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Abstract

This thesis is concerned with defining, theoretically,
approximate values of wind loading and predicting dynamic
response of air-supported structures subject to suddenly
applied loads.

Wind loading on air-supported structures is a phenomenon
involving significant mutual interaction between inertial,
elastic and aerodynamic forces. The aerodynamic forces
described by fluid mechanics equations are examined in the
first part of the thesis, Chapters 2 to 6. Chapter 2
contains a brief discussion of wind as a flow of air around
rigid bodies. This review is followed by an introduction to
modern wind engineering, and then by discussion on the
theoretical and/or experimental methods to assess wind
response of flexible structures.

Under the simplifying assumption of three-dimensional
potential flow of an incompressible, inviscid, steady air
flow, the three-dimensional pressure coefficient
distribution on an open-sided paraboloid shallow shell roof
is examined in Chapter 5, employing three versions of a
vortex-lattice method. The modified Hedman method with
horseshoe vortices in the plane z=0, and a boundary
condition of tangential flow applied on the body of the
shell yielded the best results. In the Appendix to Chapter
5 a real flow solution based on the 'SIMPLE' algorithm is
investigated for a numerical example of a thin shell
submerged in steady flow - a two-dimensional approximation
of the section employed in Chapter 5. For a 3D structure
which cannot be adequately represented by 2D model a simple
3D potential flow solution is likely to yield more accurate
pressure distributions than a sophisticated 2D real flow
analysis.

The wind tunnel tests described in Chapter 6 were conducted
on a thin, rigid eliptic paraboloid subject to two flow
conditions:	 uniform flow, and in the thick turbulent
boundary layer. The theoretical results predicted fairly
well the mean pressure distribution on the shell in uniform
flow, except on the rearmost part of the model, where
separation occurred. In the case of the turbulent boundary
layer flow, discrepancies in mean pressure coefficient
distributions are of the same order as for uniform flow.
However, as the turbulent boundary layer flow is a much more
complicated phenomenon than the theoretical description of
potential flow, the above conclusion cannot be generalized
without further work. The vortex-lattice method, due to its
simplicity, can be easily incorporated into any structure-
fluid interactive scheme accounting for both static and
quasi-dynamic behaviour, and an assessment of dynamic
response is essential for the design of large air-supported
structures.
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The second part of the thesis, Chapters 7 to 12, is
concerned with the structural response of air-supported
structures; with special emphasis on the dynamic response
following sudden release of a loading system. Chapter 7
gives a review of methods of analysis for pneumatic
structures; those experiencing strong geometric non-
linearities are especially focused. The dynamic relaxation
method with kinetic damping is discussed in Chapter 8 with
respect to the static analysis of pneumatic structures;
structural idealization depending on the fabric patterning,
type of loading and kind of membrane material being used.

Two series of model tests are described; both employing
fairly large scale pneumatic domes. The first test model
constructed using an orthotropic woven fabric is subject to
centrally placed suddenly applied loading. The second test
model constructed with very lightweight polythene is subject
to suddenly released loading, both central and asymmetric.
For this case the internal air and added mass effects become
dominant.

Explicit dynamic analysis using a centred finite difference
scheme is employed in Chapter 9 to analyse the response of
pneumatic structures; and in particular to assess the
response of the test structures. The influence of
surrounding air is included as far as internal air
stiffening is considered. For the suddenly unloaded dome, a
revised, more efficient numerical scheme is developed, where
checking for buckling is carried out at each time step, but
creep strains, updated stiffness matrices and unit pressure
vectors are calculated at less frequent intervals.

In Chapter 10 the tests on the impulsively loaded and
unloaded pneumatic domes are described. Dome membrane
properties are established from static and dynamic tests on
specimens. For dynamic tests a new procedure is devised, to
model more closely the state of stresses, by including two-
dimensional stresses in the testing area of the specimen.
Still and movie cameras were used in the static and dynamic
tests on the pneumatic domes to record deflection. The
results were analysed by means of photogrammetric
techniques. The static results compare very well with
theoretical predictions. The theoretical dynamic trace for
the apex nodal deflection of the impulsively centrally
loaded dome differs only slightly from experimental results.
The heavy central load influences greatly the response.
Discrepancies between theoretical and experimental dynamic
responses of the very lightweight and suddenly unloaded dome
are however large. The main area of error is caused by
improper modelling behaviour of the surrounding air which
should be treated as an intrinsic part of the structure.
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A coupled fluid-structure explicit dynamic analysis,
including membrane and air modelling, is presented in
Chapter 11. The behaviour of irrotational, inviscid,
compressible fluid is described from a Lagrangian point of
view. Although only the simplest axisymmetric case is
considered, the amount of computing is enormous, hence the
procedure cannot, at present, be advocated for use in
practice. In Chapter 12 the added mass effect due to
vibrating air is discussed. A method to account for virtual
mass in shallow pneumatic structures, based on potential
incompressible flow and discrete source distributions, is
presented and included in the numerical explicit dynamic
procedure. The results for the centrally unloaded dome show
a great improvement in terms of frequencies, with only a
small increase in computing time compared with the numerical
scheme of Chapter 9. The discrete source distribution
method to calculate added mass effects can be easily
extended to any shape of pneumatic structure, and when
combined with an explicit dynamic analysis can provide a
useful scheme for calculating frequencies and the
approximate dynamic response of air-supported structures.
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CHAPTER 1

Introduction

Air-supported structures: state of the art and problems

encountered in design.

Recent advances in design techniques and the manufacture of

high strength impermeable materials such as PVC coated

polyester fabric, teflon coated glass cloth or silicon

rubber coated glass, make it possible to construct large

span air-supported and suspended membrane structures in a

variety of geometrical forms. The very low mass of these

fabrics (of the order .5-10 kg/m 2 ), their considerable

tensile strengths (500 - 1500 N/cm), and their flexibility

and uniform translucence are properties which enhance their

popularity as a versatile material for the architectural and

engineering design of wide-span structures.

An air-supported structure, the idea for which was initiated

by the Engineer Frederick William Lanchester in his patent

of 1917 for a field hospital, is a very elegant concept: a

structural membrane is supported by a small pressure

differential, usually between 15 and 25 mm of water

pressure. Unlike materials used in conventional structures,

the membrane is not directly resisting the applied external

loads, but is containing the internal air, so that the

action of air pressure forms a stable structure against

external loadings.



If the external loads were uniform and normal to the

surface, then an equal internal pressure differential could

support these loads directly, leaving the membrane as purely

a separating medium free of stresses above those required

for simple stability. Since, in this instance, no

additional stresses are transferred into the membrane

material, anchorage forces can be kept to a minimum. This

means that, unlike other structural concepts, there is no

theoretical limit to the span of such an "idealized" air-

supported structure. However, in practice, the external

surface loadings are never uniform, and so the pressure

differential must be high enough to prevent compressive (or

buckling) stresses in the membrane as the fabric is capable

of sustaining only tensile stresses. Furthermore,

distortions under non-uniform loading can only be limited by

a reasonable excess of internal pressure.

As air-supported structures can be erected or dismantled

quickly, they are portable and inexpensive (from the

worldwide survey, March 1984, the costs of manufacture and

erection average out at £40.00 (m 2 [146]), hence they can

offer a possible solution to a wide range of problems, both

of social and commercial kind:-

shelters for storage, recreation arenas, production units

and exhibition arenas of both a temporary and permanent

nature. They are also being used increasingly as the

formwork for casting rigid shells of rapid-hardening

concrete or plastics. Research has been carried out

concerning the possibility of using an inflatable structure



as an enclosure for a city in very cold climates (Northern

Alberta [135]), and even in space projects for the

construction of certain types of satellites and re-entry

vehicles [120, 121, 142, 143].

The variety of possible forms of air-supported structures

can be demonstrated by using analogies, such as inflated

soap films over various complex plan shapes. With all these

inflated soap films, the minimal surface area shapes

obtained have a tendency to generate spherical, doubly

curved synclastic forms. Soap bubbles conglomerate in a

particular manner. They always meet at an angle of 120° to

one another and the relationship between the radius of

curvature of the film and the pressure differential across

it is always constant. In addition to this, Frei Otto came

to the conclusion that any shapes derived by revolving a

linear form about an axis could be pneumatically achieved

[165].

There is no generally accepted design procedure for air-

supported structures [203]; their precise behaviour is very

complex and there has not yet been sufficient monitoring of

existing structures to predict accurately their behaviour

and failure mechanisms. Figure 1 (re-printed from [203])

illustrates the problems encountered during the design of

air-supported structures, in the form of inputs (sometimes

feedback) from the structural analysis.



Pneumatic structures carry external loads by deforming, so

the membrane has to find a new shape to balance the new

loading pattern. The deformation can typically be up to 10%

of the roof span in conventional airhouses [43]. This

influences the load pattern, which in turn changes the

deflections. The most important external forces are those

resulting from extreme weather conditions such as storm

winds and snowfalls.

Snow loads, although difficult to define since they depend

upon a large number of factors such as ground snowfall,

wind, temperature, humidity, surface condition and the

temperature within the structure, are treated as static

loads. Hence they present no major difficulty for analysis

when using a suitable static non-linear procedure, which

should account for possible build-up of snow as the

structure deflects. They are, nevertheless, likely to be

critical from a design point of view since they can result

in dimpling of the air-supported surface structure and hence

a gradual inversion and build-up of snow loading.

Many applications in hot or temperate climates will however

not involve such loading, and the present work is concerned

principally with the effects of wind loading on very wide

span systems. Wind loading on a flexible roof structure

should be regarded as an aeroelastic phenomenon, i.e. a

phenomenon which involves significant mutual interaction

between inertial elastic and aerodynamic forces. 	 The

relationships between them can be obtained in a theoretical



way by using dynamic equations, solid mechanics laws and

theoretical fluid mechanics. Any such analysis must at the

very least account for the added mass effect of the air

either side of the membrane. It has been shown, for example

by Irwin [97] for the case of an almost flat vibrating

membrane covering an infinitely slot in wall 67m wide, that

the added mass due to the surrounding air on both sides can

be 37 times greater than the real mass of the membrane.

The most precise approach to wind load response is to test

an aeroelastic model of an air-supported structure in a

fully simulated turbulent boundary layer with the fluid

(air) flow, material and structural properties scaled in

accordance with the laws of similitude [97]. Attempts at

complete modelling of flexible structures have been made

[97] with some notable success, but without achieving the

scaling of all the parameters. Only at full scale can

complete aerodynamic similarity be obtained [45].

It is unlikely to be economically feasible in view of the

current limitations of knowledge and computational systems

to employ either a rigorous numerical aerodynamic analysis

or to build and test a perfectly scaled flexible model.

Therefore, an approximate approach seems desirable for

design purposes.

The most common approach is to assume that aeroelastic

effects are of secondary importance (i.e. that wind-

structure interaction is negligible), and to obtain wind



loading as a distribution of mean plus randomly fluctuating

pressure coefficients from tests on a rigid model placed in

a wind tunnel with a simulated boundary layer. The

subsequent numerical analysis to define structural response

can be either "quasi-static" or dynamic with different

degrees of sophistication.

This approach can, in some ways, be justified when high

inflation pressures are employed. But there is an economic
incentive to use the lowest possible inflation pressure,

since this reduces membrane tension, foundation or other

load supporting forces, and the cost of fans. Hence the

above assumption of no wind-structure interaction becomes

erroneous or uneconomic [21, 158]. For low inflation

pressures, deflections due to wind loading are so large that

they change the air flow pattern and hence the pressure

coefficient distributions. The behaviour of the internal

air, which should be considered as an integral part of the

structure, can in particular be very large, especially for

low rise structures.

The inefficiency and the cost of rigid model tests (a

flexible model is rarely a feasible solution and always

expensive) creates a need for numerical wind load analyses

for air supported structures; especially those which have

large spans and employ low internal pressures.

This thesis is principally concerned with the structural

analysis of air-supported structures, and it is assumed that



the reader will be more familiar with structures than fluid

flow. Because of the importance of the latter, however,

chapter 2, which contains rather standard theory, is

included to explain wind as a flow of fluid.
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CHAPTER 2

Wind as a flow of fluid

Contents:

Basic terms - Boundary layer growth (flat plate in a uniform

flow, flow along curved surface, flow past a cylinder) -

Constitutive equations of fluid mechanics (equation of

continuity, equations of motion) - Review of solutions for

potential flow (exact analytical solutions, approximate

solutions, exact numerical methods) - Solutions for flow of

a real fluid (laminar boundary layer, turbulent boundary

layer) - Similitude law.

2.1 Basic terms

Wind response of flexible structures should be viewed as a

process involving interaction between inertial (dynamic),

elastic (solid mechanics) and aerodynamic (fluid mechanics)

forces. Although all three factors are very important, the

movement of air (wind) is the one which starts the

phenomenon, and is probably the most difficult to define.

Therefore, an investigation of fluid-structure interaction

should commence with a brief review of those aspects of

fluid mechanics which have a direct application to wind

engineering.

All materials exhibit deformation under the action of

forces:-

elasticity, when a given force produces a definite

deformation, which vanishes if the force is removed;

plasticity, if the removal of the forces leaves

permanent deformation;



flow, if the deformation continually increases without

limit under the action of forces, however small.

A fluid is material which flows. A gas (air) is a fluid

which is capable of filling any closed space to which it has

access and is classified as a compressible fluid. The

importance of compressibility is measured by the non-

dimensional parameter of Mach number: the ratio of inertia

to elastic forces, (which is also the ratio of the flow

velocity to the speed of sound in air). For wind speeds

below 50 mis, at which the Mach number is 15, the effect of

compressibility on wind pressure is less than 5% and,

therefore, the air can be treated as incompressible.

Another important aspect of fluid flow is viscosity. This

is often regarded as the 'stickiness' of a fluid and it is

its tendency to resist sliding between layers; more

rigorously, the rate of change of shear strain.

The most common descriptions of fluid flow are:-

1. Steady - the velocity at each point is independent

of the time and flow pattern, and is the same at

each instant,

2. Unsteady - the velocity is fluctuating with time

(opposite to steady),

3. Uniform - the velocity is the same at each point

of the flow,

4. Non-uniform - opposite to uniform (i.e. the

velocity is changing from one point in space to

another),



5. Laminar - the flow movement of particles is

smooth, behaving very much like laminae or

layers), sliding over each other, and

6. Turbulent- the particle behaviour may be entirely

random, with individual particles and groups of

particles spinning and rotating and moving first

in one direction, then in another, with no order

or method except that the whole aggregate is

proceeding in the streaming direction. This is an

essentially three-dimensional phenomenon.

The quality of flow immediately adjacent to a surface is of

great importance. In this region, called the boundary

layer, a mean speed of flow increases from zero at the

surface to the full streaming speed far away from the body.

Closer experimental study of boundary-layer flows discloses

that there are two different types of boundary layer:-

1.	 the laminar boundary layer - in which energy from

the main stream is transmitted towards the slower

moving fluid near the surface through the medium

of viscosity alone, and only a relatively small

penetration of energy to the layer close to the

surface results. Consequently an appreciable

proportion of the boundary-layer flow has a

considerably reduced velocity.

Throughout the layer, the shearing stress, I. is given by

Newton's law of viscosity

DU
	

2.1

3Y



where P. is a dynamic viscosity, which can be assumed

constant,

u,is the velocity in the x direction (see figure 2.1)

and

DU .
-- is the velocity gradient across the streaming
Dy

direction.

The laminar boundary layer can be visualised as a movement

of particles in infinitesimally thin layers, with each layer

having a different speed. The interface between these

layers can be represented by a row of very small elemental

vortices arranged as shown in figure 2.2. Each elemental

vortex contributes a velocity that adds to the mean flow

velocity on one side and subtracts from it on the other

side. The circulation, k, is distributed along the line of

the interface (or the surface in 3-D). This distribution of

circulation is defined as the vorticity, C ,

dk
2.2

dx

2.	 the turbulent boundary layer - in which there is an

appreciable transport of mass between layers. The

shearing stresses which occur in the flow are the

result of viscous action and mass interchanges in

a direction perpendicular to the surface. 	 The

total shear stress is given by:

I t =I 4- i	 2.3

where:
1 — is viscous shear stress given by eg. 2.1,

and

T - is the Reynolds stress, or turbulent mean

stress.



In turbulent boundary layer motion, a considerable random

motion exists in the form of velocity fluctuations, both

along the mean direction of flow and perpendicular to it.

As a result, energy from the main stream may easily

penetrate to fluid layers quite close to the surface and

therefore the velocity in these layers is not much less than

that of the main stream. However, in layers which are very

close to the surface (here assumed smooth) it is impossible

for velocities to exist perpendicular to the surface, so in

a very limited region immediately adjacent to the surface

the flow approximates to laminar flow creating a laminar

sub-layer (shearing action becomes purely viscous).

Typical mean velocity profiles in the two types of boundary

layer are shown in figure 2.1.

The shape of the turbulent boundary layer velocity profile

depends very much upon Reynolds number (the ratio of inertia

force to viscous force) and the surface roughness. Figure

2.3 (from [92]) shows experimental curves for the velocity

profiles of turbulent boundary layers on flat walls which

are smooth (a surface is considered to be aerodynamically

smooth if the height of surface irregularities is less than

the thickness of the laminar sub-layer) or rough, and with

varying Reynolds number.
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2.2	 Boundary layer growth (in two dimensions)

2.2.1	 Flat plate in a uniform flow (figure 2.4)

When a flat plate is placed in parallel flow at zero

incidence, the static pressure remains constant in the whole

field of flow. A laminar layer starts to develop from the

leading edge, then grows in thickness along the surface

until at some point a sudden transition to a turbulent layer

occurs. Because of the greater shearing stresses within the

turbulent layer, its thickness increases more rapidly than

that of the laminar layer. At the trailing edge, the

boundary layer joins with that from the other surface of the

plate to form a wake of retarded velocity which tends to

thicken as it flows away downstream.

2.2.2	 Flow along a curved surface

In the case of flexible structures, their shapes, if not

highly curved, at least exhibit some degree of curvature,

which causes a departure from the flat-plate boundary layer

growth. The major difference is that the main-stream

velocity, and hence the static pressure in a streamline

direction, is no longer constant Over the leading part of

the body the pressure gradient is negative; that is, the

static pressure of the free stream decreases along the flow

direction. This inhibits the growth of the laminar layer,

which is as a rule thinner than its counterpart on the flat

plate.

Over the rear portion, and in any flow situation where the

pressure gradient is positive in the flow direction (figure



2.5), the boundary layer thickens rapidly and the flow may

separate from the surface of the body before the rearmost

point is reached.

Referring to figure 2.5, the net pressure force on a

small element of fluid say ABCD, is such that it tends to

retard the element's velocity. This retarding force is in

addition to the viscous shear which acts along AB and CD and

it continuously slows down the element as it progresses

downstream. This slowing-down effect is more pronounced

near the surface, where the elements are remote from the

accelerating effect of the main stream.

Ultimately, at a point S on the surface, the velocity

profile slope p ui py becomes zero. Apart from the change in

shape of the profile, the layer must thicken rapidly under

these conditions in order to satisfy continuity within the

layer. Downstream of point S, the flow adjacent to the

surface may well be in an upstream direction, so that a

circulatory movement, in a plane normal to the surface, may

take place near the surface. A line may be drawn from the

point S dividing the flow into two; below the separating

line a circulatory movement, and above a continuation of the

mass flow of the boundary layer behind the point S. In

effect, the original boundary layer is separated from the

surface at point S, which is termed the separation point.

Reference to the velocity profiles for laminar and turbulent

layers shows that, due to the greater extent of fluid of



lower energy near to the surface in the laminar layer, the

effect of a positive pressure gradient on such a laminar

layer will cause separation of the flow much more rapidly

than if the layer were turbulent.

The result of separation on the rear half of a body is to

increase the thickness of the wake flow, with a consequent

reduction in the pressure rise, which should occur at the

rear. Sometimes the separation point may be followed by a

reattachment point, where the circulatory movement near the

surface has disappeared.

The transition from laminar to turbulent flow usually occurs

at some point along the surface. The process of transition

and the factors which determine its position are still not

fully understood [177]; although it is known that a shearing

velocity gradient is essential to the generation of

turbulence. Up to certain values of Reynolds Number (Re)x,

8	 U x
(typically 9 x 10	 ((Re) x - ---, where U is the local

mainstream velocity, v is the kinematic viscosity in the

mainstream, and x is the distance from the leading edge

along the surface in a streamline direction), small

turbulences in the laminar flow may be damped out, as only

fluctuations with a wavelength of the order of the shear-

layer thickness are amplified. At large Reynolds numbers a

range of disturbances is amplified and transition is

possible though not inevitable.



2.2.3	 Flow past a cylinder

A circular cylinder held in a. stream which is otherwise

uniform and with changing velocities is shown in figure 2.6.

U m D
At very low Reynolds number (here R e =	 < 1, where U

V

is the free stream velocity, and D is the cylinder

Free stream turbulence is a cause of early transition and

low turbulence is necessary to maintain a laminar layer.

Conversely, roughness of the surface will tend to initiate

transition in a laminar layer, but cannot cause transition

directly. It can only alter the shape of the mean-velocity

profile so that the shear layer becomes unstable at a lower

Reynolds Numbers and/or amplifies the existing velocity

fluctuations more quickly. The velocity profile becomes

unstable due to the positive streamline pressure gradient (a

positive gradient tending to cause earlier transition, and a

negative gradient later transition).

It should be borne in mind that a positive pressure gradient

may cause either separation or transition. The positive

gradient causes deceleration of the fluid particles in the

boundary layer. If the particles are all moving in parallel

straight lines, this will cause separation. Suppose for

example, that a small lateral disturbance is imposed on a

particle so that its path line becomes deflected; then the

effect of the positive pressure gradient tends immediately

to increase the deflection of the path line.	 Since this

sort of process will happen throughout the layer, it is

evident that general turbulence can rapidly ensue.

- 18 -



diameter), the flow behaves as if it were purely viscous and

the boundary layer extends to infinity. At slightly higher

values of Re (> 10) the boundary remains laminar over the

whole surface and separation occurs on either side near the

rear of the cylinder. A narrow turbulent wake thus

develops. With further increase of the Reynolds number the

separation points on either side move further apart in the

upstream direction increasing the width of the wake.

At values of Re somewhere between 60 and 140, a pair of

symmetrical vortices will begin to develop on either side of

the centre line behind the laminar separation points,

continuously stretching downstream until a stage is reached

when they become unsymmetrical (140 < Re < 5 x 10 4 ) and the

system breaks down. The subsequent wake motion is

oscillatory in character and will generate a transverse

force on the cylinder. If the frequency of vortex-shedding

coincides with the natural transverse frequency of the

cylinder then appreciable vibration may be caused.

At a stage when Re is between 4 x 10 5 and 5 x 10 5 the

condition is reached when transition to turbulence occurs

before separation. The points of separation which now occur

in a turbulent layer move suddenly downstream and the wake

width is very appreciably decreased.
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2.3 Constitutive equations of fluid mechanics

There are two basic means of describing the motion of a

fluid. In the Eulerian view attention is directed to a

particular point of space. As time elapses this point is

occupied by a succession of fluid particles. The position

of this point and time are independent variables.

From the Lagrangian or historical point of view attention is

focused on a particular fluid particle and its progress is

followed. The independent variables are: the initial

position vector of a particle and the time.

The Eulerian view is more common in fluid mechanics and will

be adopted in this chapter.

Fluids, like solids, obey the principles of conservation of

mass, momentum and energy.

2.3.1.	 Equation of continuity

The equation of continuity ( conservation of mass) expresses

the fact that for a unit volume there is a balance between

masses entering and leaving per unit time, and the change in

density.

oP =V (Pi) =0pt

where:

p is density,
4.4	 4 4q Is a velocity, q . Liu + iv + kw, and

2.4
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2.6

2.7

In the case of an incompressible fluid, dp/dt = 0, and

equation 2.4 takes the form:

->
V q = 0	 2.5

or, using cartesian co-ordinates:

DU
	

3V
	 3W

—	 0	 2.5a
DX
	 y	 Z

2.3.2	 Equations of motion

The equations of motion for a fluid are derived from

Newton's second law, which states that the product of mass

and acceleration is equal to the sum of the external forces

acting on a body. In fluid motion it is necessary to

consider two classes of forces: those acting throughout the

mass of the body (like gravitational forces), and those

forces which act on the boundary (pressure and friction).

The equation of motion can be written:

dq	 ->
P	 = F + P

dt

where:
->-F = i X + jK + kZ is a body force,

_ ->	 -	 ->
P =ip +j

>
p + kpz isasurface force, and

dq
presented in cartesian co-ordinates is:

dt
du	 DU	 0 U	 DU	 3U
-- = — + u — + v — + w —
dt	 zt	 ox	 py	 3 Z

dv	 DV	 3 V	 3V	 3 V
+U	 +W-

dt	 Dt	 ox	 3y	 Z

dw	 ow	 ow	 ow	 ow
+ U	 + V	 + W •--

dt	 zt	 ox	 Dy	 OZ
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The body forces do not present any problem as they are

generally known, but the surface forces depend on the rate

at which the fluid is strained by the velocity field present

in it.

The stress in a constant density fluid acting on x, y, z

planes can be represented as:

Px =	 (sax -P)	 i Txy	 k Txz

p = i T	 j (a -p) + ktyx	 yz

Pz =	 T zx	 j zy	 k(a z -P)

where

0, a a	 are internal normal stresses,f yl Z

T	 T	 are internal shear stresses,xy l xz

and p	 is a pressure

By analysing a small parallelepiped of volume dv = dx dy dz,

the resultant surface force P per unit can be found to be

[38]:

313X	 3 p,	 'Pz
P =	 + j 	 + k

OX	 3 y	 Z

Substituting equation 2.8 into 2.9 and then into 2.6, the

following equations are obtained:

du x	opOT

	

3T xy	 xzp	 = X +	 ) —
dt	 3X	 oy	 oz	 ox

dv	 pa
Y +	

opotxy
P -- = Y + (	 +	

otyZ
) — --	 2.10

dt	 ox	 oy	 oz	 ox

2.8

2.9

= Z + (
dw

P
dt

DT	 OT	 op .xz	 yz	 DOZ
+	 +	 ) - --

3X	 oy	 oz	 oz



Stoke's law, which is empirical, like Hooke's law, gives for

the surface stresses:

stress = 2 g (rate of strain)

for example

3 U

Crx =2 II (—)
3X

3U	 0 V

Txy = A ( — + — )
0 y o x

2.11

If g (the viscosity) is constant and the flow is
->

incompressible, A q = 0, and substituting 2.11 into 2.10

results in one form of the Navier-Stoke's equations:
_

dq	 _ 1	 A
-- = F - -VP + -v2i2
dt	 P	 P

In cartesian co-ordinates, for the x direction, equation

2.12 takes the form:

pia	 D U	 3 U	 D U	 1 p	 v. 3
2u	 3 

2
u 	 3 

2u

at	 px	 Dy	 3 Z	 P 3X P OX
2	 Dy 2	3z2

2.12a

The unsteady Navier-Stoke's equations (2.12) and the

continuity equation (2.4) are instantaneously valid in

turbulent flow. Because the equations are nonlinear,

however, the time-mean velocity components and the pressure

do not obey the Navier-Stoke's equations.

-
The time mean of a quantity 0, denoted by 0 is defined as:

T

2.12

0 = lim	 f 0 dt
T—>

2.13



2.14
3X	 oy

alj = - 2.16

Expressing all the instantaneous quantities, u, v, w, p and

X (equations in the y and z directions can be transformed in

a similar way) as the sum of time mean-values (with the

overbar omitted for simplicity) and fluctuating parts u'

v', w', P I I X', equation 2.12a becomes [38]:

	

32	 2	 23U	 311	 3U	 1 3 p
-- V -- W	 = X — —	 — (	 ---)
ox	 oy	 oz	 P ox	 P

ox2	 0y2 	 3z2

ou'w	 o UTV

The first line in the above equation is the equation for

steady viscous (laminar) flow and the second line contains

the gradients of the extra turbulent quantities divided by

density.

The quantities pu'u', pu'v' and pu'w' are mean rates of

transfer, by turbulence, of the u component of moment

through the faces of the small parallelepiped of volume

dxdydz, perpendicular to x, y and z respectively. The extra

turbulent stresses (the Reynolds stresses) can be summarized

by the following array:

9X

I yx

T zx

T Xy

y
o

T zy

T xz

Iyz

0
z

= - p

1-1,2 u'v'

—V'2

u'w'

u'v' v'w'

vi7.211147. v'w'

2.15

In tensor notation the total stress (viscous term added to

turbulent stress) is:



ax . _
P

DUTi ' 2 + 2 g (--)
DX

2.16a

For i = j = 1	 it takes the form:

and, as an example, for i = 1 and j = 2

DU	 DV
I xy = - P u'v' + g (-- + --) 2. 16b

The continuity equation, 2.5, is linear, hence its mean is

vsq = 0, as well as vq = 0.

The Reynolds stresses appear as extra unknowns in the mean-

motion equations (equation 2.14 and similar equations for

the y and z directions). The central problem of turbulent

flow is to find empirical expressions for them.

Boussinesq (1877) attacked the problem by assuming that the

turbulent stresses are proportional to the velocity gradient

(similar to viscous stresses). The coefficient of

proportionality, e m , was called the eddy viscosity and was

defined by:

Du
- p u'v' = p 6

III --

	 2.17
py

Here, em , can be thought of as the product of a velocity and

a length.

Prandtl (1925) developed a theory called the mixings -

length theory, where he proposed that the Reynolds stress

should be calculated from:



n	 DU	 DU

	

- p u'v' = p1 4 1 -- 1 --
	 2.18

Dy Dy

Using equation 2.17 we can write the following relation

between viscosity and mixing length:

DU
Cm = 1 2 I — I	 2.19

oy

According to Von Karman's hypothesis, the length I defined

by equation 2.18 is given by:

ou/oy
1	 = k 	 1 	  ID2u/Dy2

2.20

Where k is an empirical constant known as Von Karman's

constant.

In the case of an ideal fluid (incompressible with no

viscosity) equation 2.12 takes the form known as Euler's

equation of motion:

di1
-- = f - - v p
dt	 P

2.21



2.23

2.4 Review of solutions for potential flow

In the absence of viscous and other rotational forces, an

assumed irrotational flow upstream will remain so in the

region in consideration. Letting '71 denote the velocity

field in this region, the irrotationality condition states

that the velocity vanishes; that is

v x q = 0	 2.22

The preceding equation is automatically satisfied, if a

velocity potential 0 is introduced such that

For this reason, irrotational flows are also called

potential flows.

As a result of introducing the velocity potential, the

velocity vector (generally having three components) is

replaced by a single scalar quantity 0.

Substituting equation 2.23 into 2.22 yields the continuity

equation for incompressible potential flow as follows:

v20 ' 0	 2.24

Where V2 = V•V	 is the Laplacian operator, and equation

2.24 is called the Laplace equation.

The equation of motion 2.21 for potential and incompressible

flow can be presented in integrated form:

zØ	 1
p -- + p + - pq2 = H

z t	 2
2.25



2.26

which is known as Bernoulli's equation, with H being a

constant of integration.

The problem of incompressible potential flow past a

streamline body is commonly solved in two steps [39]:

1. A velocity potential is found by solving the

Laplace equation 2.24, which satisfies both the

boundary condition prescribed far upstream and the

requirement that the fluid velocity be tangent to

the body surface. The latter condition is

justified by the fact that the boundary layer

around the body is assumed to be thin.

2. Then the pressure field can be computed from

Bernoulli's equation and expressed as a

distribution of pressure coefficients. The

pressure coefficients, C p , are defined as:

CP -
P—P-.

1/2p14.12

Where pc., and goo are respectively the pressure and velocity

at infinity;

and for steady flow, by employing equation 2.25, C p is

expressed as:

12
C = 	2.27



2.4.1.	 Exact analytical solutions

Despite the fact that Laplace's equation is one of the

simplest and best known of all partial differential

equations, the number of useful exact analytical solutions

satisfying the boundary conditions is quite small, and valid

only for an extremely limited class of boundary surfaces.

In axisymmetric and three-dimensional cases the direct

problem of potential flow can be solved analytically only by

the technique of separation of variables. For this

technique to be applicable, the boundary must be a co-

ordinate surface of one of the special orthogonal co-

ordinate systems for which Laplace's equation can be

separated into ordinary differential equations. The only

exact analytic solution of the direct problem of potential

flow about a closed axisymmetric or three-dimensional body

is that for the general ellipsoid and its specialisations

[90].

In two-dimensional cases Laplace's equation is simply

separable in all orthogonal co-ordinate systems. This

technique is not commonly used, because in two dimensions

the direct problem of potential flow can be replaced by the

problem of finding a suitable conformal transformation of

the boundary. The use of this latter method has resulted in

a considerable number of useful potential flow solutions

[41].



There is also a fairly large number of two-dimensional and

axisymmetric solutions available from indirect methods. In

such approaches, first suggested by Rankine in 1871, a set

of known singularities is hypothesised to exist in the

fluid; usually in the presence of an onset flow. The

singularities most often used are: point sources, line

sources, doublets and vortices. For these, the fluid

velocity and pressure at any point can easily be obtained.

For two-dimensional and axisymmetric flows, the total stream

function of the singularities and the onset flow may be

utilised to calculate streamlines, any one of which may then

be considered to be a boundary surface [41]. A similar

procedure could be followed in three dimensions, but it

would be considerably more difficult because of the absence

of a simple stream function.

It is clear that the variety of boundary shapes for which

exact analytic solutions can be obtained is far too limited

to be of much use in practical applications, especially in

the case of flow about bodies of irregular shape.

2.4.2.	 Approximate solutions

Because exact analytic solutions are scarce and exact

numerical methods had been (up to the nineteen-sixties)

beyond the capability of hand computation, approximate

solutions in the past received most of the attention of

investigators of potential flow problems. Many approaches

have been formulated. Some are analytic, in that the

general solution can be written in a simple closed form, and



other are numerical in that considerable computation is

required to obtain a solution for each specific case.

A large and well-known class of approximate solutions uses

one or both of the following assumptions:

a) the body is slender, with small local surface

slope,

b) the perturbation-velocity components due to the

presence of the body are small with respect to the

uniform stream (i.e. the onset flow).

Another type of approximate solution utilises a distribution

of singularities interior to the body surface. For example,

the singularities are normally placed along the chord or

camber line for two-dimensional aerofoils, along the axis of

symmetry for axisymmetric bodies, and on the surface for

three-dimensional shapes. 	 Various types of singularities

are used, for example: sources, dipoles, vortices etc.,

both discrete and distributed. The locations and general

properties of the singularities are assumed, and their

strengths are determined so that boundary conditions are

satisfied in some sense on the body surface.

Some of these methods, although they yield only approximate

solutions, are well suited for particular cases. A prolate

spheroid in a uniform stream parallel to the axis of

symmetry can be exactly represented by a source distribution

of linearly varying strength located along the axis of

symmetry between the focii [90].



Other examples are vortex-lattice methods, which use a

distribution of vortices in the form of horse-shoes. These

methods are particularly well suited to analyse lifting

surfaces like, for example, thin wings. Typical among these

is the method of reference 175, which provides general

nonplanar capability, uses nonlinear boundary conditions,

and computes forces and surface pressures without the small-

disturbance assumptions common to classical planar wing

theories.

2,4.3.	 Exact numerical methods

The exact numerical methods approach to solving arbitrary

subsonic potential flow problems involves the mating of

classical potential theory with contemporary numerical

techniques. Classical theory is used to reduce an arbitrary

flow problem to a surface integral equation relating

boundary conditions to an unknown singularity distribution.

Contemporary numerical techniques are then used to calculate

an approximate solution to the integral equation. This

involves representing flow boundaries by surface panels on

which potential flow singularities are distributed. The

problem is then to determine their strengths to produce a

flow field satisfying the boundary conditions.

Whereas there is no limit to the number of different

singularity distributions that can induce a given flow

field, the type of singularity plays an important role in

determining the success of a numerical solution method. The

advantages of using the combined source-doublet



distribution, corresponding to the classical third identity

of Green, are described and demonstrated in reference 30.

Green's third identity shows [149] that any solution of

Laplace's equation may be expressed as the perturbation

potential induced by a combination of source singularities

of strength a, and doublet singularities of strength g,

distributed on the surface of the body:

0 (P) = fi c (Q) (- 1 ) ds + fi g (Q)j	 1
311Q ( 7;7 ) ds 2.28

Om
B	 B

Where

r - is the distance from the field point P to the boundary

(surface of the body) point Q, and - 1- is the derivative in
3n

Q

the direction of the surface normal.

There are varieties of different methods depending upon the

way singularities are located [176]; for example: constant-

strength source panel method, constant-strength doublet

panel method, doublet column panel method, or doublet

network panel method. When the idea was first conceived by

Hess and Smith [90], the surface of the body was

approximated by flat panels, but there soon followed more

sophisticated methods which used curved panels with varying

strength of singularities [30, 31, 72, 139, 176].

Some efforts have been made to simulate phenomena such as

separation [3], or rolled tip vortex sheets [199] - caused

by viscosity, and thus not directly obtainable from pure

potential flow.



2.5	 Solutions for flow of a real fluid

2.5.1	 Laminar boundary layer

The motion of fluid in a laminar boundary layer is described

by equations 2.5 and 2.12 together with appropriate boundary

conditions. Generally speaking, the process of obtaining

analytical solutions of the boundary layer equations

encounters considerable mathematical difficulties. The

differential equations are non-linear in most cases, so they

can be solved only by power-series expansions or by

numerical methods.

There are in existence comparatively few exact analytical

solutions [41], and they are for very simple geometric

boundary conditions.

For two-dimensional cases it is convenient to represent the

governing equations in terms of the vorticity vector ST, the

velocity vector Ti, and the stream function P. This has

the advantage of eliminating the pressure. These equations

are [77]:

dt 
= ( E - v)U + 1.01,9,2. g2-

V 2 W = -	 2.29

Ii = v x

For three-dimensional flows, it is necessary to define

multiple stream functions and therefore the problem becomes

somewhat more complex. For this reason, there have been

relatively few calculations in 3D using equations 2.29 [80].



Numerical methods to solve equations 2.5 and 2.12 require

mapping the surface of the body and the surrounding fluid so

far as there is any interference of the body into the fluid.

In three dimensions the task can be enormous. A wide

variety of basic techniques have been used, for example,

finite-difference, finite element, spectral or pseudo-

spectral and vortex or integral methods. Each has to be

integrated into a mesh. In general the computation of

viscous phenomena, with any useful degree of practical

resolution, leads to systems of equations that for

efficiency, have to be solved using some form of an implicit

numerical method.

2.5.2	 Turbulent boundary layer

Most flows which occur in practical applications are

turbulent and they are usually defined in terms of

quantities representing the mean and fluctuating parts of a

variable, as shown when Navier-Stokes equations were

discussed. The turbulent boundary layer is described by a

combination of the Navier-Stoke equations 2.14, the Reynolds

stresses 2.16, the continuity equation 2.5, and the boundary

conditions which require that the mean velocity components

and all turbulent fluctuations vanish at solid boundary

walls.

The numerical solutions in a turbulent flow are even more

difficult than in pure Viscous flow, because we face the

additional problem that there is no reliable general formula

for the extra turbulent (Reynolds) stresses. Therefore the



problem cannot be solved unless the extended Navier-Stokes

equations are 'closed' by replacing the unknown turbulent

quantities, involving Reynolds stresses, by empirical

combinations of the existing variables.

Two approaches have been used to model turbulence [80]: the

so-called first-order approach, in which the Reynolds stress

tensor is modelled in terms of the mean flow quantities; and

the second-order approach, in which the terms in the tensor

are carried along in the computations as dependent variables

expressed in terms of a higher order tensor, which must be

modelled.

The first approach forms the basis for the conventional

zero-equation (or algebraic), one equation and two equation

models. Most of these models are expressed in terms of a

turbulence velocity scale, V 1 and a turbulence length scale,

1. On dimensional grounds, a combination of these scales

determines the value of the kinetic eddy viscosity

Vt = Ct vl	 2.30

where Ct is a constant.

Algebraic models relate V t directly to averaged field

quantities, but both the one-and two-equation models contain

additional partial differential equations for the turbulence

scales.

The simplest models use, for the turbulence velocity and

length scales, equations that apply uniformly throughout the

flow. More elaborately, the distributions of v and 1 are



prescribed by different expressions for so-called "inner"

and "outer" layers.

For the simplest models of Reynolds stresses, the general

numerical techniques for turbulent flow are basically the

same as in laminar flow. More sophisticated models require

a finer mesh than those employed in laminar boundary layer

solutions.

2.6 Similitude law

Most real fluid flow problems can be solved, at best, only

approximately by analytical or numerical methods. Thus,

experiments play a critical role in verifying solutions, in

suggesting which approximations are valid, or in providing

results that cannot be obtained by theoretical analysis or

numerical simulation. Unfortunately most real flow

situations are far too large for conventional experiment at

their true size. The field conditions are so uncontrolled

as to make systematic study tedious and very expensive, so

in many cases are impossible to model. When testing of the

real system (that is, the prototype) is not feasible, a

model (that is to say, a scale version of the prototype) can

be constructed and the performance of the prototype

determined from that of the model.

Similitude of flow phenomena should not only occur between a

prototype and its model but also between the various natural

phenomena. There are three basic types of similitude [193],

all of which must be obtained if complete similarity is to



exist between fluid phenomena. They are:

1. Geometric similarity, which states that the flow fields

and boundary geometry of the model and prototype have

the same shape and therefore that the ratios, x,

between corresponding lengths, areas and volumes in the

model and prototype are the same;

2. Kinematical similarity - the ratios of corresponding

velocities and accelerations of the model and prototype

are the same throughout the flow, and equal to x ;

3. Dynamic similarity - the ratio of all forces acting on

any fluid mass should be maintained on all the

corresponding fluid masses throughout the flow fields,

and equal to x.

The above types of similitude can be expressed as scale

factors between the model and the prototype in each of the

three primary dimensions of mass, length and time, hence:

Length scale factor J'_= model length/prototype length

Mass scale factor J-t. = model mass/prototype mass

Time scale factor	 = model time/prototype time

The similitude law is presented here in very general terms;

each particular situation requires listing all physical

quantities which have potential roles in determining the

behaviour of the prototype. Then, by applying the

Buckingham's (PI) Theorem [193], the physical quantities are

transferred to non-dimensional parameters, which number is k

less than the number of the physical quantities, where k is

the number of independent dimensions (equal to three, if all

principal dimensions are involved).



In the case of wind loading on structures this procedure

yields [45] the following typical set of non-dimensional

parameters:

z/D	 - height above ground (typical length variable)

V(z)/V - wind speed coefficient (typical velocity variable)

z o /D - roughness number (ground roughness/structure rise)

P /R - density number (inertia of structure/inertia ofs a

air)

nD/V	 - Strouhal number (reduced frequency)

PaVD/P• - Reynolds number (inertia of air/viscous forces)

gD/V2 - gravity number (gravity forces of structure/inertia

of air)

E/Psv 2 - elasticity number/elastic forces/inertia of

structure)

- structural damping ratio

where

- is a structural length dimension (the size of a

building)

V	 - the mean wind speed at a reference height

- the density of structural componentsPs

Pa	 - the density of air

- height above the ground

V(z)	 - the wind speed at height Z

0	 - the aerodynamic roughness of the ground

- frequency of the structure

- acceleration due to gravity

- the elastic modulus of the structure

- the damping ratio of the structure

Close examination of these non-dimensional parameters leads



to the conclusion that the only scale factor at which

complete dynamic similarity 	 is	 obtained is when

= = 1 [45] that is at full scale, and that no

'model' can be completely accurate. The accuracy of a given

model depends on which non-dimensional parameters have been

matched, and on the significance of those excluded from the

matching. These aspects are discussed in more detail in

chapter 4.



CHAPTER 3

Modern Approach to Wind Engineering

Contents:

Atmospheric circulations - Wind loading on structures

statement of the problem (Fundamental aspects, Division of

the problem by scale, Division of the problem by frequency)-

Assessment of the problem - Design wind speed data -

Assessment of wind loading.

3.1 Atmospheric circulations

Wind, or the motion of air with respect to the surface of

the earth, is caused by atmospheric pressure difference

which arise from differences in the amount of heat received

from the sun. Other forces acting on a given mass of air

are due to curvature and rotation of the earth - the

Coriolis Forces. At large heights above the earth's

surface, where the effects of surface friction can be

ignored, and in quasi-steady conditions (i.e. when the

weather map is not changing rapidly), the resultant of these

forces produces a steady motion, parallel to isobars, which

is the so-called gradient wind speed.

The lowest height at which the wind velocity is equal to the

gradient velocity lies between 300 m and 3000 m above ground

level [84]. Below this height, in what is known as the

planetary boundary layer, the wind is retarded by surface

friction, so that the total kinetic energy of the flow is

reduced. The surface friction also generates fluctuations

in the flow (i.e. turbulence), so that there is a transfer



of kinetic energy from the mean flow into these

fluctuations. The result is that within this layer the mean

wind direction is no longer parallel to the isobars, (the

Ekmann Spiral), and its value decreases from the gradient

speed at the gradient height to zero at the earth's surface.

At a given height above ground level, the atmospheric

pressure is proportional to the mass of the column of air

lying above that height. If a mass of air is suddenly

transported upwards, it will undergo a rapid adiabatic

expansion and consequently its temperature will decrease.

Such a rising mass of air can only be in thermal equilibrium

with its new surroundings if the air temperature in the

atmosphere decreases with increasing height above ground

level at a rate equal to the decrease in temperature

obtained in the adiabatic movement of the mass of air

upwards. If the decrease of atmospheric temperature with

height satisfies this condition, the atmosphere is said to

be naturally stable, and the temperature to have an

adiabatic lapse rate. If the temperature decreases more

rapidly than the adiabatic rate, then a vertically rising

mass of air will remain hotter and therefore lighter than

its surroundings and will continue to rise. 	 Such an

atmosphere is said to be unstable. Conversely, if the

temperature decreases less rapidly than the adiabatic rate

or even increases with height, then a rising mass of air

will become heavier, than its new surrounding, and so will

tend to sink back again. Such an atmosphere is said to be

stable.



In general, the fluctuations in the new flow arise both from

mechanical stirring of the mean flow by surface friction and

from convection caused by the thermal gradient in the

atmosphere. However, most structural wind loading problems

are concerned with high wind conditions with (basic hourly-

mean wind speeds exceeding 10 m/s). In high winds, surface

friction causes so much mechanical stirring of the

atmosphere that the thermal effects giving rise to the

convection process are destroyed, [84] and the lapse rate is

always approximately adiabatic and the stability neutral.

Careful observations of the wind and of chart records from

meteorological stations reveal that the variations in wind

speeds are not regular, but are highly complex and irregular

[82]. This implies that the occurrence of a particular

value of wind speed can only be discussed in terms of a

probability. Thus, at any instant, a complete description

of the flow field is never likely to be available and any

useful description of the flow has to be obtained by

employing statistical theory.

3.2	 Wind loading on structures, statement of the

problem

3.2.1	 Fundamental aspects

The starting point for any rational consideration of the way

wind acts to produce loads on a structure must be an

appreciation of three fundamental aspects of the problem

[45]. These are:

1.	 the wind climate, comprising the weather systems that

produce strong winds.



2. the atmospheric boundary layer, comprising the lower

layer of the atmosphere in which the wind is modified

by the rough surface terrain; and

3. the structure, which is immersed in the boundary layer

and is itself a single element of the terrain.

In order to estimate the extent of any interaction between

the three aspects, the problem has been viewed as a whole by

Cook [45] and each aspect presented in terms of its overall

scale or by frequency.

3.2.2	 Division of the problem by scale

The scale parameters characterising the three fundamental

aspects are assumed [45] as:

1. 600 km - a measure for the scale of a typical weather

system producing strong winds in temperate latitudes,

2. 2500 m - the scale of the boundary layer. This value

is typical for the gradient height in strong wind, and

for the 'fetch' (the distance of the terrain upwind of

a structure, which influences the wind incident on that

structure)

3. 60 m, as a scale of a typical structure (most of the

major buildings in the UK are this size or smaller)

Comparing the scales leads to two conclusions:

1. There is negligible interaction between the wind

climate and the boundary layer; and

2. Interaction between the boundary layer and the

structure is insignificant in terms of scale. The

extent of this interaction will depend on the physical

properties of the structure in question.



3.2.3	 Division of the problem by frequency

The majority of data on the characteristics of wind comes

from anemometers mounted near the ground (usually at a

standard height of 10 m), and thus contain contributions

from the weather systems and from the boundary layer. One

method to break down the record into components by frequency

is to form the spectrum [45, 92, 153].

The first comprehensive spectrum of this type was compiled

by Van der Hoven at Brookhaven, Long Island, NY, USA and

is reproduced in Figure 3.1. This spectrum shows three

distinct features [45]:

1. A major peak at a centre-frequency of 0.01 cycles/hour,

which corresponds to the typical 4-day transit period

of fully developed systems, usually called the

macrometeorological peak.

