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ABSTRACT 

This paper investigates the behaviour of spot prices in eight energy markets that trade futures 

contracts on NYMEX. We consider two types of models, a mean reverting model, and a spike 

model with mean reversion that incorporates two different speeds of mean reversion; one for 

the fast mean-reverting behaviour of prices after a jump occurs, and another for the slower 

mean reversion rate of the diffusive part of the model. We also extend these models to 

incorporate time-varying volatility in their specification, modelled as a GARCH and an 

EGARCH process. We compare the relative goodness of fit of the different modelling 

variations both in sample, using Monte Carlo simulations, as well as out-of-sample, in a 

Value-at-Risk (VaR) setting. Our results indicate the presence of a “leverage effect” for WTI, 

Heating Oil and Heating Oil - WTI crack spread, whereas for the remaining energy markets 

we find the presence of an “inverse leverage” effect. Also, the addition of the EGARCH 

specification for the volatility process improves both the in-sample fit as well as the out-of-

sample VaR performance for most energy markets that we examine.  
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1. Introduction  

Over the past decade significant changes have taken place in the world’s energy markets. 

Changing economic patterns, globalization, international politics, war, technological advances 

and structural changes within the world’s energy industry, have resulted in a volatile market 

environment which also increased the need of market participants for risk management using 

derivative contracts such as futures and options. In this volatile market environment, it is 

important for market participants to use risk management models that can capture the most 

significant risks in the market. However, due to the unique features of energy markets, the 

traditional approaches for modeling prices that are used in financial markets are not 

applicable. For instance, energy prices exhibit extreme movements and volatility over short 

periods of time and may also be characterized by spikes which occur due to short-term supply 

or demand shocks. In addition, energy prices have the tendency to mean-revert to a long-run 

equilibrium level. Given these stylized facts, the assumption used in the Black-Scholes-

Merton model (Black and Scholes, 1973; and Merton, 1973) that the underlying asset follows 

a log-normal random walk may not be appropriate.  

 

The mean-reverting process has been considered by many academics and practitioners as the 

natural choice for commodities. The reason is that, according to microeconomic theory, in the 

long run a commodity’s price should be tied to its long-run marginal production cost; that is it 

tends to revert back to a “normal” long-term equilibrium level. There is a wealth of papers in 

the literature that confirm mean reversion in spot oil prices based on strong empirical 

evidence, such as Gibson and Schwartz (1990), Brennan (1991), Cortazar and Schwartz 

(1994) and Schwartz (1997). Evidence of mean reversion for energy and agricultural 

commodities comes also from the futures markets, e.g. Bessembinder et al (1995), Baker et al 

(1998), and Pindyck (1999). In addition, the analysis of volatility of asset prices is a research 

area that has been widely examined over the years by numerous studies, unveiling a number 

of stylized facts. According to Engle and Patton (2001), a good volatility model should be 

able to capture the most important stylized facts of an asset’s volatility, which are mean 

reversion, volatility clustering, and persistence, the latter measured by calculating the 

volatility’s half-life. Intuitively, we would expect to find that the innovations of the log-price 

series for all energy markets exhibit volatility clustering, and also that they have an 

asymmetric impact on the price volatility, with this asymmetry attributed to a leverage or risk 

premium effect.  
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In their study, Baumeister and Peersman (2008), when examining crude oil prices found that 

positive shocks, due to shifts in global demand, have greater impact on price volatility 

compared to negative shocks, which can be attributed to supply disruptions. This observation 

is consistent with the presence of an “inverse leverage” effect (Geman, 2005), which is also 

evident in the natural gas prices examined by Kanamura (2009), and in hourly electricity 

prices from Northern California examined by Knittel and Roberts (2005) using an EGARCH 

(1,1) model. Eydeland and Wolyniec (2003) in their study on a number of energy markets, 

also conclude that an “inverse leverage” effect should be expected. Hence, in the case of the 

energy markets we examine, it is expected that positive price shocks will have a greater 

impact on volatility than negative ones. Identifying any asymmetric tendencies in the 

volatility of the energy markets under investigation, using the EGARCH specification, can 

result in more efficient risk management applications by market practitioners and may also 

enhance the accuracy of various widely used risk management techniques, such as Value-at-

Risk (VaR). Since volatility is an unobservable market variable, it is important to get the most 

accurate estimate in order to optimize our risk management models and eventually determine 

the best possible hedging strategies.  

