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Abstract 

Many software reliability models are now available to the user who wishes to assess and 
make predictions about the future reliability of his/her system by using its past failure 
behaviour. Experience of applying such models to failure data in the past has shown that, 
to date, there is no one model that will give accurate predictions in all circumstances (i. e., 
over different data sets). Recent work has thus concentrated on the development of 
techniques for the assessment of the accuracy of predictions made for the data of interest. 
One of these techniques also allows the user to improve initially inaccurate predictions via 
a process of recalibration. The demonstrated success of the recalibration technique 
suggests that it may be possible to apply fairly simple models, for example non- 
parametric models, and to achieve reliability predictions which are as accurate as those 
which could be obtained from more sophisticated models. 

Here, it is recommended that a "multi-modelling" approach should be taken to the 
problem of software reliability prediction. That is, a number of parametric and non- 
parametric models and the recalibration technique should be applied to the failure data 
from the system of interest and by using the various analysis techniques accurate 
predictions may be selected for the future failure behaviour of this system, from amongst 
all the resulting "prediction systems". This thesis gives guidance on how such an 
approach should be taken and validates the approach by application of these methods to 
some real software failure data. In order to minimise the effort on the part of the user, the 
feasibility of automating such selection between prediction systems is also investigated. 

The general conclusion of this work is that the "multi-modelling" approach suggested is 
effective, in terms of obtaining, fairly automatically, reliability predictions which can be 
trusted for each data source. We make recommendations on how to minimise effort on 
the part of the user of such techniques, by more intelligent choice of initial software 
reliability models, application of subsequent techniques for improvement in the accuracy 
of predictions and automatic selection from amongst the available prediction systems. 
There is evidence here that we could apply a small number of raw models (some 
parametric and some non-parametric), the recalibration technique, and finally the meta- 
predictor for automatically choosing the best predictions, and the resulting predictions 
will probably be about the same in accuracy as any single predictor that could have been 
used. 
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1 Introduction 

The use of software and computer systems has increased substantially in recent 
years due to the relative ease with which such systems can be implemented and software 
is increasingly being used to replace systems previously implemented in hardware, and to 
develop entirely new systems. Unfortunately evaluation methods which can be used for 

assessing the future reliability of software systems have not been developed, or have not 
been taken up by industry, sufficiently quickly to keep up with the pace of the 
introduction of such systems. 

The very nature of software makes the problems involved in assessing 

performance of systems containing software very different than in the case of more 
conventional systems implemented in hardware [Littlewood 1989; Musa 1975]. Faults 

which exist in software are design faults essentially due to human error and making 

predictions of the failure behaviour which will result from such faults is a non-trivial task. 
It is clearly not possible to use techniques traditionally used in hardware systems, where 
it is often possible to be certain that there will be few or no design faults due to the 

relative simplicity of the design of such systems, or to the fact that new systems often 

make substantial re-use of previously tried and tested designs, so that the failure 

behaviour is mainly due to wear-out rather than to design faults. The relative ease with 

which extra functionality can be added using software often results in a system where the 
design is substantially more complex than the system which it is intended to replace. The 

production of a system where part of it is implemented in software, therefore, invariably 

results in an entirely novel, and often complex, new design, where the failure behaviour 

can be expected to be largely due to design faults. Further, it is quite possible that a error 

made in the design of a system, which in terms of design is conceptually fairly trivial, or 

subtle, may actually result in very serious failure consequences. 

The problem of predicting failure behaviour due to design faults is compounded 
by the relative ease with which changes can be made in the design of the system during its 

operational life. Such changes are often made either as an attempt to fix a design fault 

after having observed a failure arising from this fault, or for some other reason, like the 
desire to add some new functionality for system enhancement or changing the system in 

some way in response to a change in the needs in the environment in which it is 

operating. This results in an evaluation problem where we are trying to predict the future 
failure behaviour of a complex system due to design faults, the design of which is 

continually changing with the removal (and possibly introduction) of design faults, and 
which may also be operating in a changing environment. 

10 



Methods developed for software reliability prediction such as those to be 
investigated here are applicable to a wider range of systems than just those containing 
software, since the theory will relate to any system for which the design is sufficiently 
complex that failures due to design faults will make a sufficient contribution to the overall 
unreliability of the system and for which uncertainty about the future failure behaviour 
due to design faults will inevitably result [Perrow 1984]. Further there is no reason that 
software reliability modelling cannot be applied to other aspects of dependability (for a 
definition of dependability attributes see [Laprie 1992]) apart from reliability, for example 
safety. Recent work [Brocklehurst et al. 1993; Brocklehurst et al. 1994; Littlewood et al. 
1994] has investigated the plausibility of applying similar techniques to predict the 
operational security of a system. All such cases where a system does not perform as it is 

required as a result of design faults are possible candidates for the application of software 
reliability modelling techniques. 

There are a number of alternatives to software reliability modelling suggested for 

predicting software failure behaviour. Many of these, rather than being aimed at actual 
evaluation, consist of trying to assure that the software is developed sufficiently well that 
the resulting design will be perfect, or good enough, and there will be no, or tolerably 
few, failures due to design faults in operation. 

Some of these methods involve an informal notion of "good design practice" 
where it is recommended that particular methods and tools, requirements specification and 
programming languages, and so on, are used in the development process of the software, 
or that particular software certification standards be used. However, although there is no 
doubt that good design practice is likely to help in the area of reliability achievement this 
does not help in the area of reliability evaluation. 

A more formal notion which is aimed at guaranteeing that the system, or part of 
the system, is correct involves the use of "formal methods" [Fenton and Hill 1993; 
Gehani and McGettrick 1986; Shaw 1984]. Here mathematical proofs may be used to 

assure that the implemented software meets exactly some formal specification of the 

requirements. There are several problems with this approach [Fetzer 1988]. The first is 

that these methods may be carried out manually by experts and in such cases it is not 
possible to guarantee that mistakes have not been made in the proofs, particularly in the 
case of large complex systems. Also, in such a translation from one level of formality to 

another it seems likely that there will be a tendency for mistakes to occur in difficult parts 
of the problem for which the system is the proposed solution, and thus to coincide with 
design faults in the implemented code. Further, it is often too impractical or costly to use 
such methods manually on anything but small systems, or subsystems, where the failures 
due to design faults may, in any case, be expected to occur fairly infrequently. Automatic 
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tools are available for applying such formal methods, but again, this area is not 
sufficiently mature that it can be guaranteed that mistakes have not be made either in the 
tools themselves, or in the use of these tools. A further problem, which is unlikely to be 
solved by advances in research in formal methods, is that it is not possible to assure that a 
formal specification truly meets the informal requirements of the users. So, although the 
use of such formal methods is likely to increase the reliability of a system, it cannot be 
used to guarantee that a system is correct, particularly in the case of large complex 
systems, and we need to evaluate the reliability of each new system which is produced. 

Similarly, other methods, such as the implementation of software fault tolerant 
schemes and redundancy in order to mask failures in individual software versions [Lee 

and Anderson 19901, do help in reliability achievement but it is not possible to guarantee 
perfect or high enough reliability of such systems in a particular case and methods of 
evaluation of the achieved reliability in such systems are still required. 

In theory, it should be possible to measure the operational reliability of systems in 

particular application areas and compare this with features of their design processes, in 

order to derive relationships between the two, and thus use this information to predict the 
operational reliability, or at least get reasonable confidence that some required level of 
reliability has been achieved, for a new system based on information about its design 

process. However, a proper scientific approach to this problem is fraught with practical 
difficulties. There are many factors effecting the operational reliability of a system and 
getting accurate predictions would involve insuring that the new system was sufficiently 
"similar" to the previous systems such that all explanatory variables that significantly 
effect the reliability have been captured in the measured features of the design process. 

Unfortunately, there is little hard empirical evidence to support the fairly modest 
claims that are often made, such as the use of particular tools, formal methods, software 
certification standards, and so on, in the design process, will bring benefits in terms of 
quality or cost-effectiveness, and even less on measuring the actual benefits achieved 
from the use of a particular method [Fenton et al. 1994]. This is hardly surprising since 
the nature of software development is such that it is very difficult and costly to make such 
empirical investigations on the development of real systems, or to contrive properly 
controlled experiments on development of artificial systems. 

Much research is needed in this area before we can ever hope to assess the actual 
impact of features of the design process on the achieved operational reliability, and to 
classify "similarity" of systems such that we could hope to infer the operational reliability 
of a new system in a particular class, from previous systems in this class. Further, since 
each new system is clearly unique, it is quite possible that there will not be enough 
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previous "similar" systems in existence so that such an inference could be made about the 
system of interest. 

There has been some research (see, for example, [Khoshgoftaar and Munson 
1990; Khoshgoftaar et al. 1992]) which addresses the problem of relating static product 
measures, such as program size, or complexity, to software "quality" on classes of 
products, with the aim of predicting "quality" of a new product via its static product 
measures. The motivation for taking such an approach arises from obvious truths such as 
that a system which is more complex is likely to have more design faults. However, in 

these investigations the aspect of quality which is used is the number of defects 
discovered in test or in operation, and so, although these methods are useful for 
identifying potentially problematic modules on which developers should concentrate their 

testing effort, for example, they do not help with evaluating the achieved operational 
reliability. What is really required are empirical investigations of the relationship between 

these static product measures and the actual operational reliability. However, such an 

approach to reliability evaluation would also be subject to the practical difficulties 
discussed above relating to being able to classify systems as sufficiently similar such that 

these static product measures will capture all significant differences in the operational 

reliability within a particular class. 

We are thus not currently in the position to be able to guarantee that a system of 

reasonable size is completely reliable, nor to use information about the design process, or 

static measures of the product, in order to predict the operational reliability of a system. 

Software reliability modelling, however, is sufficiently mature that it can be used 
during testing, or operation, of a system, for evaluating the reliability of a system due to 
design faults. This is done by using past failure behaviour of a system in order to make 

predictions about its future failure behaviour. It should be noted however, that there are 

various limitations to when such techniques can be used and restrictions on how they 

should be applied. 

The work presented here is specifically for evaluating the reliability in situations 

where the system is either in operation, or it is being tested in such a way that the real 

operational profile (i. e., the environment in which the system is going to operate) is being 

adequately simulated. There are extensions to this [Cheung 1980; Littlewood 1979b] 

where, for example, a structural reliability model can be used together with the techniques 

presented here, and knowledge of the use in different environments with respect to the 

components together with reliability of the components may be used to evaluate the 
reliability in each environment. But these techniques still require, of course, that the 
operational profile of each environment be known. 
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Setting up a situation where such techniques may be used in test is something 
which system developers are often unwilling to do since it is frequently difficult or costly 
to simulate the real operational profile. However, since the failure behaviour of any 
system depends on the environment(s) in which it will operate with respect not only to the 
kinds of demands placed on the system but also with respect to the distribution of these 
demands, it is not feasible to believe that reliability evaluation can ever be achieved 
without using this knowledge of the operational environment(s). It also seems that there 
is often a rather unreasonable expectation that these very complex systems can be built 

adequately (i. e., reliably enough and with assurance of that reliability) at a cost which 
may be disproportionately low compared with the benefits that the system is actually 
intended to provide. 

A further requirement for using these techniques is that a time metric which 
represents the amount of use, or stress, to which the system is being subjected [Mellor 
1986; Musa et al. 1987] (e. g. CRU. execution time) needs to be found. These issues 

relating to the operational profile and to choice of an appropriate time metric are discussed 
further in Chapter 2. 

One major limitation to the area of software reliability modelling is that, in order to 

get accurate predictions of the future failure behaviour of a system it is required that 

enough past failure data is seen in test or in operation. These means that these techniques 
cannot be used in the case of systems which are intended to have ultra-high dependability 
[Littlewood and Strigini 1992; Littlewood and Strigini 19931 (except of course, to reject a 
system on the basis that its reliability is too low), unless testing can be accelerated in 

some way. However, they are good techniques for use in the case of systems where the 

reliability requirements are relatively modest and thus enough failures could be expected 
to be observed. 

There are several reasons why software failure prediction methods have not been 

readily taken up in industry even in cases where the reliability requirements are relatively 
modest. One is due to a cultural response to the nature of software faults and failures. 
Software failures are detenninistic in nature; given that a system remains unchanged a 
failure will always result given the same triggering conditions of a design fault, or input, 

to the system. Due to this there is a tendency to believe that the failure behaviour is 

similarly deterministic and so a probabilistic approach to evaluation is inappropriate. This 
is, of course, a fallacy. A probabilistic approach is clearly appropriate for any system 
where we cannot be certain about the future failure behaviour arising from possible 
design faults due to the impossibility of exhaustively trying every triggering event which 
can occur in the expected life-time of the system, the uncertainty about what design faults 
which have not already been revealed exist in a complex system at any one time and the 
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uncertainty about what inputs will next arise, even if we can be certain about bounds 
within which these inputs lie. 

Another reason for the poor take-up of such methods is that software engineering 
is a relatively new area, and that, again due to the ease of implementation using software, 
there is a tendency to believe that the 

' effort required to develop such systems is 
disproportionately small compared to what might reasonably be expected for each novel 
complex new design. Software developers are often reluctant to put in the effort which is 

required to randomly test software (and investigate the operational profile, as discussed 

above) and/or to collect the required failure data in test or in operation. However, there 
are numerous instances in industry (see, for example, [Neumann; Perrow 1984]) where 
we see failures arising from design faults in operation with embarrassing, and sometimes 
catastrophic consequences, or where managers grossly underestimate the time and effort 
required to produce a system which is sufficiently dependable for the application for 

which it is intended. 

Another factor which may have discouraged the use of such techniques is the 
overselling of particular software reliability models in the past. Users of a particular 
model may find that it is not robust (does not give accurate reliability predictions) for all 
sets of failure data, but only on some and on this basis be discouraged from using these 
techniques further. However, recent work [Abdel-Ghaly et al. 1986; Brocklehurst and 
Littlewood 1992], and the work presented here, supports the idea that individual models 
should not be expected to be robust and provides methods for overcoming these 
problems. Finally, although there have been techniques available for software reliability 
prediction for some considerable period of time, a certain amount of expertise is involved 
in using such techniques. The approach suggested here, therefore, is fairly pragmatic, 
with an emphasis on developing techniques which can be applied fairly automatically 
minimising the effort and expertise needed by the user of such techniques, with 
reasonable assurance that the resulting reliability predictions will be accurate for the 

system under investigation. 

There are now many software reliability models available for the evaluation and 
prediction of the failure behaviour of a program (or system) undergoing debugging in test 
or in operation. A good theoretical description of most of these models is given in [Xie 
199 1 ]. The main purpose of software reliability modelling is to make predictions of the 

future reliability of the system using past failure data. For example they can be used 
during testing to make predictions of the current reliability and hence to decide whether a 
system is reliable enough to be put into operation, or to estimate how much testing will be 
required before a pre-specified target reliability for the system will be reached, or to 
estimate the future reliability of the system in operation and hence likely maintenance 
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costs. Reliability models can also be used to examine failure behaviour in retrospect (i. e., 
use failure data to make estimations about the past) in order to make observations about 
the development and testing process, but most questions of interest are really about 
prediction, and so emphasis here will be placed on the ability of the models to give 
accurate reliability predictions. 

Investigations of the ability of all these various software reliability models to give 
accurate reliability predictions on real data (see, for example [Brocklehurst et al. 1991; 

Brocklehurst and Littlewood 1992; Chan 1986]) have shown that some are universally 
bad, while the performance of others varies from data set to data set but it is not possible 
to select a globally good model which will perform well over even a particular class of 

systems. This has led to the development of techniques [Abdel-Ghaly et al. 1986; 

Brocklehurst and Littlewood 1992] which assess the past predictive performance and 

compare the relative merits of these models in a particular context (i. e., when applied to 

the data set under investigation). These techniques allow us to apply a number of models 
to the data of interest and select a "best" model to use for future predictions on this data 

based on their past predictive performance. The approach taken here, similarly, does not 

concentrate on the development of intricate new software reliability models, but instead 

on techniques for making decisions about which predictions to use and on making 
improvements in the initial predictions. 

One of the techniques used allows us to assess one aspect of the error in the 

model predictions, a kind of "bias", and to recalibrate the model predictions with respect 
to this error. The resulting recalibrated prediction system is still truly predictive and we 

can therefore use the analysis techniques described above to assess the improvement 

gained via recalibration every time it is applied. It has proved to be beneficial (see 

[Brocklehurst et al. 1990]) particularly when all raw (i. e., not recalibrated) models 

applied are in error, and the computational effort required for this technique is negligible 

compared with the effort required to obtain many of the initial raw model prediction 

systems. It is recommended, therefore, that it be applied as a matter of course to all the 

raw model prediction systems. 

With the availability of robust techniques, such as recalibration, to improve on 
initially inaccurate raw reliability predictions, the possibility that the resulting predictive 

accuracy obtained by applying fairly simple-minded reliability models together with these 

methods for improvement may be as good as that obtained from more sophisticated 

models is worth investigating. If this turned out to be the case, then the effort involved in 

applying more sophisticated models (both with respect to computational effort or, more 
importantly, human expertise) could be substantially reduced. To this aim the 

performance of some simple non-parametric models are investigated here. 
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The general approach suggested is that, for each new failure data set, a number of 
models (preferably as many as is practical) should be applied and then the recalibration 
technique should be applied to each of these raw models. The analysis techniques may 
then be used to compare the predictive accuracy of all the resulting prediction systems. If 
the total number of prediction systems we have to compare is large, it may be desirable, 
particularly for the naive user, to automate this process of selection via one of the analysis 
techniques. A simple "meta-predictor" for automatic selection of predictions from 
amongst the available predictors will be investigated here. 

One of the major barriers facing research in the area of software reliability 
modelling [Mellor 1986] is the lack of the data required in order to make predictions about 
the reliability of a program or system. Collecting the appropriate data can be a costly 
process and, as previously discussed, testing has to be conducted under a suitable 
operational profile (i. e., a user profile), or data must be collected in operation, in order to 
get accurate reliability predictions. With a view to aiding this area objectives of the Alvey 
SRM project [Potter 1988; Potter 1989; Simmonds 1988a; Simmonds 1988b] included 
the setting up of a database in order to collect some reliability data. Here some of the data 

collected in this project (inter-failure time data from in-field use over 4 years of a single 
user work station) together with other available data [Gaudoin 1988] consisting of 
continuous inter-failure times of systems undergoing debugging, is analysed and used to 
illustrate and validate the approach suggested here. 

In the following text we shall briefly describe the parametric models which we are 
going to apply to the data sets in Chapter 2. In Chapter 3 we shall describe the analysis 
techniques used in order to compare their predictive performance and in Chapter 4 the 

recalibration procedure will be described and investigated. The non-parametric models to 
be applied will be described in Chapter 5, and in Chapter 6a simple technique which 
utilises one of the criteria for analysis of predictive accuracy in order to allow the user to 
automatically choose between the resulting prediction systems for the data set of interest 

will be described. We shall then discuss details of the failure data to which we are going 
to apply these techniques in Chapter 7 and follow with a detailed analysis in Chapter 8 of 
the performance of the various prediction systems and techniques on the data sets. The 

raw reliability data, together with all associated tables and plots for analysis, are contained 
in Appendix B in a separate volume, Volume IL A summary of the general conclusions 
together with suggestions for future work will be given in Chapter 9. 

The general conclusion of this work is that the "multi-modelling" approach 
suggested is a good one. We make recommendations on how to minimise effort on the 
part of the user of such techniques, by more intelligent choice of initial software reliability 
models, application of subsequent techniques for improvement in the accuracy of 
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predictions and automatic selection from amongst the available prediction systems. There 
is evidence here that we could apply a small number of raw models (some parametric and 
some non-parametric), the recalibration technique, and finally the meta-predictor for 

automatically choosing the best predictions, and the resulting predictions will probably be 

about the same in accuracy as any single predictor that could have been used. 
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2 Raw Reliability Models 

The overall objective of reliability modelling is to use past failure behaviour of a 
system in order to make predictions about its future failure behaviour. The reliability 
predictions are expressed as probabilities; it is reasonable to expect the failure behaviour 

of large software systems to be non-deten-ninistic due to uncertainty about which inputs 

will next arise in a particular operating environment and to uncertainty about which of 
these inputs will result in failure. More detailed arguments as to why it is reasonable to 

expect random failure behaviour from such systems may be found in [Jelinski and 
Moranda 1972], [Laprie 1984] and [Xie 1991]. 

All the reliability models considered here are black-box reliability models; they are 
applied to failure data of the complete system/program with no attention given to the 
internal structure of the system. There is no possibility, unless applied to sub-components 
of the system, for example, together with an appropriate white-box model (see, for 

example, [Littlewood 1979b] and [Cheung 1980]), for extrapolating from failure data in 

one environment, to reliability predictions in another, different, environment. This means 
that if they are applied to failure data observed when the system is in a particular 
environment the resulting reliability predictions may only be expected to be accurate for 

continued use of the system in the same environment. 

Formally, such an environment (or operational profile) may be characterised by 

random selection of inputs from the input space (which may include the system states and 

other environmental factors which may affect the failure behaviour as well as the totality 

of physical inputs to the system) subject to a probability distribution which represents 
usage of the system under operational conditions [Musa et al. 1987]. Such failure data 

may thus arise from either random testing under the appropriate operational profile (i. e., 
that profile which truly represents expected use of the system for which the reliability 

predictions are required) or from real operation of the system. Here the issue of how to 

characterise the operational profile in the case of random testing is not addressed since it 

is largely application dependant, although it is recognised that for many systems this 

problem is likely to be non-trivial. The failure data from the single user work station 
presented later in Chapter 7, arises from real operational use, and so the problem of 
characterising the operational profile is not an issue. 

A further point to consider in the application of reliability models is that of what 
metric on which to base the failure data. In order to get accurate reliability predictions by 

application of the reliability models presented here it is necessary to have a metric which 
represents the amount of use, or stress, to which the system is being subjected [Mellor 
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1986; Musa et al. 1987]. Real (or calendar) time is rarely appropriate since this does not 
usually represent the times at which the system is actually operating and thus includes 
times at which failures cannot occur. C. P. U. execution time is clearly a better measure of 
the amount of use [Musa 1975] although it is often difficult, in practice, to measure actual 
execution time. In the case of the work station failure data it was decided that "hands-on" 
time of the user at the work station was a suitable metric. This is discussed in more detail 
in Chapter 7. 

Most reliability models assume that the system being subjected to test, or in 

operation, is undergoing perfect debugging (i. e., each fault is removed immediately after 
the first failure associated with this fault is observed). Thus, in the case of perfect 
debugging repeated failures from the same fault will not occur and the data collected will 
consist of times between successive failures of the system, for example. For the single 
user work station data presented in Chapter 7, corrections were (generally) not carried out 
and the data collected consisted of all failures observed; only the first failure arising from 

each fault was later extracted in order to obtain the required data. This effectively 
simulates what would happen under perfect debugging and the resulting reliability 
predictions are thus predictions about future first failure occurrences of new faults (and 

not repeated failures from previously identified faults). 

Once having decided on an appropriate time metric there is still the form in which 
the failure data is collected to be considered. Commonly discrete failure data may be 

available, that is, the number of failures within successive (possibly non-equal) intervals 

of time are recorded. In fact, in real applications, this is often the easiest form in which to 

collect the failure data, since failure occurrences may be reported during test or from 

operation, on a daily, or weekly basis, for example, without the actual times of these 
failures being recorded. Models for discrete data are considered in [Abdel-Ghaly 1986), 
[Wright, 1989 #540] and [Knafl 1992]. In this work we limit our analysis to more 
stringent continuous inter-failure time data, that is, data for which all of the successive 
times at which each failure occurs are known. 

The data we are considering are thus times, ti, t2, t3, ... (with an appropriately 

chosen time-metric, as discussed above) between successive failures resulting from first 

occurrence of unique faults of a system. 

For simplicity we shall be limiting our analysis to one-step-ahead predictions 
although many of the models have the ability to predict further into the future. Using the 
previous inter-failure times, tj, t2p .... tj_j, the raw reliability models provide a probability 
prediction of the current (and as yet unobserved) inter-failure time, Tj, in the form of a 
predictive cumulative distribution function (cdj), 
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Pr(Tj :5 (2.1) 

From (2.1) we also have a predictive probability densityfunction (pdj) for Tj, 

Z(o = P'; (t) (2.2) 

These can be thought of as estimates of the true underlying cdf and pdf, Fj(t) andfj(t), 
respectively, of the current inter-failure time, Tj. 

From these estimates a number of different types of reliability measures may be 

obtained, and the choice as to which types of predictions are of interest will depend on the 
particular context in which they are applied, or on the individual preferences of the user of 
such models. Examples of commonly used predictions are the reliabilityfunction, which 
is the probability that the system will operate without failure beyond a specified time, t, 

k(t) =I- pli(t) 
and the hazardfunction of Tj, 

t -(t) - 
l(t) 

7 -1 - pi(t) 
and summary statistics such as the mean time to nextfailure, 

A 

mj ft ýj(t) dt 
t>o 

In the subsequent analysis in Chapter 8 the median time to nextfailure , 
A -1 
wj kj (0.5) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

is examined. For illustrative purposes we limit ourselves to consideration of the median 
time to next failure since this reliability measure can be easily obtained for all the raw 
reliability models and other techniques for obtaining predictions which will be 
investigated here. For some models the mean time to next failure does not exist 
[Littlewood 1979a]. 

As the data evolves we can repeatedly make one-step-ahead predictions from each 
model. Thus for a data set which consists of q inter-failure times altogether each model 
may be applied to the data tj, ..., tj. 1, to obtain our one-step-ahead prediction for Tj, forj 

= S, ..., q, say, where s is a number suitably large for making the first prediction. We 
then have what we shall refer to as our "raw prediction system" for each of the models, 

[Pj(t), ýjft); j=S, ..., q] (2.7) 
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As mentioned above, most conventional reliability models assume that once a fault 

manifests itself as a failure it is fixed instantaneously and operation (or testing) continues: 
the expected failure behaviour is therefore reliability growth, at least in the long term, 

although there may be short term reversals. This is not an implausible assumption if the 
data is collected sensibly. (Note that if we did not expect, on average, reliability growth 
then we would not be debugging our system). All the raw models considered here can 
model stable reliability or reliability growth (i. e., constant failure rate or monotonically 
decreasing failure rate) while some models can also model reliability decay (i. e., 

monotonically increasing failure rate). None of the models applied here, however, are 

able to model trend changes (for example the transition from stable reliability to reliability 

growth), since they all assume a smooth trend. However, even though each fitting of the 

model will be unable to represent a change in the trend of the data, a sequence of 

predictions from the model may respond to such a change. That is, when dynamically 

applying a model over a succession of one-step-ahead predictions upon a data set 

containing changes in trend, it may be that the series of predictions themselves (i. e., the 

raw prediction system) do not exhibit smooth trend. 

In some texts [Kanoun and Sabourin 1987; Kanoun et al. 1988; Martini et al. 
1990] the data is examined for such trend changes and the models are then applied 

accordingly over different intervals of data separated by such changes. For example, if 

the data exhibits stable reliability followed by reliability growth (as is commonly the case 
for such failure data) then the models may be applied over the region of growth by 

omitting the early data. Here this approach is not taken, partly because the emphasis is on 

prediction and it is difficult to identify such "change-points" in the data until some time 

after they have occurred and also because there are no formal tests to identify anything but 

very simple changes in non-stationary data. So here the models are applied "blindly" as 

would a naive user over the whole range of the data, and application of the models begins 

at a stage at which it is decided, fairly arbitrarily, that there are enough initial data points 
for making the first prediction. There is evidence [Brocklehurst et al. 1991] which 

suggests that any inaccuracy in the predictions resulting from such an approach may be 

adjusted for by the process of recalibration described later in Chapter 4. 

As we shall see later, in Chapter 7, there is also a tendency for outliers to occur in 

the inter-failure time data. These are points which are unreasonably large or small when 

compared to immediately preceding data points. Such data points may be omitted before 

application of reliability models (see, for example, [Kanoun 1989] and [Kanoun et al. 
1988]). This approach will not be adopted here, partly because it is difficult to tell 

whether these points correspond to genuine outliers or whether they are actually the 
beginning of a change in the trend in the data, until much later when more data has 
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accumulated, and also because there are currently no formal tests for detecting the 
presence of such outliers in non-stationary data. 

The following section outlines the conventional parametric models to be applied to 
the failure data and some details associated with them. Additional non-parametric models 
are described later in Chapter 5. 

2.1 Parametric Models 

The parametric models assume a form for the sequence of pdfs (cdfs) which 
depends on some unknown parameter(s). Estimates for these parameters are made at each 
stage, j, by using the previous failure data, tj, t2, ... ' tj-l, and the method of maximum 
likelihood (ML). These parameters are then substituted into the pdf (cdj) in order to make 
predictions about Tj. The resulting predictive performance of these models will depend 

not only on their precise mathematical structure, but on the ML inference technique and 
the substitution rule for prediction. It should be noted that these two approaches to 

statistical inference and prediction are chosen here for convenience: other techniques, 

such as Bayesian inference, tend to be computationally intensive. 

The parametric models which are applied here are the Jelinski-Moranda (JM) 
[Jelinski and Moranda 1972], Goel Okumoto (GO) [Goel and Okumoto 1979], Musa 
Okumoto (MO) [Musa and Okumoto 1984], Duane (D) [Crow 1977; Duane 1964], 
Littlewood (LM) [Littlewood 1981], Littlewood non-homogeneous Poisson process 
(LNHPP) [Miller 1986], Littlewood Verrall (LV) [Littlewood and Verrall 1973] and 
Keiller Littlewood (KL) [Keiller et al. 1983a] models. Since most of these models are 

well known the details are omitted. 

As mentioned previously all of the models listed above assume a smooth trend in 

the data and can model stable reliability and reliability growth. The DU, LV and KL 

models can also model reliability decay whereas the other 5 models are restricted to 

growth or stable reliability. 

The models described here vary considerably in the effort required to achieve the 
ML solutions at each stage. The ML solution for the DU model is analytical and so very 
easy to achieve, while the JM, GO and MO models require a one-dimensional 

optimisation for their ML solutions. The remaining 4 models require two-dimensional 

optimisations and are thus much more computationally intensive. Bearing in mind that we 
dynamically repeat our ML estimation for these models in order to achieve successive 
one-step-ahead predictions as the data evolves, quite a lot of effort is involved in 

application of these latter, more sophisticated models. The software used to apply all 
these models was the Software Reliability Modelling Package (SRMP) [RSCL 19881 
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running on a Sun 3-80. A certain amount of knowledge is required in order to apply these 
models to each failure data set in deciding what bounds to use for the optimisation 
routines and other control parameters required. Details of how these control parameters 
can be chosen, and of the actual search algorithms used for the ML solutions can be 
found in [Chan 1986] and [RSCL 1988]. 

Many of the parametric models described in this chapter have the property that 
they tend towards simpler models as their parameters (or functions of their parameters) 
tend to extreme values (see [Littlewood and Verrall 1981], [Chan 1986] and [Miller 
1986]). They will do this as a result of the behaviour of the data over which the models 
are being applied. Typically (see [Chan 1986]) the models may switch from one limiting 

case to another as they are applied over increasingly large intervals of data. For example, 
if the data is exhibiting no growth (the definition of no growth depends on the model we 
are concerned with), the JM, GO, MO, LM and LNHPP models tend to the stable 
reliability homogeneous Poisson process (HPP). There are a variety of ways, listed 
belowl, in which these models can tend to simpler case solutions. 

lim JM(N, 0) = HPP 
N-n>vo 0-*0 jýItk) 

rj1 

lim GO(, u; 0) = HPP " j-, 
. 
u-eoo 0 .. *o 1 j1 

kýI 
tk 

lim MO(4, P) = HPP 
4 

4-400 P-400 

lim LM(N; a, MO(Na, 
N-4 a-. >O 

. 
g) 

a-4 
Lt T-4. LM(N; a, J4N, 

ý 0) 

a 
N tT LM(N; 

_ýL _4. 

lim LNHPP(, ua; p)=MO(, ua,, P) 

, u-. > a--)o 

lim LNHPP(p; a, GO 
( a) 

a--4-0-4co 
ro) 

I HPP(A) is used to denote a homogeneous Poisson process with rate k 
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lim LNHPP(li,, a; HPP La 

Limiting cases for the DU, LV and KL models are not known. 

For the JM and GO models the conditions on the data, tj,... 'tj-j, for the limiting 

case of an HPP, are known [Chan 1986] and thus can be tested before the model 
optimisation is applied. If these conditions are satisfied no optimisation is performed and 
the solution is simply exponential with the mean equal to the average of the data. For the 

remaining models similar conditions (for example conditions for which the LM model 

will tend to the simpler JM model) are unknown, although it can be observed in retrospect 
that this has occurred since the optimum solution will terminate with applicable 

parameters on the bounds. Thus, in these circumstances, where there are intervals of data 

for which there is nothing to be gained by fitting a sophisticated model, no saving in 

computational effort may be made. 

In Chapter 8 we shall examine the accuracy of the various predictions resulting 
from application of these 8 reliability models to the data presented in Chapter 7. 
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3 Analysis of Predictive Quality Techniques 

In this chapter three methods for assessing and comparing the performance of the 
various predictions are briefly described. These techniques for analysing predictive 
quality depend on a comparison between the estimated cdf or pdf (see (2.1) and (2.2)) at 
stage j, with the (later observed) realisation, tj, of the next inter-failure time, Tj. This 

comparison is made over a series of one-step-ahead predictions, i. e., the prediction 
system as defined in (2.7). 

1 The u-plot 

Our first technique, the u-plot, aims to detect consistent differences between 

predicted and observed failure behaviour in a single prediction system. It involves 

substituting the (later observed) tj into the (earlier computed) predictive cdf over the range 
of one-step-ahead predictions. 

Poo j=S, 

If each random variable, Tj, truly had cdf Pj(t) (i. e., Fj(t) -= 
Pj(t) for all j=s, ... ' 

q) then the random variables Uj =P (Tj) will be uniformly distributed on (0,1) (i. e., Uj - i 
U(O, 1)); the sequence fuj; j=s, ..., q] will thus be a random sample from a uniform 
distribution. 

The u-plot is the sample cdf of the u's defined in (3.1.1). This is constructed as 
follows. First the us in (3.1.1) are re-ordered in ascending order of magnitude to obtain 
the ordered us: u(s), U(s+]), -, U(q). A step-function is then drawn, with step-size 

I 
q-s+2 

(the number of us plus one) as shown in figure 3.1-1. If the prediction sequence is 

accurate then the u-plot should lie close to the 45 * line, which is the U(O, 1) cdf. 

Significant departures of the u-plot from the 45* line indicate that the prediction 
system is inaccurate in some way. If the inaccuracies in the predictions are stationary 
(i. e., consistent) then the u-plot can tell us something about the nature of the prediction 
errors. For example, figure 3.1-2 shows a u-plot resulting when the predictions are 
consistently optimistic. It has been shown in the past [Keiller et al. 1983b; Abdel-Ghaly 

et al. 1986] that application of the JM model to real data sets frequently results in 

optimistic predictions. If a model is consistently optimistic then this means the model is 

making predictions that are indicating that the system is more reliable than it in fact is. 
Thus, an optimistic predictor would result in too many small u values, since the actual 
observations would tend to lie to the left of the predicted pdf and the resulting u-plot 
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would tend to lie above the 45' line. Conversely, if the predictions are consistently 
pessimistic then the plot would be expected to be everywhere below the 45' line. 

1-0 

0-0 

0 

Figure 3.1-1. Constructing the u-plot. 

Theoretically the u-plot may detect more complicated departures of the predictions 
from the truth than simple optimism and pessimism. For example, if a predictor is 

optimistic for small times and pessimistic for large times, an S-shaped u-plot would result 

27 



where the plot crosses the 45' line. In practice though, such plots are frequently the result 
of non-stationary prediction errors as opposed to stationary errors. 

1-0 

0-0 

Figure 3.1-2. u-plot for a consistently optimistic predictor. 

Informally then, the u-plot is a powerful means of detecting various kinds of 

consistent bias in predictions, i. e., situations where the prediction errors are in some 
sense stationary. 

The recalibration technique, described later in Chapter 4, exploits this ability of 
the u-plot to indicate the nature of the error in a prediction system and uses this to aqjust 
for similar errors in future predictions. 

3.2 The y-plot 

The second technique, the y-plot, is intended to detect non-stationarity In the 

inaccuracy that can occur for a single prediction system. As with the 11-plot this technique 
depends on comparison of the predicted cdf and the observations for a range of one-step- 
ahead predictions. Let 

xj =- log(I-iij) j=S, ..., q 

where uj is as defined in (3. /. /) and 
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xxi 

J--s 

r=s, ... � q (3.2.2) 

Then the y-plot is constructed similarly to the u-plot by drawing the sample cdf of 
I 

the y's (this time a step-function with step-size . Note, from (3.2.1) and (3.2.2), 

that the y-plot preserves the order of occurrence of the u's over time whereas the u-plot 
does not. If our prediction system has captured the trend (e. g., reliability growth) in the 
data then the y-plot should be close to the 45* line. Thus the y-plot is a means of detecting 
those cases where the prediction errors are non-stationary. 

For the u- and y-plots, judgements as to whether they are significantly far from 
the 450 line are based on the Kolmogorov (K) distance [Kendall and Stuart 1979] (which 
is the maximum vertical distance) of the plots from the 45' line. This test for statistical 
significance is called the Kolmogorov test for which there are tables [Miller 19561. More 
details on u- and y-plots and the Kolmogorov test can be found in [Cox and Lewis 19661 

and [DeGroot 1986] and extensive use of these techniques in the context of software 
reliability prediction is shown in [Keiller et al. 1983b], [Keiller et al. 1983a], [Abdel- 
Ghaly et al. 1986], [Chan 1986] and [Brocklehurst and Littlewood 1992]. 

3.3 The Prequential Likelihood Ratio 

It should be noted that it is possible for a prediction system to give good u- and y- 
plots and yet still be inaccurate; for example it could be very noisy, so that individual 

predictions emanating from it are very inaccurate even though on average there is no bias, 

and there is no evidence of non-stationarity in the errors in the predictions. For this 
reason it is necessary to use a further measure called the prequential likelihood ratio 
(PLR) [Dawid 1984] which is intended as a global comparison of goodness of prediction 
for one prediction system versus another. Again this measure may be applied over a range 
of one-step-ahead predictions. 

Suppose we have two prediction systems, A and B, say. Then the PLR is defined 

to be 

PLe st 

k-S 
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Notice that, unlike the u- and y-plots, this measure depends upon the pqfý rather 
than the cdfs. 

If PLRIý as i then we would choose model A as being the better of the SI 
two models. Conversely if PLIý'sýj --> 0 as i we would favour model B over model 
A. As we clearly never have i --ý - in practice, the best we can do is to look for steady 
increases and decreases in our PLR plots of one model versus another over the whole 
data set. In the PLR analysis that follows in Chapter 8, for convenience log(PL s 1) 
against i is plotted for the sequence of one-step-ahead predictions, i=s, ... ' q. 

For an intuitive explanation of the PLR observe figure 3.3-1. Here the true 

underlying predictive distribution for the next time to failure, Tj, is shown, together with 

predictions of this pdf from two models, A and B. Clearly the prediction from model A is 

more accurate than that from model B. The next observation, tj, is obviously likely to lie 

in the main body of the true distribution (i. e., wherefj(t) Is larger). Since A is closer to 

the truth than B this means that tj is likely to lie in regions for which the A pdf has a value 

greater than that of the B pdf. Thus the ratio of the A pqf to the B pdf is likely to be 

greater than 1. So, if A is generally closer to the truth than B over a sequence of 

predictions the PLC, defined in (3.3.1) will tend to increase with i. 

Z 

14' 
Ole 

oor 

Figure 3.3-1. True predictive pdj*together with estimates of the pqf'from two models, 
A and B. 

There is a more formal asymptotic theory behind the PLR approach which can be 

found in [Dawid 1984] and examples of the use of the PLR in the context of software 

reliability prediction can be found in [Abdel-Ghaly et al. 1986], [Chan 1986] and 
[Brocklehurst and Littlewood 1992]. 
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In practice [Brocklehurst et al. 1991] it is often the case that, according to such a 
PLR analysis, the relative fortunes of the different models tend to switch as the data 

evolves. So, if this method is used to select a "best" model for future predictions of the 
data, then it is likely that such a choice will dynamically switch between the various 
prediction systems as the data evolves. This is discussed further in Chapter 6, where a 
simple method for automating such dynamic selection is suggested. 
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4 The Recalibration Technique 

It is frequently the case that for some data sets, according to the analysis 
techniques described in the previous chapter, all of a group of reliability models applied 
are in error. In order to achieve accurate predictions for such data sets, where there is no 
single model for which the predictions can be trusted to be accurate, a recalibration 
technique [Littlewood and Keiller 1984; Brocklehurst et al. 1990] has been developed. 