2. A second major peak comprising a range of higher

frequencies which are associated with the turbulence of

the boundary layer and which range in period from about

10 minutes to less than 3 seconds. This is usually

called the micrometeorological peak.

3. The well defined gap between these two peaks, in which

there is little wind fluctuation over a range of

frequency of about one order of magnitude.

Other spectra compiled since this one have all confirmed

these three features to be typical of temperate latitudes

[45, 92, 182]. The existence of the spectral gap, which

separates the spectral components of the wind climate and



the boundary layer, confirms that there is negligible

interaction between the wind climate and the boundary layer;

hence permitting the separate and independent assessment of

these two aspects.

Acquisition of data on the characteristics of wind loads on

real full-scale structures is a long and expensive process,

hence it is usually only attempted by government research

organisations such as the US National Bureau of Standards,

the National Research Council of Canada or the UK Buildings

Research Establishment (BRE) [45].

A spectrum of pressure measured on the roof of a two-storey

house from the BRE full scale experiment at Aylesbury,

Buckinghamshire, is presented in Figure 3.2. The spectrum

shows a characteristic double-humped form, with the peaks of

each hump separated by an order of magnitude in frequency.

The lower frequency peak corresponds to the

micrometeorological peak in the Van der Hoven spectrum

(Figure 3.1), and is the contribution from the boundary-

layer turbulence. The higher frequency peak is caused by

turbulence generated by the building itself and is of a

scale approximately equal to that of the building. Each

contribution is of a similar magnitude, but this balance can

vary with location over the building. The width of each

peak is sufficiently great for the two contributions to

overlap each other. Although this does not necessarily

indicate an interaction, it is not possible to separate the

two contributions.



Clearly the characteristics of the boundary layer over

different types of terrain can be assessed without reference

to any particular structure [45]. Assessment of the flow

around a structure and the loads imposed on it by the wind

should be made in a manner which accounts for the additional

fluctuations introduced by the structure, and ideally also

for any interaction with the boundary layer.

3.3 Assessment of the problem

Wind effects on structures have been stated in subclause 3.2

in terms of three fundamental aspects: the wind climate, the

boundary layer and the structure. In practice there are

many different methods of assessment and prediction of wind

loads.

Cook in [45] gives six ways in which the problem is or has

been approached. The most common are those shown

diagramatically in Figure 3.4. The three aspects are shown

as individual ellipses, but those representing the boundary

layer and the structure are drawn overlapping to represent

the overlap and possible interaction. Boxes have been drawn

around the blocks to indicate the way in which the aspects

are grouped for assessment

a)	 Static Assessment

The design method derived from this approach was

simply to combine a design mean wind speed with a

design static loading coefficient to produce a

full design load. Buildings were tested in wind

tunnels assuming wind as a smooth uniform air

flow. This is generally no longer used.



b)	 Quasi-static Assessment - Time Domain -

(Current Code of Practice for wind loadings on

structures in UK, CP3: 1972, France and Australia)

This approach is a compromise which assumes that

all the fluctuations of load are due to the gusts

in the boundary layer; thus the contribution from

building generated turbulence is suppressed by

this method. The structure is assumed to respond

in exactly the same manner to gusts as it does to

the mean flow (quasi-static) It is implied that

the maximum load on a structure occurs at the same

instant of time as the maximum incident gust.

This leads to a design approach called the

equivalent-static-gust-method. In situations

where the contribution from the building is not

large (for overall forces and movement) the

accuracy of this approach is quite good. For

local forces on cladding, particularly in regions

of separated flow near the periphery of a roof,

the accuracy of this approach is, however, poor.

The equivalent-static-gust design method combines

a design gust wind speed with a design mean

loading coefficient (given in CP 3: 1972 only for

very simple shapes of buildings) to produce a

design load. The design wind speed is assessed as

the maximum gust speed likely to occur in the

lifetime of the structure. The gust duration is

usually taken as 1 second; hence, from Figure 3.1,

most	 of	 the	 fluctuations	 of	 the



micrometeorological peak are included in this

assessment.

Quasi-static Assessment-Frequency Domain -

(Current Code of Practice for Wind Loading on

Structures in Canada, Australia and USA)

If the structure is sufficiently stiff enough that

its response follows the quasi-static loading,

then the previous approach is adequate [45].

However, when the structure is sufficiently

flexible for it to respond dynamically, the

approach must be modified. In this modified

method, assessment of the boundary layer is made

separately from the wind climate and is made in

the frequency domain in terms of the spectrum of

the micrometeorological peak. The action of the

turbulence in producing loads on the structure is

quantified in terms of an admittance function, and

the response of the structure to the loads is

quantified by a frequency response function. The

design method using this approach is the

admittance method, advocated by Davenport [49-52],

which works entirely in the frequency domain in

the following manner. A design mean wind speed

determines the turbulence spectrum over any given

terrain; the admittance function corresponding to

the aerodynamic shape of the structure acts on

this turbulence spectrum to produce a quasi-static

load spectrum; and the frequency response function



of the structure operates on the quasi-static load

spectrum to produce the dynamic response spectrum.

It is worth noting that the quasi-static

assumption, that all the fluctuations of load are

due to the turbulences of the boundary layer, is

retained in this approach. The structure does not

respond equally to each loading frequency.

The accuracy of this method is reasonable, and can

be used for the design of structures with linear

dynamic characteristics [45].

d) Individual Assessment -

(Calculations of local pressures in the current

Code of Practice in the UK., Australia, Canada and

the USA).

Contrary to the previous approaches the

fluctuations contributed by the structure are

assessed; the contributions from the boundary

layer and from the building being assessed

together as separating them would cause

difficulties. This approach, largely empirical,

is used as a correction to an otherwise quasi-

static method.

e) Overall Assessment. [45]

In overall assessment, the performance of a

structure exposed to the wind conditions

prevailing at a particular site is assessed over a

long period of time, and no attempt is made to



divide the problem into its individual aspects.

This approach was employed by BRE to perform a

damage survey of the entire range of building

types in the UK over 20 years, from 1962 to 1982,

and is presented in Chapter 3 of Reference 45.

The performance of the existing stock of buildings

and structures when exposed to strong wind was

assessed, without any instrumentation, in terms of

actual damage sustained. Thus the results

obtained are only qualitative.

f)	 Ideal Assessment

This form of assessment ideally fits the observed

behaviour of the three fundamental aspects of the

problem. Only the design methods for stiff

structures, which respond statically to the

fluctuations of load, have been developed from

this form of assessment (c). No suitable design

methods have yet been developed for dynamic

structures to replace the quasi-static admittance

other than ad-hoc modelling [45].

3.4 Design wind speed data

Until the 1960s wind speed data was very simple, as it was

assumed that buildings were subjected to smooth uniform

wind. The first international conference on wind effects on

buildings and structures held in London in 1963 brought

about the transition from steady deterministic aerodynamics



to turbulent statistical aerodynamics. At this conference

Franck presented Jensen's Scaling Law (discussed in Chapter

2.6), Davenport presented his statistical approach to wind

loading [49] and Newberry presented the BRE's first data

from full-scale measurements on tall buildings in London.

More intensified work followed, directed at improving the

collection of meteorological data, and interpreting this

data, in terms of roundly-based probabilistic models, in a

manner suitable for use in the analyses of structures

subject to wind loading.

The quantities which are employed to define design wind

speeds are: the mean wind speed, the maximum gust speed and

turbulence intensity. They can be explained by looking at

Figure 3.3 which shows typical wind speed records taken at

height z [63, 64, 66, 67]. 	 The instantaneous wind speed,

Vz (t), varies with time as illustrated in Figure 3.3. The
_

mean wind speed, Vz , is the average of V(t) at height z

over a relatively long time period, T o , (usually 1 hour).

At any time, t, the instantaneous wind speed is given by:

Vz (t) = Vz + u z (t)
	

3.1

Where u(t) is the component in the direction of the mean

wind of the fluctuations due to turbulence. The mean value

of u(t) over the period, To , is zero. But an overall

measure of the degree of turbulence is given by the mean

square or variance:

T6 2 . 1	 Jo [ uz (t)] 2 dtU
To

0

3.2



The quantity 6u/V is called the intensity of turbulence.

The instantaneous wind speed can be averaged over much

shorter periods of time than 1 hour. From the wind speed

record illustrated in Figure 3.3 it is possible to obtain a

continuous series of values of T second gust speeds, VzT

averaged over a period of T. CE varies from 4 second for

low wind speeds down to about 1 second or less for extreme

winds); Vz is then the expected maximum of these values

occurring in the period To

A

The ratio Vz /Vz , the ratio of expected maximum T-second gust

to the mean wind speed for the period T o within which V4

occurs, is called the gust factor, KT

The most convenient way of presenting the mean speed data is

as follows [45]:

V = Vb Sa Sb •
	 Sz	 3.3

Where

b is the basic hourly-mean wind speed, the gradient

wind speed

As most wind engineering applications are concerned with

strong wind data, Cook and Mayne [45, 130] recommend using
—

for Vb the gradient wind speed, which is an extreme value

obtained by applying a statistical analysis, namely the

theory of extreme values, to the complete hourly-mean speed

data collected over a long period of time at a particular

site.



S at Sb ... Sz are the parameters which affect the

determination of the strong-wind speed and they are as

follows:

1. statistical factor, which depends upon the average

return period, T, and probability, PN, that the actual

maximum wind speed will equal or exceed a given value;

most commonly [45, 66] T = 50 years and P N = .636;

2. altitude factor, which accounts for the effect of

large-scale slowly changing topography on the gradient

wind speed;

3. directional factor, which is a function of wind

direction (in UK);

4. seasonal factor, which expresses the variation of

extreme winds with seasons;

5. exposure factor, is based on the equilibrium effect of

surface roughness and depends upon wind speed, latitude

and surface roughness;

6. height factor, expresses the most important feature of

the atmospheric boundary layer, namely an increasing

value of velocity with increasing height above ground

level. Its assessment is based on a power law

approximation or, more accurately, a log-linear-law

approximation [45, 66, 140]. It is mainly influenced

by surface roughness and height;

7. fetch factor, expresses the influence of surface

roughness changes upwind of the site in question;

8. topography factor, expresses the effect of sudden

changes in topography like escarpments, ridges, cliffs

or hills.



The expected maximum value of the t second gust occurring in

any one hour within the atmospheric boundary layer is given

by [67];
^	 A A	 A

	=VK =VKK	 3.4Vzx	 z	 x

Where Vz is the corresponding mean-hourly wind speed with

the same probability of exceedance as the gust, and is

calculated as above assuming that equilibrium conditions

exist.

- is the gust factor for uniform terrain (no changes in

roughness) and is defined by:

KT =	 Vz = 1	 gIn	3.5

It is primarily dependent on duration, time of the gust and

the intensity of turbulence, I n . Both g and I n are given in

ESDU data [67] and
A

Kx accounts for roughness changes.

Although gust wind speeds respond to changes of surface

roughness in an exactly similar manner as the hourly-mean

wind speed , the energy balance tends to minimise changes of

gust profile [67].

Any change in mean wind speed tends to be offset by an

opposing change in turbulence intensity. The kinetic energy

lost from the mean wind speed profile approaching the ground

appears as turbulences, u, v, w, which vary in both: time

and space. Since the mean of any of u, v, w is zero, hence

their values are expressed in terms of intensity of

U'	 v'	 w'
turbulence, i.e.	 where u', v' and w' are root



mean square or variance values, and V is the mean wind speed

at the same height.

Development of the Deaves and Harris model gives the upwind

U'
component intensity - over uniform flat terrain [67, 45].

V

The remaining two components are obtained from observations

that, near the ground, the three intensities tend to remain

in the fixed proportions: v'/u' = 0.68, w . /u 1 = 0.45. The

turbulence components alter in response to a change in

surface roughness. As in the transition region, a balance

is expected between kinetic energy lost from the mean wind
_

speed, V, and gained by the turbulences u', v', w', hence

the rms value of turbulence in a transition region can be

estimated [63, 64]. For sufficient accuracy in design, no

corrections are required for the effect of topography on the

atmospheric turbulence [45].

The most valuable descriptions of atmospheric turbulence are

in terms of their spectra [63, 45]. The spectral functions

of atmospheric turbulence provide information on the

frequency distribution of the kinetic energy of the various

fluctuating velocity components. Used in conjunction with

certain transfer functions they provide information about

the dynamic loading on, and response of, buildings in the

atmospheric wind. [6].

By employing Fourrier analysis, the spectral functions of

atmospheric turbulence can be determined from the amplitudes



of time-varying functions, here variances, which are easier

to formulate for three turbulence components, u, v, w

varying in time and in space [82].

A complete description of the average spatial and temporal

properties of u, v and w would require a knowledge of the

relationship of each of the three turbulence velocity

components at one point (x l , yi , z 1 ) in space, to the

corresponding components at some other point (x 2 , y2 , x2).

This implies the specification of nine different functions

[82], each of which, in general, depend upon the same

variables: x l , x2 , y i , y2 , z l , z 2 and time. The majority of

practical wind loading problems allow disregard of some of

the functions.

3.5 Assessment of wind loadings

The choice of the most suitable way of assessing wind

loading on a structure is strongly dependent on the

characteristics of the structure itself. The principal

characteristics are: the natural frequencies of each of the

first few normal modes of the structure and their effective

amplitudes [45].

When a structure is small, the whole structure will be

loaded by quite small gusts, and the full range of

frequencies in the boundary-layer turbulence and the

building generated turbulence will be significant. When a

structure is large, the smaller gusts will not act

simultaneously on the structure, and they will tend to



cancel each other, so that only the lower frequencies are

significant.

When a structure is stiff it will have a high value of

natural frequency in each of its first few normal modes and

will tend to follow the fluctuations of load without

significant amplification or attenuation. Conversely, when

a structure is flexible it will have low values of natural

frequency in each of its first few normal modes and will

follow, without amplification or attenuation, only those

components of the load at frequencies below the dominant

natural frequencies. At wind load frequencies above these

natural frequencies the response of the structure to the

fluctuations of load will be attenuated. In all cases the

response to wind frequencies near a natural frequency of the

structure will be amplified.

When a structure becomes very flexible, the deflection due

to wind loading may induce additional aerodynamic forces.

These additional forces may produce further structural

deformations which may induce new aerodynamic forces. Such

interaction may tend to become smaller until a condition of

stable equilibrium is reached or may conversely tend to

instability. Such responses are called aeroelastic.

There are four types of structural instabilty associated

with wind action [45, 58, 59, 203]:

1. vortex-capture - when a vortex shedding frequency

coincides with the natural frequency of a transverse



mode of vibration of the structure, the structure moves

across the wind in phase with this vortex shedding.

When the movement is greater than typically 5% of the

structure width or depth, the vortex shedding frequency

may remain locked to the modal frequency over a range

of wind speeds.

2. divergence - this is loss of static stability of the

structure due to the flow over it. If, for example, an

initially flat membrane is deflected, the air flow will

speed up over any peaks and slow down over any troughs.

Thus the pressure will be reduced over the peaks and

increased over the troughs tending to reinforce the

deflection.

3. galloping - is a dynamic instability which may

typically occur in slender structures having cross-

sectional shapes such as rectangular or 'D' section.

It is generally caused by a negative increase of the

aerodynamic side force with increasing incidence. This

can be an effect of, for example, the flow around a

square section being separated and reattached on one

side and simply separated on the other.

4. flutter - a dynamic instability, which involves at

least two degrees of freedom of the structure. Each

degree of freedom may, itself, be positively damped

aerodynamically, but sufficient energy to promote

instability is extracted from the airstream because of

coupling between the degrees of freedom.

Cook proposed dividing all structures or structural elements

into five main groups and for each of these groups suggests



a different method of assessing wind loadings [45].

Class A - small static structures

Structures and/or elements of structures which are stiff

enough for wind effects to be determined by static methods,

and small enough for the relevant wind information to be

specified as a wind speed at a single point in space [64].

Class B - moderate static structures

Structures which are stiff enough for wind effects to be

determined by static methods, but where at least one

dimension is large enough to require the relevant wind

information to be specified in the form of multi-point data

[65].

Class C - large static structures

Structures which are stiff enough for wind effects to be

determined by static methods, but for which the shape of the

individual structure/load influence functions has to be

considered in conjunction with the multi-point wind data.

Class D - dynamic structures

Structures, or parts of structures, which are not stiff

enough to be assessed by static methods, yet remain

sufficiently stiff to prevent aeroelastic instabilities.

Assessment of these structural systems generally requires a

full dynamic approach.



Class E - aeroelastic structures

Structures, or parts of structures, that are so flexible

that their motion interacts with their aerodynamics in an

inherently complicated, inseparable and possibly unstable

manner. Cook and BRE [45] do not give any guidance for

assessing wind loadings on such structures, but conclude

that redesign may be necessary to avoid possibilities of

aeroelastic instabilities.
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CHAPTER 4

Wind response of flexible roof structures - a review

Contents:

Structural response under wind loading (Static approach;

Dynamic equation, mass and damping matrices; Quasi-linear

dynamic response; Wind loading in non-linear time-domain

method) - Wind tunnel tests - Aerodynamics of flexible

surfaces.

4.1	 Structural response under wind loading

4.1.1	 Static approach

The highly complicated nature of wind flow and the

consequent loads imposed on structures is widely

appreciated. Yet in the case of many small conventional

airhouses, and even for the approximate analysis of larger

and more sophisticated pneumatic structures, treating wind

loads in terms of equivalent static forces is very common.

The static wind pressure is then expressed as:

Pw = 1/P ar Cp V2	 4.1

where

P - is the air density

V - is the wind velocity (given by the Code of Practice)

C - non-dimensional wind pressure coefficients which are

given in Codes of Practice, or other publications, for

the most common shapes of roof.

Because of the great variety of geometric shapes of membrane

or pneumatic structures it is, in most cases, necessary to

undertake wind tunnel tests in order to establish the

required values of pressure coefficients. For structures



which do not deform excessively, in the case of air-

supported structures, those with high internal pressure,

models for wind tunnel testing can be made rigid to give

meaningful Cp distributions.

When however the internal pressure is lower, which may be

necessary to achieve a more economical solution, wind

loading can cause large deflections which change the

geometry of the structure and hence influence the wind

pressure coefficients. Therefore, it is advisable to obtain

pressure coefficient distributions from wind tunnel tests on

flexible models.

In the simple static approach it is assumed that the same

velocity, V, acts on all points of a structure

simultaneously. This method can be justified for smaller

structures with a high level of damping and/or where the

natural frequencies are much higher than the frequencies at

which any considerable wind energy is experienced. For

larger flexible structures, however, with low natural

frequencies, a more precise analysis may be necessary to

ensure economy.

4.1.2	 Dynamic equation, mass and damping matrices

Wind loading on structures has recently been better

understood and more precisely described; and therefore the

dynamic response of flexible structures has received greater

emphasis.



In general, the equation of motion may be written in the

following matrix form [42]:

MY* + ck + Kr = P(r, r,	 t)	 4.2

where

M, C and K are the mass, damping and stiffness matrices

respectively;

P(r, k,	 t) is the external time-dependent loading; and

"	 •
r, r an r are respectively the acceleration, velocity and

displacement vectors.

The evaluation of the stiffness matrices for tension

members, whether cables or membrane elements, is a standard

operation given in references 107, 108 for cable elements

and in reference 9, 161 for membrane elements.

In general, quasi-elastic material behaviour is assumed as

shown in figure 4.1. A membrane and/or a cable responds in

an elastic manner when it is in tension, but the stiffness

becomes zero for any negative strain, as the material is not

capable of sustaining compression.

The response of flexible roof structures is a geometrically

non-linear problem, hence the stiffness matrix is not

constant but depends on the displacement vector.

With regard to the mass matrix, it can be formulated either

as a consistent mass, or as a lumped mass matrix. In

general, a lumped mass matrix approach is more commonly used

because of the advantages both for the solution of the



eigen-value problem and in the direct interaction of the

equations of motion. 1107, 34, 9].

When a membrane roof vibrates it undergoes alternate

accelerations and decelerations and so also does the

adjacent surrounding air. The total effective mass

undergoing acceleration is therefore not just that of the

membrane but also an additional amount, the added mass, due

to this surrounding air. In equation 4.2 the mass matrix

should therefore include the structural mass (here mass of

membrane and/or cables) and the additional mass due to the

vibrating attached air mass.

Jensen [99, 100] conducted a series of tests on suspended

cable structures with and without membrane cladding and

concluded that this additional mass is of great importance

for nets clad with a membrane. He proposed that the

additional mass, m", could approximately be calculated as

[100].
3

Ill" = Cm Pa a

where

Pa is the density of air,

a is a dimension of the structure and

Cm is a coefficient dependent on the shape and vibration

mode of the structure.

For actual tension structures, the above coefficient for Cm

had to be set between 2.5 and 7.5. The influence of the

added mass is illustrated in figure 4.2 [100], showing a

4.3



plot of frequency against mass. The theoretical values of

frequencies were calculated by Jensen without accounting for

added mass.	 It is worth noting that, with decreasing

structural mass, the influence of vibrating air becomes more

significant.

For lightweight construction such as membranes, or nets

covered only by a membrane, the added mass may be of

sufficient magnitude to substantially reduce the natural

frequencies compared with those based upon the mass of the

structure alone.

Irwin et al [97] performed simplified two-dimensional

calculations of the Montreal Olympic Stadium roof and

concluded that added mass due to the attached vibrating air

could be 37 times greater than the structural mass.

The first amplitude of vibration of a structure subject to a

sudden wind gust or shock loading may be only marginally

affected by the magnitude of the damping forces, although

the rate of decay of the subsequent oscillatory motion and

the amplitudes of response due to regularly pulsating forces

are very much a function of the level of damping. The

energy loss in vibration is due to work done by forces

resisting the motion and is caused by hysteresis in the

members, friction in joints and resistance by the

surrounding mass of air.

Buchholdt [34] concludes that the inclusion of these forces



separately is not a practicable proposition and suggests,

for cable roof structures, the calculation of damping

coefficients from a knowledge of the modal damping ratios of

similar structures.

Although damping results from many different and complicated

energy loss mechanisms, Jensen, after several tests on

suspended structures (with and without membranes), split the

damping capacity into the following components [99, 100:

1. Structural damping: which consists of the damping

capacity of the structural system.

For tents or membrane structures using sailcloth,

polyester fabric or nylon membranes, the damping

logarithmic decrement, 6, (8 = in (An/A n+1 ), where An

and An+i denote two successive amplitudes) is of 4 to

10%. In general damping decreases with increasing

pretension of the membrane.

2. For cable network structures, the magnitude of damping

depends on the design and construction of the cladding.

The damping is due to the energy loss in joints and

nodal points. Its value varies between 5 to 20%

3. Aerodynamic damping: should only be considered in

lightweight structures and is primarily dependent on

the vibrating air mass and the size and shape of the

structure. As given in reference (100), the

aerodynamic damping of actual structures can be

approximately expressed as:



1	 m" A

	

6 --= - Cd -- _
	 4.4

2	
A0 

m

where

mn

expresses a mean added mass of vibrating air
Ao

per unit area of the membrane,

- the mass of membrane per unit area of the structure,
A

and

Cd is a coefficient, which value varies between

0.03 - 0.07

As is the case with added mass effects, the aerodynamic

damping capacity increases with a decrease of structural

mass.

In works by: Irwin et al [97], Kind [105] and Barnes [9,

12], it has been shown that the response of air supported

structures is highly influenced by pneumatic effects: the

pneumatic stiffness (an internal pressure increase being

directly proportional to volume decrease), and the pneumatic

damping (the decay of overpressure being dependent on the

porosity of the structure - escape of air through boundary

connections and openings). For ideal air-houses for which

the building cavity can be assumed as essentially sealed, as

considered by Tryggrason and Isyumor (reference 1 and 2 in

[106]), the pneumatic stiffness is the only important

pneumatic effect. However, as real air houses are usually

quite porous, because of the needs of ventilation, the



pneumatic damping can play a very important part.

In [106] Kind presents an approximate analysis of pneumatic

effects for volume displacing modes of motion in air-

supported structures considering only free vibrations of the

structure. The leakiness of the building and the fans

providing air for ventilation and pressurisation were

modelled, but elastic effects were not included. Kind

concluded that both pneumatic stiffness and pneumatic

damping can be expected to be important in air supported

structures.

For a quasi-static loading acting on a small structure,

stiffness is more likely to be the dominant pneumatic

effect, although damping will often remain significant.

Pneumatic damping tends to assume greater importance as the

size of the structure increases.

In the case of a short duration loading, such as a 1 second

gust load, even the response of a large air structure will

be greatly affected by pneumatic stiffness.

Acoustic damping is another potentially important damping

mechanism in air supported structures [97, 106]. Irwin et

al [97] related this energy loss mechanism to low frequency

acoustic waves being radiated from air supported structures

during their volume-displacing type of motion. The term

acoustic is used for convenience as the lengths of

transmitted waves by a real structure is, in general, much



larger than those normally associated with acoustic waves.

Irwin [97], estimated the acoustic damping ratio to be

EA = 10 can IN/IC	 4•5

where

A is the area of roof

C is the speed of sound, and

co n is the natural circular frequency of the structure.

Expression 4.5 is applicable in the case of a well sealed

membrane roof which acts essentially as an acoustic source.

This expression indicates that acoustic damping can be of

comparable magnitude to pneumatic damping [106]. 	 It also

shows that acoustic damping becomes progressively less

important as the frequency decreases. Furthermore,

increased building leakiness results in more pneumatic

damping and reduces acoustic damping.

The damping matrix can be obtained from the damping ratios

of a structure in different ways. One of the approaches

[42, 34] results in damping forces at different points in a

structure being proportional to the distribution of mass. A

second way of constructing a damping matrix with orthogonal

properties, from the damping ratios, is to assume that the

damping is a linear function of both the mass and the

stiffness [42, 34]. Alternatively, the damping can be taken

as a certain percentage of critical damping.



4.1.3	 Quasi-linear dynamic response

For the purpose of calculating structural response due to

wind loading, the vector P in equation 4.2 is formed from

the effect of the dynamic wind pressure P D (x, y, z, t).

The dynamic wind response, in works by Knudson [107, 108]

and Morris [150] is restricted to the case of buffeting by

wind and the total wind pressure is given by:

p(x, y, z, t) = 1/2 p Cp (x, y, z)[17/(x, y, z) +v (x, y, z, t)]2

.	 4.6

where

p(x, y, z, t) is the pressure per unit surface area,

P - mass density of air

C (x, y, z) the pressure coefficient, which value depends

on the direction of the wind. Strictly it will be time

dependent, but it is customary to approximate Cp by static

wind test values [150]

1,7 - mean velocity component

v - the randomly	 fluctuating component of the wind

velocity about its mean value

Jansen [100] proposes including the influence of the

surrounding air in the expression for the total wind

pressure by adding to it an additional term, namely

Ao dV
Cm p	 --

D dt

The term expresses the inertial reaction associated with the

acceleration of the surrounding air. Ao is a reference area

for a virtual mass, D is the diameter of the object, while

Cm is a coefficient for the additional mass term.



In determining the quasi-linear dynamic response to wind

loading, the total pressure given by equation 4.6 is
_

separated into the pressure p caused by the mean velocity,

and the fluctuating wind pressure component

The mean pressure

—p(x, y, z) = 1/2 P Cp (x, y, z ) V2 ( x , Y, z) 4.7

is added to the live and the dead loads acting on the

structure to form a quasi-static load vector. The quasi

static equilibrium configuration is then found by a

nonlinear iterative m,-,..hod such as; the Newton-Raphson

method, conjugate gradient method or dynamic relaxation

[14].

The fluctuating wind pressure is given by

pd (x,y,z,t) = 1/2 p Cp (x,y,z)[2V(x,y,z)v(x,y,z,t) + v 2 x,y,z,t)]

4.8

Knudson [107], using a deterministic approach to wind

loading, developed a method to deal with p d based on

Taylor's Hypothesis. This assumes that the velocity

fluctuations recorded at a point travel unchanged in the

direction of the mean wind at the mean wind velocity. A

wind record is assumed to be incident upon the structure as

a 'plane' wave and is then moved across the structure in the

direction of the mean wind at the mean wind velocity as a

series of strips (with the same velocity across each strip)

with the different velocities indicated by the wind record.

The variation in wind velocity in the lateral direction

could be accounted for by employing a second assumption, of

homogeneous isotropic turbulence, to describe the nature of

wind [82].



By assuming that oscillations due to the fluctuating wind

pressure are small and hence that the stiffness matrix is

effectively constant, the equation of motion (4.2) is

reduced to a linear problem, which is then solved by a mode

superposition technique or one of the direct integration

methods [14].

Since the wind is a random phenomenon, it is more properly

dealt with in a nondeterministic analysis based on the

theory of random vibration. Analyses used by Knudson [107]

and Morris [150] are based on works by Davenport [49] and by

Harris [82] dealing with the random description of wind on

structures.

Once again the oscillations are assumed to be linear, but

this time the pd function, equation 4.8, is made linear by

neglecting the last term, involving v2(x,y,z,t). Hence the

process becomes Gaussian.

The response, or the maximum expected deflection due to

wind, is then computed in a frequency domain analysis with

the aid of random vibration theory. The procedure may be

represented in a schematic way as follows:

aerodynamic
	 aerodynamic

turbulence	 admittance
	

force
spectrum
	

function
	 ->	 spectrum

aerodynamic
force	 mechanical
	

response
spectrum	 admittance
	 spectrum

response	 gust
	 expected peak

spectrum	 response factor
	 response



4.1.4 Wind loading in the non-linear time-domain method

There is evidence which indicates that some pneumatic

structures, especially of high rise to span ratio, normally

considered to act linearly in their dynamic response, do in

fact behave nonlinearly when excited in one of their

fundamental modes, especially when the level of damping is

low. For such structures, as Buchholdt suggests, time

integration methods need to be adopted [34].

The fluctuating pressures caused by wind are then given by:

pod = 12 p Cp (V(t) - k) 2	 4.9

where

x -	 is the velocity of the structure at a given point

and in the direction of the wind

C -	 the pressure coefficient for the same point, andP

V(t) -	 is the wind speed vector at time t, and is

expressed as:

V(t) = V + w(t) + C M = V + v(t)	 4.10

where

V	 -	 is the mean velocity,

w(t) - all the elements in this vector have the same

power spectrum and are correlated to each other in

accordance with the assumed coherence function

(given in [34]),

e(t) - the elements in this vector are uncorrelated and

take into account the variation of the power

spectrum with height above ground level [34]

In the structural analysis, the response is predicted by

forward integration (in the time domain), using a step-by-



step method in which equilibrium of dynamic forces at the

end of each time increment is established by minimization of

the total potential work [34].

However, in shallow large span pneumatics (the main concern

of this thesis), for which the velocities of the structure

movements in the direction of wind are small compared with

the wind velocity (i < < V(t)), equation 4.9 is reduced to

equation 4.6.

For very large air-supported structures any load acting on

the structure causes not only membrane deformation to

balance external forces but also sets into motion the

enclosed air. Neglecting internal air mass momentum by

employing only static analysis may result in erroneous

prediction of the overall structural behaviour. On the

other hand, for such large span air structures the design

gust wind speed might be significantly reduced (compared

with smaller span structures) especially if their rise/span

ratio is low. In this case they will have less mechanical

freedom for lateral movements and thus there will be less

mobilization of internal air momentum compared with

traditional air-houses with high rise/span ratios. A low

rise/span ratio is also likely to ensure more uniform

suction loading over the whole surface with little or no

pressure indentation areas on the windwardside. The effect

of this is that displacements are more symmetric and thus

volume displacing, which will induce more effectively the

internal air stiffening effects [16].



4.2 Wind tunnel tests

Tests on aeroelastic models of air-supported structures in a

fully simulated boundary layer are considered to provide the

closest approximation to full scale behaviour of a

prototype. It was mentioned in chapter 2.6 that scaling all

modelling parameters is only possible in a full scale model.

The scales of tested models range from 1/20 to 1/100 or even

more, hence relaxing some of the parameters becomes a

standard procedure.

The first more comprehensive tests in wind tunnels on air-

supported structures started in the sixties. The early

models used were: spheres (three-quarter-, hemisphere) or

rectangular based structures with spherical or non-spherical

ends. Tests were carried out on smooth flexible models in

smooth flow conditions.	 In some of them [43] the steady

deflections were measured by photogrammetry. In others,

pressure coefficients were determined from rows of

conventional pressure taps fitted along circumferential

centre lines of the models [158]. The works conducted by

Beger [21] and Niemann[158] focused on defining pressure

coefficient distributions with respect to wind directions

and different pi/q ratios (internal pressure/stagnation

pressure of the oncoming flow). The velocities used were up

to 35 m/s.

Figure 4.3 shows Berger's results from his tests on a

hemisphere. The distributions of pressure coefficients are

presented only for a cross-section in the wind direction.



The pressure distributions of a hemisphere obtained by

Niemann are given in figure 4.4 for two different values of

internal pressure. The main feature of these two figures is

that the peak value of function, Cps , varies considerably

with pi/q	 ratios. For small values of pi/q, c ps is much

larger than for higher pi/q	 ratios.	 As there is an

economic incentive to reduce inflation pressure, cases of

lower pi/q ratios can be of great importance.	 In such

cases values of C distribution obtained from rigid model
P

wind tunnel tests can underestimate the wind loading.

Recently much work has been done in attempting to scale not

only models in more realistic terms but also the flow

conditions, namely by simulating more closely the

atmospheric boundary layer [39, 44, 54, 97]. For the design

of the Montreal Olympic Stadium roof [97], very thorough

studies were carried out in an attempt to model completely

the flexible structure. The importance of allowing for

stiffening effects due to the compression of the internal

air, added mass effects and acoustic damping was emphasised.

The accuracy with which the modelling parameters must be

scaled depends on the information sought from the test. To

establish pressure distributions and the power spectra of

fluctuating pressures Cook [43] employs rigid models. In

such an approach it is assumed that the structural motion

does not affect the wind loading on the structure. The

actual modes of unstable behaviour are then investigated on

flexible models in a wind tunnel under smooth flow, preceded



by the determination of natural frequencies for the first

few modes of vibration using simplified linear theory.

Similar types of tests, namely tests on rigid models to

establish the pressure coefficient distribution, followed by

flexible model tests to detect instability, were conducted

on spherical inflated models by Newman [156].

Non-Dimensional Parameters 

The following non-dimensional parameters are required to

describe the full behaviour of prototype air-supported

structures subject to wind loading [43]:

1. ratio of membrane mass, m, to air mass ()-air
PD

density, D-a representative dimension of the

structure). When the structure is in motion,

a large mass of air is mobilised which can

become more important than the membrane mass

itself.

•	 k
2. stiffness of membrane (k - is the stiffness

pD
of the membrane per unit width and 61) -

is the pressure difference across the

membrane). This condition would requife

producing a membrane model material with warp

and weft stiffness appropriately scaled.



3. enclosed air stiffness (C is the speed of

sound in air, U is the speed of flow of

external fluid, Vi - is internal volume of

the structure). As the structure is at least

partially sealed, there may be substantial

stiffness imparted to the structure due to

the compression of the air when the enclosed

volume is changed. If C/U cannot be modelled

(which is very often the case), it is

possible to make a volume adjustment to the

model by adding a secondary chamber [43, 97].

The stiffness due to air is likely to be most

significant for displacements where

large volume changes occur. 	 This is not

likely for aerodynamic instabilities, but can

be important for large scale buffeting at low

internal pressure, where the stiffening

effect is accompanied by 'sloshing' of the

internal air. The behaviour of this latter

effect is not properly modelled by adding a

chamber.

4. - pressurisation - this parameter must be (and

can easily be) modelled to ensure that the

ratio of internal to external loading is

maintained.



5. I	 damping	 factor	 ( I - damping of the
membrane/unit width).

a) membrane damping.

This would require producing a material

with damping properties appropriately

scaled to those of the prototype. On

the other hand, the aerodynamic damping

is usually dominant, therefore no

particular pains need normally be taken

to match the mechanical damping

parameter [97].

Ap
b) acoustic damping (damping due to

PC2

radiation of sound waves to surrounding

air).
PU2

This term can also be written --- thus
PC2

reducing to U/C and indicating a need

for wind speeds for modelling to equal

those at full scale.

—CT
6.	 Ci D2 \- -

Ap
damping due to leakage of air through

the seams, section joints, edge

connections and air-lock doors.

(C i - is a coefficient of leakage).

The coefficient C i can only be

satisfactorily determined by full scale

measurements or estimates based on these

measurements.



pUD
7. -	 Reynolds Number, ratio of internal to viscous

4
forces ( 4 is viscosity of fluid)

For a continuously curved body, such as an

airhouse, the point at which the flow

separates from the surface is highly

dependent on Reynolds Number. It is very

important to correctly model the separation

position as the surface pressure distribution

will be significantly affected. Another

factor which influences flow separation is

roughness.

Directly scaling Reynolds number would

require a very high wind speed, therefore

recently an indirect method has been

employed, namely artificial roughening of the

model surface.

U2

8. --	 -	 Froude Number, ratio of inertia force in
Dg

fluid to gravity force in the structure (g -

is acceleration due to gravity)

It is not necessary to achieve this

similarity as in the case of an air-supported

structure the weight of the membrane is

resisted at all points by the internal

pressure.

The above parameters should be supplemented

with those necessary to simulate a turbulent

boundary layer: the roughness length and the

length scale of the turbulence.
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4.3 Aerodynamics of flexible surfaces

In chapter 4.1 wind response of flexible roof structures was

presented as a static or dynamic reaction of cables and/or

membrane to externally applied load. This approach does not

properly represent the behaviour of air-supported

structures, where the surrounding air should be treated as

an integral part of the structure. Some attempts have been

made to model closely the behaviour of air houses by

including in dynamic analyses the added mass effect and

aerodynamic damping. Representing wind turbulence in a

spectral form makes it possible to predict the amplified

response to those wind frequencies which are close to the

natural frequency of the structure, and whose spectra

contain high energy. Although the statistical approach to

wind represents the phenomenon in a more realistic way than

in deterministic analyses, unfortunately, the methods of

chapter 4.1 fail to predict instabilities; either divergence

(static) or flutter (dynamic).

The approaches which can be adopted here are those used in

classical aerodynamics, i.e. those which take into account

mutual iteraction between inertia, fluid and elastic forces.

Equations describing the phenomenon are:

1. elasticity - the relationship between deflection and

elastic forces of structures.

2. dynamic - relationship between inertia and applied

loads.

3. fluid mechanic - equations of motion and continuity and

4. boundary conditions



The equations are, in general, differential and highly

nonlinear, and therefore it is difficult to produce results

unless certain simplifications are made. The most common

are:

1. flow is irrotational (potential)

2. fluid and elastic equilibrium equations are linearised

by small disturbance ooncepts

3. boundary conditions are linearised and expressed in

terms of velocity normal to the surface of the

structure (velocity of the fluid normal to the surface

is equal to the normal velocity of the structure on the

boundary).

There are many investigations employing the above

assumptions, but mainly with regard to the vibration of

aerofoils, flat or near flat panels and membranes. This

topic is also covered in classical books on aeroelasticity

such as Bisplinghoff [27] or more modern texts like Dowell

[58, 59].

Very interesting theoretical work on the aerodynamic

instability of these panels has been done by Miles [145],

and extended through mainly experimental work by Dugundji

[60]. Miles formulated the problem in two dimensions using

a wind generated wave analogy and assuming deflections in a

travelling wave form. Unfortunately his work is mainly

concerned with isolated or periodically supported two

dimensional panels submerged in high wind and therefore his

work cannot be directly applied to wind response of flexible



structures. The same can be said about the vast amount of

cases presented by Bisplinghoff.

Two dimensional panels in uniform incompressible flow on one

side, embedded in an infinite rigid plane were studied by

Kornecki [109], Dowell [58] and Shahrokh [179]. Simply

supported damped panels in subsonic flow lose their

instability by divergence, hence instability can be

predicted from steady aerodynamic theory. 	 However post-

divergence flutter is not ruled out.

Williams [204] presents analytical investigation into the

behaviour of pretension membranes subject to incompressible

uniform flow, confining his work to travelling wave

solutions in two dimensions. He concludes that for a low

profile two dimensional air-supported structure, travelling

wave type instability (flutter) can occur only when the

membrane is at the point of losing static stability.

The experimental study carried out by Siev [181] in uniform

flow on a model 40 x 40 cm in plan and 20 to 24 cm in

height, covered by a soft hyper-shaped rubber membrane, led

to the conclusion that there is a danger of flutter which is

more likely to happen in membrane structures which are not

fully sealed than in closed air-houses. Siev intimates that

flutter (or vibrations of increasing amplitude) induced at a

certain air speed, is associated with the appearance of

vortices inducing pressure variations coupled to movements

of the structure. Following these conclusions Kunieda [109]



tried to analytically predict flutter of hanging roofs and

curved membrane roofs by introducing infinitesimally thin

vortex sheets between the wind flow and the roof, and in the

wake from the trailing edge. By doing so he concluded that

flutter of such roofs occurs at a wind velocity which is

lower than the divergence critical wind velocity. In the

development of his theory Kunieda assumed travelling wave

type deflections.

A study by Newman [154] was concerned with predicting the

shape and the pressure coefficient distribution on a thin

symmetrical lenticular aerofoil subjected to low speed flow.

The aerofoil was anchored at both its leading and trailing

edges and inclined at zero incidence to the wind flow. This

configuration was assumed to idealise the flow past a long

low inflated building, when the effect of turbulence is

neglected. The analysis was based on steady inviscid theory

for a thin aerofoil [27]. The aerofoil shape was

established by distribution sources along the axis of

symmetry and by applying linearised boundary conditions.

The equations were solved simultaneously by assuming Cp

values in the form of a Fourier series. The theoretical

analysis was supported by experiments conducted on a

lenticular aerofoil submerged in uniform flow. The

comparison of pressure coefficient and tension, between

theory and experiment, was satisfactory for small values of

the thickness/length ratio.	 Further tests have been

conducted on a two dimensional inflated building, with a



height to width ratio of 0.18, immersed in an artificially

thickened boundary layer, about 20 times as thick as the

height of the building [75]. The Newman theory predicted

the membrane tensions fairly well, underestimating them by

only about 10%.

In his latter theoretical work, Newman [155] investigates

two dimensional inflated buildings with height to width

ratios ranging from 0.19 to 0.33 and submerged in a more

realistic representation of the atmospheric boundary layer,

namely inviscid flow with uniform vorticity. The simulated

flow is chosen to match both the velocity and the velocity

gradient of the wind (here, in a wind tunnel) at the maximum

height of the building.	 The shape of the building is

replaced by a many-sided polygon with a uniform source

distribution on each straight-line. Then the original

method given by Hess and Smith [90] for pressure

distribution on a rigid body, is applied iteratively to find

the final shape of the flexible building. The results thus

obtained were compared with experimental values. The

tension in the membrane was found to be quite close to that

predicted by the theory, but the external pressure was, in

general, too low owing to the presence of separation bubbles

at the leading and trailing edges.



CHAPTER 5

Wind load modelling on an open sided shell roof

Contents:

In this chapter wind loading on a shallow open sided

eliptic-parabaloid shell roof is examined under the

approximation of potential flow. The limitations and

simplicity of potential flow are discussed. The problem is

reduced to an integral equation representing a distribution

of sources and doublets over the body surface. 	 Three

vortex-lattice methods differing in the distribution of

vortices are presented. The Hedman horse-shoe and the

quadrilateral vortex-rings methods, with singularities

placed in the plane z=0 are all applied in a modified form.

The numerical procedures based on the methods are outlined,

and applied to the eliptic-paraboloid shell. The number of

panels essential to model the flow, and the standard

procedure of setting back the leading element vortices are

investigated. The modified Hedman method with horse-shoe

vortices in the plane z =0 and a boundary condition of

tangential flow applied on the body surface of the shell is

found to give the best result.

5.1 Introduction

Wind loading treated, even in the simplest way, as a set of

static single point data, requires knowledge of the pressure

coefficient distribution on a structure. For some simple or

very common shapes the information is given in available

literature [45].



When a roof is of more irregular shape, or undergoes large

deformations, as in the case of pneumatic structures, the

determination of wind load pressure coefficients may require

model testing in a wind tunnel. For a very thin and

flexible structure it is, however, difficult to measure

pressure or deflection directly. When the prototype is

properly scaled, the stiffness of material is very small,

and even attaching very small and light devices to rsasure

pressures or deflections can alter the response of the

model; and the alternative indirect way of measuring the

value of reaction in supports, requires very precise scaling

of the stiffness of all structural elements. For air-

supported structures this may mean producing specially

designed material. Even if this is successfully done there

is a further problem of matching the Reynolds Number which,

for a smooth structure, greatly influences the point (or

line) of separation. A method which avoids the need for

excessively high wind tunnel speeds is to roughen the model

surface, but this in turn changes the membrane properties.

In such circumstances it is desirable to investigate whether

any numerical method is able to give sufficiently accurate

information concerning the distribution of pressure

coefficients. Bearing in mind that we are dealing with a

two domain problem (structure-fluid), with the structure

being flexible, it is advisable to find a numerical method

which is as simple as possible. Hence as a first approach

it is reasonable to examine the suitability of methods which

assume time-independent potential flow. This is assessed in



the present chapter in isolation from any structure

deformation effects.

5.2 Assumptions and limitations

In the lower parts of the atmospheric boundary layer, where

the majority of structures are situated, the air flow is

turbulent (a flow in which the particles or groups of

particles, while moving randomly, spinning and rotating,

proceed in the streaming direction). The intensity of the

random motion depends mainly upon the roughness of the

terrain and its height. In an open, nearly flat or gently

undulating countryside, or in low rise residential suburbs,

the intensity of turbulence at a height of 10 m above ground

level is smaller than 0.35 [82]. For a city centre its

value is 0.58.

In the simplified analysis of the present chapter the

influence of turbulence and of mean velocity variations with

height are neglected. The structure to be considered is

assumed to be submerged in a uniform steady flow.

Additional assumptions are of potential flow of an

incompressible inviscid fluid.

Compressibility is normally considered to be significant

only when the wind speed is more than half the speed of

sound in air [147]. With the values of wind speed at the

height of typical structure being below 50 m/sec (the speed

of sound in air is approximately 340 m/sec) the neglect of

compressibility is therefore justified. Viscosity is a very



important factor in predicting the point of separation for

continuously curved bodies such as airhouses. In very large

shallow pneumatic structures, however, the separation of

flow is much further downstream than in high rise domes.

Hence, disregarding viscosity in the approximate analysis of

very long shallow structures may still allow to obtain

meaningful values of pressure coefficients to be obtained.

The existence of a velocity potential depends on the

condition of irrotationality of the flow, which means

physically that all fluid particles have zero angular

momentum about their own centre of gravity axes. This

condition is expressed mathematically by the disappearance

of the curl of vector V (V = ur. + v3 + wk; where V is the

velocity vector), or in component form:

nr 3 U	 Dw	 DV	 DU	 DW

— - — = 0,	 — = 0,	 =0	 5.1
DX	 3 y	 oy	 3 Z	 3 Z	 D X

Vanishing of the curl in a vector field is necessary and

sufficient to assure that the vector is the gradient of some

scalar function [169]. This function in the present case is

the velocity potential, 0. The scalar components of:

V = grad	 0
	

5.2

are the familiar relations:

30 	 ° 0	 °O
U = --,	 V = --,	 w = —	 5.3

oX	 3 y	 3Z

which reduces the number of dependent variables in an

aerodynamic problem by two.

The main implication of the assumption of steady flow is

that the analysis cannot be used directly to predict a



dynamic	 instability,	 namely flutter.	 This	 type of

instability is related to the excessive negative damping of

external wind flow.	 (the energy is input rather than

removed from a structure).

It should be borne in mind that most of the assumptions

discussed above have been made primarily in order to

simplify the mathematical description of a highly

complicated phenomenon, thus enabling a numerical scheme

which may be employed in the approximate prediction of

structural response to wind loadings of long span flexible

pneumatic structures. Such structures may interact fairly

strongly with the wind flow, and thus changes of shape need

to be accounted for during the process of non-linear dynamic

structural analysis.

5.3 Stating the problem

The velocity field V is expressed as the sum of two

velocities:

V =V0,	 +q	 5.4

The vector V., is the velocity of the onset flow, which is

defined as the velocity field that would exist in the fluid

if all boundaries ceased to exist. The vector i is the

disturbance velocity field due to the boundaries.

If p is the fluid pressure and P is the constant fluid

density, the general Navier-Stokes equations are reduced,

for steady potential flow, to:
1

(V * grad) V = - - grad (p)
	

5.5
P



and the equation of continuity becomes:

div (V) = 0	 5.6

or, from equation 5.2:

2V 0 = 0

For irrotational and barotropic (possessing a unique

pressure-density relation) flow, equation 5.5 can be

integrated to give one of the forms of the Bernoulli

equation:

_ = p	 1/2	 2	 5.8

where P is the constant of integration.

In most applications the onset of flow is a uniform stream

that	 is,	 V	 is a constant vector. 	 Under these

circumstances, equation 5.8 can be written in terms of the

pressure coefficient Cp , as

p - p.	 I v ' 2

C - 	
P	 2	 V1/2 P 117.01
	 - I -	 5.9

I. ' 2

where p c., is the pressure at infinity.

