribution of the 

parameters implied by the data has had little effect on the estimates and predictions. 

3.6 Empirical Bayes Estimates for the Analysis of Variance Model 

Section 3.4 described the use of a two-stage conventional Bayesian model to 

analyse claims data. This section uses the three-stage Bayesian model described in section 3.2 

to derive empirical Bayes estimates for the analysis of variance (chain ladder) model. This 

method uses an improper prior distribution at the third stage for the row parameters and 

improper priors at the second stage for the overall mean and the column parameters. This 

means that for the overall me-an and the column parameters the same assumptions are made as 

for the least squares estimators. 

The row parameters are assumed to be independent samples from a common distribution - of 

course, they are unobservable, but this is the underlying assumption. A similar assumption is 

made in credibility theory. When premiums are calculated using credibility theory, a risk 

parameter is assigned to each risk and these are assumed to be independently, identically 

distributed. The set of risks is known as a collective, and the distribution from which the risk 

parameters is drawn is known as the structure of the collective. The situation in the claims 

reserving case is similar for the row parameters, but is complicated by the column paramcters. 

The estimators produced will combine information from each row with information from the 

triangle as a whole. The prior distribution (i. e. the second stage distribution) is estimated from 

the data, and hence the estimators have an empirical Bayes interpretation. 

The linear model for the chain ladder method (section 2.2) is 

N(Xg , or2j) 

and the constraint a, =, 31 =0 will be used. 

The errors have been assumed to be independently, identically distributed. X is as defined in 

section 2.2. 

As in credibility theory, a structure is put onto the row parameters or2, a3l - 10 : the,, - are t 
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assumed to be independent observations from a common distribution. For the overall mean, p, 

and the column parameters P2, fl3s - 1,3t , the same distributional assumptions as for 

ordinary least squares estimation will be used. Thus at the second stage 

P-1 w, 0, f, - 

ol 

or 
2 

and take 0, -2 
--+ 0 and a- 

2 
--+ 0. 

P )3 

In terms of equation (3.1.2), 

w 

0 

i= 2 and A, = 

1 0 ... 0 

0 1 0 

: 1 : 

0 1 0 

0 1 
.. 

0 

0 . 0 1 

0 is the mean of the common distribution of the row parameters a2, ... at. 

Although the assumptions on the estimation of y and 02, 
- flt are the same as for the least 

squares estimation, the estimators produced will not be the same because of the treatinent of 

the row parameters. 

A vague prior distribution (a third-stage distribution) is used for 0. Since a-M 2-0 arld 

98 



01 ft 
2 -+ 0, a third-stage distribution is not needed for w and ý2 Hence a 

combination of two-stage and three-stage models is used. 

3.6.1 Theorem 

If o-, o N( Xd 
ý 0,21 

where X is as given in equation (2.2.20) and. 2 Ct2 Cft , 
02 Y 

and dlw 
,0, LN( A121 

, 
C, 

where A, , 21 , C, are given in (3.6.2), o,, 
2 0,0,0 20 

and a vague prior at the third 

stage is used, then the Bayes estimate of is given by 

., 
d= X X+ ol- 

2-1u-2 XtX ý- + ol- 
2 

0, et 01 er 
0 

0 

0 

a 

a 
0 

0 0 

t 

where& i=2 

and has a credibility interpretation. 

Proof 

The posterior distribution of dI Y- is given by lemma 3.2.2 : 

,ýIy- 
N( Do! do , Do ) 

-1 where Do or-2 XIX + C-1 
- C-1 A, (At C-1 A, ) -1 A' C-1 

111111 
(3.6.1.1) 

and do = 0, - 
2XI 



2 

C-1 A, 0, -2 1 

2 

2 

01- 
2 

-2 
ct 

-2 ca (3.6.1.3) 
-2 Uß 

ol- fl 

01- 2 

and, since C, is diagonal, A, C, 2 -2 O'a ... u er 
-2 Ufl 

-2 Uß 

A, Cl-1 A, 
er 

2 
o"a 

2 

01 fl 

1)U-2 
et 

0, - 

ß 

ol- 
13 

100 



u 

]Elence (A' C-1 A, )_i 
11 

01 

ol 2 

-10,2 a 

1 
= (t-1)1. 

1 

Using (3-6.1.3) and (3.6.1.5) : 

CT' A, (All CT' A, )-' All CT' = 

- 01 P 
-2 

01 

0, - 

et er 

(t_1)-1U-2 (t- 1) -1 ol- 
2 

et er 

ol- fl 

ly 
,3 

2 
c. ß 

(3.6.1.4) 

ol- 2 

0, ola 

ol- 

1 

(3.6-1-5) 

(t- Wl 

1 

(3-6.1-6) 
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ol- 

(t_ j)-10, -2jt_l ct 

UP 
2 it-, 

where J,, is a square (nxn) matrix, all of whose elements are 1 

and 1,, is an (nxn) identity matrix. 

(3.6.1.7) 

Substituting (3.6.1.7) into (3-6.1.1) and (3.6.1.2) gives the Bayes posterior me-an, A, as the 

solution of 

01 m 
X X+ Uß 

--2 

-2 

u-2 
f-1 

fl. 

. -2 
. 

-2 L Uß- 

Now putting 0, -2 =0 and 0, -2 =0 P# 

00 
2 XIX + or-2 a1 0-- 

21 
cr t-1 

ola 
20 

0 

Oj 0 

or- 
2XIy (3.6.1.8) 

1ý= -2 Xi y (3.6.1.9) 

If the individual Bayes solutions are called ý, 62 7 ... 16t 7ý17, **, 
ýt 

, then 

2 (3.6.1.10) 

There should be no confusion between the vector of parameters 3 and the column paramcters 

, 
82 

1-I 18t which are components of 3. 
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Equation (3.6.1-9) can be rewritten as 

00 
2xtx -22a U-2Xf u- (7 ot 2- LT 0( 

-2 ola 

. 0-) 
-0- 

t 

where& cii 

Hence 

(3.6.1.11) 

00 

-2X1X 0, -2 u-2X1Xý + 0, -2 

-2 -2 0, of 01 ei 
00 

0- 

0 

(3.6.1.12) 

a 
0 

00 
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3.6.2 Remarks 

From equation (3.6-1.12) it can be seen that the empirical Bayes estimates of the row 

parameters are in the general form of credibility estimates: they are the weighted average of 

the least squares estimates and the (weighted) average of the estimates from all the rows. The 

situation is complicated by the fact that Xf X is not a diagonal or block-diagonal matrix, so 

that the estimation of p, 927 ... , 3t involves the estimates of %, ... aj and vice versa. This is 

entirely natural since changing the estimates of the row parameters obviously forces changes in 

the other estimates. However, it can be seen that the form of the estimates is the same as the 

form of credibility estimates. They are the weighted average of the least squares estimates and 

the (weighted) average of the estimates to which the credibility thoery type assumptions have 

been applied. The weights depend in a natural way on the precision of the estimates. 

As before, the variances o, 2 and o, 2 are replaced by modal estimates s2 and s2, which are aa 

given by 

2 VA+(. Y-Xd) I Cy - X-d (3.6.2.1) 
n+v+2 

t~2 

VaAa+ L (&I -a 
2 i=2 (3.6.2.2) sa t+va+l 

where v, A, v., and Ac, are set by the prior distribution of the variances. The derivation of 

these formulae, and the discussion of the prior parameter values is given in Lindley and Smith 

(1972). 

Again, the estimates are obtained by iterating between (3.6.1.12) and (3.6.2.1), (3.6.2.2). This is 

illustrated in the following example. 

3.6.3 Example 

To illustrate the effect of the assumptions made in the empirical Bayes theory, namely that the 

row parameters are independent observations from a common distribution, the Taylor and 

Ashe data is reanalysed in this example. The results can be compared with the least-squares 

results given in example 2.5 and the Bayesian estimates with no prior information in exampIc 
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3.3.1. 

The estimates of the parameters and their standard errors are shown in figure 3.17: 

igure 3.17 

Empirical 

Bayes Least Squares 

Estimate Estimate 

Overall Mean 6.157 6.106 

Row Parameters 0.225 0.194 

0.193 0.149 

0.198 0.153 

0.300 0.299 

0.371 0.412 

0.421 0.508 

0.493 0.673 

0.383 0.495 

0.391 0.602 

Column Parameters 0.893 0.911 

0.911 0.939 

0.915 0.965 

0.319 0.383 

-0.080 -0.005 

-0.199 -0.118 

-0.515 -0.439 

-0.120 -0.054 

-1.444 1.393 

Standard Error 

Of Bayes Estimate 

0.131 

0.124 

0.129 

0.133 

0.138 

0.144 

0.150 

0.159 

0.170 

0.185 

0.128 

0.133 

0.139 

0.147 

0.156 

0.170 

0.190 

0.224 

0.306 

The estimate of the variance of the row parameter distribution is 0.0289. 

The empirical Bayes assumptions have been applied to the row parameters only. The effect of 

these assumptions is that the row parameters have been drawn towards a central point (a 

weighted average). The lower row parameter estimates (shown in figure 2.2) haN, e increased, 

while the higher ones have decreased. This can be seen more clearly from the following graph 

(figure 3.18) which shows a plot of the least-squares and empirical Bayes estimates of the row 

parameters. 
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Figure 3.18 
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The fitted values are shown in figure 3.19. 

Ficnire . 
3-19 

290487 709948 722855 726022 400256 268865 239120 174750 260890 70607 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

429454 1049667 1068833 1073607 591935 397668 353728 258565 386181 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

402047 982684 1000631 1005104 554168 372298 331164 242073 

290507 1001799 926219 1016654 750816 146923 495992 280405 

360147 880273 896353 900363 496420 333504 296657 

310608 1108250 776189 1562400 272482 352053 206286 

385648 942608 959829 964125 531578 357124 

443160 693190 991983 769488 504851 470639 

380989 931222 948238 952485 525162 

396132 937085 847498 805037 705960 

394246 963628 981239 985637 

440832 847631 1131398 1063269 

392849 960218 977769 

359480 1061648 1443370 

367802 899000 

376686 986608 

297090 

344014 

The following figure shows the predicted outstanding claims for the lower triangle, and can be 

compared with figure 3.2. 
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Figure 3.20 

1094,18 

377062 102506 

225936 337865 91854 

330835 241997 361888 98389 

367359 326920 239136 357615 97231 

565796 380243 338389 247527 370169 100649 

1022573 563964 379014 337297 246731 368985 100332 

953224 957737 528209 354987 315917 231094 345609 93982 

756346 770356 774008 426882 286892 255320 186770 279330 75965 

Figure 3.21 shows the row totals and their standard errors. For comparison purposes, the Bayes 

estimates with no prior assumptions (from figure 3.3) are also given. 

Figure 3.21 

Empirical Bayes Bayes Empirical Bayes 

Estimates No Prior Standard Error 

109448 110927 46963 

479568 482157 148617 

655656 660810 162104 

1033109 1090752 220459 

1388261 1530532 270730 

2002772 2310959 374041 

3018896 3806976 572899 

3780759 4452396 720836 

3811869 5066116 752593 

The emPirical Bayes estimate of total outstanding claims is 16280338 and the estimate of tile 

standard error of total outstanding claims is 1313997. 
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The empirical Bayes standard errors are lower than the estimates with no prior information. 

The estimates of total outstanding claims for the later rows have been quite considcrabk 

reduced, reflecting the reduction in the estimates of the row parameters. The empirical Bayes 

procedure has thus given less weight to the estimates of the parameters from the later years: it 

has allowed that the rise in the least-squares parameter estimates from row to row may be due 

to random variation. As more data becomes available, and there is more evidence in favour of 

either of these possibilities, this may, or may not, be revised. 

3.6.4 Empirical Bayes Assumptions on the Row and Column Parameters 

It is also possible to assume that the column parameters are exchangeable. The 

three-stage distribution in this case is 

N( Xd , U21 ) 

-10 o- -u2 
lw, 0, e -N01 (3.6.4.2) 

w 
2 10 

2 010, 

2 001 uß- 

Again a-p 2 --+ 0 and a vague prior at the third stage for 0 and ý is used. 

The Bayes estimate of d, ý is given by 

00 

-2XIX+ -2 -1 lxlx -2 2= oa 0, - 
2+ ola a (3.6.4.3) 

-2 01-2 

0, - 
2 ol- 

2 

. 
0, - 

2 0, ß2 

t 

where ri and 
i=2 j=2 
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3.6.5 Example 

The estimates of the parameters and their standard errors are shown in figure 3.22: 

Figure 3.22 

Empirical 

Bayes 

Estimate 

Least Squares 

Estimate 

Standard Error 

Of Baye: s Estimate 

Overall Mean 6.122 6.106 0.131 
Row Parameters 0.254 0.194 0.125 

0.225 0.149 0.129 

0.235 0.153 0.134 

0.341 0.299 0.139 

0.415 0.412 0.144 

0.466 0.508 0.151 

0.537 0.673 0.159 

0.424 0.495 0.171 

0.429 0.602 0.186 

Column Parameters 0.878 0.911 0.129 

0.894 0.939 0.133 

0.896 0.965 0.139 

0.317 0.383 0.146 

-0.066 -0.005 0.156 

-0.175 -0.118 0.168 

-0.464 -0.439 0.187 

-0.081 -0.054 0.218 

-1.168 -1.393 0.286 

The estimate of the variance of the distribution of the row parameters is 0.0296 and the 

estimate of the variance of the distribution of the column parameters is 0.4135. 

The fitted values are shown in figure 3.23. 
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V; criirp 1 91 

280471 674775 685943 688035 385698 263190 236407 177439 261560 89451 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

427007 1027429 1044516 1047788 587423 400887 360145 270370 398696 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

400971 964794 980844 983921 551620 376456 338199 253898 

290507 1001799 926219 1016654 750816 146923 495992 280405 

360990 868604 883057 885831 496629 338929 304488 

310608 1108250 776189 1562400 272482 352053 206286 

387869 933289 948821 951805 533619 364174 

443160 693190 991983 769488 504851 470639 

384279 924660 940052 943012 528691 

396132 937085 847498 805037 705960 

398147 958039 973991 977061 

440832 847631 1131398 1063269 

396276 953550 969431 

359480 1061648 1443370 

370066 890495 

376686 986608 

298160 

344014 

The predicted outstanding claims are shown in figure 3.24 and the row totals, with standard 

errors, in figure 3.25. 
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Figure 3.24 

1-12697 

3905,, 7 13,1051 

238273 351747 120726 

340896 256082 37804.1 129756 

375880 337829 253781 37-1652 128,597 

570618 389553 350120 263016 388293 133285 

1013058 568117 387848 348590 261870 386610 132714 

943218 946423 530753 362342 325670 244655 36120.1 124001 

747719 760352 762942 427861 292101 262542 197235 291204 99979 

Figure 3.25 

Empirical Bayes Bayes Standard Error 

Estimates No Prior of Empirical Bayes 

142697 110927 59015 

524638 482157 157033 

710746 660810 172221 

1104778 1090752 233349 

1470739 1530532 285575 

2094885 2310959 390731 

3098807 3806976 587274 

3838265 4452396 733542 

3841936 5066116 763092 

The empirical Bayes estimate of total outstanding claims is 16827488 and the empirical BA)'(-s 

estimate of the standard error is 1346017. 
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3.7 Empirical Bayes Estimates for Row Models 

In this section the theory of section 3.2 will be applied to the row models 

described in section 2.6. Because each row is treated separately the estimators which arise will 

have a complete credibility interpretation: they will combine the estimators for each row with 

those of all the rows in the triangle. 