Recalibration is a leaming technique, where the nature in the error of past predictions, for 

a single raw prediction system, is assessed and used in order to adjustfuture predictions. 

This technique is intended for circumstances where the prediction system has 

captured the trend in the data, i. e., the prediction errors are stationary, but the predictions 

are biased (this should result in a good y-plot and a bad u-plot). In such circumstances, as 
discussed in section 3.1, the (approximately) consistent departure of the prediction 

system from the truth is represented by the departure of the u-plot from the 45' line. This 

is where the recalibration technique can use the u-plot to eliminate this bias from the raw 

prediction system in the hope that a new improved prediction system will result. This 

technique consists of using the joined up u-plot, Gi, (see figure 4- 1) based on previous 

raw predictions of ts,..., ti-1, in order to adjust the current raw prediction of Ti, 

= G((t)) (4.1) 

For example, suppose that the raw predictions are consistently optimistic. As 

previously stated in section 3.1 this will result in a u-plot which is everywhere above the 

450 line. Then application of the recalibration technique may be expected to result in 

adjustment of the next raw predictive cdf in the right direction (from figure 4-2 we can see 
it will make the predictive cdf everywhere larger) and our new recalibrated cdf will be 

closer to the true cdf than was the raw cdf. Conversely recalibration of a pessimistic 

prediction would be expected to make the raw predictive cdf everywhere smaller, and 

closer to the true cdf, providing the previous predictions were also similarly pessimistic. 

The recalibration technique may be expected to efficiently adjust raw predictors 

which have more complicated departures of the predictions from the truth than simple 

consistent optimism and pessimism, but it should be noted that the key to recalibration 

eliminating bias in the raw predictions is that the predictions errors are approximately 

stationary. Equivalently, the shape of the u-plot taken over increasingly large intervals of 
the raw predictions should be approximately non-changing. 
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Figure 4-1. The joined up step-function, Gi, of the u-plot of predictions of T ..... Ti- /. 

It is important to point out that after recalibrating a prediction frorn a raw 

parametric model the mathematical form of the new recallbrated prediction will be 

different in structure from the original parametric predictor. It will not correspond to the 

same mathematical structure with merely adjusted parameters. This is a benefit of the 

recalibration method. It may produce probabilistic predictions which cannot be adequately 
described by a parametric model and is thus far more flexible. The resulting predictions 

are driven by the data for which the predictions are required, as opposed to being 
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constricted by fairly stringent (and possibly unrealistic) modelling assumptions as are the 

raw models. 

1-0 

J 
"t1 

joined up 

45" line 

0.0 

Figure 4-2. Recalibration of current prediction of Tj based on u-plot of optimistic 

predictions of TS, ..., Ti-I. 

The theoretical justification for applying recalibration can be viewed as follows. 

Let Ui = 
ýi(Ti), and let the cdJ'and pdf associated with the random variable Ti be denoted 

by Fi(t) andfi(t), respectively and the cdf and pdf associated with the random variable Ui 

be denoted by F'i(u) and. f"i(u), respectively. Then, 

F'i(Ui) = Fi(Ti) 

Hence, from (4.1), 

ýj(Tj) 
= Gi(ýj(Tj)) ý Plý(ýj(Tj)) = Fi(Ti) ......... 

(4.2) 

as required. 

From (4.2) it can be seen that the efficiency of recalibration will indeed depend on 
how good an estimate the up u-plot, Gi, is of the actual cdf of Ui, F'ý. Clearly the 

34 

kkhý 

0.0 -? 
ý- 1? ) 1-0 



more stationary the errors in the predictions are, the more accurate our estimate of F"j, Gi, 

may be expected to be. 

In [Littlewood and Keiller 1984] an alternative method for obtaining our estimate 
of F'j is proposed. This method is similar to the previous method, the only distinction 

being in the way that the original predictive raw model cdfs are obtained in the u-plot for 

recalibration. For recalibration of the prediction of Ti, the raw model parameters are 

estimated only once, based on the previous data, tj, t2, ... ' ti-I. These single estimates of 
the raw model parameters are then used to get the raw cdfs for the previous inter-failure 

r i(t), j=S, ..., i-1. Since all these cdfs are based on all data prior to the times, 

prediction stage we shall refer to them as "retrodictions". The u-plot is then constructed in 

the same way as previously described in section 3.1, except with a different set of us, 

Uýi =pr I(t) 
i11i=S, ......... (4.3) 

These same parameters are also used to obtain our one-step-ahead prediction of Ti, Pi(t), 

as before and the joined up u-plot, G, ý, is used for recalibration of this prediction, 

P*i'(t) = (4.4) 

Since this method is based on a u-plot constructed by predicting backwards, we 

shall refer to it as the retrodictive method and the previous method as predictive but it is 

important to point out that both methods for recalibration result in true predictions; the 

recalibrated one-step-ahead prediction for Ti in each case is only based on past data, t], 

t2, ..., ti-1. It can be seen that the effort in obtaining a single recalibrated prediction for the 

retrodictive method is much less than that for the predictive method, since only a single 

optimisation to get the raw model parameters will be performed (as opposed to i-s+1 

optimisations for the predictive method). 

We can repeat this recalibration procedure, using either the predictive (see (4.1)) 

or retrodictive (see (4.4)) method for obtaining our estimate of F"i (Gi and Gj) over i=P, 

..., q, where p-s is a number suitably large for making the first recalibrated prediction, 

and we then have a recalibrated prediction system for each of the methods, 

[Pi(t), ýj(t); i=P, ..., q] ......... (4.5) 

and 

tp*ir(t), ý*jro); i=P, ..., q] ......... (4.6) 

From (4.1) it can be seen that the predictive recalibrated prediction system will consist of 

a series of one-step-ahead predictions which are at each stage based on a u-plot which 
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contains an increasing range of the raw predictions as the range of data evolves (i. e., one 
more u is added into the u-plot for recalibration at each successive prediction stage). In 

contrast, from (4.4), the u-plot for recalibration for the retrodictive method will consist of 
a completely new set of us at each successive prediction stage. It is clear that the benefit 

of the small effort required for the retrodictive method as opposed to the predictive 
method, is more or less irrelevant when considering a series of predictions; to achieve 
these prediction systems the effort required is q-p+l optimisations for the retrodictive 
method as opposed to q-s+l in the case of the predictive method. 

Since the new recalibrated predictions are truly predictive (see (4.1) and (4.4)) the 

u- and y-plots and the PLR may be used, as outlined in Chapter 3, in exactly the same 

manner as with the raw prediction system to assess the improvement gained via 

recalibration every time it is applied. In other words the analysis techniques can be used 
to assess the accuracy of our new recalibrated prediction systems (see (4.5) and (4.6)) 

and compare the improvement over the raw prediction system (see (2.7)). 

4.1 Further Investigation of th e Effectiveness of 
Recalibration 

Early investigation of the predictive recalibration method (see [Littlewood and 
Keiller 1984] and [Chan and Littlewood 1986]) suggested that the u-plots of the resulting 

recalibrated prediction systems were an improvement over the u-plot of the raw 

predictions indicating that the method had, as expected, eliminated bias in the raw model 

predictions. It was then necessary to check that this decrease in bias was not bought at the 

expense of another kind of departure of the recalibrated predictions from the truth and that 

the recalibrated predictions were indeed generally better than the raw. For this purpose it 

is appropriate to examine the log(PLR) plots, as described in section 3.3, for the 

recalibrated versus the raw predictions. In this analysis genuine improvement would be 

indicated by steady increases in the plots. In [Chan and Littlewood 1986] it is shown that 

this comparison based on the PLR gave very disappointing results. Increases in the PLR 

plots were not seen, in fact the results suggested that on this global comparison of 

performance the predictive recalibration method resulted in worse predictive accuracy than 

the raw. 

Considering the predictive recalibration method in terms of the cdfs only this is a 

surprising result. Under the conditions that the raw prediction errors are approximately 
stationary, elimination of bias (or a least improvement with respect to this) would be 

expected, and by comparison of the u-plots of the recalibrated predictions with the u-plots 
of the raw predictions, such improvement was evident. Further, since the u-plot used for 

this recalibration method is only changing slowly as the predictions proceed (only one 
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new u is added each time into the u-plot for recalibration for the predictive method) it is 
not expected that sequence of recalibrated cdfs should be significantly more noisy than the 
original raw prediction sequence (although, of course, noise in the original prediction 
sequence will not be eliminated by recalibration). On examination of the PLR in more 
detail, though, which depends upon the predictive pdfs, not the predictive cdfs, we can 
see how it is that the PLR measure reports badly about the recalibrated predictions. 

From (2.2) and (4.1) we have the recalibrated pdf, 

P*i, (t) = gi(pi(t)#i(t) 

where gi = Gi' and so from (3.1.1) and (3.3.1) the PLR for the recalibrated versus the 

raw predictions is 

qq 
!7 ýioi) I7gi(Ppi4pi) 
I=p h--p qq 

PLR *raw 
_=H i(Pi(ti)) = I7gi(ud pq qq9 

!7 ýPd R ýpi) I=p i--P 
I=p I=p 

It can be seen from figure 4-1 that the derivative of Gi, gi, will be discontinuous and it is 

suggested in [Chan and Littlewood 1986] that it is this which gives rise to bad results 
according to the PLR for the recalibrated predictions. 

6.4146099E+00 3.0098500E+00 5.4329097E-01 2.1422501E+01 1.0320000E+02 
5.6656799E+01 5.7857800E+01 1.0448100E+02 3.1793900E+02 5.9356899E+01 
2.0398399E+01 9.6389503E+01 9.00940OOE-01 9.68750OOE-01 4.0360500E+01 
2.2058400E+02 9.2947899E+01 1.7023900E+02 3.6217499E+01 9.3968300E+01 
2.0196100E+02 4.3393399E+02 3.8121899E+02 1.8233099E+02 3.0445299E+01 
1.5192400E+01 1.1890600E+02 6.0466803E+02 1.1561600E+02 1.2200900E+01 
1.9694099E+02 8.1464798E+01 2.2856900E+02 1.2170800E+02 7.7423798E+01 
1.4530099E+02 1.7540500E+02 6.3112301E+01 1.3447701E+02 5.8479500E+01 
2.9466000E+02 1.9296900E+01 4.3926901E+02 1.6530600E+02 2.3589500E+02 
2.6872000E+02 1.6284200E+02 3.3893101E+01 4.3545499E+02 9.0464401E+01 
4.1136401E+02 4.8315399E+01 9.5015602E+01 5.4050800E+01 1.2778300E+02 
2.3063499E+02 6.3438702E+02 6.7494102E+01 8.1353699E+02 3.6915500E+02 
6.2985303E+02 2.6394000E+02 4.0917999E+02 2.4075301E+02 1.5421201E+02 
1.1430699E+03 4.6192001E+02 7.5745801E+02 1.2333000E+02 2.5070200E+02 
1.3537199E+02 2.4265600E+01 3.5220901E+02 4.8819501E+02 8.3803998E+02 
2.3425301E+02 3.1668399E+02 2.4603500E+01 1.4490199E+02 1.1750800E+02 
6.1494702E+02 2.4644299E+02 4.0198401E+02 4.9175800E+01 3.8631799E+02 
1.2851300E+03 2.5958600E+02 2.6665201E+02 8.629 1 OOOE+O I 6.9162102E+01 
1.3110400E+02 1.4163699E+02 3.7624600E+02 4.0350201E+02 8.5777298E+01 
3.2732999E+02 1.7768300E+03 1.0564301E+03 1.7535201E+02 2.9024600E+02 
3.7211099E+02 

Table 4.1-1. Data set 73 generated by the DU model with parameters Y= 0.32 and 
0.57-, 101 inter-failure times (read from left to right). 
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j j Pv 
20 2.7000000E+01 7.79917OOE-04 60 7.5000000E+01 1.55018OOE-04 
21 2.9000000E+01 7.08843OOE-04 61 7.5000000E+01 1.55088OOE-04 
22 2.7000000E+01 7.8291103E-04 62 7.3000000E+01 1.6226299E-04 
23 2.4000000E+01 9.3851698E-04 63 7.5000000E+01 1.5464700E-04 
24 2.5000000E+01 9.3553303E-04 64 7.6000000E+01 1.5492800E-04 
25 2.6000000E+01 8.67903OOE-04 65 7.7000000E+01 1.4793601E-04 
26 2.8000000E+01 6.96088OIE-04 66 7.9000000E+01 1.41941OOE-04 
27 3.1 OOOOOOE+O I 5.8793498E-04 67 7.5000000E+O 1 1.5558900E-04 
28 3.4000000E+01 5.3284201E-04 68 7.6000000E+01 1.51584OOE-04 
29 3. OOOOOOOE+01 6.2939897E-04 69 7.7000000E+O 1 1.5125499E-04 
30 3.3000000E+01 5.5758603E-04 70 7.8000000E+01 1.44107OIE-04 
31 3.6000000E+01 4.7725299E-04 71 8. OOOOOOOE+01 1.3726900E-04 
32 3.7000000E+01 4.32744OIE-04 72 8.2000000E+01 1.31399OIE-04 
33 4. OOOOOOOE+01 3.81668OIE-04 73 8.5000000E+01 1.2327600E-04 
34 4. OOOOOOOE+01 3.84170OIE-04 74 8.6000000E+01 1.20898OOE-04 
35 4.4000000E+O 1 3.4150199E-04 75 8.8000000E+01 1.18218OOE-04 
36 4.7000000E+01 2.9771999E-04 76 8.6000000E+01 1.20668OOE-04 
37 5. OOOOOOOE+01 2.8047699E-04 77 8.8000000E+01 1.1565500E-04 
38 5.1 OOOOOOE+O I 2.6416799E-04 78 9. OOOOOOOE+01 1.1357800E-04 
39 5.5000000E+01 2.37842OOE-04 79 9.2000000E+01 1.07076OOE-04 
40 5.8000000E+01 2.20757OIE-04 80 9.6000000E+01 1.0 1 120OOE-04 
41 6.4000000E+01 1.93112OIE-04 81 9.8000000E+01 9.5897798E-05 
42 6.1 OOOOOOE+O I 2.06065OOE-04 82 9.8000000E+01 9.57554OOE-05 
43 6.9000000E+01 1.74310OOE-04 83 1.0000000E+02 9.2545997E-05 
44 6.2000000E+01 2.06574OOE-04 84 1.0200000E+02 9.1014903E-05 
45 6.3000000E+01 1.9739600E-04 85 1.0400000E+02 8.67962OIE-o5 
46 6.4000000E+01 1.92590OOE-04 86 1.0500000E+02 8.5462598E-05 
47 6.5000000E+01 1.92443OOE-04 87 1.0100000E+02 9.1326699E-05 
48 6.6000000E+01 1.8426700E-04 88 1.0300000E+02 8.8208697E-05 
49 7.2000000E+01 1.6284399E-04 89 1.0500000E+02 8.52851OIE-05 
50 6.8000000E+01 1.80842OIE-04 90 1.0800000E+02 8.1267499E-05 
51 7.2000000E+01 1.6622900E-04 91 1.1200000E+02 7.63255OIE-05 
52 6.9000000E+01 1.72906OOE-04 92 1.1600000E+02 7.3119401E-05 
53 7.4000000E+01 1.56006OOE-04 93 1.1900000E+02 7.0182403E-05 
54 7.9000000E+01 1.4487200E-04 94 1.1900000E+02 6.92823OIE-05 
55 8.4000000E+01 1.30728OOE-04 95 1.2000000E+02 6.8366702E-05 
56 8.9000000E+01 1.2274200E-04 96 1.2400000E+02 6.4871499E-05 
57 8.8000000E+01 1.2282400E-04 97 1.2700000E+02 6.32203OIE-05 
58 8. OOOOOOOE+01 1.4278700E-04 98 1.1800000E+02 7.1403003E-05 
59 8.3000000E+01 1.33168OOE-04 99 1.1 600000E+02 7.3642099E-05 

100 1.1800000E+02 7.0247101E-05 

. -Iol . 
1.2000000E+02 

. 
6.8214802E-05 

A 
Table 4.1-2. Successively estimated parameters, PV and 0, when the JM model is 

applied to dataset73 generatedby theDUmodel (shown in table4.1-1). Ateach stagej, 
the estimated parameters are based on inter-failure times, ti, t2, ..., tj. 1. 

Since, in practice, most reliability measurements of interest (for example, (2.3) 
and (2.6)) depend upon the predictive cdfs and not on the pdfs, these bad reports on the 

recalibrated predictor, according to the PLR, may not be of concern. However, further 
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investigation of the behaviour of these prediction systems is required so that it can be 

ascertained whether the PLR results in this case are of concern. A good way to do this is 

to simulate data so that the truth, Fift), is known, and comparison of the recalibrated and 
the raw predicted cdft can be made against the truth, to see which is actually closer. 

A simulation such as this was conducted and consisted of randomly generating 
100 samples of the realisations, tj, t2, ..., tjol of times between failures from each of 5 

of the parametric models referred to in section 2.1, JM, D, L, LV and KL (with constant 
parameters for each model). For example, table 4.1-1, above, shows the inter-failure time 
data generated for sample number 73, from the DU model, using parameters y= 0.32 and 
p=0.57 [Crow 1977]. 

Then these same models were fitted to the data (for example to each JM sample 

models D, L, LV and KL were applied) to form combinations of generated samples with 
fitted models. Each combination of generated data with fitted model will be referred as a 

case in the following text. The models were repeatedly applied as described in Chapter 2, 

with, in the notation of (2.7), s= 20 and q= 101. Table 4.1-2 shows the resulting 
estimated parameters, k and ý [Jelinski and Moranda 1972], when the JM model is 

applied to the data of table 4.1 - 1. 

Each of the resulting raw prediction systems from each combination of generated 

raw data and fitted model (i. e., each case) was then recalibrated using the retrodictive and 

predictive methods described previously in this chapter. So, for example, to obtain the 

recalibrated predictions of Tjol, for the retrodictive method, only the single last estimates 

of the parameters shown in table 4.1-2 (k = 1.2000000E+02 and ý=6.8214802E-05) 

were used in the u-plot for recalibration, whereas for the predictive method all the 

estimated parameters forj = 20,21, ..., 100 shown in table 4.1-2 were used in the u-plot 
for recalibration. 

Two simple criteria were used in order to assess which of the recalibrated and raw 

cdfs were closer to the true cdf at each prediction stage i in each case. The first consisted 

of simply observing which of the medians (see (2.6)) were closer to the true median, i. e., 
of 

A* -1 A*, 
= 

P*r-1 
WA which Wi (0.5) (or for the retrodictive method Wi i (0.5) ) or i 

1 -1 Yi (o. 5) were closer to the true median, wi = Fj (0.5). The second criterion was based 

on the Kolmogorov (K) distance (the maximum vertical distance) of the predicted cdfs 
from the true cdf. 

Let 

aft) = Pi(t) 
- t->O 
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ýjft) Pi(t) 

ý*ir(t) P*ir(t) 

Then the K distances are 

k=s,, T I ý#) I=I ai(^td I=IkI 

V= stT a*i(t) ai*(^t *j) I=Ia! I I-I 
ýr = stf a *ir(t) IIa *jr(t *jr) I=Ia *r I 

(4.1.5) 

(4.1.6) 

(4.1.7) 

Based on this criterion the predictor which has the smallest K distance is considered to be 

the most accurate predictor. 

These criteria are used to compare the performance of the recalibrated predictions 
against the raw predictions but it will be shown later that plots of j, a! and a*r 

AAAA *r A r wi, Wi- wi and Wi- wi, against i (where a ri and wir J are the and wi - wi, wi 
corresponding measures for the retrodictions Pi'"j(t) in (4.3)), can also be very 
informative. 

The retrodictive method of recalibration was investigated first with comparison 
limited to predictions of T101. That is, for each of the generated data sets, each of the 

model parameters were estimated once, based on tj, t2, ... ' t100 to obtain Pr ! 01(t), j 

20, ... ' 100 and P101(t), and 

ur 
101 

= 
Pr 101(t ) 

iij 20, ..., 100 

wereusedtoobtainG, " andhence'ý"*(t), accordingto(4.4). Asummaryoftheresults 01 Irloi 
of comparison of the resulting recalibrated cdfs, and raw cdfs, against the true cdf for 
T101, based on the K distance and median criteria, is shown in table 4.1-3. This table 

shows the results for all cases and the results for those cases which correspond to some 
criteria of interest listed in the first column. Ur and yr are the u- and y-plots of the 
retrodictions at stage 101, i. e., the Pr 101(t). Let N be the total number of cases, Nc be i 
the number of cases which comply with the criterion, c, listed in the first column and nc 
be the number of cases which comply with c and for which the retrodictive recalibrated 
prediction for T101 is closer to the true prediction (according to either the K distance or 
median predictions) than the raw. The percentages 100 E- 

of the total cases which fit N' 
into each criterion, c, listed in the first column are shown in the second column and the 
remaining percentages are the proportion of these cases for which the retrodictive 
recalibrated prediction for T101 is better than the raw, i. e., 100 5-c- 

Nc 
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CRITERION 

C 

CASES 
% 

K 
% 

MEDIAN 
% 

All cases 100 20 44 

ur significant 5 67 64 

ur significant at 1% 2 88 82 

yr insignificant 71 18 45 

yr insignificant at 20% 54 15 41 

ur significant, yr insignificant 13 160 1 60 
__j 

Table 4.1-3. Summary of performance of retrodictive recalibrated predictions of T101 

compared with raw predictions; %s shown are the proportion of cases which are 

applicable for each criterion, c, and for which the recalibrated predictions are better than 

the raw. Unless otherwise listed significance levels for u- and y-plots are 5%. 

The results from this comparison were very disappointing. According to the K 

distance criterion only 20% of all the recalibrated cdA were closer to the true cdft than the 

raw cdfs; this figure for the comparison based on median predictions is somewhat better 

but still only 44% of the recalibrated median predictions were closer to the true medians 
than the raw median predictions. An important observation here is that the majority of the 

,r) are good. Based on the K ur-plots on which this recalibration is based (i. e., the G 01 
test described in section 3.2 only 5% of these ur-plots are significant at the 5% level. 

Limiting the comparison to only these cases where the ur-plots indicate significant error in 

the retrodictions the percentage where the recalibrated predictions are closer to the true 

predictions increase to 67% and 64% for the K distance and median criteria, respectively. 
If we limit selection further to ur-plots which are significant at the I% level these 

percentages improve even more to 88% and 82%. For most of the cases, then, the K 

distance gives worse results than the median predictions when good ur-plots are included 

in the comparison, but these criterion give increasingly similar results as good ur-plots are 

excluded. 

From table 4.1-3 it can be seen that most of the yr-plots (71%) are insignificant at 
the 5% level. Limiting comparison to just these cases with good yr-plots little 

improvement is seen over the results when evidence from the yr-plots is not taken into 

account; in fact, in some cases results are marginally worse when limiting the comparison 
to good yr-plots. 

Table 4.1-4 shows the results when all the retrodictive recalibrated predictions of 
T4o, ... ' Tiol are considered. So here, a different Giis used to construct the recalibrated 
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predictions for each Ti. Some criteria of interest, c, are listed in the first column. These 

criteria have been extended to include the u-plots of the sequence of retrodictive 
recalibrated predictions themselves, u*, in order to assess whether this method eliminates 
bias from the raw predictions. As with table 4.1-3, the percentage of the total cases, 100 
Nc 
ff which fit into each criterion, c, are shown in the second column. Let p.. be the 

percentage of the predictions of T40, ... ' T101, for which the recalibrated cdfs are closer 
to the true cdfs than the raw (according to either the K distance or median predictions) for 

a single case, m. Let nc be the number of cases which comply with criterion c for which 

pm > 50%. The remaining percentages are then 100 -ý'- In other words they are the Nc' 

percentage of cases for which the recalibrated predictions are better than the raw for the 

majority of the prediction sequence for each case. 

CRITERION 

C 

CASES 
% 

K 
% 

MEDIAN 
% 

All cases 100 9 43 

ur significant 5 46 58 

ur significant at 1% 2 63 75 

yr insignificant 71 8 40 

yr insignificant at 20% 54 7 38 

ur significant, yr insignificant 3 47 56 

u*r insignificant 55 8 45 

u*r insignificant at 20% 41 8 43 

ur significant, u*r insignificant 3 43 62 

ur significant at 1 %, U*r insignificant 1 56 72 

yr insignificant, u*r insignificant 46 7 42 

ur significant, yr insignificant, u*r insignificant 2 41 56 

u*r better than ur 16 17 45 

ur significant, U*r better than ur 3 42 60 

ur significant at I%, u*r better than ur 2 52 68 

yr insignificant, u*r better than ur 14 14 41 

ur significant, yr insignificant, u*r better than ur 12 139 154 

Table 4.1-4. Summary of performance of retrodictive recalibrated predictions of T40, 

.... 
T101, compared with raw predictions; %s shown are the proportion of cases which 

are applicable for each criterion, c, and for which the recalibrated predictions are better 

than the raw. Unless otherwise listed significance levels for u- and y-plots are 5%. 
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Comparing these results with the results in table 4.1-3 it can be seen that the 

results over the sequence of predictions are generally worse than just considering the 

prediction of T101, particularly for comparison based on the K distance. For the smaller 
values (less than 50% in table 4.1-3) this may be partly because the measure used in table 
4.1-4 will tend to exaggerate the results in table 4.1-3 but for the larger values this cannot 
be the case. It seems then that performance of the earlier recalibrated predictions is not as 

good as performance at T101. This may be because fewer u values are used in 

recalibration of early raw predictions than of later raw predictions or because there is less 

bias in the early raw predictions than in the later raw predictions. Apart from the 

percentages being generally lower in analysis of the sequence of predictions the pattern 
for performance based on the criteria listed in the first column is similar for both tables, 

with figures increasing as good ur-plots are excluded while again little improvement is 

seen by limiting the analysis to good yr-plots, and sometimes this makes things 

marginally worse. 

L 

Examination of the results based on the u*"-plots in table 4.1-4 shows that 

approximately 
L 

of these plots are insignificant at the 5% level. Limiting comparison to 
2 

just these cases with good U*r-plots gives no improvement in the results. Only 16% of 

cases resulted in U*r_plots which were better than their corresponding ur-plots and little 

improvement is seen when the comparison is limited to just these cases. Notice that about 
50% of cases for which the ur-plots are significant at the 5% level resulted in better U*r_ 

plots, and most cases for which the ur-plots are significant at the 1% level resulted in 

better U*r-plots. These observations indicate that the retrodictive recalibration method does 

not appear to eliminate bias present in the raw predictions. 

To summarise then, performance of the retrodictive recalibrated predictions is 

generally worse according to the K distance than according to the medians but the 

percentages which show improvement over the raw predictions come into closer 

agreement as good ur-plots are excluded from the comparison. Further, the overriding 
factor affecting whether improvement is seen in the recalibrated predictors over the raw is 

whether the ur-plot is bad or not, but very few cases actually result in bad ur-plots. This 

indicates that either most of the raw one-step-ahead predictions are unbiased or that they 

are biased but the retrodictive methodfor estimating this bias is inaccurate. To gain more 
insight into these observations some examples will now be considered in detail. 

43 
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Figure 4.1-1. ul'-plot of retrodictions of T20, ..., 7'1()o (GIO'l) from the raw DU model 

and data set 7 generated by the L model. 

In those cases where the ur-plots are good G101 is approximately the identity 
function and so the recalibrated and raw cdf. s can only be marginally different. The 

rnedian results, that approximately 
/ 

of the raw are closer to the truth than the recalibrated, 2 

would be expected in such circumstances. The K distance results however favours the 

raw cdfs in far more proportions of the cases than /. There is, in fact, a simple 2 

explanation for this behaviour. If the Ur-plot used in the recalibration is good, then the 
Gr 101 function, even though it is close to the 45' line, will tend to be rather "irregular" 

(see figure 4.1-1) due to the randomness of the failure data. This results in the 

recalibrated cdj'also being irregular (see figure 4.1-2) whereas the raw and true cqf's are 

smooth. It can be seen how in such cases, where there is little difference between the raw 

and recalibrated cdfs, the K distance criterion will tend to discriminate against the 

recalibrated cdj'. 
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Figure 4.1-2. True, raw and retrodictive recalibrated c4fis of T101 for the DU model 
and data set 7 generated by the L model. 

In any case, it is clear that even in cases where the Ur-plots (G, r 01) used in this 

method are significantly bad, the result that in only about 60% of cases the retrodictive 

method of recalibration gives improvement is disappointing. Examining an example in 

more detail we can see the behaviour of the various predictions. 
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generated by the LV model. 

Consider figure 4.1-3 which shows the two u-plots which are used in the 

1.0 

0.0 

A'distance 

r Figure 4.1-3. Ur-plot of retrodictions of T20, 
..., 

T100 (G101) and u-plot of one-step- 

ahead predictions of T20, ..., T100 (G101) from the raw JM model and data set 75 

retrodictive and predictive methods of recalibration of a one-step-ahead prediction of Tlol 

from the raw JM model. The Ur-plot for the retrodictive method is significant at the 2% 

level and the shape of this plot indicates that the retrodictions are, on average, pessimistic. 
For the predictive method the u-plot is significant at the 1% level, but in this case the 

shape of the plot indicates that the raw one-step-ahead predictions are, on average, 

optimistic. The one-step-ahead prediction to be recalibrated for both methods is the same, 

i. e., P101(t), and clearly, in this particular case, each method will adjust this c4fin 

opposite directions. 
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Figure 4.1-4. True and raw cdfs of T101 together with cdjý resulting from retrodictive 

and predictive methods of recalibration, based on the u-plots in figure 4.1-3 for the JM 

model and data set 75 generated by the LV model. 

From figure 4.1-4, which shows the true, raw and recallbrated cdfs resulting 
from both methods, it is quite clear that the retrodictive method is adjusting in the wrong 
direction resulting in a cdJ'further from the truth than the original raw c4l'I while the 

predictive method results in a cdJ'which is much closer to the true cqf'than was the raw 

c4f. 
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Figure 4.1-5. u*'-plot of retrodictive recalibrated predictions of T40, 
..., 

T100 (G I*r ) 0/ 

and u*-plot of predictive recalibrated predictions of T40, 
..., 

T100 (Gl*l) for the JM 0 

model and data set 75 generated by the LV model. 

Figure 4.1-5 shows the u-plots for the recalibrated predictions of T40, ..., T101 

themselves when the two methods are successively applied over the raw predictions for 

this data set. These u-plots indicate that the predictive method has indeed eliminated the 
bias from the raw predictions (the u*-plot is insignificant at the 20% level) while the 

retrodictive method has not (the u*'-plot is significant at the /% level). The u*'-plot 

indicates that the retrodictive recalibrated predictions are highly optimistic. 
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Figure 4.1-6. Progressive deviations from the truth, according to the K distance, of the 

raw one-step-ahead predictions, the retrodictions for recalibration of T101, and both 

recalibrated prediction systems for the JM model and data set 75 generated by the LV 

model. 

Figures 4.1-6 and 4.1-7 show the departures (see pages 38-39) of cqf'S for the 

successive raw one-step-ahead predictions, the retrodictions (made at prediction stage 
/01), and the predictions resulting from the two methods of recallbration, from the true 

cdf, s as the data evolves. It can be seen that the raw one-step-ahead predictions are fairly 

consistently optimistic throughout the data. In contrast the errors in the retrodictions made 
for recalibration of T101 are highly non-stationary with, broadly speaking, optimism only 
present as the retrodictions approach i= 10/. As a result it can be seen how there is 
insufficient adjustment for optimism in the raw prediction of T101 via the retrodictive 
method of recalibration and evidence from the u*'-plot and from the deviations frorn the 
truth of the retrodictive recalibrated predictions shown in figures 4.1-6 and 4.1-7 

suggests that this is the case throughout the data. For the predictive method it can be seen 
that the resulting recalibrated predictions are adjusted towards the truth, throughout the 
data. 
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Figure 4.1-7. Progressive deviations from the truth, according to the medians, of the 

raw one-step-ahead predictions, the retrodictions for recalibration of T101, and both 

recalibrated prediction systems for the JM model and data set 75 generated by the LV 

model. 
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Figure 4.1-8. 
-v"-plot of retrodictions of T20, ..., T100 made for recalibration of' TIO/ 

from the raw JM model and data set 75 generated by the LV model. 

It is interesting to observe (see figure 4.1-8) that the Vr-plot of the retrodictions 

made for recalibration of T101, does not reveal the apparent non-stationarity in the error in 
the retrodictions, in fact this plot is insignificant at the 20% level. 
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Figure 4.1-9. Ur-plot of retrodictions of T20, 
..., 

T100 (G101) and u-plot of one-step- 

ahead predictions of T2(), 
..., 

T100 (G101) from the raw JM model and data set 73 

generated by the DU model. 

In the example just shown the Ur-plot for the retrodictions indicated significant 
bias and the adjustment made resulted in worse predictions than the raw. This was an 

extreme case. As stated previously, more commonly the Ur-plot for the retrodictions 

indicated no bias. Application of the raw JM model (see the estimated parameters in table 

4.1-2) to the data generated by the DU model shown in table 4.1 -1 Is an example where 

the Ur-plot for the retrodictions indicated no bias. Figure 4.1-9 shows the two u-plots 

which are used in the retrodictive and predictive methods of recalibration of the one-step- 

ahead prediction of T101 from the raw JM model. Again these plots indicate that the series 

of one-step-ahead predictions are highly optimistic (the u-plot is significant at the /% 

level) and in this case, on average, there is no bias in the retrodictions (the ul'-plot is 

insignificant at the 20% level). 
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Figure 4.1-10. True and raw cdfs of T101 together with cdjs resulting from 

retrodictive and predictive methods of recalibration based on the u-plots in figure 4.1-9 

for the JM model and data set 73 generated by the DU model. 

From figure 4.1-10, which shows the true, raw and recalibrated cqfý resulting 
from both methods, it can be seen how the retrodictive method makes little adjustment for 

the error in the raw predictive cqf while, in contrast, the predictive method makes an 

appropriate adjustment for the optimism in the raw cdf. 
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Figure 4.1-11. Actual rate from the DU model (the data in table 4.1 - 1) and estimated 

rate at stage i, for i= 40,60,80 and 100 from the raw JM model (the parameters in table 
4.1-2). 

Figure 4.1 -11 shows the true rate from the DU model for the data of table 4.1 -1 
and the estimated rate, at a number of prediction stages, i, from the JM model (from the 

estimates shown in table 4.1-2). So, at each prediction stage, i, this indicates the nature of 

the errors in the retrodictions used for recalibration of Ti, and the nature of the error in the 

one-step-ahead prediction of Ti. It can be seen how the one-step-ahead rate predictions 

are fairly consistently optimistic while the retrodictions will have non-stationary errors 

with only optimism occurring as i is approached (and prior to this the retrodictions are 

mostly pessimistic). This will clearly result in insufficient adjustment for optimism in the 

raw one-step-ahead predictions for the retrodictive method throughout the data. 
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Figure 4.1-12. u*'-plot of retrodictive recallbrated predictions of T40, ..., T100 (Gl*" 01) 
and u*-plot of predictive recalibrated predictions of T40, ..., Tjoo (GI * 1) for the JM 0 

model and data set 73 generated by the DU model. 

Figure 4.1-12 shows the u-plots for the sequence of recalibrated predictions 

themselves. This confirms that the retrodictive recalibrated predictions remain optimistic 
(the U*r_plot is significant at the /% level) while the predictive recalibration method has 

eliminated this optimism in the raw predictions (the u*-plot is insignificant at the 20% 

level). 
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Figure 4.1-13. yr-plot of retrodictions of T2o, ..., Tloo made I, or recalibration of TIO, 

from the raw JM model and data set 73 generated by the DU model. 

It is interesting to observe (see figure 4.1-13) that, as for the previous example, 

the 
_Vr-plot 

of the retrodictions for recalibration of T101 does not indicate that there is non- 

stationarity in the errors in the retrodictions since it is insignificant at the 20% level. 

In conclusion, it seems that the retrodictive method provides inaccurate estimates 

of the error in the raw one-step-ahead predictions and further, that the errors in the 

retrodictions used in the ul'-plot for this method of recalibration are often non-stationary, 

although they"-plots are not a very good indication of this non-stationarity. 

It is clear that the inefficiency of the retrodictive method is due to such non- 

stationarity in the errors in the retrodictions. It is perhaps not surprising that these errors 

are non-stationary since at each stage the predictions are different kinds of predictions 
(i. e., one-step-behind, 2-steps-behind and so on for the retrodictions), and, more 
importantly, different in kind from the prediction which is being recalibrated (which is a 

one-step-ahead prediction). It seems that for recallbration of a particular type of 
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prediction, the predictions used in the u-plot for recalibration must be the same type of 
prediction. This has serious implications on the feasibility of using the recalibration 
technique to adjust for errors in predictions further into the future than one-step-ahead. 
This issue is discussed further in Chapter 9. 

Table 4.1-5 shows the summarised results for the predictive method of 
recalibration for the single predictions of T101. Some criteria of interest are listed in the 
first column, followed by the percentages of total cases which conform to these criteria 
and then the percentages of these cases for which the predictive recalibrated predictions 
are closer to the truth than the raw predictions, based on the K distances and the medians. 

CRITERION 

C 

CASES 
% 

K 
% 

MEDIAN 
% 

All cases 100 61 70 

u significant 43 89 91 

u significant at 1% 27 92 94 

y insignificant 77 56 66 

y insignificant at 20% 55 52 64 

u significant, y insignificant 1 33 1 88 1 90 

Table 4.1-5. Summary of performance of predictive recalibrated predictions of T101 

compared with raw predictions; %s shown arc the proportion of cases which arc 

applicable for each criterion, c, and for which the rccalibrated predictions arc better than 

the raw. Unless otherwise listed significance levels for u- and y-plots are 5%. 

Comparing table 4.1-5 with the equivalent results for the retrodictive method in 

table 4.1-3 it can be seen that the predictive method is much more effective than the 

retrodictive method. Now, for all cases, the percentage for which the predictive 

recalibrated predictions are closer to the truth than the raw are 61 % according to the K 
distance and 70% according to the medians, while the equivalent percentages for the 

retrodictive method were 20% and 44%, respectively. Nearly half of the u-plots are 
significant at the 5% level indicating that there are often errors in the one-step-ahead 

predictions while for the retrodictive method only 5% of the ur-plots were significant at 
the 5% level confirming that the retrodictive method and the predictive method often give 
very different estimates of the error in the raw predictions. A similar pattern to the 

retrodictive method is seen for the predictive method when good u-plots are omitted from 

the comparison, with the K distance and median percentages levelling out. For 

significantly bad u-plots in about 90% of cases the predictive recalibrated predictions are 
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closer to the truth than the raw. Limiting the analysis to good y-plots only, again shows 
no improvement in the results, in fact, surprisingly, the percentages become marginally 
worse. 

Table 4.1-6 shows the results when all the predictive recalibrated predictions of 
T40, ..., T101 are considered. The criteria, c, listed in the first column have been extended 
to include the u-plots of the sequence of predictive recalibrated predictions themselves, 

u, in order to assess whether this method eliminates bias from the raw predictions. The 

percentage of the total cases which fit into each criterion are again shown. The remaining 
percentages are, as in table 4.1-4, those proportion of these cases for which the predictive 
recalibrated cdfs are closer to the true cdfs than the raw, for the majority of each of the 

sequence of predictions of T40, ..., T101 for each case. 

CRITERION 

C 

CASES 
% 

K 
% 

MEDIAN 
% 

All cases 100 38 61 

u significant 43 70 86 

u significant at 1% 27 82 93 

y insignificant 77 38 60 

y insignificant at 20% 55 38 60 

u significant, y insignificant 33 71 85 

u insignificant 91 39 61 

u insignificant at 20% 74 37 59 

" significant, u* insignificant 39 72 86 

" significant at Mu* insignificant 24 82 93 

y insignificant, u* insignificant 75 39 60 

* significant, y insignificant, u* insignificant 31 72 85 

** better than u 68 51 72 

* significant, u* better than u 40 73 87 

* significant at 1 %, u* better than u 26 83 93 

y insignificant, u* better than u 56 49 69 

u significant, y insignificant, u* better than u1 31 1 73 185 
-1 

Table 4.1-6. Summary of performance of predictive recalibrated predictions of T4o, ..., 
T101, compared with raw predictions; %s shown are the proportion of cases which are 

applicable for each criterion, c, and for which the recalibrated predictions are better than 

the raw. Unless otherwise listed significance levels for u- and y-plots are 5%. 
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Comparing table 4.1-6 with the equivalent results for the retrodictive method in 
table 4.1-4 it can be seen that the predictive recalibration method is much better than the 
retrodictive method. Notice, particularly, that for the predictive method 91% of the uý- 
plots are insignificant at the 5% level and 68% of cases result in uý-plots which are better 
than their corresponding u-plots, whereas these percentages for the retrodictive method 
are 55% and 16%, respectively. 