 

Considering the above, the motivation for this research mainly stems from the existing 

controversies in the empirical literature, as to which modeling approach is best for describing 

the behaviour of energy spot prices and capturing their risk characteristics. As a sound 

understanding of the stochastic dynamics of energy prices is a prerequisite for making an 

investment into energy commodities, we carry out a thorough empirical analysis by 

examining the performance, in terms of explanatory power and goodness of fit, of models that 

incorporate mean-reversion and spikes in the stochastic behaviour of the underlying asset. We 

consider two types of models: a mean reverting model, where prices have the tendency to 

revert to their long-run mean, and a spike model that incorporates two different speeds of 

mean reversion to capture the fast mean-reverting behaviour of returns after a jump occurs 

and the slower mean reversion rate of the diffusive part of the model. The different mean 

reversion rate is applied for a period of time equal to the half-life of jump returns for each 

energy market respectively. We also extend these models to incorporate time-varying 

volatility in their specification, modelled as a GARCH and an EGARCH process.   
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This paper contributes to the existing literature on modeling energy prices (see among others, 

Dixit and Pindyck, 1994; Schwartz, 1997; Clewlow and Strickland, 2000; Lucia and 

Schwartz, 2002; Cartea and Figueroa, 2005; Geman and Roncoroni, 2006; Cartea and 

Villaplana, 2008, Askari and Krichene, 2008) by expanding the choice of available models 

and the number of energy markets that these models are applied on. We use spot prices of the 

eight most traded energy futures contracts on NYMEX, covering the crude oil and all its by-

product fuel markets, the soaring - due to their increased environmental importance - natural 

gas and propane markets, and one of the most liquid electricity markets. The performance of 

each model is assessed on the basis of how well it can capture the trajectorial and 

distributional properties of the real market process. In order to compare the aforementioned 

processes and identify which one describes the data best, we run Monte Carlo simulations to 

replicate the price paths, and then test the goodness of fit of the models using a variety of both 

quantitative and qualitative tests. In addition, the proposed models are evaluated out-of-

sample in terms of their Value-at-Risk performance, using a two stage evaluation process. 

Moreover, we contribute in the existing literature by providing detailed information on the 

jump detection process, formally testing for any clustering and seasonality effects in the 

occurrence of jumps for all eight energy markets. This way, we provide a better understanding 

of how energy markets behave, what is the best modelling approach for each individual spot 

market and, consequently, the best model for the pricing of the relevant futures and options 

contracts. Identifying the correct dynamics for the energy prices is of great relevance for 

hedging, forecasting, and policy making in the energy markets. A further contribution in the 

literature is that we empirically test which model can sufficiently capture and describe the 

dynamics of the two 1-1 crack spreads of crude oil with fuel oil and gasoline that trade futures 

contracts on NYMEX. From the perspective of a petroleum refiner who operates between the 

crude oil and the refined products markets, modelling accurately the dynamic behaviour of the 

two crack spreads and their constituents is of utmost importance, since unexpected changes in 

the prices of the crude oil or the refined products can significantly narrow the spread and put 

refiners at enormous risk.  

 

The structure of this paper is as follows. The next section presents the methodology used for 

modelling the spot energy markets under investigation and estimating the parameters for 

calibrating the models to real market prices. In section 3, the data and their properties are 

described. Section 4 offers empirical results, while section 5 evaluates the performance of 
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each model in terms of matching the actual spot price behaviour. Section 6 presents the 

performance of the models in a VaR setting and finally, section 7 concludes this study. 

  

2. Mean-Reverting Jump Diffusion GARCH/EGARCH Model 

As already established, mean reversion is a main feature of energy commodities’ event 

behaviour. In addition, energy prices often exhibit unexpected and discontinuous changes, so 

it is more appropriate to combine mean reversion and jump diffusion into the same model. 

The inclusion of spikes in the model is also justified by the existence of fat tails in the daily 

energy prices which suggests that the probability of rare events is much higher than the one 

implied by a Gaussian distribution; see for instance Cartea and Figueroa (2005) for a 

discussion on this in the UK power markets. According to the empirical findings presented in 

the literature, the presence of both excess skewness and kurtosis in all energy price returns 

suggests that a jump-diffusion model is more appropriate for both derivatives valuation (e.g. 

options pricing) and risk management purposes (e.g. VaR applications). Askari and Krichene 

(2008) point out that when jumps are added to oil price returns in a diffusion-based stochastic 

volatility model, sufficient variability and asymmetry in the short-term returns can be 

generated to match the skewness of implied volatility from short-term options. In their model, 

Clewlow and Strickland (2000) use the same speed of mean reversion for both spikes and 

normal shocks, inducing some persistence in the jumps especially when the mean-reverting 

coefficient is small. However, because the spikes represent a transitory phenomenon, after a 

jump has occurred prices do not stay at the high level to which they jump but tend to revert to 

their long-run mean. Consequently, when modelling energy prices it is also important to 

account for the fact that the decay rate of the jumps can be much faster than the decay rate of 

the diffusive component. We incorporate this feature in our model by using two different 

speeds of mean reversion, a fast one after a spike has occurred and a slower for the normal 

(diffusive) shocks.  