Assuming that there are t rows in the triangle, the ith row can be modelled by 

Y-i 

where Xi is the design matrix 

. 
di is the vector of parameters 

and the errors are assumed to be independent but not necessarily identically distributed. The 

2 
errors are in each row are assumed to be identically distributed with variance aj, 

The parameters in each row are assumed to be independently, identically distributed with the 

following distribution: 

, 
di - N( 0, C) (3.7.2) 

This is the same assumption as is made in calculating credibility premiums. The parameters 

play the role of risk parameters and the distribution (3.7.2) is the equivalent of the structure of 

the risks. 

The third stage distribution is a non-informative prior and so lemma 3.2.2 can be used. 

3.7.1 Theorem 

if y21 i ,,, N(Xidi, O'i t-i+l 

and fli - N(O, C) 

and a vague prior at the third stage is used, then the Bayes estimates of the row parameters in 

row i are 2i 
9 where 
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2Xý Xi + C-1 )-l 2Xý Xi 
t 

(Oli P-j + C-I(rwi)-i EwiA 
i 

= (XýXio, -2 + C-1)-lXýXio, -2 and wi sisi 

Proof 

The linear model for the whole triangle can be written as 

9-2 

where X X, 
X2 

xt 

or 
2 it 

and E 
2 It-1 0'2 

2 
O"t 

The second stage prior distribution is (from eqdation (3.7.2)): 

Al 
(- 

lp c 

P-2 

N 
lp c 

Lti 
lp 

jLci 

(3.7.1.1) 

(3.7.1.2) 

and it has been assumed that the parameter vector for each row has dimension p. 
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The third stage prior distribution is non-informative and hence, from lemma 3.2.2 

ply - N(Dodo, Do) 

with Do' and do given by equations (3.2.2.1) and (3.2.2.2). 

ip c 

ip c 
Here A, and C, 

L 
ip 

i 

C-1 -1p 

Hence Cl 'A, 
C-1 IP 

C-1 lp 

an 
IP IP 

... IP 
C-1 II 

C-1 

C-1 

= tc-I 

C 

C-1 

C-1 

C-1 

CI'A, (AICI-'A, )-'A, Cl-l C-1 C-1 C-1 
... 

C-1 

C-1 

C-1 

C-1 C-1 
... 

C-1 

C-1 
... 

C-1 
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Hence D-l= oy- 
2XI XI 

01 + C-1 

C-1 

at 
2X/Xt 

C-1 tJL 

(using equation (3.2.2.1)). 

C-1 C-1 

C-1 
... 

C-1 

C-1 

And from equation (3.2.2.2), the Bayes estimates, I, are the solutions of 

-2XIXI+C-1 0"1 1 C-1 C-1 

-2XIXt+C-1 
C-1 

... 
Olt t 

2x 
Oll ly-1 

C-1 2 Xtyt 

(3.7.1.3) 

In this case the ith row can be considered because the first matrix in equation (3.7.1.3) is 

diagonal. This gives the Bayes estimate of the parameters in the ith row: 

(0"-2XýXi + C-1 ) 2i 
_ 

C-1 2- 
Oi 

2XiX 
is-- -i 

where 

(3.7.1.4) 
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The least squares estimate of is the solution of 

Xi. Yi = x1iXA 

and so we can rewrite equation (3.7.1.4) as 

21 C-1 )-l (0, -2X! Xiýi+ C-12 (01-i xixi +is- (3.7.1.5) 

, 
di is a weighted average of the least squares estimate for the ith row and the (weighted) 

average of the estimates from the whole triangle. It is thus a credibility estimator, and it is 

possible to go one step further by summing both sides of equation (3.7.1.5) with respect to i 

and solving for ý. 

-2 Xf X+ C-1 )-l 0, -2 Xý Xi Setting Wi (Oli iiiI, equation (3.7.1.5) can be written as 

wi fl-i + Wi) 8 

Summing with resect to i: 

Wi . 3i + Wi 

Hence 

and 

Therefore 

t 
LWi)3i 
i=l 

Wi fli 
t 

Lwi i=l 

2xi x 2xi x, +c+ C-'(, Wi)-l E WiAi ) 
i=l i=l 

(3.7.1.6) 
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3.7.2 Remark 

Equation (3.7.1.6) can be rewritten as: 

t 

wi 

+ op - wi iEt 
Wi Ai 

i ýýWi 
(3.7.2.1) 

is clearly a weighted average of the least squares estimate for each row and the (weighted) 

average of the least squares estimates for all the rows in the triangle. It can therefore be 

regarded as a credibility estimator, with credibility factor Wi . 

Note that Wi increases as aj2 ( X'i Xi )-1 decreases: as the variance of the observations in the 

ith row decreases. Wi is inversely proportional to the within row variance: thus more weight is 

given to the row estimate if the data in the row has a small variance. 

222 
82, S2 , ... ,2 The estimates of the variances ,C and ul , 012 , o, t are ý, ' and 12 si where 

[R+ Q )Qj -2 )11/(t-P-1) (3.7.2.2) 

S? (. y - Xi Xi Ai )/(t-i+3) 
8 

(3.7.2.3) 

where It is a diagonal matrix with small positive entries. Starting from = 0, the Bayes 

estimates are obtained by iterating between equation (3.7.1.6) and equations (3.7.2.2), (3.7.2.3) 

until convergence. 

The preceding theory is the more general case in which the row variances are assumed to be 

heterogeneous. It is, however, more common to assume a homogeneous variance structure with 

01 2= or 2C2. In this case the estimate of o, 2 is S2 , where 12 

32 =(-X)'(1- X)/(n+2) (3.7.2.4) 

2 
art(] the (stimate of ui it, c(I'lation (3.7.1.6) is s2, Vi. The procedure is to iterate between 

c(piations (3.7.1.6) and (3.7.2.2) 
, 

(3.7.2.4) and is illustrated in the following example. 
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3.7.3 Example 

Since the empirical Bayes estimates use the least-squares estimates, it is not possible to use the 

last two rows, in which there are fewer data points than parameters. The following table gives 

the empirical Bayes and least squares estimates of the parameters for the first eight rows of the 

Taylor and Ashe data. 

Empirical Bayes 

Estimates 

6.374 1.748 -0.617 

6.313 1.711 -0.534 

6.386 1.833 -0.632 

6.544 1.949 -0.742 

6.512 1.859 -0-649 

6.554 1.896 -0.617 

6.590 1.924 -0-558 

6.623 1.991 -0.465 

Figure 3.26 

Least Squares 

Estimates 

6.440 1.522 -0.559 

6.388 1.318 -0.419 

6.202 2.160 -0.709 

6.288 2.978 -1.072 

6.583 1.749 -0.625 

6.612 1.972 -0-671 

6.691 1.709 -0.487 

6.572 2.697 -0.786 

The fitted values are shown in figure 3.27. 
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Figure 3.27 

357583 648069 710330 633695 505015 374745 264716 180373 119566 77555 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

397922 763655 895855 859134 737785 590834 450890 332164 238196 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

413701 783942 876664 789962 632403 469764 331388 225100 

290507 1001799 926219 1016654 750816 146923 495992 280405 

431676 793688 832937 694815 511085 347185 223244 

310608 1108250 776189 1562400 272482 352053 206286 

403738 765408 849991 758297 600007 440062 

443160 693190 991983 769488 504851 470639 

387523 778569 906580 844361 695834 

396132 937085 847498 805037 705960 

395102 858215 1071633 1066738 

440832 847631 1131398 1063269 

378315 944349 1329376 

359480 1061648 1443370 

Figure 3.28 shows the predicted values. 
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Figure 3.28 

172819 

154028 101250 

143529 87971 53032 

320303 220707 149211 99661 

558348 418330 305623 219986 157126 

994745 846596 695730 561029 448637 358381 

1588480 1656196 1636008 1573415 1497895 1426995 137068 

Figure 3.29 

Empirical Bayes Bayes Empirical Bayes 

Estimates No Prior Standard Error 

172819 110927 45100 

255278 482157 76600 

284532 660810 97279 

789882 1090752 318687 

1659413 1530532 812772 

3905118 2310959 2529433 

10749675 3806976 11295723 

The empirical Bayes estimate of total outstanding claims is 17816720 and the estimate of the 

standard error of total outstanding claims is 11609088. 

There is very little information in the last row for which estimation is possible, and so the 

standard error of outstanding claims is quite large. This model has to be used with care, and it 

may be necessary to group the later rows together. The empirical Bayes method has improved 

the properties of the estimators for the later rows, but they are still problematic. 
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CHAPTER 4 

Recursive Bayesian and Dynamic Estimation 

4.0 Introduction 

In this chapter, as in earlier chapters, it will be assumed (without loss of generality) that the 

data is in the form of a triangle. After t years, the data available is: 

Y1,1 Y1,2 Y1,3 ***... Yi, t 

Y2,1 Y2,2 ... ... Y2, t-1 

Yt, l 

Figure 4.1 

This chapter is concerned with the use of recursive and dynamic forecasting methods and 

examines the use of methods similar to those advocated by Harrison and Stevens(1976). 

Attention will be restricted to linear models, in particular those described in chapter 2, and the 

results will be compared with the empirical Bayes results in chapter 3. 

The recursive forecasting procedures to be described update the parameter estimates as each 

year's data are received. In the first year, the only information available is the claims on the 

first year's business on which the delay index is 1, ie yj, j . In the second ye-ar7 Y1,2 and Y2,1 are 

received, being the claims on the first two years' business with delay indices 1 and 2. In the 

third year YI, 3 I Y2,2 and Y3,1 are received, and so on. 
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The data which makes up the claims runoff triangle, figure 4.1, is received in the form 

Y1,3 

yij 
Y1,2 

Y2,2 (4.0.1) 
Y2,1 

L 
Y3,1 

i 

and in year t the data which is received is 

Yi, t 
Y2, t-1 

Yt, i 

Thus the direction of propagation of time is along the diagonal: 

000 """ 0 

00 

\lime 

Figure 4.2 

(4.0.2) 

A recursive approach must use the data sequentially and must use the data at time t to update 

the parameters estimates based on the data available before time t. 

The data vector at time t is y, , where 

Yi, t 

Y2, t-1 
t 

Yt, i 

(4.0-3). 
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The set of data vectors which together make up the whole triangle form a time 

Y-1 ) Y-2 I *** i Xt i (4.0.1). 

Note that the triangle has been broken down in a different way from the row method in 

chapters 2 and 3. 

In this time series, the data vector expands with t: in the case of a tringular sct of data, 

dim ( yt )= (4.0-5). 

[ Note: the definition of yt is different from that implied by equation (2.6.1) ]. 

If the data is in the shape of a rhombus, which occurs when the early years of business are fully 

run off, then yt will reach a point when its dimension does not increase. 

The problem can be seen in the context of multivariate time series. However, the special 

relationships between the elements of consecutive data vectors me-an that it is simpler to 

generalise the theory of classical and Bayesian time series to two-dimensional processes. This 

development is left mainly until chapter 5, although similar techniques are used in this 

chapter. In the present chapter, it will be shown how to analyse the claims data recursively 

using the linear models discussed in previous chapters. These static models will be generalised 

to one-dimensional dynamic models in this chapter and further generalised to two-dimensional 

dynamic models in chapter 5. 

For the chain ladder linear model, a model *which leads to estimates having similarities to 

those arising from the empirical Bayes estimation methods of chapter 3 will be described. 'I'Iiis 

model will assume a similar structure on the row parameters, although the relationship 

between them will be sequential. 

For row models, the methods discussed will include recursive le-ast-squares and static and 

dynamic Bayesian estimation. Again the dynamic Bayesian estimation mcthod will be 

generalised in chapter 5. 

There are two methods for calculating the forecast values and their standard errors. 'I'lie 

simplest is to use the final parameter estimates and variance-covariance matrix as in chapters 2 
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and 3. The more proper method calculates one-step-ahead , two--step&-ahead , ... , (t- I ystep&- 

ahead forecasts at time t and their variance-covariance matrices. However, since the recursive 

approaches do not store covariances between, for example, the one-step-ahead and the (t-l)- 

step-ahead forecasts, the calculation of the variances of the forecasts causes problems. For this 

reason the first method will be used. 

4.1 Recursive Linear Models : State Space Representations 

A linear model for the complete data set takes the form 

.Y= 
X8 

For notational reasons this is rewritten as 

x= FO 

where 0 is the parameter vector 

and F is the design matrix. 

(4.1.1) 

Equation (4.1-1) is the linear model for the whole triangle. The linear models for Y-1 1 Y-2 1-I 

Yt I ... , which together make up the triangle can be written as 

Flg, + el 

Y-2 F222 + e2 

. yt = Ftit + et (4.1.2) 

. Y, is defined in equation (4.0.3) and the precise forms of the parameter vector at time t, 
-Ot , 

and the design matrix at time tj Ft , depend on the model being considered. Later sections of 

this chapter give the forms of Ot and F, for the chain ladder linear model and a row inodcl. 

Equation (4.1.2) is an observation equation and forms one part of a state system tO w1lic" t"" 
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Kalman filter can be applied in order to obtain recursive estimates of the parameters. 0, is 

known as the state vector and is related to 0, 
-, 

by the system equation. The oixervation 

equation and the system equation together make up the state space representation of the linear 

model. There are several ways of using this representation, which are described in Lhe later 

sections of this chapter. 

The system equation relates Ot to 0, 
-, and defines how the state vector evolves with time. 

Thus the time evolution of the system is defined on the state vector and the observation vector 

is then related to the state vector by the observation equation. There are many choices of 

system equation, the most general being: 

it+, = Gt 2t + H, jit + wt 

where ut is a stochastic input vector 

and wt is a disturbance vector 

and the distributions of ut and wt are: 

Ilt -N( fit , Ut ) 

at - N(-Q, Wt) 

(4.1.3) 

The choices of G, , Wt and the distribution of ut govern the dynamics of the system, and 

some useful cases are now described. 