To complete the mathematical description of flow problems

the boundary conditions must be considered. When the fluid

mass is unbounded, these ordinarily comprise two types:

conditions at infinity, and conditions arising from the

presence of a body submerged in the fluid. The former

requires only that the fluid be at rest or in some specified

uniform motion at remote points. The condition at the

boundary of a typical body states simply that over its

surface, the perpendicular component of fluid velocity,

3 0 /0 n, is fixed by the body's motion. In the particular
case of a body which does not move this condition requires

the disappearance of the velocity normal to the surface:

5.7



V x n I s = 0	 5.10

where n is the unit outward normal vector at a point S of

the body.

The essential simplicity of potential flow derives from the

fact that the velocity field is determined by the equation

of continuity (equation 5.7) and the condition of

irrotationality (equation 5.2). Thus the equation of motion

is not used, and the velocity may be determined

independently of the pressure. Once the velocity field is

known, the pressure is calculated from equation 5.9. Hence

the problem is reduced to solving equation 5.7, which is

known as the Laplace equation, subject to the boundary

conditions.	 Different approaches to obtaining a solution

have been discussed in chapter 2. The exact analytical

solutions in three dimensions yield good results, but they

are limited to a narrow class of boundary conditions; for

arbitrary bodies numerical methods are more suitable.

5.4 Reduction of the problem to an integral equation by

Green's identity

The most common numerical methods are based on the theory

that any continuous acyclic irrotational motion of a liquid

mass may be regarded as associated with a distribution of

doublets and sources over the boundary [116]. The proof

rests on the divergence theorem (Gauss's theorem), which

states that the volume integral of the divergence of a

vector field U taken over any volume,T, is equal to the

surface integral of U taken over the closed surface



in three dimensions_

surrounding the volume T (see figure 5.1), that is:

. J d v =	 . U d s
	

5.11

( 3 UX

DX

y

py

Z

DZ)

d x dydz = - If (Uxdsx + U ds +UZ ds Z )Y Y 

In mathematics texts, the unit normal is directed out of 'T.
Aerodynamicists prefer to use a unit normal directed outward

from solid surfaces, which necessitates the minus sign in

the equation.

Terms in equation 5.11 are:

is a region in space (a flow field in our case)

is the surface which bounds 1r

is a unit vector normal to S and directed into "Ir

is a continuous function of position inside-r

The vector U to which equation 5.11 will be applied is

defined by:

u =	 v gis - gisv
	

5.12

Where 0 is the velocity potential of the flow in -r, so that:

V = vc6	 5.13

is the fluid velocity in -r; whereas Os is the potential of a

source of unit strength at some arbitrary point P

ln r in two dimensions

5.14

Where r is the distance from P to the point at which U is to

be evaluated (see figure 5.2)



If the function U defined by equation 5.12 is to be

continuous in T, so must also be continuous 0, v0, 0s ,	 and

A Os,	 As Os and its derivatives are singular at P, before

integrating over 1C we have to curve out a small circle (in

2D) or sphere (in 3D) centered at P and of radius e (see

figure 5.2). Let"re be the part of '1r outside that excluded

region and Se be the surface of the circle or sphere. For

the same reason, such entities as the vortex sheet shed by a

surface should be excluded from 1r, since the velocity v0 is

discontinuous across such a sheet.

The surface, S, generally has three components:

1. SB, the surface of the body immersed in the flow,

2. Sw, a surface far from SB

3. Sc, a two-sided surface that runs between S B and S and

which sandwiches discontinuities in 0 and/or AO.

The source potential Os and 0 satisfy Laplace's equation

everywhere in N and therefore it can be proved that v .0 = 0

[149]. Thus applying equation 5.11 to the regioni re gives:

JV . Ud -ir = 0 = - f ii (95 v95s - Os v0) ds	 5.15

YE 	 S+SE

Separating the integrals over the surfaces S and SE gives:

I
n- ( 0 vO s - Os 	 0) ds = - i n (0 A Os - Os p 9S) ds 5.16

Ss

If 6 tends to zero, 0 and A0 approach their values at P, 0 P

and V respectively, and the left hand side of equation 5.16
P

becomes:
_

ifT1 (95V955 - Os Vgi)dS 440 Op I nvOs ds - Vp 1 n Os ds	 5.17

S e	s e	 Se

S



The first integral on the RHS of equation 5.17 is the

strength of the source inside, here unity. In the second

integral O s is constant on Se , hence:

ITI O sds = Os Ina. = 0	 5.18

S E	 Se

The above reduces equation 5.15 to a form known as Green's

identity:

Op = f —(n . '70) Os - 0 (n • A0s) ds
S

5.19

This formula gives the value of 0, at any point P in ir, in

terms of the value of 0 and n .N7 0 on the boundary of lr[143]

The derivation of equation 5.19 is rather mathematical but

the result has an important physical meaning. The first

integral I ( T1 V 0) Os ds contains the quantity 0 s , which

S

depends only on the distance between P and the ds, whose

contribution to the integral is under consideration. Thus

although introduced as the potential of a source of unit

strength at point P, evaluated at a point on S that is a

distance r away, it could also be taken as the potential of

a source of unit strength at ds, evaluated at P. With this

interpretation, the integral can be called the potential of

a source distribution on S whose strength per unit area is
_
n • v 0, the component to S of the local fluid velocity.

The integral 10 (n. 0s) ds has	 similar interpretations.

S



n -V Os = lim

8 _>0

931-02

6
5.20

The term ii.v0s is the rate of change of Os in the direction

of ii at the element d . This can be viewed as follows: 	 As

shown in figure 5.3, let Q l and Q 2 be points a distance6

apart, on either side of ds, and arranged so that Q 2 Q l =
_

6 n. Let 0 1 and 0 2 be the values at 2, 1 and Q 2 respectively

of the potential of a unit strength source at P. 	 Then:

However, 0 1 and 0 2 can be regarded as the values at P of the

potentials due to unit strength sources at Q l and Q 2 . Then

01/ 8 - 02/6 is the difference between the potentials at P

of two sources of strength 1/6 at Q l and Q2 . As 6 -->0,

they coalesce into what is called a doublet, whose strength

is defined to be the product of the source strength and the

distance between the sources or, in this case, unity. From

the viewpoint of an observer at P, the second part of the

integral in equation 5.19 is, therefore, the potential of a

doublet distribution over the surface S. The axes of the

doublets are normal to S and the strength per unit area of

the distribution is 0, the local velocity potential.

In three dimensions equation 5.19 is more commonly presented

in a different form. Equation 5.14 is substituted into 5.15

and by tensor analysis:

_	 30

n • V9 = —
On

5.21
1	 13

n• v Os = - -- x -- (-)
4m on r



hence, the new form is:

11 o0	 1	 3	 1
0 = - --J - -- ds + --

i
 0-- (-) dsP 4n r on	 4[	 3 n r

S	 S

5.22
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Figure 5.1

Figure 5.2

Figure 5.3
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5.5 Thin sections with flow on both sides

For a surface having both sides exposed to the flow, such as

an infinitesimally thin section, only one type of

singularity may be used [116]. If the tangential velocities

on the two sides of the boundary are continuous, but the

normal velocities are discontinuous only sources are

required. If, on the other hand, the normal velocities are

continuous but tangential velocities are discontinuous, the

motion can be imagined to be generated by a distribution of

doublets.

In the case of an open thin section submerged in a uniform

flow with the boundary condition of zero normal velocities

on both sides, the surface can be viewed as a layer (sheet

in 3D) of doublets. The velocity field of a doublet is more

complicated than that of sources and vortices, hence it is

useful to recognise that, to every doublet distribution,

there corresponds an equivalent vortex distribution [116].

Lamb showed that a uniform distribution of doublets over any

surface is, in a sense, equivalent to a vortex. The axes of

the doublets must be supposed to be everywhere normal to the

surface, and the density of the distribution must be equal

to the strength of the vortex.

In view of the above a thin section can be represented as a

mass of liquid at rest, separated top and bottom from the

external flow by narrow shear regions. These boundary

layers resemble very closely surfaces of tangential velocity

discontinuity, obtained by replacing the surface with two

(three) dimensional vortex sheets.

- 105 -
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Our investigation is confined to the case of irrotational

motion. In order to ensure that the introduction of

vortices does not violate this condition, it is necessary to

comply with the Helmholtz's vortex theorem, which states

that a vortex cannot end in the fluid. Any vortex lines

which exist must either form closed curves, or else traverse

the fluid beginning and ending on its boundary [116, 27].

The simplest representation of the vortex sheet in the three

dimensional case is obtained by concentrating vorticity into

a lattice of line vortex elements. Falkner's method for the

calculation of aerodynamic loads on wings of arbitrary shape

was the first to use discrete vortices in this way: unswept

horseshoe vortex elements were used to represent the

spanwise and chordwise vorticity [68]. Computation was

minimized for hand calculations by the use of loading

functions. Hedman [88] developed the vortex -lattice method

for planar wing problems using swept vortex elements; the

strengths of which were solved directly on a high speed

computer without the aid of loading functions. 	 Hedman's

method can be extended to non-planar cases [175] or to panel

methods	 [139]	 which use a surface distribution of

quadrilateral vortex rings.

5.6	 Vortex-lattice methods

5.6.1	 Horse-shoe vortices in the plane z = 0

The present method makes use of some aspects of the vortex-

lattice method developed by Hedman [88].



The continuous vortex distribution, which represents the

continuous loading on the open sided shell roof is replaced

by a system of discrete vortices, or so-called horseshoe

vortices. The strengths of the vortices are determined by

the requirement of tangential flow in as many points

(control points) as there are vortices. The system can be

thought of as a collection of horseshoe vortices with each

horseshoe vortex inducing the same flow field as 	 an

elemental area of the roof does.

The configuration of the roof is idealised by dividing the

surface into trapesoidal elements in the xy plane arranged

in strips parallel to the free stream velocity so that the

surface edges and the fold lines (if there are any) lie on

box (panel) boundaries (see figures 5.4 and 5.5).

Throughout this chapter direct reference is made to the open

sided shell roof of eliptic paraboloid shape, as shown in

figure 5.5, as it is easier to explain the concept of the

method in relation to a particular shape.

The load carried by one panel element induces a flow field

that can be calculated with the aid of a horseshoe vortex.

The horseshoe vortex will be positioned in the plane z=0

(here the plane which contains the four corners of the

eliptic-paraboloid) on each element, in such a way that the

bound vortex will coincide with the quarter-length line of

the panel, and trailing vortices will continue into the wake

as two semi-infinite filaments parallel to the free stream

direction.	 The control points, where the conditions of



tangential flow are satisfied, will be positioned on the

roof surface at the three quarter length line and halfway

between that line's inboard and outboard points (see figures

5.4 and 5.5).

Reasons for the positioning of the horseshoe vortices and

the collocation points can be found in discussions relating

to two dimensional thin aerofoil theory [27]. If the

vortex-lattice method is applied in two dimensions, a lift

and a pitching moment obtained from this configuration will

be the same as appropriate values calculated from the thin

aerofoil theory [88].

The method is not very sensitive to the pattern of panels

chosen to represent the surface, except that panels behind

each other should be in streamwise columns [88]. Otherwise

a control point of one panel may lie very close to the

trailing vortex of another panel, where the induced velocity

is high and not representative of the average induced

velocities in the range between the trailing vortices.

The expression for the vortex induced flow field is derived

with the aid of the Biot-Savart's law [27]. As utilized in

fluid mechanics, this law states that an elementary length

ds of vortex line of circulation r induces a velocity:
_ ra" x k
dq - 	 	 5.23

4 n R3

at a point P located a vector distance R from ds (see figure

5.6). The scalar form of this law reads:



5.25

5.26

dq =
sin a

ds -	 ds
4 nR 2 	4 n R3

5.24

Where

a and r are as shown in figure 5.6.

Some useful applications of the Biot-Savart's law are listed

below:

1)	 A linear vortex of finite length (figure 5.7)

2

3

q =	 (cos a + cos 0 )
4nh

A semi-infinite vortex (figure 5.8)

q _	 (cos a + 1)
4mh

An infinite vortex

q
2nh

5.27

The three disturbance velocity components (u, v, w) at the

collocation point P (xc , yc , z c ) on a panel n due to a

horseshoe vortex, placed in a box k, of intensity r k can be

derived as follows:

1.	 Velocity components due to the bound vortex (figure

5.9)
uCB =  qcB.cosY

vCB =
	

5.28

wCB = - cl CB sin Y

where

clCB = 41-th (cos a + cos 0)



h

\
( xc ... x1)2 + (yc	 yi)2 + zc21

lYc - Yii. 1 	I

\(xc	 xi+1)2 A- (yc	
Y+1)2 + 

zc2

cos Y -

sin y .

h

zc
_

h

h	 _\ z2c + Orc - Yi)2

and

x i = xi+1 ; yi+1 = yi+b

2.	 Velocity components due to port free vortex (figure

5.10)

u	 = 0cp
vcp = gcp cos Y

w 	 - gcp sin Y

Where

5.29

r k
C1CP -	 (cos a + 1)

4nh

a = 180 -0 = 180 - sin -1 h
	 —	 ifor Xc < X

\ (xc - x i ) 2 + orc _ yo2 + zc2 
or

a = sin-

\/(Xc -• xi ) 2 + ( yc ... y i ) 2 1. zc2

Z
-1 C

Y = sin --
h

for xc > xi

h ..VIrc - 370 2 + zc2



4h

h	 for x >x.
a = sin-1 	 	

c 1+1

%1 (xc-x+. I)2 + (Yc-yi+1)
2 	 + zc 21

f or xc<xii.1

3.	 Velocity components due to starboard free vortex

(figure 5.11)

ucs = 0

v = q cos ycs  

wcs = qcs sin Y

where

(cos a+	 1)

h
a = 180 - R = 180 - sin 1 	

\(xc -x ii_) 2 + (yc _yi+0 2 .4_ zc2

or

z
- -1 cY = sin --

h

h = yy -yi+1 ) 2 + z c2

,
The complete horseshoe vortex placed in the panel k causes a

disturbance velocity, in the collocation point on the panel

n, with components:

ucnk = ucb

vcnk = vcp 4- v cs
	 5.31

wcnk = wcb + wcp + wcs

The total induced velocity components in the collocation

point on the panel n are obtained through summation over all

the horseshoe vortices:

L	 LUcn = E ucnk = E Runk rk

k= 1	 k=1

and



vcn 
= Z	

vcnk = E	 Rvnk rk •

	 5.32

k=1
	

k=1

wcn =	 wcnk = E Rwnk rk

k= 1	 k=1

where

1 is the total number of panels,

andRunk , Rvnk , Rwnk are the coefficients of the

disturbance velocity components obtained from equations 5.29

to 5.31.

Then, the conditions of tangential flow are applied to give:

ucn x Cxn +	 x Cyn + Wcn Czn = V x Cxn
	 5.33

where

V is the free stream velocity,

andCxn, Cyn , Czn are the components of the normal vector

to the surface at the collocation point on the panel n.

In the original Hedman method, the vortices and the control

points were positioned on a wing chord line (here equivalent

to the plane z = 0). The slope of the wing was used only on

the RHS of equation 5.33. For the present application this

is inadequate.

In matrix notation equation 5.33 can be written as:

[T]	 =	 5.34

where

T (n,k) = Runk x Cxn RNnk x Cyn Rwnk x Czn

VN(n) = V x Cxn



Equation 5.34 represents 1 linear equations in terms of the

1 unknown vortex intensities. The set of linear equations

can be solved by any direct or iterative method.

After all values of r k are known, the total velocities (i.e.

free stream plus disturbance velocities) are calculated at

each collocation point. And finally, pressure coefficients

are evaluated from equation 5.9.

5.6.2	 Quadrilateral vortex-rings in the plane z = 0

In section 5.5 it was shown that in the case of a thin

section submerged in a uniform flow with the flow on both

sides and with normal velocities continuous on the two

sides, the surface can be viewed as a layer of doublets.

Hence, this time, by more direct application of Green's

identity, we will investigate pressure coefficient

distributions, where instead of horseshoe vortices, doublets

are used. The singularities will be positioned, as in

section 5.6.1, in the plane z = 0, and the control points

will be situated on the surface of the section.

As a surface made up of a network of the constant-strength

doublet panels is the same as the surface represented by a

lattice of ring vortices, the latter will be used to define

the velocity field since it is easier to apply. The general

pattern of vortices will be as shown in figure 5.12, namely:

the load of each panel, but the last row will be

approximated by quadrilateral vortex-rings. In the last

row, vortices will be of the horseshoe form, to allow for



4

trailing vortices extending from the rear section. The

control points will be placed at the mean of the four corner

points of each quadrilateral vortex-ring, as shown in figure

5.12.	 The coordinates of a control point are 	 thus:

x i + x2 + x 3 + x4
xc -	

4

5.35

Y1 + Y2 + Y3 + Y4
Yc -

zc=f(xc , yc)

The induced velocity components will be calculated in a

similar way to that outlined in section 5.6.1 by applying

the Biot-Savart's law, but accounting for a different shape

of the basic building block, the quadrilateral vortex ring.

5.6.3	 Quadrilateral vortex-rings on the surface

In the methods of sections 5.6.1 and 5.6.2 vortices in the

form of horseshoe or quadrilateral vortex-rings were

distributed in the plane z = 0. The methods belong to the

group of approximate numerical methods. Since 1962

aerodynamicists have used exact numerical methods, which are

directly based on the Green's identity. 	 In these

applications singularities are placed on the surface of a

body.	 This implies that a body of arbitrary shape can be

modelled.

In a third attempt to calculate the pressure coefficient

distribution on an open sided shell roof, the quadrilateral

vortex-rings will be distributed on the surface of a model.



The eliptic paraboloid section will be divided into

trapezoidal elements, and the load on each of them, except

the last row, will be represented by the quadrilateral

vortex-ring. The last row, in a similar way to section

5.6.2, will be represented by horseshoe vortices (see figure

5.13).

The presence of the trailing vortex sheet makes the problem

non-linear, since two basic unknowns: the geometric shape of

the trailing sheet, and the overall distribution of

vorticity, are interdependent. The linearised solution

[139] which is employed here, assumes that the trailing

sheet lies in the plane of the roof and then, when it leaves

the surface, extends to infinity in the mean plane (here the

plane z = 0).

As before, the collocation points are found as the mean of

the four corner points of each quadrilateral vortex-ring.

In the case of a rectangular element the geometrically mean

point is also the interior point at which the velocity

induced by the vortex-ring is a minimum. More generally,

the minimum induced velocity point seems to be a better

criterion for the control point location than the mean of

the corner points [139]. In the case of the shallow,

symmetrical, eliptic paraboloid shell, however, the shape of

elements does not greatly deviate from rectangular. Hence

for simplicity of calculation the geometric criterion is

used.



q12 =P
r

(cos a + cos p )
tinh

5.36

The velocity coefficients, R-unk , Rvnk , Rwnk, in equation

5.32 for the present method, take more complicated forms

than those of section 5.6.1. They can be found as follows:

The velocity at point P of figure 5.14, due to the vortex

line 1-2 is defined as

where

d12 + d3 2 _ d22
cos a =

2 d1 d3

d3 2 + d2
2 - d12

2 d3 d2

dl , d2 , d3 , - are the distances between points 1-P, 2-P and

1-2 respectively, and

h = 'sin al dl.

The x, y z velocity components are given by:

up12 = qp12 x Cx

vp12 = qp12 x Cy

wp12 = qp12 x Cz

5.37

where

C, Cr ., C are direction cosinesx 	 z

The values of these direction cosines can be obtained from

the Biot-Savart law, which states that the vector qp12 is

perpendicular to the plane defined by points 1, 2 and P (see

figure 5.14)



Therefore

Cx -
a2 x b3 - a3 x b2

x 'El	 5.38

a3 x b2 - a2 x b3

al x b2 - a2 x bl
C z - 	

where

-a- = ra l + Ta2 + Ka3

and
	 E = Tbi + 3b2 + Kb3

al = xl - xp	 b l = x2 - xp

a 2 = yi - yp	 b2 = y2 - yp

a3 = z l	 zp
	 b 3 = z 2 - zP
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5.7 Numerical analyses

The main steps in the vortex-lattice methods can be

represented by the flow chart given in figure 5.15. The

approaches described in the subclauses of section 5.6 can be

applied to any shallow, open-sided, shell roof of arbitrary

shape. The methods have been coded in standard Fortran for

the Gould minicomputer with application to the doubly

symmetric eliptic paraboloid shell roof. Therefore, the

discussion below will be mainly concerned with this shape,

with some remarks of a more general nature.

In more general cases, the input of geometry may be rather

lengthy, but here the problem is largely reduced due to the

fact that the shape of the roof can be described by a single

mathematical equation, namely:
a	 b n

(x- -)2	 (Y- - )
2	 2

Z(x, y) = f l + f2 - 4f 1 	 	 4f, 	
a2	

c.	
b
2

where

5.39

f l , f2 , a, b are shown in figure 5.16

The actual values of f l , f 2 , a and b, which were used in the

numerical analyses are:

f l = 12.5 mm

f 2 = 56.5 mm

a = 450 mm

b = 350 mm

The parameters were chosen to coincide with those of the

model which was tested in the wind tunnel and which is

described in Chapter 6.



Two directions of wind were considered:

1. parallel to the longitudinal edge of the shell

2. perpendicular to the longitudinal edge

The vortex lattice methods which were used can be divided

into three categories:

1. horseshoe vortices in the plane z = 0

2. quadrilateral vortex-rings in the plane z = 0

3. quadrilateral vortex-rings on the surface of the shell

In each of the categories 2 and 3, two cases are examined:

a. with a quadrilateral vortex-ring distribution as shown

in figures 5.12 and 5.13

b. with the leading element vortices set back one quarter

of each element width from the leading edge, and the

last row of control points placed a quarter element

width upstream of the trailing edge (see figure 5.17).

This arrangement was used in order to investigate the

influence of the standard vortex-lattice practice for

shell roofs.

In the first step the projection of the surface on the xy

plane is divided into equal size rectangular elements. The

category 3 requires additional information i.e. the z

coordinates. The input of surface coordination for each

*panel contains 3 points for category 1 (the inboard and

outboard points, and the control point) and 5 for the

remaining two categories, namely: 4 corner points (x, y

coordinates for category 2) and the control point.



b 2

2

b2

In the case of the eliptic paraboloid defined by equation

5.39 and shown in figure 5.16, the vector normals to the

surface at the control points are obtained from the vector

product of two vectors U and v tangential to the curve at

these points. At any point P(x l , yi , z 1 ) on the shell two

parabolds lying in mutually perpendicular planes (parallel

to x and y axes) can be defined:
a

(x - -) 2

2
Z(x) y=yi = C l - 4f1 a2

5.40

Z(V x=x1 = C2 - 4f2

where C l , C2 are constants.

dz(x) y.	 ),1 dz(v—,x=x1
The derivatives, 	 A ,	 , at point P give the

dx	 dy

gradients of the curves z(x)y=y1 and z(y)1 respectively,

from which the components of vectors tangential to the shell

can be derived.

Calculations for the coefficients of the disturbance

velocity components can be greatly shortened by noticing two

facts:

1. some parts of the vortex-rings or the trailing vortices

of horseshoe vortices are common to two adjacent

elements; the appropriate coefficients need not be

calculated twice, they differ only in their sign.



2. due to the symmetry of the problem (of the geometry and

of the flow) about the plane y = -, only half of the
2

problem need be modelled. The coefficients of the

image panels (symmetry can be viewed as a mirror

reflection) are obtained from the corresponding real

panel coefficients by observing that the x and z

components are the same and the y components differ

only in their sign. The coefficients of disturbance

velocities of corresponding real and image elements are

added together since the vortex strengths are equal.

The vortex strengths are found from the set of linear

equations (5.34) giving the tangential flow conditions at

all control points. The equations are solved by a standard

matrix inversion scheme, namely the Gaussian elimination

method. In the case when a smaller computer is used and/or

the problem requires more elements, storage space in the

computer may become a major problem. In such cases matrix

partitioning methods may be required.

Substituting the vortex strengths into equation 5.32 gives

the velocity at each control point due' to vortex-

ring/horseshoe vortices. The total tangential velocities

are obtained by adding the free stream velocity to the

disturbance velocities. The pressure coefficients on the

top side of the shell are then found from equation 5.9.

The accuracy of numerical methods depends greatly upon the

size and number of elements used to model the problem. This



aspect was investigated by dividing the shell into 5x5, 9x9

and 17x17 panels and considering the Cp distributions along

the axes of symmetry. Graphs in figure 5.18 show the

results obtained using horseshoe vortices distributed in the

plane z = 0 for the two wind flow cases:

1. wind parallel to the longitudinal edge. The ratio of

rise to span of the shell in this longitudinal

direction is 1/36.

2. wind perpendicular to the longitudinal edge, (or wind

in the traverse direction). The ratio of rise to span

of the shell for this direction is 1/6.

Similar comparisons were made for the method using

quadrilateral vortex-rings placed on the surface of the

shell, and the results are shown in figure 5.19. The method

of category 2, namely quadrilateral vortex-rings placed in

the plane z = 0, was not tested since the factor influencing

the number of divisions-are similar to those for the

category 1 method.

Conclusions which can be drawn from the graphs in figures

5.18 and 5.19 are as follows:

1 All	 the	 graphs	 show a	 convergence	 trend i.e. the

difference	 in	 results between: 17x17 panels and 9x9

panels are smaller than between 9x9 and 5x5 panels.

2. The	 maximum	 discrepancies	 in	 the	 values of C

coefficients between the various divisions are:

5x5 and 17x17 - 0.07	 (figure 5.18b)

9x9 and 17x17 - 0.01	 (figure 5.18b) (except

the leading edge of figure 5.18a)



(Note that different C scales have been used for

clarity). For the purpose of wind loading on

structures the above discrepancies are both small.

3. In the method using horseshoe vortices in the plane z =

0, for wind parallel to the longitudinal direction, the

results at the leading edge show greater differences

than ,at other points. This may imply that a fine

division in this area is required. On the other hand,

Hedman [88] showed that this method tends to over-

estimate C values near leading edges; therefore using

a course division throughout a roof and taking the

control point Cp value as the average in each panel may

result in a move realistic loading.

4. The method with quadrilateral vortex-rings distributed

on the surface of the shell, for wind parallel to the

longitudinal direction shows the greatest discrepancy.

For further discussion of results the division with 9x9

panels will be considered. To investigate how the set back

of the leading element vortices (a standard practice for

vortex-lattice methods) influences the prediction of wind

loading on the open sided shell roof, the C p distributions

along the axis of symmetry can be examined. These C

distributions were obtained from the vortex-lattice methods

using the same pattern of vortices but placed in two

different manners (cases a and b). The comparison is

carried out for categories 2 and 3, namely quadrilateral

vortex-rings placed in the plane z = 0 (figure 5.20), and on

the surface (figure 5.21). The differences are small.



It is worth noting that the C p values calculated using the

two methods (horseshoe vortices distribution (figure 5.18),

and set back quadrilateral vortex-rings (figure. 5.20) case

b) are almost identical. In the case of singularity

distribution in the plane z = 0, the first method is

preferable because of its simplicity. However, when

vortices are distributed over curved surfaces, quadrilateral

vortex-rings are simpler (see figure 5.22b), as the number

of disturbance velocity coefficients to be calculated is

much greater in the horseshoe vortex distribution method

(see figure 5.22a).

Figure 5.24 shows- a comparison of the non-dimensional

pressure coefficient distributions obtained from the methods

of category 1 and category 3 case b. The C p values are

given as numbers corresponding to the control points on the

top of the shell. The presentation of these Cp values as

continuous functions along the axis of symmetry is given in

figure 5.25. The results from the two approaches vary

greatly.

Conclusions

Due to the great discrepancies in C p distributions, on the

top surface of the open sided eliptic paraboloid shell,

obtained from the methods:

i) Using horseshoe distribution in the plane z = 0,

and

ii) Using swept quadrilateral vortex-rings on the

surface of the curved body,



it is necessary to examine the two approaches more closely.

From the graphs of figures 5.18 and 5.20 it can be concluded

that the two methods: i) the horseshoe vortices and ii) the

swept quadrilateral vortex rings l yield identical results

when singularities are distributed in the same place.

The panel method employing constant strength quadrilateral

vortex-rings placed on a curved body is equivalent in two

dimensions to concentrated vortices at every node excepting

the last (figure 5.23a). The velocity field due to one of

these vortices has little effect on the tangential velocity

at the control point nearby. When the section is shallow,

the conditions are even more critical, as not only the

nearest vortex, but also the vortices in near proximity have

small effects on C values at the control points. It

appears to be that the velocity field on the surface of a

shallow structure, due to point vortices placed on the body

of the structure, is too singular to be relied upon.

In the case of vortices in the plane z = 0 this problem

almost disappears in all areas except the leading and the

trailing edges (figure 5.23b). Hence, under the assumption

of potential flow, this approach is more likely to give

reasonable results for shallow sections except near the

leading and trailing edges.

The theoretical results obtained by the methods:

a)	 Using horseshoe distribution in the pane z	 0,

and



b) Employing swept quadrilateral vortex-rings on the

surface of the curved body

will be compared in chapter 6 with experimentally obtained

non-dimensional pressure coefficients.
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Appendix to Chapter 5

Two dimensional numerical solution for a real flow

Wind response of air-supported structures is a two-domain

problem. This means that the equations describing the

behaviour of both the fluid and the structure should be

solved together. The type of coupling depends upon the

problem under consideration.

The common approaches used in fluid mechanics were briefly

reviewed in Chapter 2 and it was concluded that the

potential flow approximation is, at the present stage, the

most practicable method from the point of view of the amount

of computation involved in the numerical modelling of wind

action on highly deformable structures. The vortex-lattice

methods, based on this theory, were examined for a thin open

sided shallow shell. The main weakness of these approaches

lies in their incapability of predicting the point of

separation and consequently the sudden drop in pressure that

would occur on a structure. Hence attempts have been made

to model air flow more accurately, and to reassess by means

of a numerical example the conclusions of Chapter 2 which

were based on a literature review.

The numerical code quoted in this appendix is based on the

Navier-Stokes equations extended to turbulent flow, and the

continuity equation subject to appropriate boundary

conditions. In the approach proposed by Patankar [168] and

adopted in this program, the finite difference equations are

derived from non-linear fluid differential equations by



means of the control volume formulation. The control volume

technique which is a variant of the weighted residual

method, can be explained briefly by a simple example as

follows:

If a differential equation is represented as

L (0) = 0	 Al

and 0 is an approximate solution expressed in terms of a

number of undetermined parameters; ao , al , . am, as for

example

= ao al x+ a2 x2 + 	  + am xm	A2

the substitution of 0 into the differential equation Al

leaves a residual R, defined as

R = L	 A3

In order to make the residual small the following

integration is performed over the domain of interest:

114 R dx = 0	 A4

where W is a weighting function.

By choosing a succession of weighting functions, as many

equations can be generated as are required for evaluating

the parameters.

The simplest weighting function is W = 1. From this, a

number of weighted-residual equations can be generated by

dividing the calculation domain into subdomains (control

volumes) and setting the weighting function to be unity over

one subdomain at a time and zero everywhere else. This

variant of the method of weighted residuals is called the

control-volume formulation. In this method the calculation



domain, here fluid surrounding the body is divided into a

number of non-overlapping control volumes (in two

dimensional cases, quadrilaterals are most common). 	 For

each control volume one grid point is assigned. The

differential equation is integrated over each element.

Piecewise profiles expressing the variation of 0 between the

grid points are then used to evaluate the required

integrals. The result is a set of discretization equations

containing the values of 0 for a group of grid points. When

the discretinzation equations are solved to obtain the grid-

point values of the dependent variable, only the grid-point

values of 0 are considered to constitute the solution,

without any explicit reference to how 0 varies between the

grid points. This viewpoint permits complete freedom of

choice in employing different profile assumptions for

integrating different terms in the differential equation.

The mathematical representation of the flow field is more

complicated than equation Al, namely the problem is

nonlinear and involves two unknowns: the velocity and the

pressure fields. The procedure developed for the

calculation of the flow field by Patankar, Spalding,

Caretto, Gosman [references in 168] has the name SIMPLE

(Semi-Implicit Method for Pressure-Linked Equations). The

important operations, in order of their execution are:

1. assume the pressure field p*

2. solve the momentum equations to obtain u*, v* and w*

3. calculate the pressure correction, p', from the

equation derived by combining continuity and momentum

equations, and the total pressure is p = p* + p'



4. calculate velocity corrections u', v' and w' due to the

pressure correction p' (a formula obtained by

subtracting the momentum equations) and the total

velocities u = u* + u', v = v* + v' and w = w* + w'

5. solve the discretization equation for other O's (such

as turbulence quantities) if they influence the flow

field enough through fluid properties

6. treat the corrected pressure, p, as a new guessed

pressure p*, return to step 2 and repeat the whole

procedure until a converged solution is obtained.

Thus formulated, the procedure described in [168] is capable

of solving a variety of problems; from potential steady flow

around an axisymmetric body to the prediction of fluid

behaviour around an arbitrary body submerged in time

averaged turbulent flow.

The computer code (in Fortran 77) used in this work is a

two dimensional version of the 'SIMPLE' program used since

1972 at Imperial College for Boundary Layer Calculations and

amended by Younis [207] to suit this particular case.

The whole procedure consists of three steps:

1.	 grid generation

The decision on grid spacing in the x and y directions, its

inclination, and the extremities of the mesh with respect to

the body is made by the user. The computer program is used

to verify this grid graphically and numerically, and to

smooth the data, as well as to prepare the input file for

stage 2.



2. the 'actual analysis

The input data comprises: the geometric input generated in

step 1 and the • data describing fluid properties. These

consist of type of flow to be considered, boundary

conditions, and the accuracy required by stating the value

of terminal residuals.

The output contains a full description of the resulting flow

field; the most important information, in the present

application, being pressure and velocity distribution, and

the stream function.

3. plotting the output data

When necessary the grid is refined and/or altered, and steps

one to three are repeated.

A numerical example 

The numerical analysis was performed for an open sided thin

shell, infinitely long of section shape as shown in figure

Al. The shape and dimensions are those of the cross section

along the shorter (or transverse) axis of symmetry of the

shell tested in the wind tunnel (see Chapter 6). This

transverse direction is that for which separation of flow

was found to occur. The approaching flow was assumed to be

steady, laminar and with a uniform velocity of 15 m/s.

Two different grids were used in the numerical calculations

[207]:



1. test 1 used a course grid, as shown in figure A.2a;

with the shell represented by 8 elements (for clarity

the y direction is 3 times exaggerated with respect to

the x direction in figure A2)

2. test 2 used a finer grid; the grid being refined by a

factor of 2 compared with the grid used in test 1. The

grid is shown in figure A.3a (for clarity the y

direction is 3.5 times exaggerated with respect to the

x direction). The shell is idealized consequently by

16 elements.

In test 1 the program converged to reasonably small

residuals after 30 cycles, and the resulting stream lines

are shown in figure A.2b.

In test 2 convergence did not proceed as quickly and 200

cycles were necessary to obtain results of similar accuracy

to that of test 2. The stream lines are shown in figure

A.3b.

The pressures on the . shell, pm, obtained from both test 1

and test 2 were nondimensionalised by applying the

standard formula:

p(x,y,z)	 Pref
C - 	 	 A5

1/2 Pa v2

where p(x, y, z) is the actual pressure at a grid point on a

model;



Pref	 a reference pressure, here, the pressure of the

approaching flow; •

P a	 - is the air density, and

V
	 is the free stream velocity.

These Cp distributions, together with the results obtained

from the two dimensional vortex-lattice method with

vortices distributed in the plane y = 0, were plotted as

shown in figure A4. In the latter technique the shell was

divided into 8 and 16 elements for direct comparison with

test 1 and 2.

By examining figures A.2b and A.3b, showing the stream

lines, in conjunction with the plots representing the grids

used in tests 1 and 2 respectively, the following

conclusions can be drawn:

1. the mesh is extended into too long distances, both

upwind and downwind, with respect to the shell such

that, at the extremes of the grid, the streamlines are

not affected by the presence of the body. A decrease

in the area covered by the mesh, in these parts,

reduces the number of grid points and hence would speed

up the whole procedure.

2. the lower level streamlines are influenced by the

presence of the shell. This implies that the distance

from the body to the bottom line should have been made

larger to exclude boundary effects.



Although the 'SIMPLE' program is not based on the streamline

technique, it was felt that by changing the shape and

inclining the grid lines more smoothly, especially in the

areas just before and after the shell, the number of cycles

required to get convergence could be reduced.

The distributions of pressure coefficients from tests 1 and

2 show greater discrepancy than those obtained from the

vortex-lattice method for the same idealisation of the

shell. This implies that the former method is aare

dependent on size of mesh.

The plot of C values from test 2 is close to the potential

flow results, which were compared for the 3D case- with the

experimental results (the numerical prediction compares

fairly well with the experimental results, except in the

area of separation). Positive pressure obtained from the

SIMPLE program, but not predicted by the vortex-lattice

method, occurs in the area where the grid refinement causes

the greatest changes in Cp values. Further refinement could

be needed to find the final C distribution for the real

flow solution.

The curve representing the Cp distribution from test 2 for a

distance along the shell centreline greater than 300 mm

shows slight contraflexure, which may indicate the start of

separation.	 In order to examine the occurrence of this

phenomenon, a smaller mesh is needed in this area. 	 It

should be noted that although for the three dimensional case



the separation of flow in the rearmost part of the shell was

traced experimentally, this does not imply that the same

feature should occur in the two dimensional case.

When a three dimensional problem, the open sided, shallow

eliptic paraboloid shell, is approximated by the two

dimensional case of an infinitely long parabolic shell of

the same centreline section shape, the results obtained from

the real flow analysis differ from the 3D experimental

results much more ( for max C above 150%), than the simple

3D potential flow results. The computer and the human time

required to prepare the data and to run the numerical

program based on the potential flow theory is only a small

fraction of that which is necessary for obtaining the real

flow solution.

The computations were carried out on a minicomputer Gould

6000 and c.p.u. times were: less than a minute and 43

minutes for potential (16 elements) and real flow (test 2)

respectively. This excluded the time • for pre and post

processing.
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Figure A.4 Cp distribution
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CHAPTER 6

Wind tunnel tests on an eliptic paraboloid

Contents:

In this chapter wind tunnel tests on an open sided shallow

eliptic paraboloid shell are described, and the results are

discussed. The characteristics of the wind tunnel and

instrumentation are briefly discussed together with the

computing equipment, calibration methods for transducers,

velocity profiles (laminar and turbulent boundary layers)

and the tunnel static pressure calibration. To provide a

comparison with the theoretical results obtained in chapter

5 for the eliptic paraboloid open sided shell, an

appropriate model was built and tested in an industrial wind

tunnel. A description of the model construction and

pressure tapping is given. The tests on the shell, in the

longitudinal and the traverse directions, submerged in a

uniform flow and in a turbulent boundary layer are then

described. The results for non-dimensional pressure

coefficients are compared with the theoretical C p values.

The modified Hedman method is found to predict fairly well

the pressure distribution on the shell in the uniform flow,

except on the rearmost part where separation occurs.

6.1 Wind tunnel specification

The first wind tunnels were designed for testing aircraft

models and many early tests conducted on building models

were made in these tunnels. Since the 1960s, when theory

and experimental practice were sufficiently developed to

allow for a new appreciation of the problems of wind loading



on structures, purpose designed industrial wind tunnels have

been built.

The model was tested in an industrial wind tunnel at the

City University Aeronautics Department. Four basic parts

can be distinguished in the wind tunnel:

1. A duct to control the passage of the air through the

test section, where the model is mounted. The City

University tunnel is of closed, vertical, single return

type. In this type the air follows a continuous path

in the vertical plane defined by the wind tunnel walls,

as shown diagramatically in figure 6.1. The test

section is enclosed by solid boundaries (closed test

section).

2. A drive system to move the air through the duct. In

the tunnel under consideration the drive system

consists of two fans located as far as possible from

the working section.

3. A model of the test object, which is usually a reduced-

scale model, and

4. Instrumentation, which may either be quite simple such

as a manometer to measure pressure, or extremely

complex, such as modern pressure transducers fitted

into scanivalves and feeding output to a relatively

large digital computer.

The cross-sectional area of the wind tunnel is a very

important parameter, as it defines the maximum size of

models which can be tested in the tunnel. Any model

placed in a wind tunnel should not be greatly



influenced by the constraining effects of the tunnel

walls. Hunt suggested [reference 6.5 in 92], that for

the most common scale models of buildings, the optimum

industrial aerodynamic tunnel should have a working

section of about 1.5 - 2 m by 2 - 3 m. The working

section of the City University tunnel being 1.5 x 3 m

lies in this range.

The main objective of the test conducted on the eliptic

shell roof was to establish pressure coefficient

distributions. Therefore, to obtain the best results,

the air speeds chosen for the purpose of the tests were

in the upper range of safe air speeds obtainable in

this tunnel. They varied from 12 m/s to 21 m/s.

The model was tested under two different conditions:

1. In approximately uniform flow; the floor upstream was

left smooth and the shell was situated above the

natural boundary layer. These conditions were created

in order to match as closely as possible the

assumptions of the theoretical analysis.

2. In a turbulent boundary layer, which was generated by

expanded polystyrene cubes 50 x 50 x 50 mm thick placed

upstream of the model. However, to generate a boundary

layer of sufficient depth for practical purposes using

roughness alone would require a test section length of

approximately 28 m [39].

Hence, in order to accelerate the growth of a uniform

boundary layer by prompting early separation and

ensuring mixing of the flow, a specially shaped barrier



was placed across the floor of the wind tunnel [see

figure 6.2]. The complete set up to create the

turbulent boundary layer had been already available in

the Aeronautics Department [211]. The model was tested

in this simulated atmospheric boundary layer in order

to compare the potential flow solution with more

realistic wind action.

6.2 Instrumentation

Before the model was placed in the wind tunnel, certain flow

characteristics: such as distribution of static pressure and

variation in velocity, were determined. Subsequently the

roof model was submerged in an air stream to establish the

forces acting on it. In all cases interest was centred on

determining the total and static pressures; velocities when

required being calculated from these two pressure values.

The pressures were measured by a combination of the

following devices:

1. Pitot and Pitot-static tubes,

2. inclined manometer,

3. Furness manometer and

4. scani-valve system.

Pitot-static tubes (see figure 6.3)

A Pitot-static tube is a device used for determining the

• total head and the static pressure of an airstream when

connected to pressure measuring equipment like a manometer

or scani-valve. A Pitot tube is employed to measure only

the total pressure.



When a Pitot-static tube (figure 6.3) is placed in an air

stream and points A and B are connected to a pressure

measuring device, the pressure thus measured gives:

At point A	 PA =	
Lp + 	q2 p a (total pressure, or

very often, total pressure minus

atmospheric pressure),

At point B	 pB = p (static pressure, or very often

static minus atmospheric pressure)

where

p is the static pressure

q is the stream velocity, and

- is the air density

The differencedifference between these two pressure gives:

PA PB = 1/2 c12

Hence the velocity can be found to be:

q = \/2(pA-pB)
	

6.1

Inclined manometer 

An inclined manometer is built from a series of straight

glass-tubing of the same diameter connected by tubing at the

bottom. The tubing is filled with a fluid, and the

difference in fluid height, between the reference tube and

the tube connected to a device such as a Pitot tube, is

measured usually by an attached scale. The density or

specific gravity of the fluid is known, and thus the change

in pressure is calculated as follows:

pp = Ah x g x Pm x sin a	 6.2



where

Ah	 is the difference in height of fluid between the

reference tube and the tube in question,

Pm is the density of manometer fluid,

9.81 m/s (in SI units) and

a	 is the angle between the horizontal and the

manometer tubes.

With the advent of digital-data-acquisition systems the use

of manometers has declined. However, there are still a few

cases where a manometer is useful. An example of this was

the test which was conducted in order to establish the

thickness of the natural boundary layer at the working

section of the wind tunnel.

Furness manometer and scani-valve

A Furness manometer and a scani-valve both contain diaphragm

type pressure transducers; devices which for the purpose of

measurements turn physical input quantities such as pressure

(or more often difference in pressure) into electrical

output signals. Pressure transducers require a bridg6 power

supply and the output-voltage varies with pressure. Their

output (voltage) - input (pressure) relationship is

predictable to a known degree of accuracy at specified

environmental condition. Very often this relation is

linear.

A Furness manometer is an example of equipment where a

single transducer is used to measure only one difference in

pressure at a time.



A series of diaphragm type pressure transducers are made to

fit into scani-valves. The stepping motor of the scani-

valve, which was used during the wind tunnel tests was

connected to a single 48 port valve. The motor, by rotating

one of the two ground plates, connected each input tube in

sequence to a plenum and thus to the transducer. Through

its control, the scani-valve was made to step to each inlet

port and hold for a predetermined time and then step to the

next port. The hold time, required to allow the plenum

pressure to stabilize, was adjusted but had to be constant

for each port. This time is a function of the tubing length

and pressure.

6.3 Calibrations of transducers

When an inclined manometer is employed, a difference in

pressure can be worked out directly from equation 6.2. Both

the Furness manometer and the scani-valve require an

additional operation to establish their characteristics i.e.

the output-input relationship. During calibrations, a

series of known pressures is applied, and the pressure and

output voltage are recorded. These data are then fed into a

curve-fitting routine to determine the calibration curve.

Furness manometer calibration

A Furness manometer can operate in different ranges. Its

pressure transducer is fixed permanently in position and

encased in a metal box. This makes it more stable and not

easily influenced by small environmental changes. Therefore

the calibration of the Furness manometer need be performed

only once for a whole series of tests.



The Furness manometer calibration was carried out on the 30

mm range, the range to be used during the wind tunnel tests,

using the Cassela manometer. The calibration equipment was

arranged as shown in figure 6.4a. A series of pressures was

applied by a syringe which was connected in parallel with

the Cassela manometer and the Furness manometer. Both

devices were arranged in such a way that they measured the

difference between applied and atmospheric pressure. The

differential pressure was expressed in .terms of mm of water

in the Cassela manometer, and in milivolts in the Furness

manometer. Digital output was obtained from a d.c.

voltometer connected to the Furness manometer. Both results

were plotted to give the linear relationship between

electrical output in milivolts and mm of water (see figure

6.4b). The relationship obtained, 17.53 mv/mm H2 0 confirmed

the previous results.

Setra transducer calibration

A Setra transducer, model 237, a low range sensor of .7 kN/m

(.1 psid) to 35 kN/m (5 psid), was calibrated while mounted

into the scani-valve.

The transducer had a . flush mounting configuration to fit the

scani-valve. The model 237 combines a rugged capacitance-

type pressure sensing element and a high output electronic

circuit in a small transducer to enable accurate low

pressure measurements.

The transducer was mounted into the scani-valve, model D

(see figure 6.5) and calibrated in the arrangement shown in



. figure 6.7a and in the photograph of figure 6.6, under

positive and negative pressures. The results were plotted

on a graph to give an almost straight gradient of .0346 V/mm

H2 0 (see figure 6.7b).

The Setra transducer was found to be very sensitive, hence

three calibrations were carried out before each series of

tests and, additionally, a check was performed during each

test. This was possible due to the special arrangement of

pressure Points on the manifold. Figure 6.7b shows one of

the graphs obtained during calibration. It should be noted

that the differences in the calibration ratio, from various

calibrations were within 3.5%.
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6.4 Wind tunnel calibration

Before the model was placed and tested, the wind tunnel had

to be calibrated. This consisted of two procedures:

1. 'investigation of velocity profile and

2. investigation of static pressure distribution

6.4.1	 Velocity profile

a. Laminar boundary layer

The numerical analyses described in chapter 5 were concerned

with structures submerged in a uniform air stream.

Therefore in order to correlate the theoretical results with

experimental, the model was tested in conditions as close as

possible to those assumed in deriving the numerical

solution.

In a wind tunnel, even without any roughness upstream (a

smooth floor), the velocity profile is not uniform

throughout the section. In the areas close to the walls and

floor, laminar boundary layers will develop. In a tunnel

with a working section 1.5 x 3 m and a model size 350 x 450

x 287 mm high placed in the centre, the boundary layer

velocity gradient which develops due to the presence of

vertical walls and the ceiling will be a long distance away

from the shell. Only the thickness of the floor boundary

layer will be of interest to us. Hence the following

calibration was performed in order to establish that the

lowest point of the shell, 21.8 cm above the floor level,

was above the floor velocity gradient.



The test section entrance (upstream) was left empty (smooth

floor) and a vertical rake of pitot tubes and, separately, a

pitot-static tube were positioned on the floor of the

working section where the structure was to be sited.

Additionally, a pitot-static tube which is permanently fixed

to the wall of the wind tunnel, 20 cm below the ceiling and

about 5 in upstream from the centre of the working section

was incorporated into the test to give the total and static

pressure of the' free stream. Accurate measurements of the

vertical spacing of the pitot tubes on the rake were taken

using a cathetometer, a vertically movable telescope. All

pitot tube outlets, thirty of the rake and four of the

pitot-static type, were connected to an adjustable-angle

multiple manometer. The first and the last tube of the

manometer were open to the atmosphere.