Comparing table 4.1-6 with 4.1-5 it can be seen that the performance of the 

predictive recalibration method over the whole range of predictions is worse than for the 

single prediction of T101. The difference in performance for all cases according to the K 
distance and median predictions is larger than before indicating that early u-plots are not 
showing much bias. Again these figures level out as good u-plots are omitted from the 

analysis, becoming close to 90%, but again percentages for the K distance and medians 
are more disparate than for the single prediction of T101. No improvement is seen when 
the comparison is limited to good y-plots only or to good u*-plots only. Some 
improvement is seen when limiting the comparison to those cases for which the uý-plot is 

better than the u-plot but not as much improvement as when limiting the comparison to 
bad u-plots only. Notice that most cases with significant u-plots at the 5% level result in 

improved uý-plots indicating that the predictive recalibration method usually reduces the 
bias in the raw predictions. 

To summarise, then, the predictive recalibration method often results in improved 

predictions and the overriding factor affecting improvement is whether the u-plot is bad or 

not. Improvement is given in about 90% of cases were the u-plot is bad while in those 

cases where the u-plot is good the recalibrated, and raw predictions can only be marginally 
different. 

It is interesting to observe that, given that the u-plot is bad, limiting analysis to 

good y-plots does not seem to eliminate those cases where non-stationarity in the 

prediction errors causes the recalibrated predictions to be worse than the raw predictions. 
On the other hand it should be noted that significant non-stationarity in the prediction 

errors does not necessarily mean that recalibration will not give improvement although it 

might be expected that the resulting recalibrated predictions would still have bias even if 

they are closer to the truth than the raw predictions. 

Having established that the predictive recalibration method is effective we now 

need to investigate the PLR performance of the various recalibrated predictions. The PLR 

was evaluated for the recalibrated versus the raw predictions over the whole range of 
predictions, as defined in (4.1.1) (with p= 40 and q= 101). As previously reported the 

recalibrated cdfs were closer to the raw for the majority of this prediction sequence in 
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38% and 61% of cases according to the K distance and medians, respectively. Yet, only 
0.2% of cases gave PLRs that were greater than 1. It is clear that the PLR is a poorjudge 
of the efficiency of the recalibration technique. 

More insight can be gained by investigating the PLR behaviour for an example. 
For this purpose sample number 45 generated by the L model, with raw predictions from 

the KL model, was chosen. This case was chosen since all the recalibrated predictions 
(over i= 40, ... ' 101) were better than the raw according to both criteria for measuring 

closeness to the true cdf. Table 4.1-7 shows the gi(ui) and the resulting PLR as the 

predictions progress. 

i gi(ud PLRýr8l, v i gi(ud PLRýr8l, v 

40 5.23603E-01 5.23603E-01 70 4.34735E-01 7.07512E-05 
41 1.05105E+00 5.50333E-01 71 6.06569E-01 4.29155E-05 
42 2.06170E+00 1.13462E+00 72 1.33883E+00 5.74565E-05 
43 9.17022E-0 I 1.04047E+00 73 6.86992E-01 3.94722E-05 
44 3.07457E+00 3.19901E+00 74 3.25658E+00 1.28544E-04 
45 6.85467E-0 1 2.1928 1 E+00 75 6.76687E-01 8.69843E-05 
46 2.75118E-0 I 6.03282E-01 76 1.70089E+00 1.47951E-04 
47 1.08422E+00 6.5409 1 E-0 1 77 1.46506E+00 2.16757E-04 
48 1.68435E+00 1.10 172E+00 78 1.21415E+00 2.63175E-04 
49 6.61293E-01 7.28558E-01 79 2.16309E+00 5.69272E-04 
50 1.87501E-01 1.36605E-01 80 3.67966E+00 2.09473E-03 
51 2.24539E+00 3.06732E-01 81 5.16615E-01 1.08217E-03 
52 2.91008E-01 8.92616E-02 82 2.8103 1 E-0 I 3.04122E-04 
53 4.21032E-01 3.75820E-02 83 5.77873E-01 1.75744E-04 
54 4.20720E-01 1.58115E-02 84 3.39638E+00 5.96894E-04 
55 3.81595E-01 6.03359E-03 85 4.2054 1 E+00 2.51018E-03 
56 1.96638E+00 1.18643E-02 86 1.28611 E-01 3.22837E-04 
57 6.11061E-01 7.24983E-03 87 2.97652E-01 9.60931E-05 
58 6.39222E-01 4.63425E-03 88 7.08922E-01 6.81225E-05 
59 2.53226E+00 1.17351E-02 89 3.31473E+00 2.25808E-04 
60 3.25597E+00 3.82092E-02 90 6.28990E+00 1.4203 1 E-03 
61 2.51928E-01 9.62597E-03 91 4.79540E-01 6.81095E-04 
62 7.12889E-01 6.86225E-03 92 6.31262E-0 I 4.29949E-04 
63 6.40058E-01 4.39224E-03 93 6.12045E-01 2.63148E-04 
64 5.09638E-01 2.23845E-03 94 2.39503E+00 6.30248E-04 
65 5.13134E-01 1.14863E-03 95 1.33488E-01 8.41306E-05 
66 5.61443E-01 6.44888E-04 96 1.92178E-01 1.61680E-05 
67 9.64067E-01 6.21715E-04 97 4.83771E-01 7.82163E-06 
68 5.620OIE-01 3.49404E-04 98 4.40768E-01 3.44753E-06 
69 4.65780E-01 1.62746E-04 99 6.48123E-0 I 2.23442E-06 

100 6.33741E-01 1.41604E-06 
101 2.77270E+00 3.92627E-06 

Table 4.1-7. Successive values of gi(ui) and PLR for the recalibrated versus the raw 

predictions, when the KL model is applied to the data set 45 generated by the L model. 

60 



It can be seen that the gi(ui) are less than I at most stages and as a result the PLR 

generally (with some variation) decreases with i until at the end of the data set its value is 

very much less than /. 

0 

0-0 

Figure 4.1-14. True and raw cdjs 01' '166 together with c(ffresulting frorn predictive 

method of recalibration, for the KL model and data set 45 generated by the L model. 

Figure 4.1-14 shows the true, raw and recalibrated predicted cty's for The 

recalibrated cdf is indeed closer to the true cqf'than the raw cqf', as our criteria reported. 
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Figure 4.1-15. True and raw pdfs Of T66 together with pdj'resulting from predictive 

method of recalibration, for the KL model and data set 45 generated by the L model. 

Figure 4.1-15 shows the corresponding predictive pdfs. The recalibrated ptIfis 

very discontinuous over t (as distinct from noise in the predictions over i). It cannot be 

said that it is closer to the true pdf than the raw I)qf'and so it would be expected that the 

PLR would favour the raw pdf over the recalibrated. This is in spite of' the good 

performance of the recalibrated cqf. 

62 

01 2_1000 



10 

0 
0-0 

............ 

Ij 
1-0 

'Ii (u) and 966(u), for the KL model Figure 4.1-16. True and estimated pdjý, Of U66, J66 

and data set 45 generated by the L model. 

From (4.2) we have, Pjf(ýj(Ti)) = Fi(Ti) and so, since Uj = ýj(Tj), differentiating 

with respect to Ti, gives 

J7(ud =' 
fi(ý i (Ud) 

...... (4.1.8) 
ýj(ý-i / (Ui)) 

Figure 4.1-16 shows the true pdf of U606601) together with the estimated p4l'I i. e., 'li 

960(u)- It can be seen how the estimate is very discontinuous whereas the true ptff is 

smooth. 
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" (u) and G66( ), Figure 4.1-17. True and estimated C*, 'ý Of U66, F66 u for the KL model 

and data set 45 generated by the L model. 

Figure 4.1-17 shows the corresponding true and estimated ctlj'S F6"6(u) and 
G66(u). Apart from the lack of smoothness in G66, they are quite close. 

It is the step-function nature of the predictive c(ffof the U (see figures 4-1 and 
4.1-17) which results in the discontinuity in the recalibrated predictive pdj'and the ptffol' 
U (see figures 4.1-15 and 4.1-16). It is clear that the bad results according to the PLR arc 
due to the discontinuities in the predictive pqfý even though estimates ofthe ct#s are quite 

good. If the predictive errors are truly stationary, then as i gets larger we would expect 

our Gi function to approach the true cdj'of the Ui but this does not necessarily mean that 

the gi function will approach the true pdf of the Ui. 

In fact it seems that this discontinuity in the recalibrated predictive p(ýfs is enough 

to outweigh any decrease in bias bought by the recalibration method 'n "nost instances and 
that the PLR may only be expected to report favourably about the recallbrated predictions 
in situations where the initial bias in the raw predictions is extreme. 
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4.2 Application of Recalibration 

In the light of the simulation exercise the retrodictive recalibration method will not 
be considered any further as it is clearly ineffective. On the other hand, the simulation 
suggested that the predictive method of recalibration gave improved predictions over the 
raw models in 90% of the cases when the u-plot of the raw predictions was significantly 
bad and it is clear that in cases when the u-plot is good the resulting recalibrated 
predictions will be marginally different from the raw predictions. The simulation also 
suggested that evidence from the y-plot of the raw predictions will tell us little about 
whether we should expect improvement in the recalibrated predictions over the raw. This 

suggests that a good strategy for getting improved predictions would be to apply the 

predictive recalibration method as a matter of course. Using such an approach we could 
have reasonable confidence that the resulting predictions of interest will be better (or 

marginally different) than the raw predictions, but, due to the discontinuity in the 

resulting recalibrated predictive pdft, the PLR may not be used to assess the improvement 

gained by recalibration. 

Since predictions of interest may depend on the predictive pdfs and because it 

would be better to be able to use the PLR to compare the performance of the recalibrated 

predictions a technique for smoothing the u-plots before recalibration is introduced in 

[Chan 19861 and [Chan and Littlewood 1986]. This technique consists of smoothing each 
Gi using least squares cubic splines before recalibration. This results in smooth 

recalibrated pdfs but clearly most probability predictions of interest will be altered little by 

smoothing. This technique obviously involves more effort than simply using the joined 

up u-plot for recalibration but this added effort is fairly negligible when compared with 
the effort in estimating some of the raw parametric model parameters referred to in section 
2.1. 

Application of this spline-recalibration technique has been shown in [Chan 1986] 

and [Brocklehurst et al. 1990] to frequently give dramatic improvements over the raw 

models, not only with respect to bias (i. e., improvement in the u-plot) but also on the 
basis of the PLR. Typically, when starting with a number of raw prediction systems 

which are in error to differing extents, the recalibration technique tends to improve these 

predictions and the resulting recalibrated predictions are often fairly close in accuracy. 

Recent experience of applying the spline-recalibration procedure [Brocklehurst et 
al. 1991; Brocklehurst and Littlewood 1992] shows that there is sometimes evidence of 
non-stationarity in some of the raw model prediction errors on some of the data sets. 
Typical behaviour, for example, might be that the raw model predictions are accurate 
early on in the data set and optimistic later on. The presence of the early raw predictions 
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in the u-plot used for recalibration in this scenario would result in insufficient adjustment 
for optimism in the later predictions. It seems likely that, in the presence of such non- 
stationarity in the prediction errors, more recent errors in the raw predictions may give a 
clearer indication of the current predictive error than earlier predictions. It such 
circumstances it seems sensible to omit early predictions from the u-plot used for 

recalibration. It was decided, therefore, to recalibrate using fixed size moving windows, 
as well as on the whole sequence of predictions. In other words, for a window of size w, 
we use the w most recent raw one-step-ahead predictions (of Ti-w, ... ' Ti-1) in order to 
form the u-plot for recalibration of the prediction of Ti. Clearly any gain in predictive 

accuracy by eliminating bias by recalibrating with windows (as opposed to without) may 
be countered by the increase in noise which is likely to be more prominent with smaller 

window sizes. 

The subsequent analysis in Chapter 8 will be limited to the spline-recalibration 
technique since it is preferable to be able to use the PLR in order to assess the accuracy of 

the recalibrated prediction systems. Predictions resulting from the spline-recalibration 

technique applied both without windows and with some arbitrarily chosen fixed window 

sizes to all the raw prediction systems from the parametric models referred to in section 
2.1 and the non-parametric models described later in Chapter 5, will be investigated. This 

results in a number of prediction systems (I raw and several spline-recalibrated) to 

compare for each of the raw models on each of the data sets presented in Chapter 7. 
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5 Non-Parametric Reliability Models 

As stated previously the recalibration technique often results in predictions which 
are fairly close in accuracy even when applied to a group of raw prediction systems which 
are giving quite different raw predictions. So, for example, the JM model, which 
frequently gives more optimistic raw predictions than the other 7 parametric models 
referred to in section 2.1, may, after recalibration, result in predictions very close to the 
recalibrated predictors from the other models. This suggests that it may not be necessary 
to apply sophisticated models since a simple model, together with the recalibration 
technique, may result in comparable predictions. 

In this chapter some simple non-parametric models are described. These models 
do not have the stringent modelling assumptions of many of the parametric models and 
generally encapsulate just some of the more basic assumptions of many of the parametric 
models. It is felt that any resulting inaccuracy in the local distribution due to the simplicity 

of these models may be later eliminated by the recalibration technique. 

The non-parametric models described here attempt to estimate the evolution of the 

rate of occurrence of failures of the system. Since these models are not as well-known as 
the parametric models referred to in section 2.1 they will be described in more detail. 

5.1 Completely Monotone Model 

The first model to be described is due to Miller and Sofer [Miller and Sofer 1985; 

Miller and Sofer 1986a; Miller and Sofer 1986b]. 

Miller [Miller 1986] observed that the rate functions of most existing software 

reliability models have the complete monotonicity property, i. e., if the rate function at 
time r (the total elapsed time) is r(T), then 

dqr(, r) 
2ý 0 -r 0,0,1,2, (5.1.1) 

dq, r 

This led to the formulation [Miller and Sofer 1985; Miller and Sofer 1986b] of a non- 
parametric approach to estimating the failure rate in which an approximation to this 

complete monotonicity property is used as a constraint. 

As in Chapter 2, given inter-failure time data, tI, t2, ..., tj-l, the objective is to 

obtain a one-step-ahead prediction for the next inter-failure time, Tj. The problem is first 
j-1 

discretised by dividing the total elapsed time up to the j-1th failure, rj., = Ztk, into a 
k--I 
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specified number, n, of equal intervals. The rates, rk, are kept constant during each 
interval, k, k=1, ..., n, resulting in a piece-wise constant rate function and are 
constrained to be a completely monotone sequence, i. e., 

(_I)q, äq rk 2 0, q=0,1,2 k= q+l, ..., n 

where Aqrk = dq-1 rk - Aq-lrk-I and Yrk 
= rk- 

Crude estimates of the rates, rk, are made from the previous data, t], ... ' tj. 1, and the 

solution vector of rates, Fn = (r 1, ..., -rd, is found by finding the rates satisfying (5.1.2) 

up to a specified order, d, which are closest to these estimates, using the criterion of least 

squares. This leads to a quadratic programming problem. The last rate, 7n, together with 
the assumption of exponential inter-failure times is then used to obtain the one-step-ahead 

prediction for Tj, so the predictive cdf and pdf are 

Pjýt) =I- e-n' 

and 

ýj(t) = 7n e-int 

respectively. As mentioned above, it is hoped that consistent inaccuracies in the 

predictions which may arise as a result of this simple approach of plugging in the most 

recently estimated rate (which in the presence of reliability growth in the data may be 

expected to result in marginal pessimism in the predictions), and the assumption of 

exponentiality, may be eliminated later by the recalibration technique described previously 
in Chapter 4. 

Investigation of the performance of this completely monotone non-parametric 

model, which we shall refer to as CM, has been carried out on simulated data in [Miller 

and Sofer 19851 and [Miller and Sofer 1986b] and on real data in [Chan 1986]. The 

major finding of this work was that this model is a good candidate for one-step-ahead 

prediction when compared with the other more conventional parametric models. It was 

also found that application of this model often gave rise to quadratic programming 

problems for which the constraint matrix can be ill-conditioned [Miller and Sofer 1986a] 

and can become more so for higher values of d. The investigation in [Chan 1986] 

suggested that, in any case, there was little to be gained in predictive accuracy by 

considering differences which are higher than second order (i. e., d> 2). In the later 

analysis in Chapter 8 we shall limit our investigation to application of this model with d= 
1,2 and 3 and the performance of the raw and spline-recalibrated versions of these 
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predictors will be examined. The software used to apply this model is coded in 
FORTRAN and was executing on a Sun 3/80. 

The remaining non-parametric models to be described in this chapter are similar to 
the CM model except that the solutions are constrained in order that the sequence of rates 
captures the trend in the failure data. Another, more trivial difference, is that the intervals 
for which the rates are kept piece-wise constant are precisely the inter-failure times. 

The motivation for deriving a model which focuses on capturing the trend in the 
failure data, while giving little attention to local behaviour, initially came from the success 
of the recalibration technique. It was felt that, providing the trend was captured, any local 
inaccuracies could be eliminated later via recalibration. It should be noted, though, that 

while the sequence of retrodictions (as defined in Chapter 4) may capture the trend in the 
data, this does not necessarily imply that the one-step-ahead predictions themselves will 
have captured the trend; it is the latter which is required in order that recalibration will 

result in accurate predictions while the following models presented here attempt to attain 
the former situation. 

5.2 Capturing the Trend using the y-plot 

In [Chan 1986] the theory of a non-parametric model which concentrates on 

capturing the trend in the failure data is presented although its performance is not 
investigated. As before, given the previous inter-failure time data, tj. ] =t, tj the 

objective is to obtain a one-step-ahead prediction for the next inter-failure time, Tj. Let rk 
be the rate during the kth inter-failure time, k=1, ..., j-1. The solution for the vector of 
rates, Ypl = (FI, ..., 7j-1), is found as follows. 

only the first 3 difference constraints from (5.1.2) will be applied, i. e., 

(-I)qAqrk >- 0, q=0,1,2, k= q+I, ... ' j-1 ...... (5.2.1) 

The first of these constraints, with q=0, is the assumption that the resulting rates 

are non-negative, an obvious requirement. The second, with q=1, is the assumption that 

as debugging proceeds, and faults are progressively removed, the failure rate will 
decrease, which corresponds to the usual reliability growth assumption. The third, with q 

= 2, is the assumption that faults removed which manifest as failures later in the 
debugging process make less contribution to the change in the failure rate than those 

which have manifest as failures earlier in the debugging process: a law of diminishing 

returns. These assumptions are equivalent to those made by many existing parametric 
reliability growth models and, as mentioned earlier, there is little evidence that 
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considering any higher order difference equations will result in any gain in predictive 
accuracy. 

Let Mk = E[Tkl, k=1, ... ' j-1. Then, assuming that the Tk are exponentially 
distributed, the requirement that the trend in the data is captured is that the 

Lk-, k=1, 
mk 

j-1, are trend free. Since mk = rk . 
this is equivalent to the requirement that the sequence 

rkTk be trend free. 

One test against trend is to construct a y-plot of the [rktk; k = 1, ..., j-1) as 
described in section 3.2, with 

Xk "= rktk k=1, ..., j- I ...... (5.2.2) 

If [rkTk; k = 1, ... ' i-11 are identically distributed then this y-plot should be close 
to the 45 *line. The objective is thus to estimate the rates, rj. 1, so that the y-plot is as 

close to the 45 * line as possible subject to the constraints given in (5.2.1). This can be 

done by minimising the K distance of the y-plot. 

Finally, application of an additional scaling constraint, 

j-1 
Z 

rktk 
k--l 

(5.2.3) 

leads to the following linear programming problem (see Appendix A. 1.1 for the 
derivation). 

Minimise [oy(rpl, tpl ), subject to rj. I 

Oy(rj. l, tj. 1 )20 ...... (5.2.4) 

rk k0 k=1, j-1 ...... (5.2.5) 

rk - rk-j.:! ýO k=2, i-I ...... (5.2.6) 

rk - 2rk-I + rk-2 k0 k=3, j- I ...... (5.2.7) 

k 
E r, ts + Oy (rj. 1, tj. I)2k k=1, j- I 

...... (5.2.8) 
S--l 

k 
Irsts 

- Oy(rj. l, tj. 1 ) -: 5 k -I k=1, 
...... (5.2.9) 

s--] 
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j-1 
Z 

rktk 
k=l 

The optimum solution to this linear programming problem yields our vector of 

estimated rates, Fj. 1, and, as for the CM model, the most recently estimated rate, Tj-l, 

together with the assumption of exponentiality gives us our one-step-ahead prediction for 

Tj I 

ýj(t) It 

and 

ýj(t) 
= 7j-/ e-ýj-lt 

o_ . --. 
11 

0 
1 j-J 

0--- 
1c I .. 

' 

0 
1 

(5.2.10) 

. (5.2. JI) 

(5.2.12) 

j-J 

An -n non-zero second differences, 7: j-/ == rj-2 r,,,. 

Bn -n non-zero second differences, first differences all non-zero. 
C- second differences all zero, first differences all non-zero. 
H- first and second differences all zero, 7j-/ = rj-2 71. 

Figure 5.2-1. Classification of optimum solutions resulting from application ofthe 
OTY model to a number of real data sets. 
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In [Brocklehurst 19891 it was observed that application of this model, which we 
shall call OTY, to some real data sets resulted in a variety of optimum solutions as shown 
in figure 5.2-1. 

Observe that, as with the parametric models, this model will also result in 

optimum solutions which correspond to an HPP (H in figure 5.2-1) when no growth is 

exhibited in the data vector over which they are applied but again, the conditions on the 
data for "no growth" depend on the model in question. The conditions under which the 
OTY model result in an HPP optimum solution are given below. 

'Ll 
h 

The HPP has estimated rates for the successive inter-failure times, 7k'= 
Tj_I 

= rj. ], 

j-1 

say, for all k=1, ..., j-1 , where rj. 1 = 
Ztk. Let us denote this vector of rates which 

k-_I 
h 

correspond to the HPP by rj. 1. Then the following conditions on the data relating to the 

HPP for the OIY model are proved in Appendix A. 1.2. 

Theorem 5.2.1 

h 
The HPP vector of rates, rj. 1, is always feasible. 

Let 

Max TM 
..... (5.2.13) D+(Ij. l, tj. i) : 5m -: 5j-1 

I 

Tj- 
TMI 

I 

Max Tm M-1 
D-(Ij. l, tj. i) I : 5m : ýpl 

I 
J-1 ..... (5.2.14) 

Theorem 5.2.2 

h 
If D-(Ij. l, tj. l) > D+(Ij. l, tj. 1) then the HPP vector of rates, rj. 1, is feasible, 

and optimal and additionally if D-(Ijl, tj. 1) 
Tn n-I 

and n -j-1 and tk #0 for 
Ti. ] 

- j-1 

I 

h 
all k=1, ..., 

j-1, then rj. 1 is uniquely optimal. 
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Theorem 5.2.3 

h If D-(Ij. l, tj. 1) < D+(Ij. l, tj. 1) then the HPP vector of rates, rj. ], is feasible, 
but not optimal. 

Thus we can see that under certain conditions on the inter-failure time data we can 
h 

conclude that the optimum solution is r-j. 1 = rj. 1 for the OTY model and so no 
optimisation need be performed. Also, it can be seen that given that the HPP solution is 

optimal it will only be in very rare circumstances that it will be non-unique. 

For the remaining classes of solutions shown in figure 5.2-1 it is not possible to 
derive conditions on the data which will indicate which type of solution will be optimal in 

a particular instance or to derive a general analytical solution. 

The predictive performance of this model was investigated in [Brocklehurst 1989] 

on some real data using the techniques for assessing predictive accuracy described in 

Chapter 3 and it was found that the resulting raw (or spline-recalibrated) predictions were 

comparable with those (raw or spline-recalibrated) from the 8 parametric models referred 
to in section 2.1 against which they were compared. 

On examination of the problem formulation (5.2.4) -(5.2.10) it can be seen that as 
j increases the number of constraints (5j-6 in all) increases 5-fold. This results in very 

computationally intensive linear programming problems asj gets large and this problem is 

worsened by the fact that the optimisation is being repeated successively to attain the 
desired series of one-step-ahead predictions. Due to such computational difficulties it was 

necessary to fit this model by using fixed size moving windows along the data (i. e., 
instead of using all the previous data, tj, tj-l, to make predictions about Tj, the w 

most recently observed data points, tj-, tj-l were used). In the later analysis in 

Chapter 8 the performance of the raw and spline-recalibrated predictions from this model, 

when applied with some arbitrarily chosen fixed size moving windows, will be 

investigated. The SAS/OR package executing on a VAX was used to obtain the optimum 

solutions to the resulting linear programming problems. 

5.3 Capturing the Trend using the Laplace Statistic 

In [Brocklehurst 1989] a model very similar to OTY was also investigated. It was 
identical to the OTY model in that the difference constraints (5.2.1) and the scaling 
constraint (5-2.3) were applied except that in this case the test against trend utilised was 
the Laplace statistic [Cox and Lewis 1966] of [rktklk=], 

..., j-11, 
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j-2 k 
E Efýts 
k=l s=l 

j-2 (5.3.1) 

In this case the scaling constraint (5.2.3) is applied not to make the problem linear in the 
variables (it is already linear) but, since it can be seen that there will be an infinite number 
of optimum solutions (including rj. 1 = 0) unless such a scaling constraint is applied. 
This leads to the following linear programming problem (see Appendix A. 2.1 for the 
derivation). 

Minimise [01(rpi, tj. 1 )l subject to rj. I 

Oi(rj. i, tj. ] 0 ...... (5.3.2) 

rk >- 0k=1, ..., i-I ...... (5.3.3) 

rk - rk-I :! iýO k=2, i-I ...... (5.3.4) 

rk - 2rk-I + rk-2 20 k=3, j-1 ...... (5.3.5) 

j-2 
2, E(j-k-I)rktk + 01(rjl, tj. 1 (j-])(j-2) ...... 

(5.3.6) 
k--l 

j-2 
2, f(j-k-l)rktk 

- 01(rj. l, tj. 1 ) : 5(j-I)U-2) ...... 
(5.3.7) 

k--l 

j-1 

. 
Zrktk ýPl ...... (5.3.8) 

k--l 

where 01(rjl, tpi) = 2(j-2)IL(rj. l, tj. 1)1. 

The optimum solution to this linear programming problem again yields our vector 

of estimated rates, Fj. 1, and, as for the previous models, the most recently estimated rate, 
7: j. 1, together with the assumption of exponentiality gives us our one-step-ahead 

prediction for Tj (see (5.2.11) and (5.2.12)). 

It can be seen that this linear programming problem has fewer constraints than the 

problem that utilises the y-plot and so should be easier to solve. In contrast to the 07T 

model however it was found that this model, which we shall call OTL, did not perform 

very well when the resulting predictions (raw and spline-recalibrated) were compared 

using the methods described in Chapter 3 with those (raw and spline-recalibrated) from 

other models on some real data [Brocklehurst 1989]. The variety of optimum solutions 
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which resulted from application of this model to real data in [Brocklehurst 1989] is 

shown in figure 5.3-1. 

1; 

0 

. I. 

0 

0 

0 

A-/ non-zero second difference, Tj_/ == Tj-2 == ... = TI. 

B-I non-zero second difference, first differences all non-zero, Tj_1 = 0. 
C- second differences all zero, first differences all non-zero. 
H- first and second differences all zero, Tj_j = Tj-2 = ... = T1- 

Figure 5.3-1. Classification of optimum solutions resulting from application ofthe 
OTL model to a number of real data sets. 

It can be seen that all the resulting solutions are very simple with at most one non- 

zero second difference. It was observed in [Brockichurst 19891 that tile resulting 

solutions were either an HPP (H in figure 5.3-1 ) or of type A or C (and, very 

occasionally, B) in figure 5.3-1. It was also observed that for non-11PP optinjurn 

solutions the Laplace statistic of Irktklk=], 
..., J-1] was always zero and further that 

these solutions were highly non-unique. 
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The following theorems are proved in Appendix A. 2.2. 

kk 
Let Zrs where rk = 

Ets 
S=j S=l 

'r r 
and L(l, tpl) = 

1-1 - -1-2 2 j-2 

Theorem 5.3.1 

(5.3.9) 

(5.3.10) 

If L(l, tj. 1) >0 then there exists a feasible optimal solution, rj. 1, such that L(rj. 

1, tpl) =0 and Ark = -c < 0, for all kE [2, 
..., n-11 and Ark =0 for all kE In, 

..., j-1j. 

Thus for inter-failure time data which exhibits growth (according to the Laplace 

statistic) there is always an optimum solution with zero objective of type A in figure 5.3- 
1. 

Theorem 5.3.2 

j-3 

If L(l, tpl) >0 and 4. EA 2! (j-4)rj-2 then there exists a feasible optimal solution, 
k=1 

rpl, such that L(rpi, tj. 1) =0 and Ark = -c <0 for all ke [2, j-1j. 

Thus, given additional conditions on the inter-failure times, there exists optimum 
solutions with zero objective of both types A and C in figure 5.3-1. 

Theorem 5.3.3 

j-3 

If L(l, tj. 1) >0 and 4E 7k.! ý (j-4)r, -2 then there exists a feasible optimal solution, k=1 

rj. 1, such that Urjýj, tpj) = 0, rj-l =0 and Ark = -c-c'for all kE [2, ... ' n-1) and Ark 

-c for all ke [n, ... ' j-11, with c>0 and c'> 0 or c=0 and c'> 0 or c>0 and c'= 0. 

Thus, there are circumstances under which there exists optimum solutions with 
zero objective of type B in figure 5.3-1, or of types A or C in figure 5.3-1 with the most 
recent rate zero. 

76 



Corollary 5.3.4 

If L(l, tj. 1) >0 then there are at least n(j)+] optimum solutions with zero 
objective and at most one non-zero second difference where 

if j is even 
nU) 

2 

if j is odd 2 

Thus we can see that in the presence of growth (according to the Laplace statistic) 
in the inter-failure time data there are many possible optimum solutions with at most one 
non-zero second difference and with zero objective. Clearly there will be a tendency for 

the simplest solutions, as shown in figure 5.3-1, to result, but investigation in 
[Brocklehurst 1989] revealed that, in most instances, there were many other alternative 
optimum solutions with zero objective and more than one non-zero second difference. 

Theorem 5.3.5 

h The HPP vector of rates, rýj, is always feasible. 

Theorem 5.3.6 

h If L(l, tpl) >0 then the HPP vector of rates, rj. 1, is feasible, but not optimal. 

Theorem 5.3.7 

h If L(l, tj. 1) ýý 0 then the HPP vector of rates, rj. 1 , 
is feasible and optimal and 

h. 
additionally if tk t0 for all k=1, 

... ' j-1, then rj. 1 is uniquely optimal. 

Tbus, when the inter-failure times do not exhibit growth (according to the Laplace 

statistic) the HPP solution results. 
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The proofs of the above Theorems in Appendix A. 2.2 show that an analytical 
solution may be obtained for all inter-failure time data for this model. However, clearly 
the bad performance of this model is due to the optimisation criterion being too weak 
resulting in highly non-unique optimum solutions. This model will not be investigated 
further, although a more highly constrained variation of this model, which is described in 

the next section, will be included amongst our models the performance of which will be 

analysed in Chapter 8. This variation arises from Theorems 5.3.1 and 5.3.7 which state 
that given any vector of inter-failure times, the OTL model results in either a solution with 
zero objective if the data exhibits growth, or an HPP solution, otherwise. 

5.4 Extension to the OTL Model 

The objective is to use the vector of inter-failure times, tj. 1 = (tI, 
... ' tj. 1) to 

estimate the vector of associated rates rj. 1 = (rl, ... ' rj-l) in order to make one-step-ahead 

predictions about the next inter-failure time, Tj. As for the previous models, the most 

recently estimated rate, ?: j-l, together with the assumption of exponentiality gives us our 

one-step-ahead prediction for Tj (see (5.2.11) and (5.2.12)). 

Let 

j-1 j-2 k 
Z Eas 

s 
L(amj. l, tmj. l) 

k=m m=1, ..., j-2 (5.4.1) 2 j-M-1 

where tmj. l = (tm, tj-l) and amj. 1 = (am, aj-1). 

Consider the full vector of inter-failure times t1j. 1 = (ti, ..., tj. 1). If there is no 

growth in this data according to the Laplace statistic then we know, from Theorem 5.3.7, 

that the HPP solution will be optimum for the OTL model, so let rk = r, say, for all k=1, 

.... j-1. If there is growth in the data, then we know, from Theorem 5.3.1, that there is 

an optimum solution, r1j. 1, to the OTL model with L(r1j. 1, t1j. 1) =0 so let L(r1j. 

1, t1j. 1) = 0. In the presence of growth in t1j. 1 consider t2j. 1 = 02, 
..., tj-1). If there 

is no growth in (t2, ..., tj-l) then let rk = r, say, for all k=2, ... ' i-1. If there is growth in 

(tZ ... ' tj-l) then let L(r2j. 1, t2j. 1) =0 and then consider t3j. 1. We proceed with this 

process considering progressively smaller vectors of inter-failure times until we find a 

vector tnjýl which has no growth and then we let rk = r, say, for all k=n, ..., j-1. The 

objective of this is to constrain the [rktk; k=m, ..., j-11 to be trend free over all 

consecutive vectors of the data, tmj. 1, which exhibit growth (m = 1, ..., n-1), while 
letting the rates be equal over the largest vector of data, tn., Pl, which does not exhibit 
growth. The problem may thus be formulated as follows. 
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Let 

j-1 if L(Imj. l, tm, j. 1) > Ofor all m=1... j-1 
n 

Min[m e [1 ... j-21; L(Imj. l, tmj. 1) ýý 0] otherwise ...... (5.4.2) 

noting that, if we define L(Ij. 1j. l, tj. 1j. 1) = 
tj: 

-' then this will always be positive for 2' 

positive tj-1. Then, let 

L(rmj. l, tmj. 1) =0 for all m 1, ..., n-I ...... (5.4.3) 

and rk = r, say, for all k n, ... ' i-I ...... (5.4.4) 

From (5.4.3) and (5.4.4) we can see that we have n variables and n-I equations and so in 

order to get a unique solution we must again apply a scaling constraint. The full details of 
the solution to this problem are contained in Appendix A. 3, but the solution, using the 

usual scaling constraint (see (5.2.3)), for the most recent rate (which we are going to use 
for prediction purposes) is as follows. 

(j-n)(j-n+]) 
n j-1 

2Z (k-n+])tk 
k--n 

.... (5.4.5) 

n=l iY ý 
tk 

k--l 

It is proved in Appendix A. 3 that, providing tk -0 for all k=1, ... ' j-1, then this simple 
analytical solution is unique. 

It can be seen from equation (5.4.2) that when the full vector of inter-failure times 

exhibits growth the estimate of the expected value of Tj (i. e., 14 = 11-rj-l) is simply a j 
weighted sum of the largest vector of inter-failure times which exhibits no growth giving 
more weight to the most recent inter-failure times. So, in spite of the rather stringent 
requirements (i. e., that in the presence of growth in the full vector of times the rktk be 

trend free for all larger vectors which exhibit growth), we have arrived at a very simple 
solution. As with the previous models, the HPP solution results when the full vector of 
rates does not exhibit growth. 

Notice that the first two difference constraints (see (5.2.1)) are not applied and the 

solution of the full vector of rates, for this model (see Appendix A. 3) in the 
general case would not be expected to satisfy these difference constraints. This extension 
to the oTL model is thus different from the other non-parametric models presented in this 
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chapter and many of the parametric models in that it does not have the usual reliability 
growth assumptions. 

Although experience of applying the CM and OTY non-parametric models shows 
that they perform quite well the major disadvantage of them is that, in spite of their 
conceptual simplicity, they are computationally intensive. The y-plot optimisation model 
in particular takes a long time to run. The way in which the two models overcome this 
problem is for the first (i. e., the CM model), to divide the total time into a small number, 
n, of equal intervals, as described in section 5.1, and for the second (i. e., the OTY 

model), to use moving windows, as described in section 5.2. It is clear that if the 
extension to the OTL model, or it's recalibrated version, did indeed perform well then it 

should certainly be included amongst our group of models which we apply to new data in 

our "multi-modelling" approach simply because it is analytical and thus very easy to 

apply. Again, it may be expected that any inaccuracy resulting from using such a 
simplistic model may be eliminated later via the recalibration technique. 

Since application of these models with moving windows may be a sensible 
strategy (in the presence of changes in the data which cannot be adequately modelled) 
even if it is not a necessity due to computational difficulties, this extension to the OTL 

model will be applied in the usual way over the whole data set and with some arbitrarily 
chosen fixed size moving windows. The performance of the resulting raw and spline- 
recalibrated prediction systems will be examined in Chapter 8. The software used to apply 
this model is coded in Pascal and was executing on a Sun 3/80. 

Note that when these models are fitted over different intervals of data we will not, 
in fact, get the same predictions from their HPP equivalents, since averaging will occur 
over the applicable interval of data. More specifically, when the non-parametric models 
are applied with moving windows we will not get identical HPP predictions (unless by 

coincidence) as the parametric models applied without windows. 
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6 Automating the Choice of Best Model 

From the previous chapters it can be seen that, for each data set, we now have a 
large number of prediction systems from which to choose. As mentioned previously, in 

section 3.3, it is commonly the case that the preferred model (according to the PLR plots) 
switches between the various prediction systems not only from one data set to another, 
but over different intervals of one-step-ahead predictions within a single data set. This 

means that looking at the various plots for analysis in order to decide which model to use 
for the next prediction has become rather impractical. We wish, therefore, to automate 
this choice between prediction systems. 

Since the prequential likelihood ratio is a global measure of goodness of 
prediction it is the natural measure on which to base our automatic choice. Since we wish 
the mechanism for choosing to be truly predictive the best we can do is to compare the PL 
for the various prediction systems (or rather the PLR) in the past, and use the model 
which gives the best PL in the past for predictions in the future. For simplicity we shall 

again be referring to one-step-ahead predictions. 

We propose the following. For our choice at stage i, compare the PL for all the 

prediction systems for previous predictions, over j= and choose the 

prediction system for stage i which wins in this comparison. More specifically, if we 
define our existing set of prediction systems as 92, we form a new "meta-prediction 

system", 

[ý'i(t)j'i(t) Ii= S+W+1,..., ql 

A max A 

i (t)jm(t) I= [PM(t)jM(t) J7 'en j i-W iiii (tj) 
i=i-w ia 

fj 

From (6.1) it can be seen that this new prediction system will simply be switching 
between the original prediction systems, ox(2 within a data set. Clearly, our choice of the 

window size, w, will be an important factor in the resulting predictive performance of this 

meta-predictor. In circumstances where comparative predictive performance of the initial 

group of predictors shows much local variation small window sizes may result in better 

performance. Conversely, if local variations are erratic and comparative predictive 
performance is generally global, the predictor may perform better when larger window 
sizes are used. The performance of the meta-predictor with a suitable range of arbitrarily 
chosen fixed window sizes will be investigated in the later analysis in Chapter 8. From 
(6.1) it can be seen that these new prediction systems are truly predictive and so we can 
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use the analysis techniques described in Chapter 3 to compare the meta-prediction 
systems with the original raw and recalibrated prediction systems. 

Since this meta-predictor is choosing from amongst all the raw and recalibrated 
predictions it seems likely that when recalibration of the initial raw prediction systems is 

effective in eliminating bias there will not be significant errors in the meta-predictors. 
Further, since the meta-predictor will be switching between the various predictors, bias, 
if present, may be non-stationary. This implies that we should not expect substantial 
improvement in the predictive accuracy via recalibration of these meta-predictors and so 
the recalibrated version of this new predictor will not be investigated. 