The simplest case is to set ut and wt to 0 for all t. In this case equation (4.1.3) becomes: 

i2t+, = Gt Ot (4.1.4) 

If Gt is chosen such that the parameters at time t+l are the same as the parameters at time t, 

and the prior distribution is vague, equation (4.1.4) defines recursive least squares estimation. 
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The case when the new parameters entering at time t+l are distinct from tho&-- at time t can 

be achieved by setting 

Gt it + Ht ]It 

where ut has the prior distribution of the new parameters. If this prior distribution is vagiie, 

least squares estimation with distinct parameters is achieved. Otherwise Bayesian estimation 

with distinct parameters results. 

Between the cases of identical and distinct parameters comes dynamic parameter e-stimatioti, 

where the parameters at time t+I are related to, but not necessarily the same as, the 

parameters at time t. A sequential relationship between the parameters can be achieved by 

setting 

Gt it + wt 

where wt is a disturbance. 

(4.1.6) 

The specific forms of Ft and Gt for the analysis of variance linear model and row models are 

given in sections 4.3 and 4.5. 

4.2 The Kalman Filter 

The updating of the estimates of the state vector (which contains the parameters) as each new 

data vector is received is done by the Kalman filter. It was first investigated by Kalman 

(1963). This section represents a special case in which the dimensions of the state vector an(i 

observation vector increase with t. In the actuarial literature, the use of the Kalman filter to 

analyse certain models for claims runoff triangles was first suggested by De Jorig arid 

Zchnwirth (1983). 

The updating equations are derived for the most general state system which will be used in this 
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chapter: 

Ft2t + tg 

Gt it +Ht ! it + 3yt (4.2.2) 

where et - N(R, Vt), 

jit - fit , Ut )l 

and w, ,N (ýQ, Wt ) 

and are independent. 

Further et 11t ýyj are sequentially independent. 

Suppose Ot Y1 I Y2 Yt-1 N cj (4.2-3) 

From equations (4.2.3) and (4.2.1), the distribution of yt given information up to time t-I is 

Y-Ilt-1 N( Fj 
tIt-1 ' Ft Ct Ft + Vt (4.2.4) 

When the observed value of yt is received, the state estimate can be updated to 0 
fit and the 

distribution of the state vector at time t forecast using equation (4.2.2). 

This iterative procedure, known as the Kalman filter, is proved in the Appendix. The recursiori 

is given by the following theorem: 

4.2.1 Theorem 

If the system and observation equations are given by equations (4.2.1) and (4.2.2), and the 

distribution of Ot given information at time t-1 is given by equation (4.2.3), then the 

distribution can be updated when yt is received using the following recursion: 

0+ Ht 61 + Kt (. yt - 

wliere Kg = Gt Ct Flt ( Ft Ct Flg + Vt )-1 

(4.2.1.1) 

(4.2.1.2) 
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and C�l= Gt C, Glt + ]Eit Ut Hlt - Gt Ct Flt ( Ft Cg Flt + Vt )-1 Fg Cg Gl, wf 

(4.2.1-3) 

Proof 

The proof is given in appendix 1. 

4.2.2 Remarks 

2t+11t is the forecast of 0, +, , given all information up to time t, and C, +, is the variance- 

covariance matrix of this estimate. The one-step-ahead forecast of y, +, , assuming a squared- 

error loss function, is: 

Y-t+l It Ft+,. E 
t+llt 

+ Ht+l ýjt+j (4.2.2.1) 

and its variance-covariance matrix is: 

1+1 + llt+, Ut+, H'+, +Vt (4.2.2.2) Var 
t+llt 

)= Ft+, Ct+, Ft t 

The n-step-ahead forecast of 0, +,, can be obtained by repeated application of equations 

(4.2.2.1): 

bl+, 
It : --: 

Gt+n-1 
-bt+n-119 

+ lElt+n-1 Alt+n-1 (4.2.2.3) 

4.2.3 Forecast Values and Variances 

If there are n years' data available, it is usual to forecast the values in the lower triangle: 

known 

forecast 
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This is the aim of the chain ladder method and of the techniques in chapter 3. 'I'he Kalman 

filter can produce forecasts for the lower triangle by using the one-step-ahead, two-step-ahcul, 

(t-l)-steps-ahead forecast values and their variances given by equations (. 1.2.2.1) to 

(4.2-2.3). It can go further and produce estimates beyond the lower triangle if the prior 

distributions of the input vectors are specified. 

However, the variances of the row totals (the forecasts of total outstanding claims for each year 

of business) present great problems since it is necessary to calculate 

CIOV ( 
ii ) 

-ýik ) 

for all relevant values of j and k. This entails storing the variances and covariances of all the 

state vectors for the lower triangle, and not just the old and updated values. It thus destroys 

the recursive nature of the Kalman filter, and for this reason the predicted values and their 

variances are calculated in the same way as in chapter 3: the i-steps-ahead forecasts are not 

used. The parameters are estimated using the Kalman filter up to the most recent year and 

future values are forecast using the structure of the model. For most of the models discussed 

the results would be identical, the only difference occuring when there are disturbance terms in 

the state equation relating to the parameters used in the estimation. 

4.3 Applications of the Kalman Filter to the Chain Ladder Linear Model 

The chain ladder linear model for the whole triangle is (for 3 years' data): 

Yll 

Y12 

Y21 

Y13 

Y22 

Y31 

1 0 0 0 0 
1 0 1 0 0 
1 1 0 0 0 

a2 
1 0 0 0 1 
1 1 1 0 0 

)32 1 0 0 1 0 

a3 

)33 

ell 

e12 

e2l 

e13 

e22 

e3l 
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The form of the design matrix F is clear. The state vector is: 

Ct 2 

02 

a3 

L 183 1 

(4.3.2) 

The first few observation equations, when the data is handled recursively, are: 

yl, l =p+ el, l 

i 

Y1,2 10 el, 2 
C(2 + 

Y2,1 10 e2,1 

YI, 3 
000 el, 3 

Clt 2 

Y2,2 l00 32 + e2,2 

Y3,1 10010 
ot3 

e3,1 

_133_ 

In general, the state vector at time t is: 

Ot = 

P 

a2 

, 
82 

of t 

ot 

(4.3.3) 
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A recursive version of the chain ladder method is achieved by defining the system equation 
matrices as 

1 
00 

it +00 ut 
10 

01 

where ut contains the prior distribution of 9+ 1 
Ot+11- 

(4.3.4) 

The new parameters at time t+I are '+1 
1] 

and equation (4.3.4) say's that the existing flt+ 1 
parameters are unchanged, while the new parameters are treated as stochastic inputs. 

If the variance of the errors, eij , are known and vague priors are used for the parameters, this 

method gives exactly the same results as ordinary least-squares estimation. It has the 

advantage that the data can be handled recursively. Also it gives a method of implementing 

Bayesian estimation on some or all of the parameters and can be seen as an alternative to dic 

method of section 3.4. It has been assumed that the prior estimates of the parameters are 

uncorrelated: in other words that the stochastic input vector, 11i , and the state vector, 0, , are 

independent. A similar assumption, which is not unreasonable and is often rnade in Bayes 

estimation methods, was made in example 3.4.1. The method is illustrated in example 4.3.1. 

There are two other variations on the chain ladder linear model which are of use practically. 

Since the chain ladder linear model is under consideration, the observation equation rernairns 

unaltered and only the system equation needs to be changed. The variations can be cornp., kred 

with the empirical Bayes estimation methods in chapter 3. They are both estimation r-nethods 

which impose structure on the parameters. The empirical Bayes estimation inethod is b&sed on 

the assumption that the parameters are independently, identically distributed: ffic d), iiarnic 

estimation method assumes that the parameters are related in a sirnilar way, bUt IITIJX)SAýS a 

sequential structure as well. 
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4.3.1 Example 

Suppose that there is prior information which suggests that the prior distribution of the rwx 

parameters has mean 0.3 and variance 0.05, but that there is no prior information about the 

other parameters. 

The following table shows the parameter estimates and their standard errors: 

Figure 4.4 

Bayes 

Estimate 

Overall Mean 6.177 

Itow Parameters 0.200 

0.166 

0.170 

0.275 

0.349 

0.402 

0.479 

0.362 

0.369 

Column Parameters 0.893 

0.911 

0.915 

0.320 

-0.080 

-0.199 

-0.518 

-0.128 

-1.464 

Least Squares Standard Error 

Estimate Of Bayes Estimate 

6.106 0.123 

0.194 0.118 

0.149 0.121 

0.153 0.126 

0.299 0.131 

0.412 0.137 

0.508 0.145 

0.673 0.156 

0.495 0.170 

0.602 0.191 

0.911 0.158 

0.939 0.164 

0.965 0.171 

0.383 0.180 

-0.005 0.191 

-0.118 0.207 

-0.439 0.231 

-0.054 0.271 

-1.393 0.362 

It can be seen, by comparison with figure 2.2, that the estimates of the row pau-micters haýc 

generally be drawn towards the prior me-an. For example, the (, ý, tiinatc of (r, is imv. - 0.362, 

compared with the estimate of 0.495 when there was no prior information. It should I)c 

133 



noted that the estimates of the column parameters have only changed as a result of the change 
in the estimates of the row parameters. 

The row totals of predicted outstanding claims and their standard errors are given in the 

following table: 

Figure 4.5 

Bayesian Estimates Standard Error 

With Prior No Prior With Prior 

131413 110927 69379 

596992 482157 228013 

812958 660810 246552 

1157631 1090752 302566 

1450615 1530532 346525 

1992212 2310959 457084 

2796170 3806976 655781 

3911910 4452396 926180 

3920230 5066116 968366 

The predicted overall total outstanding claims in this case is 16770131 and the standar(i error 

of this estimate is 1953764. 

The effect of the prior distribution can be seen clearly in the predicted outstandrig claims for 

each row: the earlier ones have increased and the later ones decreased. Tfie 1mor distribution 

has also affected the standard errors of the predicted outstandirig clalms for cacli ýc; tr of 

business. 
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4.3.2 Dynamic Row Parameters 

Firstly the dynamic estimation method will be applied to the row parameters, leaving the 

column parameters as they were (although the estimates will change because of the change in 

the estimation of the row parameters). The system equation is 

00 

kt + 2t +0 ut+ 0 wt 
0 

010 
0 

00LJL 

where ut has the prior distribution of 3t+l 

and wt is a disturbance term. 

Thus the new row parameter, at+, I is related to at by: 

at+i Olt +wt 

(4.3.2.1) 

(4.3.2.2) 

and a sophisticated smoothing method is produced. Equation (4.3.2.2) can be written as 

at+llat - 0, W, ) 

and can be compared with the empirical Bayes assumption that 

(4.3.2.3) 

020,2 )Vi (4.3.2.4) 
a 

(a vague prior distribution is used for 0). 

Example 4.3.3 compares the empirical Bayes estimates with the dy'namic estirnates using Ow 

state variance 

Wt = 0( 
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In fact, 0"c, is estimated from the data in the empirical Bayes theory, and it is this estimate 

which has been used as the system variance. It is not to be inferred that the state variance is 

the same as the variance of the parameters in the empirical Bayes theory. 

4.3.3 Example 

The row parameters are related recursively and the column parameters are left as they were 

when their prior distribution is vague (although the estimates change because of the change in 

the estimation of the row parameters). The state variance is set as 0.0289, which was the 

estimate of the variance of the row parameters in the empirical Bayes method of section 3.6.3. 

In this case the parameter estimates are as follows: 

Figure 4.6 

Bayes Least Squares Standard Error 

Estimate Estimate Of Bayes Estimate 

Overall Mean 6.119 6.106 0.163 

Row Parameters 0.187 0.194 0.151 

0.170 0.149 0.148 

0.196 0.153 0.152 

0.296 0.299 0.158 

0.396 0.412 0.164 

0.482 0.508 0.171 

0.550 0.673 0.183 

0.536 0.495 0.202 

0.546 0.602 0.238 

Column Parameters 0.906 0.911 0.158 

0.940 0.939 0.165 

0.951 0.965 0.173 

0.346 0.383 0.183 

-0.028 -0.005 0.195 

-0.145 -0.118 0.212 

-0.457 -0.439 0.236 

-0-062 -0.054 0.278 

-1.406 -1.393 0.378 
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The fitted values (with the actual values) are shown in figure . 1.7 and the prediacxi 

outstanding claims in figure 4.8. 

Ficriirf- 47 

280871 695378 719436 727701 405244 274091 244522 179767 268833 72013 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

399348 988704 1022913 1034665 576191 389720 347699 255691 382930 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

379495 939553 972064 983237 547558 370368 330481 243178 

290507 1001799 926219 1016654 750816 146923 495992 280405 

346861 858764 888488 898718 500515 338601 302306 

310608 1108250 776189 1562400 272482 352053 206286 

370416 917100 948874 959863 534661 361894 

443160 693190 991983 769488 504851 470639 

376568 932394 964797 976176 544043 

396132 937085 847498 805037 705960 

403956 1000400 1035470 1048310 

440832 847631 1131398 1063269 

400937 993409 1029002 

359480 1061648 1443370 

413320 1025208 

376686 986608 

336409 

344014 
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Figure 4.8 

1099-55 

387238 10,15,19 

236325 35-1494 95622 

343098 252735 378935 1021,1,9 

390931 349303 257203 385581 10397.1 

620155 420042 375175 276218 41-1069 111653 

1105771 616673 417538 372891 274524 411525 110966 

1127356 1142248 636820 431128 385011 283443 424891 114570 

886202 919094 931049 519029 351372 313783 231004 346283 93373 

The row totals and their standard errors are given in the following table: 

Figure 4.9 

Bayesian Estimates Standard Error 

With Prior No Prior With Prior 

109955 110927 59278 

491787 482157 187134 

686441 660810 206954 

1076957 1090752 277762 

1486991 1530532 347441 

2217311 2310959 491998 

3309887 3806976 744931 

4545466 4452396 1048855 

4591188 5066116 1169469 

The predicted overall total outstanding claims is 18515984 and the standard error of this 

estimate is 2660211. The standard error is lower than that when no prior knowledge is 

assumed because of the recursive relationship between the parameters. Tile effect of the 

Kalman filter on the parameter estimates will be illustrated by the following graph, which ahso 
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shows the empirical Bayes estimates from example 3.6.3. It can be seen that the empirical 

Bayes estimates are all pulled towards a central value, while the Kalman filter has smoothed 

the variation in the estimates. The difference between the two methods is clear: the empirical 

Bayes method assumes that the row parameters have a common mean, while the Kalman filter 

imposes* a recursive relationship. 