The tunnel was run at four different speeds: 11.4 m/s, 15.7

m/s, 19.5 m/s and 22.5 m/s (velocities obtained from the

wall pitot-static tubes) and each time the heights of liquid

in the manometer tubes were recorded. For each run the

critical height, i.e. the height above which the velocity

stays constant, was found to be approximately the same - 13

CM.

Velocities were obtained from equations 6.1 and 6.2 as

follows:

‘/2( PA - pBy
u =

Pa



where

P a = 1.2256 kg/m (the density of air)

APa - APB =k (Aha - AhB ) xgxp in xsin a

k = 25.4 x 10 -3 (the constant for dimensional

homogenity)

Pm 	 .808 x 10 3 kg/m3 (the density of fluid)

d	 = 15.9

hence

u = V90.01 x (AhA - AhB )	 6.3

An example of the velocity profile, the plot height against

non-dimensional velocity (the ratio of velocity at height 7. to

the free stream velocity recorded by the wall pitot-static

tube), is given in figure 6.8. It can be seen that the

lowest point of the shell is well above the floor laminar

boundary layer. The natural floor boundary layer is very

thin, approximately 100 mm. The free stream velocity at the

working section is slightly higher than the reference

velocity measured by the wall pitot-static tube; the ratio

for four different wind tunnel speeds remained approximately

constant at 1.05.
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b.	 Turbulent boundary layer

The numerical analyses of chapter 5 were based on potential

flow theory, hence the uniform flow is the closest

approximation. But this does not prevent a comparison of

the theoretical results for C distributions, with those
P

obtained for a more realistic situation, namely pressure

distributions on the shell submerged in a simulated

atmospheric boundary layer in the wind tunnel.

In his paper 'The Nature of Wind', Harris [82] discusses a

simplified approach to variations in the hourly mean wind

speed with height in the atmospheric boundary layer. All

terrains are divided, as a function of their roughness, into

3 categories:

A - an open terrain with very few obstacles

B - a terrain uniformly covered with obstacles 10 to 15 m

in height, and

C - a terrain with large and irregular objects;

the power law exponent , a, and the gradient height, zG , for

each type are given with the velocity profile being assumed

as defined by a simple power low of the form:

V(z)	 z )a

zG

where

.7-G	 _ is the mean velocity at the gradient height

V(z)	 - is the mean velocity at a point of height z

above the ground level



For the purpose of this investigation, a turbulent boundary

layer is deemed to be defined, when V G , zG and a are known.

Due to large discrepancies between the theoretical

assumptions of the numerical analysis and the test

conditions in a turbulent boundary layer, a thorough

investigation, involving testing of the model in different

types of simulated terrain was not undertaken. The tests

conducted in the turbulent boundary layer were carried out

only to give some indication of the order of errors

resulting from simplifying the problem by assuming potential

flow.

Bearing in mind the above, terrain B, which is a middle one

in terms of ground roughness conditions, was chosen. This

type of terrain represents areas such as residential

suburbs, small towns, woodland and shrub, small fields with

bushes, tree and hedges. The terrain was simulated, as

described earlier, by expanded polystyrene cubes and a

specially shaped barrier (this set up had been previously

used and checked in this wind tunnel).

As for the previous laminar flow measurements, the rake of

pitot tubes and the separate pitot-static tube were placed

in the working section of the wind tunnel, and their heights

were measured. This time, however, the tubes were connected

to a scanivalve which had 48 ports. The arrangement of

manifolds is shown in figure 6.9. One pressure point, here

the total pressure outlet from the pitot-static tube fixed



to the wall of the tunnel, was connected in parallel with

the furness manometer and the scanivalve system to enable

recalibration of the setra transducer during tests and to

measure instantaneous values of free stream velocity, which

was to be used as a reference value. The setra transducer

was found to be very sensitive. Hence in order to eliminate

any shift in calibration, after every 6 or 7 pressure

points, one port on the manifold was left open to the

atmospheric pressure. The eventual shift was assumed to

vary linearly. This arrangement of manifolds enabled also a

check on whether the scanivalve stepped properly.

A scanivalve can be controlled manually, i.e. stepping,

homing and taking reading of electrical output from the

transducer can be performed by an operator, or all those

functions can be done by a computer equipped with an analog

to digital and digital to analog converter. Before testing,

all electrical connections between various devices and

mechanical fixings of tubes were checked by running the wind

tunnel and operating the scanivalve driver manually; taking

readings from a digital d.c. meter. During the actual runs

the computer facility Gen-Rad, on a PDP-11, was used; the

arrangement of equipment is shown in figure 6.10. The

existing program had to be modified to deal with this case.

The flow chart of the modified program is shown in figure

6.11.

It should be noted that although during the tests rms (root

mean square) values were calculated, they were only



approximate values as proper calibration of the frequency

response was not performed.

The aim of the turbulent boundary layer calibration was to

establish whether the power law exponent, a, and the scale

gradient, zG , complied with the values given in [82] for the

terrain type B in the range of velocities under

consideration. Four tests were carried out under different

velocities: 20.4 m/s, 18.8 m/s, 17.4 m/s and 14.4 m/s.

In order to find a and zG , the power law (equation 6.4) is

rewritten in a different form. By taking logs of both sides

of equation 6.4 and rearranging, the following equation is

obtained:
1	 1

lgz = - lg V + (1gz G - - lg VG)
	

6.5
a	 a

The above equation represents a straight line with slope 1/a

1
and intersection lgzG - - lgVG.

a

Values of velocity were obtained from equation 6.1 as

follows:

= \/ 2 (A PA -APB)

where

St - Ss

APA - APB -
ct

Pm = 10 3 kg/m3

k = 10 -3 constant for dimensional homogenity

= 9.81

Pa



C. - is the calibration factor of the transducer,

approx., C. = .00346 V/mm H2 0 (the precise value

is obtained from calibrating the transducer

against the furness manometer before each run)

St - is the mean value in volts of the signal obtained

either from the pitot tube of the rake, or from

the total outlet of the pitot-static tube, when VG

is calculated.

Ss - is the value of signal obtained from the static

outlet of the pitot-static tube; either from the

tube fixed to the wall, when free stream velocity

VG is calculated, or from the tube placed on the

floor of the testing section.

hence

= 
/16.008(St - Ss)	

6.6
ct

The values of log (z) and log (V) for the thirty rake tubes

were plotted on graphs for each case separately. As an

example figure 6.12 shows the results obtained from the run

with 14.4 m/s free stream velocity. They do not represent

as a whole (even approximately) one straight line. But it

can be noticed that points with z > 18.4 cm (the lowest

point of the shell is 21.3 cm) tend to form a straight line

from which a and zG can be obtained. Figure 6.13 shows the

velocity profile for the same case. The theoretical results

based on equation 6.4, with a and zG , from figure 6.12, are

superimposed on the experimental data. Values of a and zG

obtained from the runs with different free stream velocity



varied slightly; the discrepancies however were fairly

small. For further application their average values were

employed, namely a = .24 and zG = .95 m. The values given

in [82], describing the terrain type B are: a = .28 and z G =

430 m, and for terrain A: a = .16 and z G = 300 m. From the

above we can conclude that the terrain simulated in the wind

tunnel is of a type between terrain A (open terrain with

very few obstacles) and B: (being closer to B) and the

scale is approximately 1:450.

It was not of primary importance to scale properly the

terrain type B. The results for wind loading on the shell

submerged in the turbulent boundary layer were to be used to

give some indication of the influence of turbulences present

in the flow on the pressure coefficient distributions for

the open sided roof. Therefore no further work aimed at

improving the velocity profile was carried out.

6.4.2	 Static pressure

14hen a Pitot-static tube is situated next to a model in the

working section of the wind tunnel, the value of static

pressure measured is influenced by the disturbance velocity

(Vy or V z ). This means that p + vy2 pa -Patm (or p +

2
	 is measured (rather than DVz Pa Patm) i	 .-stat	 Patm)'

In order to eliminate this discrepancy and to account for

any static pressure variation caused by the presence of the

model, calibration of the working section is essential.

This is accomplished by running the tunnel at various



speeds, while measuring the static pressure both at the

place to be occupied by the model and at a long distance

away, where the presence of the model should not influence

the static pressure.

Separate calibrations were performed for the uniform flow

and the turbulent boundary layer, as the presence of

obstacles (cubes and the barrier) influences the static

pressure distribution in the wind tunnel. The tunnel was

run at different speeds, and the values of static pressure

were measured using the arrangement shown in figure 6.10.

The static outlet of the pitot-static tube fixed to the wall

was used as the reference pressure.	 Then the values

Pstatfloor - Patm (Psf) were plotted against Pstatwall -

Patm (Psw) to give approximately a straight line (see figure

6.14).
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6.5 Model

The model, a general view of which is shown ih the
photograph of figure 6.15, was constructed from an aluminium

shell supported on four aluminium rods fixed to a steel

base. The shell was of eliptic paraboloid shape, 2 mm

thick, 450 x 350 mm in plan, with rises of 12.5 mm and 56.5

mm in the x and the y directions respectively (see figure

6.22). In each corner of the shell a 7 mm diameter hole was

drilled to allow for supporting bars (see figure 6.21).

On the surface of the shell lines were drawn dividing the

shell into 36 panels (6 x 6), of equal sizes in the xy

plane. On each panel the positions of two control points

were marked (one for the longitudinal and one for transverse

wind direction) (see figure 6.20) to coincide with those of

the collocation points defined by the horseshoe vortex-

lattice method. A total of 72 small holes were drilled as

marked on the shell. The size of the holes was chosen to

allow for close fitting brass tubes, approximately 19 mm

long and of 1.5 mm external diameter (1.0 mm internal

diameter). The brass tubes were fixed into the holes and

additionally glued by means of Superglue, with the ends

protruding on the concave side of the shell (see picture in

figure 6.16). On each of the brass tube tips, a plastic •

tube of length 1.1 m was firmly positioned and then attached

to the underside of the shell in such a way that half of the

plastic tubes were gathered in each of two opposite corners

(see figure 6.17).



The aluminium shell was supported on four 10 mm diameter

aluminium rods which were fixed by means of steel colfars to

the steel base plate 510 x 410 x 8 mm thick (see figure

6.18). The collars were screwed down to the plate. The

collar-rod connections were such that in the final stage,

vertical adjustments of up to 5 mm could be made by means of

small screws. The top 15 mm of the 4 rods were filed off to

7 mm diameter, to ensure the proper positioning of the

shell. - When the shell was threaded on to its supports, and

permanently fixed by means of Superglue, the protruding

parts of the rods were filed off to the shell surface (see

figure 6.19). The top surface of the model was then made

smooth and sprayed with a matt aerosol paint.

The base plate was designed to prevent uplifting of the

model, when placed in the wind tunnel, under the most severe

conditions, and to stabilise the entire model.



Figure 6.15

Figure 6.16
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Figure 6.17

Figure 6.18
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Figure 6.22
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6.6 Test procedure

As described in subclause 6.5, the pressure tappings were

drilled in the shell and connected with pressure-tight

fittings to brass stub tubes on the underside of the model;

these in turn provided the connection to plastic pressure

tubes.

At this stage the plastic tubes were firmly fitted onto the

ports of two manifolds. The arrangement is shown in figures

6.23 and 6.24 for manifolds 1 and 2 respectively. The model

was positioned in the centre of the wind tunnel turntable,

and the plastic tubes together with the manifolds were

passed through holes, specially prepared in a replaceable

central part of the turntable. All remaining small openings

were scaled up by means of blocking pieces and P.V.C.

adhesive tape. One of the manifolds was connected to the

scanivalve pressure switching device.

The model was tested as follows:

I.	 In the uniform flow, without obstacles in the test

section entrance of the wind tunnel

a) With wind in the longitudinal direction (dir 1),

using manifold nr 1 (see figures 6.22 and 6.23),

under three different free stream velocities: 18.8

mis 17.2 m/s and 15.7 m/s

b) With wind in the transverse direction (dir 2),

using manifold nr 2 (see figures 6.22 and 6.24),

under three different free stream velocities as

above.



In the turbulent boundary layer - with obstacles in the

upwind region

a) With wind in the longitudinal direction (dir 1)1

using manifold nr 1, under four different free

stream velocities: 20.6, 18.9, 17.7 and 14.5 m/s

b) With wind in the transverse direction (dir 2),

using manifold nr 2, under four different free

stream velocities, as above.

The pressures on the model and the total and static

pressures in the wind tunnel were measured by the

arrangement of equipment shown in figure 6.10.

In chapter 5 it was emphasised that the numerical analysis

based on potential flow assumptions is not capable of

predicting the points of flow separation hence significant

discrepancies in pressure distributions between experimental

and theoretical results in these areas are expected. In

order to locate these positions and to gain a better

understanding of the flow patterns around the open sided

shell, flow visualisation tests were performed.

Off surface techniques such as smoke, soap bubbles or

streamers give a better overall picture of flow than surface.

methods, but in general they require more time for

preparation and testing. The simplest technique to apply

seemed to be the tufts method. The main disadvantage of

this method is that all tests have to be re-run since tufts

(can block pressure points and/or influence pressure



Pm-Pst	 Pm-Pst

0.5 Pa VG2
	

PG
6.5CP -

6.7

6.8

distributions on a model. Thus separate runs are required

for pressure measurements and for flow visualisation.

tufts used, were of thin wool, approximately 25 mm long and

fixed to the shell by means of Scotch tape in a grid 8 x 6.

6.7 Processing experimental results

Pressures on buildings are most usefully dealt with in a

non-dimensional form as follows: [92, 97, 201]

where

Pm is the pressure measured on a model,

pst is the static pressure in the working section of

the wind tunnel,

pG is the separate dynamic pressure

VG is the gradient or free stream velocity and

Pa is the density of air.

The above parameters were obtained from experimental data as

follows:

Sm SfSt

PM-PSt	 g . pm . k
Cf

2 Swt	 §ist 0.5 p a VG_	 g . p m • k
Cf

where

C f is the calibration factor for the setra transducer

approximately C f = 00346 V/mm H2 0 (the precise

value is obtained from calibration performed

before each run)



Swst
same reference point (---- =

Cf
PswwherePsw Pat&

Sm Sfst

where

Sm - is the mean value of the signal in volts optained

from a pressure point on the shell through the

Sm
scanivalve (-- = Pm - Patm)

Cf

swt - is the mean value of the signal in volts obtained

from the total outlet of the reference pitot-

static tube fixed to the wall of the wind tunnel,

through the furness manometer
Swt

(	 = Pwt	 Patin;
Cf

where pwt is the total pressure of the free stream)

Swst - is the value of the signal in volts obtained from

•the static outlet of the pitot-static tube at the

is the static pressure of free stream)

Sfst - is the value of the signal in volts obtained from

calibration of the wind tunnel (see figure 6.14)

Sfst
= Psf	 Pat&

Cf
where psf is the static

pressure in the working section of wind tunnel)

Substituting equations 6.7 and 6.8 into equation 6.6 gives:

C-P
Swt Swst

Analogously to equation 6.9, the approximate non-dimensional

RMS values of C are calculated as follows:

6.9

FtMSCp
FtMS

Swt Swst
6.10

RMS	 is the RMS value of the signal obtained from

the pressure point on the model.



Swt values were varying during the tests with a tubulent

boundary layer; hence for each pressure point, which was

measured at different instants of time, the S wt value

recorded in the same instant was used. The values of Swt

were available due to the fact that the samples from the

total pressure outlet of the reference pitot-static tube

were continuously collected through the furness manometer

into channel A of the computer, and the means were stored on

a disc.

More appropriately, the reference dynamic pressure in

equation 6.6 should be that measured at some height in the

working section, near the place occupied by the model, but

not affected by its presence. In the case of the shell roof

submerged in uniform flow, the dynamic pressure in the area

to be occupied by the model remains approximately constant.

Its value is derived from the known dynamic wall pressure by

multiplying the latter by the square of the corresponding

velocities ratio (here the ratio is 1.05; see 6.4.1)

In the majority of practical applications, where a model is

tested in a turbulent boundary layer, pressures are made

non-dimensional by dividing the pressure at each point on

the model by the dynamic pressure of the free stream. Thus

obtained, C values are very convenient, both for

calculation and application. When processing the data from

a test in a wind tunnel two sets of information can be kept

separately; those defining the boundary layer and those

giving the pressure coefficient distribution. A designer,



PH

Pm Pst
CpH - 6.11

6.13

6.14a) 2

in order to assess wind loading on a structure, needs to

know the C values and the gradient wind velocity; velocity

profile is not directly required.

But in order to obtain meaningful comparisons between

theoretical (potential flow), uniform flow experimental and

turbulent boundary experimental pressure coefficient

distributions, pressures on the model from the turbulent

boundary test should be made non-dimensional by dividing

them by the dynamic pressure, pH , of the approaching stream

at the height of the shell. Hence, for the shell submerged

in a turbulent boundary layer, the non-dimensional pressure

coefficients, CpH , were obtained in the following manner:

CpH is defined as-,

Where

pm - Pt is expressed by equation 6.7, but

PH = 0.5	 Pa - V2
	

6.12

The velocity, V, is obtained from the power law, equation

6.4, as

V = VG ( z a)
zG

hence equation 6.12 takes the form:

(( zG)

By substituting equation 6.8 the following equation results:

SWt SWS t
	 	 g	 pm	 k

	
a)2	 6.15

PH = 0.5 • P a • VG2

PH
Cf zG



Now by equations 6.15 and 6.7, equation 6.11 takes the form:

1
_	 _ Sm - S fst ((

z	 a '\2
LpH	 =CxAPzGswt Swst

Where z is the height of the point mid-way between the

lowest and the highest point of the shell, a = 0.24 and zG =

0.95 m. The value of A was 1.889.

The results for C distributions obtained from all cases didP
not show any discernible dependence upon velocity for the

range of velocities used in the tests; therefore only

average values are listed in figures 6.25 to 6.28.

6.8 Discussion of the results

When a model is tested in a wind tunnel, streamlines and

wakes are prevented from expanding in the way they would in

full scale unconstrained freestream flows. These

constraining effects of the wind tunnel walls start having a

significant influence on model pressures when the model

occupies more than 10% of the tunnel cross-section [92].

The cross-section area of the shell is smaller than 0.45,

(.056 + .0125) = .031 m 2 which is less than 1% of the wind

tunnel working section. Hence the blockage effects are not

likely to have any noticeable influence on C values.P

The main attention during tests in the wind tunnel was

focused on the convex side of the shell.	 Pressure was

measured on this side, and therefore the top surface of the

, model was kept as smooth as possible, and without any

:I obstacles. All the connections (the brass and plastic
'i
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tubes) between pressure points and the pressure mearuring

.t/device were carried out on the opposite side of the shell.
;

Although they were arranged as neatly as possible (see

figure 6.17), they influenced to some degree the directions

of streamlines around the shell which, in turn, led to some

changes in the loading pattern.

The areas where these effects are most clearly visible are

those near the supporting rods:,. nr 1 and 4 (see figure

6.22), where the plastic tubes were brought to the bars.

The effects can be clearly observed at the pressure points:

2, 4 and 62, 64 - for wind in the longitudinal direction;

and at points 1 and 61 for wind in the traverse direction.

The problem is discernible (right bottom corner) on a

picture (figure 6.29) taken when the shell with tufts on was

tested in uniform flow with wind in the longitudinal

direction. The results at the pressure point 47 (for wind

in the lateral direction) seem to be rather unrealistic and

this pressure point was probably blocked.

The shape of the shell and the flow are symmetrical and

therefore one would expect to obtain symmetrical results

(excluding points very close to the supports: 1 and 4). The

C values, as given in the tables of figures 6.25 to 6.28

are however not exactly symmetrical. The reasons for this

could be the small deviations in the shape of the shell

and/or the plastic tubes attached to the underside of the

shell. This illustrates the sensitivity of wind loading to

slight aberations in shape.



Uniform flow tests

For the longitudinal wind direction, for which the ,ratio

rise to span of the shell is 1/36, the streamlines stayed

attached to the shell; no catastrophic separation of flow

can be detected (see figures 6.25 and 6.29). Examining the

results row by row it may be observed that the C p values for

one side of the shell (2, 4, 6 and 14, 16, 18) are more

affected by the presence of tubes than the other. Pressure

coefficients are reasonably regular, with greater suction in

the middle, decreasing in value towards edges (except the

last row). The sudden increase in suction at the point 72

can be explained by the presence of the supporting bar,

which forces streamlines to come closer together thus

causing an increase in loading.

The irregular behaviour of the tuft near point 72, during

the flow visualisation tests, suggests the occurrence of

rolling-up vortices; (see figure 6.31) a feature which

causes an increase in the value of local pressure. The

suction due to edge vortices is of small value and cannot be

detected in the first five rows. In the last row, however,

the presence •of supporting bars seems to reinforce this

action and gives noticeable results.

In the case of flow in the lateral direction, where the rise

to span ratio of the shell is greater (1/16) separation of

flow can be observed both from the flow visualisation

technique (see figure 6.30), and by examining the numerical

results, which show a sudden increase in the value of the



fluctuating (RMS) component. 	 The separation starts . from

t'edges (pressure point 7, 67) and at the beginning is very

mild (not visible on the picture), and then grows (pressure

points 5, 65 and 3, 63) until it extends across the whole

shell (the last row of pressure points (see figure 6.32).

The higher rise to span ratio of the shell leads to closer

and more curved streamlines; a flow pattern which is more

sensitive to any irregularities in shape or presence of any

obstacles, like for example the supports. This probably

explains why, at the first row, (points 11 and 71) there are

proportionally higher RESc p values and why, in the flow

visualisation tests, tufts at these points are deviated.

The sudden increase in suction at the points 1 and 61 seems

to be due to superposition of two effects; the

conglomeration of tubes at the supporting bars and the

occurrence of rolling-up vortices.

Turbulent boundary layer tests

Pictures taken during the flow visualisation tests are

presented in figures 6.33 and 6.34 for wind in the

longitudinal and lateral directions respectively. Generally

the tufts, which indicate the direction of streamlines, are

less aligned in this case, and due to the turbulence behave

in an irregular manner.

The turbulence of the approaching flow is visible in the

first row of numerical results (see figures 6.27 and 6.28)

and in the pictures. The flow in contact with the shell at

its top surface loses some of the fluctuations, but these



values still remain high, the tufts become more aligned and
1.,

RMScp	 values are smaller (as a proportion of me
e
an CP)

values).

Due to the presence of fluctuations in the approaching flow,

the start of separation in the case of wind in the traverse

direction is not easily traced. A clear indication cannot

be found until the last row of pressure points, where it is

detectable both in the numerixal results and from the

photographic evidence.



6.9 Conclusions

In figures 6.35, 6.36, 6.37 and 6.38, the theoretical

results obtained from the analyses based on vortex-lattice

methods with

(a) horseshoe vortices distributed in the plane z = 0

and

(b) quadrilateral vortex rings placed on the surface

of the model,

are compared with the experimental C p values from the

uniform flow tests and the turbulent boundary layer tests.

Due to symmetry only half of the results are presented. In

general, the experimental C values are obtained as a mean

of the pressure coefficients at two corresponding points:

from the right and the left hand sides of the shell, except

when wind is in the longitudinal direction, where the values

quoted are those taken from the side of the shell less

affected by the underside tubes.

The theoretical procedures of Chapter 5 based on the

potential flow theory are confined to flows which remain

attached to the surface of a model (structure). This

implies that the theoretical analyses are not capable of

predicting correct values of pressure coefficients in the

areas of separation.

As discussed in Chapter 5, the two theoretical approaches

give results which differ significantly. It was expected

that the method using horseshoe vortices distributed in the

plane z = 0 was likely to give better results and this



appears to be the case, though the results are unreliable

near the loading and trailing edges.

In the case of wind blowing in the longitudinal direction

(rise to span ratio 1:36) the theoretical analysis based on

the modified Hedman method tends to underestimate values of

suction by approximately 30% compared with the uniform flow

test results. At edge points of the last row differences

are greater since the theory does not account for the

occurrence of rolling-up edge vortices. The turbulent

boundary test coefficients are smaller on average by 20%

than the theoretical, except at edge points of the last row

of panels where their values are closer to the theoretical

prediction than the uniform flow results.

For the lateral wind direction, (rise to span ratio 1:6) the

horseshoe vortex method overestimates the values of suction

in the central part of the shell by, on average, 18% for the

uniform flow and 30% for the turbulent flow. In the leading

edge area the uniform flow suction coefficients are slightly

larger than those theoretically predicted. The leading edge

drag obtained from the theory is very close to that measured

in the turbulent boundary layer tests. The trailing edge,

where separation occurs is, as expected, the area of

greatest discrepancy between the theory and the experiments.

The case with wind in the longitudinal direction is closer

to the theoretical assumptions. The shell is shallower,

hence separation should occur at a later stage, further



downstream from the leading edge, than in a steeper model.

But, because pressure coefficients are rather smalAi4 the

presence of the underside tubes and other effects are likely

to have a greater influence on measured wind loading on the

shell for this direction. This could explain why the

relative differences in the non-dimensional pressure

coefficients, between theory and experiments are generally

larger for the longitudinal wind direction.

The test results show that the C values obtained from the

turbulent boundary layer tests are smaller than both the

uniform flow and the theoretically predicted results (except

at the rear edge points). Only one type of terrain was,

however, simulated in the wind tunnel (relatively smooth)

and only one model was tested.

In the theoretical analysis a 6 x 6 panel idealisation was

used; this division coinciding with the pressure tapping on

the model. On the other hand an increase in the number of

elements used for the horseshoe vortex-lattice method, as

shown in Chapter 5, is likely to yield a C p distribution

differing by only about 5% from the present.

The modified Hedman method is not very dependent on the

number of elements and, in general, is very simple to apply

compared with real flow solutions (see Appendix to Chapter

5). It can therefore be easily incorporated into any

structure - fluid interaction scheme accounting for both

static and quasi-dynamic behaviour.



However, it should be borne in mind that the method is based

on potential ideal flow assumptions, and consequently such

features as flow separation, rolling up vortices or

turbulence cannot be modelled properly. However, when the

modified Hedman method is employed to examine a static or

quasi-dynamic behaviour of a shallow tensile membrane

structure, the inefficiency of the method (resulting in

unreliable prediction in pressure coefficients near the

leading- and trailing edges) is :, rather unlikely to cause

gross errors in the predicted structural response. This is

due to the fact that the areas of likely greatest under or

over estimation in C coefficients occur near supports; the

parts of the structure where external loads have the

smallest effect on deflections and stresses in the membrane.



Location on
Manifold

Pressure pipe
identification

Location on
Manifold

Pressure point
identification

1 wall, total 25 40

2 atm 26 42

3 2 27 44

4 4 28 46

5 6 29 48

6 8 30	 I atm

7 10 31 50

8 12 32 52

9 atm 33 54

10 14 34 56

11 16 35 58

12 18 36 60

13 20 37 atm

14 22 38 62

15 24 39 64

16 atm 40 66

17 26 41 68

18 28 42 70

19 30 43 atm

20 32 44 72

21 34 45 wall, static

22 36 46 floor, static

23 atm 47 floor, static

24 38 48 atm

Pressure pipes 2 to 72 are connected to the shell

Figure 6.23 Manifold No. 1 arrangement
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Location on
Manifold

Pressure pipe
identification

Location on
Manifold

Pressure point
identificAtion

1 wall, total 25 39	 I

2 atm 26 41

3 1 27 43

4 3 28 45

5 5 29 47

6 7 30 atm

7 9 31 49

8 11 32 51

9 atm 33 53

10 13 34 55

11 15 35 57

12 17 36 59

13 19 37 atm

14 21 38 61

15 23 39 63

16 atm 40 65

17 25 41 67

18 27 42 69

19 29 43 atm

20 31 44 71

21 33 45 wall, static

22 35 46 floor, static

23 atm 47 floor, static

24 37 48 atm

Pressure pipes 1 to 71 are connected to the shell

Figure 6.24 Manifold No. 2 arrangement
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Pressure
SeePoint (See

fig.	 6.22)
Average Approx. Pir:gtisIttire Average Agrn

2 -	 .08 .02 38 -	 .11 .02

4 -	 .08 .02 40 -	 .15 .01

6 -	 .08 .03 42 -	 .16 .01

8 -	 .06 .03 44 -	 .16 .01

10 -	 .05 .02
C'

46 -	 .15 .01

12 -	 .04 .02 48 -	 .13 .02

14 -	 .10 .02 50 -	 .16 .02

16 -	 .13 .02 52 -	 .16 .02

18 -	 .13 .02 54 -	 .16 .02

20 -	 .12 .02 56 -	 .16 .01

22 -	 .11 .02 58 -	 .16 .01

24 -	 .09 .02 60 -	 .15 .02

•	 • 26 -	 .09 .02 62 -	 .26 .03

28 -	 .14 .01 64 -	 .17 .02

30 -	 .16 .01 66 -	 .12 .02

32 -	 .15 .01 68 -	 .10 .01

34 -	 .14 .01 70 -	 .11 .01

36 -	 .10 .01 72 -	 .14 .02

Figure 6.25 Uniform flow, longitudinal dir.



Pressure
SeePoint (See

fig.	 6.22)

Average fitgrn. Pressure Average :c)tggri

11 -	 .05 .04 5 -	 .73 .08

23 -	 .07 .04 17 -	 .91 .04

35 -	 .09 .04 29 -	 .96 .03

47 -	 .37 .02 41 -	 .94 .03

59 -	 .06 .04 53 -	 .85 .04

71 -	 .04 .03 65 -	 .62 .10

9 -	 .48 .03 3 -	 .75 .12

21	 ' -	 .63 .03 15 -	 .77 .05

33 -	 .70 .02 27 -	 .81 .05

45 -	 .72 .03 39 -	 .79 .05

57 -	 .66 .03 51 -	 .75 .06

69 -	 .49 .03 63 -	 .63 .15

'	 7 -	 .66 .04 1 -	 .48 .10

19 -	 .89 .03 13 -	 .11 .06

31 -	 .96 .03 25 -	 .02 .07

43 -	 .96 .03 37 ,	 +	 .003 .08

55 -	 .85 .03 49 -	 .09 .08

67 -	 .62 .05 61 -	 .35 .11

Figure 6.26 Uniform flow, traverse dir.



'
Pressure

(See

fig.	 6.22)

Average lAgErn.
Point

Pressure
point

Avuage ntEEnac

2 -.006 .15 38 -	 .06 .09

4 +.002 .21 40 -	 .09 .08

6 +	 .02 .19 42 -	 .09 .08

8 +	 .04 .17 44 -	 .09 .08

10 +	 .04 .19 r 46 -	 .08 .08

12 +	 .04 .13 48 -	 .06 .09

14 -	 .02 .10 50 -	 .09 .09

16 -	 .04 .10 52 -	 .09 .08

18 -	 .06 .10 54 -	 .0,9 .08

20 -	 .06 .10 56 -	 .09 .08

22 -	 .04 .10 58 -	 .09 .08

24 -	 .02 .10 60 -	 .07 .09

•	 26 -	 .04 .09 62 -	 .17 .08

28 -	 .08 .01 64 -	 .11 .08

30 -	 .08 .08 66 -	 .04 .06

32 -	 .08 .09 68 -	 .04 .06

34 -	 .08 .08 70 -	 .04 .06

36 -	 .04 .09 72 -	 .07 .08

Figure 6.27 Turbulent boundary layer,
longitudinal dir.



Pressure
SeePoint (See

fig.	 6.22)

Average Approx. PIII:gnItire Average lizgrn

11 .09 .23 5 -	 .66 .19

23 .08 .24 17 -	 .83 .23

35 .06 .26 29 -	 .83 .24

47 -	 .03 .02 41 -	 .87 .24

59 .09 .26 53 -	 .77 .20

71 .15 .22 65 -	 .64 .18

9 -	 .34 .14 3 -	 .66 .22

21 -	 .47 .15 15 -	 .67 .21

33 -	 .53 .15 27 -	 .68 .23

45 -	 .53 .16 39 -	 .68 .23

57 -	 .49 .15 51 -	 .68 .21

69 -	 .34 .14 63 -	 .68 .23

•	 7 -	 .57 .15 1 -	 .34 .18

19 -	 .77 .19 13 -	 .11 .11

31 -	 .79 .19 25 -	 .06 .11

43 -	 .83 .21 37 -	 .04 .11

55 -	 .72 .17 49 -	 .09 .10

67 -	 .55 .15 61 -	 .30 .17

Figure 6.28 Turbulent boundary layer,
traverse dir.



Figure 6.29 Uniform flow, wind in dir. 1

Figure 6.30 Uniform flow, wind in dir. 2
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Figure 6.33

Figure 6.34
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Figure 6.35 Cp distribution, wind in the
longitudinal direction
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CHAPTER 7

Review of methods of analysis for air-supported structures

Contents:

Introduction, Linear analyses (Static analyses, Dynamic

analyses), Nonlinear solutions (Shells of revolution, Finite

element methods), Analyses of Structures with strong

geometric nonlinearities (Static analyses, Dynamic analyses)

7.1 Introduction ;

Air-supported structures are a special case of membrane

structures with positive Gaussian curvature. Their ability

to support various loads is due to the prestressing of the

construction material by tensile membrane forces, which

depend on the magnitude of the internal overpressure and the

geometric form of the structure. Since the jacket of an

air-supported structure behaves as an anisotropic membrane

of zero flexural rigidity, only membrane states of stress

can be produced in it by external loads. Thus air-supported

structures might be investigated by means of membrane theory

for surface structures.

Two main aspects in the analysis of air-supported structures

are [165]:

1. determination of the necessary inflation pressure, and

2. establishment of the maximum tensile stresses and the

maximum deflections occurring in the system at the

given internal pressure, combined with various forms of

live loading.



The inflation pressure is obtained under the requirement

that no compressive stresses can appear at any point df the

membrane under the combined effect of static (or

'quasi-static') external loading and internal pressure , and

that the structure remains stable under the action of

dynamic loading (mainly wind) on the pretensioned membrane.

The minimum principal stress under static loadings should be

tensile. This condition is a guarantee against formation of

(fairly large) folds, as confirmed by experiments [165].

Usually, smaller folds are formed near the membrane edges,

but these do not affect the stability, being caused by

local accommodation of the membrane to the shape of the

constraining members.

The design of air-supported structures involves three

interrelated aspects:

1. The problem of form-finding

2. Determination of cutting patterns for fabrication

3. The load analysis

Form-finding

Form-finding is concerned with defining the geometry of the

surface of an air-supported structure under internal

pressure only. The fundamental requirement is that under

internal pressure all principal stresses in the membrane are

tensile. The stress distribution under the internal

pressure should be reasonably uniform. The state of

stresses is controlled by the overall geometry of the



surface and is modified locally by, for example, .cutting

pattern inaccuracies or the incompatibility of strains in

the surface with boundary support conditions.

Analytically three equilibrium equations, in the x, y and z

directions of the surface under the inflation pressure may,

for particular cases, give the relationship between stresses

in the surface and the geometry of the surface [129, 110,

69]. The equilibrium equations consist of three

simultaneous partial differential equations and there are

therefore three unknowns. The unknowns can either be the

stresses or the geometry. Thus two approaches are possible

[202]:

i)	 define geometry, inflation pressure and boundary forces

and then calculate stresses. The membrane is

statically determinate as there are only three unknowns

at each location: two direct stresses and one shear

stress. The defined geometry must be that which

applies under the inflation pressure. The no load

geometry can then be found by consideration of the

strains necessary to produce the inflation stresses.

This approach, however, is not practicable from the

point of view of employing coated fabric material to

form the membrane, which is the most usual form of

construction. The reason for this is that such fabrics

can sustain only very low shear stresses and, if

reasonably free-form geometry is specified a priori,

significant shear stresses are likely to occur under

inflation pressure.



ii) The second more fruitful approach is to define

stresses, inflation pressure and boundary geometry, and

then calculate the resulting surface geometry. If the

stresses are defined to be uniform, then this process

is physically equivalent to determining the shape of a

"soap-film" on a given boundary with a given inflation

pressure [28]. This approach can be combined with the

determination of cutting patterns. [202, 87, 15, 115]

Cutting patterns

When a surface with a given state of stresses has been

defined we need a way to construct it from planar stress-

free pieces of real membrane material. The pieces should be

designed such that they yield the best possible

approximation to the desircd membrane shape and state of

stresses when fitted together and erected. Cutting patterns

can be computed, to some approximation, in a purely

geometric manner without considering the deformation. The

strains in the material under the initial stress are taken

into account by adjustment of the pattern during

construction [28, 151]. Alternatively, in a more rigorous

way, the initial shape may be determined by solution of the

nonlinear stress-displacement relations [129].

Load analysis

The third problem area is that of the calculation of static

deformations and stresses of an initially prestressed

membrane under external loadings (for example snow or wind).

Here the problem is usually more complicated than in form-



finding, as generally both the stresses and geometry are

unknown. Since membrane materials allow large deformations

and as a consequence of zero bending stiffness also allow

large displacements, the problem is, in many cases, both

materially and geometrically non-linear.

In practice approximations can be employed for simple cases

of form-finding and cutting pattern determination.	 Load

analyses generally require . the inclusion of all

nonlinearities. However, various simplified linear analyses

have been applied

7.2	 Linear analyses

7.2.1	 Static analyses

The behaviour of air-supported structures, under the

assumptions of small deflections and that the membrane

material behaves in an elastic manner can be described by

the classical linear theory of thin shells with zero bending

stresses (the membrane state of stresses) [69].

The basic equations employed in thin elastic shell theory

were originally derived by Love [138] in 1888. Since then

many additional theories for thin shells have been proposed

[110]. In the majority of these a curvilinear coordinate

system is employed which coincides with the orthogonal lines

of principal curvature of the surface under consideration.

(for basic definitions employing differential geometry see

110, 69, 74).	 The choice of an orthogonal curvilinear

coordinate system allows a convenient derivation of the



fundamental relationships of the theory of thin elastic

shells.

When in a thin elastic shell theory, the bending resistance

is discounted, there results a reduction of the number of

stress components in the shell and thus the set of equations

describes linear membrane behaviour.

In classical thin elastic shell theory, the membrane state

of stresses is assumed as an approximation, deduced from the

fact that under appropriate loading conditions, the

resulting bending moments are so small that they may be

neglected. Hence, with the invention of air-supported

structures, analyses suitable for some of these structures,

using the analog of a shell of revolution with straight and

curved generators under uniform or axisymmetric loading,

were available [110].

The works which are devoted to air-supported structures, and

which discuss them in wider scope than the classical theory

of thin shells, are those by Otto [165] or more recently by

Firt [69] and Leonard [129].

In the static analysis of air-supported structures Firt [69]

uses a rectangular projection system of coordinates and

derives equations of equilibrium by projecting all the

forces (external and internal), acting on an infinitesimal

element of a very thin shell, onto two tangential directions

and the normal to the curved element. This results in three



linear differential equations and under the assumption that
k=.

the geometry of the element remains basically unchanged

during the loading process, the membrane state of stresses

is a statically determinate problem since for three unknown

membrane forces, one normal and two tangential, there are

three equations of equilibrium.

The equations may be solved analytically by direct

integration when a particular shape of membrane structure

and type of loading are assumed. The greatest number of

analytical solutions exist for surfaces of revolution

(elliptical, spherical, parabolic or conical) [69]. 	 For

more complicated shapes, and/or loadings, analytical

solutions are derived by employing classical functions of

mathematical physics such as Bessel function, and Kelvin or

Legendre functions. When a shell is shallow the three

differential equations can be reduced, by expressing

stresses as pseudo-stress resultants acting on the projected

differential element and introducing a stress function (for

example Pucher's stress function), to a single second-order

partial differential equation for the stress function

[129].

When the stresses are known, the strains are found from

Hooke's law for anisothropic materials [69], and under the

assumption of small deformations the strain-displacement

relations are given in the form of three linear differential

equations [69, 110], which can be used to calculate

displacements [69, 165].



In the linear static analysis of an arbitrary shell, or

assembly of arbitrary shells, under static loadings, the

only possible solution is in general numerical. Various

methods have been employed, the most common of which are:

the finite difference method [110], the finite element

method [210], and the method of stepwise integration [110].

7.2.2	 Dynamic analyses

Dynamic behaviour of air-supported structures, under free or

forced vibration, may in some cases be analytically

investigated with reference to a particular shape of

structure [69]; cylindrical membranes being the most common.

Equations describing the movement of a structure are

formulated under the assumption that the mass of the

surrounding air and damping are neglected. The governing

equations, which can be obtained by resolving all forces

into tangential and normal directions is a partial

differential equation of fourth order. Assuming harmonic

vibration (and for forced vibrations harmonic external

loading), the dynamic equation is reduced to an ordinary

differential equation (homogeneous for free vibration, and

non-homogeneous for forced vibration), which may be solved

by means of Fourier series analysis or modal analysis [42,

69, 110].

As emphasised previously the total design of air-supported

structures cannot be based, in general, on linearised

theories, but the theories may be used to deal with a

particular class of problem. The equations describing the



mutual relationship between external forces, 	 internal

stresses and deflections are much simpler than in nonlinear

problems, hence:

1. there is a greater chance to derive an analytical

solution using linear theory and thus the stress

distributions can be better illustrated • and possible

shapes of air-supported structures may be explicitly

defined [69].

2. linear equations are easier to employ in two field
problems	 (air-structure	 or	 water-structure

interactions). Coupling between these two fields can

be more precisely modelled, and thus some phenomena,

such as flutter in potential flow [113], can be more

closely investigated.

7.3 Nonlinear solutions

The behaviour of an inflatable membrane structure is such

that, very frequently, the classical linear theory is

inadequate for proper analysis.

Nonlinear membrane theories have been studied since 1960.

Theories and solutions for axi-symmetric shells of

revolution have been proposed by Green [78], Grigor'ev [79],

Rivlin [173] and Simmonds [183]. The theories and solutions

are valid for large elastic displacements of membrane-type

shells.

Another branch of work on air-supported structures is

concerned with the superposition of	 infinitesimal



displacements on previously deformed inflatable shells [128,

180]. The majority of these works on superposition problems

have assumed a rubber like material whose constitutive

relations were studied by Mooney [148]. In this theory

account is taken of the behaviour of the rubber or similar

superelastic material which, when strained in any manner to

the point of rupture, experiences tightening or stiffening

before rupture. In mathematical terms this means that the

derivative of the stress with respect to strain shows a

marked and continuous increase.

7.3.1	 Shells of revolution

There are a few nonlinear solutions which do not require

discretization of a continua a priori. For membrane

structures they are mainly for shells of revolution [128].

One group is based primarily on the assumption of a

prescribed initial shape and of a nonlinear, isotropic

incompressible material of the Mooney-type for fabrication

of the shell. Glockner [73] and Vishwanath [196], by

employing the Newton-Raphson numerical technique, predicted

the stresses and displacements of an inflatable structure

with a prescribed initial revolute configuration subject to

axisymmetric static and thermal loads. The prime advantage

of the Newton-Raphson technique besides its convergence

characteristics, is the capability to more easily determine

possible equilibrium states when a highly nonlinear elastic

material of the Mooney-type is considered.	 Other

investigators	 [128]	 have used numerical integration

techniques for the same type of problem (i.e. prescribed



initial shape and Mooney-material).

There is an exact solution based on perturbation theory for

the special case of linear elastic (Hookean) and isotropic

shells with an initial spherical shape and loaded

axisymmetrically [129, 195]. The perturbation method

consists of superposing an infinite set of asymptotically

convergent linear solutions on the nonlinear equations for

the membrane with the deformed surface used as a reference.

Another direction of research into the behaviour of

inflatable shells of revolution concerns the determination

of the initially unstrained shape required to obtain a

desired final shape after pressurisation. The constitutive

relations for the material have been taken mainly as linear

Hookean or as generalised Hookean in nature, i.e. with

stress expressible as a nonlinear power series expansion of

the strains. Since the deformed middle surface is taken as

the reference state, the stress distribution is statically

determinate [122]. The initial shape is determined by

solution of the nonlinear stress- displacement relations.

If perturbation theory is used, the nonlinear equations

degenerate into an infinite set of linear equations, which

are solvable in closed form for an arbitrary shell of

revolution.	 The terms in the perturbation series are

determined recursively and have been shown to be

asymptotically convergent. Leonard in [122] proved

convergence by forming the closed sum of the series in one

sample problem.



Once the desired shape has been attained and its stress

distribution , determined, the behaviour of an air-supported

structure during external loading must be analysed. A

solution technique based on superposition theory has been

developed to determine the static response of shells of

revolution subject to symmetric [123] and non-symmetric

[124] external loads. The superposed displacements were

assumed linear. This restriction was later removed [126] by

considering the superposed loadscincrementally. After each

increment of load was applied, and the response calculated,

the geometry and stress state was updated before the next

increment of load was added.

Solution methods developed for pattern cutting design and

load analysis are applicable to arbitrary shells of

revolution. More general geometries, for which exact

descriptive equations are not available for the typical

meridian, have been treated using Chebyshev polynomial

interpolation for the meridian [125].

The dynamic behaviour of inflatable shells of revolution,

described by the free and forced response of these

structures to external symmetric and asymmetric dynamic

loads, has been considered by various researchers [128].

Solution techniques for shells with arbitrary meridiant

contours are available. Free vibration mode shapes and

natural frequencies have been given for numerous examples.



7.3.2	 Finite element methods

The prime effort devoted to air-supported structures of

arbitrary configuration has been toward the development of

finite element techniques for the nonlinear static and

dynamic analysis of membrane shells. Oden was one of the

first to use flat triangular elements to predict the

response of a prescribed initial geometry to internal

pressure [160, 161, 162]. Large strains of a nonlinear

material of the Mooney-type were considered. It was assumed

that the node points were sufficiently close that

displacement fields within each element could be

approximated by linear functions of the local coordinates.

On the basis of this assumption, the Lagrangian stmaSm

tensor was expressed in terms of the node displacements and

a nonlinear relation between node forces and displacements

was derived. Group transformation was introduced to re-

assemble the elements.

In static analyses this led to a system of highly nonlinear

equations which were solved by the Newton-Raphson method.

In this method, the nonlinear stiffness relations are

expanded in a Taylor's series and truncated to only two

terms. The first term represents a linear stiffness

relation and the second term represents a correction due to

increments in the node displacements. The linearised

equations are solved for the displacements produced by

increments in the node forces and these are introduced into

the nonlinear equations to obtain corrected values for the

force increments. A new set of linearised equations is then



computed using the truncated Taylor's series. By

successively solving the corrected linearised equations for

displacements produced by the corrected forces of the

previous cycle, and correcting the node forces each time

using the nonlinear equations, an iterative scheme is

established.	 Thus obtained, numerical results compared

favourably with experimental results.

The finite element formulation of the transient dynamic

behaviour of air-supported structures using flat triangular

elements resulted in a large system of highly nonlinear

second-order ordinary differential equations for the unknown

nodal displacements [163, 24]. From two classes of direct

numerical time-integration methods for systems of nonlinear

equations: a conditionally stable explicit scheme and an

implicit scheme, which is often unconditionally stable for

linearised problems, Oden [163] chose the former. In this

case, the principal advantage of an implicit scheme

(normally unconditionally stable for large time steps) is

overshadowed by the necessity of solving a set of

simultaneous nonlinear equations at each time step. The

explicit dynamic procedure employed by Oden was central

difference	 time-integration	 with	 a	 lumped-mass

representation.

The response of air-supported structures has also been

determined using strongly curved quadrilateral elements [85,

86, 127, 131-133] with Hookean isotropic behaviour assumed.

Problems involving both known initial and final geometries



have been considered, with the Newton-Raphson technique

being used for those problems in which the final geometry

was prescribed. Incremental methods have alternatively been

employed for problems in which the initial geometry was

prescribed. In general, an incremental method, in which

deflection increments are calculated using a tangent

stiffness set not at the beginning of each increment but

near the mid-point of each increment, is most efficient.

The nonlinear dynamic solution of membranes using cubic

quadrilateral finite elements with Hookean material was

investigated by Benzley [24] and Leonard [129]. 	 They

employed	 an explicit method with central

difference time operators. Leonard [129] and Lo [137]

suggested ways of including nonlinear stress-strain

relationships (Mooney-type) into static and dynamic analyses

of air-supported structures by the finite element method

using quadrilateral and other elements.

7.4	 Analyses of structures with strong geometric

nonlinearities
7.4.1	 Static analyses

Static analyses of air-supported structures by finite

element methods generally rely on an estimate of the initial

stiffness of the structure [200]. This implies that a

stable initial state can be defined. In the most common

nonlinear structural problems, the initial reference state

is quite easy to define. This is so because most structures

have sufficient stiffness to support their own weight. When



the weight loading is small compared to the design loads,

the dead load state is not very different from the

'weightless' state.

When a very thin flat membrane is idealised by ignoring the

small bending stiffness, the flat initial state has a

nonsingular stiffness matrix only if the membrane is

pretensioned. Attempts to calculate, by normal finite

element methods, the dead loaded shape of such a membrane

without pretension are thus likely to cause problems [200].