It is clear that a more sophisticated mechanism could have been used at this stage. 
For example we might dynamically choose an optimum window size as we move through 

the data set. In other words use a window on which to base the next comparison which 
gave us the best performance for the most recent one-step-ahead prediction. In order that 
this be truly predictive we would need to be making comparisons on the last two one- 

step-ahead predictions. But since, at this stage, we are only trying to automate the choice 
that the user would make, using fixed window sizes seems sufficient. Other more 

sophisticated techniques for combining over a group of prediction systems are discussed 

in Chapter 9. 

82 



7 The Data Collection Activity 

The first two data sets of inter-failure times analysed in the following chapters, 
which we shall label CISH and CISI2 (from [Gaudoin 1988]), are listed in tables B. 1-1 

and B. 2-1 in Appendix B in Volume J1.2 For confidentiality reasons we cannot include 
details of the data collection process involved for these two data sets or about the systems 
to which they relate. They contain 168 and 394 data points, respectively, which are inter- 
failure times measured in seconds of CRU. execution time. 

Figure B. 1-3 in Appendix B in Volume 11 shows the CISII data plotted as the 
cumulative number of failures against the total elapsed time. This shows that very early 
on in the data there is a period of stable reliability followed by reliability decay while 
reliability growth appears to start at about the 75th inter-failure time when the total elapsed 
time is approximately 1500 seconds. This behaviour is fairly typical of such failure data; 

the fact that reliability growth is only seen in the later data can often be attributed to 
"teething problems" which occur early on in the testing process or in early operation. 
From table B. I- I it can be seen that at the point at which reliability growth starts the data 
is notable for two inter-failure times W7 = 66 and t78 = 95) which are significantly large 

when compared to immediately proceeding times. Similarly large times are also seen at 

other points in the data Q34 = 149, tjol = 440 and 414 = 825). 

The equivalent plot for CISI2 is less typical (see figure B. 2-3). In general, 

reliability growth seems present after about the 150th failure, but this growth is not 

smooth and local periods of reliability decay occur even late on in the data. In particular 

notice the clustering of failures near the end of the data set between the 320th and 380th 
failures. In this region the failure rate3 has increased by about four times compared with 
the rate just preceding and just after this cluster of failures. Similar clustering also occurs 

earlier in the data, from failures 170-210 and 240-265. Prior to the 150th failure there is 

not significant growth but there are many local fluctuations in the trend between growth 

and decay. In general the trend in the data is highly irregular. From table B. 2-1 it can be 

seen that some particularly large inter-failure times also occur for this data set (for 

example, t224 = 723, t225 = 563, t226 = 669 and t239 = 1337). 

2 All tables and figures referred to throughout this Chapter are contained in Appendix B in Volume II. 

3 Thefailure rate referred to throughout this section is a crude estimate obtained by taking the number 

of failures and dividing this by the elapsed time. 
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As discussed in Chapter 2, the reliability models may be applied in accordance 
with the failure data behaviour by taking account of changes in the trend and of outliers in 
the data, but this approach will not be adopted here. As we shall see in the following 
analysis in Chapter 8, these aspects of the failure data can have a large influence on the 
behaviour and comparative predictive performance of the resulting prediction systems. 

The second collection of data to be analysed comes from four years of operational 
use of a single user work station which was installed at the City University on the 18th 
March, 1985. Data was collected from the user's viewpoint and included real (or wall- 
clock) time of occurrence of each (user-perceived) failure (recorded to the nearest 
minute), together with the identity of the particular fault which caused the failure (so that 
time to first occurrence of each unique fault can be recovered and hence the required inter- 
failure times). Additionally details of the type of usage and the version of the operating 
system in use at the time of each failure, the type of the associated fault and the severity of 
failure were recorded. Such records allow various subdivisions of the data to be extracted 
and analysed separately, for example failures due to a particular fault type, failures 

occurring under a particular product version and so on. A large number of data sets result 
from subdividing the data in this way. Due to space constraints only a limited number of 
these will be analysed in Chapter 8. 

There are generally two reasons for subdividing a data set. The first is to eliminate 
possible irregularities or change-points which are difficult to model in the full data set and 
the second is to examine failure behaviour of particular classifications as being interesting 

in themselves. In fact, as we shall see, the subdivisions which can be made from the 

recorded data do not seem to successfully eliminate such changes present in the complete 
data set. Further, since the major objective here is to validate the various techniques for 

achieving prediction systems (as opposed to examining the data), data sets selected for 
further analyses in Chapter 8 will be those which exhibit unique behaviour since those 

with similar trend will tend to give similar results for the relative predictive accuracy of 
the prediction systems. 

All start times of different usages were recorded and these usages included power- 
on, power-off and idle time (times when the machine was powered on but not being 

used) together with usages such as document preparation and program development. The 

end time of one usage could thus be taken as the start time of the next usage. In this way 
it was possible to extract inter-failure time data with respect to a number of different time 
metrics. Failures with respect to calendar time could be extracted but, as discussed in 
Chapter 2, this is clearly an inappropriate time metric since it includes times when the 
machine is switched off and so failures cannot occur. 
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The first data set extracted was thus times between successive failures of unique 
faults (i. e., ignoring failures of previously seen faults) for all usages, versions etc., only 

omitting "switched-off" time from the time axis and including "idle", "power-on", and 
"power-off". The time metric for this data is therefore "switched-on" time. This data, 

which we have labelled USCOM, is listed in table B. 3-1 and consists of 414 inter-failure 

times in a114. 

Since failures were recorded as a result of observation by the user, and because 

many of them were "usability problems", i. e., the encountering of features of the system 

which caused difficulty for the user, even though the system was behaving according to 

specification, it is likely that "hands-on" time would be a more appropriate time metric 

than "switched-on" time. This results in a data set which we shall label USBAR (see table 

B. 4-1), which consists of inter-failure times of all first occurrences of unique faults 

which occur when the machine is switched-on and in usages other than idle, power-on 

and power-off, with time intervals in these usages omitted from the total time axis. We 

would not expect many failures in these usage modes as the machine is not doing much at 

these times; there were only 20 unique faults which resulted in failures in these usage 

modes, 3 of which also resulted in failures in other usage modes, giving a total of 397 

failures in USBAR. We would thus expect the rate of occurrence of failures to be higher 

in USBAR than in USCOM (due to intervals of idle time which are almost failure-free). 

Observation of figures B. 3-2 and B. 4-3 indicates the trend in USCOM and 

USBAR to be fairly similar although, as expected, the failure rate for USBAR is much 

higher (about double) than for USCOM. The similarity in the trend seen for both these 

data sets indicates that the time corresponding to idle, power-on and power-off, is 

approximately evenly distributed over the total time axis. The time when the system was 
inactive was omitted from the time axis because we wish to model the failure behaviour 

against a time axis which represents, crudely speaking, a constant "stress" on the system. 

In other words, if there are long periods of inactivity, the resulting failure behaviour 

against total time will look very non-stationary with large periods of time with no (or few) 

failures. As this is not the case it may not have been necessary to omit inactive time from 

the time-axis, although it is likely that it may be necessary to do so in the case of further 

subdivisions of the data (see below) because such periods of inactive time may become 

more significant. Since the trend in USCOM and USBAR is similar, in the later analysis 

4 The inter-failure times in this data which are shown as 0.5 actually came out to be zero after 

extraction and were changed to 0.5 before application of the models. This is because these zeros are 

due to rounding errors, and so they have been set to a suitably small value. 
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in Chapter 8, we shall analyse USBAR and not USCOM since hands-on time seems the 
more appropriate time metric. 

Further examination of figure B. 4-3 shows that prior to the 200th failure the trend 
in the data is fluctuating, although generally there is no significant growth, while in the 
latter part of the data there would appear to be reliability growth. There appears to be a 
definite and sudden decrease in the failure rate (by about ten times) at the 260th failure, 

when the total elapsed time is about 16,000 minutes and a number of particularly large 
inter-failure times occur. This is an example where it is inappropriate to discard these 
large times as outliers before application of reliability models since they clearly 
correspond to a change in the trend. Particularly large times are also seen in the later data 
(for example t340 = 4973). 

As mentioned above, using records of usage, operating system version, fault 

type, and failure severity, it is possible to partition the data into subdivisions, each of 
which can be analysed separately. For these data sets, as for USBAR, "hands-on" time is 

chosen as the measure of use. Note that, in certain circumstances, it is possible for the 

same fault to cause a failure in more than one subdivision; for example, the same fault 

may cause a failure to occur under two different versions of the operating system. This 

means that extraction of the times to failure of first occurrence of unique faults for 

particular subdivisions must be done by first finding the subset of all failures which occur 
under the particular subdivision, and then omitting failures from repeated faults within 
that subdivision. For subdividing via the usage or product version the time metric is 

adjusted to be hands-on time for that particular usage or product version while for the 

remaining subdivisions the time metric is the total hands-on time, as for USBAR. 

The first subdivisions that we shall consider are those based on the usage under 
which the failures occur. The category of usage during which the largest number of 
unique failures occurred, 155 in all, was document preparation USROFF (see table B. 5- 
1), which consisted of a UNIX word processing package. Figure B. 5-3 shows that for 
USROFF, as for USBAR, there is a marked decrease (also by about ten times) in the 
failure rate from just after the 85th failure where some particularly large inter-failure times 

occur (for example, 488 1613). Other particularly large times also occur later on in the 
data (for example, t100 2264 and t1ol = 3218). Also, as with USBAR there is a point 
(about 60) prior to which the trend in the data is fluctuating and after which there is 

significant growth. 

A further 104 failures occurred when compiling, running and so on, Pascal 

programs, and these form data set USPSCL (see table B. 6-1). Here (see figure B. 6-3) 
there is also a sudden decrease in the failure rate, although not as dramatic as for USBAR 
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and USROFF, from the 45th failure, with stable reliability prior to this point followed by 
very gradual reliability growth. Most of the relatively large (compared with previous data) 
inter-failure times, except for t38 = 289 and t84 = 1596, correspond to this change point in 
the data. Note that the comments relating to reliability growth refer to global growth, 
while in the region over which the later analyses in Chapter 8 will be conducted, no 
significant growth is present. 

Finally we have general usage, USGENL (see table B. 7-1), which consisted of 
all usages other than the previous two stipulated usages. Here the cumulative failure plot 
in figure B. 7-2 looks very different from the failure plots of the other two usages. There 
is stable reliability throughout the data set until the last few failures where there is sudden 
and dramatic reliability growth. 

Comparison of the three cumulative failure plots for these different usages show 
that, although the most failures occurred during document preparation, we cannot 
immediately conclude that this is more unreliable, since it was a very heavily used utility; 
document preparation has, in fact, the lowest failure rate when calculated over the 

complete data set, followed by Pascal programming and then the general usage category. 
The initial failure rates are about the same for these usages and so the low failure rates 
considered over the whole data set for USROFF and USPSCL are due to reliability 
growth later on during continued use of these two utilities. It is perhaps not surprising 
that little growth is seen in the general usage category since this is made up of a number 
of infrequently used utilities. Since there is not much growth in USGENL we shall limit 

our analyses in the following chapter, for the subdivisions based on usage, to just 
USROFF and USPSCL. 

During the use of the work station a number of operating system versions were ,q 

installed. Thus, USBAR can be divided into a number of data sets according to the 

version in use at the time. We shall label these data sets, PV200, PV220, PV400 and 
PV502 to denote product versions 2.00,2.20,4.00 and 5.02 respectively (see tables 
B. 8- 1, B. 9- 1, B. 10- 1 and B. II- 1). As with usage, times to first occurrence of a fault 

running under each product version were considered and so some faults may be included 
in more than one of these data sets. In fact there are only 12 more failures in total for 

these data sets than for USBAR; thus, since the product versions where installed in 

sequence, these data sets will be approximately equivalent to slicing the complete data, 
USBAR, into four. 

It can be seen from figure B. 8-2 that version 2.00 was installed for a very small 
part of the systems' life (with respect to hands-on time) as compared with the later 3 

operating systems shown in figures B. 9-2, B. 10-2 and B. 11-2. From these figures is can 
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also be seen that the failure rate for product version 2.00 and for about half of the 
installed time of version 2.20 is an order of magnitude higher than the failure rate in the 
remainder of the systems' life-time. The marked point of change to a lower failure rate 
while version 2.20 is installed clearly coincides with the previously identified point of 
change in the complete data set, USBAR, when the total elapsed time is about 16,000 

minutes. For PV200 there is no reliability growth (in fact there is a cluster of failures at 
the end of this data set) while for PV220 there is growth from about the 170th failure 

while previously there is fluctuation in the trend. For the final two product versions again 
there is fluctuation with only significant growth right at the end of each data set. 

In general there is nothing to suggest that the different rates (which decrease with 
higher versions of the operating system) are related to anything other than the fact that 
there is reliability growth over the full data set. Neither are there are any significant signs 
of reliability decay at the beginning of these data sets which one might expect due to the 
"teething" problems likely to be encountered on installation of a new operating system, or 
that any changes in the failure rates, or the trend, in USBAR correspond to the times 

when there is a change of operating system. This indicates that any effect that may be 

present due to different operating systems is negligible when compared to other factors 

which affect the overall reliability of the system. In view of this we shall not analyse the 

subdivisions based on operating system version any further. 

Next the failures were classified according to thefault type, which consisted of 

software, hardware, documentation, usability and user errors: 

9 softwarefailure - the system software did not behave as required, e. g., incorrect 

output, operating system crash. 

0 hardwarefailure - e. g., hard disk effor. 

documentation - user documentation found to be incorrect. 

user - incidents which were due to mistakes, or lack of knowledge, on the part of 
the user, e. g., not realising that a certain utility required each of its directives to 

start on a new line. 

usability problem - the system software is behaving as intended, but it is difficult 

to use, e. g., output from a certain utility could not be printed directly, but had to 
be written to a file which was then printed. (It is often difficult to distinguish this 
type of failure from user). 

The data sets resulting from a subdivision via fault type are labelled TSW, THW, 
TDOC, TUSER and TUSAB (see tables B. 12-1, B. 13-1, B. 14-1, B. 15-1 and B. 16-1). 
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Since each failure results from a unique fault, and each fault has a unique type, faults will 
not overlap over these subdivisions. Hence summing the total number of failures over the 
types, gives 397, the total number of failures in USBAR, and extraction of first 
occurrences of unique faults may be done before, or after, subdivision into fault types. 

Corresponding to the previously identified sudden decrease in the failure rate in 
USBAR, from figures B. 12-3, B. 13-2, B. 14-2 and B. 16-3 we can see similar behaviour 

near this region. For TSW this is mainly due to a occurrence of a single particularly large 
inter-failure time at this point (t7q = 9549). Again, reliability growth is present just prior 
to this point of change and continues for the remaining data. Other particularly large inter- 
failure times occur in the data, t86 = 4179 and t105 = 7984, but these are not as large with 
respect to previous data as t7q. 

For THW there is reliability decay prior to 12000 minutes where the failure rate 
suddenly decreases by a huge amount and after which there is stable reliability. In fact, 

this is because the hard disc, which was faulty, was replaced at this time. For TDOC 

there is also reliability decay in the early data while in the later data there are signs of 

reliability growth. For TUSER (see figure B. 15-2) growth starts just after the beginning 

of the data. 

For TUSAB there are two change points in the data (after t77 and after t105) but 

these are less dramatic than for the THW and TDOC. Here the cumulative failure plot is 

typical of reliability growth data although growth does not start until after the 25th inter- 

failure time and later in the data there are some local clusters of failures (e. g., between t6O 

and t77 and between t95 and t105). After these clusters there are some relatively large inter- 
failure times (e. g., t78 = 1104, t82 = 1553,406 = 1622, tjII = 1710 and 415 = 3569) 

although these, particularly the second group, appear to mark the beginning of increased 

reliability growth, rather than being unique outliers. 

The final subdivision was thefailure severity which was classified into major 
(SMA), minor (SMI) or negligible (SNE) (see tables B. 17- 1, B. 18-1 and B. 19- 1). In this 

subdivision it is theoretically possible to have different manifestations of the same fault in 

more than one severity class but in practice, for this data set, each fault had a unique 

severity classification. It can be seen that there were very few major failures; most failures 

had either minor or negligible severity from the user's point of view. For the major 
failures, from figure B. 17-2, we can see no significant signs of reliability growth. The 

pattern in the trend for the minor and negligible failures (see figures B. 18-2 and B. 19-2) 
is very similar to USBAR with fluctuation early on but with no significant growth until 
after 10,000 minutes of total elapsed time. Again a period of sudden decrease in the 
failure rate can be identified for both SMI and SNE when the total elapsed time is about 
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16,000 minutes. The failure rates for these two severity classifications are approximately 
the same. Due to the similarity of the trend in these two data sets and USBAR these will 

also not be investigated further. 

Due to the large number of data sets available via the subdivision of USBAR, the 

smaller data sets (THW, TDOC, TUSER and SMA) will also be omitted from the later 

analysis in Chapter 8. This is not because the models and techniques described cannot be 

applied to small data sets and the approach would be exactly the same as for larger data 

sets (although the stage at which we start to apply the models and the recalibration must 

be chosen as earlier than for larger data sets). It is simply due to space constraints. 
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8 Analyses of Resulting Prediction Systems 

In this chapter we shall discuss and compare the predictive accuracy, using the 
techniques described in Chapter 3, of all the resulting prediction systems outlined in 

previous chapters on the data sets selected in Chapter 7. 

In application of the 8 raw parametric models described in section 2.1 20 data 

points were chosen quite arbitrarily for making the initial raw predictions for each of the 
data sets; so, in the notation of (2.7), s= 21. Then for each of the raw parametric models 
a sequence of one-step-ahead predictions was made. We shall refer to the resulting raw 
prediction systems as JM, GO . ..... and so on. 

For the non-parametric models described in Chapter 5, different data were used to 

get the initial predictions depending on the model being applied and on the window size, 
if applicable, being used. The CM model was applied without windows and the number 

of equal intervals into which the total time interval was divided was kept constant at 30 

(i. e., in the notation of section 5.1, n= 30). Three variants of this model were used by 

applying the difference constraints (see (5.1.2)) up to orders of 1,2 and 3 (i. e., in the 

notation of section 5.1, d=1,2 and 3). A series of one-step-ahead predictions were 

made using the first 30 inter-failure times to obtain the initial raw predictions; so, in the 

notation of (2.7), s= 31. The resulting raw prediction systems will be referred to as 
CMI, CM2 and CM3, respectively. The OTY model was applied with fixed size moving 

windows of size 20 and 50, so, in the notation of (2.7), s= 21 and 51, respectively and 

we shall refer to the resulting raw prediction systems as OTY20 and OTY50. The 

extension to the OTL model was also applied with fixed size moving windows of size 20 

and size 50 and without windows, using, as for the parametric models, the first 20 inter- 

failure times to obtain the initial raw predictions; we shall refer to the resulting raw 

prediction systems as OTL20, OTL50 and OTL and in the notation of (2.7), s= 21,51 

and 21, respectively. Thus, for each data set, we shall be investigating 8 non-parametric 

raw prediction systems. 

All the raw prediction systems were spline-recalibrated using the predictive 

recalibration method described in Chapter 4. First, the spline-recalibration method was 

applied using the first 15 raw predictions to obtain the u-plot for the initial recalibrated 

prediction (so, in the notation of (4.5) p=s+ 15, where the first raw prediction is made 

at stage s). The series of one-step-ahead recalibrated predictions was then obtained by 

using all the raw predictions available at each stage; so, one new u is added into the u-plot 
used for recalibration at each successive prediction stage. An S added onto the end of the 
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model names will be used to denote the resulting spline-recalibrated prediction systems 
(e. g., JMS, CM3S, OTY50S, .... and so on). 

Next the spline-recalibration method was applied using a number of fixed size 
moving windows across the raw predictions, as described in section 4.2. Window sizes 
of 20,30,40 and 50 were applied. An Sw added onto the end of the model names will be 

used to denote the resulting spline-recalibrated prediction systems with windows of size 
w (e. g., JMS20, CM3S40, OTY5OS30, .... and so on). For each window size, w, 15 

raw predictions were used to obtain the first recalibrated predictions (so, in the notation of 
(4.5), p=s+ 15, as for recalibration without windows) and then a new u is added to the 

u-plot for recalibration at successive prediction stages until the u-plot is based on w raw 
predictions. Thereafter only the most recent w raw predictions are used in the u-plot for 

recalibration at each prediction stage. 

Since there are 16 raw prediction systems, application of the recalibration 
technique with and without windows, as outlined above, results in a total of 96 (16 raw 
and 80 spline-recalibrated) different prediction systems for each data set. Using the 

method described in Chapter 6 dynamic selection via the PLR using fixed size moving 

windows will be made over these 96 different prediction systems. As discussed in 

Chapter 6, there are circumstances under which forming these meta-predictors using 

small window sizes across the initial group of predictors may be preferable while in other 

circumstances larger window sizes may be better. In view of this a range of window sizes 

were applied, 1,2,5,10,20,30,40 and 50. The resulting meta-prediction systems will 
be referred to as M1, M2, M5, M10, M20, M30, M40 and M50, respectively. 

In the following analyses the raw non-parametric predictors will be compared 

against the "best" raw parametric predictor and the recalibrated non-parametric predictors 

will be compared against the "best" recalibrated parametric predictor in order to assess 

whether the non-parametric models result in prediction systems which are as good as the 

conventional parametric models. In order to assess the efficiency of the spline- 

recalibration technique (applied without windows) the recalibrated prediction systems will 
be compared, in each case, with their raw equivalents (e. g., JMS versus JM, OTY50S 

versus OTY50, .... and so on). Then, in order to assess whether the recalibration 
technique can be made more effective via the application of windowing the prediction 

systems resulting from recalibration applied with the various window sizes will be 

compared against the equivalent prediction systems which result when recalibration is 

applied without windows (e. g., JMS20 versus JMS, OTL5OS40 versus OTL50S,.... and 
so on). 
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Finally the meta-predictor is compared against the single predictor which is 
chosen as "best" according to all the previous PLR analyses. In each case that which is 
chosen as "best" for a particular data set is not necessarily the best according to the PLR 
analysis throughout the data, but is just generally best overall. There is usually no single 
predictor which is truly consistently best throughout the data. In applying the meta- 
predictor we are really just crudely formalising the process of choosing the next 
prediction we should use from the past PLR analyses. The judgement as to which 
predictor is "best" is a retrospective judgement whereas our meta-predictor is truly 
predictive. It would thus be very unlikely that the meta-predictor did out-perform the 
"best" single predictor. When assessing the performance of the meta-predictor we are 
thus generally satisfied if it is about as good as the (retrospectively identified) "best" 

single predictor. 

All the figures and tables relating to the following analyses in this chapter are 
contained in Appendix B in Volume H. Due to space constraints it is necessary to limit the 
number of plots shown; in the following analyses we have selected plots which are of 
particular interest although some of the observations made also consider those omitted. 
Due to the difference in the stages at which the different predictors make their initial 

predictions (i. e., different s and p depending on the predictor) for consistency all the 
analyses will be carried out over a range of predictions from i= 665 up to prediction of 
the final data point except for the meta-predictors where analysis will start from i= 71. 

Tables B. 1-2.1, B. 1-2.2, B. 2-2.1, ... in Appendix B in Volume II show the 

and u-plot significance levels for all the prediction systems on all the data sets analysed. 
These significance levels are based on the K distance of the plots from the 450 line, as 
discussed in Chapter 3. Although the y-plots are included in the tables little attention will 
be given to these plots in the following analyses. This is because, as observed in the 

simulation exercise in Chapter 4, the y-plot results do not seem to adequately describe 

changes in the trend which are of very much interest, particularly with respect to the 

extent to which we can expect recalibration to eliminate bias in the raw predictions. 

8.1 Data set CISH 

For this data set the JM, GO, MO, LM and LNHPP models give HPP predictions 
for i -, 25 to 100. Although in Chapter 7 it was observed that growth in the data starts 
prior to the 100th failure it should be noted that this related to local reliability growth 
whereas these models are applied over all the previous data. From iw 100 to 150 the LM 

i is used to denote the number of the inter-failure time, ti, throughout this chapter. 
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and LNHPP models go to the limiting cases of the JM and GO models respectively; thus, 
their estimated rates on each fitting of the models (as opposed to successive one-step- 
ahead predictions) decrease linearly with i in this interval. The raw median predictions in 
figure B. 1-4 coincide in the early data for the 5 models for which HPP predictions result 
while later on in the data there is huge disagreement, increasing with failure number, 
between the median predictions from the 8 models and the u-plots (see figure B. 1-5) 
indicate that the "true" median may lie near the MO models' predictions. From table B. I- 
2.1 we can see that the DU, LV and KL models have highly significant u-plots and 
according to figure B. 1-5 predictions from these models are grossly pessimistic, 
particularly the LV and KL models. According to table B. 1-2.1 the remaining models are 
not giving significantly biased predictions. 

The log(PLR) plot (see figure B. 1-6) confirms that the D U, LV and KL models 
are poor predictors compared with the remaining parametric models over most of this data 

set except prior to 75 where they are better and in a small interval near the end where the 

plot suggests that the DU and MO models are marginally better than the rest. Although the 

plots of raw predictions from failure 21 are not shown here one-step-ahead median 

predictions from the raw parametric models decreased prior to 75 and according to the 
PLR the DU, LV and KL models performed better than the rest over this interval. This is 

to be expected since these are the only parametric models which model reliability decay. 

In the presence of reliability growth or stable reliability the other models seem to be 

performing better on this data set. The large jumps (or drops) in the log(PLR) plot (figure 

B. 1-6) coincide with the occurrence of a number of comparatively large inter-failure times 

previously identified in Chapter 7. The jumps indicate that the predictive pdf of the DU 

model evaluated at these points is small relative to the other models (with the exception of 
the LV and KL models at i= 77,78). This suggests that the pdf for the DU model has 

smaller values at the larger end of the scale except when the LV and KL models are also 

predicting reliability decay, in which case they appear to have even smaller tails. It seems 
likely that the remaining models' inability to cope with reliability decay, and their 

tendency towards optimistic predictions, means that we should expect these jumps 

upward in the presence of exceptionally large inter-failure times. Even not taking account 
of these jumps at large times the JM, GO, MO, LM and LNHPP models are steadily 
better than the other three models over much of the data set. 

The application of the non-parametric models with windows allows them to 

capture more quickly the local changes in the data. Thus, OTL50 and OTY50, for 

example, give HPP predictions only until about the 80th failure whereas the OTL model, 
gives HPP predictions right up until the 100th failure, identical to those from the 

parametric models. For window size 20, as we would expect, the models fluctuate 
frequently between HPP predictions and deviations from this, throughout the data. Note 
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that the HPP predictions will only be identical for different models when they are applied 
with the same window size. Corresponding coincident median predictions can be seen in 
figure B. 1-7. Notice also that the OTL, OTL20 and OTL50 predictions frequently 

coincide when the predictions are not HPP. This is not very surprising since this will 

occur whenever the largest vector of data which exhibits no growth is the same for the 
different intervals of data on which these models are based. It can also be seen that the 

medians for the CMI, OTL, OTL20 and OTL50 models seem to be very noisy. 
Comparing this with the raw data (see table B. 1-1 and figure B. 1-3) it can be seen that 

these models, particularly CMI, are responding to the very large inter-failure times by 

jumping upwards suddenly on the next prediction, immediately followed by a more 

gradual decrease as subsequent, less extreme data, is taken into account and the effect of 

these large times becomes less significant. From figure B. 1-4 it can be seen that similar, 

although much smaller, jumps upwards in response to large times occur for some of the 

raw parametric median predictions. Comparison of figure B. 1-7 with figure B. 1-4 shows 

that apart from these sudden jumps for some of the non-parametric models, the 

predictions are more similar than the predictions from the parametric models. The CMI 

model appears to be more optimistic than the other non-parametric models and this is 

confirmed by the u-plot (see figure B. 1-8). In fact table B. 1-2.1 reveals that from among 

the raw non-parametric models this is the only u-plot which is significant for this data set. 

The log(PLR) plot (see figure B. 1-9) suggests that the OTY50 model seems to be 

slightly better than the other non-parametric models but the difference in accuracy 

between the predictions from these models is pretty marginal; apart from the jumps which 

again coincide with particularly large inter-failure times little significant steady increases 

or decreases are seen in the plots. Closer examination of this PLR analysis, and 

comparison with figure B. 1-7, shows slightly sharper decreases in the PLR for the CMI 

model coinciding with those regions where its median predictions jump suddenly upward 

in response to large inter-failure times, indicating that it is in these regions that the CM1 

model is too optimistic. Comparing figure B. 1-9 with figure B. 1-6, though, it can be 

seen that the non-parametric models are generally much closer in accuracy than were the 

parametric models. Figure B. 1-10 shows that some of the non-parametric models (in 

particular OMO, OTY50 and OTL20) are as good as the best of the parametric models 

(compare with figure B. 1-6) while the remaining non-parametric models are only 

marginally worse. It would seem, then, that the increased noise in the non-parametric 

model predictions has not resulted in worse predictive accuracy than the parametric 

models, as might be expected. 

Comparison of figure B. 1-11 with B. 1-4 shows that recalibration brings the 

median predictions from the parametric models closer together, although the predictions 

still differ, and more so towards the end of the data set. The JM, GO, MO, LM and 
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LNHPP median predictions are adjusted for optimism throughout (the MO model being 
only adjusted slightly). The DU median is adjusted for optimism in earlier stages, while 
later on there is an adjustment for pessimism. The LV and KL medians have slight 
adjustments for optimism very early on and large adjustments for pessimism in the latter 

part of the data set. This suggests non-stationarity for the errors in the raw DU, LV and 
KL models (i. e., the shape of their u-plots is changing over time) and this is also 
indicated by the u-plots for these recalibrated predictions in table B. 1-2.1 and figure B. I- 
12. The u-plots for the recalibrated versions of these three models are still significant and 
indicate that the recalibrated predictions are still pessimistic although comparison of 
figures B. 1- 12 and B. 1-5 shows a marked improvement in the u-plots after recalibration 
particularly for the LV and KL models. All the rest of the models, with the exception of 
MO, have insignificant u-plots after recalibration but since the u-plots for these raw 
models were originally insignificant we would not expect much improvement to be gained 
via recalibration. For the MO model recalibration has caused the u-plot to become 

significantly pessimistic while it was previously insignificant; this indicates that there is 

also non-stationarity in the raw MO prediction errors. 

Figure B. 1- 13 confirms that there is a marked improvement in predictive accuracy 
to be gained by recalibration for the LV and KL models and for the DU model in the latter 

part of the data set while performance seems to fluctuate, although not dramatically, 
between raw and recalibrated for the other models. Figure B. 1- 14 shows that, apart from 

the large jumps again coincident with extreme data points, which are carried through to 

the recalibrated versions, the DUS, LVS and KLS predictors are marginally worse than 

the remaining recalibrated predictors in the latter half of the data but comparison with 
figure B. 1-6 shows that the recalibrated predictors are marginally closer in predictive 
accuracy than were the raw predictors. 

Figure B. I- 15 shows the K distances of the u-plots constructed using a moving 
window of size 30 across the raw predictions from the 8 parametric models. This clearly 

shows that for the DU, LV and KL models there is non-stationarity in the departure of the 

raw predictions from the truth; the predictors appear to be becoming more and more 
pessimistic as i increases. Since early predictions in the data set are not pessimistic we can 
see quite clearly how an insufficient adjustment via recalibration will be made for the 

pessimism later on in the data set. For the remaining models this non-stationarity is not so 
pronounced. In particular it is not obvious why the u-plot for MOS is significant. Notice 

that the significance levels for the y-plots in table B. 1-2.1 are contradictory to the 

observed result for recalibration of the parametric models; those with bad y-plots for the 

raw predictions result in good u-plots after recalibration and those with good y-plots 
initially result in bad u-plots after recalibration. In other words, the y-plots do not appear 
to detect the non-stationarity in the prediction errors for MO, D U, LV and KL. 
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For the non-parametric models comparison of the recalibrated medians with the 
raw medians (figures B. 1-16 and B. 1-7) show that for most of the models small 
adjustments have been made for optimism while for the CMI model this adjustment is 
greater than for the other models and now most of the predictors are in slightly closer 
agreement than before. Notice how noise in the raw median predictions is carried through 
to the recalibrated median predictions. Table B. 1-2.1 shows that the u-plot for CMI is 
dramatically improved by recalibration, for CM2 the originally insignificant u-plot has 
become significant and for the remaining models the significance levels remain about the 
same. Figure B. 1- 17 shows that CM2S is pessimistic in places. Figure B. 1- 18 shows 
that, as for some of the parametric models (i. e., JM, LNHPP etc. ), there would appear to 
be fluctuation in the effectiveness of recalibration except in this case these fluctuations for 

some of the models are much more extreme. The CMI model shows most improvement 

via recalibration. Figure B. 1-19 shows that there are not great differences in accuracy 
between the resulting recalibrated non-parametric predictors and from figures B. 1-19, 
B. 1-20 and B. 1-14 we can see that some of the recalibrated non-parametric predictors 
(e. g., CM1S and OTL20S) are as good as the best of the recalibrated parametric 

predictors while the remaining recalibrated non-parametric predictors are only marginally 

worse. 

Figure B. 1-21 shows that the raw non-parametric models are in fact fluctuating 

between being significantly biased and not so, as the data evolves and it is presumably 
this non-stationarity in the prediction errors which results in the fluctuations seen in the 
PLR analyses of the recalibrated versus the raw predictors. It is not clear, though, from 

this plot why CM2S has a significant u-plot. Comparing figure B. 1-21 with figure B. 1-7 

seems to confirm the earlier suggestion that the optimism in the CMI predictions mainly 
occurs just after large inter-failure times where the median predictions have jumped' 

upwards. 

Next we shall consider the recalibration technique applied with windows in order 
to assess whether this eliminates bias in those instances where recalibration without 

windows did not (i. e., particularly for the DU, LV and KL models). Table B. 1-2.1 

shows the resulting y- and u-plot significance levels when windows of size 20,30,40 

and 50 are applied (S20, S30, S40 and S50 respectively). Here it can be seen that the 

only significant u-plot is for KLS50 for which marginal pessimism is still present. In 
fact, for recalibration with windows of size 20,30 and 40 all the u-plots for all 16 models 
are insignificant at the 20% level, while for window size 50, all the u-plots are the same, 
or improved, when compared with the recalibrated applied without windows. This 
indicates that, as we would expect, smaller window sizes tend to eliminate those effects 
of non-stationarity in the raw prediction errors previously identified. We now need to 
assess whether the application of the recalibration technique using moving windows has 
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indeed resulted in better predictive accuracy than recalibration when applied without 
windows, or whether this decrease in bias has been bought at the expense of an increase 
in noise. 

The medians for the parametric models recalibrated with window size 40, shown 
in figure B. 1-22, do indeed look noisier than the earlier recalibrated medians (figure B. I- 
11) but they are also in closer agreement than previously. According to figure B. 1-23 the 

predictions are marginally closer in accuracy than when recalibration is applied without 
windows (compare with figure B. 1- 14). This tendency towards closer agreement and 
more noise increases as the window size used for recalibration decreases. From figure 
B. 1-24, it can be seen that recalibration with windows has actually given improvement 

with respect to the jump coincident with the large inter-failure time, tIOI, for some of the 

models where without windows there was no such improvement. Apart from the jump 

this figure shows that there is marginal improvement in some regions in the latter half of 
the data for DUS40, LVS40 and KLS40 over recalibration without windows and for 

window size 50 (see figure B. 1-25) the improvement for these models is greater than for 

window size 40 but for both window sizes there do seem to also be regions where the 

predictions are becoming marginally worse for these 3 models. In general, for regions 
where recalibration without windows successfully eliminated bias, application of 

windowing seems to have just added more noise to the predictions resulting in steady 
decreases in the PLR plots, which become larger as the window size decreases. A similar 
pattern is seen for the non-parametric models since for most of these no bias was present 
in the recalibrated (without windows) predictors. 

Table B. 1-2.2 shows the significance levels of the meta-predictor applied with a 

number of different window sizes. It can be seen that all the resulting u-plots are good 

and only one of the y-plots (for MIO) is significant at the 5% level. Figure B. 1-26 shows 
that noise in the median predictions is more prolific for smaller window sizes than for 

larger ones. Comparison with figures B. 1-4 and B. 1-7 shows that, even for larger 

window sizes, there is more noise in the medians for the meta-predictors than for the 

parametric models but about the same as for the non-parametric models. Figure B. 1-27 

shows that apart from the jump in these plotS6 differences between the predictive accuracy 

resulting from the application of different window sizes are fairly marginal. Note, in 

particular, that M1, which is only based on knowledge of predictive accuracy from the 

6 Here, some of these meta-predictors (e. g., M20, M30) have switched to predictors which behave 

favourably with the large inter-failure times, while some (e. g., MIO, M40) have not. 
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previous prediction each time, performs as well as any other and there is a region in the 
second half of the data where both MI and M2 seem to be marginally better than the rest. 

Comparing figures B. 1-28 with figures B. 1-6, B. 1- 13, B. 1- 14, B. I- 10 and B. I- 
18, shows that these meta-predictors are better than the majority of the original prediction 
systems and only marginally worse than the best of the original prediction systems. 

8.1.1 Summary for CISH 

In general, it seems that some of the parametric models and most of the non- 
parametric models gave unbiased predictions on this data set and according to the PLR 

analyses this group of unbiased raw predictors were fairly close in accuracy, in spite of 
the non-parametric medians being more noisy than the parametric medians. It is 
interesting to note that the variants of the very simple non-parametric model, OTL, 
OTL20 and OTL50, gave raw predictions which were comparable with those from the 
other models, and further, that the non-parametric models tend to be in much closer 
agreement than the parametric models (apart, perhaps, from CMI). 

For those models which were initially biased (i. e., DU, LV, KL and CMI) 
improvement with respect to this bias could be achieved via the recalibration technique but 
in some cases (e. g., LV and KL) there was still room for further improvement, due to 
non-stationarity in the raw prediction errors. It was noted that the raw y-plots were not a 
good indication of this non-stationarity and thus of when we should expect improvement 

via recalibration and when we should not. In those cases where bias was still present after 
recalibration further improvement could be achieved through the application of the 

recalibration technique with windows but in such instances the improvement according to 
the PLR analyses over recalibration without windows was marginal and if the window 
size was too small then any improvement with respect to elimination of bias was 
outweighed by increase in noise in the predictions. 

For those raw models which were initially unbiased there was generally little to be 

gained by recalibration although there was marginal fluctuation (favouring raw or 
recalibrated predictions over different intervals of data) in the PLR plots. For some 
models (CM2 and MO) the recalibration technique seemed to result in biased predictions 
when the raw models were initially unbiased, but, again, only marginal fluctuation was 
seen in the PLR analyses. For those models for which recalibration without windows 
eliminated bias recalibration with windows seemed to make things worse with respect to 
noise, particularly for smaller window sizes, than recalibration without; the PLR analyses 
indicated that the application of windows in such cases had resulted in inferior predictive 
accuracy which worsened as the window size decreased. 
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For the meta-predictor it was seen that the predictive accuracy varied marginally 
with the window size with which it was applied but in general the resulting predictions 
were about as accurate as the best of the group of initial predictors over which selection 
was made, again, in spite of the apparently more noisy median predictions than were seen 
in some of the initial predictors. This noise in the median predictions increased as 
window size decreased but, surprisingly, window size 1 gave comparatively accurate 
predictions according to the PLR analyses. 

8.2 Data set CISI2 

For this data set the JM, GO, MO, LM and LNHPP models go to the limiting case 

of an HPP in the intervals i -, 27-40 and i -, 50-70. Where this is not the case in the 
interval i -, 20-190 the LM model goes to the limiting case of JM while the LNHPP model 
fluctuates between the GO and the MO. Then from i -, 200-215 the LNHPP model goes 
to MO. Further, for i- 215-244, the LM and LNHPP models go to the limiting cases of 
the JM and GO models, respectively. From i- 360-394 both these models go to the 
limiting case of the MO model. The frequent fluctuations between different models here 

clearly arises from the fact, noted in Chapter 7, that the trend in this data set is very 
irregular. Notice how the median predictions in figure B. 2-4 respond to these changes in 

the original data. Although there is generally growth in these predictions when considered 

over the whole data, there are local fluctuations which show decay. In particular there is a 
large region over which the median predictions from all these models decrease which 

coincides with the clustering of failures previously noticed in Chapter 7, between the 
320th and the 380th failures. Other regions for which the medians show local decay 

similarly coincide with clusters of failures previously identified in Chapter 7. Prior to 

each of these regions of decay the median predictions suddenly become larger where 

particularly large inter-failure times occur. As for the previous data set the predictions 
from these models are in great disagreement in the second half of the data. 