Figure 4.10 
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4.3.4 Dynamic Row and Column Parameters 

The dynamic estimation method can be extended to the column parameter's to give a method 

which has similarities with the empirical Bayes method of section (3.6.4). The systern equation 

becomes 

1 

1 

it+, =I 1 

0... 10 

0... 0 1 

where wt -N(a, Wt ) 

I Ot 

00 

00 

10 

01 

Wt (4.3.4.1) 

Thus both the new parameters, a, +, and 3t+l , are related to the previous parameters and 

dynamic estimation is used for each. The empirical Bayes theory assumes that ai and 6j arc 

independent and 

ai - 0, uot 

0.2 ß 

where 0, ý have vague prior distributions. 

Example 4.3.4 compares the empirical Bayes with the dynamic Bayes estimates using tlic 

following system variance-covariance matrix: 

2 
Ua 

Wt 
0 

Again, o, 2 and a2 are replaced by the estimates from the empirical Bayes analysis. a# 
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4.3.5 Example 

This model was applied with state variance for the row parameters 0.0296 and for the column 

parameters 0.4135. Again, these were the figures obtained from the empirical Bayes method 

this time as obtained in section 3.6.4. The parameters estimates are as follows: 

U, -- 11 

Bayes 

Estimate 

Overall Me-an 6.102 

Row Parameters 0.211 

0.186 

0.212 

0.313 

0.414 

0.502 

0.569 

0.553 

0.564 

Column Parameters 0.908 

0.939 

0.929 

0.373 

-0.012 

-0.151 

-0.411 

-0.215 

-1.132 

Least Squares Standard Error 

Estimate Of Bayes Estimate 

6.106 0.163 

0.194 0.150 

0.149 0.148 

0.153 0.152 

0.299 0.158 

0.412 0.164 

0.508 0.171 

0.673 0.183 

0.495 0.202 

0.602 0.239 

0.911 0.157 

0.939 0.162 

0.965 0.170 

0.383 0.179 

-0.005 0.189 

-0.118 0.204 

-0.439 0.224 

-0.054 0.256 

-1.393 0.342 

Figure 4.12 shows the fitted values, and figure 4.13 the predicted outstanding claims. 
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Fio, nrp A V) 

276241 684518 706407 700184 401947 273582 238639 184557 225716 92117 

357848 766940 610542 482940 527326 574398 146342 139950 22-1229 67948 

402630 997709 1029613 1020545 585856 398766 347861 269134 329849 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

379071 939332 969371 960838 551588 375458 327585 253633 

290507 1001799 926219 1016654 750816 146923 495992 280405 

346663 859030 886510 878724 504475 343449 299848 

310608 1108250 776189 1562400 272482 352053 206286 

370496 918110 947509 939252 539324 367387 

443160 693190 991983 769488 504851 470639 

377404 935291 965339 957136 549908 

396132 937085 847498 805037 705960 

405386 1004836 1037423 1029245 

440832 847631 1131398 1063269 

401924 996766 1029863 

359480 1061648 1443370 

413762 1027306 

376686 986608 

336813 

344014 
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Figure 4.13 

1.1383.1 

33026.1 135583 

246548 302525 12-1102 

340516 263890 323649 132738 

397610 347381 269099 329988 135329 

627610 427793 373607 289376 354836 1.15517 

1084427 623432 424793 370939 287295 352280 1.1.1,167 

1126688 1118681 642922 438019 382470 296222 363223 148955 

888158 918705 911987 524086 357044 311761 241456 296070 121416 

The row totals and their standard errors are given in the following table: 

Figure 4.14 

Bayesian Estimates Standard Error 

With Prior No Prior With Prior 

143834 110927 72675 

465847 482157 166438 

673175 660810 194229 

1060794 1090752 266228 

1479407 1530532 339755 

2218738 2310959 487975 

3287633 3806976 735669 

4517179 4452396 1040596 

4570683 5066116 1167068 

The predicted overall total outstanding claims is 18417296 and the standard error of this 

estimate is 2627190. 
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4.4 Applications of the Kalman Filter to Row Models 

The row models described in chapter 2 have explanatory variables which are dep-endent only on 

the delay index and not on the year of business. Hence 

yij = Xj fli + eij (4.4.1) 

where X, is a row vector whose dimension is the same as the dimension of The vector X, 

is not the same as the matrix Xj in equation (2.6-1). 

Considering the data which is received at time t, the following linear model is applied: 

Yi, t Xt)31 1, t 

Xt 
Y2, t-1 

Xt-112 
+ 

e2, t-I 

L Yt, l JLiL 
et'i 

ß2 

Y-t 

2L JL 
ßt 

i 

e-l't 

where et 

L 
el't 

ic Ft 2t + et 

xt 

xt-l 
where Ft 

xl 

(4.4.2). 

(4.4.3) 

(4.4.4) 
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and Ot 
82 

ot 

Note that dim (. 2i ) is constant for all i. 

The system equation is 

kt+l = Gi kt + Ht ILt + w, 

if Gt = 

I 

I 

I 

I 

(4.4.5) 

where I is an identity matrix whose dimension is the same as the dimension of the parameter 

vector ýj , and the system equation (4.4.5) is simplified to 

Ot+j = Gt Ot (4.4.6) 

then the estimation is recursive static Bayesian estimation with identical row parameters. If 

the prior distribution of d, is vague then the Kalman filter gives the same results as recursk v 

least-squares estimation with known variance. 
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4.4.1 Dynamic Estimation for Row Models 

The static model in section 4.4 can be generali8ed to a dynamic model by altering (4.4.6) to 

0 

0 

Gt 2t 

0 

Wt 

This is the situation which was considered in De Jong and Zehnwirth (1982). 

The Kalman filter then gives dynamic estimation of the parameters, with 

P-t+i : ̀-- P-t Wt 

and wt 

(4.4.1.2) 

Again, this can be compared with the empirical Bayes estimation method in chapter 3. In that 

chapter it was assumed that 

. 
di - 

In example (4.4.3), the dynamic estimation- method is compared to the empirical Bay(-. s, 

estimation method, using Wt =t. 

4.4.2 Bayesian Estimation for Row Models with Distinct Parameters 

The observation equation for all row models is given by equation (4.4.4) with F, arid 0, 

suitably defined. Section 4.4 illustrated the recursive estimation of the row parameters w1wri 

they are assumed to be identical and this was extended in section 4.4.1 to dynamic i-tirnation. 

This section goes a step further and assumes that the parameters in each row are distinct. 'I'hc 

system equation under these assumptions is 
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G, 1, + Ht u, 

0 

0 
where Gt and H, 

00LJ 

0 is a matrix of zeros. 

ut has the distribution of the new parameter vector and this distribution governs tile 

estimation method being used. If it is a vague distribution then classical least-square-s 

estimation is used, otherwise Bayesian estimation is used. 

4.4.3 Example 

Again, the model of section 2.6 is considered in this example. As was mentioned earlier, the 

row models are unsatisfactory in many cases due to the paucity of data in the last few rows. 

Because of this the methods are only illustrated here for the dynamic model of section 4.4.1. 

The state variances are taken from the empirical Bayes results of chapter 3. 

AIv 

Kalman Filter 

Estimates 

6.328 1.704 -0.596 

6.291 1.747 -0.543 

6.357 1.868 -0.638 

6.493 1.966 -0.737 

6.535 1.975 -0.704 

6.584 2.001 -0.673 

6.621 2.038 -0-617 

6.648 2.099 -0.527 

Least Squares 

Estimates 

6.440 1.522 -0.559 

6.388 1.318 -0.419 

6.202 2.160 -0.709 

6.288 2.978 -1.072 

6.583 1.749 -0.625 

6.612 1.972 -0.671 

6.691 1.709 -0.487 

6.572 2.697 -0.786 
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The fitted values are shown in figure 4.16. 

Figure 4.16 

341493 613111 674155 606458 488733 367390 263227 182084 122619 8084.1 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

389180 759282 896117 860903 738877 590493 449244 329688 235383 

352118 884021 933894 1183289 445745 320996 527804 266172 4250-16 

401667 774469 872540 788908 632290 469562 330840 224294 

290507 1001799 926219 1016654 750816 146923 495992 280405 

410191 767074 814802 686592 509611 349079 226232 

310608 1108250 776189 1562400 272482 352053 206286 

413300 803135 884281 771578 592680 420002 

443160 693190 991983 769488 504851 470639 

399397 815486 936281 849244 676969 

396132 937085 847498 805037 705960 

407683 902965 1112778 1078707 

440832 847631 1131398 1063269 

387744 980533 1355722 

359480 1061648 1443370 

Figure 4.17 shows the predicted values. 
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Figure 4.17 

178-166 

1606,96 105011) 

153884 9,1747 57313 

309490 204627 132-175 SIC02 

550856 397070 279008 193270 133015 

1025391 845936 675990 532756 419074 331781 

1658531 1691678 1651640 1592551 1546076 1530746 1559629 

1582684 1914732 2167576 2431715 279136033442564237,589 573 2'216 3 

942365 1521425 2133926 2936156 4197804 6440130 10816831 20158917 42O(s3218 

Figure 4.18 

Kalman Filter Baves Kalman Filter 

Estimates No Prior Standard Error 

178466 110927 75253 

265714 482157 99995 

305944 660810 119366 

731194 1090752 317911 

1553218 1530532 809896 

3830928 2310959 2741090 

11230852 3806976 15686239 

The predicted outstanding claims are shown in the above table, and can be compared with the 

empirical Bayes estimates in table 3.29. It can be seen that the later rows are still problematic 

and if this model is to be used in practise, they would have to be grouped together. 



CHAPTER 5 

Two-Dimensional Processes 

5.0 Introduction 

Chapter 4 described the use of dynamic forecasting methods in which, for example, the 

parameters of the (i+l)th row are related to the parameters of the ith row. In this CZL,; A-, the 

direction of the dynamic variation is vertical, from row to row, and the parameters are 

assumed to be constant along the rows. This is illustrated in the following figure. 

P, 
. 
2,9, ... ... 

P-2 P-2 
102 

ot 

where Yj+j = Pi + wj 

ß, 

Figure 5.1 

(5.0.1) 

Equation (5.0.1) is the state equation, and it is assumed that there is no variation along the 

rows. This is not always the case and other dynamic forecasting methods have been use(], for 

example J. Q. Smith (1983) models the claims run off triangle using gencralls'(-(] 13ay(---, Ian 

forecasting methods which allow the parameters to vary dynamically along each row. 'I'he 

triangle is considered one row at a time and the parameters are related as shown in figurc 5.2. 

P-1 P-2 P-3 Jý-t -i+1 

where dj+l = P-j + wi 

is the system equation. 

Figure 5.2 

(5.0.2) 

15 0 



Other authors have also suggested the use of models which are in the form of figure 5.2 and, 

when fitting a dynamic model to each row, sometimes attempt to relate the rows to each othcr. 

For example, it is possible to set the first parameters of the ith row equal to the last 

parameters of the (i-l)th row, but this destroys the recursive nature of the process. This 

method can only be used if there is no more data arriving to be processed, or if the whole 

estimation procedure is carried out each time a new data vector is received. 

For the whole triangle, the form of the model in figure 5.2, with the parameters varying 

dynamically along each row but not connected from row to row, is illustrated in figure 5.3. 

Al'i P-lj2 

9-2,1 P-2,2 

Atj 

where f i, j+l = di, j + wij 

is the system equation. 

'01, t 

Figure 5.3 

(5.0.3) 

The other direction of variation, as in figure 5.1 can also be represented by rigure 5.3. In this 

case the system equation is 

P-i+l, j P-i, j wi, j 
(5.0.4) 

It should also be noted that this is a slight gencralisation of the state system repre-, entcd by 

figure 5.1 and equation (5.0.1). 
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This chapter is devoted to the problem of reconciling these two state recursions. In doing this, 

the theory of dynamic estimation and Bayesian time series is extended to two dimensions. The 

application of the methodology derived to the analysis of two dimensional classical time 

will also be considered, together with the generalisation of other methods of analysis of cim-sical 

time series. 

Two-dimensional state space systems have been used in circuit theory and control theory. In 

particular, the work of Givone and &wsser in the control theory literature motivates much of 

this chapter. Two-dimensional state space systems have been used to analyse multi-diniensional 

linear iterative circuits and in image restoration. 

The state space systems and filtering procedures are adapted and extended in this cliapter to a 

stochastic, time series setting. 

5.1 Two-Dimensional State Systems 

The state equations for a two-dimensional system are 

dh ßh h 
+ A2�8j, j + wij 

v 
jq 

h 

_i, j 
+A 3v + wv A3 

41 ij ij 

(5-1-1) 

(5.1.2) 

, 
dih, j and are defined for all values of is, t(i>11 and are the horizontal and 

vertical components of the state vector. The state vector has been split into two parts, cacti of 

which is updated in the horizontal or vertical 8irection. Since there are two components of the 

state vector, the observation equation needs altering from its one-dimensional form. 

The datum at (ij) is modelled by 

Jý 
h+ R2 P-v 

*+e,,, 
_i, j iJ 

(5.1.3) 

When equal weight is given to each component of the state vector, the rnodel vvill be ktiowri ; Ls 
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a balanced model. In this case 

B, = B2 

Equations (5.1.1) to (5.1.3) are the generalisation of state space forms to two-dimensional 

lattices. In order to apply the Kalman filter and obtain recursive estimates, it is necessarý- to 

take advantage of the nature of the inter-dependences between the data. Before doing this, the 

state space system for the chain ladder linear model is described. The chain laddcr liticar incAd 

is examined exclusively, although the methods apply to any linear model, or in(iced to any 

Bayesian time series model as described in Harrison and Stevens (1976). 

5.1.1 A Two-Dimensional State System for the Chain Ladder Linear Model 

In order to illustrate the two dimensional system, consider the chain ladder linear incodel, w16ch 

is given by equation (5.1.1.1): 

yi, j = it + aj + 3j + ei, j 

The restriction a, = P, =0 is generalised to 

av 

flý = fly - S'l S, l - 

The horizontal and vertical components of the state are: 

h 
P i, j 

h 
ctij 

ph 
ij 

and 
v cfi, j 

PV 

(5-1.1-1) 

Using a balanced model, and thus giving equal weight to the horizontal arid vertic; il 
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components of the state vector, the observation equations for the first few data points are: 

[p, 
11 

ii 0 Yii =I+0I+ e11 

LoJ 0 

hv 
P1,2 111,2 

0+0 1,2 :::::: 22+ el, 2 
ph ov 1,2 1,2 

h 
ß2,1 ß2,1 

1 ah, av, 2,1 221221 + e2,1 

00 

h 
ß2,2 P2,2 

1 ah, av, e2,2 Y2,2 «ý:::: 222222+ 

ßh ßv 
2,2 2,2 

etc. 

The state equations are exactly equations (5.1.1) and (5.1.2) and it is clear that these can only 

apply away from the boundaries of the system. At the boundaries, stochastic (or deterministic) 

inputs are needed: these are dealt with in detail in section (5.1.5). 