A thin flat membrane, when in an unloaded weightless

condition, is essentially a mechanism with negligible

intrinsic stiffness, and this general type of problem has

strong geometric nonlinearities even if the initial

singularity is overcome.

Presenting the statical structural problem as a functional

minimisation problem and performing the minimisation

numerically is an alternative to matrix type iterative (for

example the Newton-Raphson method) or incremental methods.

The approach usually relies on a minimum energy principle

and employs nonlinear programming methods to search the

problem parameters which correspond to the minimum [200].

Many nonlinear structural solutions have been obtained by

energy search methods: Schmidt [178], Buchholdt [33] and

Murray [152]. The last two have used energy search methods

on cable networks. Very little has been done however in the

application of these methods to highly nonlinear problems

[200].



Another procedure for moving towards a correct solution from

a nonequilibrium starting guess involves the use of dynamic

equations. The starting guess with zero velocity is taken

as the initial condition. The static loads are then applied

and held constant and the system is allowed to move

dynamically until it is artificially damped to a static

solution. This effectively avoids the singularity problem

if the damping and mass terms are appropriately defined.

The method is termed Dynamic Relaxation.

Dynamic Relaxation was originally proposed by Day [55] and

Otter [164] and was extended to the form-finding and static

analysis of cable and membrane structures by Barnes [8-10,

12-15]. The method is based solely upon Newton's second law

of motion and the stress-strain relations of the structural

components under consideration. It has been frequently used

in conjunction with finite differences [9].

In this basic form, dynamic relaxation traces the movement

of a structure from the time when it is initially loaded

until, due to viscous damping, the system reaches a steady

equilibrium state. Most rapid convergence is achieved when

fictitious nodal mass components are all adjusted to be

proportional to corresponding direct stiffness components, •

and viscous damping is near the critical value [9].

An alternative dynamic relaxation procedure suggested by

Cundall [48] for rock mechanics problems, termed 'kinetic

damping', has been found to be more stable with convergence



more rapid when large residuals are imposed [197]. In this

procedure, the undamped motion of the structure is traced

and when a local peak in the total kinetic energy of the

system is detected, all velocity components are set to zero.

The process is then restarted from the current geometry and

continued through further (generally decreasing) peaks until

the energy of all modes of vibration has been dissipated and

static equilibrium is achieved.

In a comparative study of dynamic relaxation with other

vector and matrix methods applied to tension structures it

was concluded [10, 130], that dynamic relaxation was the

most efficient vector method and compared in efficiency with

the Newton-Raphson matrix method; the latter being

preferable for structures with a small stiffness matrix band

width, and the former for surface structures. Dynamic

relaxation has a number of other advantages, especially when

used for membrane structures [14]:

1. the analysis always converges provided mass

comply with the stability criterion,

components

the separation of equilibrium2. and compatibility

conditions allows complex stress/strain relations or

on/off nonlinearities to be accounted for,

3. high localised energy disturbances tend to be rapidly

dissipated before their effects are propagated

throughout other regions (especially useful in form-

finding),

4. Stiffness and mass matrices of the complete assemblage

need not be calculated; 	 the calculations are



essentially carried out at the element level, and
p,

5. the process can be easily extended to solve dynamic

problems by the explicit method known as central

difference integration.

7.4.2	 Dynamic Analyses

Generally applicable methods for the dynamic analysis of

arbitrary nonlinear systems are the numerical step-by-step

direct *integration methods which can be performed by two

different techniques: implicit or explicit. The implicit

techniques require fewer time steps as they are more stable

(and for linear problems unconditionally stable) but at each

time step a complete set of simultaneous nonlinear equations

has to be solved. When nonlinearities are large this may

involve iteration by the Newton-Raphson method; hence the

stiffness matrix has to be calculated not only at the

beginning of each time step but as frequently as is required

by the Newton-Raphson scheme [14].

In explicit methods, which are conditionally stable

(generally smaller time steps are essential for stability),

due to the introduction of a simple relationship between

displacement, velocity and acceleration, only one vector

needs to be calculated at each step, and this may be

evaluated by any standard simultaneous-equation-solution

procedure. If, in addition, the mass matrix is diagonal,

the method may be formulated as a vector method (the re-

assembled stiffness matrix is not generated and calculations

are carried out on the element level) The explicit approach



using a central difference scheme is very often regarded as

the best for solving highly nonlinear dynamic problems' [42,

46, 17]. The main shortcomings, in a general sense, of

this approach are: that the time step used in the finite

difference formulation must be smaller than a critical value

which is calculated from the mass and stiffness properties

of the element assemblage, and that the effectiveness of the

procedure depends on the use of a diagonal mass matrix and

the neglect of general velocity-dependent damping forces

[17].

Oden et al [163] suggested, in relation to flexible

membranes, that as one of the parameters taken into account

in choosing the time step in an implicit method is dependent

upon the required accuracy of modelling, the time step used

in an implicit method can be as small as that required for

numerical stability of an explicit scheme. Krieg and Key

[111] compared the accuracy of explicit central difference

integration with a family of implicit schemes for modelling
the frequency response of membrane and bending deformations

of shells.	 For equal computational work the central

difference process with lumped masses was shown to be more

efficient than the best available implicit scheme.	 Johnson

and Grief [101] considered a wider class of problems and •

concluded that the central difference process is most

efficient when the response varies rapidly.

Barnes in his investigations [7, 11] of vibration decay in a

pneumatic dome compared experimental results for the



deflections at the apex of a suddenly loaded inflated dome

with numerical analysis predictions. The dome, was

approximated numerically by triangular flat elements with

masses lumped at the nodes and the results compared well

with experimental values.	 The explicit method using a

central difference scheme, was formulated in such a way that

in terms of the previous displacements and

forces -predicted from these displacements

strains which had previously taken place.

material was assumed to be visco-elastic and

purely

residual nodal

and the creep

The membrane

was represented

displacement components at each node were determined

numerically by a single Kelvin model 1208). The deep

strain calculations, checking for buckling and reformulation

of stiffness matrices were performed at less frequent

intervals than the basic finite difference time step

procedure.

Many other explicit methods are available such as the Euler

method or higher order schemes [98], all of which may be

adopted for nonlinear dynamic analysis. Few of these have,

however, been applied to air-supported structures [13].



CHAPTER 8

Dynamic relaxation method for the static analysis ot air-

supported structures

Contents:

In this chapter, pneumatic domes constructed from

orthotropic woven fabric and lightweight polythene, subject

to static loads applied centrally and asymmetrically are

analysed using dynamic relaxation. The dynamic relaxation

method for tension membranes is reviewed with emphasis on a

version employing kinetic damping. Structural idealisation

depending on the fabric patterning, type of loading and

membrane material are discussed. The static analyses of the

domes are performed in such a way that they describe the

behaviour of the models used in the tests discussed in

chapter 10. The resulting stresses and deflections are

employed as initial states in the dynamic analyses of

chapters 9, 11 and 12.

8.1	 Dynamic relaxation - a review

8.1.1	 Formulation of the method

The static equilibrium state of a structure initially

unbalanced can be found by following its movement step by

step for small time increments, At, from the moment of

loading until the point when, due to damping, all velocities.

tend to zero.

The equation of motion for a structural system, which is

idealised by a discrete assembly of elements is [42]:

• •
MX + CX + KX = R E	8.1



where
t.

M, C, K are the mass, damping and stiffness matrices,

RE is the external load vector, and
••

X, X and X are the displacement, velocity and acceleration

vectors.

A dot above any symbol represents differentation with

respect to time.	 Each term on the left hand side of

equation 8.1 represents component force vectors:
-

MX = F 1 - are the inertia forces,-

CX = FD - are the damping forces, and

KX = FE - are the internal elastic forces

Equation 8.1 can be rearranged as:
07

MX + CX = RE - FE = R
	

8.2

Now the left hand side of equation 8.2 represents the forces

which are motion dependent; i.e. the forces which are equal

to zero when the static state of equilibrium is reached.

This implies that, if equation 8.2 is applied to the static

analysis any divergence from the real values of forces F1

and FD does not influence the final static displacements and

stresses.

There are broadly two different types of dynamic relaxation

method employed for the static analysis of pneumatic

structures [12]:

1. With viscous damping.	 By appropriately adjusted

coefficients in the damping matrix, which when a body

is in motion results in 'viscous forces', the system is

brought to rest;



2.	 With kinetic damping. In this procedure the damping

forces are set to zero and the motion of all structural

nodes is traced until a kinetic energy peak is reached.

Then all velocity components are reset to zero and the

process is continued through further decreasing kinetic

energy peaks until equilibrium is obtained.

In the majority of efficient dynamic relaxation schemes the

real masses are substituted by fictitious masses which are

determined from the stability criteria [12].

Equation 8.2 can be expressed in terms of velocities, namely

MV + CV = R	 8.3

Where V = V(t) = X is a velocity, and
•	 ••

V = X

Knowing the value of velocity at time t, V(t), a velocity at

time t + At/2 and t -At/2 can be incorporated in the

Taylor's expansion of function V(t) [169]:

t.	 ht 2
V(t + At/2) = V(t) +	 V(t) +	 V(t) + . . . . 8.4a

2	 8

t .	 At2
V(t - At/2) = V(t) -	 V(t) +	 V(t) + . . . . 8.4b

2	 8

If At/2 is small all the terms of order (At/2) 2 and higher

can be neglected, i.e.

At .
V(t + At/2) = V(t) + 	 V(t)

2

At .
V(t - At/2) = V(t) -	 V(t)

2

8.5a

8.5b



By subtracting equation 8.5b from equation 8.5a	 the

following can be obtained:

1:1(t) -

V(t + At/2) - V(t - At/2)
8.5c

At

Equation 8.5c known as the Euler-Cauchy or second order

formula is employed in the central finite difference scheme.

For a small time interval, At, changes in velocities can be

assumed to be linear, hence equation 8.2 in the central

finite difference scheme takes the form:

1	 1
R =	 m(vt+At/2 _ vt-At/2 ) 	 _ c ( vt+At/2	 vt-At/2) 8.6

At	 2

The left hand side of equation 8.6, Rt , comprises external

forces defined as a vector for each node and internal,

elastic forces, F 1 , which can be evaluated on an element

level from the 'natural element stiffness' and nodal

displacements of an element. When the finite element

formulation is used the internal elastic forces can then be

expressed in a vector form for each node of the element.

Next, by assuming the mass and damping matrices in diagonal

form the whole equation 8.6 can be reduced to a vector form.

The equation expressing the equilibrium condition for any

node i in the x direction is:

N. 
(V	

1
= t+	 VA	 -t/2	 t-At/2)	 _ C. 07. t+At/2	 v t-At/2%ix	 iR.ix

	

	 x	 2 1 lx	 ix
At

8.7

Thus defined, the analysis enables separated treatment of

equilibrium and compatibility conditions which may be

particularly useful for the solution of nonlinear problems.



(In nonlinear static analysis, almost all matrix b,methods

require combining these two conditions together). In the

dynamic relaxation method, one higher order equation is

replaced, by two lower order equations.

8.1.2 Dynamic relaxation with viscous damping [9]

Graphs shown in figure 8.1 illustrate typical responses of a

viscously damped single degree of freedom system with

various damping levels, E , and (

E
	

8.8
2 m

where

m is the mass

C is the viscous-damping, and

911 is the undamped circular natural frequency

For E= 1, the system is critically damped and the amplitude

decays more rapidly than in either the underdamped (0< E <1)

or overdamped (E >1) cases.

The obvious conclusion is that in order to obtain the

quickest convergence in the dynamic relaxation method, the

value of fictitious damping should be as close as possible

to the critical damping or just sub-critical. The damping

constant Ci (see equation 8.7) generally takes the form

Ci = Mi (C P /At)	 8.9

where C' = 4m fMi and f is the fundamental frequency.

The structural frequency, f, may be obtained as the lowest

frequency from a short undamped run [9]. The recurrence

equation for velocities, using dynamic relaxation with

viscous damping can be derived from equations 8.7 and 8.8 as



1 - C'/2	 t	 At	 1v t+At/2 vxt-At/2 + RIX	 8.10
1 + C'/2	 M.	 1 + C'/2 '

8.1.3 Dynamic relaxation with kinetic damping [197, 14]

Figure 8.2 shows a ball suspended from a fixed point on an

inextensible string and allowed to move only in the plane of

the drawing, (a single degree of freedom system). The ball

is set into motion by applying a force F and immediately

releasing it. The point of maximum kinetic energy of the

system, figure 8.2c, is the same as the point of static

state equilibrium. This analogy, when extended to multi

degree of freedom systems, is the core of the dynamic

relaxation method with kinetic damping.

For a real structure, however, the process does not

terminate, when a first peak of kinetic energy of the system

is reached, but must be continued, eliminating the kinetic

energy from other modes by tracing the energy through

further peaks, until static equilibrium is reached (in

practice, until the maximum residual unbalanced force at any

node has a very small value).

The recurrence equation for velocity at t = t+ At/2, is

obtained from equation 8.7 by setting Ci to zero:

At
.t+At/2 =	 t-t/2 --V .	V	 + R.ix	 ix	 ix 8.11

Mi

To account for Vx = 0 at the start of the process and the

linear variation in velocities between times t-pt/2 and t+

At/2, velocities at the mid-point of the first time step are

given by [14]:



At
V• At/2 = R . --ix	 ix

2M.
8.11

The new x coordinates of node i is then

x . t+t _ x . t	 At * vixt+At/2	 8.13

and the kinetic energy component, KE, is:

2	 KEit+At / 2 = Vxi
t+At/2 x M• x V • t+At/2 8.14x 	 xi

The kinetic energy of the complete system is calculated by

summing up the kinetic energies of all nodes in the x, y and

z directions.

If the kinetic energy of the system computed using

velocities at t+ At/2 is then found to be less than the

previous value at t-At/2, a peak has been passed.

velocities should be set to zero and the process restarted

with coordinates corresponding to the point at which a local

maximum kinetic energy occurred. Barnes [13, 14] and

Wakefield [197] suggest three different approaches to

establish nodal coordinates, XiKEpf at this kinetic energy

peak:

1. By assuming that the kinetic energy peak occurred at

time t-1t/2, and that nodal coordinates vary linearly

between t-At and t; for a small At,

= x . t-Lt/2 =	 (xit	 xit-At )	 8.15x iKEP	 i

Both velocities and coordinates are incremented within

the same loop in the program (see figure 8.7), hence

X•t Vix t+A	 it/2 and R- x t are the variables currently in

store when a peak is located.	 The reinitialisation

coordinates in terms of variables currently in store



can thus be obtained using equations 8.11, 8.13 and

8.15 [197] as:

3At	 At2
x . t-At/2 = x . t+At _	 v ttLt/2	

ix 8.16ix	 -	 R 
2	 2Mi

2. In the central difference approximation to the dynamic

analogy, nodal velocities are assumed to vary linearly

between t-At./2 and t+At/2. Consequently the variation

of displacement increment is quadratic within that

interval.	 Working on this assumption Wakefield [197]

gives	 an	 alternative	 expression	 for	 the

reinitialisation coordinates as

= X .t-Ai /2 = X.t+At	 t+At/2	
At

XiKEP	 -	 At (4 x v.ix	 -	 Rix )
8	 M.

8.17

3. The kinetic energy peak is obtained more accurately by

fitting a quadratic polynomial through the current (C)

and two previous kinetic energy values (A and B) (see

• figure 8.3). For linearly varying displacements

between t-At and t, and a more precisely traced energy

peak, Barnes [13] derived the formula for the

coordinates corresponding to the kinetic energy peak

as:

XiKEP = Xit+At - At (1 + q) x V ixt+Ati2 +	 q Rixt
A t

2

8.17
Where

C - B

(C-B) - (B-A)

and A, B, C are values of kinetic energy at

t = t-3At./2, t = t-At/2 and t = t+At/2 respectively.

2



On restarting the process, velocities at the mid-point of

the first time step are given by equation 8.12. 	 Thereafter

velocities are updated according to equation 8.11 until the

next energy peak.

The dynamic relaxation method with kinetic damping does not

require a trial analysis to establish any parameters

(contrary to the method with viscous damping), hence it is

easier to implement with automatic control. Additionally it

has been found [197, 13] that the method copes very well

with any gross out of balance forces.

The dynamic relaxation method with kinetic damping will be

used for static analysis of air-supported structures

described in this chapter.

8.1.4	 Stability criteria and fictitious nodal masses

Dynamic relaxation is an explicit time integration scheme

which is conditionally stable i.e. the time step, At, should

be smaller than a critical value, atcr otherwise

deflections, velocities and forces grow without any bound.

For the conditionally stable, central difference scheme, the

time step length is limited by the expression [166]

2
At <
	

8.18

°max

where

co max is the highest circular frequency of the finite

element assembly.	 Providing that comax represents the



sX1

maximum nonlinear frequency, equation 8.18 holds

nonlinear problems. The estimate of the critical time ! step

does not necessitate the solution of the eigen value problem

for the whole system, or any trial run. The bound on the

highest eigen value can be obtained by consideration of an

individual element.	 This is established by an important

theorem proposed by Irons [96] which proves that the highest

system eigen value must always be less than the highest

eigen vlue of the individual elements.

The critical time step with a reference to dynmic relaxation

was estimated by Casell [36, 37], and also directly derived

by Barnes [9]. The latter considered the relative motion of

adjacent nodes of a net like structure and obtained the

expression for the critical time step for a node i as

Atcrit =

where

X refers to the local maximum stiffness direction.

For static analysis, no real values of masses need to be

used, hence the problem of formulating the stability

criteria can be reversed. The value of At may be chosen

arbitrarily and, from equation 8.19, 'fictitious' mass

components may be evaluated [13] as:

At2
[Mi ] =	 [Si]	 8.20

2

8.19

where [Ni] and [S i ] are 3 x 3 diagonal matrices whose

components are expressed in the coordinate system related to



the principal stiffness directions. 	 Equation 8.20 when

transformed to the global system 	 {X*}	 by the

transformation

takes the form	 {Xi} = [Ti ] {X 1 *1	 8.21

At2	At2

[Mi* ] =	 [Ti]T [ S i ] [ Tc ] = --- [S i *]	 8.22
2	 2

where

[14 1 *] and [Si*] are square full matrices.

Computationally it is more convenient to use a diagonal mass

matrix.

For analysis of membrane structures, Barnes concludes [13],

that a stable procedure is to set lumped mass components

according to the Gershorin bound as

At2

(Mxi )	 ( I Sxx I 4- I S 	 I Sxz 1 )i	 8.23
2

Where

1 Sxj 1 	 are the absloute values of the global direct

stiffness components at node i.

In the form-finding of tension structures, changes in

geometry are so large that the greatest possible stiffness

at any node should be used for each coordinate direction.

Thus
*	 At2

Mxi = Myi = Mzi = --- • Si max	 8.24
2
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8.2 Structural idealization and natural stiffness matrices

Membranes of pneumatic structures are idealised' most

commonly [13], for purposes of numerical analysis by dynamic

relaxation, into a set of nodes interconnected by straight

links forming the edges of constant strain triangular

elements (and/or discrete constant strain line elements).

The size, layout and type of idealisation depend mainly

upon: the size and shape of structure, pattern cutting and

material properties.

Four types of idealization can be distinguished:

1. isotropic	 membrane material posses isotropic

properties

2. orthotropic - membrane material, like most coated

fabric, has two dominant, mutually perpendicular

directions of stress path: warp and weft (USA fill).

The pattern cutting is such that, when the structure is

assembled and pretensioned, the directions of principal

stresses coincide with those of warp and weft.

3. line elements - the membrane material is similar but in

analysis the directions of principal stresses are

forced to be those of warp and weft, and the shear

stiffness of the membrane is disregarded.

4. line elements and coating - similar to type 3, but with.

shear stiffness accounted for

The procedures for calculation of the natural stiffness

matrix for each element of the assembly and hence also the

internal forces for given nodal displacements, are different

for each type of idealisation. The similarities between



8.25[K]

ii

inTil

T2

T3 i

"1/11

.5e2/12

5e3/13

1:1\
2

T3 i

where

these approaches, especially between types 1 and 2, and

between 3 and 4, enable us to discuss them in pairs:

For any type of membrane triangular element, i, the side

tensions at any stage of the dynamic relaxation scheme are

given by [9]

in
are the intial side tensions,

[ K ] is the natural 3 x 3 stiffness matrix in a local

coordinate system (see figure 8.4). (When large

changes of geometry occur, the natural stiffness

matrix needs to be recalculated after each few

steps), and

fbe i /l j l i are the elastic side strains from the initial

state.
in

In practice the initial side tensions, {TI , are calculated

from the initial stresses as follows [9]

in	 1	 1	 1	 in
{T}	 = [ - , - 	 - ] x [GT]

11 12 13

in	 ino x	x A	 x th 8.26
Oy
°Xy



system:

in

8.27

where

in
A	 and th are the area and thickness of the element, and

in	 in
[GT] is the transpose matrix of [G]

in
The [G]	 ([G] ) transforms the initial (current) vector

in
of side strains {5e i /l} i	( i5e . /1 . 1 ) into the strains

7	 .

expressed in

in
rcx

xy

For a

the local coordinate

5e1/11
in

[G]	 5e2/12

5e3/13

'constant strain' triangular element, the natural

stiffness matrix, [K] , is defined in local coordinates as

[9]

[K]	 = [1/1 1 , 1/1 2 , 1/1 3 ] x [ GT ]	 x [D]	 * [G]	 x A x th

8.28

Where

[D]	 is the elasticity matrix

Isotropic and orthotropic elements 

For plane stresses in an isotropic material, matrix [D] is

obtained from the generalised Hooke's law [188]



0

0 8.29[D]

-E/ 1-v2
1-v 2

1-v 2	1-v2

2E

1+v
where

E is the modulus of eleasticty, and

v is the Poisson's ratio.

For orthotropic membrane material [D] is [188]:

Ex	Exv 
1-v 1-‘k vy )	 vx y

[D]	 =
E	 E

Y ) . 0vx1-v v ) 1-v vx y	 x y
8.30

Where
0 0	 d33

E f 	E	 arexy the	 moduli of elasticity in	 the x

directions

directions,

respectively, here	 in	 the warp and

xf	 v are	 the	 Poisson's ratios in	 the x

and y

weft

and y

directions respectively, and

d33 is the shear rigidity, which is normally less than

1/15 of the rigidity in tension.

Here it is assumed to be

dll d22 Ex Ey

30	 30(1-vv)

The membrane is idealized by a set of triangular elements,

as shown in figure 8.5, in such a way that local coordinates

coincide with warp and weft directions (for orthotropic

membranes) and additionally, to simplify mathematical

calculations, the x direction is parallel to one side of an

element.



2

63

8.31[A] x

1
8.34

[D]	 =

The matrix [G] is more conveniently obtained, as the inverse

of matrix [A], where [A] is defined by

and in general:

cos 2 9 1 ; sin20 1 ; cosGisinGi

[A]
	

cos 202 ; sin2 92 ; cosG2sin92	 8.32

cos 2G 3 ; sin2 93 ; cos03sinG3

Where 9 1 , G2 and 93 are the angles between the positive x

axis direction and the sides of the element (see figure 8A).

When 0 1 = 0, as shown in figure 8.5

1	 0	 0

[A] =	 cos 2G2 ; sin2G2 ; cosG2sin92	 8.33

cos 2 03 ; sin2 9 3 ; cos93sin93

Line, and line and coating elements 

For cross-coupled line elements:

Ex	E
N 

v
Y, 

x
(1- vxvy )	11-v x vy)

vx Ey	E
-Y__

(l - vv )	 (lvx%sr)

and for line and coating elements

[D]	 =

	

Ex	Ex

	

vv	 0
1-v v	 J 1-v vx y	 x y

y E	 E
0

1- v v	 - 1 . ‘, vX y	 X y
	0 	 0	 d33

8.35

where d33 is the 'shear rigidity' the value of which is

obtained directly from tests (see chapter 10), as a modulus

of elasticity for the coating.
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8e1/11 lin
in

Y1 .
1

8e2/12

I6x
8.27a

In the line idealization it is assumed that the shear

stiffness of the membrane is of small order when compared

with the direct stiffnesses, hence it may be disregarded.

Consequently at each point of the membrane only direct

stresses (tensile) exist and their directions are those of

warp and weft. The most obvious elements to be used are

quadrilateral, as close as possible to rectangular with

sides being parallel to the warp and weft directions. In

cases where this type of idealization is included in the

general numerical procedure used to analyse membrane

structures, it may however be more convenient to employ

triangular elements.	 Right angle elements as shown in

figure 8.6 are especially suitable.

In the case of 'line' idealizations equations 8.25-8.28 take

much simpler forms. They are given below:

in	 1	 1
IT1 = {—, — }x

1 1 1 2

in

+	

6e1/1

i	 8e2/12

in

[K]
t1

ii	 I

I	 I	 x A .	 x th

8.25a

8.26a

and	 t	 t	 t
[K]	 = {1/1 1 , 1/1 2 } [D]	 x A	 x th
	

8.28a

is only 2 x 2.

The matrix [G] is equal to unity and the 'natural' stiffness



The most common materials used for air-houses are coated

fabrics in which direct tensile stresses are resisted mainly

by warp and weft fibres of the fabric. On the other hand,

when this material is stretched in the diagonal direction,

the coating which acts as a diaphragm and a stabilizer of

fabric will oppose any movement. Hence, the behaviour of

coated fabrics can be represented using a line and coating

idealization as a superposition of two actions: fabric

working in direct tension and : coating preventing gross

distortion produced by shear stresses.

In the case of a line and coating idealization, yhen a

membrane is modelled by an assembly of triangular elements

as shown in figure 8.6, the internal forces and 'natural'

stiffness matrix are given by equations 8.25-8.28, in which

the [G] matrix is equal to unity.



1,

Figure 8.6

x
(warp or weft direction)

Figure 8.4

T,

Figure 8.5

t
y (weft or warp direction)
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8.3 Scheme for analysis of air-supported structures
i

The main steps in the numerical analysis of air -supported

structures by the dynamic relaxation method with kinetic

damping are shown in figure 8.7. Calculations of initial

tensions in every element (for the load analysis) are based

on equation 8.25 (or 8.25a). Stiffness matrices are, as

explained	 in the subclause 8.2, found in the local

coordinate system at the element level only. 	 Fictitious

masses; as defined by equation 8.24 are obtained first for

each node of every element and then their appropriate values

are summed up to give the global nodal masses:

E• .	
MkiMI

i=1,n
8.36

The residual forces at a node i, resulting from the tension,

Tik , in a link j belonging to an element k are given (in

global coordinates) by:

where

DX.
Rix = Rix + (--2 ) k x k.T3

Li
8.37

DXJ. denotes the difference between the end nodal

coordinates of the link j in the x direction, and

14 3	 is the current length of link j.

Contributions to the residual static forces due to external

forces are:

1. concentrated	 applied	 loads	 and	 distributed

gravitational loads lumped at nodes (P i , Piy , Piz)

2. distributed pressure load, p i , normal to the membrane

elements: internal pressure with outward resultant,

Pine and external (for example due to wind or snow)

with inward or outward resultant, Pex'



PX

Py

PZ

6
= (X x E) 8.41

The internal pressure component is expressed as a function

of changes in the internal volume, caused by deformation of

the whole structure, (at approximately constant internal air

mass) by [7]:

Vo
t-At

a
t-tPin = (Pin	 Pex) ( 	 )	 Pex 8'38

V
where

t and At are the time and the time step used in the dynamic

relaxation scheme,

pex is the external atmospheric 'pres'sure,

\rot- At , Vo
t are the internal volumes of the pneumatic

structure at t-At and t respectively, and

a--> 1	 1.4

Equation 8.38 is derived from the thermodynamic law

describing isentropic expansion or compression of air [193].

The external static pressure due to wind is given by (see

chapter 4, equation 4.1):

Pex =	 Pa Cp V	 8.39

If X and E represent two vectors of common beginning lying

along two adjacent links of an element K e and if

A = axi + a 3 + az K
8.40

E = bx-f. + b 3 + bz K

where i, 3, K. are the unit vectors in the x, y and z

direction respectively,

then the x, y and z components of pressure forces at each

node of the element, k e , are



ij

	 k I

Ax ii = a 8.42a x

b x

ay

b

z

bzy

where

P = Pint -I- Pext, and

A x B is a vector product:

I.

The recurrence equations for nodal velocities, coordinates,

total kinetic energy, and the reset nodal coordinates are

given by equations 8.11 to 8.17.,

The three approaches to estimate values of coordinates at

the kinetic energy peak were investigated for a pneumatic

membrane structure, and, similarly to the findings of

Wakefield [197] (see 8.13) for net structures it was found

that there was no clear advantage in using any one

particular method. The simplest approach, the method Nr 1,

in which it is assumed that displacements vary linearly

between t-At and t, and that the kinetic energy peak occurs

at t=t-Ati2, will be used in this work.

In most cases, the principal static stresses in pneumatic

structures are tensile [165]. In some investigations, like

for example: examining instability or behaviour of low

inflated air-houses, areas of zero stresses may occur. The

numerical procedure, where checking for buckling is included

in the dynamic relaxation scheme for tension structures is

presented in works by Barnes [9, 13] and Wakefield [197].

This requires additional operations at every few cycles in

addition to those given in figure 8.7. 	 These operations



include: determination of principal stresses, setting to
t%

zero those which are negative, modifying the D matrices, and

recalculating modified stresses. Adding the check for

buckling increases the amount of computing and can cause

slower convergence [197, 9]. Hence, in cases where this

phenomenon is not likely to be present at the final static

solution, it may be preferable not to include the checking.

Such checks are however essential at the end of the program

when the static equilibrium state has been determined. If

any area of zero stresses are detected, the structure should

then be recalculated using the scheme with checking for

buckling every few cycles.

For those air-supported structures which experience large

deformations, stiffness matrices should be recalculated at

every NSM cycle (see figure 8.7). The number of cycles,

NSM, depends mainly upon the degree of geometric

nonlinearity and varies from 1 for highly deformable

structures to infinity for a linear analysis.



( Start )

Read data file:
Geometry, material properties,
external loading and
initial stresses

Calculate new
stiffness
matrices

Calculate initial tensions,
stiffness matrices for each element
and fictitious masses for each node

t.

at NSM
cycles

Calculate nodal forces due to
internal and external forces

Find current velocities, nodal
coordinates and total kinetic
energy, KE

If current KE is smaller then
previous

Yes

Set velocities to zero and
reset nodal coordinates

Check if max. residual force
is smaller than required

Yes

Check if buckling occurs in
any of principal stress direction

Yes

Print buckling Print coordinates
stresses

STOP )

Figure 8.7



8.4 Numerical examples

The main purpose of static analyses discussed in , this

chapter is to prepare data files for the dynamic analyses.

Two air-supported structures to be examined are the models

described in detail and shown in the photographs of chapter

10. They are both domes with the same diameter at their

bases, 4.74 m; with one produced using orthotropic material

and the other using isotropic material.

8.4.1	 Orthotropic membrane dome

The model dome, a general view of which is shown in the

photograph of figure 10.12 in chapter 10, was assembled from

10 'armadillo' segments cut from P.V.C. coated fabric in

such a way that the warp direction aligned with the

longitudinal axis of symmetry of each slice. The zero

stress membrane geometry is presented in figure 8.8 together

with the membrane properties; figure 8.8a shows the section

along the axis of symmetry and figure 8.8b the warp

directions together with the EA values and Poisson ratios

for the weft and warp directions.

The dome was to be analysed:

1. subject to internal pressure Pint = 100 pa

2. subject to internal pressure, Pint, and a central load

of:

a. 150 N, and

b. 300N

Due to the shape of the model, pattern cutting and loading,

only a quarter of the structure needed to be analysed.



The shape of the dome in the prestressed condition (internal

pressure only) was first determined with the structure

idealized into orthotropic triangular membrane elements, as

shown in figure 8.9, possessing the EA values and Poisson's

ratios obtained from static tests on cruciform specimens

(see chapter 10). The layout of elements was predefined by

the cutting pattern. Each slice of the dome was divided

into two rows of triangles, in such a way that one edge of

them was approximately parallel to the warp direction and

the other to the weft direction. The principal stresses

obtained from the analysis were in general in the radial and

circumferential directions. However, for this type of

membrane material there are two preferable stress paths,

namely the warp and the weft direction, hence the

orthotropic idealization seemed to be unsuitable for this

case.

Two alternative approaches were therefore employed:

1. line idealization

2. line and coating idealization with EA for coating

obtained from uniaxial tests, (EA) coat = 6050 N/m.

Prestress State Analysis 

The prestressed geometry was calculated assuming internal

pressure Pint' constant, and as deformations were expected

to be small, NSM was taken to be infinity. The analysis was

based on stiffness matrices found at the beginning of the

process. Similarly, the vector product, X x B, for each

element was was obtained only from the zero stress membrane

geometry.



For each type of idealization convergence was good and the

final stresses were everywhere positive.

The resulting nodal coordinates obtained from the two

idealizations differ only slightly, the largest

discrepancies are at the crown area and they are smaller

than 1%. The assumption of small deflections proved to be

right, as the maximum deflection occurring in the apex node

was 1.8 cm, which represents only 1.8% of the dome height at

this point.

The stresses existing in the dome under the prestressed

condition are given in the table of figure 8.1b for elememts

lying along the sections A-A and B-B (for position of

sections and locations see figure 8.9). For the 'armadillo'

cutting pattern the orthotropic membrane material stresses

are not constant throughout the dome. The lowest stresses

in the warp direction occur, regardless of the idealization,

in the crown area and increase in value away from the

centre, with faster increase in the direction parallel to

the warp direction.

The stresses in the weft direction when using a 'line' type

idealization tend to decrease when moving from the centre•

outwards parallel to the warp direction, and increase for

the perpendicular direction. When shear stresses taken by

the coating are introduced, this pattern is slightly

disrupted.



In the 'line and coating' idealization the warp and weft

stresses are smaller in the central area than in the oline'

idealization, but in the remaining parts of the dome this

situation is reversed. Including coating in the analysis

causes the greatest changes in the centre of the dome, both

for stresses and deflections.
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Figure 8.8 Zero stress dome geometry
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Figure 8.9 A quarter of the dome divided into triangles



Location
Line Line and coating

Warp Weft Warp Weft Coating

1 261 76 222 48 11

3 265 74 247 71 10

5 276 67 276 68 7

7. 295 55 309 56 6

9 325 42 355 43 9

56 264 85 259 85 6

58 269 82 262 81. 10

60 280 73 274 71 9

62 297 58 290 56 61

64 316 45 312 43 0

Figure 8.10



Load State Analysis 

In the load analysis, a quarter of the central load', Pc,

(equal to 150 N or 300 N) was spread between the three

central nodes 1, 2 and 12 (see figure 8.9) in such a way

that, after applying the load, the heights above the base

level of the crown points were the same (to comply with

experiments; see chapter 10). This required recalculation

of FF(i) (i = 1, 2, 12) at each cycle, where FF(i) x P c is

the external load acting on the dome at node i. In the

final stage, when the nodal residuals were very small and

the structure reached the static equilibrium state, the

FF(i) had the following values:

FF(1) = .0125 (for 150 N) and .0089 (for 300 N)

FF(2) = .0928 (for 150'N) and .0923 (for 300 N)

FF(12)= .1447 (for 150 N) and .1489 (for 300 N)

The nonlinear analysis was followed with stiffness matrices

reset at each 20 cycles. The numerical procedure was found

to be highly sensitive to the frequency at which pressure

changes were calculated. For stability of the entire system

the pressure, pin , given by equation 8.38, had to be

assessed at every cycle. The pressure vector, equation

8.42, needed not to be calculated as often but only at each

20 intervals, together with stiffness matrices.

The results for the deformed shapes along the axis of

symmetry when the dome was subject to the centrally applied

loads are shown in figure 8.11. For comparison each figure

includes also the prestressed dome shape. The deflections



of the dome obtained using the two idealizations differ only
,

slightly (in the figure 8.11 the differences are not

discernible). The greatest difference in terms of the

absolute value is at the apex point; for 150 N load its

value is 2 mm and for 300 N load it is smaller than 1 mm.

Figure 8.11 shows the results for the 'line and coating'

idealization.

The stress distributions do not show such a regular pattern

as in the prestressed state. For the 150 N central load the

stresses vary from 300 to 500 N/m in the warp direction and

from 90 to 120 N/m in the weft direction. For the 300 N

central load, stresses varied from 400 to 650 N/m in the

warp direction and from 90 to 160 N/m in the weft direction.

The final principal stresses were in all cases positive.



prestressed state 
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Figure 8.11 Static deflections of dome along axis

of symmetry
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8.4.2	 Isotropic membrane dome

A dome, which is shown in Figure 10.22 of chapter 10‘, was

formed by inflating an initially uniformly prestressed and

flat isotropic membrane. External loads spread by means of

platens to neighbouring nodes, was applied to the structure,

in separate tests, centrally and symmetrically. For

purposes of numerical analysis, the dome was idealized by an

assembly of isotropic triangular elements as shown in

figures 8.12 for the central load, and figure 8.13 for the

asymmetric load.

Due to the axisymmetry, both of the loading and the

structure, in the case of the centrally applied load, only a

slice of the dome needed to be considered. Theoretically,

it is desirable that the slice angle is small as this

influences the size of elements which, when smaller, better

resemble the dome. On the other hand, the size of the

smallest element of the assembly will in the explicit

dynamic analysis, influence the time step used to ensure

overall stability of the procedure (the smaller the

elements, the smaller the time step). In order to

compromise, after a series of trial runs, a 10 0 angle was

chosen for the segment analysis.

When a tension structure is analysed by employing the

dynamic relaxation method, it has been found [9], that the

best results are obtained using a uniform subdivision of

elements. Therefore, an alternative idealization for the

centrally loaded dome was considered, where all triangles



are approximately equal in area, as shown in figure 8.12b.

The differences between stresses and especially deflections

(for form finding and load analysis), obtained from analyses

employing the dome modelling as shown in figure 8.12a and

8.12b, was found to be very small (less than 1%). The

division of figure 8.12a results in shorter computer time

and hence this type of membrane modelling was used in

further calculations.

In the case of the asymmetrically loaded dome, half of the

dome has to be considered, as there is only symmetry about

one axis (see figure 8.13).

The isotropic pneumatic dome, when inflated and either

centrally or asymmetrically loaded, experiences large

geometric nonlinearities. Hence for all cases, stiffness

matrices and, for efficiency, also pressure vectors, have to

be reset at frequent intervals. A value for NSM = 20 was

found to be suitable.

When the initially flat membrane (with E = 5260 N/m, v = .52

and uniform prestress of 37 N/m) was subject to an internal

pressure of 15.4 N/m2 the resulting principal stresses

obtained from both types of idealization (figure 8.12a and

figure 8.13) were in the range of 90 to 100 N/m. 	 The

difference in deflections is- negligible, although the

division of figure 8.13 is coarser. The discrepancy at the

apex point in the vertical direction is only 0.1 mm (Z slice

= 228.4 mm, Z half = 228.3 mm).



In order to comply with experiments (see chapter 10) and to

prepare the data file (for the later purpose of dynamic

analysis) as accurately as possible, in the static load

analyses the internal pressures were not calculated but were

assumed to be constant; their values being obtained from the

experiments.

In the case of the centrally loaded dome, during the load

analysis with internal pressure of 28 N/m2 , the load of PA =

80 N was spread between the crown points to cause the z

coordinates of the nodes to have the same values. When

equilibrium was found, the load was distributed between

points 1, 2 and 10 (see figure 8.12a) as follows:

P(1) = .00084 x PA

P(2) = .0136 x PA

P(10)= .0133 x PA

The difference in loads between points 2 and 10 results from

the idealization: point 2 is common to three elements, but

point 10 to two only. The resulting principal stresses were

positive and on average they were:

100 - 108 N/m in the circumferential direction and

110 - 120 Nim in the radial direction, except in the area

very near to the crown, where they were as shown in the

figure below:



f

The deflection of the dome along a radius is shown in figure

8.14a with the prestressed state geometry superimposed on

it.

In the case of asymmetric load, the load of PA = 80 N was

represented in the analysis by vertical forces applied at

nodes 6, 7 and 15 (see figure 8.13). The distribution of

load was calculated in such a way that the plane formed by

the three points was perpendicular to the plane of symmetry

and inclined at 5
0
 to the horizontal with node 6 being

higher than 7 (the position of the plane was found during

the tests described in chapter 10). In the final stage of

the analysis, when the static equilibrium state was reached,

the external nodal forces were found to be:

FF(6) = .0633 x PA

FF(7) = .1984 x PA

FF(15) = .2383 x PA

Applying the 80 N asymmetric load, while internal pressure

was kept at the constant value of 26 N/m resulted in all

positive principal stresses with the average values between

100 - 115 N/m except for the area shown below:

The deflected shape along the axis of symmetry together with

the prestressed state geometry is shown in figure 8.14b.
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Figure 8.12 Idealization for central load



anPrn
a r

".11=11WM
AderAmilli

FvvvvIrv
wrlormrwr

441..

-Nr-vvviv
AL

t3-1

Figure 8.13 Idealization for asymmetric load

- 278 -



prestressed state 

loaded state

12.2 cm

base level

loaded state

a.centrally applied load

prestressed state 

b.asymmetrically appli.ed load

Figure 8.14 Static deflections of dome

- 279 -



CHAPTER 9

Explicit dynamic analysis of pneumatic structures

Contents:

In this chapter explicit dynamic analysis of pneumatic

(membrane) structures is discussed with reference to two

air-supported domes constructed with woven fabric and

lightweight polythene, and subject to impulsively applied

loads. The influence of the external surrounding air is

disregarded in the analysis. An iteration scheme which

includes visco-elastic membrane behaviour modelling and an

incremental procedure accounting for on/off buckling is

reviewed and implemented. For the lightweight dome with an

impulsively lifted load a more efficient explicit dynamic

scheme is proposed and discussed.

9.1	 Explicit dynamic analysis - a review

9.1.1	 Iteration schemes for explicit dynamic analysis

The dynamic relaxation method discussed in chapter 8 is

based on explicit integration of the equations of motion.

In order to use the method for static analyses, artificial

devices such as fictitious masses and kinetic damping were

employed. When the real dynamic response is of interest,

the artificial values need to be substituted by actual

quantities for: masses, time step and damping in a suitable

form. A version of explicit dynamic analysis as formulated

for pneumatic structures by Barnes [7, 8, 9, 11] and

presented below satisfies this requirement. The numerical

analysis compares well with experimental results for a

heavily loaded pneumatic dome [11, 186].



For the purpose of explicit dynamic analysis, the membrane

of a pneumatic structure can be idealised by an assembly of

'constant strain' triangular elements. The layout and type

of triangles will depend mainly upon the size and shape of

the structure, pattern cutting and material properties and

can be similar to that used for the previous static

analysis.

The membrane mass matrices in a lumped form are obtained

from the real membrane mass, p m , assuming that the mass of

each element is uniformly distributed between its nodes:

where

0

0

mi

0

mi

0

0	 I

mi

=
k= 1, n

is a diagonal

mki	 °

00

0	 mki

0	 0	 mki

mass matrix for

9 .1

node i,

mi

n is the number of elements surrounding node i,

and
1

mki = AK Pm
3

where

AK - is the area of element K and

Pm - is the mass of the membrane per square metre.

At each step of an explicit dynamic analysis, a flow chart

for which is given in figure 9.1, displacement components

and hence the elastic strains in all links may be determined

9.2



purely in terms of the previous displacements and the

residual nodal forces. For visco-elastic structures ;these

residual forces will be affected by the creep strains which

have previously taken place. After the new displaced form

has been determined, link forces and their resolved

contributions to the next residual forces are calculated

using the separate natural stiffnesses of elements.

The recurrence equation fox velocity, Ni x, in centmal

difference form at time step t+At/2 is given by: .

t+At/2	 At t	 t-At/2
Vix	 = -- R . 	+•	 9.31X	 V1X•

and at time At/2, the first step

ht/2	 At t
V•	 =0.5 -- R-ix	 ix
	 9.4

where

.Rix is the residual force at node i, which can be

expressed in terms of the applied load Pix and the

current internal forces and position vectors of the

structural elements connected to node i.

The new geometry at time t+At is thus:

t+At	 At	 t-At
X-	 = X . + At	 Vxi	 9.5

from which the new link extension and residual forces at t+

At may be determined. The process then continues with

iteration between steps 3 and 4 (see figure 9.1), utilising

equations 9.3, 9.5 and the appropriate expressions for

determining residual forces.
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6e1/111
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6e3/13

Ti

T2

T3
inj

9.8

The time step, At, is governed by the stability condition

(see chapter 8), namely

At <	
2m •	

9.6
Spi

where

Spi is the principal direct stiffness at node i.

In nonlinear analysis, the stiffness obtained from the

starting geometry may not be the maximum value occurring

during the process, hence the time interval, At used in the

analysis, has to be sometimes as small as 50% of that

calculated at the beginning of the numerical procedure.

The nodal residuals result from the unbalanced internal and

external forces. The nodal internal forces, Ri int , at time

t are:

int X

where	 DX

DX t
Ri int X	 (--) * Tk	 •9.7

Lk

is shown in figure 9.2, and

Tk is the tension in a link k of element j.

The tension vector for element is given by:

where

{T}	 is recalculated at every NSDB iterations from the
in



stress level at times equal to k *At * NSDB.

Formulation of the explicit dynamic analysis in a way

represented by the flow chart of figure 9.1 enables dynamic

analysis of pneumatic structures by dividing the process

into two levels:

first:	 the 'quasi linear' response of the structure (steps

3 and 4), and

second:	 accounting for the membrane behaviour, including:

material nonlinearity, visco-elastic properties of

the membrane (which give rise to material

damping), and purely tensile behaviour.

The latter processes are superimposed on the former by

t
passing to the main iteration cycle new values of {T} and

in

element stiffness matrices.

The most common forces acting on a pneumatic structure are:

1. concentrated applied static and dynamic loads,

including distributed gravitational loads lumped at the

nodes (Pix , Piy , Piz)

2. distributed static and dynamic pressure loads, pt,

normal to the membrane elements.

The internal pressure components (the difference between the

absolute internal and external pressure) consist of two

parts:

a. static pressure, exactly the difference between



9.9Pex

Pins is giv'en byinternal and external pressure;

the equation
t-pt

t- ht	 Vo
Pins	 ( Pins	 Pex) ( 	 Vot

where

a--> 1 - 1.4

is the external pressure, and

and Vot- A t are the internal volumes of the

pneumatic structure at timest and t-At respectively.;

b. the dynamic pressure, resulting from the movement of

air mass due to externally applied loads, which can be

expressed as [8]

Pind	 /3= ' 5 *P air * C x(
v 2nt )

where

9.10

vnt is the average normal velocity, and

C is a coefficient

The external pressure caused by wind pressure velocity

divided into a mean component, V, and a randomly fluctuating

component, v , at any point (x, y, z) on the structure, is

given by

Pex = • Pair x Cp (x,Y,z) * [V (x,y,z) +v (x,y,z,t)]2

9.11
where

(x,y,z) is a non-dimensional coefficient which is

mainly a function of position, shape of structure, and

the characteristics of the approaching flow. For

highly deformable structures, C I:; is also a function of

deformations.



and l

ux

uy l =

uz

9.13

ux

Uz

=- .AxB
6

The x,y and z nodal components of pressure forces for each

element are:

IP

x	 :x
p	 = pt	

11

P u z

where

9.12

t_P	 eex 4- Pint

l

ux l is a unit pressure vector, as shown in figure 9.3

Uy

uz

9.1.2 Modelling visco-elastic properties of the membrane

The majority of membranes for pneumatic structures are

produced from materials (plastics or similar) for which a

suddenly applied and maintained state of uniform stress

induces an instantaneous deformation followed by a flow

process, which is limited in magnitude as time grows. A

material which responds in this manner is said to exhibit

both an instantaneous elasticity effect and creep

characteristics. Its behaviour can be described by visco- •

elastic theory.

In static load analyses, when long term response is of

interest, the visco-elastic theory can be substituted by an

approximate elastic stress-strain relationship which is



valid only for a particular range of stresses, using strains

resulting from both elastic and viscous deformations .. It

has been found experimentally that almost all membranes

respond to an applied load in such a way and that about 90-

95% of total deformations take place in the confined period

of time, ranging from 0.5 h to 12-24 hours [5].

When dynamic response is traced, any such approximations may

lead to erronous results. Visco-elastic phenomena are

characterised by the fact that the rate at which creep

strains develop depends not only on the current state of

stresses and strains, but, in general, on the full history

of their development. Materials exhibiting these properties

show a pronounced dependence on the rate of loading; the

strain being larger if the stress has grown more slowly to

its final value [40, 71].

The behaviour of visco-elastic materials in uni-axial stress

closely resembles that of models built from discrete elastic

and viscous elements. The basic building elements are a

spring and a dashpot, which represent respectively the

elastic	 (stress proportional to strain)	 and viscous

behaviour (stress proportional to strain rate). The

simplest model for creep in solids, shown in figure 9.4, is

known as a Kelvin (or Voigt) element, and is obtained by

connecting in parallel two different discrete elements.