 

Another issue that needs to be addressed in our modelling methodology is the behaviour of 

volatility, which exhibits high values and clustering. Cartea and Villaplana (2008) in all three 

electricity markets they examine find that prices follow a strong seasonal component and thus 

a model with seasonal or time-varying volatility is preferable than one with constant 

volatility. Thus, in accordance with the empirical evidence from various studies related to the 

energy markets, we use constant, as well as GARCH (Bollerslev, 1986) and EGARCH 
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(Nelson, 1991) specifications for the variance. Our mean-reversion jump diffusion model that 

incorporates the observed stylised facts of energy prices and their volatility is based on 

Schwartz’s (1997) one-factor model. The model is extended to allow for a deterministic 

seasonality as in Lucia and Schwartz (2002) and Cartea and Figueroa (2005). We assume that 

log-prices can be expressed as the sum of a predictable and a stochastic component as 

follows: 

 ln t tS g t Y                                                                                                                          (1) 

with the spot price represented as: 

 

  tY

tS G t e                                                                                                                              (2) 

where    g t
G t e  is the predictable component of the spot price St that takes into account the 

deterministic regularities in the evolution of prices, namely seasonality and trend. Also, tY  is a 

stochastic process whose dynamics are given by the following equation: 

 t i t t t tdY a Y dt dZ kdq                                                                                                  (3) 

 

where ia  is the mean reversion rate, μ is the long-term average value of ln tS in the absence of 

jumps, t  is the volatility of the series, tdZ is a Wiener process, k is the proportional jump 

size and tdq is a Poisson process. It is assumed that the Wiener and the Poisson processes are 

independent and thus not correlated, which further implies that the jump process is 

independent of the mean-reverting process. 

 

Using equations 1 and 3, we follow Dixit and Pindyck (1994) and after applying Ito’s Lemma 

our model can be discretised in the following logarithmic form: 
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where ln S is the long-run mean (μ),  is the average number of jumps per day (daily jump 

frequency), J is the mean jump size, σJ is the jump volatility, 1 and 2  are two independent 

standard normal random variables, and u is a uniform [0, 1] random variable. The term 

 tu t
 is an indicator function which takes the value of 1 if the condition is true, and 0 

otherwise. This condition leads to the generation of random direction jumps at the correct 

average frequency. When the randomly generated number is below or equal to the historical 

average jump frequency, the model simulates a jump with a random direction; no jump is 

generated when the number is above that frequency. When a jump occurs its size is the mean 

size of the historical jump returns plus a normally distributed random amount with standard 

deviation σJ. Notice as well that our modelling approach allows for the possibility of both, 

positive and negative jumps to occur1. 

 

In addition, our model takes into account the fact that most energy prices exhibit a seasonal 

behaviour that follows an annual cycle. Various methods have been used in the literature for 

the deterministic seasonal component, from a simple sinusoidal (Pilipovic, 1998) or a constant 

piece-wise function (Pindyck, 1999; Knittel and Roberts, 2005), to a hybrid of both functions 

(Lucia and Schwartz, 2002; Bierbrauer et al., 2007). We account for this periodic behaviour 

                                                 
1 Merton (1976) in his original jump diffusion model assumes that the jump size distribution is lognormal, and so 

jumps can occur in only one direction (positive jumps). 
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by fitting a sinusoidal function with a linear trend to the actual prices, as described by tg . The 

estimation is done using Maximum Likelihood (ML), with the sine term capturing the main 

annual cycle, and the time trend capturing the long-run growth in prices2. Moreover, we 

incorporate in our model the possibility for the returns to have a different mean reversion rate 

after a jump occurs. This approach is in line with Nomikos and Soldatos (2008) who use two 

different coefficients of mean reversion, one for the normal small shocks and another, larger, 

for the spikes to capture the fast decay rate of jumps observed in the energy markets. Geman 

and Roncoroni (2006) also analyse the existence of different speeds of mean reversion in the 

context of mean-reverting jump-diffusion models for three major US power markets, by 

introducing a class of discontinuous processes exhibiting a “jump-reversion” component to 

represent the sharp upward moves that are shortly followed by drops of the same magnitude. 

Our approach is flexible enough to accommodate the fact that the abnormal events that cause 

the jumps have different effect in each market and hence, prices tend to remain at the level to 

which they jump for a longer or shorter period of time, depending on the energy market under 

investigation. Therefore, prices following a jump are adjusted by using in equation (4) a 

different mean reversion rate, noted as JDa , for a period of time equal to the half-life of jump 

returns for each energy market; when another jump occurs within the duration of the half-life 

period used, then JDa  is used again for the same number of days, counting from the day 

following the last jump (see equation 4.1). If no other jump occurs within that period, then a2 

is used until a new jump occurs. Incorporating the half-life measure in this way, allows for the 

model to better reflect the duration of both short- and long-term shocks of different 

magnitudes, exhibited in energy prices. This results in a more flexible framework, compared 

to the model proposed by Nomikos and Soldatos (2008) which fits best mainly the highly 

volatile electricity markets, as the speed of mean reversion estimated after a spike shock is 

significantly higher than the normal mean reversion rate. In addition, the model we propose 

incorporates in its specification GARCH and EGARCH volatility, to account for volatility 

clustering and any asymmetries that are usually observed in energy prices. 