5.1.2 Causality 

In a two-dimensional state system, the question of causality has to be addressed. In a one- 

dimensional system the causality is usually clear: the time dependence is straightforward. In 

the two-dimensional case, the main possibilities are half-plane and quarter-plane causality. 

Consider a lattice whose points are referenced by 

I(i, i): iZE 
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Quarter-plane causality corresponds to the following ordering of the lattice: 

i<k and k<l 

i=k and k=l 

(ij)<( 1) 4-* (ij) :5 (k I) and( ij) : ý- (k I) 

Under the conditions of quarter-plane causality, the estimates of the states at (i, j) can only 

depend on the data Ykj for (k, I) :5(i, j). This is a restrictive restraint and it has a cost 

on the variance of the estimators. The more natural causality for claims run-off triangles is 

half-plane causality. This is defined by the following ordering of the lattice: 

(i, j)ý:, (k, I)ý:: ý i+j<k+I 

(i, j)=(k, I) <-* i+j=k+I 

(i, j)<(k, I) -ý* i+j<k+I 

It was implicitly assumed in chapter 4 that the above half-plane (or wave) causality applied, 

and it will also be used in this chapter. The consideration of quarter-plane cau-sality is 

contained in Porter and Aravena (1986). 

5.1.3 Recursive State Estimation 

In order to estimate the state vector, the state equations (5.1.1) and (5.1.2) have to be 

rewritten in much the same way as the state equations were rewritten in chapter 4. The data 

vector at time t is 

Yl, t 

Y2, t-I 

L 
Yt, i 

(5.1.3.1) 

and time propagates along the diagonal. The state along the diagonal is defiiied iLs 
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ot 

P-til't 
ph 
-2, t-1 

. 
QV 
-2, t-I 

JQ 
v 

-t-1,2 

. 
ah 
_t, l 

In this state vector, all the components of the state vectors for the data in the data vector are 

present except t and These are treated as stochastic input vectors since hV 

ht 
0 and d't, o are not defined. 

The state at time t+1 is related to the state at time t by the system equation, which in this 

case is 

A4 

jiv 
A2 

j2v I I't 
A0ahv 3-i t Ei, t+i 

. 
dh 

A3 A4 

A, A2 h a 
-2, t-1 

' A, 0 
j2v h 00 -t, l 

v 
-2, f 

A3 A4 v 
-2,1-1 

00 

A, A2 0 A4 

A3 0 A2 
L 

v 
t, 2 v t-1,2 wv -t. 2 

'ah 

h 

L P-t, l i 
h 

(5.1.3.2) 
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In terms of the general state equation, given by equation (4.2.2), 

Gt = 

A4 

A2 

A3 A4 

A, A2 

A3 A4 

A, A2 

A3 

A, 

I Ht = 

and the stochastic input vector, ij, , is 

A3 0 

A, 0 
00 

00 
0 A4 

0 A2 

The observation equation, which relates the data vector to the state vector, is 

Yl, t 
B2 

B, B2 

Y2, t-1 B, B2 

B, B2 

L 
Yt, i iLB, 

J3 
v 

ph 
-2,1-1 

ju 
v 

Vv 
-t-1,2 

oh 
tj 

I+I 

B, 0 

0 el,, 

e2,, -I 

oo 

0 B2 e,,, 

(5.1.3.3) 

which is similar to the general observation equation, (4.2.1), with 

132 

131 132 
131 132 

Ft 
Rl B2 

B, 
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The stochastic input vector is also present in the observation equation, which is gencralis-ed to: 

. yt = Ft It + Et Ilt + e, 

B, 0 

0 

where Et 

00 

0 B2 

(5.1.3.4) 

When the observed value of yt is received, the estimate of the state vector is updated using t fie 

following theorem. 

5.1.3.1 Theorem 

Suppose that the observation equation and system equation are 

yt = Fg 2t + Et j! t + et 

it+, = Gt 2t + H, jit + wt 

where uj -N( fig , Ut ) 

! ýt - Vt ) 

mLt - N(a, Wt) 

and are independent. 

Suppose also that the estimate of Ot based on Y-f-1 i YA-2 , ... , yj and othcr collateral 
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information is 0 
lit-1 and its variance-covariance matrix is C, j 

Then the updated estimate of the state vector and the variance-covariance matrix of the 

estimate, once yt has been received are given by equations (5.1.3.1.1) and (5.1.3.1.2). 

bt+llt - Gt jtjt_l + Ht At + Kt ( yt - it ) (5.1.3.1.1) 

Ct+, =GtCtG't+HtUtH't-(GtCtF't+HtUtE't )(FtCtF'tt+Vt)-'(FC, Gltt+HtUEltt)+NV, 

(5.1.3.1.2) 

where Kt= ( GtCtF't + HtUtElt )( FCtF't + EtUtElt + Vt 

and it = Ft 2 
tlt-1 

+ Ej fit 

Proof 

! 3ee Appendix 1. 

(5.1.3.1.3) 

(5.1.3.1.4) 

5.1.4 An Example of Two-Dimensional State Estimation applied to the Chain Ladder Linear Model 

The two-dimensional state estimation procedure can be illustrated by considering the chain 

ladder linear model. The treatment of the boundaries can be simplified by assuming that a 

one-dimensional recursive state structure applies. The procedure is illustrated by considering a 

simple dynamic model. The two-dimensional process may be more useful in situations which 

have a simpler structure ( just one parameter: a Harrison and Stevens steady model, for 

example ), and the example here is for illustration purposes. The overall mean and the colurnn 

parameters are estimated statically and the dynamic, two-dimensional estimation is al)pl)(-(i 

only to the row parameters. This can be compared to the one-dimensional recursive estimation 

procedure applied to the row parameters which was described in section 4.3.2. 
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The approach to the stochastic input vectors described in the previous section will be used, , -o 
that there is only one row parameter for the first column and second row. The state vecwr at 
time t is 

P 

#82 

#3 

pt 

ot2, t 
h 

03, t-1 

v C'3, t-1 
h 

ot4, t-2 

v or4, t-2 

The two-dimensional state system, given by equations (5.1.1) and (5.1.2), is simplified to: 

hh 
Cli+l, j = aýj +w S, ij (i >2, iý! 1) 

V (i >1jý! 1) (5-1.4.2) c1i'j+1 :::::::: Ili, ij Vj + IV 

The row parameters for the first row are defined to be zero. Along the boundaries of the region 

in which the row parameters are non-zero, 

a 
h, 

=avvt (5.1.4.3) 2t2, t 

h 
or ol 1,1 vt (5.1.4.4) 

This is a generalisation of the "steady model" described by Harrison and Stevens. A balanced 

model will be used. 
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The first few recursions, in wave form, are: 

yl, l ý2p+ el, l 

#2 
-U 

Ct2,1 

Y1,2 220 el, 2 

Y2,1 
1202 

82 + 

e2,1 
I Ct 2,1 

1 

00 0 00 

tO 2 00 0 00 
v W2,1 

J33 
000 32 + U3+ 00 

h 
W 2,1 

Ct2,2 00 Ct2,1 0 10 
L 

Ct3,1 00 0 01 

Y1,3 

Y2,2 

Y3,1 

20200 

22020 #2 

20002 93 

%, 2 

03.1 

el, 3 

e2,2 

e3,1 

(5.1.4-5) 

(5-1.4.6) 

(5.1.4.7) 

(5.1.4.8) 

(5-1.4.9) 
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li 

92 

J63 
94 

Ct2,3 

h 
C'3,2 

v 013,2 

0'4,1 

I 

P 

-32 

P3 

2,2 

a3,1 

U4 

W; 2 

h 
W2,2 

h 
W 3,1 

v W3.1 

(5-1.4.10) 

0020000- )32 

YI, 4 20202000 33 

Y2,3 220001104 

20000002 
Y3,2 - 02,3 

h Y4,1 Cý3,2 

v 03,2 

Cý4,1 

C1,4 

e2,3 

e3,2 

e4,, 

(5.1.4.11) 

Some properties of this two-dimensional system can be studied which indicate the general 

behaviour of such systems. Firstly, if the state disturbances are defined to be zero and the 

initial row parameters to be zero, the one-way analysis of variance is reproduced. The same 

results are obtained as from the least-squares analysis on the model 

yij -p+ 3j + cij - 



This is the non-dynamic limit of the dynamic model and the, static estimation results are 

recaptured, as is to be expected. Because of the definitions of the stochastic input vectors, it is 

not possible to recapture precisely the one-dimensional estimation results. This is entirely due 

to the treatment of the boundaries: if the stochastic input vectors are retained at each point on 

the boundary of the lattice, the results can be reproduced. 

To illustrate the behaviour of the estimation system under different values of the horizontal 

and vertical state variances, the following cases will be examined in more detail: 

(i) Suppose that the horizontal state variance is set to zero. 

ahhh where whýN(0,0 i+1, j : -::: 11 i, jwi, j ij 

This means that the horizontal state estimates should be identical. 

Suppose also that the vertical state variance is large, so that there is no statistical connection 

between successive vertical state estimates. 

The estimates of the horizontal row parameters are given in figure 5.7, and the estirnates of the 

vertical row parameters in figure 5.8. 

Figure 5.7 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.092 -0.013 0.129 0.364 -0-168 -0.375 0.558 0.238 0.230 

-0.171 -0.013 0.129 0.364 -0.168 -0.375 0.558 0.238 

-0.080 -0.013 0.129 0.364 -0.168 -0.375 0.558 

0.115 -0.013 0.129 0.364 -0.168 -0.375 

0.101 -0.013 0.129 0.364 -0.168 

0.162 -0.013 0.129 0.364 

0.099 -0.013 0.129 

0.101 -0.013 

0.167 
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Figure 5.8 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.092 -0.013 0.129 0.364 -0-168 -0.375 0.558 0.238 0.230 

-0.171 0.146 0.155 0.247 0.388 -1.122 0.529 0.324 

-0.080 0.363 0.093 0.792 -0.510 -0.133 -0.232 

0.115 -0.072 0.373 0.118 0.141 0.192 

0.101 0.313 0.299 0.246 0.559 

0.162 0.229 0.604 0.541 

0.099 0.531 0.924 

0.101 0.414 

0.167 

0 

Some points to note are that, as a result of the analysis of variance model, the row parameters 

are always zero along the first row. Also, the horizontal parameters down the first column are 

defined to be equal to the vertical parameters down the first column. In the remaining 

columns, the horizontal parameters are identical, reflecting the specification of tfic state 

variances. 

(ii) Similar results are obtained for the vertical row estimates when the vertical state variance 

is set to zero. The results in the tables below are obtained by setting the vertical state variarice 

to zero, with the horizontal state variance large. Figure 5.9 shows the horizontal state 

estimates and figure 5.10 the vertical state estimates. 
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Figure 5.9 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.092 -0.013 0.129 0.364 -0.168 -0.375 0.558 0.238 0.230 

-0.171 0.305 0.454 0.782 0.391 -1.326 1.258 0.733 

-0.080 0.430 0.302 1.236 -0.598 -0.428 0.405 

0.115 -0.200 0.387 0.367 -0.142 -0.298 

0.101 0.200 0.327 0.510 0.291 

0.162 0.054 0.571 0.743 

0.099 0.419 0.955 

0.101 0.301 

0.167 

Figure 5.10 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.092 -0.013 0.129 0.364 -0.168 -0.375 0.558 0.238 0.230 

-0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0-171 

-0.080 -0.080 -0-080 -0-080 -0.080 -0-080 -0-080 

0.115 0.115 0.115 0.115 0.115 0.115 

0.101 0.101 0.101 0.101 0.101 

0.162 0.162 0.162 0.162 

0.099 0.099 0.099 

0.101 0.101 

0.167 

Concentrating on the estimates of the vertical row parameters, it can be seen ffiat frorn the 

third row onwards the estimates are identical (reflecting the state variance specifications). The 

first row parameters are defined to be zero, and the second row parameters are defined to be 

equal to the corresponding horizontal estimates. 
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(iii) A conflict may arise when the specifications of cases (i) and (ii), above, are combined. If 

the horizontal and vertical state variances are both set to zero the estimates of the row 

parameters should be identical. The results of this specification are shown in figures 5.11 (tliv 

horizontal parameters) and 5.12 (the vertical parameters)- 

Ficrim- R 11 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.092 -0-080 -0.002 0.105 0.071 0.067 0.062 0.105 0.135 

-0.080 -0.002 0.105 0.071 0.067 0.062 0.105 0.135 

-0.002 0.105 0.071 0.067 0.062 0.105 0.135 

0.105 0.071 0.067 0.062 0.105 0.135 

0.071 0.067 0.062 0.105 0.135 

0.067 0.062 0.105 0.135 

0.062 0.105 0.135 

0.105 0.135 

0.135 

Pimire S-19 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.092 -0.080 -0.002 0.105 0.071 0.067 0.062 0.105 0.135 

-0.080 -0.002 0.105 0.071 0.067 0.062 0.105 0.135 

-0.002 0.105 0.071 0.067 0.062 0.105 0.135 

0.105 0.071 0.067 0.062 0.105 0.135 

0.071 0.067 0.062 0.105 0.135 

0.067 0.062 0.105 0.135 

0.062 0.105 0.135 

0.105 0.135 

0.135 
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It can be seen that the estimates are identical along the diagonals: the estimates of all the 

parameters at each time point are the same. 

5.2 Two-Dimensional Classical Time Series 

The model of the form 

Yi, j = -yj yi, j-l + error (5.2.1) 

has been discussed in earlier chapters. This chapter has been concerned with generalising one- 

dimensional processes to two-dimensional lattices, and it is appropriate to consider two- 

dimensional classical time series. 

The recursion given by equation (5.2.1) is in the same form as equation (5.0.3) and it is also 

possible to define a recursion in the same form as equation (5.0.4). Of course, since these are 

recursions for the data itself and not states, horizontal and vertical components will not be 

defined. The structure of a two-dimensional time series, or a simple example of it, is given by 

equation (5.2.2). 

Yij ý:::::: Itj Yi, j-1 + l7i yi-l, j + error (5.2.2) 

Equation (5.2.2) is in the form of a nearest- neigh bou r model, which is a generalisation of Box 

and Jenkins' autoregressive models to two-dimensions. 

5.2.1 Nearest- Neighbour Models 

Nearest-neighbour models have been used in analysing agricultural field trials, the early 

refences being Whittle (1954), Bartlett (1968) and Besag (1972). In particular, the correlation 

structure of the class of stationary, unilateral, linear autoregressives defined on a plane lattice 

has been derived and such results have been applied in the context of measurcments at di. -, 4-rcte 
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points in a continuous plane. The situation in a claims reserving context is slightly dIfferent in 

that it is a purely discrete problem. However, the results were derived from a time series point 

of view and still hold even though they were not applied in a time series context. It will be 

seen that the stationarity requirements are rather restrictive for forecasting. 