When a material is characterised by a Kelvin model (figure

9.4) the creep stress-strain relationship is [40]:



0= E i C+ T1 i	 gc	 9.14

where

is the creep strain (separated from instantaneous•6c

elastic deformation),

dec
=	 and .E . and n. are shown in figure 9.4

dt

The creep rate may be written from equation 9.14 as

	

dec	 1	 Ei
c =	 = - cr - c = a° - be	 9.15

	

dt	 T1	 n.

Equation 9.15 implies that the creep rate is a function of

1. current stress and

2. total accumulated creep strains.

If several Kelvin elements are placed in series to represent

more complex material behaviour, then equation 9.15 becomes

	

n .r	 r=h	 r=h

	

= / cc	 (E ar) a - E br ec 9.16
r=1	 r=1	 r=1

where, the first summation can be replaced by a lumped,

known constant, and the second gives the sum of accumulated

creep strains due to the individual 'elements' of the model.

The complexity of the model chosen will depend on the type

of loading [7,8,9,11]: for short-term dynamic loading a

single element model may suffice particularly if the main

concern is a qualitative study of the vibration damping

effect of the visco-elastic membrane. For long term quasi-

static creep investigations of a pre-stressed structural

membrane, a more complex model may be necessary. Barnes

[7,8,9,11] investigated the response of an air-supported

ec



6 t+nAt/2 _

1+bnAt/2 1+bnAt/2

t-nAt/2a' a + b'	 cc

anAt at 1 -bn At/2
e c

tnAt/2

9.18

dome due to suddenly applied dynamic loading, and by using a

single model obtained theoretical predictions of deflection

decay which match well with the experimental trace.

A single Kelvin model seems to be a rather crude

representation of the membrane characteristics. On the

other hand, employing this model results in: simplicity of

the numerical analysis, a fairly easy procedure for

establishing the membrane dynamic properties and, as will be

shown in chapter 10, a single Kelvin model represents very

well the property of coated fabrics in the warp

(predominant) direction. Due to the above advantages, a

single Kelvin model will be employed to predict the dynamic

response of the test pneumatic domes due to suddenly applied

loads.

Assuming that e c varies linearly during the time intervals

(t-nAt/2) --> (t+nAt/2), in interlacing finite difference

form equation 9.15 can be written [11] as:

6 t+nAt/2 _ 6 t-nht/2	 t + n&t/2	 t-rx&t/2
(cc	 + c c

a . at - b
nAt	 2

9.17

The recurrence equation for creep strain e c appropriate to

the mid-point of the time interval nAt is:



the vector of strains is by 11]:creep given [208,stress,

Eyc	 =f6c/ 	 )

exc	 ax'	 0 . 0 1	 b0 '	 0

t+nkt/2 
=O
	
ay	

. 0	 (10
x

0; by '	 0	 {Cc}t-nAt/2

' = b 	 = b' xy =y bx

where

n is an integer, n = NSDB (see the flow chart of figure

9.1), and

At is the time step used for the dynamic iteration scheme.

For a membrane element subject to a two-dimensional state of

0	 0.;b1xy

9.19

When a material is isotropic, the creep is associated only

with deviatoric stress components [71]; the volumetric

behaviour being elastic and the matrix [T] is the one which

pertains if the Poisson's ratios were made equal to 0.5.

For isotropic idealisation the matrices in equation 9.19 are

xyc	 0 ; 0;a'xy.Y

	

1	 -.5	 0 1

T =	 [-.5	 1	 0

	

0	 0	 3

9.20a

n A t
ax ' = ay' = a	 = axy	

1+bnAt/2

9.20b
1-bnAt/2

1+bnAt/2

where a and b are values obtained from triaxial tests (see

chapter 10).

For a 'line' idealisation equation 9.19 takes the form



ax '

0

0 1. -.5
x {a} bx' ° 1{6c/t11.16t/2

a'y -.5 1. 0 by '

9.19a
where

a l a i b / bare constants obtained from uniaxial testsx	 y xy

conducted separately for the warp (x) and the weft

direction (see chapter 10).

When a 'line and coating' idealisation is employed the creep

strain vector is found from equation 9.19 with

1	 -.5

T =	 1	 01

0

and
nit

a' = a' = acxy
1+bcn6 t/2	

9.21

1-bdn6 t/2
b '= bd ' =xy	

1+bcnA t/2

Where ad , bd are obtained from biaxial tests on coating (see

chapter 10), and

ax, ay, bx and b are similar to values for a 'line

idealisation'.

Matrix (T) was defined originally in the paper by

Zienkiewicz et al [208] in the form given by equation 9.20a -

for an isotropic material.

(y)
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9.1.3	 Incremental procedure allowing for buckling

A membrane material is capable of sustaining only tensile

stresses and strains without resistance in compression.

While an explicit stress-strain relation cannot be generally

written to describe this phenomenon, it has been shown that

it suffices to carry out the analysis elastically (step 4

and 5 in the flow chart of figure 9.1) and wherever

compressive stresses develop to reduce these to zero [209].

Such checking, in general, does not have to be performed at

each time interval, but can be coupled with creep strain

calculations as given by Barnes [7].

The main steps of this procedure, for each element, are as

follows [7, 186]:

1. check stresses relative to chosen local axes

fol t = fol i 	 [D] [G] {e/1}t
	

[D] feclt-1Ati2

where

is the vector of total strain from the stress level
1

foli.
2. determine principal stresses {ar} and inclination to

local x, y axes. -

3. if the principal stresses are greater than zero,

calculate fpol t = tot - a i l and go to step 6;

if not, set the negative stresses to zero and modify

accordingly the [Dr ] matrix relative to the principal

axes.



dll	 d1 2 	 °

= d21 d22	 °

[ 0	 0	 d33

Cx

C y	 9.22

0

4. transform the [D ] matrix to local x, y axes

[D]' = [CT ] [D' p ] [C]

where [CT ] denotes the transpose of matrix [C]

5. set modified stresses { G i } t = [CT ] f(5,1;

{ Ac? I
t 
= f

ta i - ai l
6. set new creep strains

l
t+nAt/2 = [a] , [T] fbou i l t 	 [b], .03c1t-nAt/2
ec 

7. set new initial force vector:

= [GT ] {a . } t _ [GT ] [D]s . fecti-nAtI2 _	 t-net.j2
t-c

8. set new natural stiffness

• It should be noted that calculation of the stresses in step

1 is always based on the matrix [D] as for unbuckled

isotropic or anisotropic materials. (Using a modified [D']

matrix would imply that an element is buckled before the

buckling check is carried out).

When a principal stress is found to be zero or negative

(step 3), the material is assumed to be highly anisotropic

or even behaving uni-axially with zero (or very small)

elastic modulus in the direction indicated by the

compression. This implies, that if [Dp ] is defined as:

the necessary modifications are

0 then d12 = d21 = dll = d33 = 0 and d22 = Ey

0 then d12 = d21 = d22 = d33 = 0 and du = Ex

0 and 8y < 0 then du = d12 = d21 = d22 = d33 = 0

1. if ax <

2. if ay <

3. if ax <



The matrix [C] is defined by equation

icpl = [ C ]	 { cxy}	 9.23.

where

C2	 S 2

	

I

CS	 I
C =	 S2	 C2	 -CS

-2CS	 2CS	 C 2 -S 2

and C and S denote cosine and sine respectively of the angle

between the local x axis and the direction of maximum

principal stress.

When a 'link' or 'link and coating' idealisation is

employed, checking for buckling is simplified, as the

directions of the local axes must coincide with the

principal axes. Steps 2 and 4 are fully omitted and in step

5 only an increase from the initial stress is found.

The incremental procedure allowing for buckling, discussed

here in the context of explicit dynamic analysis, may also be

employed, excluding creep strain calculations, in static

analyses. The approach has been tried, with success in most

cases, but unfortunately its convergence cannot always be

guaranteed.	 Some alterations to prevent this setback have

been suggested: for static analysis of rocks by Zienkiewicz

[209] and for static and dynamic analysis of tension

structures by Barnes and Tan [9, 186].

Barnes and Tan noticed that the main area likely to cause a

problem is the resetting of stresses in step 5, where the

modified [D] matrix is not taken into account. Hence an



alternative equation to the first in step 5, and an

additional equation for 'link' and 'link and coating'

idealizations has been proposed as:

e
{ 0 '} = {(3 } - [w ][ G ] f-I t - t-t/2

1
9.24

This procedure has been employed successfully for the

dynamic and static analysis (with {6 c } = 01) of an

impulsively loaded axisymmetric dome [186].

9.1.4 Influence of surrounding air

If an air-supported structure vibrates in air, the motion of

the membrane will set the surrounding air in motion.

Therefore, the structure might be viewed not as containing

the membrane alone but as a thin membrane between two layers

of air. Hence consequently, the dynamic mass, equations 9.1

and 9.2, should be extended to account for the entire

structure including the added mass of the surrounding air.

For lightweight constructions such as tension membranes the

additional mass of air has a profound effect on dynamic

response [34].

The surrounding air, while in motion, exerts pressure on the

membrane. The pressures due to the vibrating air mass are

proportional to the normal acceleration of the roof [34]. •

If these pressure are in phase with the vibration and

proportional to its amplitude, energy is neither added nor

dissipated by the presence of the surrounding air. If, on

the other hand, they either lead or lag behind the

structural response, then the air will act either as an



exciter, which may lead to instability, or as a damper

respectively.

Jensen in his papers [99, 100] which are based on various

experiments with tension structures (air-supported

structures were not tested) concluded that the effect of

surrounding air on the wind response of tension structures

can be accounted for by including the following terms (see

chapter 4):

Ao dV
1. pressure as CmpA 	--

D dt

2. mass	 as CmpA a3 and 9.25

m" A
3. damping as 5 = Cd --

A0 m

An alternative approach, which is suggested by Barnes [14],

is to model the surrounding air by simplified fluid

mechanics equations subject to boundary conditions. Thus

obtained the equations can be solved numerically, together

with the structural dynamics equations describing the

membrane behaviour, by employing an explicit dynamic

approach. This method has the potential to represent the

phenomenon more accurately but it is likely to require much

longer computation than the others. This approach will be

discussed in more detail in chapter 11.



9.2 Numerical examples and discussion
#

Numerical calculations presented in this chapter are

examples of explicit dynamic analysis applied to air-

supported domes. The structures are described briefly in

chapter 8 and in detail in chapter 10.

The discussion will relate to:

1. an orthotropic membrane dome impulsively loaded at the

centre

2. isotropic membrane dome suddenly unloaded centrally and

asymmetrically.

9.2.1	 Impulsively loaded orthotropic dome

The prestressed orthotropic dome assembled from 'armadillo'

segments, as described in chapter 8 was analysed for

response to central impulse loading. Two cases were

considered:

1. 150 N central load, and

2. 300 N central load.

As a starting point for the dynamic analyses, the geometry

and stress distribution in the structure, due to internal

pressure only (pin = 100 Pa), was obtained by employing the

dynamic relaxation method (see chapter 8). The idealisation

of the membrane for the purpose of numerical analysis was

discussed in chapter 8 and is shown in figure 8.9. Here, it .

will be recalled that two kinds of elements were used:

'line' and 'line and coating'. When the dome was loaded or

only prestressed the differences , especially in

deflections, between results obtained from these two

idealisations were very small.



In the dynamic analysis it was assumed that the external

load was applied after the membrane had reached its long-

term steady equilibrium state i.e., that the gross

deformations of the dome to balance its internal pressure

had already taken place. This implies that we have to model

the visco-elastic behaviour of the membrane due only to the

suddenly applied load, and hence a single Kelvin model may

suffice.

In air-supported structures the action of external forces

causes movement of both internal and external air, with

changes in the internal volume which, according to the laws

governing addiabatic contraction (or expansion) of gases,

results in an increase (or decrease) in the value of the

internal pressure. The vibrations of the air create

additional dynamic forces. However, in the present case,

when a heavy central load is suddenly released, its

influence on the membrane behaviour is much greater than

that resulting from the secondary dynamic forces (movement

of air).

The nodal lumped masses, m il contained two parts; the mass

of the membrane (.345 kg/m 2 ) (which on average resulted in

nodal masses of order .023 kg) and, for the central nodes,

their share of the central applied load mass. Calculation

of the central mass distribution between the crown nodes was

based on the following:

When Pa = 150 N was applied,the masses at nodes 1, 2

and 12 (see figure 8.9 of chapter 8) were increased by



.0125 x Pa/9.81, .0928 x Pa/9.81 and .1447 x pa/9.81

respectively;

for Pa = 300 N the additional masses were .0089 x

Pa/9.81, .0923 x Pa/9.81 and .1486 x Pa/9.81.

The additional masses lumped at the top nodes of the

dome were approximately 100 and 200 times greater, for

150 N and 300 N load respectively, than those of the

membrane.

If the nodal masses had been increased by the mass of

vibrating air (calculations could have been based on formula

given by Jensen [100]), the resulting total mass (mass of

membrane plus mass of vibrating air) would be very much less

than that due to the central mass. Therefore, in this case,

the added masses are reckoned to be of secondary order and

omitting them in a numerical analysis should not influence

the results.

Similarly the damping resulting from the creep of the

membrane material would be of much higher order than that

due to air damping, as defined by Jensen (see chapter 4 and

9.14).

The critical time step was determined from those free.

surface nodes with lowest mass to stiffness ratio; i.e.

nodes adjacent to the smallest elements. The nodes giving

the lowest value are nodes 54 and 98 (see figure 8.9).



I

Idealization of the membrane was carried out to approximate

most accurately the shape of the dome, and the warp and weft

directions of the weave. For almost all other nodes the

critical time would have been twice as large as for nodes 54

and 98. The time interval used for the numerical integration

was 50% of the critical value, namely .00005 second.

The dynamic analysis was performed for the following cases:

1. A 150 N central load with 'line' and 'line and coating'

idealisation

2. A 300 N central load with 'line' idealisation.

In all cases pressure changes were calculated at each cycle

as part of the 'quasi-linear' dynamic response, but pressure

vectors were updated at NSDB = 20 (see flow chart shown in

figure 9.1) together with other parameters accounting for

both material and geometric nonlinearities. The buckling was

checked and accounted for, as given in figure 9.13.

The membrane dynamic properties were obtained from

experiments (see chapter 10) and their values were as

follows:

for the warp direction

Ex = 160 000 Nim

ax = .000033 m/N sec

bx = 14.4 1/sec

vx = .752
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for the weft direction

Ey = 57 000 N/m

ay = .0004 m/N sec

by = 26.9 1/sec

v
Y = .268

for the coating

Ec = 9 050 N/m

ac = .0033 m/N sec

bc = 50.8 1/sec

Where

E, E and Ec are immediate elastic moduli,x y

are the Poissons ratios, and

a, b, ab, ac bare the Kelvin model Constants.x x y , y , o

The results from analysis for a two-cycle trace of the

central node (node nrl) deflection are shown in figure 9.5a

for the 150 N load and in figure 9.5b for the 300 N load.

Longer responses are shown and compared with experimental

results in chapter 10.

The difference between dynamic displacements of the central

node, in the case of 150 N (figure 9.5a), obtained from the

two different idealisations is very small.

Including coating in the analysis using a 'line and coating'

idealization required not only additional time, but also

more computer storage as larger matrices are used (instead

of 2 x 2, 3 x 3 matrices are employed). Therefore, when the
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300 N dynamic load was considered, especially as the static

results showed a smaller discrepancy than for the 150 N

load, only a 'link' idealization was employed.

Shapes of the dome along its axis of symmetry in the

direction parallel to the warp direction are shown in

figures 9.6a and 9.6b for the 150 and 300 N central loads

respectively. Each figure contains the dome cross section

shape at: the prestressed state, static loaded state, and at

maximum and minimum deflection of the central node (see

figure 9.5). The maximum dynamic deflection of the central

point is approximately 1.5 times greater than the static

value for both 150 N and 300 N loads.

Similarly, as noticed in the static load analysis, the

dynamic stresses in the orthotropic membrane material of the

dome are not uniform. As an illustration of their

variation, figure 9.7 shows values in the first row of

elements nearest to the central line in the direction

parallel to the warp direction. In general, they provide a

fair representation of all values of stresses existing in

the dome. For comparison, the stress values are given for:

1. prestressed state (100 Pa internal pressure)

2. for the central Pa = 150 N applied load with:

a) the stresses corresponding to the maximum dynamic

deflection of the central nodes

b) the stresses corresponding to the minimum dynamic

deflection of the central nodes

C)	 static loaded state (vibrations dissipated)



3.	 for the central 300 N applied load with:

a) the stresses corresponding to the maximum dynamic

central node deflection.

b) the stresses corresponding to the minimum dynamic

central node deflection.

C)	 static loaded state.

The minimum dynamic stress values for both loads are very

close to their prestressed state value, as could have been

expected. The maximum dynamic stress values, when the 150 N

dynamic load is applied are approximately 1.6 to 1.1 ttnes

larger in the warp direction than those resulting from the

static load analysis; and for the weft direction the ratio

varies from 2.6 to 3.5. The 300 N dynamic load suddenly

released on the pneumatic dome causes the maximum stresses

(in the warp direction) to be approximately 2.1 times

greater than those existing in the structure when the

static-steady state is reached. The influence of the

dynamic load on stresses in the weft direction is even

larger; the dynamic load increases the stresses by 3 to 4.5

times when compared with the static loaded state.

Although dynamic loads cause a greater increase in stresses

than in deflections, the latter may be of greater importance

in design.	 In general, membrane material is capable of

sustaining greater stresses (with a reasonable safety

margin) that designed for by static analysis, but large

deflections which may not be dangerous from the point of view

of the overall stability of an air-supported structure, can

•



cause discomfort for users of the airhouse and preferably
k

should be kept reasonably small.
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9.2.2	 Impulsively unloaded isotropic pneumatic dome

The initially flat and uniformly prestressed (37 N/m)

isotropic membrane of circular shape was inflated to 15.4

N/m2 internal pressure, and then loaded as described in

chapter 8.3.2. A load of 80 N was applied to the dome and

distributed by means of a platen. Two cases were

considered:

1. central load, with final internal pressure of 28 11/m2.

2. asymmetric load, with final internal dome pressure of

26 N/m2.

The loaded dome geometry and resulting stresses, obtained by

applying the dynamic relaxation method, were the starting

point for the explicit dynamic analysis. Two different

layouts of isotropic triangular elements were employed to

approximate most accurately the shape of the dome and the

way in which the load was applied:

i) a 'cheese slice' of 10 degrees was used for the central

load (figure 8.12a of chapter 8), and

ii) the half dome idealization was used for the asymmetric

load (figure 8.13 of chapter 8).

Both the static analysis of chapter 8.4.2. and the dynamics

discussed here were carried out to simulate the experiments

described in chapter 10.

In the dynamic analysis, it was assumed that the load was

suddenly lifted when the dome had reached its long term

steady equilibrium state. Although only a single Kelvin

model was used to model the visco-elastic behaviour of the



membrane material it was considered that, as only short term

response was to be considered, this simple idealization

would not produce significant errors.

In the numerical analysis, the following dynamic properties

for the membrane material, obtained from experiments (see

chapter 10), were used:

Immediate elastic modulus E = 36500 N/m,

Poisson's ratio v = 52, and

Kelvin model constants: a = .00024 m/N sec

b = 10.5	 1/sec

When a pneumatic dome is set into motion by, for example, a

suddenly lifted load, the vibration of the membrane causes

movement of air which, in the absence of any significant

mass resting on the structure, greatly influences the

response. However, the investigation presented in this

.chapter focuses on the membrane response to a suddenly

lifted load, disregarding the dynamics of the surrounding

air; with only internal air stiffening considered. Attempts

to model the internal and external air movement will be

discussed in chapters 11 and 12.

The axisymmetric case (impulsively central loading) is the

simpler case, since the idealization requires a smaller

number of elements to obtain the same modelling accuracy as

for half the dome. Also, during the analysis the directions

of principal stresses are known. Therefore, this case will

be discussed first.



Calculations of the lumped nodal masses were based solely on

the mass of the membrane material (equal to .057 kg/m 2 ). As

a direct consequence of keeping the number of elements as

small as possible, the smallest mass was for node nrl

(.00014 kg), and the largest value at the rim was .0021 kg.

The smallest central mass governed the critical time step.

As a first approach, the suddenly unloaded dome was analysed

as described in subclause 9.1, with modification for

axisymmetry. The numerical stability of the entire system is

highly dependent on the frequency at which checking for

buckling is performed. Accounting for this nonlinearity and

the incapability of the membrane to sustain compression

stresses, required the time step to be decreased to 50% of

the critical time and NSDB to be reduced from 20 to 1.

When the previous impulsively loaded dome (subclause 9.2.1)

was analysed, buckling occurred only at intermediate stages,

between local maximum and minimum values of the central node

deflection. In the present case, however, areas of zero

stresses existed almost at all stages of the dynamic

numerical analysis,' except the starting and the last few

iterations before static equilibrium was reached. It has

been suggested that to improve the efficiency of the

computation procedure, some stages of the process, namely

those concerning the buckling check, should be reformulated.

The new procedure is presented in the flow chart of figure

9.8.



The main differences between the new "stress" scheme for

very light impulsively unloaded domes and that discussed in

subclause 9.1 and used for the impulsively loaded dome

('force' scheme) are as follows:

1. In the "stress" buckling is checked in the main loop at

each cycle and in the secondary loop, hence the [D]

matrix needs not to be modified.

2. In the new stress scheme calculations are performed on

stress level instead of force. This requires storing

two matrices for each element: [D] x [G] and [GT]

(transposed [G] matrix), and passing, from the

secondary loop to the main, two updated matrices [D] x

[G] and [GT], and new initial stress vectors [SI] and

unit pressure vectors.

The extension of links, e, in step 8 is calculated from the

starting geometry but e* in step 3 denotes the difference

of link lengths from the level set in the secondary loop,

similarly to the old process.

The new numerical procedure results in great savings in

computer time compared with the old scheme, but only if the

number NSDB is greater than one (preferably at least 5) and

if the case under consideration requires checking for •

buckling at each cycle.

For the analysis of an impulsively heavily loaded dome, the

procedure suggested by Barnes [7 1 8, 9, 11] is more

efficient in terms of computer time and space: instead of



two matrices [D] x [G] and [GT ], only one stiffness matrix

is stored and the buckling check at every time step is

almost redundant.

The new numerical procedure (stress scheme) was employed to

calculate the dynamic response of the centrally unloaded

dome. The time interval was 50% of the critical time step

(t = .00007 sec), as in the "force scheme", but NSDB was set

to 20. During the numerical procedure attention was

focused on the vertical displacement of a point .584m away

from the centre of the dome. This point coincides with node

3 for a single division (figure 9.10a) and with the node 5

for a double division (figure 9.10b). The traces obtained

from both methods: "force" scheme and "stress" scheme

differ only slightly (in the case of figure 9.9 the

difference is almost negligible, therefore, the 'force'

scheme results are not shown separately).

The main advantage of the 'stress' scheme, in this case, is

a great saving in computer time. The 'stress' scheme

requires only 1/3 of the time necessary for the 'force'

scheme. The shorter computer time resulted from less

frequent updating of [D] x [G] matrices, creep strains, and

the unit pressure and initial stress vectors. The number

NSDB, in this scheme, is influenced by changes in geometry

taking place and values of applied forces, but not directly

by on/off buckling checks.



Further improvement of the numerical procedure can be

achieved by observing that, for shallow structures like the

dome in question, the highest mass to stiffness ratio (the

crucial factor influencing the time step) is for the x and y

directions, but the motion due to any central impulse takes

place principally in the z direction, perpendicular to the

base plane. Increasing nodal masses mx and my therefore

results in a time step larger by approximately 1V-RF-. The

number MF depends on the height to span ratio, the

deflection relative to overall size, and the character of

the response. For the dome under consideration where, in

the prestressed state, the height to span ratio is 1:20

(though the dynamic maximum height to span ratio is smaller

than 1:20), a value of MF equal to 2 allowed a time step of

.0001 sec (an increase of approximately 1.4). For this case

the response was almost identical to that obtained using a

line step of 0.00007 with m x = my = mz (see figure 9.9). An

increase in value of MF to three, however, led to

discrepancies in deflections of 15% and in frequency of 20%.

Figure 9.9 shows the vertical deflection decay at node 3

(for a single division) or node 5 (for a double division)

due to a suddenly lifted central load. The deflection, def,

is expressed as:

where
	 def = Z 3(5) (t) - Z 3(5) (to)	 9.26

Z 3(5) (t) is the vertical distance between the dome base and

node 3 or 5 at time t, and

Z 3(5) (to) is the vertical distance between the dome base and

•node 3 or 5 at the beginning of the process.



Three traces are given:

1. for the dome idealised as shown in figure 9.10a with

the same masses in all directions (m x = my = mz = m)

2. for the dome idealised as shown in figure 9.10b with

the same masses in all directions, and

3. for the dome represented by triangular elements as

shown in figure 9.10a with the x and y masses increased

by a factor of 2.

The results are almost the same for the first two cycles,

then the differences are slightly larger and higher

frequencies are present in the response. In general, the

discrepancies are small. The following conclusions can be

drawn:

a) a single division is adequate for modelling the dome

for purposes of an explicit dynamic analysis, and

b) appropriate multiplication of the masses in the x and y

direction reduces the computational time without

significantly changing the response.

The numerical dynamic analysis of the dome with a suddenly

released asymmetric load was based on the 'stress' scheme,

with NSDB = 20, and a half dome idealization, as shown in

figure 8.13 of chapter 8. The time step (.0002 sec),

approximately 55% of the critical time step was higher than

for the axisymmetric analysis. In the present case larger

elements were used and the maximum deflections were smaller.



Although the dynamic displacements of nodes were still

larger in the zAirection than in the x and y directions,

this time the x and y components were greater in proportion

to z than in the previous case. Factorising the x and y

masses led to a noticeably different response. During the

analysis the vertical displacement of node 4 was traced.

This point lay on the axis of symmetry but on the opposite

side of the dome to the point at which the load was

released. The results of deflection as a function of time,

from 0 to 0.5 of a second, are shown in figure 9.11. This

time deflection, def, was calculated as:

def = Z 4 (to) - Z 4 (t)	 9.27

Sudden release of asymmetric load induces frequencies

associated with higher nodes. In contrast, when a dome is

impulsively centrally unloaded, only symmetrical modes of

deflection are present.
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Figure 9.10 Idealization for central load
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CHAPTER 10

Contents:

Tests on impulsively loaded and unloaded pneumatic domes

In this chapter static and dynamic tests on two large scale

pneumatic dome models, constructed from coated fabric and

lightweight polythene sheeting, are described. The static

membrane properties for the warp and weft direction of the

orthotropic membrane and for the isotropic membrane are

obtained from biaxial tests on cruciform specimens. The

coating Young modulus of the coated fabric is derived from

uniaxial strip tests. A modified biaxial dynamic test for

membrane dynamic properties is devised and employed to

establish immediate Young moduli and visco-elastic

constants.

The coated fabric model, assembled from 'armadillo'

elements, and inflated, is subjected to static and dynamic

centrally applied loads. Theoretical predictions agree well

with experimental results.

The initially flat and uniformly prestressed lightweight

membrane dome is inflated and statically loaded followed by

a sudden unloading process. Two cases are considered:

centrally and asymmetrically applied loads. Theoretical

static prediction compares very well with experimental.

There are, however, great discrepancies between theoretical

and experimental dynamic deflection traces, caused mainly by

disregarding the surrounding air effects in the theoretical

analysis (except that of internal air stiffening).



10.1	 Structural properties tests for the dome membranes

10.1.1	 Introduction

An ideal material for the envelope of air-supported

structures should be lightweight, low cost, durable and

should have a high tensile strength and stiffness in the

directions of maximum stress under the most extreme

operating conditions. The membrane should be flexible and

of very low air permeability. The material should be

resistant to the propagation of minor accident damage and it

should be capable of being seamed or jointed in a simple,

cheap, air tight and mechanically efficient manner. Since

the material is intended mainly for outdoor use it should be

resistant to all aspects of environmental degradation, such

as sunlight, oxidation, moisture and fungal and chemical

attack over long periods of exposure. In order to ensure

the safety of occupants the material should be non-flammable

or at least incapable of sustaining combustion.

Although some monophase materials like sheet metal or foil

materials have been used, in general they do not satisfy

many of the properties described above. The best compromise

is a composite material comprising a woven fabric, for

stiffness and shear flexibility, coated normally with

polyester PVC, to satisfy permeability and environmental

considerations.

Fabrics are composed of fine filaments: synthetic or glass,

twisted into yarns and woven into cloths. Coatings can be

divided into two classes: lower cost materials	 (PVC,



polyurethanes and rubbers) and high cost fluoroel-stomers

(PTFE, Silicon, PVDF) [134]. The most commonly encountered

coated fabric systems in use today are [134] for temporary

air-houses: PVC coated polyester, and for permanent use:

PTFE (for example Teflon) - coated glass. After weaving and

coating the warp yarns are usually straight and the weft

yarns are undulating. Under load in the weft direction

these yarns will straighten and the warp yarns will

undulate. The process is known as crimp interchange. The

membrane responds inelastically when it is loaded triaxially

to a tension of 5% or more of the strip tensile strength in

each direction [134].

When an air-supported structure is designed various

properties of the membrane should be established . These

mainly comprise: stress/strain relation, stretch

compensation for cutting patterns, resistance to tear

propagation, bursting strength, weathering properties,

strength of fabric and seams, translucency, thermal

performance and resistance to fire. Many of these can be

measured according to BS 3424 Part 0 to 35, or as suggested

by Ansell, Barnes and Williams [5].

During tests, membrane specimens should be subject to

conditions similar to those likely to occur during the life

span of the structure. In this work our attention is

focused on one aspect of the design of air-supported

structures; namely finding the structural response to

externally applied load.	 Numerical analyses have been



carried out (chapters 8, 9 and 11, 12) to model tests

conducted on pneumatic domes, which will be described in

subclauses 10.2 and 10.3. For these purposes only some of

the membrane properties are needed. These are the static

and dynamic stress-strain relationships and, therefore, only

they will be discussed in more detail.

Properties of membrane materials will vary more or less

randomly. The amount and accuracy of information required

about a given property will depend on the effect that the

property has on the behaviour of the structure. For

example, in calculating the deflection of an air-supported

structure due to wind or snow load, it would seem reasonable

to use the mean stiffness of the fabric, but in assessing

the safety of the structure one needs an estimate of the

minimum strength of the fabric rather than its mean value.

Similarly, when deflections and mean stresses are sought in

a model subject to a point load, the mean properties are

used.

10.1.2	 Static stress-strain relations

BS 3424: Part 4: 1982 describes test procedures for the

uniaxial determination of breaking strength and elongation

at break, and Part 21: 1987 gives a method of uniaxial test

for determining the elongation and tension set of coated

fabric (the extension remaining after a test specimen has

been attached and allowed to retract in a specified manner).

The extension or elongation may be measured between gauge

marks and expressed as a percentage of the original length.



The approaches of both methods can be used to obtain a

record of the uniaxial stress/strain relations throughout

the loading range for warp, weft and, if necessary, coatings

(bias direction) of specimens.

When a typical uncoated woven fabric is stretched, the

effective elastic modulus will include apparent strain

contributions from several mechanisms, other than the true

elastic (or visco-elastic) extension of the fibres

themselves [4]. Even at low stresses these are:

1. Yarn shear or rotation. If the principal stresses are

not aligned with the warp and weft of the fabric.

2. Crimp interchange. For example, if a highly crimped

weft yarn is directly loaded it will not begin to

extend elastically until it has lost the crimp, which

will be in some measure transferred to the originally

straight warp yarns.

These mechanisms depend mainly on the principal stress

ratio. At higher stresses additional mechanisms are

present, like yarn flattening, yarn compaction or fibre

straightening and/or rotation [81].

For small-strain extensional behaviour in the warp or weft

direction, the coating has little intrinsic strength or

stiffness, but even a non-rigid matrix will significantly

raise the in-plane shear resistance of a coated fabric. The

general two-dimensional form of Hooke's law for a coated

fabric contains nine stiffness coefficients [81]



D =

dll

d21

d31

d12

d22

d32

d13

d23

d33

10.1

Since the straining of such materials is not necessarily

conservative, i.e., the values of the coefficients may be

dependent on the state of strain in the material and its

loading history, all nine coefficients are independent and

multi-valued. Furthermore, in a coated fabric some of the

coefficients are likely to be time-dependent. In non-linear

anistropic membranes, therefore, the setting up of precise

constitutive relations can be an exceptionally unwieldy

process.

Static stress-strain relations can be obtained by an

alternative approach as suggested by Barnes, Ansell and

Williams [5] and which will be followed here. A specimen is

subjected to a similar range of biaxial stresses to that

existing in the loaded state of a structure, and it is

assumed that throughout these stresses the highly

complicated stress-strain relation can be approximated for

orthotropic material by:

ax = dll 6x d12 6y

ay = d21 6x	 d22 6y
	 10.2

with d12 = d22

and one shear modulus, which for most coated fabrics, will

be very low, and

Ex vy Ex
d 12 - 	 	 d22

1- v v	 1-vx y	 xv y



Although three coefficients can be obtained from a single

test it is preferable to use at least two tests

1. ok constant with 0 varied,

2. oy constant with ax varied

and, when higher accuracy is required, o k and °y varied with

0 /a = 1, and obtain a best fit to the stress/strain curve.x y

Orthotropic membrane tests 

A model pneumatic dome, which will be described in 10.2 was

constructed from P.V.C. coated terylene voile approximately

.25mm thick and of mass .345 kg/m 2 . The membrane is lighter

and of much lower strength than a typical coated fabric used

for air-houses (average mass is about .9kg/m2).

The following static properties were required (see chapter

8)

1. elastic modulus and Poisson's ratio for the warp

direction

2. elastic modulus and Poisson's ratio for the weft

direction, and

3. elastic modulus for the coating

The first two sets of parameters were obtained from biaxial

tests and the last one from a uniaxial test.

a.	 Biaxial tests 

The test specimens were cruciform in shape 50 x 50 cm with a

10 cm square central test area. The warp and weft

directions were parallel to the two cruciform arms (see

photographs	 in figure 10.1). 	 In order to ensure a



reasonably uniform stress state in the central area, three

slits were cut in these cruciform arms. The slits were

stopped at both ends by drilling small holes before cutting

the material. The stops before the fabric enters the clamps

were to avoid failure near the end clamps, and those near

the central test area were to prevent tear propagation. The

corners, where the arms of the material meet were joined by

a small radius curve to avoid possible areas of stress

concentration.	 Four gauge points were arranged in the

central square with 50mm gauge lengths.

Each of the specimen arms was cut 12 cm longer to allow for

fixing by means of clamps. The clamp assembly consisted of

two metal plates drilled with holes, a metal rod, and nuts

and bolts. The specimen arm was wrapped around the rod,

doubling onto itself and the plates were added, sandwiching

the membrane between them. The nuts and bolts were

tightened, effectively gripping the material in its jaws.

To each of four clamps, a flexible thin steel wire was

attached and led over pulleys fixed to a steel frame. The

specimen was kept in equilibrium by balanced suspended

loads, namely, (referring to figure 10.2):

Phl = Phr = Ph

Pvt = Pt  + weight of clamps 2 and 1

and adjustable supports for clamps 3 and 4.

The loading frame, pulleys and clamps were already available

from previous tests.



The specimen was loaded, in a manner similar to the way the

load was applied to the model; namely, strains were recorded

immediately after applying loads. The distances between

gauge points were measured by means of an electronic

vernier; three readings for each distance were taken and

their mean was used for processing results.

Two cruciform specimens were used, each for a separate test:

Test 1

The stress in the warp direction	 was kept constant andxf

the weft direction stress , 0yl was varied. The specimen was

positioned in the steel frame with the warp direction being

vertical. The values of loadings were chosen as follows:

Pvt = Pvb + weight of clamps 1 and 2 - to induce a warp

tension in the specimen of approximately the same value

as the average in the dome, under the prestressed and

loaded state. Here, as two loading cases were

considered, 150 N and 300 N centrally applied load, the

average value was found from the mean stresses for the

three cases. The approximate value was 350 N/m.

Ph
	 loading which induces stress in the weft

direction was applied in steps from ph s to ph f in steps

of Aph

Phs
	 to induce tension in the specimen of

approximately the same value as the minimum stress

under prestressed conditions; here Phs was taken to

induce a stress of 50 N/m



Phf
	 - to induce tension in the specimen of 175 N/m

approximately, which is the same value as the average

maximum stress which occurs when the dome is loaded by

the 300 N central load.

For convenience Aph was chosen as 25 N/m to allow for six

steps.

After the stresses in the weft direction reached the final

value, phf , the specimen was unloaded, but this time in

steps of 50 N/m.

Test 2

Stress in the weft direction, O, was kept constant and theY
stress in the warp directiona , was,	 varied.	 Thex 

specimen was placed in the frame with the weft direction

being vertical. The loads were found in a similar manner to

test 1, but this time:

Pvb

in the weft direction and it was calculated to be 125

N/m.

ph applies to the warp direction, andand gphPhs , Pht

were 250, 500 and 50 N/m respectively.

The unloading test was performed in steps of 100 N/m.

stressFor both tests the datum levels were the p hs and D-vt

conditions and all strains were calculated from these

geometries. Young's moduli and Poisson's ratios were found

assuming stress-strain relation as given by equation 10.2,

+ weight of clamps 1 and 2 corresponds to tension
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which can also be written in the following form:

	

ax	a- V --	x E x	 Y E

10.3

cv	 0.4
E = x--

E )f	 Ex

where

the moduli of elasticity E i and Poisson's ratio v. areI
interrelated as follows:

Ex

Each test result allowed two parameters to be established.

From test 1, where ax was kept constant, plotting the

results for strains and stresses in the weft direction and

approximating it by a straight line (as the best possible

fit) Ey was found. Then plotting ex against Cy led to

determining vy . From test 2, in a similar way, E x and vx

were obtained. It should be noticed that each parameter was

found as the mean of four results; loading and unloading

tests with two gauge lengths used for each case.

The properties obtained from these two tests and equation

10.3 resulted in an overdeterminated problem. While

processing the test results it was noticed that the plots to

establish V showed the greatest discrepancies. During the

tests, varying stresses in the weft direction resulted in

very small changes in the warp direction which were

difficult to measure accurately.	 Therefore,	 Poisson's

ratio,	 was calculated from 10.3c. 	 The experimentalY'

a



value of v was slightly higher than the theoretical one.

Finally, the immediate Young's moduli and Poissoin's ratios

for the warp and weft directions were found to be:

Ex = 93800 N/m

E = 13700 N/m

vx = .89

Y = .13

Throughout both tests all values of ph and pv were

determined from the state of stress in the pneumatic dome.

On the other hand, stresses in the structure can be only

obtained from an analysis when the membrane properties are

known. One way to solve this problem is to conduct simple

uniaxial tests, assume Poissoin's ratios, and then carry out

an analysis. The resulting state of stresses can then be

used to conduct biaxial tests, followed by analysis based on

the new properties. In this case, the biaxial results had

been already available, though for a slightly different

range of stresses, and they were thus employed in

preliminary numerical analysis.

An additional test was conducted to establish the creep

occurring in the dome under prestressed conditions. ' The

specimen was placed in the frame and loaded to induce

tension of approximately the same value as the average

stresses in the dome under prestressed conditions, namely

280 N/m and 65 N/m in the warp and weft direction

respectively. The distances between gauge points were

monitored immediately after applying load and again after 2

hours.	 The two values were within 5%.



b.	 Uniaxial test for coating

Coating does not contribute considerably to the direct

stiffness but gives shear resistance to a coated fabric. In

order to perform an investigation on the influence of

coating on the behaviour of a composite, knowledge of

certain coating properties is essential. Here, in order to

carry out the analysis as described in chapter 8, only

Young's modulus is needed.

Two specimens of rectangular shape 14 x 2.6 cm, with 12 cm

extensions on both ends to allow for fixing, were cut from

the membrane in a 45 bias direction, to be tested as a

pair. The strips were attached to two clamps as shown in

the picture of figure 10.3. The top clamp was suspended

from the steel frame by means of a steel rod and the bottom

hung freely. During the test the extension/distance between

clamps was measured.

The weight of the bottom clamp introduced in the specimen an

initial stress of 30 N/m, which was used as a datum level.

Loads were then applied to induce tensions in specimens

varying from 30 N/m to 210 N/m in steps of 30 N/m, and

strains were recorded by means of an electronic vernier.

The test was repeated with loads being decreased in steps of

30 N/m. The Young's modulus for the coating was obtained as

the average from 4 sets of results (two for loading and the

other two for unloading) to be Ec = 6050 N/m.



The plots of strain against stress for the coating show more

regularity than those for the warp and weft direction tests.

They form more closely a straight line. Therefore, although

the shear stresses obtained from the dome analysis are of

smaller values (the maximum stress is 100 N/m) than the

range of stresses used during the test, an additional test

did not have to be conducted.

Isotropic membrane tests 

The second pneumatic dome model used in the experimental work

was constructed from polythene sheeting, approximately .06

mm thick and of mass .057 kg/m2 .	 The membrane is a

homogeneous material with the same properties in any

direction. When this material is stretched, mechanisms

related to the response are much simpler than those in a

coated fabric. Stress-strain plots are expected to be more

like those for a coating than those for the warp or weft

direction of a fabric. On the other hand, the material

experiences much greater creep in the range of stresses

occurring in the isotropic dome model than the coated fabric

model.

Preliminary tests were conducted on strip specimens; the

size and arrangement of which were the same as during the

coating uniaxial tests. The pair of strips was subjected to

the same cycle of loading and unloading with stresses

varying from 30 N/m to 280 N/m in steps of 30 N/m.	 Strains

were recorded immediately after applying loads. Thus

obtained, as the mean of sets of results, the Young modulus

was 5000 N/m.



During these preliminary tests it was noticed that, due to

the creep, readings of the same distance taken with a few

minutes interval (while the specimen is subject to the same

stress) differ considerably. As these tests were conducted

before experiments on the pneumatic dome, it was concluded

that in order to obtain more accurate results and closer

correlation between the numerical and experimental results,

all recordings should be taken after the main creep had

taken place for both the material tests and the dome tests.

Biaxial tests on the material are necessary:

1. to provide Poisson's ratio

2. the Young modulus will be more accurate, as it will be

obtained in similar stress conditions to those which

exist in the dome.

The appropriate range of stresses for the biaxial tests was

obtained from preliminary numerical analysis with the Young

modulus determined from the uniaxial tests and Poisson's

ratio assumed to be 0.5.

Two cruciform specimens were used for the biaxial tests.

The arrangement of the rig, shape and size of specimen was

the same as used for the tests on the coated fabric membrane

(see figures 10.2 and 10.4 for the general arrangement).

In the first stage, tests were conducted to establish the

time during which the main creep takes place. The specimen

was loaded in such a way that the tensions induced in both



directions were equal and approximately of the same value as

the average in the dome under the prestressed and loaded

states, namely 110 N/m. The gauge lengths in the central

rectangular area were recorded by means of an electronic

vernier placed between each pair of gauge points. The

measurements were taken after each 15 minutes for 1 hours.

Then the test was performed again with the specimen loaded

to induce tensions of 90 N/m and 150 N/m in the horizontal

and vertical directions respectively. The loads were chosen

such that:

ph = induced tension in the specimen of approximately

the same value as the average minimum in the dome, and

pv = induced tension in the specimen of approximately

the same value as the average maximum in the dome.

The conclusions from both tests were similar; when a load is

applied to the specimen the main response (immediate elastic

and primarily creep) takes place within one hour.

Tests to obtain Young's modulus and Poisson's ratio were

conducted on two specimens. During each test, the vertical

stress was kept constant at 110 N/m and the horizontal

stress varied from 70 to 190 N/m in steps of 20 N/m. At

every step the readings were taken one hour after the load

increment had been applied. A similar procedure was

followed during unloading.

The specimens were tested in two perpendicular directions,

to investigate whether the rolling process during production
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of the membrane influences the material properties. The

results did not show any discernible dependency upon the

direction of the membrane.

The results were processed in a similar manner to that

already explained for the case of the coated fabric membrane

tests. This time, however, equation 10.3 was amended to

account for isotropic material:

10.4

6 _	 (3X
- - v - +Y	 E

As a direct consequence of the above, both E and V were

found as the average from eight values to be:

E = 5260 N/m

v = .52

The difference between Young's moduli obtained from the

uniaxial instantaneous test and the biaxial long term test

was 5%.
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Figure 10.1 Static biaxial test of coated fabric
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Figure 10.3

Figure 10.4



10.1.3	 Dynamic properties test

In chapter 9 it has been assumed that the dynamic behaviour

of coated fabrics and of materials like polythene sheeting

can be represented by Kelvin models placed in series and

coupled with an elastic response. In some cases, for

example short term dynamic response of a suddenly loaded or

unloaded pneumatic dome, a single Kelvin model may suffice.

To represent numerically the process the following

parameters are needed: the immediate elastic modulus, E, and

Poisson's ratio, v , (to predict the elastic response); and

the Kelvin model constants a and b, to calculate the primary

creep, which is time dependent and results in visco-elastic

material damping.	 For orthotropic membranes these

properties should be known for the warp and weft direction,

and for the coating when shear rigidity is included. For

isotropic materials one set is adequate, as the three

parameters hold the same values for any direction.

Barnes in his work [9] gives a simplified procedure to

establish the required properties by means of uniaxial

dynamic tests performed on strip specimens followed by a

simple numerical analysis involving curve fitting. Since,

in general, material 'constants' for a membrane, especially

a coated fabric, depend on the kind of stress (whether

uniaxial or biaxial) and its level, attempts have been made

to model stress conditions in a specimen more closely to

those existing in the structure. A report on the method,

where biaxial stresses are induced in a specimen is

presented in the work by R F De La Salle [56]. The proposed



test was performed on a vertical pressurised cylinder made

of the membrane specimen. Internal pressure induced tension

in the specimen in both the circumferential and longitudinal

directions, and a suspended and suddenly applied load

induced additional stress in the longitudinal direction, for

which the dynamic modulus and visco-elastic constants were

sought. The procedure was rather troublesome and due to the

presence of seams in the wall (two were used to maintain

symmetry), the stress distribution was not exactly uniform.

In this work an alternative method to the pneumatic cylinder

is devised, which can be viewed as an extension of the

static cruciform test to allow a dynamic properties test.

The test specimen is rectangular in plan 10 x 50 cm with 12

cm extensions, as shown by dotted lines in figure 10.5, to

allow for fixing. The shorter side of the rectangle is

parallel to the direction for which E, a and b are sought.

To ensure a uniform state of stresses in the central area 10

x 10 cm, slits are cut in both arms. They are stopped on

both ends to prevent any failure near clamps and tear

propagation in the central area.

The specimen was initially held in position by suspending on

adjustable side clamp supports, with loading , p h , only in

the horizontal direction. The specimen was allowed to creep

for approximately one or two hours (depending upon the

material). The top and bottom clamps were then positioned

and a dead vertical loadPvd, applied. After one or two

hours an additional vertical loadp i was suddenlyvl



released by cutting a supporting wire in such a way that no

lateral disturbance was caused. 	 Response, namely the

deflection of point A was recorded by means of a

frictionless linear LVDT (low voltage displacement

transducer) with range 5 mm, coupled to an ultra violet

recorder.

The recorder can produce an output at a scale suitable for

further data processing, according to the sensitivity of the

inserted galvanometer. Each arrangement: transducer + ultra

violet recorder with a galvanometer, should be carefully

calibrated by processing known deflections in the same range

as the experimental values. Deflections can be measured by

means of a digital micrometer head.

The loads: Pvd f Pvl f Ph depend upon a particular situation;

their values are chosen to approximate as closely as

possible the state of stress existing in the structure.

The top and bottom clamps, which are placed very close to

the central area of the specimen, introduce some restraint,

which results in a non uniform stress distribution. This

effect is partially alleviated by fixing the top and bottom

clumps only after the main extension of the specimen due to

horizontal loading has taken place. Therefore, the

restraining effect on the central area, in the horizontal

direction, is only associated with the additional strains

caused by the vertically applied load.



Orthotropic membrane 

The P.V.C. coated terylene fabric membrane was tested:

1. for dynamic properties in the warp direction,

2. for dynamic properties in the weft direction, and

3. for the coating dynamic properties.

The warp and weft dynamic material 'constants' were obtained

from biaxial tests using the arrangement shown in figure

10.5 and in the picture of figure 10.6.

Loads were chosen as follows:

ph - to induce horizontal tension in the specimen of

approximately the same value as the sum of the average

tension in the dome in the weft (for test 1) or warp

(for test 2) directions under the prestressed condition

and half and the the difference in tensions between the

loaded state of prestressed condition,

Pvd + weight of bottom clump - to induce a tension in

the specimen in the vertical direction of approximately

the same value as the average in the dome in the warp

(test 1) and weft (test 2) directions under prestress

only,

Pi (when applied statically) to induce a tension in

the specimen in the vertical direction of approximately

the same value as the average difference in stresses

between the loaded and prestressed conditions in the

warp (test 1) or weft (test 2) directions.