From table B. 2-2.1 it can be seen that all the raw parametric models have highly 

significant u- and y-plots for this data set. Figure B. 2-5 indicates that the JM, GO, MO, 

LM and LNHPP models are, on average, giving very optimistic predictions while the LV 

and KL models are, on average, giving pessimistic predictions. The DU model appears to 

be resulting in pessimistic predictions for large inter-failure times. The log(PLR) plot (see 

figure B. 2-6) indicates that the models are very different in their predictive capabilities on 

this data set. In detail DU seems to be marginally better than the other models from i, 90- 

160, while from 160-210 DU, LV and KL are marginally better than the others, although 
the differences in predictive accuracy in this early data are fairly slight. From 210-300 DU 

seems generally worse than the others. In the remaining part of the data set DU, Wand 

KL seem to be much better than the rest; here LV and KL are generally better than DU 
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and JM and GO are performing particularly badly. There is a great deal of switching in 
the comparative performance of the predictions from the various models and this is clearly 
caused by the fluctuations in the data. It can be seen, for example, that DU, LV and KL 
are giving more accurate predictions than the other models in those regions of the data 
previously identified in Chapter 7, where there is local reliability decay (e. g., from i. 
320-380). In addition it can be seen from the jumps upwards in the PLR plots that the DU 
model and to a lesser extent the LV and KL models seem to cope particularly badly where 
there are particularly large inter-failure times. 

The non-parametric models applied with windows switch between HPP and non- 
HPP predictions over many intervals throughout the data while the OTL model gives 
HPP predictions over the same region as did the parametric models. Comparison of 
figures B. 2-7 and B. 2-4 show that the medians for some of the non-parametric models 
seem to be noisier than those for the parametric models but are in much closer agreement 
over much of the data. In general, as for the parametric models, there are fluctuations 
between growth and decay in these predictions throughout the data. It seems that the non- 
parametric models are responding rather more quickly to the variations in the data than the 

parametric models. In particular, after a jump upward in response to large inter-failures 

they return more rapidly to smaller values as subsequent data is taken into account. The 
CM1 median predictions appear to jump suddenly upward more frequently than the other 
non-parametric predictors, and also appear to be marginally more optimistic in other 
regions of the data (e. g., for the period of decay from i -, 320-380). The OTY50 model is 

giving a zero rate prediction (and so infinite median) for T226, which, as we shall see 
later, has an impact on the PLR analysis. 

From table B. 2-2.1 it can be seen that, as for the parametric models, the non- 
parametric model u-plots are all highly significant, although the CMI model and the non- 
parametric models which are fitted with moving windows have insignificant Y-plots while 
the raw parametric y-plots were all highly significant. Figure B. 2-8 indicates that all the 

non-parametric models are giving optimistic predictions, particularly CM1. According to 

the log(PLR) plot (figure B. 2-9), this optimism does not have the effect of the CM] 

model being much worse in predictive accuracy than the rest although it can be seen to be 

marginally worse towards the end of the data set. It can also be seen that the comparative 
model performances vary slightly over different intervals of data, although comparison 

with figure B. 2-6 shows that there is not as much deviation in the comparative predictive 
performance as there was for the parametric models. After i. 150, though, OYT20 and 
OTL20 appear to be the best, followed closely by OTL50 and OTY50 (ignoring the jump 
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downwards for OTY507) and then OTL. It can be seen that the level of windowing 

applied seems to be the over-riding factor affecting model performance; i. e., OYY20 and 
OTL20 are very similar and OTL50 and OTY50 are also very similar in predictive 

accuracy. Careful examination of the medians shows that these predictions for a given 

window size frequently coincide and, of course, this will occur whenever they are both 

giving HPP predictions. Notice though, how the smaller window size gives an advantage 
in those regions where the data is clustered. For example, in the region i- 320-380 it can 
be seen that accuracy in predictions seems to increase as the window size is decreased. 

This is not surprising since it is likely that smaller window sizes will allow a model to 

respond more accurately to changes in the trend in the data and the use of larger window 

sizes in the presence of local reliability decay is likely to result in more optimistic 

predictions, since these non-parametric models do not model decay. 

Comparison of figures B. 2-10 and B. 2-6, shows that all of the non-parametric 

models are much better than most of the parametric models and some of them (OTL20, 

OTL50 and OTY20) are generally better than the best of the parametric models (although, 

again, there is fluctuation in relative predictive accuracy over different regions of the 
data), while there is little to choose between most of them and the best parametric model. 
It is interesting to note that the application of the non-parametric models with a small 

window size seems to have bought them into comparable accuracy with KL in some of 
those regions were there is reliability decay in the data (e. g., i- 320-380) even though 

they do not model decay. In general we would expect that the application of models with 

small windows will give better results when there is much variation in the data. Clearly 

though, it is the recalibrated predictions that we are interested in for this data set, since, 

according to the u-plots, the predictions from all the raw models are biased. 

Comparison of figures B. 2-11 and B. 2-4 show that the medians for the 

parametric models after recalibration are marginally closer together than previously but 

that they are still in great disagreement, particularly at the end of the data set. Most of the 

raw predictors have been adjusted for optimism, while DU, LV and KL have, later on in 

the data set, been adjusted for pessimism. Further comparison of these predictions shows 
that for the DU model there is non-stationarity in the errors in the predictions since right at 
the end of the data set there is adjustment for optimism. The recalibration median 

predictions, as the raw, tend to fluctuate with the changing trend in the raw data with local 

regions of reliability decay even though the general trend is toward growth. 

7 This jump downwards is due to the zero rate prediction of T226 from the OTY50 model. 
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From table B. 2-2.1 we can see that for JMS, GOS, MOS, LMS and LNHPPS the 
u-plots are still significant at the 1% level. The significance levels of the u-plots for the 
remaining models have improved via recalibration although for DUS the plot is still 
significant at the 5% level. The recalibrated u-plots in figure B. 2-12 indicate that many of 
the predictors are still highly optimistic after recalibration, suggesting the presence of 
non-stationarity in the departure of these raw prediction systems from the truth, although 
comparison with figure B. 2-5 shows that most of these plots have improved. Figure B. 2- 
13 indicates that recalibration generally, and sometimes dramatically, improves 

predictions later on in the data set (from i -, 160) although there are some regions where it 
is not efficient; in fact sometimes recalibration seems to have resulted in worse accuracy 
than the raw, e. g., for LV and KL in the region i -, 320-380. The improvement for JM 

and GO is very large in magnitude, but this is mainly because they were originally so bad 
(see figure B. 2-6), and from B. 2-14 we can see that these are still giving predictions 
which are much worse than the other recalibrated predictions. Notice the similarity of the 

shape of the Iog(PLR) plots in figures B. 2-6 and B. 2-14. Here, by noticing the change in 

the scales, we can see that recalibration has indeed resulted in the various predictions 
being closer in accuracy, but there is still a great deal of difference in accuracy between 

the recalibrated predictors in the second half of the data set with the "best" predictions 
switching between the various recalibrated predictors as the data evolves. All these 

various log(PLR) plots suggest that the best predictor, from amongst the raw and 
recalibrated parametric, might be LVS or KLS although, as previously stated, there are 

changes to the best predictor which we might select as the data evolves. 

Figure B. 2-15 confirms that there is indeed non-stationarity in the errors in the 

predictions from all of the raw parametric models, even for LV and KL which had good 

u-plots after recalibration. In general the raw predictors are not significantly biased in the 

early data, while later on they switch between being biased and not so over different 

intervals of data. It can be seen that the observations from the previous u-plots (figure 

B. 2-5) over the whole data where really average statements - most of the optimism or 

pessimism indicated by these are almost certainly the result of later predictions. It can be 

seen how, over regions where the bias is great, there will not be sufficient adjustment via 

recalibration due to the fact that the u-plots incorporate previous less biased data. 

Comparison of the raw and recalibrated median plots for the non-parametric 

models (see figures B. 2-16 and B. 2-7) shows how these raw predictions have been 

adjusted for optimism and how they are now in slightly closer agreement after 
recalibration than before. Again many of them appear to be more noisy than the 

recalibrated parametric medians (see figure B. 2-1 1) and this is to be expected since the 

noise in the raw non-parametric predictions will be carried through to the recalibrated; the 

zero rate prediction for OTY50 will also not be eliminated by recalibration. From table 
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B. 2-2.1 it can be seen that for the non-parametric models there is improvement in some of 
the u-plots after recalibration but most of them are still significant at the 5% level. This 
indicates that, as for the parametric models, there is non-stationarity in the raw prediction 
errors. In spite of this non-stationarity, comparison of figure B. 2-17 with figure B. 2-8 

shows that all the u-plots have been improved by recalibration. Figure B. 2-18 shows that 
there is a pretty steady improvement after recalibration for all the non-parametric models 
in some regions of the data while in others there is little to choose between the raw and 
the recalibrated predictions. The large improvement, particularly in the region V., 320- 
380, for CMI, is due to the fact that it was very optimistic in the first place. The 
log(PLR) plot in figure B. 2-19 shows that the OTL20S, OTL50S, CMIS and OTY20S 

are generally better than the other recalibrated non-parametric predictors and comparison 
with figure B. 2-9 suggests that the recalibrated non-parametric predictions are marginally 
closer in accuracy than were the raw. Comparison of figures B. 2-20 and B. 2-14 shows 
the best of the recalibrated non-parametric predictors to be generally better than the best of 
the recalibrated parametric predictors, although, again, there are some regions where they 

are worse. 

Figure B. 2-21 shows that, as suggested by the significant u-plots after 
recalibration, there is, indeed, non-stationarity in the raw non-parametric prediction 
errors. Again, there is less error in the early data and in the later data the departures 

switch between significant optimism and not so. Here we can see how recalibration using 

all available previous predictions will again give insufficient adjustment for optimism in 

certain regions of data, while in other regions the predictions are likely to be adjusted too 

much. 

It is clear that, for this data set, due to the variation in the original data, we have 

much variation in the prediction errors for all the raw models. This results in recalibration 

using all previous predictions giving improvement but leaving scope for further 

improvement. This is clearly a candidate for the application of recalibration with a moving 

window across the raw predictions. From table B. 2-2.1 we can see that application of 
this technique to the raw predictors improves all the u-plots when compared to 

recalibration without windows. For the non-parametric models and for D U, LV and KL 

all the u-plots for all recalibration window sizes are now insignificant at the 20% level. 

For the remaining parametric models some of the u-plots remain significant at the 20% 
level but all are now insignificant at the 5% level. 

Again we have to assess that the decrease in bias bought by this technique is not 
countered by an increase in noise. Comparing figures B. 2-22, B. 2-23 and B. 2-1 1, we 
can see that the median predictions do appear to be a little more noisy than those from 

recalibration without windows and this noise increases slightly as the window size 
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decreases. The median predictions are now in very close agreement (becoming closer as 
the window size decreases) where for recalibration without windows there was great 
disagreement in the second half of the data. Observation of figures B. 2-24 and B. 2-25 

show that over some regions of the data, for some of the models, there are improvements 
in the predictions from the application of windows. Notice, in particular, the huge 
improvement shown for the JM and GO models in the previously identified region of 
reliability decay (i. e., i -, 320-380). Here the application of recalibration with windows 
appears to have successfully eliminated optimism the raw JM and GO predictions while 

recalibration without windows did not make a sufficient adjustment for this optimism. 
The large improvement shown for DU is mainly due to jumps upwards in the log(PLR) 

which are coincident with extremely large inter-failure times rather than a steady 
improvement and these jumps get larger as the window size used for recalibration gets 

smaller. In some regions of the data, however, the predictions from recalibration with 

windows are worse according to this log(PLR) analysis, than for recalibration without 

windows. In some cases this is probably due to increased noise arising from the 

application of windows which appears to out-weigh any decrease in bias bought by this 

technique, and this problem appears to get worse as the window size is decreased. For 

example, in the early data for window size 20 the windowing has degraded the 

performance of the recalibrator while for 50 there is little to choose between recalibration 

with or without windows. Comparison of figures B. 2-26 and B. 2-27 with figure B. 2-14 

show that, apart from the large drops downward for window size 208, the application of 

windowing has made these predictors closer in accuracy. 

For the non-parametric models the median predictions after recalibration with 

windows do not look much more noisy than the recalibrated without windows (compare 

figures B. 2-28 and B. 2-29 with B. 2-16) but are in slightly closer agreement than before, 

and more so as the window size decreases. Recalibration using windows has generally 

made things worse than recalibration without and more so with smaller windows (see, for 

example, B. 2-30 and B. 2-31) in spite of the insignificant u-plots for all the window 

sizes. There are some regions where improvements can be seen and it is presumably 

elimination of optimism in these regions which is resulting in better u-plots. The 

application of recalibration with windows has resulted in predictors which are marginally 

8 These drops are actually due to the improvement of DUS20 over DUS coincident with extremely 
large inter-failure times. 
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closer in accuracy than those from recalibration without windows and these become 
closer as the window size decreases (compare figures B. 2-32 and B. 2-33 with B. 2-19)9. 

Again we now have a large number of different predictors from which to choose 
and the relative performance of these different predictors frequently varies over different 

regions of the data. This is clearly a result of fluctuations in the trend in the raw data. It is 

circumstances such as these that we might expect our meta-predictor to give better 

predictions than if we were to choose any particular single predictor. 

Table B. 2-2.2 shows that all the y- and u-plots for all windows sizes (i. e., MI, 
M2, ... , M50) are insignificant at the 10% level. The median predictions (figure B. 2-34) 

appear to be quite noisy, and more so for the smaller window sizes. The log(PLR) plot 
(figure B. 2-35) shows that, apart from the large drop for M110, the different window 
sizes result in fairly close predictive accuracy and this is in spite of the marginally noisier 
predictions for the smaller window sizes; in fact, the larger window sizes seem to 

generally result in worse accuracy than the smaller window sizes in the latter half of the 
data. Notice how, over this region, M1, which is based only on the previous prediction 
each time, gives quite good predictions when compared with the other window sizes. The 
better performance of the small window sizes here is probably due to the frequent local 

fluctuations in the relative accuracy of the various initial predictors as the data evolves. 
This ability for the smaller window sizes to result in a meta-preditor which more quickly 
switches to the most recently best single predictor appears to marginally out-weigh any 
increase in noise which results when using a small window size, for this particular data 

set. 

Comparing figure B-2-36 with figures B. 2-14, B. 2-13, B. 2-20 and B. 2-18, 

shows that some of these meta-predictors, e. g., M5, are as good as the best of the initial 

single predictors, and that most of the meta-predictors are dramatically better than many 
of the initial single predictors. 

9 The large jumps down shown for OTY5OS20 and OTY5OS50 are again a result of the zero rate 

prediction given by OTY50 at this point, which cannot be eliminated by the application of 

recalibration with or without windows. 

10 The MI model chooses OTY5OS50 at this point and so gives a zero rate prediction. 
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8.2.1 Summary for CISI2 

For this data set, in contrast to CISH where most of the initial raw predictors 
were unbiased, all of the raw models gave predictions which were on average grossly in 

error. The nature of the bias in the predictions varied depending on the model, with all 
except the DU, LV and KL models giving generally very optimistic predictions, 
particularly JM, GO and CM1. The non-parametric models, which were again in closer 
agreement, although they exhibited more noise gave predictions which were better than all 
of the parametric models, subject to some local variation. Evidence suggested that the 
application of the non-parametric models with small windows helped them to better 

capture the frequent fluctuations in the trend in the data. It is interesting to note that, 

again, variants of the simple non-parametric predictor OTL20 and OTL50, performed as 
well as all of the others. 

General improvement (reduction in the bias) for all the raw predictors could be 

achieved by the application of the recalibration technique with more improvement shown 
for those raw predictors which were initially worst. The best of the recalibrated non- 
parametric predictors were better than the best of the recalibrated parametric predictors, 
again subject to some local variation. However, for many of the predictors bias, the 

nature of which again depended on the initial raw model, was still present even after 

recalibration. On further investigation it was found that there was non-stationarity in the 

prediction errors for most of the raw models. Application of recalibration with windows 
was shown to give improvement (sometimes dramatic) in regions of the data where bias 

was still present after applying recalibration without windows. In other regions of the 
data applying windows seemed to make things marginally worse than recalibration 

without windows, and often unwanted noise was added to the predictions, which tended 

to increase as the window size used for recalibration decreased. 

For the meta-predictor performance varied marginally with the window size with 

which it was applied. Recall that in general there was quite a lot of local variation in the 

relative performance of the initial predictors. The result of this is that application of the 

meta-predictor with smaller window sizes was able to better capture these local variations, 

and in particular M1 again performed fairly well compared with the larger window sizes. 
Most importantly, though, for this data set, where there was clearly no single initial 

predictor (raw or recalibrated) which could be chosen as consistently best throughout the 
data, the meta-predictor resulted in predictions which were as good as the "best" (on 

average) of the initial predictors. 
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8.3 Data set USBAR 

The JM, GO, MO, LM and LNHPP models go to the limiting case of an HPP for 
i- 20-87,110-200. For i -- 88-109 and i- 200-300 the LM and LNHPP models go to the 
JM and GO models respectively. These regions were the predictions from different 

models coincide can be seen from the median plot (see figure B. 4-4). From this plot we 
can see that there is reliability growth in the raw predictions after the sudden decrease in 

the failure rate at the 260th failure, previously identified in Chapter 7. After this point 
there are differences between the median predictions and this discrepancy gets larger as 
the data proceeds. 

From table B. 4-2.1 it can be seen that the u- and y-plots for all the raw parametric 

models are highly significant. The u-plots (figure B. 4-5) indicate that the JM and GO 

models are giving very optimistic predictions, the LM and LNHPP models are giving 

predictions which are optimistic except for large inter-failure times and the LV and KL 

models are giving very pessimistic predictions. The S-shaped u-plots for the MO and DU 

indicate that their predictions are optimistic for small inter-failure times and pessimistic for 

large inter-failure times and that the true medians probably lie closest to the predictions 

given by these two models. 

Figure B. 4-6 suggests that the raw DU model is performing relatively badly 

compared with the other raw parametric models for this data set, except at the end of the 
data where the JM and GO models are marginally worse than DU. It is clear from this 

plot that there is much variability in the models' predictive accuracy from the 260th failure 

onwards. The log(PLR) plots for the models jump upwards at the occurrence of the large 

inter-failure times in the raw data directly after this point and this is clearly where the DU 

model, and to a lesser extent the MO model, experiences particular difficulty. The KL and 
LV models seem to be performing steadily better than the other 6 raw parametric models 

throughout the data. 

For the non-parametric models with windows of size 20, there are fluctuations 

between HPP and non-HPP predictions throughout the data and these tend to coincide for 

both OTY20 and OTL20. The same is also true for window size 50 but these fluctuations 

are less frequent. The OTL model gives HPP predictions over the same regions as the 

parametric models. The median predictions for the non-parametric models (see figure 

B. 4-7) accordingly frequently coincide and reliability growth in these medians is present 

after the 2601h failure. Comparing these median predictions with those given by the raw 

parametric models (compare with figure B. 4-4) we can see that the raw non-parametric 

medians are in much closer agreement than the parametric, although they are more noisy. 
There is a tendency for the non-parametric median predictions to jump suddenly upward 
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in response to the occurrence of particularly large inter-failure times and then to return 
rapidly to lower values as subsequent, less extreme, data is taken into account. 

From table B. 4-2.1 we can see that, as for the parametric models, the non- 
parametric models also have highly significant u-plots, although the y-plots are all 
insignificant at the 5% level, whereas for the parametric models they were all highly 

significant. Figure B. 4-8 indicates that these models are giving optimistic predictions 
except for large inter-failure times, particularly CM1. 

In spite of this, according to the PLR analysis (see figure B. 4-9) the CM1 model 
is comparable in accuracy with the other non-parametric models; there is no one non- 

parametric model which is performing steadily better than any other on this data set, 

although there is some local fluctuation. Comparing this with the log(PLR) plots in figure 

B. 4-6 we can see the non-parametric models are much closer in predictive accuracy than 

the parametric models (notice the difference in the scale of these two plots). Comparison 

of figures B. 4-10 and B. 4-6 shows that the non-parametric models are much better than 

some of the parametric models, although not as good as the best of the parametric models 

subject to some local fluctuation; there are regions where they giving more accurate 

predictions than KL, although over most of the data they are worse. The best single raw 

predictor is thus generally KL, for this data set, but the highly significant u-plots indicate 

that all these models are giving inaccurate predictions and so, for this data set, we are 

clearly interested in any improvement to be gained by recalibration. 

Comparison of figures B. 4-11 and B. 4-4 shows that the median predictions after 

recalibration are in closer agreement although they still disagree a great deal after the 260th 

failure. Some of the raw median predictions (e. g., JM and GO) have been adjusted for 

optimism while other (e. g., LV and KL) have been adjusted for pessimism; notice how 

the DU median predictions have been virtually unaltered by recalibration. Table B. 4-2.1 

shows that most of the u-plots for the recalibrated parametric models are still significant at 

the 5% level, although comparison of figures B. 4-12 with B. 4-5 indicates that 

recalibration has drastically reduced the bias originally present in all the raw parametric 

model predictions. A more detailed examination of these u-plots suggests that 

recalibration has generally, on average, made an insufficient adjustment for the bias 

originally present in the raw predictions. 

Figure B. 4-13 shows how the recalibration procedure gives fairly steady 
improvement in predictive accuracy for all the parametric models. For the DU model this 
improvement is particularly dramatic: steady increases in the log(PLR) for DUS versus 
DU can be seen and there are also large jumps upward in this plot, which are coincident 

with particularly large inter-failure times in the raw data (see Chapter 7). Figure B. 4-14 
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indicates that the best recalibrated parametric prediction system is DUS; MOS also seems 
to be performing quite well apart from the large drops at various stages which again 
coincide with particularly large inter-failure times. It is interesting to note that recalibration 
gave improvement with respect to these extreme data values for the DU model but that no 
such improvement was seen for the MO model. Comparison of this figure with figure 
B. 4-6 shows that recalibration has resulted in closer predictive accuracy from the different 

models, although there is still quite a lot of disagreement. We can also see how the model 
which was initially much worse than the others, i. e., DU, after recalibration now gives 
the best predictions. 

It is also interesting to observe that recalibration would appear to be making some 
quite sophisticated adjustments in order to eliminate errors in the DU and MO predictions. 
The medians are virtually unchanged by recalibration while at either ends of the scale 
(i. e., for large and small inter-failure times) the adjustment being made is, according to 
figure B. 4-5, in opposite directions. Actually this is probably an over-simplification of 
the situation, since the presence of significant u-plots after recalibration for most of the 

parametric models indicates that there is non-stationarity in the errors in the raw model 
predictions. Figure B. 4-15 confirms this, and here we see how a u-plot based on all 
previous predictions may not give the right adjustment via recalibration at many stages. 
For example, for JM and GO, most of the optimism in the raw predictions appears to be 

towards the end of the data set, while the u-plot used for recalibrating these predictions 
will include earlier, less biased, predictions. 

For the non-parametric models comparison of figures B. 4-16 and B. 4-7 shows 
how recalibration has made adjustments for optimism in the raw median predictions. 
Similar growth and noise in seen in the medians after recalibration to before and the 

recalibrated predictions are in marginally closer agreement. From table B. 4-2.1 we can 
see that most of the u-plots after recalibration of the non-parametric models are 
insignificant at the 5% level and comparison of figures B. 4-17 and B. 4-8 suggests that 

the optimism in the original raw predictions has been drastically reduced. 

Figure B. 4-18 shows that recalibration has given fairly steady improvement for 

these non-parametric models throughout the data set. Comparison of figure B. 4-19 with 
B. 4-9 shows that the non-parametric predictors are marginally closer in accuracy after 

recalibration than before and that there is no one recalibrated non-parametric predictor that 
is steadily better than the others, although there is some local fluctuation. Comparison of 
figures B. 4-19 and B. 4-14 shows that the recalibrated non-parametric predictors are 
much closer in accuracy than the recalibrated parametric predictors. Figure B. 4-20 shows 
t hat, in spite of the fact that many of the recalibrated non-parametric predictors have 

marginally better u-plots, the best recalibrated parametric predictor, DUS, is better than 
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these predictors over much of the data set suggesting that the noise in the non-parametric 
model predictions may be causing problems with predictive accuracy. Comparison with 
figure B. 4-14, though, suggests that some of the recalibrated non-parametric predictors 
are as accurate as the other 7 recalibrated parametric predictors. 

Figure B. 4-21 shows how there are signs of non-stationarity in the raw non- 
parametric prediction errors with optimism increasing towards the end of the data set but 

this non-stationarity in prediction errors is not as pronounced as it is for some of the raw 
parametric predictors (compare with figure B. 4-15). 

From table B. 4-2.1 we can see that the u-plots for all the parametric and non- 
parametric models recalibrated with all window sizes are insignificant at the 20% level 

and many of the y-plots have also improved. For the parametric models the median 
predictions for these predictors are much closer in agreement than was the case with 

recalibration without windows (see, for example, figures B. 4-22 and B. 4-23 and 

compare these with figure B. 4-1 1) although slightly more noisy. For some of the 

parametric models the application of recalibration with windows gives large 

improvements in predictive accuracy over recalibration without windows in some regions 

of the data. For example, from figures B. 4-24 and B. 4-25 we see large improvement for 

JM and GO at the end of the data set, particularly for window size 50. Comparing, again, 
the median predictions suggests that this improvement is due to recalibration with 

windows making sufficient adjustments for optimism in the raw predictions in this 

region, while for recalibration without windows this adjustment was insufficient. 

Returning to the PLR analysis we can see jumps upwards in some of these plots again 

coincident with the particularly large inter-failure times just after the 269h failure; it seems 

that the application of recalibration with windows can sometimes give more improvement 

at extreme values than recalibration without windows. 

From figure B. 4-24 and B. 4-25 we can also see some regions where there are 

steady decreases which indicates that any decrease in bias which may have been bought 

by using windows has been out-weighed by an increase in noise, and this problem is 

worsens as the window size decreases. This is also the case for all the non-parametric 

models recalibrated with all the window sizes; the median predictions are marginally less 

optimistic than those for recalibration without windows (compare, for example, figure 

B. 4-26 with B. 4-16) but steady decreases can be seen in the log(PLR) which become 

more pronounced as the window size decreases (see, for example, B. 4-27 and B. 4-28). 

Table B. 4-2.2 shows that the u- and y-plots for the meta-predictors are all 
insignificant at the 5% level, while for the larger window sizes, 20,30,40 and 50, they 

are all insignificant at the 20% level. Figure B. 4-29 shows how median predictions for 
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the smaller window sizes tend to be more noisy than for larger window sizes. The 
log(PLR) plot in figure B. 4-30 shows that there is quite a marked variation in the 
predictive accuracy according to the window size used for the meta-predictor. The meta- 
predictors with smaller window sizes, MI, M2 and M5 are steadily worse than the others 
and M30, M40 and M50 are steadily better in the second half of the data. 

Comparison of figures B. 4-31 with figures B. 4-13, B. 4-14, B. 4-18 and B. 4-20 

show that, apart from the jumps downward seen in figure B. 4-31 11, these two meta- 
predictors are about the same in predictive accuracy as the best of the original predictors. 

8.3.1 Summary for USBAR 

For this data set, as for CISI2, all of the raw models gave predictions which were 
on average grossly in error. The nature of the bias in the predictions again varied 
depending on the model, with all except the MO, DU, LV and KL models giving on 

average very optimistic predictions, particularly JM, GO and CM1. In general the bias in 

most of the raw predictors tended to increase as the data evolved. The non-parametric 
models, which were again in closer agreement, although they exhibited more noise gave 
predictions which were better than many of the parametric models, although not as good 

as the best of the parametric models, subject to some local variation. Again, it is 

interesting to note that the simple non-parametric predictor OTL, OTL20 and OTL50, 

performed as well as all of the other non-parametric predictors. 

Steady improvement (reduction in the bias) for all the raw predictors could be 

achieved by the application of the recalibration technique with more improvement shown 
for those raw predictors which were initially worst. In fact, the predictor which was 
initially the worst before recalibration, DU, turned out to be the best after recalibration. 
The best of the recalibrated non-parametric predictors were as good as many of the 

recalibrated parametric predictors, but not as good as the best of the recalibrated 

parametric predictors, again subject to some local variation. 

For some of the predictors, in particular for JMS and GOS, bias was still present 
even after recalibration. On further investigation it was found that there was some non- 
stationarity in the prediction errors for these raw models. Application of recalibration, with 
windows was shown to give improvement (sometimes dramatic) in regions of the data 

where gross bias was still present after applying recalibration without windows. In other 

II Here the meta-predictors are switching to a predictor which is marginally worse than DUS at the 
large inter-failure time, 1340. 
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regions of the data and for most of the other models applying windows seemed to make 
things marginally worse than recalibration without windows, and often unwanted noise 
was added to the predictions, which tended to increase as the window size used for 

recalibration decreased. For both recalibration with and without windows improvement 

with respect to problems encountered by the raw predictors due to the occurrence of 
particularly large inter-failure time data could be seen, indicated by large jumps in the 
log(PLR) plots coincident with these extreme data points. 

For this data set, performance of the meta-predictor varied more with the window 
size with which it was applied than for the previous two data sets. Also, in contrast to the 

previous 2 data sets, the predictors with smaller window sizes, which resulted in more 
noisy median predictions, performed worse than those with larger window sizes. The 
best of the meta-predictors gave predictions which were as good as the "best" (on 

average) of the initial predictors. 

8.4 Data set USROFF 

The JM, GO, MO, LM and LNHPP models tend to the limiting case of an HPP 

very rarely (only within the region i- 20-34). The LM model often goes to the limiting 

case of the JM model previous to i. 104, while the LNHPP model fluctuates between 

MO and GO, but mostly MO. The median predictions (see figure B. 5-4) from these 

models generally exhibit significant growth after the 85th failure and from this point there 
is disagreement in the median predictions which generally becomes greater as the data 

evolves. The point ' 
at which the medians start to disagree coincides with the previously 

identified (see Chapter 7) change-point in the data just after the 85th failure and this 

disagreement becomes even more pronounced from the 100th failure where there are 

some particularly large inter-failure times, t100 and tiol. In fact, in response to these large 

inter-failure times the JM and LM models both predict that there are no bugs left in the 

program at this point and hence give zero rates and infinite medians (observe the peak at i 

= 102 in figure B. 5-4 for these two models). From table B. 5-2.1 we see that, with the 

exception of the MO model, all the u-plots for the parametric models are significant at the 
5% level and figure B. 5-5 suggests that the JM and GO predictions are very optimistic 

and to a lesser extent this is also the case for LM and LNHPP, while the LV and KL 

predictions are very pessimistic and DU is pessimistic for large inter-failure times. 
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The log(PLR) plot for the raw parametric models (see figure B. 5-6) indicates that, 
apart from the large drop downwards for LM12, the MO, LM and LNHPP models out- 
perform the other models for this data set (although the difference between these and 
some of the others is marginal). It is interesting to note that the MO model is not 
significantly better than the other raw predictors according to this PLR analysis, in spite 
of its' having the best u-plot. Notice how the JM and GO models perform particularly 
badly in the second half of the data set where the growth (considered globally) is non- 
linear. The LV and KL models perform badly right at the end of the data set. As we shall 
see later, it is in these regions that the raw predictions from these two groups of models 
are particularly biased. The bad performance of the DU model is mainly due to some 
jumps in this plot coincident with extreme data values relatively large inter-failure times. 

The non-parametric models fitted with windows of size 20 fluctuate frequently 

between HPP and non-HPP predictions throughout the data set, whereas for window size 
50 there a very few HPP predictions and for OTL HPP predictions coincide with those 
from the parametric models (i. e., only within the region iý 20-34). Comparing the 

medians from these models (see figure B. 5-7) with those from the parametric models (see 

figure B. 54) we can see that, for the non-parametric models, these predictions are in 

much closer agreement and generally a little more noisy, than for the parametric models. 
Growth is also exhibited by these predictions after the 85th failure. The noise in the 

median predictions for the non-parametric models is mainly due to sudden increases in 

these predictions in response to the occurrence of large inter-failure time data (e. g., t88, 

t100, tjol); as was observed for USBAR, the predictions tend to return more quickly than 

some of the parametric median predictions, to lower values as subsequent, less extreme, 
data is taken into account. From table B. 5-2.1 it can be seen that the u-plots for some of 

the raw non-parametric models are insignificant at the 5% level and the y-plots are all 
insignificant at the 20% level whereas the y-plots for many of the parametric models are 

significant. Figure B. 5-8 indicates that the CMI model, in particular, is giving optimistic 

predictions (although, from figure B. 5-5, not as optimistic as JM and GO nor as biased 

as LV and KL), while for the other non-parametric models it would appear that 

predictions of smaller inter-failure times, are optimistic. 

From figure B. 5-9 we can see that the non-parametric models with significant u- 
plots, CMI, OTL, OTL50 and OTY50, are marginally worse than the other non- 
parametric models but comparing with figure B. 5-6 we can see how the predictions from 

12 The large jumps downward for the JM and LM models are due to the zero rate predictions for TI02 

from these models. 
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the non-parametric models are much closer in accuracy than the predictions from the 
parametric models. From figure B. 5-10 we see that the raw non-parametric models are 
marginally worse than the better of the raw parametric models after the 85th failure; the 
jumps are again coincident with extreme data values. 

Comparing figure B. 5-11 with figure B-5-4 we can see that the recalibrated 
medians for the parametric models are in closer agreement than the raw but there is still 
disagreement in the predictions after the 85th failure with JMS, GOS, LVS and KLS 

some distance from the other median predictions. The predictions from JM and GO, and 
to a lesser extent from LM and LNHPP, have been adjusted for optimism and those from 
DU, LV and KL have been adjusted for pessimism; for MO the predictions are altered 
very little by recalibration. Table B. 5-2.1 shows that the u-plots for MOS, DUS, LMS 

and LNHPPS are insignificant at the 20% level while the other four predictors still have 

significant u-plots after recalibration. Comparison of figure B. 5-12 with figure B. 5-5 

shows that although there is improvement in the u-plots after recalibration JMS and GOS 

are still optimistic while LVS and KLS are still pessimistic. Notice that the raw y-plots 
here are not a good indication of the efficiency of recalibration since from these one 
would expect LVS and KLS to have the best u-plots and not expect good u-plots for LMS 

and LNHPPS. 

Figure B. 5-13 indicates improvement via recalibration for most of the models 
after the 85th failure, while early on in the data recalibration makes things marginally 
worse. The PLR analysis in figure B. 5-1413 indicates that JMS and GOS are steadily 
worse than the recalibrated versions of the other models after the 85th failure and LVS 

and KLS are also worse in a region at the end of the data. For the other models 
performance of the recalibrated predictors is about the same - MOS is marginally better 

than D US, LMS and LNHPPS; DUS is worse again mainly due to jumps coincident with 
extreme data although recalibration has gone some way in reducing these jumps. 
Comparison with figure B. 5-6 shows that the models are closer in predictive accuracy 
after recalibration than they were before recalibration. 

The presence of significant u-plots after recalibration indicates non-stationarity in 

the raw prediction errors for JM, GO, LV and KL and figure B. 5-15 confirms this. We 

can see how insufficient adjustments will be made by recalibration for these 4 models 
since the extreme bias in the raw predictions given by these models is only present in the 
later data; for the JM and GO models the optimism is in the second half of the data while 

13 The large jumps downwards for JMS and LMS are again due to the zero rate predictions which cannot 
be eliminated by recalibration. 
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for LV and KL the pessimism is just at the end of the data. Comparison of figure B. 5-15 
with figures B. 5-13 and B. 5-14 shows how there is improvement via recalibration, but 
not enough, precisely in those regions where bias is present for these four models. We 
can also see that recalibration makes things slightly worse when there is no bias in the 
raw model predictions (at the beginning of the data set for all the parametric models and 
at the end for MOS, LMS and LNHPPS); in such circumstances recalibration will either 
just add unwanted noise, or make an inappropriate adjustment due to bias in earlier 
predictions. 

When recalibration is applied to the non-parametric models the resulting median 
predictions (see figure B. 5-16) are marginally closer than before (compare with figure 
B. 5-7) with slight adjustments for optimism throughout the data and the noise in the 
original predictions is retained in the recalibrated predictions. From table B. 5-2.1 it can be 

seen that all the u-plots for the recalibrated non-parametric predictors are insignificant at 
the 20% level. In this case this does fit in with the significance levels for the y-plots for 

the raw models; these are all insignificant at the 20% level suggesting that recalibration is 
likely to be efficient. Figure B. 5-17 shows that over much of the data there is 
improvement via recalibration for all the non-parametric models except at the beginning 

and at the end of the data set where there appears to be a degradation in predictive 
performance. From figure B. 5-18 we can see that after recalibration these models are 
close in predictive accuracy, as were the raw non-parametric models (compare with figure 
B. 5-9) and closer in accuracy than the recalibrated parametric predictors (compare with 
figure B. 5-14). From figure B. 5-19 we can see that they are also close, but marginally 
worse, than the best of the recalibrated parametric predictors, MOS. 

From figure B. 5-20 we can see that there is non-stationarity in the error in the raw 
predictions for the non-parametric models but comparison with figure B. 5-15 shows that 
this is not so pronounced as for some of the raw parametric models. Comparison of 
figure B. 5-20 with figure B. 5-17 suggests that recalibration make things worse in regions 
where the raw non-parametric models are not biased; at the end of the data set it is likely 

that an adjustment will be made for optimism when the raw models have ceased to be 

optimistic. Notice also from figure B. 5-20, how the CMI model is fairly consistently 
more optimistic than the others throughout the data set. 

From table B. 5-2.1 it can be seen that when recalibration is applied with moving 
windows, for the parametric models most of the resulting u-plots are insignificant at the 
20% level while for the non-parametric models all the resulting u-plots are insignificant at 
the 20% level. For those parametric models for which the u-plots were significant after 
recalibration without windows there is a tendency for the u-plots to become worse as the 
window size for recalibration increases, indicating that recalibration with the larger 
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window sizes does not make a sufficient adjustment for the bias in the raw models. The 

resulting median predictions are in closer agreement than those from recalibration without 
windows and become even closer, but marginally more noisy, as the window size used 
for recalibration decreases (see, for example, figures B. 5-21 and B. 5-22 and compare 

with figure B. 5-1 1). The predictive accuracy also becomes closer as the window size is 

decreased (see for example figures B. 5-23 and B. 5-2414 and compare with figure B. 5- 

14). 

From figures B. 5-25 and B. 5-26 it can be seen that, in those regions where it was 
identified that the recalibration without windows made an insufficient adjustment for bias 

in the JM, GO, LV and KL models, a marked improvement can be seen via the 

application of windowing. Otherwise the application of windowing has made things 

marginally (the scale is small) worse, and more so for smaller window sizes, than 

recalibration without windows, presumably due to increased noise in the predictions. A 

similar pattern is seen for the non-parametric models for which recalibration without 

windows had already effectively eliminated the bias in the raw predictions. For example, 
from figures B. 5-27 and B. 5-28, apart from jumps upwards for window size 2015 for 

some of these models, the application of windows results in marginally worse predictive 

accuracy and more so for smaller window sizes. 

From table B. 5-2.2 it can be seen that the meta-predictor gives good y- and u- 

plots for all window sizes, in fact the u-plots are all insignificant at the 20% level. The 

median predictions in figure B. 5-29 are quite noisy for the smaller window sizes and also 
disagree at various points. According to the PLR analysis in figure B. 5-30, after the 

100th failure MI and M2 are marginally worse than the meta-predictors with bigger 

window sizes, but, apart from the jump downwards for M1016, in general they are fairly 

close in accuracy. 

14 The large jumps downwards for the various recalibrated versions of JM and LM are again due to the 

zero rate predictions which cannot be eliminated by recalibration with or without windows. 'Me large 

jumps downwards for window size 20 indicate that application of recalibration with this window size 

has improved things for DU with respect to the large inter-failure time t88. 

15 Again, these jumps are due to improvement with respect to the large inter-failure time, t88. 

16 This jump downwards for MIO is due to the fact that it has switched to the JM orLM models (or 

one of their recalibrated versions) coinciding with the stage at which they give a zero rate prediction. 

117 



Comparison of figure B. 5-31 with figures B. 5-13, B. 5-14, B. 5-19 and B. 5-17 
show that, according to the PLR analyses, these meta-predictors are marginally worse 
than the best of the original predictors but as good as or better than many of the original 
predictors. 