One of the simplest models, which is related to that given by equation (5.2.2), takes tlic forin 

yi, j =a yi-,, j +P yi, j-l + ei, j (5.2.1.1) 

where ei, j is an error whose distribution is usually assumed to be normal. 

The structure of the dependence is shown in figure 5.13 

Figure 5.13 

This model can be regarded as a two-dimensional generalisation of an AR(I) time series model. 

In Box and Jenkins time series, the autocorrelation structure of the data plays an important 

part in model selection. For nearest- neigh bou r models, the autocovariances are defined as 

P,, t =E( Yij Yi+"j+t ) 
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It is also assumed that the errors are uncorrelated, and that 

ei, j yi+,, j+t )=o, vi, j, 8, 

For the model defined by equation (5.2.1.1), the autocovariance is 

(5.2.1.3) 

yj, j yi+,, j+t )= ot E( yi-,, j yi+,, j+t )+8E(y,, 
j_l y, +"j+t 

) 

Ps, t = ot Ps+l, t + '0 PS, t+l (5.2.1.4) 

Equation (5.2.1.4) can be solved to give 

14 

where a A2 
_(1+ a2 _ '82 

)A+ 
Cr = 

and p=(1-aA)/8 

The recurrence relations (5.2.1.4), together with the boundary conditions 

p,, o = As and po, t = A-t (s>0, t>0) 

give the theoretical autocovariances. 

If there are n years' data available, in the form of a triangle, there are 

n (n 
2+1) 

observations. The empirical autocovariance of lag s, t is 
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CS't : --::: '11: Yi, j Yi+s, i+t N i, j 
(5.2.1.5) 

The empirical and theoretical autocovariances can be compared when selecting a model. 

The model given by equation (5.2.1.1) is one example of a nearest- neigh bou r model, and can 1w 

generalised to the following: 

yi, j r, as't yi-"j-t + eij 
f s'f} 

where Is, t} is a set of duplets, for which a,, g are non-zero. 

5.2.2 Model Selection and Parameter Estimation 

This section examines maximum likelihood estimation of the parameters and extends the 

theory of Akaike's Information Criterion (AIC) to two dimensional processes. Tfie general 

nearest- neighbour model, given by equation (5.2.1.6) can be written as 

ej, j 

I 
where ao, o 

and a' ,t=-a,, t for other values if (s, t). 

(5.2.2.1) 

The distributional assumption is that the errors, ej'j , are independently, identically distributed 

with mean zero and variance C, and that yi-,, j-t and ei, j are independent ((s, t) : t- 

The likelihood based on 

y=I Yij I Yi-ij 91 
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can then be written as 

I(alcly-) =1 exp I- -L ( 1: 1 
ý2- -wC 2C fs, t) 

""t (5.2.2.2) 

where a is the set of parameters I a' ,g}- 

The log-likelihood is 

f LC log 2wC ajl, t Yi_s, j_t )2 (5.2.2.3) 2 2C fs, tj 

Maximum likelihood estimates of the parameters can be obtained by maxirnising the log- 

likelihood with respect to a and C. 

Two examples of maximum likelihood estimation are now given: 

(a) consider a lag(1,0) model 

yi, j = alo yi-,, j + eij 

The maximum likelihood estimate of alo is 

nn 
EL yi, j Yi-l, j 

i=2 j=l 
alo nn 

1: E Y2 
i=2 j=l 

(a) consider a lag(1,1) model 

yi, j ==: alo yi_,, j + crol yi, j-l + ei, j 

171 



The maximum likelihood estimates of alo and ao, are 

n2 Öl l0 : -- ( i, r, Yi, j Yi-i, j)( E Yi 
, j-i )-( E Yi, i-l Yi-I, i Yi, i-i Yi, j j=2 i, j=2 i, j=2 

X, ýt 

t, j=2 

n 
Y? 

nn2 ( ý] 
i'j-1 I- 

F, yij-1 yi-ij 
i, j=2 

Xi ýý 
1, j) 

( 

slj=2 i, j=2 

nn2nn 
6101:: --:: ( :ý yij-1 Yi, j)( -E yi-1, j) -(E yi, j-1 Yi-l'i)( E, Yi-l, j yi, j) i, j=2 ij=2 i, j=2 i, j=2 

nnn 

i, 1=2 

2 )( 

. 

ý: Y2- -(E yi, j-1 yi-IJ) 
2 

( 
ý] yij-1 

spj=2 
i l'i 

) 

i, j=2 

Instead of doing this, the information criterion method of Akaike will be used, as it simplifies 

the calculations. Akaike's Information Criterion has been widely applied to one-dimensional 

ARMA models, and it can be extended to nearest- neighbou r type models. AIC is defined as 

-2 log ( maximum likelihood )+2 (number of parameters ) (5.2.2.4) 

The log-likelihood for a single observation is given by equation (5.2.2.3), and the log-likchhood 

for the whole sample is 

NxL(g, CIy). (5.2.2.5) 

The maximum likelihood estimates, & and ý, ' , are such that 

L(&, ý, ' ly) =max L(a, Ciy). (5.2.2-6) 
a, C 
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Hence AIC can be written as 

-2 NxL(&, ý, ' Iy)+2 (number of parameters ). (5.2.2.7) 

The first term decreases as the number of parameters increases, and the second term incrcasvi;. 

There is thus a trade-off between fit and parsimony: a good model will have a low valtie of 

AIC. In order to calculate the maximum log-likelihood value, the maximum fikeliho(xi 

estimates could be found and substituted into the log-likelihood. Instead of doing this, it is 

simpler to estimate the limit of the time average of the expected log-likelihood and inaxitni., w 

that. This yields estimates with the same characteristics as the ordinary maxinium likelihood 

estimates. Akaike (1976) derives the results for a one-dimensional ARMA inodel and the 

analogous results for a nearest-neighbour model are now derived. 

The log-likelihood is 

1 )2 L log 2xC as, t yi-s, j-t 2 2C 18't I 

log 2wC - --L EE als, t alk, I Yi-s, j-g 2C fs, t} fk, l} 

(5.2.2.8) 

The expected value of the log-likelihood is 

1 (5.2.2.9) log 21rC Ctß, t alk, 1 Pk-#, 1-f * 2 2C Is, tl Jkj} 

The theoretical autocovariances are unknown, but they can be replaced by tlicir strnple 

estimates: 
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-1 log 2wC - -L E 1: af., t at', 2 2C Is, t) fk, l) 
k (5-2.2.10) 

Maximising (5.2.2.10) with respect to and C gives the relations (5.2.2.11), which can be 

solved for &,, t and (ý. 

I 
&L.,, Ck-,, 

I-t =0 over all combinationB of (s, t) except 

(5.2.2.11) 

O= &�l Ck, 
{k, l} 

[&I 0,0 =1, by definition 

The estimate of the maximum log-likelihood is then 

-1 log 21r(ý 2 

and it is asymptotically justifiable to use an information criterion defined by 

AIC 2N( -1 log 2w(ý )+2 (number of parameters 2 

This equivalent to using 

AIC = -N log 4ý +2 (number of parameters ) (5.2.2.12) 

(neglecting N log 2x- , which is common to all models. ) An example of the mcthod is givcn in 

the following (artificial) example. 
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5.2.2.1 Example 

Data was simulated from the model 

yi, j : -.: 0.6 yi-�j - 0.2 yi-2, i + o*1 yi, j-1 

The methods described in section 5.2.2 were applied to calculate AIC for some possible niodels 

and the results are tabulated below. In the table, (s, t) indicates that the term in 

was included in the model. 

Terms Included AIC 

(110) 91.9 

(011) 330.7 

(2,0) 349.0 

(1,0) (0,1) 81.9 

(1,0) (2,0) 38.2 

(110) (011) (111) 79.6 

(1,0) (0,1) (2,0) 30.7 

(1,0) (0,1) (1,1) (2,0) 34.2 

Thus the model selected from these, using AIC is 

yi, j := al'o Yi-l, j + Cyo, l Yi, j-l + %, 0 Yi-2, j * 

The approximate maximum likelihood estimates of aj, O , oro, j and 02,0 , using equation 

(5.2.2.11), are 
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0.53 

Cl oI=0.080 

612,0 = -0.21 

and the model which would have been estimated from the data is 

yi, j = 0.53 yi-,, j - 0.21 yi-2, j + 0.080 yi, j-l 

5.2.3 Stationarity 

Nearest neighbour models of the type given by equation (5.2.1.6) can be applied to any data 

which is in a suitable form. However, it is necessary first that the data are stationary if the 

estimation techniques described in the previous sections are to be used. The stationarity 

requirements are that 

E( yi, j ) and Var ( yi, j ) 

do not depend on (i, j) and that 

yi, j yi+,, j+t 
) 

depends only on (s, t), not on (i, i). 

Claims data are not usually stationary in this sense, and so have to be pre-processed before 

AIC can be applied. When forecasting the expected outstanding claims therefore, tile pr(--sent 

theory of classical time series has relatively limited use. However, they can be effeak-e for 

searching for correlations between the residuals and can be applied to the residuals after one of 

the models described earlier has been fitted. Further research is needed on methods of reducirig 

the data to stationarity. 
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5.2.4 State Space Representation of Two- Dimensional Classical Time Series 

The state space representation of one-dimensional classical time series has proved effecti, c and 

useful in the analysis of ordinary time series. All autoregres8ive processes can be repre-sented in 

state space form (see, for example, Davis and Vinter (1985)). It is possible to represent some 

two-dimensional time series in state space form, although a general formulation has not been 

found. The following theorem proves the interchangeability of a state space model and a two- 

dimensional time series model with (1,0), (0,1) and (1,1) lag terms. 

5.2.4.1 Theorem 

Consider the model 

y,,, = aloyi_,, j + aolyi, j_l + allyi-l'i-, + eij 

where ei, j are independent, identically distributed white noises. 

There exists some twcý-dimensional state process such that 

(5.2.4.1.1) 

hh0 alo ei+,, j Xi+l, j Ctio cfll+aloaol xij 
+ 

vv xi, j+l Ctol Xij 0 ei, j+l 

h xipj (5.2.4.1.3) 

X!, 

Proof 

(5.2.4.1.2) 

The two-dimensional autoregression given by equation (5.2.4.1.1) can be writtcn as 

Yi, j - ao, Yipj-l = aloy, _,, j 
+ all yi_l, j_l + eij 

--,:: 0110 ( yi-,, j - crolyi-l'i-I )+( oril + alocyol + ci, j 

(5.2.. 1.1. -1) 
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Let D (i ,j) represent I all information before (i ,j)} 

D(i J) =I Yk, l :< (ij) } 

Let F and G represent backward shift operators such that 

yi, j = yi-,, j 

Yi, j = Yi, j-l 

From equation (5.2.4.1.4), 

(5.2.4.1.6) 

(5.2.4.1.5) 

( yi, j+l - ctolyi, j )- orio ( Yi-l, j+l - Oroiyi-l, j )"( clil + (kloolol )Yi-l, j + ei, j+l 

ct, OF )( yi, j+l - crolyij )=( all + orloao, )yi-,, j + ei, j+l 

Therefore 

crol yi, j ct, OF )-l ( all + celocrol )Yi-l, i +(1- cy, OF 

(5.2.4.1.7) 

Now, from equation (5.2.4.1.4), 

yi+l, j+l _ aolyi+l,, = alo ( y,,, +, - ooly,, j )+( all + aloao, )yi, j + ei+l, i+i 

and since ei+,, j+l has expectation zero, the expectation of y, +,,, +, - aOjyj+j'j , given 

j+l) is 

ao, yi+,, j ID (i +1, i+ 1) 1 

ajOE [( yi, j+l - aolyi, j )I D(i+l , j+l) I+( Oril + clio"Ol )yi. j 

(5.2.4.1.8) 

From equation (5-2.4.1.7), 

yi. j+l - aolyi, j I 
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=(1- alo F )-l ( or,, + orloaol ) y, _,,, 
+ ei, j+l + erlo ei-,, j+l 

and 

Yi, i+l - crol yi, j ID(i, 

=(1- etlo F( all + alocoi ) Yi-�j + alo e, 2 
-, j+I + al() e, 

-2�+, 
+- 

Therefore 

Yi+l, j+l - otolyi+,, j I D(i+1 j+1) I= alo E[ Yi, j+l - aolyij I D(i 
, j+1 )j 

alo ei, j+l +( all + aloao, )y,,, 
j 

(5.2.4.1.9) 

h Let xi, j : -- E[ yi, j+l - ao, yi, j D (i j+ 

and xi' (5.2.4.1.10) S, j :: -- y i, 

Equation (5.2.4.1.9) can be written as 

hh 
xi+l, i : -- C1,10 Xij +( 0111 + Oloclol )Xit"j + Ctio ei, j+l 

Also 

yi, j+l E[ yi, j+l - aolyij I D(i j+l) ]+ aolyij + ei, j+l 

which can be written as 

h 
xi, j + ao, xl) -+ e- - (5.2.4.1.12) i'l 1, J+1 

Equations (5.2.4.1.10) to (5.2.4.1-12) together give the state space representation of the 

given by equations (5.2.4.1.2) and (5.2.4.1.3). 

It should be noted that this representation is not unique. 
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CHAPTER6 

F. 
1110; 

flfl 

6.0 Introduction 

In conclusion, some practical aspects of claims reserving have to be considered. The-, e are the 

stability of the predictions, the consideration of negative incremental claims and the lise of Ow 

predictions, their standard errors and the 'safe' reserves in practice. These siibjects are 

discussed in sections 6.1 to 6.3. 

The empirical Bayes Method has been compared with the dynamic forecasting inethod wf6cli 

uses the Kalman filter. An important point is that the Kalman filter reqtlir(---s the state 

variances to be specified be-fore the analysis begins. In the examples in chajAcr 4, figures from 

the empirical Bayes analysis have been used although these may not always be al)l)ropriatc, or 

available. There is no such requirement for the empirical Bayes mettiod, whicli estimatt-s the 

variances from the data. This requirement to specify variances is a disadvantage for the 

Kalman filter and practitioners will find the empirical Bayes method distinctly easicr to use, 

even if it may be thought that the recursive relationship between the parameters is 

appropriate. This point is discussed further in section 6.4, where some ideas for ftirther rc: s(-. trch 

are given. 

It should be noted that the methods in this thesis can be applied to any m(Acis for clamis 

reserving which can be written in the form of a linear model. This includes, for example, tbe 

separation method. 

There are now a number of Bayesian methods which are available to the clairris reserver, all of 

which have particular advantages over the classical estimation method. The chain ladder linear 

model represents a great step forward from the crude chain ladder technique and fuLs opened 

the way to more sophisticated estimation methods. 