The loaded state stresses were taken as the mean of the two

average stresses in the dome when 150 N and 300 N central

loads were applied.

The specimen was allowed to creep for two hours.

In the test for the warp direction dynamic properties the

following loads were used:

Ph to induce tension of 115 Njm

+ weight of bottom clump - to induce tension of 250Pvd

N/m

- to induce additional tension of 30 N/m;Pi

and for the weft direction they were:

ph - to induce tension of 35 N/m

P + weight of bottom clump - to induce tension of 70vd

N/m, and

- to induce tension of 60 N/m.Pvl

For each calibration test, trial and error curve fitting was

carried out to establish the dynamic modulus and visco-

elastic constants. For the purpose of numerical analysis a

quarter of the specimen central area (advantage was taken of

symmetry) was divided into 25 triangular elements. The

geometry and stress distribution, due to the static load (ph

and nvd + weight of bottom clump) was obtained by employing-

the dynamic relaxation method. In the dynamic analysis, the



intermediate nodal masses were assumed as 15% of the bottom

load mass and At = .5 At crit. In each case creep strains

were incremented at every time interval. For the first

trial, as suggested by Barnes [9], the immediate elastic

amodulus was taken as --, where e c is the final creep straine c

and 6 is the static stress in the vertical direction; and by

assuming the value of a (for example taken from previous

at;
test), b can be calculated as b =

The results for the warp and weft directions are shown in

figure 10.7a and 10.7b respectively. In the warp direction,

due to comparatively small creep, material constants can be

found which closely simulate the test results. In the weft

direction, however, the three constants have been chosen to

comply with the first peak deflection, the rate of decay,

and the 'quasi-static' terminal deflection. In the

intermediate stages the results are as good as can be

expected, bearing in mind the crudeness of the single Kelvin

model for creep. Unfortunately this method does not allow

dynamic Poisson's ratios to be obtained. Therefore, the

static Poisson's ratios, slightly adjusted to comply with

equation 10.3c, were used in the dynamic analysis of the

dome.

Dynamic properties for the coating were obtained from a

uniaxial test, by applying a sudden load to two identical

strips 50 x 2.6 cm cut from the coated fabric in a 45 bias



direction. The set up is shown in the picture of figure

10.8. The shape of the specimen is similar to the uniaxial

test described by Barnes [9], but the way of applying

vertical static and dynamic loads is as shown in figure 10.5

for the biaxial test.

The vertical loads applied to the specimen were:

Pvd + weight of bottom clump - to induce a tension of

90 N/m

and

pvi to introduce an additional tension of 120 N/m.

The numerical analysis was carried out using six bar

elements for the idealization. The results are shown in

figure 10.10. As the creep is significant the three

constants give only an approximate trace of the experimental

dynamic response. In order to obtain closer theoretical

simulation of the test, two or three Kelvin elements placed

in series could have been used.

The load applied to the specimen caused a stress which was

too high. The test was performed before any analytical

analysis accounting for the coating had been carried out,

and was anticipated to give only preliminary results.

However, the effect of the coating on the dynamic response

of the dome was found to be comparatively small, hence

further work to derive more accurately the visco-elastic

constants and the elastic modulus for the coating seemed to

be unnecessary.



Isotropic membrane 

The isotropic pneumatic dome was initially prestressed,

inflated, statically loaded and then dynamically unloaded.

Two loading cases were considered: centrally and

asymmetrically applied loads. Dynamic numerical analyses

were carried out for the suddenly unloaded dome to match the

experimental procedure. In the biaxial method employed for

testing the dynamic properties of the coated fabric, a

vertical load is impulsively applied to a specimen and a

response is followed. The static tests performed on the

isotropic polythene sheeting material did not show great

discrepancy between loading and unloading cycles.

Therefore, it seemed quite reasonable to assume that a

similar behaviour would be observed in dynamic tests.

The dynamic modulus and visco-elastic constants for the

isotropic membrane were calibrated as shown in the picture

of figure 10.9, by a procedure similar to that described and

shown in figure 10.5 for the warp or weft direction of the

coated fabric. The only differences were the applied load

and the time allowed for long-term creep which was shortened

to one hour. The loads were as follows:

ph - to induce horizontal tension of 130 N/m

Pvd + weight of bottom clump - to induce vertical

tension pf 90 N/m

and

P - to induce vertical tension of 70 N/m.vl



The results are shown in figure 10.11. The primary creep

for this type of membrane is rather high and therefore

modelling visco-elastic behaviour by the single Kelvin model

is not as accurate as, for example, in the warp directions

of plastic coated fabrics. On the other hand, the dynamic

response of a suddenly unloaded dome does depend very

strongly upon another factor: the movement of the

surrounding air. Accounting for this involves a lot of

additional calculation, as will be shown in chapter 11.

Therefore, it is very important to restrict modelling of

membrane behaviour to a procedure which is as simple as

possible. From the above explanation it is reasonable to

assume that the inaccuracy resulting from this simplified

membrane behaviour model will result in an error of

secondary order in numerical prediction of the dynamic

response of the dome.
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10.2	 Tests on the orthotropic membrane dome

10.2.1	 The model

The model dome, a general view of which is shown in the

photograph of figure 10.12 was attached to a base unit of

4.89 in external diameter. The base unit, used in previous

experiments at City University and described by Barnes [9]

was constructed in hardwood with a top skin of plywood. The

circumference of the base was bevelled off at 45 to enable

the membrane to be attached by means of double sided type,

so that the joint would be subject to shear rather than

peeling. The whole assembly was mounted on a wire braced

framework of steel legs, which evenly supported the base

unit.

Three holes were made in the base: one 15 cm in diameter to

allow for inflating the dome by means of a large

displacement centrifugal fan, a small 3 mm diameter hole to

enable constant pressure to be maintained inside the dome by

connecting a small high pressure pump coupled to a

regulator, and an additional small hole for connecting an

inclined manometer filled with blended paraffin. To

minimise leakage the remainder of the base was covered by

very thin polythene sheeting attached to plywood by means of

P.V.C. adhesive tape. An additional layer of polythene

sheet was laid over the 15 cm hole and surrounding area to

form a diaphragm so that the air stream coming from the

large fan would not hit directly the membrane, but would be

dispersed to avoid causing locally high stresses.



The dome was assembled from five pairs of 'armadillo'

elements (the name armadillo comes from a small burrowing

animal of S. America with a body covered with a shell of

bony plates). The membrane material was P.V.C. coated

terylene fabric approximately 0.25 mm thick. The segments

were cut so that the warp was aligned with the longitudinal

axis of symmetry of each segment. The cutting template for

the segments was shaped to give as closely as possible a

spherical diameter of 7.0 m for zero membrane stress. The

segments were 8 mm lap jointed with plasticised 'Superglue',

over a former of the correct curvature on a specially

designed and constructed cradle (see figure 10.13). One

quarter of the dome was marked by sticking small dark self-

adhesive circular stickers along the centrelines of each

segment (see figure 10.14).

The jointed membrane segments were sealed to the supporting

base by double sided tape, which enabled some initial

adjustment. Thus formed, the model dome had a base diameter

of 4.74 m and a crown height of approximately .93 m when

prestressed by internal pressure.

10.2.2	 Impulsively centrally loaded dome - static and

dynamic tests

Static tests 

In the static test the orthotropic pneumatic dome was loaded

centrally and static deflections of the marked points were

recorded by a still camera. The load to be applied was

placed on a plywood circular platen of .58 m external
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10.6

diameter, with a vertical scale attached to it, and

suspended on a steel wire from a pulley situated directly

above the centre of the dome. The other end of the wire was

equipped with a handle to give better control over the load

releasing process, and a clamp so that the suspended load

can be safely secured, when required, in a position just

above the apex of the dome.

The camera images are not merely diminished or enlarged

pictures of real objects, but they are deformed, mainly due

to compressed perspective effects and lens observations.

The compressed perspective effects are a direct result of

the basic optics law for lenses; the relationship between

conjugate distances and the focal length is expressed by the

following formula:
1	 1	 1
- + - = -	 10.5
u	 v	 f

where

f is the focal length,

u is the object conjugate (object distance) and

v is the image conjugate (image distance)

The f, u and v are illustrated in figure 10.16 showing an

example of ray paths through a simple positive lens. By the

geometry of figure 10.16 equation 10.5 can be transformed to

the practical form:

where m is a magnification factor.

When a film frame or a picture is analysed to obtain the

real vertical dimension of the object, equation 10.6 is used

in the form:



1
0 = I x - = I x -	 10.6a

m

In such circumstances, the following conclusions can be

drawn:

1. the inverse of the magnification factor depends

linearly upon the object distance, and

2. (as a direct consequence of 1) if the exact position of

the camera relative to the photographed object is not

known, two vertical scales are adequate to work out the

inverse of the magnification factor for any point on

the object.

Therefore, for reasons given above, two surveying staffs

were placed vertically near to the dome but not obscuring

the view (see figure 10.17). Their positions were carefully

measured and recorded.

The ray paths shown in figure 10.16 (and corresponding to

equation 10.5) assume the ideal conditions that the lens is

perfect and that the central ray of an oblique beam of light

passes through the centre of the lens itself. In practice,

the lenses can only approximate this ideal [118]. A full

list of principal lens abberations is given in [114, 88].

The main concern for us was so-called curvilinear distortion

(or just distortion) which results in the image varying in

its magnification across the field. The distortions are

greater when a picture is taken from a short distance using

a wide angle lens, and can be easily observed on the image,

where straight lines of the object become curved.	 To



alleviate this abberation all pictures were taken by a

camera situated more than 20 metres away from the dome. A

telephoto lens: Vivitar 400 mm f15.6 (6° angle) was used to

obtain images of maximum possible size on 35 mm film.

The test procedure 

The dome was initially inflated by means of the large

displacement centrifugal fan. Then the fan was switched off

and the small high pressure pump was set up so that the

internal pressure was kept constant at 100 Pa (the amount of

air lost due to any leakage was recompensated). The

geometry of the dome was recorded by means of the still

camera.

The loading platen of 150 N total weight was then gently

lowered onto the dome. When the dome had reached a steady-

state condition, a photograph was taken of the deflected

shape of the dome and the internal pressure was recorded.

The platen was raised and the membrane was allowed to relax

for two hours. Then the dome was inflated to the desired

pressure 100 Pa and the test was repeated with a 300 N

central load.

Dynamic test 

In dynamic tests the dome was impulsively loaded and

deflections of the central point were recorded by means of a

high speed camera. This time, the camera was placed close

to the dome and positioned in such a way that the camera

lens level was a few centimetres above the apex of the dome.



The camera speed was set at 100 frames per second.

The handle on the wire supporting the central load was

replaced by a turnbuckle to allow for small ad)ustments in

the wire length. The dome was prestressed by internal

pressure of 100 Pa by the large fan and the small pump in a

similar way to the static test. The centrally positioned

platen of 150 N was lowered to 1 mm above the dome (very

close to the dome but not touching it). A thin prestressed

wire was stretched in front of the platen scale (as close as

possible allowing for a few millimetres horizontal movement

of the central loading system during the test) to give a

fixed horizontal line. The wire level was chosen in such a

way that during the test the wire remained within the

platen scale.

The camera was sighted on the vertical scale attached to the

loading platen (see figure 10.15). Finally, the central

0.575 cm diameter ring load of 150 N was suddenly applied to

the dome by cutting the supporting cable and deflections

were recorded for a few seconds. Then the platen was raised

and the same experiment was repeated after 2 hours for the

300 N central load.

10.2.3	 Comparison of theoretical and experimental results

Static results 

The photograph of figure 10.14 shows a quarter of the

inflated dome with reference points marked on the structure;

similar pictures were taken for the 150 N and 300 N central



load cases. On enlarged pictures (28 x 28 cm), the required

distances were measured by means of a digitizer. Two points

of the base line, all visible marked dome points, a point on

the loading platen and two points on each of the surveying

staffs were digitized.

The ratio of the vertical image distances on the surveying

staff to their real lengths gave the inverse of the

magnification factors M i and M2 • The points on the

surveying staffs were chosen to give the maximum possible

vertical length; so that the influence of digitizing error

is minimised. The values of M l and M2 were then used to

obtain the coefficients of the linear function defining the

inverse of the magnification factor (the value by which the

image length should be multiplied to obtain the actual

distance) in terms of y coordinates (see figure 10.17).

The dome base was assumed to lie in the plane z = 0;

therefore, all vertical distances between marked points on

the surface of the dome and the base were expressed by z

coordinates. Figure 10.17 shows the points for which z

coordinates were obtained from the experiments; the node

numbers are the same as those used in the theoretical

analysis and shown in figure 8.9. The experimental and

theoretical z coordinates for both 'line' and 'line and

coating' idealizations, for prestressed, 150 N load and 300

N load states are given in the table of figure 10.18. The y

coordinates obtained from the geometry of the cutting

pattern were used to find the inverse magnification factor



for each point and hence the experimental z values.

The difference between the theoretical values for both types

of numerical modelling are very small, as noted in chapter

8. Even the maximum discrepancy is within 1%. In general,

the theoretical results using a 'line and coating'

idealization are closer to the experimental results; the

discrepancies between them being within 0.5 cm which

represents about 1%. The z coordinates obtained using only

'line' elements have the greatest differences and, when

compared with the test values in the central area of the

dome, the theoretical values are generally lower by a

maximum of 2%.

The theoretical deflections for the central point under the

150 N load, being 0.127 m and 0.130 m for 'line' and 'line

and coating' idealizations respectively, compare very well

with the experimental 0.129 m deflection. When the 300 N

central load is considered, the theoretical deflections of

node 1 are 0.188 for both idealizations and the test gave

0.184 m.

The pressure read from the inclined manometer, after

applying the central load and reaching a steady-state, were

in both cases lower than the theoretical. For the 150 N

central load, the experimental value was 148.5 Pa whilst the

theoretical values were 153.9 and 152.3 Pa for 'link'

and 'link and coating' idealization respectively. For the

300 N central load, the pressures were 	 204.6	 Pa



experimentally, and 217.7 Pa and 214.6 Pa with 'link' and

'link and coating' idealizations respectively.

Some precautions (see 10.2.2) were taken to ensure that the

experimental procedure would provide results which were as

accurate as possible. In spite of this fact, there were

still some weak points which influenced the test precision.

It can be easily observed (see figure 10.14) that the

stickers to mark nodes on the dome did not define exact

points - the error was of order 2 to 3 millimetres. The

theoretical results also depend on experimental material

properties, which are not error free. The main source of

errors in the static material tests were:

1. inaccuracy in the measurement of distances between

gauge points in the first two steps in the loading

cycle and the last two in the unloading cycle. When

under the low stresses in a specimen the measurements

were taken, the central part of the specimen tended to

move out of plane and the studs tilted slightly

outwards.

2. the time influence on results. Instantaneous Youngs

moduli for the membrane were required; therefore strain

measurements were recorded just after applying loads

(in the dome test a similar procedure was followed).

In order to eliminate reading or other related errors,

each distance was measured three times in the cycle.

Although the differences were not great, the time

dependent creep strain slightly influenced the results.

A similar effect was observed during the dome tests.



After initially pressurising the dome by means of the

large fan, some time was required to set up the right

rate of pumping which would account for leakage; hence,

before applying the load some time elapsed. In that

time creep strains could have taken place which are not

accounted for in the material tests. On the other

hand, the difference in geometries: that obtained from

the pattern cutting and that after applying internal

pressure, were comparatively small and the stresses due

to pressurising only were not very high. 	 Hence, the

time factor could be expected to be of secoxvdary ode.

In general, the theoretical predictions using even 'line'

elements were very close to the experimental results. For

practical purposes, for these types of coated fabric, the

analysis discussed in chapter 8 based on a 'line'

idealization may therefore be considered adequate.

Dynamic tests 

Records of the test, the movie films, were analysed using a

motion analyser to view the film frame by frame, and a sonic

digitizer to find the positions of any points on the frame.

The system was coupled to a BBC microcomputer using 'Modular

Film Analysis system' software.

The platen scale and the base diameter were used to define

magnification factors for the vertical and horizontal

directions respectively. On each frame two points were

recorded: one to account for movement or displacement of the

film and the second to find a deflection. The deflection at



any instance of time, t i , was found as the difference

between coordinates at t = 0 and t = ti' For the first 50

frames, each one was analysed as the differences (movement

of point 2) were large. After 50 frames digitizing the

points on every second frame proved to be sufficient.

The deflection of the central point of the dome, for the

centrally applied 150 N and 300 N loads, are plotted as a

function of time on figures 10.19 and 10.20 respectively.

The theoretical results are superimposed on the graphs; for

the 150 N loading two theoretical plots are shown for:

'link' and 'link and coating' idealizations, but for the 300

N loading only the 'link' idealization is shown.

Both theoretical results, for 150 and 300 N loadings compare

well with the experimental trace for point 1. The main

sources of error seem to lie in distortions caused by the

considerable deformation of the dome and the use of only a

single Kelvin model for the visco-elastic constants,

especially in the weft direction. Introducing the coating

did not noticeably improve the results, but increased

computer time and, therefore, for this type of membrane

material may be considered unnecessary. Disregarding the

surrounding air vibrating with the membrane did not cause an

error of high order. The stiffness of the membrane material

seems to be rather under-determined; the theoretical

deflections are larger and the basic theoretical frequency

is smaller than observed experimentally.



There are discrepancies of about 1.5 cm between the static

results for the deflection of point 1 and the corresponding

'quasi-static'dynamic terminal deflection in both the

theoretical and the experimental results. The static

deflection and 'quasi-static' dynamic terminal deflection of

point 1 cannot, however, be directly compared. The dynamic

tests were not performed at the same time as the static

tests, but with a month interval. During this time the

double-sided tape used to fix the dome to the base partially

lost its sticking properties and had to be replaced by a new

layer. New adjustment, especially in highly stressed areas

(near the edges in the smallest segments) was necessary to

avoid wrinkles and displaced the membrane compared with its

original position. The new geometry was, however, accounted

for in the numerical dynamic analysis.
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Prestressed state 300 N central load150 N central loadNode
Nirber

theoretical
'line'

theoretical
'line and

coating

experimental theoretical
'line'

theoretical
'line and

coating'

experimental theoretica
'line'

theoretica
'line and
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e<perimenta

1 .926 .933 .934 .799 .833 .835 .738 .745 .750

34 .837 .838 .842 .832 .835 .838 .823 .828 .829

36 .798 .798 JO .798 .799 .798 .797 .799 .ecn

38 .681 .683 .683 .687 .685 .685 .692 .661 .690

40 .487 .487 .484 .494 .493 .489 .5ce .500 .498

42 .222 .222 .219 .226 .226 .224 .231 .230 .229

56 .672 .672 .677 .679 .679 .6E0 .684 .684 .687

58 .638 .638 .640 .644 .643 .642 .650 .649 .651

60 .536 .536 .536 .541 .540 .538 .547	 .5111)	 .N•2

62 .366 • .366 .364 .369 .369 .365 .374 .373 .377

76 - .436 .435 .433 .442 .441 .441

78 .4ce .402 .400 .408 .407 .403 .414 .413 .410

EO .320 .320 .317 .324 .324 .321 .329 .328 .325

82 .181 .1E0 .180 .181 .182 .182 .185 .1E6 .185

I	 I	 I
95 .109 .107 .970	 1	 .112	 1	 .110	 I .108 .114	 .113 .109

Figure 10.18
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10.3	 Tests on isotropic membrane dome

In tests of the isotropic membrane dome the same base unit

and pumping-measuring devices were used as describe in

subclause 10.2. On the initially flat dome the positions of

points for which experimental deflections were to be

obtained were marked (see figure 10.21a). Six points were

required for the static tests: three points to coincide with

nodes 3, 5 and 6 of the cheese slice idealization, and three

points to coincide with nodes 20, 21 and 23 of the half dome

idealization (used for asymmetric load see figure 8.13 of

chapter 8). For the dynamic tests only two points were

required. These coincided with node 3 in 'cheese slice' and

node 4 in the half dome idealizations. The dynamic test

points were chosen to give the maximum deflection and not to

interfere with the loading platen.

The membrane of .06 mm thick polythene sheeting, was placed

on the base unit and gently attached to it. A 10 mm wide

strip was marked around the base edges (see figure 10.21a),

and the flat membrane was then pulled outwards in the radial

direction so that the marked line coincided with the table

edge. In order to obtain uniform stresses the procedure was

performed in steps: first the material was stretched along

line 1-1 from both ends, then 2-2, 3-3, 4-4 and then the

process was carried on in a similar way until the whole

sheet was in the correct position with a small uniform

initial stress.



From a trial test it was concluded that the dome was too

shallow for using a marking system similar to that employed

for orthotropic dome tests since the stickers attached

directly to membrane were here not clearly visible. An

alternative approach was therefore devised: 14 x 14 x 14 mm

expanded polystyrene cubes, with stickers on the side facing

the still camera, were glued to the membrane. For the

purpose of the dynamic test, a sticker with a clearly

defined point faced the high speed camera. For the static

test, where pictures were to be taken from over 20 m, a full

black circle on the stickers had to be used (see figure

10.21a).

10.3.1	 Static and dynamic tests on loaded and unloaded

dome

The dome was inflated and the static geometry was recorded

by still camera for both prestress and static load states.

Afterwards the dome was impulsively unloaded and the dynamic

deflections were traced by means of the high speed camera.

Three surveying staffs facing the still camera were

positioned vertically, very close to the base unit but not

obscuring the view (see figure 12.21a and 10.23), to give

the magnification ratio functions for the static tests, and

to account for compressed perspective and camera lens

aberration. A simple aluminium frame was assembled and

positioned very close to the dome centre-line (see figure

10.21 and 10.22) with a horizontal member being

approximately 50 cm above the highest point of the dome when



inflated. This allowed for raising and releasing the platen

without any interference. Directly above the dynamic point,

a square 20 x 20 cm board was attached to a verical rod

suspended from the frame (see figure 10.21b and 10.22).

Surveying signs stuck to the board defined: a fixed point

(to be used during film analysis to account for displacement

of the film frame) and the magnification factors for the

horizontal and vertical directions. Dynamic deflections

were expected to be smaller than in the orthotropic dome

test, therefore, for better accuracy the high speed camera

was focused to cover as small area as necessary. For

these reasons the square board was positioned very close to

the dynamic point, just allowing for dynamic movement.

The uniformly prestressed flat membrane was inflated to

15.44 Pa by the large displacement centrifugal fan. The fan

was switched off and the rate of pumping for the small high

pressure pump was set up so as to maintain constant internal

pressure. The dome, a view of which is shown in the picture

of figure 10.22, was left for one hour to allow for creep to

take place, and then a photograph was taken. The 80 N

loading platen, suspended on the wire from a pulley situated

directly above the centre of the dome, was slowly lowered

and eventually fully released. An hour elapsed before

recording the deflected dome geometry.

Applying the load causes an increase in internal pressure,

which results in higher leakage, hence the rate of pumping

had to be increased.	 On the other hand this membrane



material was prone to creep, hence changes in geometry

occurred under the same loading conditions, which in turn

influenced the internal pressure. In practice it was found

rather difficult to be able to set up the right rate of

pumping to account for the above facts. Yet a precise

knowledge of the resulting geometry of the dome, required as

a starting point for the dynamic test, was of great

importance. Therefore the problem was tackled in the

reverse order; namely, the pumping rate was adjusted to

maintain a constant internal pressure of 28 N/m 2 , and an

approximate value for the pressure increase was measured

directly after applying the load.

After a photograph recording of the centrally loaded static

state geometry had been taken, the 80N loading platen was

impulsively raised and the dynamic deflections of point 3

were traced by means of the high speed camera sited on the

square board and the cube defining node 3. The position of

the pulley was then altered to enable the 80 N load to be

applied asymmetrically, as shown in figure 10.21a. The test

was performed in a similar manner to that described above,

but with two differences:

1. After applying the load, the internal pressure was

maintained at 26 Pa, and

2. As this time the loading platen was not horizontal, the

precise angle of indication was measured, just after

taking a picture of the loaded state, to be 5 degrees.



10.3.2	 Comparison of results and conclusions

A photograph taken after inflating the dome is shown in

figure 10.23. Similar pictures were taken after applying

central and asymmetric loads. The pictures were enlarged

and analysed as explained in 10.2.3 by means of a digitizer.

The inverses of the magnification factors were this time

defined more accurately by employing three surveying staffs.

The results of z coordinates from the base for the three

states: inflation, central and asymmetric load, are given

together with theoretical values in the tables of figure

10.24. The coordinates are supplemented with static

deflections.

Taking into account the fact that using dots of 10 mm

diameter (dots of smaller size are not well visible when

pictures are taken from over 20 m) limits the accuracy of

digitizing coordinates to within 2-3 millimetres, the

theoretical results are very close to the experimental

values.

During static tests no wrinkles were observed on the dome

membrane. This agrees with the theoretical prediction in

which no elements sustained negative principal stress.

Results of dynamic tests for the deflection decay of node 3

following central unloading and node 4 following

asymmetrically unloading, are shown together with the

theoretical traces in figures 10.25 amd 10.26 respectively.•

The most striking discrepancies are in frequencies. For the



centrally unloaded dome the theoretical frequency is 16,

which is more than 6 times greater than the experimentally

observed value of cycles per second. The most obvious

reason for such a great difference is omitting, in the

theoretical analysis, the influence of the surrounding air

(apart from internal air stiffening) on the dome movement.

Disregarding the added mass of vibrating air clearly causes

the frequency of lightweight structures to be grossly over-

estimated.

The maximum theoretical deflections for both the centrally

and asymmetrically unloaded dome are higher than the

experimental values, although the difference is not as great

as in frequencies. The discrepancies in deflections are

very likely to be caused by omitting 'air-damping' - damping

associated with the pressure which the surrounding air

exerts on a membrane to resist its movement.

When an asymmetric load is suddenly raised, the membrane in

this area moves upwards to balance a new pattern of loading,

creating a local area of low pressure underneath. The air

in a different part of the pneumatic dome, having higher

pressure, then surges towards this lower pressure region.

This movement can be associated with the first peak in the

graph of figure 10.26. Subsequently the air rebounces and

returns to the previous position, thus creating again lower

pressure in the local area under the membrane, where the

platen rested. Then the movement of air mass carries on,

caused more by impinging on the membrane and rebounding than



by differences in pressure. The peaks on the graphs become

successively lower as the air momentum decreases. The

analysis of chapter 9 does not cover this air movement,

therefore the theoretical graph of figure 10.26 does not

resemble, even in shape, the experimental trace.

The theoretical dynamic analyses of chapter 9, which

disregard the surrounding air are not adequate for

lightweight structures. Therefore, attempts will be made in

chapters 11 and 12 to model air-supported structures more

accurately by accounting for air structure interaction

effects.
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Inflated Dome Loaded Dome Deflection

Theoret-
ical
Results

Experim-
ental
Results

Theoret-
ical
Results

Experim-
ental
Results

Theor-
etical

Experi-
mental

3 .214 .217 .172 .172 -.042 -.045

5 .173 .173 .185 .183 +.012 +.010

6 .142 .140 .162 .159 +.017 +.019

Node
Number

Inflated Dome Loaded Dome Deflection

Theoret-
ical
Results

Experim-
ental
Results

Theoret-
ical
Results

Experim-
ental
Results

Theor-
etical

Experi-
mental

20 .163 .163 .179 .198 .034 .035

21 .203 .203 .227 .226 .024 .023

29 .168 .169 .198 .202 .030 .033

Node
Number

a. centrally applied load

b. asymmetrically applied load

Figure 10.24 Static test results
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CHAPTER 11

Internal air modelling

Contents:

In this chapter a coupled fluid-structure explicit dynamic

analysis is described. This includes membrane and air

modelling for pneumatic structures. The behaviour of

irrotational, inviscid, compressible fluid is described from

a Langrangian point of view. A numerical iteration scheme

for coupled analysis and stability conditions is given. The

procedure is employed to investigate the dynamic response of

a suddenly (centrally) unloaded lightweight polythene dome

structure. Different idealizations of the surrounding air

are considered but with emphasis on internal air modelling.

Although only the simplest axisymmetric case is considered,

the amount of computing is enormous.

11.1 Introduction

In chapter 9.2.2 the explicit dynamic analysis of a

pneumatic membrane subjected to suddenly lifted loads was

discussed, and in the following chapter (10.3) the

theoretical results for vertical deflection traces of

certain nodes were compared with corresponding experimental

results. The differences between them were very large.

In the previous numerical analysis, the membrane was treated

as the only structural part of the dome, and the internal

air was accounted for only as far as air stiffening was

concerned. The latter was introduced into the analysis by
.13

applying the isentropic relatiOn,.-- = constant, to the



whole volume of air enclosed by the membrane. The

observation during tests on the impulsively unloaded

pneumatic dome indicated that the surrounding air should be

treated as an intrinsic part of the structure in the dynamic

analysis.

The above problem can be approached in three different ways:

first: The behaviour of surrounding air can be

numerically modelled with the help of fluid

mechanics (and if necessary thermodynamics, eaNd

coupled with the structural dynamic analysis;

second: The influence of surrounding air on the structural

dynamic response can be carefully examined and

accounted for by means of additional terms in the

mass, damping and external force matrices of the

dynamic equations. The values of air influence

components can be derived from theoretical models

and/or very simple fluid mechanics relations; and

third: An approach similar to the second, but with

additional terms obtained from simple theories

combined with experimental coefficients.

The last approach, in general, will result in the smallest

amount of computing but requires a great number of tests;

separate experiments may be needed for different types and

shapes of structures. Jensen [99, 100] conducted a series

of such tests on tension structures (pneumatic structures

were not considered) and by observing and monitoring their

dynamic responses, presented formulae for added mass,



damping and, when wind loading is considered, the additional

term in wind loading formulae expressing the internal

reaction associated with the acceleration of the surrounding

air. Jensen's conclusions were discussed in more detail in

the review of chapter 4.

The first approach is capable, in theory, of providing us

with the most accurate solution. The drawback of this

method can be the enormous computing time which is involved

in solving the fluid mechanics time dependent equations,

especially in 3D, and when coupled with the structural

dynamic equations. A compromise, which may lead to a more

practical solution is to simplify the behaviour of the

surrounding and enclosed air. Williams in [203], under the

assumption of irrotational incompressible air flow,

suggested a way of deriving the added mass matrix for air

surrounding a membrane structure by means of a boundary

element method. Emphasis was placed on 2D solutions.	 An

alternative approach to this, but allowing for

compressibility and being easily extended to 3D, is that

proposed by Barnes [14]. The method seems to be more

appropriate for modelling the behaviour of a suddenly

unloaded pneumatic isotropic dome, where the changes in

internal pressure can be clearly observed during the tests.

Introducing more simplification to fluid dynamic equations

cuts down the computing time, but may result in erronous

solutions. On the other hand more precise modelling

requires longer computing time, which at the present stage

leads to more expensive solutions. Therefore, the second



approach may be a more appropriate alternative. The

theoretical model is used to represent a particular feature

such as the added mass effect. William's method can also be

viewed as belonging to the second type of approach. 	 This

group will be discussed in more detail in chapter 12.

11.2 Air surges within an enclosed pneumatic stressed

membrane - a review

Equations of motion can be formulated from two different

points of view:

1. Eulerian or statistical, an approach more popular in

fluid dynamics (see chapter 2); attention is directed

to a particular point in space

2. Langrangian or historical, an approach used in dynamics

of structures in which the progress of a particle is

followed.

When fluid dynamic equations are combined with structural

dynamic equations it may be advantageous to keep the same

way of describing the motion. In the approach suggested by

Barnes [14] and presented herein this uniformity is

maintained, namely motion of air and membrane is represented

using the Langrangian point of view.

In this method the derivation of the basic equation of

motion will be given with direct reference to internal air

enclosed by a pneumatic stressed membrane which is

externally loaded. The method can be easily extended to

external air as will be shown in 11.4.	 For a two-



dimensional problem the simplest example of an air-supported

structure seems to be a very long cylindrical structure (see

section in figure 11.1).

The total mass of air within the structure is assumed to be

constant (the leakage is negligible).

Air can be represented by a hypothetical ideal fluid; a

fluid assumed to be inviscid, or devoid of viscosity (i.e.

frictionless). A further restriction, which is made, is the

assumption of no heat transfer to or from the fluid, which

for frictionless fluid movement results in an isentropic

process. The internal air is divided into triangular

elements in 2D (see figure 11.1) and into tetrahedral

elements for a 3D case. Each element, in addition to

volumetric deformation, may be subject to rigid body

movements. The element faces are assumed to remain plane

during apex nodal movements, and the internal mass of an

element is assumed constant.

Considering an element of the air undergoing translation and

rotation. The pressure at any time, t, is defined by the

isentropic process relation

Pt = c(pt)k

where

C is a constant

P is the air density, and

k is the ratio of two specific heats of a gas, that at

constant pressure, c p , to that at constant volume c •r



for air k is found to be 1.4.

The current volume, V ot , may be determined from the nodal

coordinates at time t, and since the mass

M = pt vot	 11.2

is constant, equation 11.1 takes the form

Pt = Cl/(Vot)k

	

11.3

The pressure and density at any instant are assumed to be

constant throughout the element.

There are two types of fluid mechanics equations (see

chapter 2)

1. continuity (conservation of mass), and

2. equations of motion.

For the element under consideration the former relation is

self-satisfied (the mass is constant). The equations of

motion of chapter 2 were derived by application of a scalar

form of Newton's second law. However, Newton's law is a

vector relation and it can be written for an element of air

in terms of the impulse provided by external forces

(pressure, gravity etc.) and the resulting changes of the

linear momentum of the element as:

where
	 (7F) dt = d(mVc )
	

11.4

Vc	is the velocity of the centroid of the element,

mVc	is the linear momentum, and

(>'F)dt	 is the impulse during time dt from the sum of

all external forces acting on the element.



— 	 	 (-1
,t+At/2_11.t-At/2)

N i=1,N

me
11.6

The continuous time history from t = t o to t = t f is divided

into n time intervals of a very small time step t (t f-to =

A t x n) .

Approaching the problem in a similar manner to that of

explicit dynamic analysis with finite difference

application makes it compatible with the structural dynamic

solution procedure for membrane structures (see chapter 9).

The velocities will be calculated in the middle of each

interval, but forces (pressures) acting on the element and

its nodal coordinates at the end of time intervals. Forces

and coordinates obtained at the end of any time interval are

assumed to have the same value on the beginning of the next

interval.

The increase of linear momentum of the element in the x

direction during the small time interval

(t -At/2) -> (t +t/2) is:

me uct+At/2 _ me uct-At/2	 11.5

where

uo refers to centroidal velocity in the x direction.

For simplicity, only the equation for the x direction will

be presented. As the element is subject to rigid body

motion and hence velocities vary linearly throughout the

element, formula 11.5 can be expressed in terms of nodal

velocities ui:



The increase in momentum is equal, by equation 11.4, to the

impulse of the forces acting on the element in the x

direction during At, (7F) At. Assuming no body forces,

11.7

( 7F) At is equal to
At 

if 
t p it ds

where

N=3 for triangular (two dimensional) elements, or

N=4 for tetrahedral (three dimensional) elements.

where the integral extends over the whole surface area S of

the element,

xt is the x direction cosine of the inward normal to

the surface, and

't	 •Is the inward pressure (i.e. the pressure exerted
by the surrounding elements)

For the elements under consideration the integral of 11.7

can be substituted by summation to give

,t 77 1 t	 tA t p	 x f Af/ J

f=1,N

11.8

where

lxtf , Aft are respectively the area and the x direction

cosine of the outward normal of face f of the element.

Equating 11.6 to 11.8 results in the following equation:

Me	 777
(uit+At/2 _ u.t-At/2

) = P
't

NAt i=1,N

t	 t

717J 
lxf Af

f=1,N	 11.9



apex nodes i.e.

eMi
Me

. _
N

11.10

If the mass of the element is equally distributed to its

then the relation of type 11.9 can be rewritten as a balance

of nodal momentums:

Me	
p't:5-]	

t	 t
k,ui t+ Ati2 _ u. t-t/2 ) = ____,	 ixf Af

1
N At	 N-1 f=1,N-1

10.11

where the summation is over N-1 faces of elements meeting at

node i.

Figure 11.2 shows a patch of elements with different

pressures. The relation 11.11 can be satisfied in an

overall sense for node n by summing up the relevant

coefficients of equation 11.11 written at node n, for all

elements surrounding this node:

Mp.t
2 (unttAt1'2 _ unt-bt 1 2 ) = 7 ( 3	 7 ift Aft)

At	 j=1,E (N-1) f=1,N-1
11.12

where
1

Mn = - 7 Mi e is the mass of node n (contributed by
N j=1,E

all surrounding elements j = 1,E), and

.t •p] Is the current pressure in the elements.

For an isolated triangular element (two dimensional case),

with internal pressure p, the nodal forces are shown in

figure 11.3. By examining one of the nodes, for example nr

3 (see figure 11.4) it can be concluded that the sum of two

pA2	pAl	 pA3
vectors	 and	 give a vector --- of direction

2	 2	 2



perpendicular to side A 3 . For nodes 1 and 2 a similar

procedure can be conducted. The resulting forces shown in

figure 11.4 are equivalent to those shown in figure 11.3.

Although the proof was only given for a two dimensional

case, 3D elements will yield similar resultant nodal forces.

Equation 11.12 may thus be alternatively expressed as:

mn	 t+At/2 _ u t-At/2 ) = _ 77j pj li	
3

un
t t A.

( 11.13--	 n
At	 j=1,E	 J N-1

where

l i , Ai now refer only to the external face (not containing

n) of elements j = 1,E surrounding node n.

Equation 11.13 may be regarded more directly as the external

force component on the mass of air surrounding node n, as

shown in figure 11.5. The external forces- p f Ai/2 will be
.- —	 /

the same, no matter what the surface	 /	 ., _, .., (see

figure 11.5) presumed to contain Mn is, provided the surface

is regarded as passing through the mid-side points. Hence,

although simplex elements and linear shape function are

used, the resulting forces pi A1/2 are the same as with more

complex elements and functions.

Equation 11.13 was derived for the internal air modelling of

a pneumatic structure, but its application can be extended

to external air modelling. For the purpose of doing so the

external air should be divided into elements as far as any

changes in pressure are likely to occur.

t
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11.3
	

Iteration scheme for explicit dynamic analysis of

pneumatic structures with internal air modelling

Numerical iteration scheme for air modelling

The recurrence equation for the velocity, u nx , of node n

common to E air elements, in central finite difference form,

at time step t + At/2 is similar to that for explicit

dynamic analysis of the membrane structure alone (see

chapter 9, equation 9.3).

At
u t+At/2 =	 Rt	 + u t-At/2	 11.14n	 nx	 n

Mn

(and at time 4t/2 to start the iteration, and satisfy un = 0

At o
2 =at t = 0): un t/	 *5 -- Rxn	 11.15

M n

Hence, the new coordinate of node n is:

11.16Xn
t+At = Xnt + At • unt+At

Similar equations can be written for the y and z directions

and solved for time t+at at all nodes to give the current

geometry of the system. Hence, the new volumes Vot+At for

all elements can be determined, and the pressures are

obtained from equation 11.3. For an element j the pressure

at time t+at is calculated as

V t
t+At _ n t 	 o  kPi

(Vot+At)

Then the forces are

Rxn
t+tt. =

- 	 	 pi	
A. t+At

t+At 1 t+At 3 
j=1,E	 N-1

11.17

11.18

The integration proceeds through (11.14 to 11.18) for each

time step.



11.19

For numerical stability 6,t < At crit, and the critical time

for the whole system is found as the smallest of At crit for

any node:

At	 • =crit
S.

where

Si , stiffness of node i is defined for a solid elastic

material in terms of moduli of elasticity.

Considering acubic elementaxbxc, as shown in figure

11.6 made of isotropic material, the elastic stiffness of

node n of the element in the x direction, according to the

Gershgorim bound [13], can be found to be:

b a	 E	 a b
Sxn = ( Sxx Sxy Sxz)	

2 / c -	
0

2	
11.2

(1- 2v )	 4c

Since fluids (air can be classified as a type of fluid) do

not possess rigidity of form, in place of the modulus of

elasticity, E, another quantity, bulk modulus, K, is

defined.

If an additional 'hydrostatic' pressure dp (i.e. equal in

all directions), acting on a body of initial volume Vo

causes a reduction or increase in volume equal numerically

to dVo , then the bulk modulus, K, is defined as:

dp
K =

	

	 11.21
dVo/V0

where the negative sign is used when dp causes reduction in

volume.

An expression for the bulk modulus of a gas may be derived



Sxn
a b

3K —
4c

11.26

assuming an isentropic process by writing the general form

of equation 11.21 in terms of y or p (specific density or

gravity).	 As the relative increases of or are exactly

equal to the relative decrease of volume [193]:

dp	 dp
K=	 11.22

dy/y	 ci/P/P

When this equation is solved simultaneously with the

differential form of equation 11.1, the result is found to

be [193]:

K = k p	 11.23

Equation 10.22 indicates that the bulk modulus for gases is

not constant but increases with increasing pressure.

The relation between a bulk modulus and modulus of

elasticity can be determined by substituting into equation

11.21 the following equation [188]:

dV0
= Ex + Cy + Ez	 11.24

Vo

(this states that the volumetric strain is equal to the sum

of the linear strain components). The relationship between

the two moduli is found to be:

E = 2K (1-2v)	 11.25

But substituting equation 11.22 into the last form of

equation 11.20, the elastic stiffness of node n of the

cubicoidal air element, in direction x, can be defined in

terms of the bulk modulus as:

or for the isentropic process in terms of pressure (equation



11.23 is substituted into equation 11.26):

a b
Sxn = 3kP 

/7;
-
	 11.27

The critical time step for the iteration scheme for air

modelling can be calculated from equations 11.19 and 11.27

(or equation 11.27 amended to account for a different shape

of air element).

The procedure for internal air modelling outlined in 11.2

allows for compressibility, hence the pressure is not

constant. The condition for numerical stability based on

pressure and geometry at t = 0 may not be adequate and,

therefore, choosing a time step as small as 50% of the

critical value may be necessary.

11.3.2	 Numerical iteration scheme for coupled analysis

The numerical iteration scheme for air modelling was

formulated in such a way that it can be easily coupled with

the explicit dynamic analysis scheme described in chapter 9.

The additional alterations to the flow chart presented in

9.2.2 comprise:

1. data file to be increased for information concerning

internal (and external) air divisions, e.g: nodal

coordinates and number of nodes for each air element.

2. before the main loop begins the following steps must be

included:

a)	 setting pressure in all elements to known values:

atmospheric pressure for-external elements and



defined pressure for internal elements.

b) defining an array giving the number of air

elements surrounding any node

C)	 finding lumped nodal masses (or additional masses

for membrane nodes) due to the air elements.

d) defining an array to contain the continuously

updated vectors normal to all faces of every

element in an outwards direction.

	

3.	 in the main loop

a) calculation of pressures based on equation 11.17

for all air elements

b) finding nodal forces due to element air pressure

from equation 11.18

C) calculations of current nodal velocities and

coordinates are extended to all nodes (those

modelling both the membrane and the air)

	

4.	 in the secondary loop

a)	 calculations of outward normal vectors to all

faces of every element.



z

Figure 11.6

Y

n

.1, a 1



11.4	 Numerical simulation of an impulsively unloaded

pneumatic dome

The numerical scheme presented in chapter 11.3 was

introduced by Barnes [14] to deal with a two dimensional

case, an inflated very long cylindrical membrane structure

subject to external load. The modelling of internal and

external air, the number of nodes and air elements, the

amount of computing involved and the results obtained,

suggested that this method could be suitable for three
dimensional explicit dynamic analysis of isotropic membranes

subject to suddenly lifted loads. The theoretical trace of

deflection at the central point was not, however, compared

with an experimental trace [14].

In such circumstances it seemed to be prudent to investigate

the numerical method including both structural (membrane)

and fluid (air) modelling for a relatively simple case for

which experimental results could be easily obtained. The

dynamic tests on a lightweight polythene pneumatic dome,

described in chapter 10.3, considered the following cases:

Test 1:

Impulsively centrally raised load. This is the easiest 3D

case (full axisymmetry) and can be used to establish the

number of air elements required, the accuracy obtainable and

as a check for convergence.

Test 2:

Suddenly lifted asymmetric load better illustrating an

internal air movement. This can be employed as an example



for explicit dynamic analysis of the dome subjected to

arbitrary dynamic loading.

In both tests, the loads were lifted to prevent any

influence of local high mass on dynamic response, as happens

when load is placed on a dome.

The centrally unloaded dome, as an easier case, will be

considered first. The membrane idealization, geometry and

stresses, as a starting point for the analysis, were

discussed in chapter 9.2.2 in the context of explicit

dynamic analysis of the dome without including surrounding

air. Certain facts will be recalled, briefly:

1. only a le 'cheese slice' was used to model the
membrane, as shown in figure 9.10a of chapter 9.

2. the initially flat membrane was uniformly prestressed

and then inflated. Following central loading, the

numerical statical analysis yielded the stresses and

geometry (which compared well with the experimental

results)

3. response of the dome to suddenly raising the central

load was modelled numerically disregarding the

surrounding air. The theoretical response for the

vertical movement of node 3 differed greatly when

compared with the experimental trace.

As a first approach (case 1) to modelling the air, the

external and internal air was divided into tetrahedral

elements as shown in figure 11.7. The curve A-A, a sector



of a circle, representing the inflated state of the dome,

was used as a guide. The radius of the curve C-C was chosen

in such a way that distances OA and AC at y = 0 and x = 0

were equal. The points lying along the line z = 0 and y =

0, and along curve C-C at y = 0 were found as the

intersections of lines passing through the centre of the

circle (obtained from A-A) and the nodal points of the

inflated membrane (lying along A-A). Remaining lines being

sides of elements, were chosen to give the most uniform

division. Thus obtained, the division resulted in 390

tetrahedral elements: 162 to model the internal air and 228

for the external air. It is worth noting that each triangle

in figure 11.7b, except the first vertical row, represents

three tetrahedrals. In the first row each of two triangles

results in three 3-dimensional elements.

The critical time in this coupled structure - fluid analysis

is chosen as the smallest for any node taking into account

membrane and air stiffnesses. It was found that the pure

air elements gave the lowest critical time. As indicated in

11.3.1 the stiffness of a gas element is not constant but

depends upon its size and current pressure, therefore,

calculations based on a starting geometry and pressure

cannot give the precise value of time step for numerical

analysis. In such circumstances it seems adequate to base

calculation of the stability condition on a single element

having the lowest tcr . In the type of division shown in

figure 11.7, the internal elements in the first row have the

smallest A cr •t	 The time interval used for the numerical



integration was 70% of the critical value, i.e. .00002 sec.

For the centrally unloaded dome, the most efficient

computational procedure was to perform the operation of the

secondary loop (updating stiffness matrices, resetting creep

strains, initial stresses and unit vectors normal to the

element sides) at every 20 time interval.

The results for the vertical deflection trace at node 3 are

shown in figure 11.11. Computing time was longer than

expected. When running on a Gould PN 6000 the real time

used by the computer to obtain a trace from t = 0 to t = 0.5

sec was approximately 4 hours and 30 minutes. The computer,

however, is a multi user machine of low power.

Where the theoretical results obtained from the analysis

including air elements were compared with those derived from

the analysis of chapter 9 (where surrounding air was

disregarded), and also with the experimental results of

chapter 10, the following conclusions were drawn:

1. there is improvement in the theoretical prediction of

frequency (see figure 11.12)

2. deflections became very small (see figure 11.12)

The most obvious remedy for the discrepancy between

experimental results and theoretical with air modelling

seemed to be to increase the number of air elements. The

second effect concerning the small value of deflections

could have been explained by 'piston' behaviour of air

elements. When a Lagrangian approach is used in fluid



mechanics and air is modelled by elements which are too

large, each of the elements acts like a small piston, in

which high pressure limits the nodal movements.

During the analysis the pressures in elements were monitored

and it was noticed that in external elements pressure did

not differ greatly from atmospheric. A second computer run

was carried out, but this time only with internal air

modelling. The resulting trace was very similar to that

obtained with full modelling; the difference not being

discernible in the scale of figure 11.11. In this run only

162 air elements were used and the computer time was reduced

by a factor of two. This was encouraging and for further

primary investigation only internal air modelling was

employed.

In order to investigate the influence of air element size on

response and to check for convergence three tests with

different element sizes were run. As the case is

axisymmetric, divisions in only two directions are

important. Referring to figure 11.7, the important

directions are along the axis and in the radial direction.

The three types of membrane and internal air modelling: div

1, div 2 and div 3 are presented in figures 11.8, 11.9 and

11.10 respectively.

The first kind of idealization was chosen to give the least

practical number of elements whilst allowing for a proper

representation of the way the central load is applied (also

to keep as a node, the point at which the experimental trace



was observed). This resulted in having two different sizes

of elements: tetrahedral in the first two rows from the

middle and two membrane triangles being approximately two

times smaller than the remaining larger elements (see figure

11.8b). This type of division may be justified by an

analogy with solid body stress analysis where areas of

higher stresses require finer divisions. Here the central

area, where the largest movement takes place, can have a

higher pressure for a short period of time before dispersing

the pressure to other parts of the dome.