8.4.1 Summary for USROFF 

For this data set all the raw parametric models except MO, gave predictions which 
were on average in error. For the non-parametric models the OTL models and CM I also 
gave predictions which were on avergae in error. The nature and extent of the bias in 

these predictions again varied depending on the model. All except MO, LV and KL gave 
optimistic predictions, particularly JM and GO and LV and KL were equally pessimistic. 
CM1 gave predictions which were more optimistic than the other non-parametric models 
but not as optimistic as JM and GO. In general disagreement between the raw parametric 
predictors tended to increase as the data evolved and growth became more rapid. The 

non-parametric models, which were in closer agreement, although they exhibited more 
noise gave predictions which were comparable with some of the parametric models, 
although not as good as the best of the parametric models. Again, the simple non- 
parametric predictor OTL, OTL20 and OTL50, performed as well as the other non- 
parametric predictors. 

On average improvement (reduction in the bias) for all the raw predictors could be 

achieved by the application of the recalibration technique with more improvement shown 
for those raw predictors which were initially worst, although there were some regions 

where recalibration resulted in less accurate predictions. The best of the recalibrated non- 

parametric predictors were as good as some of the recalibrated parametric predictors, but 

not as good as the best of the recalibrated parametric predictors. 

For some of the predictors, JMS, GOS, LVS and KLS, bias was still present 

even after recalibration. On further investigation it was found that there was non- 

stationarity in the prediction errors for these raw models with most of the bias in the 

predictions toward the end of the data. Application of recalibration with windows was 

shown to give improvement in regions of the data where gross bias was still present after 

applying recalibration without windows. In other regions of the data and for most of the 

other models applying windows seemed to make things marginally worse than 

recalibration without windows, and often unwanted noise was added to the predictions, 

which tended to increase as the window size used for recalibration decreased. 

For this data set, performance of the meta-predictor varied marginally with 
window size, with predictions from MI and M2, which gave more noisy median 
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predictions, slightly worse than those from the larger window sizes. These meta- 
predictors gave predictions which were better than many of the initial predictors but 
marginally worse than the "best" (on average) of the initial predictors. 

8.5 Data set USPSCL 

As for the data set USROFF for USPSCL the parametric models rarely tend to the 
limiting case of an HPP. In the region i. 20-65 the LM model tends to the limiting case 
of the JM, while the LNHPP fluctuates between MO and GO. Later on in the data set (i -, 
94-104 for the LM and i -- 80-84,90-104 for the LNHPP) both these models tend to the 
limiting case of the MO. The raw median predictions from the parametric models in figure 
B. 6-4 exhibit slight reliability growth and disagreement throughout the data with the more 
optimistic predictions more noisy than for the others. From table B. 6-2.1 it can be seen 
that all the parametric models except LV and KL have significant u-plots. Figure B. 6-5 

suggests that the JM, GO, MO, LM and LNHPP models are optimistic, except for large 
inter-failure times and the DU model is also optimistic but to a lesser extent than the 

others. Figure B-6-6 suggests that the most accurate predictions are indeed from the LV 

and KL models, the JM and GO models are particularly inaccurate from failure 85 

onwards and the other four models are about the same in predictive accuracy. 

For the raw non-parametric models applied with window size 20 we see rapid 
fluctuations between HPP and non-HPP solutions throughout most of the data. For 

window size 50 there are no HPP solutions and OTL only results in HPP solutions very 
rarely. From figure B. 6-7 we can see that CMI is generally giving more optimistic 

median predictions than the other non-parametric models. The predictions from the 

remaining non-parametric models are generally very close and much closer than those 
from the raw parametric models (compare with figure B. 6-4). As with the parametric 

models there is slight growth in these predictions. Some of the these models (CMI and 
OTL) are more noisy than the parametric models. This is again due to jumps upwards in 

response to large inter-failure times (for example t84). The predictions again return more 

quickly to lower values, as subsequent less extreme data occurs, than the parametric 

medians which jump up similarly. The u-plots for the raw non-parametric models are all 

significant at the 1% level (see table B. 6-2.1) and figure B. 6-8 suggests that these 

models, particularly CMI, are giving optimistic predictions except for large inter-failure 

times; comparison with figure B. 6-5 suggests that these predictions are marginally less 

optimistic than the parametric models with the most bias. 

Figure B. 6-9 suggests that CM2, CM3, OTY20, and OTY50 are about the same 
in predictive accuracy. OTL, OTL20 and OTL50 are worse mainly due to a jumps 
downwards just after t84, while CM1 is steadily worse than the others. Comparison with 
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figure B. 6-6 shows that the raw non-parametric models are closer in accuracy than the 
raw parametric models (note the change in the scale). Figure B. 6-10 suggests that the 
non-parametric models are generally worse than KL, the best of the parametric models, 
except towards the end of the data, where there is little to choose. Comparison with figure 
B. 6-6 suggests that the raw non-parametric models are more accurate than the worst of 
the parametric models. 

Figure B. 6-11 shows that the recalibrated parametric median predictions are in 

closer agreement than the raw parametric median predictions (compare with figure B. 6- 
4). Large adjustments for optimism have been made by recalibration of JM and GO and to 
a lesser extent for MO, LM and LNHPP, while for DU, LV and KL only very marginal 
adjustments for optimism have been made. Note that there is no longer growth in these 
predictions, which is not surprising, since, as noted earlier in Chapter 7, although there is 

growth over the whole data set for the region over which this analysis is conducted there 
is no growth. From table B. 6-2.1 it can be seen that the u-plots for the recalibrated non- 
parametric predictors are all insignificant at the 5% level with the exception of JMS and 
GOS and figure B. 6-12 suggests that these two models are still slightly optimistic after 
recalibration. These plots suggest that the LVS and KLS give the most accurate median 
predictions. 

Figure B. 6-13 suggests that recalibration generally improves the predictions for 

most of the parametric models although for LVS and KLS the recalibrated predictions are 
slightly worse at the end of the data set. Comparing figure B. 6-14 with B. 6-6 we can see 
that recalibration has resulted in predictors which are closer in accuracy than were the 

raw. DUS, LVS and KLS are best although MOS, LMS and LNHPPS are only 
marginally worse than these; JMS and GOS are generally worse than the others due, 

presumably, to the optimism still present in these recalibrated predictions. 

The significant u-plots for JMS and GOS indicate non-stationarity in the 

prediction errors of JM and GO and examination of figure B. 6-15 confirms this. Here we 
see that the raw predictions in these two models are initially unbiased and then become 

more and more optimistic as the data evolves, which explains why the u-plots are still 
optimistic after recalibration since in the later predictions insufficient adjustment will be 

made for optimism. Similar non-stationarity is also present to a lesser extent for the MO, 

LM and LNHPP models and for the LV and KL models recalibration may be marginally 
inefficient at the end of the data set since the raw models have become unbiased while 
earlier there was pessimism in the predictions. 

The median predictions for the recalibrated non-parametric predictors (see figure 
B. 6-16) are closer in agreement and less optimistic than the raw (compare with figure 
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B. 6-7). For the models for which the raw predictions were noisy this noise is carried 
through into the recalibrated predictions. These predictions are also in closer agreement 
than the recalibrated parametric predictions (compare with B. 6-1 1) and also no longer 

exhibit growth. From table B. 6-2.1 it can be seen that for the non-parametric models all 
the u-plots are insignificant at the 20% level after recalibration. 

Figure B. 6-17 shows that there is generally improvement to be gained via 
recalibration for all the non-parametric models. Comparing figure B. 6-18 with B. 6-9 we 
can see that the recalibrated predictions are marginally closer in accuracy than the raw 
predictions. CM2S, CM3S, OTY20S and OTY50S give the best predictions; OTLS, 
OTL20S and OTL50S are worse in the first half of the data and CMIS is steadily worse 
than the others throughout the data set. Comparing B. 6-18 with B. 6-14 we can also see 
that the recalibrated non-parametric predictors are closer in accuracy than the recalibrated 
parametric predictors. Figure B. 6-19 shows that the recalibrated non-parametric models 
are marginally worse than the best of the recalibrated parametric predictors but for the 
better of the recalibrated non-parametric models this is mainly due to a single jump 
downwards coincident with the large inter-failure time, t84. Figure B. 6-20 suggests that 
the raw models become more optimistic as the data evolves, with CMI consistently more 

optimistic than the others, but it is clear than any non-stationarity present in the prediction 

errors for the raw non-parametric models is not enough to result in significantly biased 

predictions after recalibration. 

After the application of recalibration with windows it can be seen from table B. 6- 

2.1 that all the y- and u-plots for all window sizes and all models are insignificant at the 
20% level. There is again a tendency for much closer but more noisy median predictions 
for the parametric models as the recalibration window size decreases (see, for example, 
figures B. 6-21 and B. 6-22) when compared to recalibration without windows (figure 

B. 6-1 1). The PLR analysis suggests that the predictions are closer in accuracy, and more 

so the smaller the window size, than for recalibration without windows (see, for 

example, figures B. 6-23 and B. 6-24 and compare with figure B. 6-14). However, there is 

little improvement over recalibration without windows (see, for example, figure B. 6-25 

and B. 6-26) not even over JMS and GOS which had significant u-plots. This is probably 
because the bias in JMS and GOS was fairly slight. For some of the parametric models 

performance is generally worse, particularly for the smaller windows sizes, and in such 

cases it seems that we have just the added noise to the predictions but not bought anything 

with respect to bias. From the equivalent plots for the non-parametric models a similar 

pattern is seen and no improvements by the application of recalibration with windows is 

gained over recalibration without (see, for example, B. 6-27 and B. 6-28). 
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From table B. 6-2.2 we can see that for the meta-predictors all the y- and u-plots 
are insignificant at the 20% level for all window sizes. The median predictions (see figure 
B. 6-29) again tend to be noisier for the smaller window sizes. From figure B. 6-30 we 
can see that the predictive accuracy resulting from the different window sizes is fairly 

close; MI and M2 are marginally worse than the others; M40 and M50 are marginally 
better but this is mainly due to jumps in the plots coincident with extreme data. 

From figures B. 6-3117, B. 6-14, B. 6-13, B. 6-19 and B. 6-17 we can see that the 
better of these meta-predictors are comparable with the best initial prediction system, and 
that they are better than many of the initial prediction systems. 

8.5.1 Summary for USPSCL 

For this data set all the raw models except LV and KL, gave predictions which 

were on average in error. All of the biased raw predictors resulted in optimistic 

predictions, but the extent of the optimism varied depending on the model. JM and GO 

were the most optimistic of the parametric models and CMI was more optimistic than the 

other non-parametric models but not as optimistic as JM and GO. There was 
disagreement between the raw parametric predictions throughout the data while the non- 

parametric predictions were in close agreement but more noisy than the parametric. They 

were generally more inaccurate than the best of the parametric predictors but not as 
inaccurate as JM and GO. 

on average improvement (reduction in the bias) for all the raw predictors which 

were initially in error could be achieved by the application of the recalibration technique, 

while for the best of the raw predictors there was little to choose between the recalibrated 

and the raw. The best of the recalibrated non-parametric predictors were marginally more 
inaccurate than the best of the recalibrated parametric predictors. 

For some of the predictors, JMS and GOS, bias was still present even after 

recalibration. On further investigation it was found that there was non-stationarity in the 

prediction errors for these raw models with most of the bias in the predictions toward the 

end of the data. However, due to the fact that the bias remaining was fairly slight, 

application of recalibration with windows for these predictors gave little improvement. In 
I 

many cases applying windows seemed to make things marginally worse than recalibration 

17 The horizontal lines in this plot are where the meta-predictors are actually switching to the DUS 

model. 
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without windows, since unwanted noise was added to the predictions, which tended to 
increase as the window size used for recalibration decreased. 

For this data set, performance of the meta-predictor varied slightly with window 
size, with predictions from M1 and M2, which gave more noisy median predictions, 
slightly worse than those from the larger window sizes. These meta-predictors gave 
predictions which were better than many of the initial predictors and comparable with the 
"best" (on average) of the initial predictors. 

8.6 Data set TSW 

For this data set the JM, GO, MO, LM and LNHPP models all tend to the limiting 

case of an HPP for i- 20-66 coinciding with the region, as previously discussed in 
Chapter 7, where there is no growth in the data set. Then up to i -, 90 the LM and 
LIVHPP models tend to the limiting case of the JM and GO models respectively. The raw 

parametric median predictions (see figure B. 12-4) for the JM, GO, LM and LNHPP 

models are more optimistic than the median predictions from the other raw parametric 
models and the LV and KL medians are the most pessimistic. The more optimistic models 

are giving noisier median predictions than the other models. This is partly due to their 

response to the extreme data values mentioned in Chapter 7, t79, t86 and t105; in response 
to these large times the medians jump upwards suddenly, taking some time to return to 
lower values as subsequent, less extreme data, is taken into account. After the first of 
these extreme values, t7g, the median predictions from the various models all generally 

exhibit growth but they disagree. 

From table B. 12-2.1 we can see that the u-plots for the raw parametric models are 

all significant, with most of them significant at the I% level. Figure B. 12-5 shows that 

the u-plots have a tendency to be S-shaped; these plots suggest that the JM, GO, LM and 
LJVHPP predictions are optimistic, except for large times, the LV and KL predictions are 

pessimistic, except for small times while the MO and DU models are optimistic for small 

times and pessimistic for large times. These u-plots suggest that the most accurate median 

predictions are likely to be from MO or D U. The log(PLR) analysis in figure B. 12-6 is 

swamped by the first extreme data value, t7q, where the DU model copes very badly 

(indicating a small right hand tail in the density for this model at this stage), while the LV 

and KL models cope the best. Even not taking account of this jump the LV and KL 

models are on average giving more accurate predictions than the other raw predictors, 

although the others, except for maybe DU, are as accurate towards the end of the data set. 

The OTL model, and the raw non-parametric models applied with window size 50 

gave HPP solutions, as for the parametric models, in the first half of the data set. For 
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window size 20 solutions fluctuated between HPP and non-HPP throughout most of the 
data set. Figure B. 12-7 shows that, as for some of the raw parametric models, the median 
predictions tend to jump upwards in response to the large inter-failure times, t7g, t86 and 
t105, although comparison with figure B. 12-4 shows that the medians for the raw non- 
parametric models tend to return more quickly to lower values, as subsequent less 

extreme data is taken into account. This quickness in response for the non-parametric 
models results in the median predictions being generally more noisy than those from the 
parametric models. The medians are in closer agreement than those from the parametric 
models and growth is generally present in the non-parametric median predictions. 

From table B. 12-2.1 we can see that the non-parametric models all result in u- 
plots which are significant at the I% level. According to the u-plots in figure B. 12-8 these 

models are all optimistic except for larger inter-failure times, with the predictions from 
CMI marginally more optimistic than the others. Comparison with figure B. 12-5 

suggests that the errors in the predictions for these models are not as optimistic as those 
from JM and GO, and about the same as LM and LNHPP. Figure B. 12-9 shows that, as 
for the raw parametric models (see figure B. 12-6), comparative performance according to 
the log(PLR) analysis, is swamped by the inter-failure time, t7q, although the differences 
between the performance of the raw non-parametric models at this point is not as great as 
the difference between the parametric. Other differences in accuracy between the raw non- 
parametric models is fairly marginal but changeable over different regions of the data and 
the raw non-parametric models are closer in predictive accuracy than the raw parametric. 
Figure B. 12-10 indicates that the non-parametric models are generally worse than the 
better of the parametric models, except toward the end of the data, but comparison with 
figure B. 12-6 suggests that they are better than some of the parametric. 

For this data set, according to the raw u-plots, all the raw model predictions are 
significantly in error. Comparing the median predictions in figures B. 12-11 and B. 12-4, 

we can see how recalibration has bought the median predictions for the parametric models 

much closer together, although they still disagree in some regions of the data. The JM, 

GO, MO, LM and LNHPP median predictions have been adjusted for optimism, with 
MO only adjusted very slightly and the LV and KL models have been adjusted for 

pessimism. Growth is still present in the recalibrated parametric median predictions and 

noise in the raw median predictions is also exhibited by the equivalent recalibrated 

medians. Table B. 12-2.1, shows that, after recalibration, the u-plots for the parametric 

models have improved; they are now mostly insignificant at the 20% level. 

Figure B. 12-12 suggests that there is generally improvement to be gained by 

recalibration for all the parametric models, particularly for DU and for those regions 
where there is not improvement the recalibrated predictions are certainly no worse than 
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the raw. Comparison of figure B. 12-13 with B. 12-6 shows again that the PLR analysis is 
highly influenced by the behaviour of the predictions at the extreme value, t7q. The 
differences in performance at t7q, between the various recalibrated parametric predictors, 
are about the same as the differences initially present in the raw predictors. Apart from the 
differences at this single point, the recalibrated predictors are marginally closer in 

accuracy than the raw. Figure B. 12-14 suggests that there is non-stationarity in the 

prediction errors, but that this is clearly not very significant (or at least, not enough to 

cause the recalibrated u-plots to be significant). 

For the non-parametric models, the medians have been brought into slightly closer 

agreement via recalibration (compare figure B. 12-15 with figure B. 12-7). There has been 

adjustment for optimism in the raw non-Parametric medians. The jumps upwards for the 

raw median predictions are carried through into the recalibrated medians and so these, 

too, are more noisy than the recalibrated parametric medians (see figure B. 12-11). From 

table B. 12-2.1 we can see that, for the non-parametric models, all the u-plots are 
insignificant at the 20% level after recalibration. 

Figure B. 12-16 shows that, generally, there is improvement to be gained by 

recalibration of the non-parametric models, particular in a region in the middle of the data 

set. Comparison of figure B. 12-17 with B. 12-9 shows that, after recalibration, the 

predictions are not any closer in accuracy than before, although they are marginally closer 
in accuracy to LVS (see figure B. 12-18) than they were to LV before recalibration (see 

figure B. 12- 10). In fact, apart from the jumps, the recalibrated non-parametric models are 

as good as LVS. From figure B. 12-19 we can again see that there is evidence of non- 

stationarity in the errors in predictive accuracy of the raw non-parametric models, but, 

again, this non-stationarity is not so pronounced that it results in bad u-plots after 

recalibration. 

From table B. 12-2.1 we can see that the u-plots for the only two recalibrated 
fl predictors which remained significant at the 20% level can be made insigni icant by the 

application of recalibration with windows. However, according to the PLR analyses the 

only improvement gained for this technique for any of the 16 predictors is with respect to 

the particularly large inter-failure times (see, for example, figures B. 12-20, B. 12-21, 

B. 12-22 and B. 12-23). Apart from this the use of windows adds noise to the predictions 

resulting in steady decreases in the log(PLR) of the recalibrated with windows versus the 

recalibrated, and this problem becomes worse as the window size is decreased. It is not 

surprising that the application of windowing does not buy us any improvement over 

recalibration without windowing for this data set, since the recalibrated predictions 

already result in very good u-plots, indicating that there is no room for improvement with 

respect to bias in the predictions. 
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From table B. 12-2.2 we can see that for the meta-predictor applied with varying 
window sizes, all the u-plots are insignificant at the 5% level (with some insignificant at 
the 20% level). Figure B. 12-24 shows that the resulting median predictions are fairly 

noisy, particularly for small window sizes, and that sometimes the predictions resulting 
from the different window sizes, disagree quite a lot. Figure B. 12-25 is again swamped 
by the behaviour at the extreme data point, t7g. Here some of these predictors (e. g. M50) 
have switched to initial prediction systems which behave favourably at this stage while 
others (e. g. M30, M40) have not. Apart from this point, M30, M40 and M50, are 
marginally more accurate than the others. Again, MI, predicts surprisingly well, 
considering each prediction for this meta-predictor is only based on the single previous 
initial predictions. 

Comparing figure B. 12-26 with figures B. 12-12, B. 12-13, B. 12-16 and B. 12- 
18, shows that these meta-predictors are better than the majority of the original prediction 
systems and that some are as good as the best of the original prediction systems, although 
for those meta-predictors which are worse this is only due to their behaviour at t7q. 

8.6.1 Summary for TSW 

For this data set, all of the raw models gave predictions which were on average in 

error. The nature and extent of the bias in the predictions again varied depending on the 

model, with all except the MO, DU, LV and KL models giving on average generally 
optimistic predictions, particularly JM and GO, and CMI was again giving more 
optimistic predictions than the other non-parametric models but not as optimistic as those 
from JM and GO. LV and KL were giving on average generally pessimistic predictions, 

while the predictions from MO and DU were generally optimistic for small times and 

pessimistic for large times. The non-parametric models, which were again in closer 

agreement and accuracy, although they exhibited more noise gave predictions which were 
better than some of the parametric models, although not as good as the best of the 

parametric models, subject to some local variation. Again, it is interesting to note that the 

simple non-parametric predictor OTL, OTL20 and OTL50, performed as well as all of the 

other non-parametric predictors. 

Steady improvement (reduction in the bias) for all the raw predictors could be 

achieved by the application of the recalibration technique with marginally more 
improvement shown for those raw predictors which were initially worst. in this case non- 

stationarity in the raw prediction errors was not significant and recalibration thus 

effectively eliminated the bias in all the raw predictors. The recalibrated non-parametric 

predictors were as good as some of the recalibrated parametric predictors, but not as good 
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as the best of the recalibrated parametric predictors, although this was largely due to 
jumps downward coincident with extreme data values, rather than steady decreases. 

In this case, since recalibration had already eliminated bias in the raw predictions 
there was little to be gained by the application of recalibration with windows. In fact, this 
technique generally made things steadily worse, and more so for smaller window sizes, 
due to increased noise in the predictions. However, for the application of recalibration 
with windows improvement with respect to problems encountered by the raw predictors 
due to the occurrence of particularly large inter-failure time data could be seen, indicated 
by large jumps in the log(PLR) plots coincident with these extreme data points. 

For this data set, performance of the meta-predictor varied only marginally with 
window size, except with respect to extreme data points. The best of the meta-predictors 

gave predictions which were as good as the "best" (on average) of the initial predictors, 

and for those which were worse this was again only at extreme data points. 

8.7 Data set TUSAB 

The JM, GO, MO, LM and LNHPP models went to the limiting case of an HPP 

only for i -, 21-45. Then, up to i. 100 the LM and LNHPP models went to the limiting 

cases of JM and GO respectively. From figure B. 16-4 we see that after the second point 

of change in the raw data (previously discussed in Chapter 7) the raw parametric median 

predictions start to disagree; the JM and GO models give the most optimistic median 

predictions, with the LM and LNHPP medians also more optimistic than the others, while 

the LV and KL models give the most pessimistic median predictions. Most reliability 

growth is apparent in these predictions after this point although there is, on average, also 

marginal growth in the earlier predictions. The JM and GO models (and to a lesser extent, 
LM and LNHPP) tend to jump suddenly upwards in response to particularly large inter- 

failure times (e. g. t115) and the median predictions and the median predictions from these 

models are more noisy than those from the other raw parametric models. 

From table B. 16-2.1 we see that the MO model results in the only insignificant u- 

plot for the raw parametric models on this data set and this u-plot is good, being 

insignificant at the 20% level. The LNHPP model gives a u-plot which is significant at 

the 5% level, while the u-plots for the rest of these models are significant at the 20% 

level. According to figure B. 16-5 the JM and GO models are giving very optimistic 

predictions and so are the LM and LNHPP but to a lesser extent. These u-plots also 

suggest that the DU, LV and KL models are giving pessimistic predictions except for 

small inter-failure time. These plots suggest that the best median predictions probably 

come from the MO model. The log(PLR) plot (see figure B. 16-6) is highly influenced by 
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extreme data values and we can see from the jumps upwards in these plots that the DU 
model performs particularly badly at these values. There is some variation in which we 
might choose as giving the most accurate predictions as the data evolves. From the 115th 
failure the JM and GO models perform particularly badly compared to the others, while 
the difference between the others is fairly marginal. 

The OTL model again gives HPP solutions in the same region as the parametric 
models (in the region i- 21-45) whereas for the non-parametric models applied with 
window size 50 there are very few HPP predictions, only within the region i -, 70-80. 
For the non-parametric models applied with window size 20 the solutions fluctuate 
between HPP and non-HPP solutions throughout most of the data set. The median 
predictions from the raw non-parametric models, particularly those from CMI and OTL 
(see figure B. 16-7), tend to be fairly noisy. They show a tendency to jump suddenly 
upwards in response to large inter-failure time data, but return more quickly to lower 

values as subsequent, less extreme, data is taken into account, than those from the 

parametric models which jump up similarly (compare with figure B. 16-4). Apart from 

these jumps the raw non-parametric median predictions are closer in agreement than those 
from the parametric models and, as for the parametric medians, they generally exhibit 

growth, particularly after the 115th failure. 

Table B. 16-2.1 shows that, for CM2 and OTY50, the u-plots are insignificant at 
the 10% level, while the u-plots for the rest of the raw non-parametric models are 
significant at the 5% level, with those for CMI and all the OTL models significant at the 
1% level. Figure B. 16-8 suggests that the CM1 model in particular is giving optimistic 

predictions (except for very large inter-failure times) and that the OTL models are also 

giving optimistic predictions (except for large inter-failure times). The rest of the u-plots 
indicate marginal optimism for small inter-failure times only. Comparison with figure 

B. 16-5 suggests that the raw non-parametric predictors are not as biased as the worst of 
the raw parametric predictors. The PLR analysis in figure B. 16-9 indicates that raw non- 

parametric predictors are fairly close in predictive accuracy and much closer in accuracy 
than the raw parametric predictors (compare the scale of this plot with the scale in figure 

B. 16-6). Figure B. 16- 10 suggests that these models are comparable in accuracy with the 
KL model, which is among the best of the raw parametric models (see figure B. 16-6). 

The jumps in the log(PLR) plots again coincide with extreme data values. 

Comparing figure B. 16-11 with B. 16-4 we can see that recalibration has brought 

the median predictions from the parametric models into closer agreement but that there is 

still quite a lot of disagreement after the 115th failure. The recalibrated parametric medians 
still exhibit most growth after this point, and JMS, GOS, LMS and LNHPPS still give 
noisier median predictions than the other recalibrated parametric predictors. The raw JM, 
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GO, LM and LNHPP median predictions have been adjusted for optimism while the MO, 
DU, LV and KL medians have been adjusted for pessimism, with the adjustments for 
MO, LM and LNHPP being fairly small. After recalibration of the parametric models 
some of the u-plots improve (see table B. 16-2.1) but for the u-plots for JMS and GOS 

are still significant at the I% level, while those for LMS and LNHPPS are still significant 
at the 5% level. It is interesting to note that, in this case, the evidence from the y-plots for 
the raw predictions coincide with the results of recalibration, since those with worse y- 
plots before recalibration result in worse u-plots after recalibration. Comparing figure 
B. 16-12 with B. 16-5 we can see that recalibration has indeed improved the u-plots, but in 

particular, those for JMS and GOS, and to a lesser extent for LMS and LNHPPS, are still 
optimistic, indicating that there has been an insufficient adjustment for the initial optimism 
in these raw models. 

Figure B. 16-13 shows that all raw parametric predictors are improved by 

recalibration in the second half of the data set, particularly DUS, LVS and KLS after the 
110th failure and JMS and GOS after the 120th failure. In some regions of the earlier data 

recalibration seems to have made things marginally worse. Comparing the PLR analyses 
in figures B. 16-14 and B. 16-6 we can see that recalibration has made the predictions 
closer in accuracy but there are still differences in accuracy in the second half of the data; 
here JMS and GOS are still steadily worse than all the other prediction systems and in the 

region i= 115-130 the LMS and LNHPPS predictions are also bad; MOS and DUS are 
probably about the most accurate, with LVS and KLS also fairly good. DUS still 
performs particularly badly on the occurrence of large inter-failure times in the first half of 
the data set. 

The presence of highly significant u-plots for JMS and GOS indicates non- 
stationarity in the raw prediction errors and figure B. 16-15 confirms this; most of the 

optimism for these two raw predictors is at the end of the data set and we can see how 

over these regions insufficient adjustment will be made via recalibration which utilises all 

previous data. Non-stationarity also appears to be present for the LV and KL models, but 

this is clearly not significant enough to result in bad u-plots after recalibration. For LM 

and LNHPP non-stationarity is not so apparent from this figure, but it should be noted 
that although the u-plots for these two predictors were significant after recalibration they 

were not nearly as bad as those for JMS and GOS. Comparison with figure B. 16-13 

shows that improvement via recalibration generally coincides with regions where there is 
bias in the initial raw predictions and where there is no bias in the raw predictions it 

sometimes makes things marginally worse. 

The recalibrated non-parametric median predictions are not closer than the raw 
(compare figure B. 16-16 with B. 16-7) except, sometimes, at the peaks, but these were 
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already very close before recalibration. Recalibration has generally made a small 
adjustment for optimism in the raw median predictions, and the adjustment being slightly 
larger for CMI than for the other non-parametric models. The jumps and the noise in the 

raw predictions are carried through into the recalibrated predictions, and the recalibrated 
median predictions still exhibit most growth in the second half of the data set. 
Comparison with figure B. 16-11 shows that the recalibrated non-parametric medians are 
closer in agreement than the recalibrated parametric medians, but that they are generally 
more noisy than the parametric medians. For the non-parametric models all the u-plots are 
insignificant at the 20% level after recalibration (see table B. 16-2.1) and evidence from 

the y-plots for the raw non-parametric predictors suggest that we should expect good u- 

plots after recalibration. 

Figure B. 16-17 indicates steady improvement in the accuracy of the predictions 

via recalibration for the non-parametric models in the second half of the data, while in the 
first half of the data recalibration seems to have made things marginally worse for all the 

non-parametric predictors except CMI. Comparison of figures B. 16-18 and B. 16-9 

indicates that the recalibrated predictions are not closer in accuracy than the raw. The 

CMS models and OTY50S are marginally more accurate than the other recalibrated non- 

parametric models according to the PLR analysis, but there is some variation to this over 
different regions of the data. Figure B. 16-19 indicates that the recalibrated non-parametric 

predictors are marginally less accurate than the best of the recalibrated parametric 

predictors but comparison with figure B. 16-14 shows that they are as accurate as many of 

the recalibrated parametric predictors. 

Figure B. 16-20 suggests that, except for CMI , which is marginally more 

optimistic than the other raw non-parametric predictors, there is little bias in these raw 

predictors, and so we would not really expect to get large improvement via recalibration. 
Any non-stationarity present in the raw non-parametric prediction errors is clearly not so 

pronounced that it causes bad u-plots after recalibration. 

Table B. 16-2.1 suggests that for the parametric models improvement in the u- 

plots can be achieved by the application of recalibration with windows. In fact, with the 

exception of the JM and GO models, all the u-plots are now insignificant at the 20% level 

and for JM and GO the u-plots also become very good as the window size is decreased. 

For the non-parametric models all the u-plots are insignificant at the 20% level for 

recalibration with and without windows. As the window size decreases the recalibrated 

medians for the parametric models become closer and closer (see for example, figures 

B. 16-21 and B. 16-22 and compare with figure B. 16-11) and also show a tendency to 
become more noisy. From figures B. 16-23 and B. 16-24 we can see that application of 
this method has generally resulted in predictions which are closer in accuracy than for 
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recalibration without windows (compare with figure B. 16-14) but that there is still quite a 
bit of variation in performance as we move through the data. JMS and GOS are still 
worse than the other prediction systems in the second half of the data set, but from 
figures B. 16-25 and B. 16-26, we can see that this method has resulted in better predictive 
accuracy for these two models in this region than recalibration without windows. For the 
rest of the parametric models it would seem that, apart from some jumps for DUS, which 
are coincident with extreme data values, we have generally just added noise at the expense 
of little or no decrease in the bias and this problem becomes worse as the window size is 
decreased. 

For the non-parametric models, we do not see the median predictions getting 
closer via the application of recalibration with windows (compare figures B. 16-27 and 
B. 16-28 with figure B. 16-16), but this is perhaps not surprising since these predictions 
were very close already. In spite of this the PLR analyses (see figures B. 16-29 and B. 16- 
30), suggest that, apart from some jumps coincident with extreme data values, marginally 
closer accuracy results from using windows compared with recalibration without 
windows (compare with figure B. 16-18). Figures B. 16-31 and B. 16-32 suggest that, as 
for most of the parametric models, we have gained little by the application of this method 
by just adding more noise with little or no decrease in the bias and this problem becomes 

worse as the window size is decreased. 

From table B. 16-2.2 we can see that the u-plot for MI is insignificant at the 10% 
level, for M2 is insignificant at the 5% level and for the remaining meta-predictors the u- 

plots are insignificant at the 20% level. The median predictions for these predictors with 

small window sizes tend to be noisy (see figure B. 16-33) and generally all show growth, 

particularly after the 115th failure, although there are some regions of local decay. 

According to the PLR analysis (see figure B. 16-34) for window sizes 10 up to 50, these 

meta-predictors are pretty close in accuracy, while for the smaller window sizes, MI, M2 

and M5, performance is fairly steadily worse. 

Comparison of figure B. 16-35 with figures B. 16-14, B. 16-13, B. 16-19 and 
B. 16-17, suggests that the better of these meta-predictors are comparable in performance 

with the best of the initial prediction systems and better than many of the initial prediction 

systems. 

8.7.1 Summary for TUSAB 

For this data set, all of the raw models, except MO, CM2 and OTY50, gave 
predictions which were on average in error. The nature and extent of the bias in the 

predictions again varied depending on the model, with all except the MO, CM2, OTY50, 
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DU, LV and KL models giving on average generally optimistic predictions, particularly 
JM and GO, and CMI was again giving more optimistic predictions than the other non- 
parametric models but not as optimistic as those from JM and GO. The non-parametric 
models, which were again in closer agreement and accuracy, although they exhibited 
more noise gave predictions which were better than some of the parametric models, and 
as good as the best of the parametric models, subject to some local variation. Again, it is 
interesting to note that the simple non-parametric predictor OTL, OTL20 and OTL50, 

performed as well as all of the other non-parametric predictors. 

Generally, steady improvement (reduction in the bias) for all the raw predictors 
which were initially in error could be achieved by the application of the recalibration 
technique in the second half of the data set, although in some regions of the data, where 
there was not significant bias in the raw predictions, recalibration made the predictions 
marginally worse. The recalibrated non-parametric predictors were as good as some of 
the recalibrated parametric predictors, but marginally worse than the best of the 

recalibrated parametric predictors. 

For some of the predictors, in particular JMS and GOS bias was still present even 

after recalibration. On further investigation it was found that there was non-stationarity in 

the prediction errors for these raw models with most of the optimism in the predictions 
toward the end of the data. Application of recalibration with windows was shown to give 
improvement in regions of the data where optimism was still present after applying 

recalibration without windows. In other regions of the data and for most of the other 

models, apart from some improvements with respect to extreme data values, applying 

windows seemed to make things marginally worse than recalibration without windows, 

and often unwanted noise was added to the predictions, which tended to increase as the 

window size used for recalibration decreased. 

For this data set, performance of the meta-predictor varied with window size, the 
larger window sizes generally giving more accurate predictions than the smaller window 

sizes, which tended to result in noisier predictions. The best of the meta-predictors gave 

predictions which were as good as the "best" (on average) of the initial predictors, and 
better than many of the initial predictors. 

8.8 General Comments on Data Analyses 

Tables 8.8-1 to 8.8-7 give summaries of the bias and the relative predictive quality 

of the different prediction systems for each of the 7 data sets. In each case the prediction 

systems arising from recalibration with windows are only included if the raw predictions 

were, on average, significantly in error and recalibration without windows failed to 
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eliminate this bias in the raw predictions. This is because there is little to be gained by 

applying recalibration with windows in such circumstances. 

It is important to note that the rankings given in these tables represent an average 
taken over the whole range of predictions investigated for the data set in question. 
However, it has been seen that the predictive quality (both with respect to bias alone 
and/or according to the PLR analyses) of these various prediction systems frequently 

changes significantly within this range. Thus, the fact that a particular prediction system 

receives a high ranking does not exclude the possibility that it may have relatively good 

PI redictive quality in some subset of the data in question. Further, the rankings given here 

for the PLR analyses are fairly informal and are an attempt at representing the general 

average trend in the PLR plots: jumps in the log(PLR) plots which coincide with single 

extreme data values, for example, are ignored in cases where these single jumps are so 
large that they swamp all the results in other regions of the data. In practice these 

problems can be overcome by changing the choice of the particular prediction system to 

use for future predictions as the data evolves; risks associated with the possibility that 

some prediction systems may perform particularly badly at single data values can be taken 

into consideration in making such a choice. Thus, these issues are mentioned merely 
because they imply that the summaries in these tables should be interpreted with caution; 
in most cases they represent an over-simplification of the situation. 

The meta-predictor presented here is a crude method which formalises a process 

of dynamic selection of different prediction systems as the data evolves. We would thus 

expect it to be more robust against local fluctuations in performance than the initial 

predictors. This is confirmed by the consistently low rankings seen for the meta- 

predictors in all the tables. However, even for this predictor there can be fluctuation in 

performance dependant on the window size being applied and so again, choosing 
dynamically between meta-predictors with different window sizes as the data evolves is 

advisable. 

A final point that should be made about these tables is that, usually, the difference 

between the various better prediction systems is fairly marginal when compared with the 

difference seen between initially inaccurate raw predictions, or recalibrated predictions 

when recalibration is not effective in removing bias, and improved predictions. Thus the 

lower numbers tend to represent predictors which are fairly close in accuracy while the 

high numbers represent predictors which are dramatically worse. 
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LM = I I = I I M20 I I 
LNHPP = I II I= I I M30 I I 
LV PPP 5 8 PPP 41 61 1 11 1 1 = I I I I M40 1 4 
KL PPP 5 8 PPP 4 6 11 1 1 1 = I I P 2 2 MSOJ I 4 
CM] 000 4 2 = I I 
i CM2 11 41 PP 3 4 

1 

CM3 1 4 1 4 

OTY20 I I I I 

OTY50 I I I I 

OTL 1 31 1 4 

OTL20 I II I I 
JOTL50 1 31 1 4 

B- bias, 
according 
to the 

generally optimistic 0- 2-5%; 00 - 1-2%; 000 - significant at 1% level 
biased generally pessimistic P- 2-5%; PP - 1-2%; PPP - significant at 1% level 

S-shaped u-plot S- 2-5%; SS - 1-2%; SSS - significant at 1% level 

U-plot unbiased =- insignificant at 5% level 

I RU - rankin , according to the u-plots (i. e. bias) I is best 
1 RP - ranking, according to the PLR analyses (i. e. global accuracy) I is best 

Notes: 1. All the u-plots for S20, S30 and the meta-predictors, are unbiased for all 7 data sets. 
2. Prediction systems arising from recalibration with windows are only included if the equivalent 
raw and recalibrated (without windows) predictions are biased. 

Table 8.8-1. Summary of the bias and relative predictive quality of the different 

prediction systems for data set CISIL 
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biased generally pessimistic P- 2-59/c; PP - 1-2/(; 

S-shaped it-plot S- 2-5%ý SS - 1-2(/(; 

; 000 - significant at I'k level 
PPP - signi ficant at I(k level 
SSS - significant at 1(/( level 

, -plot unbiased =- insignificant at 5(/c level 

Ru - ranking, according to the u-plots (i. e. bias) I is best 

RP - ranking, according to the PLR analyses (i. e. global accuracy) I i" best 

Notes: 1. All the u-plots for S20, S30 and the meta-predictors, are unbiased tor all 7 data sets. 
2. Prediction systerns arising from recalibration with windows are only included ifthc equivalent 
raw and recalibrated (without windows) predictions are biased. 

Table 8.8-2. Summary of the bias and relative predictive quality of the different 

prediction systems for data set CISI2. 
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LIýIot unbiased =- insignificant at 5% level 
. Ru - ranking, according to the u-plots (i. e. bias) I is he, "t 
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Notes: 1. All the u-plots for S20, S30 and the meta-predictors, are unbiased for all 7 data sets. 
2. Prediction systems arising from recalibration with windows are only included iftlic equivalent 
raw and recalibrated (without windows) predictions are biased. 

Table 8.8-3. Summary of the bias and relative predictive quality of the different 

prediction systems for data set USBAR. 
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biased generally pessimistic P- 2-51k; PP - 1-2'Yr; PPP 
- signi ficant at I'/(? level 

S-shaped u-plot S 2-5%; SS - 1-21k; SSS 
- significant at VX level 

aýiot unbiased = insignificant at 5/(, level 
.' Ru - ranking, according to the it-plots (i. e. bias) I is best 
RP - ranking, according to the PLR analyses (i. e. global accuracy) I is best 

Notes: 1. All the u-plots for S20, S30 and the meta-predictors, are unbiased for all 7 da(a sets. 
2. Prediction systems arising from recalibration with windows are only included ifthe equivalent 
raw and recalibrated (without windows) predictions are biased. 