A useful extension of the usual analyses which are carried out on claims data is the more 

detailed consideration of the development factors and the proportions of ultimate clalins: tbe 

parameters of the chain ladder and multiplicative models. The maximurn likelihood tlicory 

developed in this thesis has been used in a practical setting by the Iristatite of Actuar'i(-., 

Working Party on Claims Reserving (1989). 
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6.1 Stability of predictions 

Any of the Bayesian methods will improve upon the least squares (or uninforniative prior) 

approach on the basis of parameter stability. This is because more information Is used in 

estimating each parameter. For example, in the least squares case, there is only one data point 

from which to estimate the last row parameter; the Bayesian methods use the data from the 

other rows as well, or the prior information. To illustrate the affect of this consider a change in 

the data point in the last row from its present value of 344014 to 544014. The following table 

shows the predicted outstanding claims for each row from the different models. The first 

column shows the original results with no prior information. 

Table 6.1 

Oriainal Results 

No pjýior Dynamic Empirical 

Information Estimation Bayes 

Revised Results 

No pEior Dynamic Empirical 

Information Estimation Bayes 

110927 109955 109448 110927 109958 110094 

482157 491787 479568 482157 491822 481329 

660810 686441 655656 660810 686637 657998 

1090752 1076957 1033109 1090752 1078058 1039692 

1530532 1486991 1388261 1530532 1491978 1400466 

2310959 2217311 2002772 2310959 2239482 2024720 

3806976 3309887 3018896 3806976 3399256 3063229 

4452396 4545466 3780759 4452396 4847221 3819051 

5066116 4591188 3811869 8011412 5261069 4411270 

The last row prediction using no prior information has changed in proportion with the change 

in the data point. The other methods have dampened down this change because they use Inorc 

information in the estimation of the parameter. They therefore exhibit greater predictor 

stability. 
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The predictions from the Kalman filter estimates have been obtained using the same method a., 

in the other analyses, although it may be more proper to use the n-step-ahead-foreCiLsLs. Either 

of the Bayesian methods has the advantage of predictor stability, over the ordinary chain- 

ladder linear model. 

6.2 Negative Incremental Claims 

The incremental claims, Cj'j , have been logged before the linear models have been applied, 

and the implicit assumption that the data are lognormally distributed requires tfie data to be 

positive. Because of the nature of some lines of business, and the practice of using IBINR 

claims, negative values do arise and there has to be a sensible way to deal with thcni. 

Firstly, it may be possible to infer from the data the reason for specific negative valuo-s: for 

example a large cumulative value at one delay period may be offset by an adjustment in the 

following delay period. If it is thought that these values are not indicative of an intrinsic 

structure in the data, but are due to some accounting phenomenon (for example), thcn it may 

be appropriate to adjust the data to avoid negative values arising. 

Secondly, it is often sufficient to add a suitable constant to all the data valties to ensure that 

they are positive before the analysis and then to subtract the same constant from all fitted and 

forecast values. This is the approach which has been used, at present, when any data sets liave 

negative values. 

The third, and most sophisticated, method is to model the data according to the following 

distribution: 

f( cij )= aij f( cij I cij :ý0)+(1- Cfi, j )f( cij I cij >0) 

The positive data incremental claims can be analysed using the linear models as above. 'Hic 

negative incremental claims can also be analysed in the same way, or a suitable negati,., e 

weight can be chosen, depending on which is more appropriate in the light of the data. Tbe 

probability that the incremental claim at position (i, i) can also be estimated: a model could 

be applied, or it could be assumed that 
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Of i, i= Of vi, vj. (6-3.2) 

and a estimated. 

The forecast or fitted value is then a weighted average: 

C j, 6, j, 0)+C,, >0 (6-3-3) 

Generally, the second method should suffice, unless the data is very difficult. 

6.3 Reserves 

It is important to realise that the results must be used correctly. For example, it is often not 

necessary to produce a 95% upper confidence bound (a 'safe' reserve) on outstanding claims 

for each row, but only for the whole triangle, although the 'safe' reserve for the whole triaiigle 

may be allocated among the rows. This is important since it can be seen that the standard 

errors for each row are, in general, relatively large. The standard error of the overall total is 

more reasonable. To extend this further, the practitioner may be required to set a 'safe' reserve 

for the whole company, rather than for each triangle; this would reduce the relative size of the 

standard error still further. 

6.4 Further Research 

There are many extensions of the work in this thesis. The classical least squares theory has 

been implemented in GLIM by Renshaw (1989) and in SuperCalc5 by the Commercial Union 

Assurance Company. It would be desirable to implement the Bayesian methods, and in 

particular the results of chapter 3, in these packages. 

The consideration of negative incremental claims needs further attention, and some method of 

estimation without taking logs, but retaining the basic overall structure is needed. There is also 

scope for examining whether the variation is sufficiently modelled in the lognormal 

distributional assumptions. 

The models in tilis thesis have assumed that the data is lognormally distributed. On the Imsis 
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of this assumptioD, a rigorous and statisticallY sound theory of claims rc-ý-4, rýing hLs 1wn 

developed, but it would be desirable to consider the underlying assumptions in more detail 

using a large data set. 

It is also possible to model Lumbers of claims using a Poisson model. The niethods of this 

thesis could be applied to such a model. 

The empirical Bayes results have a credibilty theory interpretation and ran be cornpared with 

the results of de Vylder (1982). It would be interesting to compare empirical results from the 

two methods. It would also be possible to produce recursive empirical Bayes results which 

could be compared with recursive credibility estimates. 

It has been stated that the Kalman filter estimation method has the disadvantage that the 

state variances have to be specified in advance. One way to get over this problem would be to 

use a classical estimation method as suggested by Harvey - see for example Ilarve), wid 

Fernandes (1989). This would mean either re-analysing the data each tirne a new diagonal is 

received, or assuming that the estimates from the early data are appropriate throughout. 

The time series models of chapter 5 have great scope for further work. In particular, Hic 

problem of stationarity needs further attention. It is also possible to apply the two-dirneiisional 

Kalman filter theory to the Bayesian forecasting models in Harrison and Stevens (1976) otl)(, r 

than the regression models which are the subject of this thesis. 

The results of this thesis can be used to model Age/ Period /Cohort data, and a ftill stwly of the 

methods of Osmond and Gardner (1982), Osmond, Gardner and Acheson (1982) and Walter, 

Miller and Lee (1976) is justified. It would also be possible to apply the results to demographic 

theory, a recent paper which uses similar models to those used here being Raeside (1988). Tfie 

application of the results to the epidemiological theory in the paper by Zegcr, See arid Diggle 

(1989) would also be possible. 
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Appendix 1 

Theorem 

Consider the state space system defined by the following observation and systern equati(ýris: 

t Ft2t + Etilt + et 

Gt it + If t Rt + Et (Al. 2) 

where et N a, Vt ), 

jit N fit , Ut 

and wt N (a, Wt 

and are independent. Further et I! t , iýLj are sequentially independent. 

SUPPOSe It I( Y-1 I Y-2 Yt-1 
tlt-i , 

ct (A 1.3) 

From equations (Al. 3) and (Al. 1), the distribution of y, given information up to time t- I is 

Y-t I t-1 
N(Ft 

tit-1 , Ft Ci Ft + Vt (AIA) 

Then 

1+11t 
: --ý Gt b 

tit-1 
+ Ht fit + K, ( yt - it ) (A 1.5) 

where 

Ki =( Gt Ct Flt + Hi U, Eli )( Fg Ct Flt + Et Ut Elg + Vg )11A1.6) 

and 

C�j=GjCiG1 +HtU, 111 -(GC, F' +HgUtE')(FCt F' +VJ-1 (G, Ct F' + Ill (7 gf, 
' )+ wý tt1t919 

1.7) 
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Proof 

From equations (Al. 2) and (Al. 5), 

it+, -it+, It =::::: Gt (it -ý tit-1 
)- Kg (. yt - it )+ lit (j! t - 61) + 2yt 

Gt(2t -Itlt_, )- Kt( Ft2t + Etjjt +fit - FjAtjt_l - Ej6t )+ Ht (11, - 111) +Ej 

1 -8) 
(using equation (Al. 1)) 

Hence the covariance matrix of 0 
t+11t , 

Ct+j , satisfies the following equation: 

I Ct+l =(Gt -KtFt)Ct(Gt -KtFt)'+(Ht -KiEt)Ut(Ht -KtEt)l + KjVj Ki + Wj 

(A 1.9) 

Differentiating equation (Al. 9) with respect to Kt and equating to zero gives 

(Gt -KtFt)CtFlt +(Ht -KtEt)UtElt - Kg Vi =O (A1.10) 

Equation (AI. 10) can be solved for Kt in the form given by equation (Al. 6), and substituting A 

for Kt into equation (Al. 9) gives the Riccati equations, (Al. 7): 

Ct+, =GtCtGtl-2KtFtCtG't+KgFtCgF'tK't+HtUtH't -2KtEtUtH't +KtEtUtEliKft 

I K, V, Kt+ Wt 

I11 GgCtGt + HtUtB[lt -2Kt(FtCiGl + EtUjH') + Kt (FCtF/ + EjUt Et + VI) Kt 
ttt 

f GtCtG't + lItUtH't - Kt(FtCtG't + EtUtHt) + Wt 

1 1 GtCtGg + HgUtH'i - (G, CtF', + HUtE't)(FiCi Flt + Vt)-1 (GtCtFi + t9 
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Appendix 2 

This appendix contains examples of the computer programmes which have been written to 
implement the methods in this thesis. The first illustrates the Standard Chain Ladder Linear 

Model, giving the unbiased and maximum likelihood estimates. This programme ha-s to be 

used with a vague prior distribution in its present form, although it is straightforward to 

change the estimates to Bayesian estimates, as given in chapter 3. The Bayes, an version of th,, 

programme, which is identical up to the estimation of outstanding claims has been used for the 

results in chapter 3. The second programme is an example of the empirical Bayes estimation 

methods. 

The least squares results have been checked with the results produced by GLINI, Renshaw 

(1989). 

c This programme implements the Chain Ladder Linear Model, and gives 

c the Unbiased and Maximium Likelihood Estimates of Outstanding Claims. 

c Least squares results are obtained with a vague prior, and it is also 

c possible to enter Prior Information, althuogh the Prediction Equations 

c have to be altered. 
double precision y(150,150), x(150,150), d(150,150), dummy(150,150) 

&, dl(150), wkl(150), wk2(150), d2(150,150), z(150) 

&, bstar(150,150), yhat(150,150), b(150,150) 

&, bstarl(150,150), yl(150,150), p(150), bhatl(150) 

&, var, xn, X02AAF, d3(150,150), theta(150), c(150,150) 

&, tot (1 50), v (150,150), rowvar(l 50), fi nf(I 50), xn p 

&, mean(150,150), varme-an(150,150), resid(150,150), yfit(150,150) 

&, me-anl(150,150), varmeanl(150,150), totl(150), rowvarl(150) 

&, yhatl(150,150), varl(150,150) 

open (Ol, file='claims') 

open (02, file='result') 

open (03, file='plotdata') 

rewind 01 

read(01, *) ni, nj 

read(01, *) crit 

np=ni+nj-l 

read(01, *) ((yl(ij)j=l, min(nj, ni-i+l)), i=l, ni) 

read (01, *) (p(i), i=l, ni) 

read (01, *) (finf(i), i=l, ni) 

read(01, *) (theta(i), i=l, np) 

do 5 i=l, np 

do 4 j=l, np 
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c(ij)=O. O 

4 continue 

read(01, *) c(i, i) 

5 continue 

k=O 

do 7 i=l, ni 
do 7 j=l, min(nj, ni-i+l) 
k=k+l 

y(k, l)=Iog(YI(ii))-log(p(i))+Iog(finf(i+j-1)) 

7 continue 

n=k 

m=n-np 

xn=real(n) 
k=O 

do 30 i=l)ni 

do 30 j=l, min(nj, ni-i+l) 
k=k+l 

x(k, l)=1.0 

if (i. eq. 1) goto 11 

x(k, i)=1.0 

11 continue 
if O. eq. 1) goto 20 

x(k, ni+j-l)=1.0 

20 continue 

30 continue 

call pmd1(x, x, dummy, n, np, np) 

do 32 i=l, np 

do 32 j=l, np 

d2(ij)=dummy(ij) 

32 continue 

call prcdl(x, y, d, n, np, l) 

do 34 i=l, np 

dI (i) =d (i, 1) 

34 continue 

call F04ASF(d2,150, dl, np, bhatl, wkllwk2, ifail) 

do 38 i=l, np 

bstar(i, l)=bhatl(i) 

38 continue 

40 var=0.0 

call prod 2(x, bstar, yhat, n np, 1) 
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k=O 

do 50 i=l, ni 
do 50 j=l, min(nj, ni-i+l) 

k=k+ 1 

var=var+(y(k, I)-yhat(k, 1))*(y(k, l)-yhat(k, 1)) 

50 continue 
xnp=real(np) 

s=var/xn 

var=var/(xn-xnp) 

do 60 i=l, np 

do 59 j=l, np 

d3(ij)=dummy(ij)/var 

59 continue 

d3(i7i)=d3(i, i)+l/c(i, i) 

60 continue 

ifail=O 

call F01ACF(np, X02AAF(IT), d3,150, b, 150, z, l, ifail) 

print *, ifail 

call square (d3, d2, np) 

do 80 i=l, np 

d3(i, l)=d(i, l)/var+theta(i)/c(i, i) 

80 continue 

call prod2 (d2, d3, bstarl, np, np, l) 

ncrit=O 

do 130 i=l, np 

if (abs(bstar(i, l)-bstarl(i, l)). ge. crit) then 

ncrit =1.0 

endif 

bstar(i, 1)=bstarl (i, 1) 

130 continue 
if (ncrit eq-1) goto 40 

do 140 i=l, np 

write (02,9997) bstar(i, l), bhatl(i), sqrt(d2(i, i)) 

140 continue 

write (02, *) var 

nrow=O 

kl=l 

do 300 i=l, ni 

tot(i)=O. O 

totl(i)=O. O 
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do 250 j=l, nj 

yhat(ij)=bstar(l, l) 

if (i 
-eq. 1) goto 200 

yhat(ij)=yhat(ij)+bstar(i, l) 

200 if 6. eq. 1) goto 210 

yhat(ij)=yhat(ij)+bstar(ni+j-1, I) 

210 continue 
do 240 k=l, nj 

vO, k)=d2(l, l) 

if (i. eq. 1) goto 224 

va, k)=vO, k)+d2(i, i)+2*d2(l, i) 

if O. eq. 1) goto 222 

vO, k)=vO, k)+d2(i, ni+j-1) 

222 continue 
if (k. eq. 1) goto 224 

vo, k)=va, k)+d2(i, ni+k-1) 