In the second type of division (figure 11.9) elements were

half the size of those in div 1; and in the third type

(figure 11.10) elements are one third of the basic first

division.

For each of the three idealizations, separate numerical

static analyses had to be performed to give starting

geometry and stresses. The numerically predicted

deflections corresponding to the measured experimental

values at node 3 for each of the idealizations are plotted

in figure 11.11. The frequencies and the max deflections

obtained from both the test and the theoretical analyses are

tabulated and given in figure 11.12. In order to check for

convergence the theoretical maximum deflections and

frequencies from the three types of idealization are plotted

in figure 11.14 against the size of elements, assuming unity

for the first type of division.



From the comparison of theoretical and experimental results

the following conclusions can be drawn:

1. The shape of the deflection trace from case 1 (first

approach to model internal air) resembles more closely

the experimental trace than the remaining three

divisions. When a non-uniform division is used there

is a noticeable presence of higher frequencies. A

uniform division seems to be better suited for air

modelling when employed in this type of analysis.

2. Maximum dynamic deflections from three types of

division do not converge and frequencies tend to

unrealistic values.

The trace of deflection obtained using div 1 differs

greatly both in shape and in the range of values when

compared with the experimental trace. This would imply

that the size of elements is too large and therefore

this type of division is clearly not suitable for air

modelling. From the remaining two sets of results it

is impossible to assess convergence.

3. There is an observable improvement in the theoretical

prediction of frequency when internal air is included

in the analysis.

4. The maximum deflection predicted when 631 air elements

were used (see figure 11.12 and 11.13) is still more

than 3.5 times smaller than the experimental value.

The dynamic analysis without air elements gives maximum

deflections closer to the experimental: approximately

40% higher.



5. While increasing the number of air elements improves

both frequency and maximum deflection, the real

computer time grows enormously (see figure 11.13) due

to an increase in the number of elements together with

a reduction in their size and hence the time step for

stability. As frequencies are lower, a trace of

deflection has to be followed for a longer time.

No attempts have been made to refine the mesh to further

investigate convergence, as the real computing time on a

Gould 6000 or 9000 would have been counted by days.

This approach to the modelling of internal air-surges was

intended to be employed in the case of arbitrary loading.

In this case, however, the number of elements would have to

be at least 18 times larger (for half dome modelling) than

used for 10 . 'cheese slice'. This illustrates quite clearly

that at the present stage this method is not suitable for

any practical purpose.

An alternative approach, probably more suitable for this

kind of problem, may be to employ a Eulerian formulation for

the problem; where nodes are used as stationary points to

observe the movement of air through elements, as opposed to

a Lagrangian approach in which deformable air elements are

employed.

Unfortunately, if the large motions of the boundary membrane

are to be accounted for, some of the elements must deform

during a coupled analysis.



>c

Figure 11.7 Air and membrane modelling, case 1
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max. dynamic
deflection (cm)

frequency
cycles/sec

experimental results 5.8 2.5

theoretical, only 8.4 16.0
membrane modelling

theoretical, case 1 .25 9.1

membrane div	 1 .034 28.8

and internal div	 2 .28 8.75

air modelling div	 3 1.6 3.8

Figure 11.12

Type of
division

Number of
air

elements

time step
used

Gould PN 6000
real computing
time to obtain

def from 0 to .5 sec

div 1 61 .00006 25 min

div 2 271 .00003 4 hr 15 min

div 3 631 .00001 27 hr 40 min

Figure 11.13
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CHAPTER 12

Added mass effect on dynamic response of pneumatic

structures

Contents:

In this chapter the explicit dynamic analysis of chapter 9

is extended to account for the added mass effects of the

surrounding air in shallow pneumatic structures. The

concept of added mass, with emphasis on the mathematical

representation under a potential incompressible flow

approximation, is reviewed. The numerical modelling of the

attached air by means of discrete sources is discussed in

the contexts of a flat diaphragm embedded in a rigid

surface, and a shallow pneumatic structure. An iteration

scheme for the approximate fluid-structure explicit dynamic

analysis is given, and examined with direct reference to the

centrally unloaded lightweight pneumatic dome. The results

for the dome show a great improvement in terms of

frequencies with only a small increase in computing time

compared with the numerical scheme of chapter 9.

12.1 Introduction: concept of added mass

In chapter 11 attempts were made to model the influence of

surrounding air on the dynamic response of air-supported

structures. In the analysis, internal air was idealized by

tetrahedral elements. The method discussed in the previous

chapter required a very fine mesh, hence in the explicit

dynamic solution a very small time step was necessary to

ensure a stable process. These two factors i.e. the great

number of elements and the very'small time step made the



method currently impractical in terms of the computing time

involved.

An alternative approach belonging to the second

classification group given in 11.1 will be discussed herein.

Comparing the experimental response for the vertical

deflection of node 3 in the impulsively centrally unloaded

dome with the theoretical trace obtained from the analysis

(disregarding surrounding air except internal 	 air

stiffening) it can be observed that:

1. the theoretical maximum dynamic deflection is about

45% greater than the experimental value.

2. there are small discrepancies in the shape of the

response and the long term quasi-static deflections.

3. the theoretically predicted frequency is 5.5 times

higher than the experimental value.

The last remark illustrates that the greatest discrepancy

results from omitting the influence of surrounding air. As

the number of cycles per unit of time can be viewed as

depending mainly upon mass and stiffness, these two factors

need closer examination.

The stiffness of the membrane was defined experimentally as

described in chapter 10. Due to some approximation that

Young's modulus remains constant for a certain range of

stresses and that Poisson's ratio for dynamic response is

the same as for static, small discrepancies may result.

They are, however, not expected to be greater than 20-30%



(see figure 10.19 and 10.20 showing the central point

deflection trace for the centrally loaded orthotropic dome).

The second factor influencing frequency, namely mass, has

been discussed in various publications [34, 99, 100, 204].

It has been concluded that for lightweight structures it is

essential that the mass of a structure here a membrane

should be increased by the mass of the attached air.

According to Jensen [99, 100] the additional terms in the

mass matrix for tension structures can be approximately

calculated as:

m" =Cm P a a
3	12.1

where

Pa is air density,

a is a typical dimension of the structure, for a dome

a can be assumed to be equal to its radius; and

Cm = 2.7 - 7.5

For the isotropic lightweight membrane dome, as described in

chapter 10.3, which had a radius of 2.36 m, the additional

mass from 12.1 will be in the range 43.5 kg to 120.9 kg,

which is 44 to 121 times the mass of membrane (mass of

membrane is .997 kg). Clearly, in this case, the added mass

effect is large. This effect will be increased with size of

roof and decreased when a heavier membrane is used. From a

very simple investigation (assuming a flat two-dimensional

membrane) Irwin et al [97] found that for the Montreal

Olympic Stadium, which employed a 180 m x 120 m elliptical

membrane roof, the added mass due to vibrating air was

approximately 37 times larger thin the membrane mass itself.



The above illustrates the importance of including the mass

of surrounding air in the dynamic analysis of pneumatic

structures. The surrounding air, and especially the

enclosed air, should be treated as an intrinsic part of the

structure. As methods where internal and external air are

modelled by elements may require a great amount of computer

time, a simpler approach should be devised where each aspect

may be modelled separately and then coupled together in

order to obtain the dynamic response. There are at least•

two main factors which should be taken into account when

surrounding air is considered:

1. The stiffening effect of the enclosed air (in volume

displacement modes) which, when leakage is negligible,

may reduce the maximum dynamic deflection by a factor

of 4 (this would depend mainly on internal pressure and

an an enclosed volume); and

2. added mass; the importance of which is discussed above.

The first factor which influences both dynamic and static

responses was examined, in the manner suggested by Barnes,

in chapters 7 and 8. The latter will be discussed in more

detail in the present chapter.

The concept of added mass is a familiar one. For example,

when a light paddle is dipped into still water and given a

rapid acceleration, the resistance to acceleration of the

paddle is greatly increased by the water around it. In a

similar manner, the force required to accelerate any body

immersed in a fluid is greater than it would be in a vacuum.



The additional force is of course required to accelerate

portions of the surrounding fluid, but it has been found

useful to consider it to be due to an imagined or effective

increase in the mass of the body itself, called added mass

(or additional, induced, hydrodynamic or aerodynamic mass).

The term virtual or apparent mass, as sometimes referred to,

is usually taken to include the mass of the body itself as

well as the added mass.

The added mass depends on the shape of the body, the nature

of its motion, and the density of the fluid. From various

experiments, and later by mathematical modelling [26], it

has been found that this added mass for a sphere is

approximately equal to one half of the mass of the fluid

displaced by the body.

Most calculations of added mass have been made using ideal

or potential flow theory, neglecting the effects of friction

and of compressibility. The usefulness and applicability of

such an approximate approach was illustrated in the context

of static wind loading on a rigid shell in chapter 5. For

the sphere the added mass calculated under the assumption of

potential flow is then exactly one half of the mass of the

displaced fluid. In many cases, however, the flow near the

body in a real fluid will not be laminar with an attached

thin boundary layer as assumed in potential flow, but highly

turbulent, and given sufficient time, vortices will be

formed and cast off into a turbulent wake. Fortunately

ideal fluid theory can still be 	 to give a



reasonably accurate description of what happens during the

initial stages of accelerated motion, and also for small

amplitude oscillating motion, before the vortices have had

time to form [35].

The usual method for computing added mass in an ideal fluid

is to calculate the kinetic energy in an infinite volume at

rest at infinity, due to the uniform motion through it of

the body in question [147]. The kinetic energy of the

fluid, KEY , is given by [147]:

KEF = jr p q2 dT	 12.2

taken throughout the volume VI occupied by the fluid, where

is the fluid density, and

q is the fluid velocity.

When the motion is irrotational,

q = - VO	 12.3

(0 is the velocity potential), and therefore by Green's

theorem, if 0 is single valued and since D 2 0 = 0, [147]

then:
00

KEF =	 f (GO) (70) di = -hp	 ds	 12.4
V	 S on

where R.H. integral is taken over the bounding surface of

the liquid and dn denotes an element or normal directed into

the liquid.

This result has a simple physical interpretation. Since the

actual motion could be started from rest by the application

of an impulsive pressure p0, and since - D O/ on is the

velocity of the liquid normal to the boundary,

PO 5 s *	 30/3n) is the work done by the impulsive
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mb	 KEB

here mb is the mass of the body.

madd KEF
C =

arrl
12.6

pressure on the element Os in accordance with the following

dynamic theorem:

The work done by an impulse is equal to the product of the

impulse and half the sum of the components in the direction

of the impulse of the initial and final velocities of the

point at which it is applied. The surface integral

therefore represents the work done by the impulsive pressure

in starting the motion from rest.

The added mass may be viewed [97, 35] as a mass of air,

attached to a body, with the kinetic energy given by

equation 12.4. Therefore, the fluid kinetic energy May be

expressed also as:

KEF = wm2 X madd = h KEB x Cam	 12.5

where

wm is a typical or representative velocity of the body,

madd is the added mass,

KEB is the kinetic energy of the body,

Cam is the added mass coefficient, and

The ratio of kinetic energies: fluid to body, is a measure

of the ratio of the added mass of the attached air to the

membrane total mass.



12.2	 Numerical scheme to account for added mass

12.2.1	 General assumptions

The problem of added mass effects on the dynamic response of

air-supported structures will be discussed under the

assumption of potential flow of an irrotational inviscid and

incompressible fluid. The implications of these

simplifications and the governing equations were given in

chapter 5. Here, only the most important facts will be

recalled in order to emphasise the investigation of this

chapter.

The main advantage of potential flow theory is that velocity

may be determined independently of the pressure, and the

problem of fluid mechanics is reduced to solving the Laplace

equation:

V2 0 = 0
	

12.7

subject to the boundary conditions on a body [90]

V•	 = F
	

12.8

where

V is the velocity field

is the unit outward vector on the body S, and

F is a known function expressing normal velocity of a body

in terms of a position on the body; and conditions off the

body must also be satisfied.

The velocity field V is expressed as the sum of two

velocities: velocity of the onset flow, Voo , and the

disturbance velocity u i.e.

V = Vo„ +i.	 12.9



The velocity u is assumed to be irrotational and may be

expressed as:

u = -grad 0	 12.10

If the approaching velocity Vor, = 0, then the boundary

condition on a body, equation 12.8, reduces to:

00

-- Is = F
	

12.11
on

Under the general assumptions outlined above(for details see

chapter 5, [116] or [147]) Green's third identity shows that

any solution of equation 12.7 may be expressed as the

perturbation potential induced by a combination of source

singularities of strength 6 and doublet singularities of

strength g distributed on the boundary of a body. Further,

it can be proven (chapter 5, [116] or [147]) . that the source

and doublet strength per unit area are equal respectively to

differences across the boundaries in: the components of the

local fluid velocity normal to the surfaces and the local

velocity potential.

Added mass of a diaphragm embedded in a rigid

bounding surface

Consider a diaphragm rectangular in plan, a x b, embedded in

a rigid surface so that during motion there is no mixing of

air between the top and bottom layers. Assume also that the

diaphragm undergoes only small normal displacement out of

its plane and that the normal velocity distribution is

known.



For an infinitesimally thin body, like the membrane under

consideration, only one type of singularity is required to

model its movement [116]. The decision on whether doublets

or sources are to be employed should be based on the

boundary conditions on and off the body. Continuity in

normal velocity across the membrane suggests using doublets

but the requirements of not mixing air between the top and

bottom layers, indicates that sources will be better suited.

For the purpose of calculating the kinetic energy, which

depends on the square of velocities, the direction of normal

velocity is irrelevant. Hence, efforts should be

concentrated on modelling its value both on and off the

body. In such circumstances, in order to find the added

mass, the movement of the diaphragm will be better

represented by source distributions along the membrane in

the plane z = 0 as shown in figure 12.1.

The diagram of figure 12.1c can be viewed as representing a

double diaphragm; the upper sheet models the top surface of

the real membrane (of figure 12.1b) where the attached air

moves with the same velocity as the membrane; and the lower

sheet approximates the bottom side of the real membrane. In

the model with source distributions the underside air moves

in the opposite direction to the upper side which is in the

reverse direction as in a real model. But, as explained

earlier, for the purpose of solving this particular problem

in the potential incompressible flow regime, this is not of

any significant importance.



Sources may be distributed in a variety of different ways.

For the purposes of numerical analysis the most obvious

approach, similar to that used in chapter 5 with respect to

vortices, would be to divide a diaphragm into rectangular

elements with a separate singularity on each of the panels.

Following Campbell's approach [35], a single source is

placed in the centre of each panel.

In three-dimensional space, the potential 0 at a point (x,

y, z) due to a source Q at the origin is [116]:

0 =	 where r2 = x2 + y2 + z2
	

12.12
4 TEr

and the velocity w in the Z direction is [116]:

3 0 0
w = _	 =	 12.13

zz	 4m (x2 + y2 + z2 ) 3/2

For a source in the plane z = 0, the flow out of this plane

vanishes everywhere except at the location of Q source.

Taken over a small circle of radius E , centred at the

origin, the upward average velocity, Way is [ 35

way =

6
1	 Q lim	 z
	 i 2TuDdca =

TE E
2	 4Th z->0+	 I (6)

2 + z 2 ) 3/2
0

1 Q lim	 -z
	 1 Q

12.14
n+ne2 2 z->u	 (6)2 + z 2 )

—
TEE 2 2

0

For z-> 0+ , the value of wav has the opposite sign since

half of the flux from the source flows out of the z plane,

and half flows downward. Similarly, for a source Q centred

in a rectangular element k ( s x h, (see figure 12.1a)) in

the plane z:



1	 Qk
wavk = -- • --

sh	 2
12.15

In order to calculate the kinetic energy of the fluid

(equation 12.4), an additional quantity, the average

potential over one elemental area due to a source located at

the centre of another, is needed.

The average potential over the area of an element i due to a

source at x '. y . can be calculated as [35]:3 	 3
xF yF

1	 Qj	 dy
(0av ) ij =	

r

I \/ 2	 2	(sh)i 4TE	 x + y
0	 0

dx =

xF
1

'2	
+ N4c2 + y 2	1

=	 1 f in ( 	 ) dx,	— Q i Cij

	

(sh) i 411	 (sh)i
0

12.16

The integral of 12.16 can be calculated numerically.

The total average potential of element, i, is:

1
( 13av ) i =	 Q; ci;

(sh)i
j=1

12.17

where n is the number of element, and Q j is obtained from

Qj = 2 x wavj x (sh) j	12.18

To calculate the added mass coefficient (equation 12.6) the

ratio of the kinetic energy of the fluid to that of the body

is required. The fundamental equation of fluid kinetic

energy, equation 12.4, may be transformed into [35]:

KEF = Pa I f Os ws dx dy	 12.19

S z+
00

Since 0 and -- are both symmetrical With respect to z for
Dn



the source distribution, instead of integration over both

sides (as in equation 12.4) the summation is limited to one

side and the result is multiplied by two. When the number

of elements, n, is adequately large the integration can be

substituted by summation and equation 12.19 take the form:

KEF = pa >-] (( 0av)i (wav)i (sh)i)	 12.20
i=1

Similarly the kinetic energy of the diaphragm can be

expressed as:

where

KEb = h (wav)i2 X(Sh)i) x th 12.21
i=1

or = 1/2 wm2 x Mm

pd is the density of the diaphragm material,

th is the diaphragm thickness,

wm is a typical or representative velocity of the membrane

and

Mm is the total mass of the membrane.

Campbell in [35] investigated the discrete source

distribution method for various velocities; in each case

convergence being obtained. In order to gain more

confidence the three-dimensional results with a/b = 100

(length to width of diaphragms) were extrapolated to the

limit, n ->00, and compared with two-dimensional theoretical

values. The numerical results were all accurate to three

significant figures. When the discrete source method

results were compared for different length to width ratios

against the Chebyshev polynomial method, the results were

all about one percent lower.
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12.2.3	 Modelling the shallow pneumatic dome

The discrete sources approach discussed in 12.2.2, in the

context of a diaphragm embedded in a rigid surface, seems to

be particularly well suited to deal with added mass effects

for the dynamic response of a shallow pneumatic dome.

The isotropic lightweight centrally unloaded dome, described

in chapter 10 and employed as an example for internal air

modelling in chapter 11, is a shallow structure; the ratio

of maximum dynamic height to span is less than 1:20. The

normal displacements, experimental or theoretical are also

small when compared with the dome diameter. Therefore, it

seems to be reasonable to assume that the dome is flat for

the purpose of calculating average potential (in equation

12.12 when x >> z and y >> z, r2 can be assumed to be

approximately equal to x2 + y2).

The solution of Laplace's equation will be obtained by

direct application of Green's third identity for a

distribution of sources subject to the following boundary

conditions:

1. on the body, defined by normal velocities on the dome,

and

2. off the body; condition of no mixing of the air between

the two sides of the membrane (see figure 12.3b).

The second condition is self-satisfied by choosing the right

type of singularities (see figure 12.3c).

Taking advantage of full axisymmetry, the dome is divided

into trapezoidal and triangular elements as shown in figure



12.3a and sources are positioned in the centre of each

element. The kinetic energies of the fluid and membrane are

given by equations 12.20 and 12.21 in terms of average

potential velocities, areas, and fluid and membrane

densities. The approach discussed here is intended to be

coupled with the explicit dynamic analysis of chapter 9.

During the analysis the nodal coordinates and velocities are

known at the end of each time step, t, and at t=t-At/2

respectively. Due to the fact that the division of the dame

is uniform and that the velocities and hence the strength of

sources is a function of radius, some of the calculations,

such as determining velocities at element centres, are

performed only for elements in a single slice of the dome

(see shadow area of figure 12.3a). 	 For each of these

panels,thearea.and the centre in the x, y plane areAI

found. The velocities w avi at element centres are then

obtained from the normal nodal velocities assuming a linear

variation. It should be noted that velocities in the

explicit dynamic analysis are calculated without the

assumption that the dome is shallow.

By applying equation 12.15 the strength of the source at

panel j is:

Qj = wavj 	 2.	 Ai
	 12.22

The average potential over an area of element i, due to a

source at panel j is calculated as follows (see figure

12.3a):

dx =

Fi xtana
Qj	 dy

(Pavij	
TE Ai	 2f	 «x-x) 2 	 (Y-y) 2 )½

xs -xtana



xFi
Qj	 in 

Ixtga - y 1 1 + \/x-x j ) 2 + (xtga - yj) 2
- 	 .dx

Qj
1	 12.23]

Ai

When an element j belongs to the shadow area of figure

12.3a, equation 12.23 is simplified to:

4	
f

m Ai	Ixtga + yj I + N/(x-x j ) 2 + (xtga + yj)2'
xsi

Qj
cPavij	

Ai

xFi
fin Ixtanal + Ox-x 1 ) 2 + (xtana) 21	QJ
	  dx =	 Cij

x 3	AiIx- .)

12.23a
Xsi

The coordinates of the centre of a panel lying outside the

shadow area can be obtained from the shadow area values as:

(see figure 12.3a)

xj = cos (na)	 x.'

Yi = sin (no)	 x.'3

The total average potential of element is obtained by

summing the contributions from all panels:

12.24

1
(93av ) i =	 Q. Ci'

Ai 	  3	 3
j=1

12.25

Due to axisymmetry the average potential is calculated only

for panels of the shadow area. Coefficients C ij for which j

denotes an element of COB (see figure 12.3a) section of the

circle are approximately the same as those from section,

DOA. Therefore, only one set is determined and then

multiplied by two. And finally, the kinetic energy of fluid

is found from equations 12.20 and 12.25

ns

KEF = 2	 Pair 7 (7 way; ,Aj Cij) wavi 12.26

i=1 j=1



where

ns is the number of elements in the shadow area of figure

12.3a,

and the kinetic energy of the dome is calculated from

12.21 as:	 ns

w ,1KED = II Pd 71j , avi)
2	Ai	 12.27

n=1
where Pd is the mass of the dome membrane per unit area.



a. plan

x

b.section

c.distribution of sources

Figure 12.3
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12.2.4	 Iteration scheme for explicit dynamic analysis of

the pneumatic dome with added air mass.

In general, including the calculation of added air mass in

the explicit dynamic analysis scheme should require an

Additional procedure at each time step in which, from nodal

velocities, coordinates and relative density, the mass

coefficients Cam are calculated. Then, under the assumption

that the attached air is spread uniformly on the top and

bottom surface of the dome, the coefficient Cam can be

translated into nodal masses and added to the membrane nodal

masses, mn , to give the total nodal mass, mt

mt = mn (1	 Cam ) 	.	 12.28

This approach would result in an enormous amount of

operations since the average potential over an elementary

area of any panel is calculated due to all sources by

numerical integration (see figure 12.23).

Both kinetic energies (equations 12.26 and 12.27) are

expressed directly or indirectly by two types of quantities:

the first depending purely on geometry in the x, y plane:

specifically the areas and centres of elements; and the

second depending on nodal coordinates and velocities.

The first group of parameters is calculated under the

assumption that the dome is shallow. During the dynamic

analysis of chapter 9 it was noticed that the x,

displacements (in the radial direction) are much smaller

than in the z direction, and they are almost negligible in

comparison with the overall dimensions of the dome.
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mt-At/2V- t-At/2
ix

Therefore, the quantities of the first group can be

calculated only once and based on starting geometry.

In almost all structural dynamic analyses, including the

analysis of chapter 9, the problem is formulated from the

Lagrangian, historical point of view; attention being fixed

on the structural elements and their motion. In the case

under consideration, where at each time step a new value of

additional mass is obtained, the whole scheme should be set

in such a way that the behaviour of any fluid particle is

clearly described. In order to account for the above, the

recurrence equation for velocity

At
v . t+At/2 =R t v. t-At/2
ix	 ix	 ix 12.29

will be derived from Newton's second law written in a vector

form in terms of the impulse provided by external and

internal forces, R, and the resulting change of the linear

momentum of the system:

K dt = d (m-17)
	

12.30

Equation 12.30 in central finite difference form, for any

node i in direction x at time t, is:

mt+bt/2 v . t+At/2 _ mt-At/2 v t-At/2At • =Rix	 ix	 ix 12.31

Rearranging equation 12.31 gives the recurrence equation for

mt+At/2

If a mass at t=t+at/2, m l , is greater than m2 , the mass at

t=t- At/2, equation 12.32 implies that the part of the mass

equal to m 1-m2 had zero velocity at t=t-1t/2, therefore, its

momentum at that time was zero.

velocities:
iv t+a/2 _int Rx 

ix 12.32



In the central finite difference form of an explicit dynamic

analysis, velocities are calculated at the middle of each

time step, but coordinates and forces at the end/beginning

of time steps.

Assume that at time t-it/2 the velocity of any node, i, is

known. The added mass coefficient (as the ratio of

equations 12.26 and 12.27) and hence the virtual mass

(equation 12.28) is determined from these values to be say

Then the updated velocity, V t+At / 2 , isml. found from

equation 12.32 (masses at t-At/2 and t+At/2 are the same)

taking mi to be mitt/2. Then new added :josses, m t+At/2

Aare calculated together with updated velocities vt+3t/2

This procedure would result in accumulated errors due to the

fact that the linear momentum at any time, t+A t/2, would

have two different values depending upon whether equation

12.32 is set up for A or B time step, as the masses differ

(see figure 12.4).

In order to alleviate the problem the following procedure to

be included at each step, is suggested:

1.	 At the end of the time step t to t+At, the forces R.ti

masses	 nd coordinatesses	 .t-6 t/2 velocities At/2mi	 Vi

Xi t+ Lt are known

2. In a new cycle t+At to t+2At calculate new forces

and new masses mt+t/2

3. reset coordinates to Xit

x . t x1t+6t _ at vit+At/2

and velocities to v1t-At/2 by employing equation 12.29

v1t-At/2 v. t+At/2	 R:t,Atim.t-pt/2
/

Rt+At



4. find new values for .VIt+Ati2 from equation 12.32 and

+Atthen updated coordinates Xit

5. assuming that mass at t = t+ 2 At is mt4At/2 calculate2

v. t+3At/2 from R	 +2Atrom t+At andan finally Xt1	 .

It should be noted that the above scheme may still result in

small errors due to the fact that the added mass mt+At/2 is

calculated from the original velocities Vit+Ati2 from step

1, but the actual velocities used for further analysis are

found from equations given in steps 3 and 4. The procedure,

where necessary, may be further improved by determining a

new value of added mass after step 4 and repeating the

calculations of steps 3 and 4.

The additional procedures which are to be inserted into the

explicit dynamic analysis of chapter 9 to account for added

mass of the attached air, can be summarized as follows:

1. calculate the areas, centres and potential coefficients

Cij (equation 12.23) for all elements in the shadow

area of figure 12.3a.

2. in the main loop :

a) calculate fluid and membrane kinetic energies

(equations 12.26 and 12.27), hence the added mass

coefficients (equation 12.6, and finally the total

nodal masses equation 12.28);

b) substitute the main recurrence equation for

velocities and coordinates (equations 9.3 and 9.5) by

the scheme accounting for varying masses, as given

above.
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12.3 Numerical dynamic analysis of impulsively unloaded dome

The isotropic dome impulsively centrally unloaded, as

described in chapter 10 and referred to in chapters 9 and

11, is once more used as an example for a new version of the

explicit dynamic analysis scheme. The basic difference

between the dynamic analysis of chapter 9 and the present is

that the latter accounts for added mass due to surrounding

air.

The dome under consideration is fully axisymmetric (shape of

the structural and loading pattern), hence the obvious way

of dividing the structure into building elements is along

the radial and circumferential directions. For the purpose

of structural modelling only a single 10° cheese-slice, with

suitable boundary conditions is used to represent the

membrane. Fluid dynamics aspects require account to be

taken of the whole structure as far as the influence of

sources on the average potential of a single cheese slice is

concerned. The kinetic energy ratio can however be obtained

for a single slice only. The divisions for these two

purposes can differ, although the main pattern remains the

same, as it is dictated by axisymmetry (see figures 9.10 of

chapter 9 and 12.3a). When the same angle is employed for

the division in the circumferential direction one

trapezoidal element in the fluid dynamic idealization

corresponds to two triangular elements in the structural

division. For convenience, accuracy and computer efficiency

the number of divisions in the radial direction should be

kept the same.



The explicit structural dynamic analysis is not very

sensitive to size of elements; the results for a 10° slice

with 8 and 16 double elements (except for a single first

one) do not show great differences (see figures 9.9 and 9.10

of chapter 9). The discrete source method, in which

singularities are placed in the centre of every element, and

where numerical integration is used to obtain potential

coefficients (equation 12.23), may be dependent on three

types of divisions:

1. division for purpose of numerical integration,

2. division in the circumferential direction. The number

of slices will have to be chosen with respect to the

largest element on the peripheral of the dome.

However, although the strength of sources in the

circumferential direction is constant, because of the

use of single point singularities the size of panels

should be reasonably small.

3. division in the radial direction; this seems to be of

greater importance as the source strength, following

the normal velocities, varies in this direction.

Numerical integration was performed using the simple

Trapezium rule. The number of divisions was investigated

outside the program. It has been calculated that potential

coefficients Ci for i/j can be calculated by dividing the

distance xFi to xsi (see figure 12.3a) into 12 segments (for

24 segments Cij differ by less than 1%). When i =j the most

suitable division was found to be 20 segments.



The 10° slice of the dome used for structural analysis, was

divided uniformly into:

meml - 15 triangular elements (see figure 9.10a of

chapter 9)

and

mem2 - 31 triangular elements (see figure 9.10b of

chapter 9)

For each type of structural membrane idealization and (hence

division in the radial direction), in order to obtain

triangular and trapezoidal panels for the discrete source

method, two cases for division in the circumferential

direction were considered:

angl - to give 10° slice, and

ang2 - to give 5° slice,

The program (in Fortran 77 on a Gould PN 6000) was thus run

for four different idealizations:

Type 1 - meml + angl

Type 2 - meml + ang2

Type 3 - mem2 + angl

Type 4 - mem2 + and2

Results for the vertical deflection during time (t=0 to 3

sec) of a node at a horizontal distance of .585 m from the

centre of the dome are shown in figure 12.5. Added mass

coefficients (the ratio of the added mass of attached air to

that of the membrane mass) were calculated as an average

value for the first few cycles and the frequencies obtained

from the first few oscillations are tabulated and presented

in figure 12.7.



The following conclusions can be drawn:

1. doubling the division in the circumferential direction

causes only small differences between meml and mem2.

For the first four cycles the changes in average added

mass are within 1% and discrepancies in deflections are

not visible. The smaller elements of the 5 0 slice tend

to produce a more stable solution.

2. The type of division in the radial direction has a more

profound effect on results, especially after the first

few cycles. The finer mesh produces a deflection trace

which closely resembles the experimental response, and

the solution is more stable. The differences in added

masses and frequencies between divisions type 2 and 4

based on the first cycle are 2.5%. As expected, these

differences are higher than for the circumferential

division.

3. The stability of solution is influenced by the way in

which added mass calculations are implemented into the

explicit dynamic analysis (see 12.2.4), and the size of

elements used in an idealization, especially in the

radial direction.

The theoretical trace when superimposed on the experimental

trace	 (see

frequency

chapter	 9.

figure	 12.6)	 shows	 a	 great	 improvement

when	 compared with the theoretical 	 analysis

The theoretical frequency	 obtained	 from

in

of

the

analysis of this chapter was 2.5, that based on an analysis

disregarding added mass effects (chapter 9) was 16.1, and

the experimental value was 3.7. The increase in computer



time caused by adding the procedure to account for the added

mass of the surrounding air is only 20%. The discrepancies

in the prediction of frequency are reduced from 550% to 50%.

On the other hand, those figures explain why further

refinement of the mesh in the theoretical modelling of the

dome by the method of this chapter has not been carried out,

as this would improve the frequency by order of less than

1%.

When the added masses calculated from equation 12.1 given by

Jensen [99, 100] are employed the resulting range of

frequencies for the dome is 2.4 to 1.45, which is 4% to 40%

lower than the experimental values but closer than the

theoretical values obtained in this chapter. The main

disadvantage of equation 12.1 is that it is expressed in

terms of a3 where 'a' is a dimension of the structure. For

some complex airhouses it may be rather difficult to decide

upon which dimension should be used for 'a'. The discrete

source method combined with explicit dynamic analysis is

more versatile; the added mass and the frequency can be

determined for any pneumatic shallow structure. There is no

other restriction on shape.

Bearing in mind the crudeness of the model to simulate the

air flow (potential flow, incompressibility and assuming

that the dome is shallow), the results are rather good.

Compressibility of the internal air, expressed as air

stiffening is added to the analysis separately as an overall

effect based on total volume changes. Apart from the



discrepancies already discussed quite noticeable differences

also exist between theoretically predicted and experimental

long term deflections and rates of decay.

The former seems to be mainly caused by the dynamic

properties of membrane material assumed in the theoretical

analysis. During the experiment, the dome was loaded and

then after time had elapsed during which viscous strains

took place the structure was dynamically unloaded. The

membrane dynamic properties were established during tests in

which load was suddenly released; the procedure not allowing

for accumulation of viscous strains. The crudeness of a

single Kelvin model could have been another reason. This

simple model cannot precisely represent the dynamic

behaviour of material like this polythene sheeting.

The discrepancy in the rate of decay may be explained by the

limitation of potential flow analysis which does not predict

and account for the separation of flow which takes place

after the first few cycles of vibration. Therefore, the

mass of the attached air is then overestimated by the

analysis thus causing too high level of damping.

It should be emphasised that the combined fluid structure

model presented in this chapter is only an approximation as:

1. The membrane and surrounding air are analysed

separately. The influence of air inserted into the

structural analysis at each time step is assumed to be

uniform throughout the dome and is expressed as an



increase or decrease in the internal pressure (the

difference between internal and external pressure) and

the added mass due to the attached air.

2. The "sloshing" (or momentum) effect of the internal

air, and aerodynamic damping are not accounted for.

The former factor may have a profound effect on the

response of a very large scale air-supported structure.

This aspect was especially discernible during tests on

the asymmetrically unloaded dome, for which a

theoretical prediction including added mass has not

been conducted since it was felt that disregarding air

momentum in the theoretical analysis would not lead to

meaningful results (see chapter 10).
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Figure 12.5 Theoretical deflection decay of centrally

unloaded dome
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Figure 12.6 Deflection decay of centrally unloaded dome
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CHAPTER 13

Summary, conclusions and lines of further research

This thesis has been concerned with examining problems

related to the dynamic response of shallow, long span air-

supported structures subject to wind loading. Wind loading

on pneumatic structures is a two-domain problem (fluid -

structure) with strong interactions between inertial elastic

and aerodynamic forces.

In general, engineering problems can be solved by different

approaches: by building an appropriately scaled model and

testing it, by theoretical analysis, or by a combination of

tests and analyses. For the problem under consideration, as

discussed throughout this thesis, no rigorous theoretical

analysis seems feasible at the present time; nor can wind-

tunnel tests on a scaled model properly represent all

relevant phenomena. Therefore, in this thesis attempts have

been made to define the structural response of shallow air-

supported structures to wind loading by applying approximate

numerical methods. The problem was tackled by splitting it

into two parts:

1. defining wind loading on a smoothly curved rigid

structure by an approximate method (chapters 5 and 6)

and

2. predicting the dynamic response of air-supported domes

due to suddenly applied loads of known value (chapters

8 to 12).

Finally, it had been intended to couple the two parts by

including a theoretical prediction of wind loading in the

explicit dynamic analysis scheme for pneumatic structures.



In chapter 5, under the simplifying assumptions of three

dimensional steady potential flow of air as an

incompressible medium, the theoretical pressure coefficient

distributions on an open sided shallow shell roof were

obtained. Three versions of the vortex-lattice method

differing in singularity distributions were investigated and

compared against the experimental wind tunnel test results

of chapter 6. The modified Hedman method with horse-shoe

vortices in the plane z = 0, and boundary conditions of

tangential flow applied on the body of the shell, yielded

the best results.

The wind tunnel tests described in chapter 6 were conducted

on a thin, rigid eliptic paraboloid shell subject to two

flow conditions:

a) in a uniform flow, and

b) in the thick turbulent boundary layer simulating a

terrain covered uniformly by small obstacles

representing a residential suburb, small town or

woodlands.

The theoretical results predicted fairly well the mean

pressure distribution on the shell in uniform flow, except

on the rearmost part of the model, where separation

occurred. In the case of the turbulent boundary layer flow,

discrepancies in mean pressure coefficient distributions

were of the same order as for uniform flow. However, as the

turbulent boundary layer is a much more complicated

phenomenon than the theoretical description of potential



flow the above conclusions ( for turbulent flow) cannot be

generalised without further work.

The vortex-lattice method is very simple, can be applied to

almost any shape of structure, and does not require a great

number of panels. It is also not very sensitive to the

pattern of panels chosen to represent the surface, except

that panels behind each other should be in streamwise

columns. Therefore, the method can be easily applied to any

fluid-structure iteraction scheme either static of quasi-

dynamic. In chapter 6 it has been shown, by comparing

theoretically obtained pressure coefficient •distributions

with experimental results, that the greatest discrepancy

occurs in the rearmost area. In air-supported houses this

part of the structure is very near to a support. Therefore,

it is reasonable to expect that, if the method based on

potential flow solution is applied to define the static or

dynamic response of air-supported structures, the resulting

overall shape and membrane stresses are less likely to be

affected by potential flow limitations (lack of separation)

than inaccurate external pressure distributions.

One of the main weaknesses of the vortex-lattice method, its

incapability of predicting the point (line in 3D) of

separation and consequent sudden drop in pressure, is in

some ways alleviated for the type of air-houses under

consideration by their shape. In large shallow pneumatic

structures the separation of flow is much further downstream

than in high rise domes. Therefore, in spite of its



limitations, the vortex-lattice method may allow meaningful

values of pressure coefficients to be obtained for large

areas of shallow smoothly curved structures.

The modified Hedman vortex-lattice method was based on a

distribution of singularities in the plane z = 0 together

with the application of tangential boundary conditions on

the surface of the body. Some improvements could have been

obtained by more closely modelling the surface of the

structure, for example by means of flat or curved panels

with double/vortex distributions of varying strength.

However, some of these methods may lead to ill-conditioning;

as was the case in chapter 5, where the shell was modelled

by means of flat panels with quadrilateral vortex-rings of

constant strength.

Methods employing more sophisticated element modelling with

distributions of singularities of varying strength result in

additional mathematical operations. When these are applied

to shallow, long span structures it is not likely that a

significant improvement in the results can be achieved. A

closer modelling could have been justified for high rise

domes. On the other hand, for this type of structure,

separation of flow may occur much earlier than in shallow

structures, which would make the application of potential

flow methods unsuitable.

Improvements in the results, especially for turbulent

atmospheric boundary layer flow, are likely to be obtained

by more accurate modelling of the approaching flow.



Attempts in this direction have been made by Newman and

Goland and the results are presented in reference [155] in

which the two dimensional turbulent boundary layer was

simulated by an inviscid flow of uniform vorticity.

In the lower part of the atmospheric boundary layer, where

most structures are situated, the air flow is turbulent and

approximating it by potential flow may lead in many cases to

great discrepancies. The situations most likely to cause

these problems	 are those where bluff bodies or high rise

domes are	 situated in centres of large	 cities or other

terrains with high obstacles; they are outside the scope of

this thesis. Shallow, long span air-supported structures,

which are often sited in rather suburban environments may be

less prone to extreme turbulence. However, the influence of

turbulence or flow separation on their structural response

to wind loading should not be disregarded.

In the Appendix to chapter 5 a real flow solution based on

the 'SIMPLE' algorithm was examined for a numerical example.

As a first approach an open sided thin shell of infinitely

long parabolic section, was submerged in a steady uniform

flow (the code can also be applied to model simple turbulent

boundary layers). The results were compared with the 2D

vortex-lattice solution. Cp distributions obtained from

both methods tended to approximately the same values. The

computer and the human time required to prepare the data and

to run the numerical program based on the potential flow

theory was, however, only a small fraction of that which



was necessary for obtaining the "real flow" solution.

However, it should be borne in mind, that a real flow

solution can model the atmospheric boundary layer and is

capable of predicting points (line in 3D) of separation.

When a three dimensional problem, the open sided shallow

eliptic shell was approximated by the two dimensional case

of an infinitely long parabolic shell of the same centreline

section shape, the results obtained from the real 2D flow

analysis differed from the 3D experimental results much more

than the simple 3D potential flow results. In view of the

above it is evident that for a 3D structure, which cannot be

approximately represented by a 2D model, a simple 3D

potential flow solution is likely to yield more accurate

pressure distributions than a sophisticated 2D real flow

analysis.

Because of the large amount of computing time required for

3D real flow solutions it seems impractical to apply them to

tracing the	 dynamic or quasi-dynamic behaviour of

flexible air-supported structures, since pressure

distributions would have to be updated at frequent

intervals.

The second part of the thesis: chapters 7 to 12 was

concerned with the structural response of air-supported

structures, with special emphasis on the dynamic response

following sudden release of a dynamic loading system.

Theoretical numerical predictions of structural response

were discussed with direct reference to two fairly large



scale pneumatic domes described in chapter 10. The first

test model was constructed using an orthotropic woven fabric

and was subject to a suddenly applied central loading. The

second dome, built from a very lightweight polythene, was

impulsively unloaded, both centrally and asymmetrically.

The dynamic relaxation method with kinetic damping was

applied in chapter 8 to the static analysis of pneumatic

structures. Structural idealizations depending on the

fabric patterning, type of loading and kind of membrane

materials were examined in the context of the two air-

supported domes. The numerical examples of chapter 8

described the behaviour of the models used in the tests of

chapter 10. The resulting static stresses and deflections

were then employed as a starting point for the dynamic

analyses of chapters 9, 11 and 12. The theoretical static

deflections were compared in chapter 10 with experimental

results.

Explicit dynamic analysis using a central finite difference

scheme was employed in chapter 9 to analyse the response of

pneumatic structures; and in particular the test domes. The

iteration scheme used included visco-elastic membrane

behaviour modelling, and accounted for on/off buckling and

the influence of surrounding air as far as internal air

stiffening was concerned. For the suddenly unloaded dome, a

revised, more efficient numerical scheme was proposed, in

which checking for buckling was carried out at each time

step, but creep strains, updated stiffness matrices and unit



pressure vectors were calculated at less frequent intervals.

The static and dynamic tests performed on the pneumatic

domes were described in chapter 10. Dome membrane

properties were established from static and dynamic tests on

specimens. For dynamic tests a new procedure was devised to

model more closely the state of stresses, by inducing two

dimensional stresses in the testing area of a specimen.

Still and movie cameras were used in the static and dynamic

tests on the pneumatic domes to record deflections, and the

results were analysed by means of photogrammetric

techniques.

The static results compared very well with the theoretical

predictions of chapter 8 for both models. The theoretical

dynamic trace for the apex nodal deflection of the

impulsively centrally loaded dome differed only slightly

from experimental results. However, large discrepancies

between the theoretical and dynamic responses for the

suddenly unloaded dome revealed the limitations of the

theoretical analysis of chapter 9. The surrounding air in

this analysis (apart from stiffening effects) was not
properly modelled. In contrast, for the dome with a

suddenly applied load, the heavy central mass dominated the

response and the influence of internal and external attached

air mass became of secondary order.

The suddenly unloaded lightweight membrane dome representing

more closely the problems associated with the structural



response of real shallow air-houses to wind loading was

further considered in chapters 11 and 12, where attention

was focused on modelling the surrounding air behaviour

coupled with membrane deformations.

In chapter 11, the behaviour of irrotational, inviscid,

compressible fluid was described from a Lagrangian point of

view. In the numerical analysis it was assumed that the

dynamic response of the enclosed air bounded by the

lightweight polythene membrane resembles that of

'blancmange'. It was presumed that the air mass is confined

in highly deformable tetrahedral elements, the basic

building blocks employed in the air modelling, and that the

air can move as far as the elements can deform and displace.

Although only the simplest axisymmetric case was considered,

the amount of computing was enormous. Hence, the procedure

of chapter 11 cannot, at present, be advocated for use in

practice. The excessive amount of computing resulted from

the necessity of using very small elements and therefore a

very short time step was required for stability of the

entire procedure.

An alternative method of modelling air behaviour could be to

employ a more common approach to describe the air flow,

namely to use a Eulerian type of equations. The simplest

solution of such equations 'under the assumptions of

potential flow, is to reduce a 3D problem to a boundary

solution by means of Green's identity.	 This type of

approach was employed in chapter 5 to predict wind loadings
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on the rigid shell roof.	 In the boundary solution,

singularities of vortices and sources are used to model the

air flow. For the problem under consideration, however,

neither of the simple distributions of singularities can

model the problem properly. Employing only sources results

in a zero pressure jump across the boundary and a

distribution of vortices does not satisfy boundary

conditions off the body since there is a mixing between the

enclosed and external air.

It appears that a more realistic approach would be to solve

the Navier-Stoke equations by some kind of a numerical

method, which would involve 3D air modelling and solving

nonlinear differential equations. In such an analysis the

displacement of mesh points between time steps should be

allowed for. A pneumatic dome, to balance external

loadings, undergoes large displacements and therefore in

theoretical predictions of wind load response of shallow

air-houses, the compressibility of the internal air should

be included. Some works on generating a movable grid, as a

domain changes, have been done with reference to aerodynamic

problems. The available techniques are reviewed in

reference [214].

Although numerical methods which can be directly or

indirectly applied to determine the dynamic response of

pneumatics are potentially available, the computer time

required to run a dynamic two domain problem with fluid-

structure boundaries highly deformable would be very large.



Therefore, no effort was made to develop these techniques

into a computer coding. The available code for solving the

Navier-Stokes equations, which was applied in the appendix

to chapter 5, could not be directly applied to the problem

in question, since the program is suitable only for time

average turbulent boundary problems, in which a body remains

at rest.

Due to the difficulties encountered in chapter 11 with the

simplified coupled fluid-structure explicit dynamic

analysis, no attempts have been made to combine the

numerical analysis of chapter 5 - theoretical prediction of

pressure coefficients, with the procedure of chapter 11.

Under the potential flow assumptions, a simple distribution
of singularities (vortices/doublets or sources), cannot

model fully the air behaviour during dynamic response of

air-supported structures. However, in chapter 12, a simple

discrete sources distribution was employed to assess only

the value of added mass due to vibration of air in a shallow

air supported dome (external and internal air). 	 The

approach was then included in the numerical explicit dynamic

procedure of chapter 9 and tested against the predicted

response of the centrally unloaded lightweight shallow dome.

The results showed great improvement in terms of

frequencies, with only a small increase in computing time

compared with the numerical scheme of chapter 9.

The discrete sources distribution method to calculate added

mass effects can be easily extended to any shape of

pneumatic structure, and when combined with an explicit



dynamic analysis can provide a useful scheme for calculating

frequencies and the approximate dynamic response of air-

supported structures. When vortices or doublets are

employed as singularities a similar scheme could be derived

to predict the approximate dynamic response of open sided

lightweight tension structures (of course, the air

stiffening effect should be excluded from the analysis of

this type of structure).

In the approximate analysis of chapter 12, the effect of

'sloshing' of the internal air was disregarded. In the case

of the centrally unloaded lightweight dome this resulted

only in comparatively small errors. In general, however,

when dynamic response of long span, shallow air-supported

structures to wind loading is considered, this is very

likely to lead to much greater discrepancies since the

lowest mode of vibration would involve lateral movements of

the structure. It would appear that there is no developed

numerical method, based on potential compressible flow, to

account for internal air momentum in a manner which could be

applied to such structures when undergoing large

deformations.

For further research on air-supported structures it would

seem to be more feasible to concentrate, at present, on

static analyses in which external wind loading is calculated

from a real flow solution by one of the numerical methods

which are available for rigid structures (for example the

method based on the SIMPLE algorithm which was used in the



appendix to chapter 5). Some successful attempts have been

made in three dimensional theoretical predictions of wind

loading on isolated rigid structures, and even on a group of

buildings [212, 213]. But with a flexible highly deformable

structure, the problem is more complicated, as the numerical

prediction of wind loading has to be performed many times.

Firstly, wind loading has to be determined on the undeformed

structure, then the new shape required to balance this

external loading has to be calculated followed by

predictions of the new wind loadings. The process has to be

repeated until the stage is reached in which a new shape of

the structure does not cause any (practically very small)

changes in the prediction of wind loadings. In view of the

above difficulties, it would seem prudent to commence the

investigation from a simple two dimensional case.

The success of the scheme will largely depend on the type of

available computer. A traditional serial architecture

computer is not purpose designed to solve these types of

problems, in which a large number of separate and

independent calculations have to be performed. Such

problems seem to be tailor-made for a parallel-architecture

machine, the design of which allows many similar calculations

to be executed simultaneously. Some success has been

achieved in designing this type of computer, called the

cellular automation model, with direct application to the

modelling of air flow [198].
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