Table 8.8-4. Summary of the bias and relative predictive quality of' the different 

prediction systems for data set USROFF. 
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RAW s S20 S30 S40 s50 

. 
LP B Ru RP RuI RP Ru IRP B RI RP B Ru 

7RP 
Ru RP 

im 000 6 4 0 

1 

3 2_ I 2 1 2 = 2 1 = 2 2 MI 1 3 

GO 000 6 
.4 

0 3 2 1 2 1 2 = 2 1 = 2 2 M2 1 3 

mo 000 5 3 1= 2 1 M5 1 2 

DU 1 00 3 3 1= 2 1 MIO 1 2 

LM 000 5 3 = 2 1 M20 1 2 

LNHPP 000 5 3 =1 2 11 1 1 1I M30 1 121 

LV = 2 1 = 1 
1I M40 1 1 

KL =1 2 1 1= 1 M50 , ,1 

cmi 000 5 41 = 1 2 

CM2 000 4 3 1 1 

CM3 1000 4 3 1 11 1 1 11 

OTY20 000 4 3 2 11 

OTY50 000 4 3 1 

OTL 0001 4 3 2 1 

OTL20 000 4 3 2 1 

OTL50 

1 

000 4 31 
1 

B- bias, 

according 
to the 

generally optimistic 0- 2-51/r; 00 - 1-2%; 000 - significant at I I/( level 
biased generally pessimistic P- 2-5%; PP - 1-2%; PPP - significant at IX levcl 

S-shaped u-plot S- 2-5%; SS - 1-2%; SSS - significant at I I/v level 

! =10t unbiased =- insignificant at 50/c level 
. Ru - ranking, according to the u-plots (i. e. bias) I is best 

-* .... [ýP 
- 

-ranking, 
according to the PLR analyses (i. e. global accuracy) I is hcst 

I 

Notes: 1. All the u-plots for S20, S30 and the meta-predictors, are unbiased for all 7 Clata sets. 
2. Prediction systems arising from recalibration with windows are only included ifthe equivalent 
raw and recalibrated (without windows) predictions are biased. 

Table 8.8-5. Summary of the bias and relative predictive quality of' the different 

prediction systems for data set USPSCL. 
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RAW 
-- 

s S20 S30 S40 s50 

B 
FR 
Ru RF B Ru RP Ru RP Ru RP B Ru RP - 

B 

4 

im 000 5 4 2 2 

e 

MI 2 2 2 2 

GO 000 5 4 = 2 2 M2 2 3 

mo SS- 
-3 

3 1= 1 2 m5 2 4 

DU SSS 4 4 1= 1 1 1 MIO 
-1 .3 

LM 000 5 4 = 2 2 M20 1 3 

LNHPP 000 5 4 = 2 2 M30 1 2 

LV PPP 5 21 = 2 1 I M40 1 21 

KL i ppp 5 2 = 1 1 I M501 31 ') 

cm] 000 5 4 = 2 1 

CM2 000 4 4 2 1 

CM3 000 5 41 2 2 1 

OTY20 000 4 4 1 1 

OTY. 50 COO 4 4 1 1 

OTL COOI 4 4 1 2 

OTL20 COO 51 41 1 11 11 

IOTL 0 000 41 41 =1 11 21 , 

1 i ± 1 

1 T] 

B- bias, generally optimistic 0 - 2-511c; 00 
- 1-2%; 000 

- significantat Nc level 
according biased generally pessimistic P- 2-51k; PP - 1-2(Y(,; PPP 

- significant at I I/c level 
to the S-shaped u-plot S 2-51k; SS - 1-2%; SSS 

- significant at I lk level 

ýýIot unbiased = insignificant at 51/( level 
.. Ru - ranking, according to the it-plots (i. e. bias) I is best 
RP - ranking, according to the PLR analyses (i. e. global accuracy) t I is hes 

Notes: 1. All the u-plots for S20, S30 and the meta- predictors, are unhiascd for all 7 data sets. 
2. Prediction systems arising from recalibration with windows arc only included ifthe equivalent 
raw and recalibrated (without windows) predictions are biased. 

Table 8.8-6. Summary of the bias and relative predictive quality of the different 

prediction systems for data set TSW. 
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RAW s S20 S30 1 S40 s50 

B Ru RP B Ru RP Ru RP Ru RP B Rll RP B 1 Ru RP Ru RP 

im 
- 

000 5 6 000 4 4 1 

1 

3 2 4 0 3 3 000 13 4 M1 2 4 

GO 000 5 5 000 4 4 1 3 2 3 2 3 0 3 3 
- 

M2 2 3 

mo = 2 1 = 1 1 1 m5 1 4 

DU ppp 4 4 = 2 1 1 MIO 11 2 

LM 000 3 12 0 3 2 1 3 1 3 = 1 12 = 2 2 M20 1 2 

LNHPP 0 3 2 0 3 2 1 3 1 3 = 1 2 = 1 2 M30 2 2 

LV ppp 5 3 = 2 1 M40 2 2 

KL ppp 5 2 = 2 1 i m50 21 11 

cmi 000 4 3 = 1 1 
1 1 

CM2 =1 2 2 1 2 

CM3 00 3 2 1 1 

OTY20 0 3 2 1 2 

OTY50 = 2 2 1 1 

OTL 0001 3 3 1 2 

OTL20 0001 3 1 2 

OTL50 0001 31 21 1 11 21 1 1 1 1 1 1 1 1 1 1 

B- bias, 

according 
to the 

generally optimistic 0- 2-5%; 
biased generally pessimistic P- 2-5%; 

S-shaped it-plot S 2-5%; 

00 - 1-2% 
PP - 1-2%; 
SS - 1-2%; 

; 000 
- significant at I 1Y, level 

PPP - significant at I 1Y, level 
SSS - significant at 117c level 

! ýýIot unbiased = insignificant at 5(I'c level 
. Ru - ranking, according to the it-plots (i. e. bias) I is best 

RP - ranking, according to the PLR analyses (i. e. global accuracy) I is hes 

Notes: 1. All the u-plots for S20, S30 and the meta- predictors, are unbiased for all 7 data sets. 
2. Prediction systems arising from recalibration with windows are only included ifthe equivalcnt 
raw and recalibrated (without windows) predictions are biased. 

Table 8.8-7. Summary of the bias and relative predictive quality of the dil'I'cl-clit 

prediction systems for data set TUSAB. 

From the analysis of the seven data sets in this chapter quite a lot of' variation in 
the predictions and the predictive quality is seen for the different raw predictors. For 

example, for data set CISII the JM and GO models are amongst the best raw predictors 
and LV and KL the worst, while for other data sets (e. g. USBAR, USPSCL and TSW) 

this is reversed, with LV and KL amongst the best and JM and GO arnongst the worst. 
Further, such variation is seen not only over different data sets, but often over different 
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regions within the same data set. In general it could not be said that there is any one 
consistently best raw model and so applying a group of raw models seems to be a 
necessary approach, particularly if selection is to be made from amongst the raw 
predictors only and no further techniques for improving these predictions are going to be 
used. 

Some of the raw models always gave very similar predictions. For the parametric 
models, pairs JM and GO, LM and LNHPP and LV and KL usually gave very similar 
predictions. This implies there is little benefit to be gained by applying more than one of 
each of these pairs of parametric models on each data set. In application of many of the 

parametric models acquiring estimates of the model parameters at each stage is 

computationally intensive. More importantly a certain amount of expertise is involved in 

choosing the control parameters in applying these models and so it would not be practical 
for a user to apply many of these models to each data set. 

Generally all the raw non-parametric median predictions were quite similar to each 
other and according to the PLR analyses, these models are generally very similar in 

predictive accuracy, although CMI is frequently marginally worse. Surprisingly, the very 
simple analytical model, OTL, is frequently comparable in accuracy with the others. The 

raw non-parametric predictors performed about as well as the best of the raw parametric 
predictors (and better than many of the parametric predictors) on 5 of the data sets but for 
USPSCL and TSW they are worse than the best of the parametric models and for CISI2 

they are better. However, in this case where they are better we cannot exclude the 

possibility that this is due to the application of these models with moving windows rather 
than to the underlying assumptions of the models. Since the effort involved in applying 
these models is much less and, more importantly, acquiring the predictions just involves 

running the programs automatically, it is probably worth including a number of raw non- 
parametric models. In particular, the OTL model should be used, since the effort involved 
in using this is negligible, when compared to all of the others. Further, it may be possible 
to apply simple techniques which improve on the accuracy of these raw predictors to the 
extent that we do not have to apply any of the parametric models. 

Some of the non-parametric median predictions tend to jump suddenly upwards in 

response to large inter-failure time data, and then, in contrast to the parametric models 
which also exhibit this behaviour (JM, GO and to a lesser extent LM and LNHPP), return 
more quickly to lower values as more typical data is taken into account. This is true not 
only for the non-parametric models that are applied with moving windows (for which we 
might expect quicker response to the data) but also for those non-parametric models 
which are applied over all the data, particularly CML Apart from these stages at which 
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some of the predictions suddenly increase, as mentioned above the median predictions for 

the non-parametric models are very close. 

JM, GO, LM and LNHPP result in noisier median predictions than the other raw 
parametric models, particularly JM and GO. The raw non-parametric models tended to 

give noisier median predictions than the raw parametric models, but this does not, 
according to the PLR analyses, mean that they are much worse in predictive accuracy than 

the parametric models although there is some suggestion that this may degrade their 

perfonnance slightly. Surprisingly this noise in the medians is not limited to those non- 

parametric models which are applied with moving windows, although, for each of these 

types of non-parametric models, smaller windows tend to result in noisier predictions 
than larger windows (as we would expect). 

Various problems with some of the raw models were noticed, where particularly 
inaccurate predictions resulted at single prediction instances due to particularly extreme 
behaviour in the raw data. For example, the raw DU model in particular tends to 

encounter problems, when compared to the other raw models, in the PLR analyses on the 

occurrence of particularly large inter-failure time data. Although this occurred very rarely 
in the data sets we analyse here, the JM and LM model can predict that there are no bugs 

remaining in the software which is a highly optimistic (and hence very undesirable) 

prediction. There was also one such occurrence for the non-parametric model, OTY50, 

and it is possible for all of these non-parametric models to result in such predictions. 
When encountering such zero rate predictions a user should perhaps reject this prediction 

on principle if it occurs and choose one of the other models, or prediction systems, for 

prediction at this stage. 

For the data sets examined here, apart from regions of data where there is no 

reliability growth (and aside from those groups of models previously mentioned which 

give very similar predictions), the raw median predictions from the different models are in 

great disagreement, with a tendency for more disagreement as the data evolves, and, in 

such cases the u-plots and PLR analyses confirmed that accuracy of a much wider class 

of reliability predictions than just medians also varied greatly for the different raw 

predictors. 

The u-plots indicated that in most cases the raw predictors were, on average, 

grossly in error; out of all 112 (data set, raw predictor) pairs 80% had u-plots which were 

significant at the 5% level and 73% had u-plots which were significant at the 1% level. 
The nature and extent of the error depended on the data set in question and on the model. 
However, when bias was present the JM, GO, LM, LNHPP and all the raw non- 
parametric predictors resulted in generally optimistic predictions and LV and KL gave 
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generally pessimistic predictions. DU and MO showed more variation in the bias over 
different data sets; MO had a tendency towards optimism but sometimes an S-shaped u- 
plot resulted indicating optimism for small inter-failure times and pessimism for large 
inter-failure times; similar S-shaped u-plots were also seen for DU on some data sets but 

on other data sets average optimism, or average pessimism, was indicated by the u-plots 
for DU. 

For all except data set CISH gross optimism was present for JM and GO and the 
extent of the bias in these models was the worse seen, although for 3 of these data sets 
the extent of the bias in LV and KL was as bad, while for 2 data sets the extent of the bias 
in CMI was as bad. The CMI model resulted in u-plots which were significant at the I% 
level on all seven data sets, and this model resulted in raw predictions which were more 
optimistic than the other non-parametric models, but, according to the PLR analyses, this 
does not seem to result in much worse predictive accuracy than the other non-parametric 
models although, as mentioned above, it is frequently marginally worse. Also, for three 
data sets the predictions from CMI were not as optimistic as those from JM and GO. 

For data set CISH, all except four of the u-plots for the raw predictors were 
insignificant, and for USROFF, USPSCL and TUSAB, some of these plots were 
insignificant. Thus, for these four data sets it is possible to get raw predictors which are, 
on average, unbiased, although the particular models which resulted in these unbiased 
predictors varied depending on the data set. For example, for USPSCL only LV and KL 

resulted in insignificant u-plots while for USROFF and TUSAB, only MO and some of 
the non-parametric models resulted in insignificant u-plots. For the remaining three data 

sets all the u-plots were highly significant implying that even the best of these raw models 
(according to the PLR analyses) could not be trusted to give accurate predictions on these 
data sets. The use of recalibration is essential, therefore, in order to eliminate the bias in 
the raw predictors. 

In those cases where the raw models are initially biased, recalibration tends to 

greatly improve the predictions both with respect to better u-plots resulting and as seen by 

the PLR analyses. After recalibration only 32% of the u-plots out of 112 (data set, 
recalibrated predictor) pairs remain significant at the 5% level and this figure for the I% 
level is 16% (as compared with 80% and 73%, respectively, before recalibration). Even 
in those cases where the u-plots remain significant they are much closer to the line of unit 
slope than they were before recalibration, and improvement, which is often dramatic, is 

seen in the log(PLR) plots. 

In general the median predictions are much closer after recalibration than before, 

and the resulting set of recalibrated predictions is usually very close in accuracy, although 
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in some cases differences are still present in the recalibrated predictors. Sometimes, the 

raw predictor which is initially worse results in the best recalibrated predictions, while 
sometimes the raw predictor which is initially best results in the best recalibrated 
predictions. In some cases the best of the recalibrated non-parametric predictors are 
marginally worse than the best of the recalibrated parametric predictors even though both 
have good u-plots, presumably due to more noise in the recalibrated non-parametric 

predictions. In other cases the best of the recalibrated non-parametric predictors is 

comparable in accuracy with the best of the recalibrated parametric predictors. 

In some cases recalibration helps a model to cope with extreme data values; this is 

only likely to be the case where there are a number of extreme data values within a single 
data set. Of course, noise in initial predictions will still be present after recalibration 

which seems a likely explanation for the marginally worse performance for the 

recalibrated non-parametric predictors compared with the recalibrated parametric 

predictors, and zero rate predictions which occur in the raw predictors are carried through 

to the recalibrated versions, and so neither of these problems can be eliminated by 

recalibration. Frequently, when there is no significant bias in the raw predictions, 

recalibration results in marginally worse accuracy according to the PLR analysis. 

For some data sets, although recalibration improved the predictions dramatically 

(shown by improvements in the u-plots and in the PLR), the presence of significant u- 

plots after recalibration indicated that there was still room for further improvement, with 
disagreement between the recalibrated predictors and bias still present. The JM and GO 

models had u-plots which were significant at the I% level after recalibration for 4 of the 
data sets but this behaviour was not limited to just these models. In fact for all the models 

except OTY20, OTY50, OTL20 and OTL50, at least one data set resulted in u-plots 

which remained significant at the 1% level after recalibration. For data set CISI2 many of 
the u-plots remained highly significant after recalibration. 

On further investigation it was found that in such cases there was non-stationarity 
in the raw prediction errors. In general the y-plots of the raw predictors were not a good 
indication of this non-stationarity, and thus, of whether we should expect recalibration to 

effectively eliminate the bias in the raw predictions. 

Detailed comparison of the nature of the non-stationarity in the prediction errors 

generally showed how in some regions, although improvement in the predictions might 
be seen via recalibration, insufficient adjustment to the raw predictions would be made 
and so we would not expect this technique to effectively eliminate the bias in the raw 
models. Further, it showed regions where there was no bias and from the PLR analyses it 

could be seen that in these regions recalibration sometimes made things marginally worse. 
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In fact, although improvement was generally shown for recalibration of models with 
significant u-plots, according to the PLR analysis of the recalibrated versus the raw 
predictors, there was often a certain amount of local fluctuation. For example, for many 
of the data sets bias was not present in the early data, and most improvement was only 
seen in the later data. 

In general the results from applying recalibration suggest that it would probably 
not be sensible to initially apply just one raw predictor and then to recalibrate, since we 
cannot exclude the possibility that we may encounter problems of either noise, or 
significant bias, after recalibration on any single recalibrated predictor. Thus, a number of 
initial parametric and non-parametric models and the recalibration technique should be 

applied. On the other hand since the recalibrated non-parametric predictors were not 
dramatically worse than the best of the recalibrated predictors, minimising effort by trying 
just the non-parametric predictors and DU (which has an analytical solution, and so needs 
no expertise to apply), and then recalibrating, will probably give fairly reasonable results. 
Also, there seems to be evidence that the JM and GO models are particularly prone to 
non-stationary prediction errors and so these two models should probably not be 
included. 

In regions where the non-stationarity in the predictions errors in the raw model 
predictions was significant enough to result in significant bias in the recalibrated 
predictions, slight improvement could be seen in the PLR analyses by the application of 
recalibration with windows as opposed to recalibration without windows. This technique 
always resulted in closer predictions and better u-Plots, particularly for the smaller 
window sizes, but the predictions became more noisy as the window size decreased. For 
the larger window sizes unless the bias in the recalibrated (without windows) predictor 
was significant little improvement was seen since any decrease in bias bought by this 
technique was out-weighed by an increase in noise, and this was often also the case when 
there was significant bias and the window size was small. Elsewhere, where recalibration 
is already efficient, this technique tends to result in marginally worse predictions than 
recalibration without windows according to the PLR analysis and more so for small 
window sizes, since unwanted noise is added to already unbiased predictions. 

The implication of this is that it would only be worthwhile applying recalibration 
with windows in two situations. First if the initial set of raw predictors resulted in 

recalibrated predictors where significant bias was present after recalibration in some 
regions of the data for all the recalibrated (without windows) predictors. The second 
situation would be where the only recalibrated predictors for which this is not the case 
resulted in noisy predictions and so are not a desirable choice on this basis. The first 

situation is quite likely to arise if only a small number of initial raw models is applied. 
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The second situation is not unlikely since models which are more able to capture the trend 
in the raw data when frequent fluctuations are seen in this trend, and hence result in 

stationary raw prediction errors and, on average, unbiased recalibrated predictions, may 
also be likely to be subject to more noise. 

For the meta-predictor the results were very promising, with the performance 
according to the u-plot and the PLR criteria as good (differences were generally marginal) 
as the best of the initial prediction systems which could have been chosen for prediction 
purposes, and better than many of the initial predictors. There is varying performance for 

these meta-predictors applied with different window sizes (although this is often 
marginal) with smaller windows resulting in noisier median predictions but in general 

resulting accuracy is fairly close, certainly much closer than the group of initial 

predictors. For some data sets (e. g. CISI2) the meta-predictors applied with a small 

window perform surprisingly well. In particular this is surprising for M1 since it is based 

on a comparison of only the most recent predictions with a single data point. However for 

other data sets, the application of such small window sizes does result in worse 

predictions as we would expect. It is disappointing that the meta-predictors do not result 
in better predictive accuracy than the best of the initial predictors. On the other hand, since 
the judgement as to which initial predictor is best is made in retrospect, perhaps we have 

made an unfair comparison here. 

The main benefit of this crude meta-predictor is that it is completely automatic, 
and that it allows the user to apply a number of raw models and the recalibration 
technique (with and without windows) and to then select from amongst them dynamically 

as the data evolves without the detailed examination of the PLR plots and u-plots as 
conducted in this chapter, with reasonable confidence that the resulting meta-predictor 
will be as good as the best of initial predictors. 
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9 Conclusions and Future Work 

The general conclusion of this work is that a "multi-modelling" approach is a 
good one. The analyses in the previous chapter suggest that for each new data set we 
could apply a small number of raw models (some parametric and some non-parametric), 
the recalibration technique (without windows and then with windows if necessary), and 
finally the meta-predictor, and the resulting predictions will be about the same in accuracy 
as any single predictor that could have been applied. 

It has been repeatedly pointed out that for each data set the decision as to which is 

currently the "best" predictor (parametric or non-parametric, raw, recalibrated, or 
recalibrated with windows) may vary over different intervals of the data set and the meta- 
predictor approach is to automatically change our selection over i of the predictor which 
we would use for prediction purposes. This is only because we believe that the form of 
the reliability growth is changing over i. Thus we do not rely on theoretical justification as 
to whether the model assumptions are realistic or not. Instead we use our analysis 
techniques to decide which model is currently predicting the best, dynamically, as we 
move through the data, and use this for future predictions. In general, as stated above, 
this technique results in predictions which are among the best of all the single prediction 
systems that could have been chosen. This is a valuable point as it saves laborious 

analysis of many plots. 

There are quite a few choices on exactly how to use the methods presented here, 

which partly depend on the resources available to the user. In reality it is more than likely 

that the effort needed in collecting the failure data required for use of these techniques far 

out-weighs the computational effort required for this multi-modelling approach. 
However, a certain amount of expertise is also needed, in particular for application of 
some of the raw models, and it is important to take this into consideration when deciding 
how best to use these techniques. It is obviously of great benefit to be able to use these 
techniques in such a way that fairly accurate reliability predictions automatically result and 
no such expertise is needed. More detailed recommendations on how to use these 
techniques are given in section 9.1 followed by, in section 9.2, suggestions for future 

work which the analyses presented here indicates would be of benefit. 

9.1 Recommendations for Use of Multi-Modelling Techniques 

The best approach to take if it is important to minimise the effort needed to get 
reasonably accurate reliability predictions, is to apply a small number of raw predictors, 
and then apply recalibration and recalibration with a range of window sizes to each raw 
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predictor, and then to automatically select from amongst all the resulting predictors using 
the meta-predictor applied with a range of window sizes. The PLR analyses of the meta- 
predictors alone could then be used to select an optimum window size for predictive 
accuracy. To make this process entirely automatic just one window size could be applied 
in the case of the meta-predictor, although this may result in marginally less accuracy than 
if selection is made from meta-predictors arising from a range of window sizes. 
Alternatively, the meta-predictor could be applied again using a single window size, but 

with the initial predictors being those arising from application of the meta-predictor the 
first time with the varying window sizes. 18 

If the group of initial predictors applied is limited to selection from DU and the 

non-parametric models, then since the results for these raw prediction systems are 
automatically generated this saves on the expertise involved in deciding on the control 

parameters for fitting the other more sophisticated parametric models. However, there 

may be circumstances where the results of such an approach would be marginally worse 
than if a number of these more sophisticated models were also included. In particular the 

non-parametric models sometimes perform marginally worse due to them having a 
tendency toward more noisy predictions; such noise cannot be eliminated by application 

of recalibration or the meta-predictor. 

If it is deemed necessary to use some of these more sophisticated models then 

some intelligent decision should obviously be made about which of these models to use. 
For example, if the parametric models available are those investigated here, only one of 

pairs JM and GO, LM and LNHPP, and LV and KL should be used since each of these 

pairs usually give very similar predictions. If recalibration with windows is not to be used 
then it may not be worth applying JM and GO since these seem to be particularly prone to 

non-stationary prediction errors. 

It cannot be guaranteed for any particular data set under investigation that 
individual raw predictors will not give predictions which are unacceptable since they are 
too noisy or unacceptable in some other way that cannot be eliminated by recalibration. 
For example, zero-rate predictions may result as was seen here at some prediction stages. 
Thus, in general it is better that the group of initial raw predictors is not too small in order 
to increase the chances of always getting acceptable predictions from at least one of the 

raw prediction systems or from one of the recalibrated. 

18 This has not been applied to the data analysed in the previous chapter, but it is an obvious approach 

since it is just a way of formalising and automating examination of the associated log(PLR) plot. 
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Whatever the group of initial raw predictors used, the possibility to apply 
recalibration to each member of this initial group is essential, since it is quite possible that 
all of these raw predictors for a particular data set may be in error. Use of the meta- 
predictor alone with a group of initially inaccurate raw predictors is not a sensible 
alternative, since the meta-predictor is unlikely to be any more accurate than the best of 
the initial raw predictors. 

In some cases, particularly if the group of initial raw predictors is small, 
recalibration can result in predictors which are all still biased and in such cases application 
of recalibration with windows is necessary in order to eliminate this bias. However, a 
range of window sizes should be used in order to insure the optimum balance between 

elimination of irrelevant early raw predictions in assessment of the current predictive error 
versus increased noise as a result of smaller window sizes. 

Recalibration both with and with windows is easy to apply and so these might as 
well be used as a matter of course. 

Whatever the final group of predictors, the meta-predictor investigated here is a 
useful tool for formalising and automating the process of selection, from amongst this 

group, of a predictor to use for future predictions at any stage in the data. 

9.2 Suggestions for Future Work 

In general it seemed that some of the non-parametric models, and the recalibration 
technique and meta-predictor when applied with small windows, tended to be more "data- 
driven" and more noisy predictions resulted, particularly for small window sizes, 
resulting in marginally worse predictive accuracy. It might be beneficial to investigate the 
possibility of applying techniques to smooth this noise. If we could develop such 
techniques it may be possible to only apply a very small group of initial raw models for 

which no expertise is needed by the user (i. e., by just using the non-parametric models 
and DU) and for predictions to result which are as good as those which could have been 

obtained from more sophisticated models. Preliminary investigations of a simple 
smoother for the non-parametric models, which just consists of using the average of the 

most recent one-step ahead rate predictions, was tried in [Brocklehurst 1989]. Clearly, 
for data which exhibits reliability growth, this is likely to result in pessimistic predictions 
but it was felt that this could be eliminated later by recalibration. However, it seemed that 
this method also resulted in non-stationary raw prediction errors and so recalibration was 
not efficient. It may be worth investigating some more sophisticated noise smoothing 
techniques. 
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There was often a trade-off in application of the raw non-parametric models with 
windows where a smaller window size tends to result in raw predictions which capture 
the trend in the data and sometimes are less biased and hence good raw or recalibrated 
(without windows) predictions result, although this decrease in bias is often out-weighed 
by an increase in noise in the predictions. Such a trade-off was also present with 
application of recalibration and the meta-predictor with windows, where there was less 
bias in the recalibrated predictions and quicker response of the meta-predictors to 
significant local changes in the predictive performance of the initial predictors with 
smaller windows, but again, often at the expense of too much noise. It is clear that the 

application of fixed size windows is not the most efficient, way to eliminate non- 
stationarity in the raw model prediction errors used for recalibration, or to eliminate earlier 
predictions which do not represent the current predictive accuracy in achieving the meta- 
predictor. Remember, what we are seeking is a window small enough to eliminate less 

relevant past data or predictions, but large enough so that noise is kept at a minimum. 

More accuracy might be gained by trying to assess exactly where "change-points" 
in the data or the prediction errors are, and in this way apply a more intelligent window, 
the size of which is decided upon by the location of such change-points. This would 

result in a window size which dynamically changes as the data evolves. What would be 

required here is, in the case of application of the raw models with windows, techniques 
for assessing change-points in the raw data; here we do not only refer to change-points 

such as a transition from stable reliability to reliability growth in the raw data (which can 
easily be detected by the Laplace statistic) but changes from one type of reliability growth 
to another. Techniques for the latter are not yet available although it might be possible to 
develop such techniques by using the raw model assumptions as a null hypothesis and 
detecting where there is significant departure from this hypothesis. In this way we could 
use the largest window of recent data possible at each prediction stage subject to this 
window of data not showing significant departure from the model assumptions. This 

would result in using a window size which varies with each prediction stage and also at a 
single prediction stage depending on the model. 

The OTL model applied on the data sets analysed in the previous chapter was in 
fact applied in a manner similar to this. The largest vector of most recent data which 
exhibited no growth was selected via the sign of the Laplace statistic of the data and then 

an HPP was fitted over this vector. It might be worth investigating whether better results 
are obtained for OTL by using the significance test for the Laplace statistic rather than just 
its sign, and thus finding the largest vector which does not exhibit significant growth (or 
decay). 

150 



In the case of application of recalibration we would be interested in assessing 
change-points in the prediction errors or, more specifically, in the sequence of us 
generated by each raw model. Our informal examination of the moving u-plots of raw 
predictions often showed quite clearly such non-stationarity but really we need a formal 
test to decide when there is a significant change in the prediction errors. This would 
involve using the u-plot for recalibration constructed from the largest window of most 
recent past predictions for which any non-stationarity in the prediction errors for the raw 
model is insignificant. This window will thus change dynamically as we move through 
the data for single raw model, but will also be different at the same prediction stage for 

each raw model. One significance test which does exist for this is that based on the K 
distance of the y-plot constructed from the sequence of us. Unfortunately, though, the 

work presented in the previous chapter, and other previous work, has shown that this test 
is not very effective and so it would probably better to seek a better significance test for 

non-stationarity in the prediction errors. 

For the meta-predictor we would be interested in assessing change-points in the 
trend of the PLR plots which represent a genuine switching of performance of the initial 

prediction systems. Again, a formal significance test would be useful in deciding when 
there is a significant change in the relative predictive accuracy of these raw models. In this 

case we would be seeking the largest window for which there are no significant changes 
in the relative predictive accuracy of predictor pairs. This will result in using a different 

window for each paired comparison. 

An alternative approach to all of these methods for detecting change points would 
be to generate past predictions using all window sizes, and then to use the PLR as a 
criterion for deciding which window size to use for the next prediction. Although this 
would be computationally intensive (particularly in the application of the raw models, 
with the exception of OTL and DU), it might be worth investigating since methods for 
detecting change-points are not yet available. Note that this approach is equivalent to 
forming a meta-predictor as described in Chapter 6, but using the predictors from just one 
of the techniques (the raw or the recalibrated or the meta-prediction themselves) with the 
varying window sizes, as the initial group of predictors over which selection is made. 

Using such an approach for recalibration the window used for recalibration of the 
current prediction would be the one which results in the best last b recalibrated predictions 
according to the PL. In fact this was approximated to in the previous chapter, by using 
the recalibrated predictors with a number of fixed window sizes in the group of initial 

predictors used to construct our meta-predictor. 
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Precisely such an approach of combining meta-predictors is taken in [Lu and 
Brocklehurst 1991; Lu et al. 1993]. There a number of ways of combining a group of 
initial predictors, including the meta-predictor which is presented in Chapter 6 and 
referred to in [Lu and Brocklehurst 1991; Lu et al. 1993] as "switching", are investigated. 
The switching combined predictor is constructed using all possible window sizes, a, of 
the previous raw predictions for prediction stage jj = i-b, ..., i-I and then an optimum 
window size, a*, is chosen as that value of a which results in the maximum PL calculated 
for predictions of Tj, j = i-b, ..., i-I. This optimum window size, a*, is then used for the 
meta-prediction at stage i. Of course we now have the dilemma of choosing this second 
window size, b. But, in [Lu and Brocklehurst 1991; Lu et al. 1993] it is found that for 
different values of b the final meta-predictors are usually about the best of the initial meta- 
predictions over which selection is made with a number of fixed window sizes, a and 
there is not as much variability with different b as there is with different a. Thus these 

results are consistent with what we discovered in Chapter 8, i. e., that the meta-predictor 
tends to result in predictions which are about as good as the best of the initial predictions 
(i. e., in this case meta-predictors themselves) and are closer in accuracy than the group of 
initial predictors. 

Further, for all these methods, the u-plot could be used instead of the PL by 
finding that window which minimises the K distance of the u-plot of the resulting past 
predictions and use this window for the next prediction. This might be particularly useful 
for deciding on a window for recalibration, since the primary objective of this technique 
is to eliminate bias. 

An alternative to using windows of recent predictions would be to instead use 
weights, giving larger weights to more recent predictions. This approach is used for 

recalibration of reliability predictors for discrete failure data, that is, when the observed 
failure data is in the form of failure counts in fixed time intervals, in [Wright 1988; 
Wright 1993]. There the u-plot used for recalibration is constructed from a weighted 
combination of the previous us, so that the contributions from the us die away as we 
move further back into the prediction sequence. In [Wright 1988; Wright 1993] it was 
found that variability of predictive performance can result by discounting earlier 
predictions to different extents by varying the choice of weights for recalibration. Again, 

a trade-off could be seen, with vectors of weights which result in taking large account of 
only the most recent predictions often resulting in too much noise. Choice of an optimum 
vector of weights could be made using similar methods suggested for choosing optimum 
windows above (i. e., by using the PLR or the u-plot of previous recalibrated predictions 
with different vectors of weights), and the recalibrated predictions constructed via this 
optimum value could be used for the next prediction. 
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Another approach rather than using windows or weights would be to apply the 
techniques a second time. For example, in the case of those prediction systems which 
were still biased after recalibration (without windows) it might be worth investigating 

whether any improvement might be gained by recalibrating the recalibrated prediction 
systems, just as forming combined predictors from initial predictors which are themselves 

combined predictors was shown to be useful in [Lu and Brocklehurst 1991; Lu et al. 
1993] when there is quite a lot of variation with window size in the predictive accuracy of 
the initial group, as discussed above. 

In general each application of further techniques like recalibration and fonning 

combined predictors requires more initial raw data and predictions. Thus, if methods 

could be found for change-point detection in these contexts, then this would be preferable 
to re-applying the techniques, or to searching for optimal windows or weights. 

The meta-predictor we applied here was very crude, and it may be beneficial to 
investigate more sophisticated methods of combining a set of initial prediction systems. In 

particular it might be preferable to form combined predictors which continue to take 

account of all the initial predictors at each stage rather than just switching to a single 

predictor. 

in [Lyu and Nikora 1992] a number of methods of combining initial predictors are 
investigated where the combined predictions are constructed using a linear combination of 
the initial predictors. In this investigation the methods used for constructing the weights 
are fairly simplistic. One method is just to give all the initial predictors equal weight at 

every prediction stage. Another, which in contrast to the previous one results in 
dynamically changing weights but only in cases where the initial predictors switch in their 

ranking of most optimistic to most pessimistic predictions, is to give those predictors 
which are most optimistic, or pessimistic less or zero weight than those which lie in the 

centre of the group of predictors. In [Lyu and Nikora 1992] the only combination method 
investigated which depends on past predictive accuracy is similar to M1, as applied in 
Chapter 8 (in fact it is the Bayesian version of this predictor, which is discussed below), 

and it is found that the other combined predictors do not perform any better than this 

predictor, suggesting that it is probably not worth investigating any of these more 
simplistic ways of constructing combinations further. 

In [Lu and Brocklehurst 1991; Lu et al. 19931, in addition to "switching", another 
combined predictor which depends on past predictive accuracy of the initial predictions is 
investigated, for which the results are marginally better than those from switching. This 

predictor was suggested in [Edwards 1984] and discussed in [Saglietti 1989]. This 

combined predictor is constructed by using a linear combination of the initial predictors 
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with the weight, wl, from each initial predictor, r, being the normalised contribution from 
the PL from that predictor over the last a predictions, i. e., 

wr_ 
PLi-rai-I N 

N 
, 
EPLip-a 

n=l 

for combination of N initial predictors. This is referred to as the Bayesian combined 

predictor since it can be derived by constructing the posterior odds ratio given the data 

and the prior representing initial indifference between the initial predictors to be 

combined. Although, as mentioned above, investigation of this Bayesian combined 

predictor in [Lu and Brocklehurst 1991; Lu et al. 1993] showed that the resulting 

predictions are better than the cruder switching combined predictor, the results generally 

only differ marginally, with the Bayesian combined predictors being, as with switching, 

about the same as the best of the initial predictors over which combination was made. 

Another alternative way to form a combined predictor via a linear combination of 
initial predictors, is to optimise some accuracy criterion over all possible choice of 

weights used in the combination. Such an approach is suggested in [Littlewood 1988] 

and discussed in [Saglietti 1989], with the PL as the accuracy criterion on which to base 

this combination. In detail it is suggested that a search for the vector of weights which 

maximises the PL of the combined predictor taken over the last a predictions be done, and 
that this optimal vector of weights should be used to construct the predictions at the next 

stage. Of course this would be computationally intensive since for combination of N 

initial predictors it involves maximising a polynomial of order a, in an N-1 dimensional 

space [0, I]x ... X[0,11, since the weights are constrained so that their sum is equal to 

one. However, some crude approximation to this could be easily implemented by only 
allowing the weights to take a fixed number of discrete values in [0, l] and by only 
combining over a small number of initial predictors. 

In any combination method used it may be preferable to make a more intelligent 

choice of the initial group of predictors to be combined, either for the purposes of 
achieving more accurate combined predictions, or in order to minimise the computational 
effort required in achieving the combined predictor. In [Lu and Brocklehurst 1991; Lu et 
al. 19931 combination is made over the 8 raw parametric predictors alone, over the 8 

corresponding raw and recalibrated predictors and over the 16 raw and recalibrated 
predictors together. Interestingly it turns out that slightly worse performance is achieved 
when the worst group of recalibrated or raw predictors (usually the raw) are included in 
the initial group, implying that it may not be the best strategy to use all available initial 

predictors in our combination as was done in Chapter 8, but instead to use the best subset 
of the initial predictors. 
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In [Saglietti 1989] it is suggested that single predictors might be rejected for 
inclusion in the initial group to be combined due to their bad (past) performance according 
to absolute measures of predictive accuracy, for example, u-plots and y-plots. In [Lyu 

and Nikora 1992] it is also suggested that predictive accuracy on past data, according to 
u- and y-plots, PL analyses, and a noise measure [Abdel-Ghaly et al. 1986], could be 

used to select the group of initial predictors. Some more general properties of raw 
models, such as computational intensity of achieving estimates of model parameters, 
applicability of model assumptions to application under investigation, ability of models to 
make predictions which are of interest in the application under investigation, and so on, 
are suggested in [Lyu and Nikora 1992] as additional criteria for selecting the initial group 
of predictors to be combined. 

Another way to incorporate preferences towards particular initial predictors would 
be to use some scheme based on past performance within a particular data set, or from 

other data sets, other than indifference between the initial predictors in the prior for the 
Bayesian combined predictor discussed above. 

In [Lu and Brocklehurst 1991; Lu et al. 1993] substantial improvement was only 
seen in the combined predictor over the best of the initial predictors, when all of the initial 

predictors being combined were giving grossly inaccurate predictions. However, the 
improvement seen in this case, where combination was over the raw predictors only, was 
not a great as that gained by recalibration. This suggests that a strategy which consists of 
applying raw models only, and then combining, is not as good as one which instead 

combines recalibrated predictions. To date, when the latter strategy is used, we have not 
seen any substantial improvement of the combined predictors over the initial predictors. 
Of course, this may be because the best of the initial recalibrated predictors are already 
fairly accurate, and there is not much room for more improvement. The implication is that 
there is not enough significant local variation in the relative accuracy of the recalibrated 
predictors for the combined predictor to be expected to give improvement. However, 

using a combined predictor is still recommended since it is simply a way of automatically 
choosing the best initial recalibrated predictor. 

In most of our discussions we have only considered one-step-ahead predictions. 
Obtaining predictions further into the future is a problem for many of the raw models. 
Each raw model has its own particular problems for predicting further into the future. For 

many of the parametric models the extension to the most simple type of future prediction, 
that of n steps ahead, is obvious. However, obtaining other kinds of predictions, such as 
the time taken to achieve some target reliability, is non-trivial for many of the raw 
parametric models. 
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For the non-parametric models even obtaining n-step-ahead predictions is 

problematic. Some recommendations of how this might be approached for the CM model 
is given in [Miller and Sofer 1988]. It is suggested that n-step-ahead rates can be derived 
by extrapolating from the estimated set of rates at any one prediction stage. As yet this 

method has only been tested on simulated data and it may be worth investigating it for real 
data. 

Unfortunately, as mentioned in [Brocklehurst 1989], the detail of the method 
suggested, which requires that complete monotonicity is preserved for the vector of future 
(and previously estimated) rates, would result in simply using the most recent rate for n- 
step-ahead predictions, whatever the value of n, in many cases. This is due to the detailed 

nature of the solutions for estimated rates which result for the various non-parametric 
models. For the extension to OTL all the rates are almost always equal and so to preserve 
complete monotonicity all future rates must be equal. For OTY, as observed in Chapter 5 

and [Brocklehurst 19891, in many instances the estimated sets of rates have shapes which 
result in the most recent rates being equal, and again, to preserve complete monotonicity 
all future rates must be equal. It is necessary, therefore, to seek an alternative method for 

obtaining n-step-ahead predictions for the non-parametric models. Another option would 
be to constrain the optimum solution for OTY to have no identical rates, whenever 
possible. This approach would probably work whenever the failure data exhibits growth, 
as there is a tendency for highly non-unique solutions to result in the presence of growth. 