224 continue 
if a. eq. 1) goto 226 

va, k)=vO, k)+d2(l, ni+j-l) 
if (k. eq. 1) goto 226 

vo, k)=vo, k)+d2(ni+j-l, ni+k-1) 

226 continue 

if (k. eq. 1) goto 228 

vo, k)=v(j, k)+d 2(l, ni+k- 1) 

228 continue 

240 continue 

yfit(ij)=yhat(ii) 

if (j. gt. min(nj, ni-i+l)) goto 241 

resid(ij)=y(kl, l)-yfit(ij) 

kl=kl+l 

241 continue 

mean(ij)=exp(yhat(ij)+0.5*s) 

tfunc=(m+ 1)*(var-v(j j))/(2*m) 

call g(m, tfunc, xg) 

mean I (ij)=exp(yhat(ij))*xg 

tfunc=4*tfunc 

call g(m, tfunc, xg) 

varl(ij)=xg 

tfunc=(m+l)*(var-2*v(jj))/m 

call g(m, tfunc, xg) 
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varl(ij)=varl(ij)-xg 

var I (ij)=varl (ij)*exp(2*yhat(ij)) 

250 continue 

do 255 j=l, nj 
do 255 k=l, nj 

vl=exp(yhat(ij)+yhat(i, k)+0.5*(vaj)+v(k, k))) 

varmeano, k)=(1-2*s/xn)**(0.5*(xnp-xn)) 

varmeano, k)=varmeano, k)*exp(vo, k)) 

varmeano, k)=varmeano, k)-(I-s/xn)**(xnp-xn) 

varmeanO, k)=varmeanO, k)*v1 

tfunc=(m+l)*(var-v(k, k))/(2*m) 

call g(m, tfunc, xg) 

varmean 1 (j, k) =mean I (i j) *exp(yhat (i, k)) *xg 

tfunc=(m+l)*(var-v(j, k)-0.5*(v(jj)+v(k, k)))/m 

call g(m, tfunc, xg) 

varmeanl(j, k)=varme-anl(j, k)-exp(yhat(ij)+yhat(i, k))*xg 

255 continue 
if (i. le. ni-nj+l) goto 299 

rowvar(i)=O. O 

rowvarl(i)=O. O 

do 280 j=nj-nrow, ni 

tot(i)=tot(i)+mean(ii) 

toti(i)=totl(i)+meanl(ii) 

if (j. eq. nj) goto 261 

do 260 k=j+l, ni 

rowvar(i)=rowvar(i)+2*varmeano, k) 

rowvarl(i)=rowvarl(i)+2*varmeanlo, k) 

260 continue 

261 continue 

rowvar(i)=rowvar(i)+varme-an(j j) 

rowvar 1 (i)=rowvarl (i)+varmean 10 j)+varl (ij) 

280 continue 

nrow=nrow+l 

tot(i)=tot(i)*P(i) 
totl(i)=totl(i)*P(i) 

rowvar(i)=rowvar(i) *p(i) *p(i) 

rowvar I (i)--rowvar I (i)*p(i)*p(i) 

299 do 300 j=l, nj 

yhat(ij)=mean(ij)*p(i) 

yhatl(ij)=me-anl(ij)*p(j) 
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300 continue 

do 310 i=l, ni 

write (02,9999) (yhat(ij)j=l, nj) 
310 continue 

do 311 i=l, ni 

write (02,9999) (yhatl(ij)j=l, nj) 
311 continue 

do 320 i=l, ni 

write (02,9998) tot(i), sqrt(rowvar(i)) 
320 continue 

do 321 i=l, ni 

write (02,9998) tot I (i), sqrt(rowvarl (i)) 

321 continue 

write(03, *) kl-l 

do 350 i=17ni 

do 350 j=l, min(nj, ni-i+l) 

write(03,9990) yfit(ii), resid(ij) 

350 continue 

9990 format(lx, 2flO. 6) 

9997 format (3x, 3 (f6.3,3x)) 

9998 format(lx, 3(fl2.0, lx)) 

9999 format(lx, 10(flO-O, lx)) 

stop 

end 

subroutine g(ml, tl, xgl) 

term= 1 

SUM=l 

k=l 

term=term*ml*ml*tl/((ml+2*k-2)*(ml+l)*k) 

sum=sum+term 

k=k+l 

if (abs(term) It. 0.0002) goto 2 

goto 1 

2 xgl=sum 

return 

end 

subroutine prod I (al, a2, a3, n l, n2, n3) 

double precision al(150,150), a2(150,150), a3(150,150) 

do 2 i=l, n2 
do 2 j=l, n3 
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a3(ij)=O. O 

do 1 k=l, nl 

a3(i j)=a3(i j)+al (k, i)*a2(kj) 

continue 

continue 

return 

end 

subroutine prod 2 (a l, a2, a3, n l, n2, n3) 
double precision al(150,150), a2(150,150), a3(150,150) 
do 2 i=l, nl 
do 2 j=l, n3 

a3(ij)=O. O 

do 1 k=l, n2 

a3(ij)=a3(ij)+a1(i, k)*a2(kj) 

1 continue 
2 continue 

return 

end 

subroutine square(al, bl, nl) 

double precision al(150,150), bl(150,150) 

do 10 i=l, nl 

do 8 j=l, i 

bl(ij)=al(i+lj) 

8 continue 

10 continue 

do 20 i=l, nl-l 

do 18 j=i+l, nl 

bl(ij)=bl(j, i) 

18 continue 

20 continue 

return 

end 
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" This programme is an empirical Bayes version of the chain 

" ladder linear model 
double precision y(150,150), x(150,150), d(150,150), dummy(150,150) 

k, dl(150), wkl(150), wk2(150), d2(150,150) 

k, bstar(150,150), yhat(150,150), b(150,150) 

k, bstarl(150), yl(150,150), p(150), bhatl(150) 

&, var, varalp, xni, xn, salp, ssalp, X02AAF 

k, wksl(150), wks2(150), aa(150,150), z(150) 
&, v (12,12,12,12), tot (1 50), rowvar(l 50), finf(l 50) 

& ymax(150,150), totmax(150), resid(150,150), yfit(150,150) 

& yhatl(150,150) 

open (Ol, file='claims') 

open (02, file='result') 

open (03, file='plotdata') 

rewind 01 

read(01, *) ni, nj 

read(01, *) crit 

np=ni+nj- I 

read(01, *) ((yl(ij)j=l, min(nj, ni-i+l)), i=l, ni) 

read (01, *) (p(i), i=l, ni) 

read (01, *) (finf(i), i=I, ni) 

k=O 

do 27 i=l, ni 

do 27 j=l, min(nj, ni-i+l) 

k=k+l 

y(k, l)=Iog(yl(ij))-Iog(p(i))+Iog(finf(i+j-l)) 

27 continue 

n=k 

xn-real(n) 

k=O 

do 30 i=lni 

do 30 j=l, min(ni, ni-i+l) 

k=k+ I 

x(k, l)=I. O 

if (i. eq. 1) goto 11 

x(k, i)=I. O 

11 continue 

if (j. eq. 1) goto 20 

x(k, ni+j-l)=1.0 

20 continue 
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30 continue 

call prod I (x, x, dummy, n, np, np) 
do 32 i=l)np 

do 32 j=l, np 

d2(ij)--dummy(ij) 

32 continue 

call prod 1 (x, y, d, n, np, 1) 

do 34 i=l, np 

dl(i)=d(i, l) 

34 continue 

call F04ASF(d2,150, dl, np, bhatl, wkl, wk2, ifail) 

xni=real(ni) 

do 50 i=lnp 

do 49 j=l, np 

b(ij)=O. O 

49 continue 

bstar(i, l)=bhatl(i) 

50 continue 

do 51 i=2, ni 

do 51 j=2, ni 

if (i. eq. j) then 

b(ij)=b(ij)+(xni-2)/(xni-1) 

else 

b(ij)=b(ij)-l/(xni-1) 

endif 

51 continue 
52 salp=0.0 

ssalp=0.0 

do 60 i=2, ni 

salp=salp+bstar(i, 1) 

ssalp=ssalp+bstar(i, 1) *bstar(i, 1) 

60 continue 

varalp=(. 2+ssalp-salp*salp/(xni-1))/(xni+- 1) 

call prod2(x, bstar, yhat, n, np, l) 

var=0.0 

k=O 

do 100 i=l, ni 

do 100 j=l, min(ni, ni-i+l) 

k-k+ I 

11 var=var+(y(k, l)-yhat(k, 1))*(y(k, I)-yhat(k, 1))/(xn+2) 
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100 continue 

do 110 i=l, np 
do 110 j=l, np 
d(i j)=b(i j) * var/varal p 
d(ij)=d (i j)+dummy(i j) 

110 continue 

call F04ATF(d, 150, dl, np, bstarl, aa, 150, wksl, 

wks2, ifail) 

ncrit=O 
do 130 i=l, np 
if (abs(bstar(i, l)-bstarl(i)). ge. crit) then 

ncrit =1.0 

endif 
bstar(i, l)=bstarl(i) 

130 continue 
if (ncrit eq. 1) goto 52 

call F01ACF(np, X02AAF(IT), d, 150, b, 150, z, l, ifail) 

call square(d, dummy, np) 

do 135 i=l, np 

do 135 j=l, np 

dummy(ij)=dummy(ij)*var 

135 continue 
do 140 i=l, np 

write (02,9997) bstar(i, l), bhatl(i), sqrt(dummy(i, i)) 

140 continue 

write (02, *) "varalp=", varalp 

nrow=O 

kl=l 

do 160 i=l, ni 

do 160 1=1, ni 

do 160 j=l, nj 

do 160 k=l, ni 

v(ij, l, k)=dummy(l, l) 

if (i. eq. 1) goto 150 

v (ij, l, k) =v (i j, l, k) +dummy (1, i) 

if (I. eq. 1) goto 150 

v(ij, l, k)=v(ij, l, k)+dummy(i, l) 

150 if (I. eq. 1) goto 152 

v(ij, l, k)=v(ij, l, k)+dummy(l, l) 

if (j. eq. 1) goto 152 
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v(ij, l, k)=v(ij, l, k)+dummy(l, ni+j- 1) 

152 if (k. eq. 1) goto 154 

v (i j, l, k) =v (i jj, k) +dummy (i, ni+k- 1) 

if (i. eq. 1) goto 154 

v(ij, l, k)=v(ij, l, k)+dummy(i, ni+k-1) 
154 if O. eq. 1) goto 156 

v(i j, l, k)=v(i j, l, k) +dummy (l, ni+j- 1) 

if (k. eq. 1) goto 156 

v(ij, l, k)=v(ij, l, k)+dummy(ni+j-l, ni+k-1) 
156 continue 

if ((i. eq. 1). and. O. eq. k). and. a. gt. min (nj, ni- 
ki+l))) then 

v(ij, l, k)=v(ij, l, k)+var 

endif 

160 continue 
do 300 i=l, ni 

tot(i)=O. O 

totmax(i)=O. O 

do 250 j=l, nj 

yhat(ij)=bstar(l, l) 

if (i eq. 1) goto 200 

yhat(ij)=yhat(ij)+bstar(i, 1) 

200 if (j. eq. 1) goto 210 

yhat(ij)=yhat(ij)+bstar(ni+j-1,1) 

210 continue 

yfit(ij)=yhat(ii) 

if (j. gt. min(ni, ni-i+l)) goto 241 

rcsid(ij)=y(kl, l)-yfit(ij) 

kl=kl+l 

241 continue 

yhat(ij)=yhat(ij)+0.5*v(ii, ii) 

yhat(ij)=exp(yhat(ij)) 

if a. gt. min(nj, ni-i+l)) goto 247 

ymax(ij)=exp(yrit(ij)-log(finf(i+j-l)))*p(i) 

247 continue 

250 continue 
if (i. le. ni-nj+l) goto 299 

rowvar(i)=O. O 

do 280 j=nj-nrow, nj 

tot(i)=tot(i)+yhat(ij) 
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totmax (i) = totmax (i) +ymax(i 

if a-eq. nj) goto 261 

do 260 k=j+l, ni 

rowvar(i)=rowvar(i)+2*yhat(i, k)*(exp(v(ij, i, k))-l)*, 
I,, 

hat(ij) 

260 continue 
261 continue 

rowvar(i)=rowvar(i)+yhat(ij)*yhat(ij) * (exp(v(i jj j))- 1) 

280 continue 

nrow=nrow+ 1 

tot(i)=tot(i)*P(i) 

rowvar(i)=rowvar(i)*p(i)*p(i) 

299 do 300 j=l, nj 

yhatl(ij)=yhat(ij)*p(i) 

300 continue 

do 310 i=llni 

write (02,9999) (yhatl(ij)j=l, ni) 

310 continue 
do 320 i=l, ni 

write (02,9998) tot (i), sqrt (rowvar (i)), totmax (i) 

320 continue 

write(03, *)kl-l 

do 350 i=l, ni 

do 350 j=l, min(nj, ni-i+l) 

write(03, *) yfit(ij), resid(ii) 

350 continue 

do 355 i=ni-nj+2, ni 

gtot=gtot+tot(i) 

vgtot=vgtot+rowvar(i) 

355 continue 

do 400 i=ni-nj+2, ni-1 

do 400 j=ni-i+2, ni 

do 400 I=i+l, ni 

do 400 k=ni-1+2, ni 

vgtot=vgtot+2*yhat(ii) *yhat(l, k) *(exp(v(i j, l, k))- 1) 

400 continue 

write (02,9991) gtot, sqrt(vgtot) 

9991 format(lx, 2(fl5.0, lx)) 

9997 format(lx, 3(f6.3,3x)) 

9998 format(lx, 3(fl2.0, lx)) 

9999 format(lx, 10(flO. O, lx)) 
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stop 

end 

subroutine prod 1 (al, a2, a3, n l, n2, n3) 
double precision al(150,150), a2(150,150), a3(150,150) 
do 2 i=l, n2 
do 2 j=l, n3 

a3(ij)=O. O 

do 1 k=llnl 

a3(ij)=a3(ij)+a1(k, i)*a2(kj) 

1 continue 

continue 

return 

end 

subroutine prod2(al, a2, a3, nl, n2, n3) 
double precision al(150,150), a2(150,150), a3(150,150) 
do 2 i=l, nl 
do 2 j=l, n3 

a3(ij)=O. O 

do 1 k=l, n2 

a3(ij)=a3(ij)+a1(i, k)*a2(kj) 

continue 
2 continue 

return 

end 

subroutine square(al, bl, nl) 

double precision al(150,150), bl(150,150) 

do 10 i=l, nl 

do 8 j=l, i 

bl(ij)=al(i+lj) 

8 continue 

10 continue 

do 20 i=llnl-l 

do 18 j=i+l, nl 

bl(ij)=blo, i) 

18 continue 

20 continue 

return 

end 
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