Another, possibly insurmountable, problem is how to use the analysis techniques, 

and apply recalibration and the combined predictors to assess and to obtain such 
predictions. It is clear that, just as we observed in Chapter 4 that inaccuracies of model 
retrodictions are not representative of inaccuracies in one-step-ahead predictions, so the 
inaccuracies in one-step-ahead predictions cannot be expected to be representative of 
inaccuracies of predictions further into the future. This means that to assess the efficiency 
of a predictor for a particular type of prediction that same type of prediction must be used 
in the plots for analysis (and in the methods for recalibration and constructing combined 
predictors). 

Consider, again, the most simple type of future prediction, that of n steps ahead. 
To decide from a set of predictors which to use for the next n-step-ahead prediction, we 
must make many such (past) n-step-ahead predictions and use these in the plots for 

analysis which compare these predictions with the (later observed) data. The larger the 
value of n the less and less likely it will become that we will have enough data to conduct 
such an analysis over a single data source. It may be that the only way to approach such a 
problem is to appeal to evidence based on another data source. Here, we mean, to use 
previous data sources to assess whether the ability of a particular predictor to predict the 
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immediate future implies an ability for this predictor to predict further into the future; if 

we find that this is the case we might then be able to assess predictions only in the 
immediate future for the data of interest, and select our prediction system for the 
predictions further into the future based on evidence of such correlation from other data 

sources. 

Even if we found that such coffelation existed, which is doubtful, it seems likely 

that the same approach for recalibration, for example, would not be successful. Here, we 
would need to be able to make some connection between errors in one-step-ahead 
predictions and errors in n-step-ahead predictions on previous data sources that can then 
be applied to achieve recalibrated n-step-ahead predictions for the data source under 
investigation, merely from the one-step-ahead predictions for that data source. This is 

unlikely to be the case. Similar comments apply in the case of combining predictions. It 

may be the case, therefore, that to achieve good predictions further into the future than 

one-step-ahead, our only option will be to seek a model, or method, which can be shown 
to give accurate future predictions consistently on many data sources. 
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Appendix A Non-Parametric Model Details 

To summarise we are using inter-failure time data, tj-l = 01, tZ ... ' tj-1), to 

estimate the associated rates, rj. 1 = (rl, r2, ... ' rj_jý. In order to make one-step-ahead 

predictions about Tj, it is then assumed that Tj has an exponential distribution with rate 

the same as the most recently estimated rate, 7j-,, i. e., 

Pj(t) 

and 

ýjft) = 7j-l e-7j-lt 

A. I OTY Model 

Formulation 

(AJ) 

(A. 2) 

From (5.2.2) and from the construction of the y-plot as described in section 3.2 

the maximum distances of the top step and the bottom step of the y-plot from the 45 0 line 

are 

m 

, 
Erktk 

Mar k--l m D+(rj. l, tj. 1) =I : 5m : 5j_l j-1 - j-1 (A. 1.1) 

. 
Erktk 

k--l 

m 

, 
Erktk 

Max k--l m- D-(rj. l, tj. 1) m -.! ýj-l j-1 j-1 (A. 1.2) 

. 
Zrktk 

k--l 

respectively and the linear programming problem becomes Minimise [K(rj. I, tj. I 

subject to (5.2.1) and (5.2.3) where 

K(rj. l, tj. 1) = max[D+(rj. l, tj. 1), D-(rj. l, tj. 1)I 

tpl) is the K distance of the y-plot from the 45 * line). 

The equality constraint (5.2.3) allows us to transform the problem to be linear in 
the variables, rpl, and if we let 
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Oy(rj. l, tj. 1 )= (j-])K(rj. l, tj.. I) ...... (A. 1.4) 

then the problem becomes 

Minimise [Oy(rj. l, tj. 1 )] subject to ri. I 

OY(rj. l, tj. ] k0 
...... (A. 1.5) 

k 

-Oy(rj. l, tj. 1 :! ýErsts -k-: 5 Oy(rj. l, tj. 1 k j- I ...... (A. 1.6) 
S---I 
k 

-Oy(rj. l, tj. 1).! ý, Ersts-k+1: 50y(rj. l, tj. 1) k=],..., j-1 ...... (A. 1.7) 
S--I 

and subject to (5.2.1) and (5.2.3) which reduces to 

Minimise [oy(rj.,, tpl ), subject to rj. I 

Oy(rj. i, tj. l )k0 
...... (A. 1.8) 

rk k0k=1, ...... (A. 1.9) 

rk - rk-I : 50 k=2, i-1 
.... (A. 1.10) 

rk - 2rk-I + rk-2 -* 0k=3, i-I 
.... (A. 1.11) 

k 
E rs ts + Oy (rj., r, tj. Ikk=1, PI .... (A. 1.12) 
s--] 
k 
Erý, ts - Oy(rjl, tj. 1 ) ý5k -Ik=1, j-1 .... (A. 1.13) 
S--J 
j-1 

. 
Erktk (A. 1.14) 

k--I 

A. 1.2 Solution Classifications 

To surnmarise let 

h 
j-1 

rj-I where rj-l = 
Etk and rj. 1 ri-A' rk = ry-1, k j-1 ... (A. 1.15) 

rj-1 k--I 

'Max 
TM 

'j-1 (A. 1.16) msI Tp 
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Tm M-1 (A. 1.17) 
T. 1 

j-1 

An alternative formulation for the OTY linear programming problem (A. 1.8) - 
(A. 1.14) is 

Minimise [K(rj. 1, tjý1 )] (as defined in (A. 1.1)-(A. 1.3)) subject to 
ri. I 

rk >ý 0 j-1 

rk - rk-I ýýO k=2, ..., j-1 

rk - 2rk. 1 + rk-2 2' 0k=3, ..., j-1 

j-1 

, 
Erktk 

=j-l 
k--l 

Theorem A. 1.1 

h 
The HPP vector of rates, rjýj, is always feasible. 

Proof 

(A. 1.18) 

(A. 1.19) 

(A. 1.20) 

(A. 1.21) 

h 
From (A. ]. 15), since rk = rj_j for all k=1, 

..., 
j-1, trivially constraints (A. ]. 19) 

rj-1 constraints (A. 1.18) and (A. 1.21) are also and (A. 1.20) are satisfied and since' 
h= j± 

satisfied. Thus, rj. 1 is always a feasible solution given any vector of inter-failure times, 

Theorem A. 1.2 

h 
If D-(Ijl, tj. l) >- D+(Ij.,, tj. 1) then the HPP vector of rates, rj. 1, is feasible, 

Tn 
_ 

n-1 and n -j-1 and tk #0 for and optimal and additionally if D jl, tj. 1) 
-rj-l J-1 

I 

h 
all k=1, j-1, then rj. 1 is uniquely optimal. 

Proof 

Let D-(Ijl, tj. 1) k D+(Ij. l, tj. 1) (A. 1.22) 
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Then from (A. 1.16) and (A. 1.17) there exists an nE fl, 2, ..., j-11 such that 

D-(Ij. l, tj. 1) IU-I)rn 
- (n-l)Tj-l 1 2! U- ]), rn -n rj- (A. 1.23) 

and so D-(Ij. l, tj. 1) i -1)rn - (n-1), rj-l) >0 .... (A. 1.24) 

h From Theorem A. 1.1 rj. 1 is trivially feasible and from (A. 1.1), (A. 1.2), (A. 1.3), 

(A. 1.15), (A. 1.16), (A. 1.17), (A. 1.22) and (A. 1.24) 

(h 't K rj. 1 V. 1) = D-(Ijl, tj. 1) I(j-I)Tn - (n-I)Tj-l) .... (A. 1.25) 

h Let rj. 1 = (ri, 
... ' rj-l) be another feasible solution (distinct from rj. 1). Then, 

from (A. 1.19) 

rk - rk-I --: -ck ck 2! 0, k=2, ..., i-I .... (A. 1.26) 

h 
and from (A. 2.21) since rj. 1 is distinct from rj. 1, ck >0 for at least one kE [2, 

Then from (A. 1.21) and (A. 1.26) 

J-2 J-1 
zcs+]Ts + Ti-I E 

CS 
rk ": 

Lu 
- 

(r--l (s=k+l 

k=1, ..., j-1 (A. 1.2 7) 
, rj-i 

So from (A. 1.2), (A. 1.3), (A. 1.21) and (A. 1.27) 

K(rj. l, tj. 1) 2! D-(rj. l, tj. 1) >ITI 
irktk 

P- k--l 

n J-1 
(j-])Tn - (n-l)Tj. 1 +E Ti-I E 

Cs) Cs+]Ts))kl 
k--]( 

(s=k+l 

s 

(j-l)Tn - (n-I)Tj-l + -Tn)(k 

lck+]'rk) 

+ Tn 
(jj 

ck+I(Tj-]-'rk))l (Tj-l 

. 
(j 

-I)T -(n-l)-rj-l+(Tj-1-Tn) ck+]TkýTnýý ck+]('rj-l-'rk))) 

j j 

_, )T 
in.... (A. 1.28) 

j_l 

(( (ký- 

from (A. 1.24) and (A. 1.26). 

Finally, from (A. 1.25) and (A. 1.28) 
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InIj 
Ck+ I (Tj- I- Tk))) K(rj. l, tj. 1) - K(rjýjjj. j) >- T-J-T, Ck+ I 'rk) + Tn 

(ij 

(j-])Tj-l 

(( 
j n) 

(ký- 

h 
and so from (A. 1.26) (since ck 2! 0 for all k=2, 

..., j-1) K(rj Ij 1) K(rj. j 1) for 
h. -Y. 

2! 
.1j. 

all other feasible solutions rj. 1 and so rj. 1 is optimal. Further, provided n #j-1 and tk 
0 for all k=1, ... ' j-1, then (since Ck 20 for all k=2, ... ' j-1 and ck >0 for at least one 

h ke [2, j-11) K(rj. l, tj. 1) > K(rj. l, tj. 1) for all other feasible solutions rj. 1 and so 
h. 

rj. 1 is uniquely optimal. 

Theorem A. 1.3 

h If D-(Ijl, tj. 1) < D+(Ij. i, tj. i) then the HPP vector of rates, rj. ], is feasible, 

but not optimal. 

Proof 

Let D-(Ijl, tj. 1) < D+(Ij. l, tj. 1) (A. 1.29) 

Then from (A. 1.16), (A. 1.17) and (A. 1.29) there exists a set N, fl, 2, ..., j-Ij 2 N, 

sgn[N] k 1, such that 

11 
1) Tn, -n frj- 

U-1), rj-1 

D+(Ij., I, tj. 1) > (j- 1), rk - (k- 1) Tj- 

D+(Ij. l, tj. 1) >1 (j-I)Tk - kTj-ll 
U-1), rj-1 

for all WE N .... (A. 1.30) 

for all ke 11,2, ..., j-1] (A. 1.3 1) 

for all kE [1,2, ..., j-1] -N... (A. 1.32) 

Suppose j-1 CN. Then from (A. 1.30)D+(Ij. l, tj. i) =0 so from (A. 1.29)D-(Ij. 

<0 but from (A-1.17) D-(Ij. l, tj. 1) >0 and so 

11,2, ..., j-21 2N 

From (A. 1.30) and (A. 1.31) 

1(j- 1) Tn, - n'Tj. II>I (j- 1) Tn, - (n'- 1) Tj- II 

and so -((j-l)rn, - nTj-l) >0 for all We N 

Further, from (A. 1.30), (A. 1.31) and (A. 1.34) 

for all We N 

(A. 1.33) 

(A. 1.34) 
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-((j-1)(, rn, +Tk) - (n'+k-I)Tj-l) >0 for all WeN and all kE [1, ..., j-1] .... (A. 1.35) 

and from (A. 1.30), (A-1.32) and (A. 1.34) 

-((j-1)(Tn, -Tk)-(n'-k)Tj-l)>O foralln'eNandallks[l,..., j-l)-N 
.... 

(A. 1.36) 

h From Theorem A. 1.1 rj. 1 is trivially feasible and from (A. 1.1), (A. 1.2), (A. 1.3), 

(A. 1.15), (A. 1.16), (A. 1.17) and (A. 1.29) 

h 
r j. l, t K( j. 1) = D+(Ij. l, tj. 1) .... (A. 1.3 7) 

Consider the following alternative solution, rpl, defined as follows. 

k-I j-2 
Let ak (i-k-l)Tj-lTk + Tj-IETs- TkZTs for kI.... (A. 1.38) 

s--] S--I 

which can be written as 

k-I j-2 

ak:, -- (Tj-1-Tk)ITs + TkE(rj. ]-'rs) for k=1, j- I 
S--I s=k 

and so ak >0 for all k=1, 
..., 

P2 and aj-1 =0 

Choose nEN so that 

an - an,: 50 

Ixt 

where 

and 

.I 
c =min* 

J-1 Bn; Cn j2 
Z TS 
S--] 

for all We N 

min -((j-])(Tn+rm) - (n+ 
Bn 

met, ... j-11 an + am 

min -((j-l)(Tn-rm) - (n-m) 'r 
Cn 

(m , 11 
... j-Ij-Nlan-am>O) an - am 

i 

(A. 1.39) 

(A. 1.40) 

(A. 1.41) 

(A. 1.42) 

if there exists an me [1, 
..., j-11-N such that an - am >0 and Cn = 

j-1 
otherwise. j2 

T, 

Let rk - rk-I = -C k=2, ..., j-1 .... (A. 1.43) 
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j-2 
j- CZr, 

and rj-l -'I- 
, rj-1 

Then from (A. 1.43) and (A. 1.44) 

rk = rj. 1 + (j-k-l)c k=1, ..., j-1 

(A. 1.44) 

(A. 1.45) 

From (A. 1.33), (A. 1.35), (A. 1.40) and (A. 1.42) B,, > 0. From (A. 1.36) and 
(A. 1.42) if there exists an me 11, 

... ' j-11-N such that an - am >0 then C,, > 0. So, from 

(A. 1.42) c is bounded (c ýý 
J-1 ) and c>0. Thus, from (A. 1.43) constraints (A. 1.19) 

j-2 
E TS 
S--I 

and (A. 1.20) are satisfied. From (A. 1.42) and (A. 1.44) rj-l >-O and so from (A. 1.45) rk 

k0 for all k=1, ... ' j-1 and so constraint (A. ]. 18) is satisfied. From (A. 1.44) and 
h (A. 1.45) constraint (A. 1.21) is satisfied. Finally, since c>0, from (A. 1.45) rp] 

h 
Thus we have found another feasible solution, rpl, which is distinct from rj. 1. 

From (A. 1.1), (A. 1.2), (A. 1.3), (A. 1.21), (A. 1.38), (A. 1.44) and (A. 1.45) 

K(rj. l, tj. 1) = max[D+(rj. l, tj. 1), D-(rj. l, tj. 1)I 

where 

D+(rj. l, tj. 1) 
Max I (j-])rm - mTj-l + cam 

-: 5 m _:! ýj- I 

D-(rj. l, tj. 1) 
Max-, IU-I)rm-(m-I)Tj-l+cami 

I : 5m: 5j 

But from (A. 1.33), (A. 1.40) and (A. 1.42) 

nTj-l) - can ZO 

- 
((j- 1) Tn -n Tj. I)- can -ý' 

(U- 1) Tk - (k- 1) Tj. I)+ cak 

and so 

-((j-])rn - nTj. 1) - can 2! ((j-])Tk 
- kTj. 1) + cak 

Also, from (A. 1.33), (A. 1.40) and (A. 1.42) 

-((j-])Tn - nTj-l) - can k-((j-l)Tk - kTj-l) - cak 

which an - ak >0 

(A. 1.46) 

(A. 1.47) 

for all k=1, ..., i-I ... (A. 1.48) 

for all k=1, ..., j-1 .... (A. 1.49) 

for all kE [1, 
..., i-II-N for 

(A. 1.50) 
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Consider kE j-11-N for which an - ak: 50. Since c>0, and from (A. 1.36) we 
have 

-((j-])Tn - nTj-l) - can 25 -((j-])Tk - kTj-l) - cak for all kE 11, 
..., 

i-II-N for 

which an - ak ýýO .... (A. 1.51) 

Now consider WeN. From (A. 1.30), (A. 1.34), (A. 1.41) and since c>0 we have 

- 
((j- 1), rn -n Tj- 1) - can >- - 

((j- 1) Tn -- nTj- 1) - can, for all we N .... (A. 1.52) 

So from (A. 1.50), (A. 1.51) and (A. 1.52) 

-((j-1), rn - nTj-l) - can -ý,, -((j-I)Tk - kTj-l) - cak for all kE [1, 
..., 

j-11 
.... 

(A. 1.53) 

and so 

-((j-1), rn - nTj-l) - can -" -((j-I)Tk - (k-l)Tj-l) - cak for all kE [I, 
..., 

j-1] 
.... 

(A. 1.54) 

So from (A. 1.46), (A. 1.48), (A. 1.49), (A. 1.53) and (A. 1.54) 

K(rj. l, tj. 1) 
((j-l)Tn 

- nTj-l) - can 
U-'), rj-1 

(A. 1.55) 

So, finally, from (A. 1.30), (A. 1.33), (A. 1.34), (A. 1.37), (A. 1.40) and (A. 1.55) 

(and since c> 0) we have 

K(rjh. i, tj-l) - K(rj. l, tj. 1) 
ca,, 

(i-])rj. l 

Thus, we have found an alternative feasible solution ry. 1 which has a smaller 
hh 

: ýI is not optimal. objective function than rpI and hence r 

A. 2 OTL Model 

A. 2.1 Formulation 

Minimise, L(r. t. 1), To summarise the OTL problem is 
rj. 1 jIj subject to the difference 

constraints (5.2.1) and the scaling constraint (5.2.3) where 

j-i j-2 k 
1 

rktk 
1 Irt, 

L(rj. 1, tj. 1) = 
k=I k=I s=I (A. 2.1) 2 j-2 

From (A. 2.1) and (5.2.3) 
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j-2 
(j-1)(j-2) - 2, E(j-k-I)rktk 

L(rj. l, tj. 1) = 
k=l 

...... (A. 2.2) 2(j-2) 

so if we let 01(rj. l, tj. 1) = 2(j-2)IL(ry. I, tj. I)I then from (5.2.1), (5.2.3) and (A. 2.2) the 

problem becomes 

Minimise [01(ry. I, tj. 1 )] subject to 
rY. I 

Oi(rj. i, tj-i ) 2! 0 ...... (A. 2.3) 

rk 0k=1, ...... (A. 2.4) 

rk - rk-I ý50 k=2, ...... (A. 2.5) 

rk - 2rk-I + rk-2 --" 0k=3, ...... (A. 2.6) 

j-2 
2 E(j-k-I)rktk + 01(rj. l, tj. 1 (j-1)(j-2) ...... (A. 2.7) 

k--l 

j-2 

2. E(j-k-I)rktk 
- 01(rjl, tj. 1 (j-1)(j-2) ...... (A. 2.8) 

k--l 

j-1 

, 
Zrktk 

...... 
(A. 2.9) 

k--l 

A. 2.2 Solution Classifications 

To surnmarise let 

j-, 
j-1 

h here Tj. 1 = 
Ztk 

and rj-j = (rl, 
..., rj-1), * rk = ry-1, k=1, 

..., 
j-1 (A. 2.10) 

kk 

and 
Z 

-rs where Tk = 
Ets 

.... 
(A. 2.11) 

S=j S=j 

T, I Yj-2 
and L(l, tj. 1) = 1-1 - .... (A. 2.12) 2 j-2 

j-i j-2 k 
1 Zý, 
k=I s=I ý, 

ts 
(A. 2.13) 2 j-2 .... 

Then an alternative formulation for the OTL linear programming problem (A. 2.3) - 
(A. 2.9) is 
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Minimise [I(rj.,, t Iy subject to rp I vo 

rk 2ý 0 

rk - rk- I -:! 
ý 

rk - 2rk-I + rk-2 2! 0 

j-1 

, 
Erktk 

k--l 

Theorem A. 2.1 

k 1, ..., j-1 

k 2, ..., i-I 

k=3,..., j-1 

(A. 2.14) 

(A. 2.15) 

(A. 2.16) 

(A. 2.17) 

If L(l, tj. 1) >0 then there exists a feasible optimal solution, rp], such that L(rj- 

=0 and Ark = -c < 0, for all ke [2, 
... ' n-1] and Ark =0 for all kE [n, 

..., j-1). 

Proof 

Let L(l, tj. 1) >0.... (A. 2.18) 

Choose a vector of rates, rj. 1, as follows. Choose nE (1, 
... ' j-11 such that 

3n ýý 
J+4 

.... (A. 2.19) 2 

(j-])(j-2)L(I,. t-. 1) and let C=j.... (A. 2.20) 
n-3 

(j-n+I)Tj-]Yn-2 + 2Tj-,, Z yk - Yj-2Yn-2 
k=J 

j-1 CA-2 + (n-k-l)cTi-I 
k=I... n-I 

Tp 
and rk .... (A. 2.21) 

CYn-2 k=n... j-1 
Tj-l 

ck2... n-I Then rk - rk-I _0 

kn... j-1 
.... (A. 2.22) 

and rk - 2rk-I - rk-2 '= 
c 

.... (A. 2.23) 

k=3... j-1 k#nI 

N 
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Now from (A. 2.12) 

n-3 
(i-n+l)Tj-lYn-2 + 2Tj-IE)* - rj-2Yn-2 

k=l 

n-3 n-3 rY iL 2n+4)'Y, 
-2 

4E)* + 2L(l, tj. 1)((i n+l)Yn-2 2E A) >0 
k=l k=l 

(A. 2.24) 

from (A. 2.18) and (A. 2.19). So, from (A. 2.18), (A. 2.20) and (A. 2.24), c>0 and c is 
bounded. Further, from (A. 2.12), (A. 2.20), (A. 2.21) and (A. 2.24) 

n-3 
(j-1) 2n+4)Yn-2 + 4, EA 

rj. ] = 

Lu- 

n-3 
k=l 

) 

.... (A. 2.25) 

2 n+])'rj-]Yn-2 + 2, rj. I. 
E yk - Yj-2Yn-2 

(u- 

k=l 

so from (A. 2.19), (A. 2.24) and (A. 2.25) rj-I 2! 0 and rj-I is bounded. So from (A. 2.21), 
(A. 2.22) and (A. 2.23) constraints (A. 2.14), (A. 2.15), (A. 2.16) and (A. 2.17) are 
satisfied and so rpl, as defined above, is a feasible solution. 

From (A. 2.12), (A. 2.13), (A. 2.17), (A. 2.20) and (A. 2.21) 

n-3 
(j-1)(j-2)L(l, tj. 1) +c Yj-2rn-2 - (j-n+])'rj-]Yn-2 - 2, rj-I. E 

U-2)rj-l 

and so we have defined a feasible solution ry. 1 with zero objective and so ry. 1 is an 
optimum solution. 

Theorem A. 2.2 

j-3 
If L(l, tj. 1) >0 and 4Z yk 5 (j-4)7j-2 then there exists a feasible optimal k=1 

solution, rj. i, such that L(rj. l, tpl) =0 and Ark = -c <0 for all kc (2, ..., j-11. 

Proof 

Let L(l, tj. 1) >0 

j-3 
and 4EA2! U-4)Yj-2 

k=l 

(A. 2.26) 

(A. 2.27) 
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Choose a vector of rates, rj. 1, as follows. 

(j-1)(j-2)L(I, t Let C= j-3 
jzj) 

.... (A. 2.28) 

'rj-l'r, -2 + 2Tj-IEyk - YJ-22 
k=I 

and rk 
j-1 + c((j-k-I)Tj-l - YJ-2ý k=1, j-1 .... (A. 2.29) 

, rj-1 

Then rk - rk-I = -c k=2, j-1 .... (A. 2.30) 

and rk - 2rk-I - rk-2 -= 0k=3, ..., j-1 .... (A. 2.31) 

Now, from (A. 2.12), 

j-3 

Tj-]'rj-2 + 2Tj-jZ)j - rj-2 2 
k=l 

j-3 
rj-2L4, E 71 - (j-4)rj-2] j-3 

k=l + 2L(l, tj. 1) yj-2 + 2E)* >0.... (A. 2.32) 
k=l 

) 

from (A. 2.26) and (A. 2.27). So from (A. 2.26), (A. 2.28) and (A. 2.32) c>0 and c is 

bounded. Further, from (A. 2.12), (A. 2.28), (A. 2.29) and (A. 2.32) 

*3 

(j-1)(4 ý 71 - (j-4)Yj-2 
rj. 1 =kI j-3 .... 

(A. 2.33) 

2(Tj-lrj-2 + 2Tj-1l A- YJ-2 2 
k=l 

so from (A. 2.27), (A. 2.32) and (A. 2.33) ry-I >0 and rj-1 is bounded. So from (A. 2.29), 
(A. 2.30) and (A. 2.31) constraints (A. 2.14), (A. 2.15), (A. 2.16) and (A. 2.17) are 
satisfied and so rjýj, as defined above, is a feasible solution. 

From (A. 2.12), (A. 2.13), (A. 2.17), (A. 2.28) and (A. 2.29) 

j-3 
(j-1)(j-2)L(l, tj. 1) + c(7j-22 - Tj-]Yj-2 - 2Tj-l 

(i-2)Tj-l 

and so we have defined a feasible solution ry. 1 with zero objective and so rj. 1 is an 
optimum solution. 
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Theorem A. 2.3 

j-3 
If L(l, tj. 1) >0 and 4 EA 

ýý(j-4)rj-2 then there exists a feasible optimal solution, 
k=1 

rj. 1, such that L(rjl, tpi) = 0, rj-j =0 and Ark = -c-c'for all kE [2, ..., n-1] and Ark 

-c for all ke [n, ..., j-1j, with c>0 and c'> 0 or c=0 and c'> 0 or c>0 and c'= 0. 

Proof 

Let L(l, tj. 1) >0 
j-3 

and 4Z)j:! ý(j-4)rj-2 
k=l 

(A. 2.34) 

(A. 2.35) 

Choose a vector of rates, rj. 1, as follows. Choose ne [I, ... ' j-1) such that 

n ý5 J+4 
2 

n-3 
(j-1) 2n+4)Yn-2 + 4Z 

(u- 

k=I 
and let C n-3 j-3 

2((j-n)Yj-27n-2 + 2)j-2, f yk - 2Yn-2-r 'A) 
k=I k=I 

L3 
L-IJ)(j-4)Yj-, - 41A) 2, 

and cp n-3 
k=I 

j-3 
2((j-n))j'-2Yn-2 + 2rj-2, E yk - 2Yn-2, ZII) 

k=I k=I 

and 

j-1 + c((j-k-1)rj-1-rj-2) + c'((n-k-I)Tj. ]-'Yn-2) k=1... n-I 

rk 
t 

j-1 +kn 

-rj-1 

Then rk - rk-i -c-c 

-c 

and rk - 2rk-I - rk-2 

k2... n-I 

kn... j-1 

k=n 

k=3... j-1 k-n 
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n-3 j-3 
Now 2 n))j-2Yn-2 + 2)j-2, E A- 2A-2, E)k 

(u- 

k=l k=l 

) 

n-3 j-3 

rj-2 2n+4)Yn-2 +4x+ Yn-2 -4)Yj-2 - 4, f7k 
(u- 

kVt) 

(u 

k=l 

) 

j-3 

and so from (A. 2.35), (A. 2.36), (A. 2.3 7) and (A. 2.38) if 41 It < (j-4) r, -2 then either c k=l 

>0 and c' >0 (and they are both bounded) or c=0 and c' >0 (and they are both 
j-3 n-3 

bounded). If 4E 'A = (j-4)r, 
-2 then choose nE [3, ..., j-1] so that (j-2n+4)yn-2+ 4E)l 

k=l k=l 
>0 and then c>0 and c'= 0 (and they are both bounded). Further, from (A. 2.37), 

(A. 2.38) and (A. 2.39), 

rj. 
CNI-2 - C"Yn-2 

Tj-1 
(A. 2.42) 

So from (A. 2.37), (A. 2.38), (A. 2.40), (A. 2.41) and (A. 2.42) constraints (A. 2.14), 

(A. 2.15), (A. 2.16) and (A. 2.17) are satisfied and so rj. 1, as defined above, is a feasible 

solution. 

From (A. 2.13), (A. 2.17), (A. 2.37), (A. 2.38) and (A. 2.39) 

n-3 
c'((j-n+I)Yn-2 + 2E 

I(r ti --l - 
k=l7k) 

= j-1, j-1) 2 j-2 j-2 

and so we have defined a feasible solution rj. 1 with zero objective and so ry. 1 is an 
optimum solution. 

(Note that (A. 2.34) is not required, but (A. 2.35) implies (A. 2.34)). 

Corollary A. 2.4 

If L(l, tj. 1) >0 then there are at least n(j)+1 optimum solutions with zero 
objective and at most one non-zero second difference where 

i 

n(j) 
if j is even 

if j is odd 
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Proof 

From the proof of Theorem A. 2.1 there will always be at least n(j) optimum 
solutions (by choosing n=3,4, ... ' up toj+4 ifj is even, or up to 

ý+-3 if j is odd). From 22 
j-3 

the proofs of theorem A. 2.2, if 4Z A> (j-4)Yj-2 then there is an additional optimum k=I 
j-3 

solution. From the proof of theorem A. 2.3, if 4E yk ýý (j-4)Y, 
-2 then there will are an k=I 

additional n(j) optimum solutions. 

Theorem A. 2.5 

h The HPP vector of rates, rjýj, is always feasible. 

Proof 

h 
From (A. 2.10), since rk = rj_I for all k=1, 

..., 
j-1, trivially constraints (A. 2.15) 

h j: 1 
and (A. 2.16) are satisfied and since rj-1 

Tp 
constraints (A. 2.14) and (A. 2.17) are also 

h 
satisfied. Thus, rj. 1 is always a feasible solution given any vector of inter-failure times, 

tj-1. 

Theorem A. 2.6 

h If L(l, tj. 1) >0 then the HPP vector of rates, rj. 1, is feasible, but not optimal. 

Proof 

Let L(l, tj. 1) >0 (A. 2.43) 

h From Theorem A. 2.5 rpl , is trivially feasible. Further from (A. 2.10), (A. 2.12), 

(A. 2.13) and (A. 2.43) 

h 
't V. 1) = rj. I> (A. 2.44) 

From (A. 2.43) and Theorem A. 2.1 there exists a feasible optimal solution, rj. 1, 
such that L(rpl, tj. 1) =0 and Ark = -c < 0, for all ke [2, ..., n-11 and Ark =0 for all ke 

h [n, ..., j-1] and so rj. 1 - rj. 1 and from (A. 2.13) and (A. 2.44) 
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h 
rj. (r 

h 
and so rj. 1 is feasible, but not optimal. 

Theorem A. 2.7 

h If L(l, tj. 1) :! ý 0 then the HPP vector of rates, rj. 1, is feasible and optimal and 
h. 

additionally if tk #0 for all k=1, ..., j-1, then rjýj is uniquely optimal. 

Proof 

Let L(l, tj. 1) :! ý 0 (A. 2.45) 

h From Theorem A. 2.5 rj. 1 is trivially feasible. Further, from (A. 2.10), (A. 2.12), 

(A. 2.13) and (A. 2.45) 

rj. 
-rj-l Tj- I 

(A. 2.46) 

h Let rj. 1 = (rl, 
..., rj-l) be another feasible solution (distinct from rj. 1). Then, 

from (A. 2.15) 

rk - rk-1 =-- -ck Ck 2 0, k=2, ..., j-1 .... (A. 2.47) 

h 
and from (A. 2.17) since rj. 1 is distinct from rj. 1, ck >0 for at least one kE [2, 

..., j-1j. 

Then from (A. 2.17) and (A. 2.47) 

j-2 
f(cs+ITS) + rj 

rk S--] k=1, 
.... (A. 2.48) 

Tj-1 

From (A. 2.12), (A. 2.13), (A. 2.17) and (A. 2.48) 

j-2 J, 2 j-1 
E (cs+], rs) - rj-l E 

Csýj-k-])tk 
(j-l)L(l, tj. 1) + j-2 

s=k+l 

Tj- 
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j-2 j-1 
111 

l«s-k)( 
Cp 

ýs 
tk 

k--1(S=k+ 

_ 
j-2 

D=k+I 

Tj-i 

J-2 J-1 .1 
Z( E, 

((s-k)(,. 
E- cp A 

(j-])L(l, tj-l) - 
k--l S=k+ 

j-2 
, =k+l 

.... (A. 2.49) 
Tp 

from (A. 2.45) and (A. 2.47). So, from (A. 2.46) and (A. 2.49) 

j-2 J-1 j-1 
E( 

s 
E, 

((s-k)L 
E 

Cpýstk)) k-I =k+ =k+ 
U-2)-rj-l 

'ýý Ih and so from (A. 1.47) (since ck 2! 0 for all k=2, ... ' j-1) l(rjl, tj. 1) (rj. l, tj. 1) for all 
h 

other feasible solutions rj. 1 and so rj. 1 is optimal. Further, provided tk 00 for all k=1, 
j-1, then (since ck 2! 0 for all k=2, 

... ' j-1 and Ck >0 for at least one ke 12, 
... ' j- 

ý. 't 
I(r h >Ih (rj.,, tj. 1) for all other feasible solutions rj. 1 and so rj., is uniquelu y 

optimal. 

A. 3 Extension to OTL Model 

To summarise let 

j-1 j-2 k 
Z aktk E Easts 

L(amj. l, tmj. 1) k=m k=m s=m m j-2 ...... (A. 3.1) 2 j-M-1 

where tmj. 1 = (tm, tj-l) and amj. 1 = (am, 
... ' aj. 1). Then it is easy to prove that 

L(amj. l, tmj. 1) = 
(2k-m-j+1)aktk 

2(j-m-1) j-2 ...... (A. 3.2) 

Let 

j-1 if L(Im, j. l, tm, j. 1) > Ofor all m=I... j-1 
n= 

Min[m c [I 
... j-2j; L(Imj-l, tmj. 1) -: 5 0] otherwise 

(A. 3.3) 
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noting that, if we define L(Ij. jj. j, tj. jj. j) = 
91-1 then this will always be positive for 21 

positive tj. 1. Then, let 

L(rmj. l, tmj. 1) =0 for all m 1, ..., n-I ...... (A. 3.4) 

and rk = r, say, for all k n, ..., i-I ...... (A. 3.5) 

The objective of this is to constrain the [rktk; k=m, ... ' j-11 to be trend free over all 
consecutive vectors of the data, tmj. 1, which exhibit growth (m = 1, ... ' n-1), while 
letting the rates be equal over the largest vector of data, t"j. 1, which does not exhibit 

growth. 

Since, from (A. 3.4) and (A. 3.5) we have n variables and n-I equations, in order 
to get a unique solution we must apply a scaling constraint, so let 

j-1 j-1 
Edkrktk 

ý Edk 
...... (A. 3.6) 

k--l k--l 

From (A. 3.2), (A. 3.4), (A. 3.5) and (A. 3.6) the problem can then be formulated 

in matrices as follows 

Q d' I 
r= 

(6) 
0 

jI 

(rl r2 r3 ... rn-I r), d=Y dk and whered'= 
(ditl 

d2t2 d3t3 *** dn-Itn-I Edktk r k-- I k--n 

Al = 

(2-j)tl (4-j)t2 ... (2n-2-j)tn-l 
j-1 
kjý(2k-iftk j-1 

0 (3-j)t2 ... (2n-3-j)tn. 1 kjý(2k-j-1A 

0 0 ... (n-j+2)tn-l k; 
ý(2k-n-j+4)tk 

0 0 ... (n-j+l)tn. l 
j-1 
kjý(2k-n-j+3)tk 

0 0 ... (n-j)tn-l 
j-1 
kjý(2k-n-j+2)tk 

By simple row manipulations Al can be reduced to the following 

A00 
j-1 

A2 = 
0' (n-i-I)tn-2 tn-I Z tk On 

of 
j-1 

0 (n-j)tn-l Z (2k-n-j+2)tk 
On 
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where A is the following (n-3) by (n-2) matrix 

tj 42 0 0 0 
0 t2 43 0 0 
0 0 t3 ... 0 0 

0 0 0 -tn-3 0 
0 0 0 tn-3 -tn-2 

and we have that 

Mr 

= ('o) 
where 

d' 

0 

A A2) 0' (n-i-1)tn-2 tn-1 
(1 t 

0t0 (n-j)tn-1 

It can easily be proved that 

0 

j-1 ; tk k 

j-1 
kjý(2k-n-j+2)tk 

(A. 3.7) 

n] j] n-2 
det(M)= WY((2(k-n+I)Zdl+(j-n+l)((2k-n-j+2)d,, 

-I-(n-j)dk)ýk)I ... (A. 3.8) 
I C--] 

A--n 1=1 

It can be derived from (A. 3.7) (or checked by substitution into the initial equations) that a 
solution to the problem is 

I 
rm T- rit] m 

i'l 
U-n+l) Z (2k-n-j+2)tk 

rn-I 

(k 

rit] i 
2tn-l(k4(k-n+])tk) 

for m=],..., n-2 

U-n)(j-n+]) 
fit] J-1 

2(, j4(k-n+])tk) 

(A. 3.9) 

for n=2,.. j-1. For prediction purposes we will be using the rate, r, in (A. 3.9). It can 
be seen that this is made up of the reciprocal of a weighted average of the largest vector 
(moving from the last inter-failure time backwards) of inter-failure times that exhibits no 
growth, with more weight given to most recent inter-failure times. 
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Note that for n= j-1 (A. 3.9) simplifies to 

I 
rm = tm rit] form =1 i-I (A. 3.10) 

In the special case of n=I the assumption that rl = r2 = ... = rj-1 = r, say, gives 
I 

rm = j7, rltl tj form =I.... j-1 (A. 3.11) 

It can be seen from (A. 3.9), (A. 3.10) and (A. 3.11) that the "shape" of the rates (i. e., 
their relative ratio) is dictated entirely by the constraints of equal rates over the largest 

vector exhibiting no growth together with setting the appropriate Laplace statistics to zero 
(if applicable). In other words the impact of constraint (A. 3.6) is truly only for scaling 
purposes. 

If we apply the same scaling constraint as in the OYY model (from (5.2.3), that is 
dk =I for all k=I.... j-1) we obtain, from (A. 3.6), (A. 3.9), (A. 3.10) and (A. 3.11), the 
following solution, 

for n=2 j-1, 

I 
rm =. tm 

for m 

J-1 
U-n+]) (2k-n-j+2)tk tf 

Kk--n 

rn-I 

2t, 
-1(1(k-n+l)tk) 

(j-n)(j-n+]) 

2(, 4(k-n+])tk) 

and for n= j-1 (A. 3.12) simplifies to 

rM =I form .... j-1 tM 

(A. 3.12) 

(A. 3.13) 

and for n=1, from (A. 3.6), we have the HPP solution, 

rm = Ih = 
i-I 

j-rI 
1, tk 

k--I 

Additionally, from (A. 3.8) we have 

form = (A. 3.14) 

nn 
det(M) = 2(j-l)(4ýý ktk+n-1) 
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which is non-zero providing we exclude the possibility of zero inter-failure times. This 
implies that the solution given in (A. 3.12) to (A. 3.14) is unique. 

Comparison of (A. 3.12) and (A. 3.14) shows that, while n=2.... j-1 gives the equal rate 
solution to be a weighted average of the largest vector which exhibits no growth, when n 
=1 we get a non-weighted average. Since choice of the dk is somewhat arbitrary it might 
be better to seek dk for which the solution for n=I has similar weighting as the solution 
forn 2 .... j-1 (specifically if we substitute n=1 in (A. 3.12) we wish to obtain solution 
for n 1). Since the solution for n=1 is given by (A. 3.6) it is easy to see that if we 
choose dk = (k-n+l) we will get the desired solution. In fact this gives the solution 
identical to when dk =I except that for n=1, 

rM 
l(p) form .... (A. 3.16) i-I 
Z 2ktk 

k--l 

AdditionallY, from (A. 3.8), we now have 

nn 
det(M) Jj-l)U-2n+2)%ry Y ktk+n-I)l .... (A. 3.17) 

Ak--l 

which shows that with this new choice of dk, we are not guaranteed a unique solution 
j+2 

when n -Y . For this reason, the model is applied with dk = 1, for k=1,... j-1, since 

we are then guaranteed a unique solution provided the inter-failure times are non-zero. 
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