 

Regarding the mean-reverting part of equation 4, we use an exact discretization for the 

simulations since the presence of jumps complicates the use of a large t . This is because the 

                                                 
2 We follow the approach used in Pilipovic (1998) to calculate the seasonal component in the data, because this 

method is more flexible than using dummy variables. According to Lucia and Schwartz (2002) the use of 

dummy variables does not provide a smooth function for the seasonal component observed in the data, which 

can cause discontinuities when pricing forward and futures contracts.  
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drift of the mean-reverting process is a function of the current value of a random variable and 

in order to simulate the jumps correctly the time step t must be small relative to the jump 

frequency. Because we want to model rare large jumps, if the time interval t  is sufficiently 

small, the probability of two jumps occurring is negligible   2
t t   . That makes it valid to 

assume that there can be only one jump for each time interval; in our case one every day since

t is equal to one day. Especially when t  is increased to one week or one month, as it is 

usually the case with real option applications that involve pricing medium- and long-term 

options, it is more important to use an exact discretization for the simulation process, because 

the overall error from the first-order Euler and the Milstein approximations will be much 

higher 3. The random number generation of the Monte Carlo (MC) simulations already 

introduces an error in our results, therefore using these approximations that need a very small

t and thus also introduce a discretization error, would lead to higher computational cost into 

the simulations. 

 

As for the two time-varying volatility model specifications of equation 4.2, in the case of the 

GARCH process, 2

1t 
 represents the previous periods’ return innovations and 2

1t 
 is the last 

period’s forecast variance (GARCH term). As for the EGARCH process, 0 denotes the mean 

of the volatility equation. The coefficients 1 and 2 measure the response of conditional 

volatility to the magnitude and the sign of the lagged standardised return innovations, 

respectively; as such, these coefficients measure the asymmetric response of the conditional 

variance to the lagged return innovations. When
2 0  , there is no asymmetric effect of the 

past shocks on the current variance, while when 2 0   asymmetric effects are present in 

response to a shock; for instance, 
2 0   indicates the presence of an “inverse leverage” effect. 

Finally, 3  measures the degree of volatility persistence. Knittel and Roberts (2005) suggest 

that a positive shock in electricity prices represents an unexpected demand shock which has a 

greater impact on prices relative to a negative shock of the same size, as a result of convex 

marginal costs and the competitive nature of the market. Moreover, Kanamura (2009) 

suggests that this inverse leverage effect, i.e. positive correlation between prices and 

volatility, is a phenomenon often observed in energy markets, whereas evidence from the 

                                                 
3 Clewlow & Strickland (2000) use the first-order Euler’s approximation in order to get the discrete time version 

of the Arithmetic Ornstein-Uhlenbeck:
1 1( )t t t tx x a x x t t            where the discretization is only correct in 

the limit of the time step tends to zero.  
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stock markets suggests that the opposite relationship exists between volatility and prices, 

namely the “leverage” effect4. Hence, intuitively we expect the asymmetry parameter to be 

positive and significant for most energy markets, implying that positive shocks have greater 

effect on the variance of the log-returns compared to negative shocks, consistent with the 

presence of an “inverse leverage” effect.  

 

Finally, the different models used for modelling the spot prices of the energy markets are 

summarized in Table 1; “GBM” stands for Geometric Brownian Motion; “MR” for Mean 

Reversion; “MRJD” for Mean Reversion Jump Diffusion; “OLS” for Ordinary Least Squares 

(constant volatility). 

  

3. Description and Properties of the Data  

Before discussing the estimation results for our various modeling specifications, let us look at 

the data to verify whether the stylized facts that we aim at reproducing are indeed present. We 

investigate the behaviour of the spot prices of eight of the most important energy markets that 

trade futures contracts on NYMEX, each one of them having its unique impact on the 

worldwide marketed energy supply and demand. We collect spot daily prices from Thomson 

DataStream, which are the official closing prices of the 1st nearby futures contract issued by 

the NYMEX, for the period 12/09/2000 to 01/02/2010 for the following contracts: 

1. Heating Oil, New York Harbour No.2 Fuel Oil, quoted in US Dollar Cents/Gallon (US 

C/Gal); hereafter named as “HO”;  

2. Crude Oil, West Texas Intermediate (WTI) Spot Cushing, quoted in US Dollars/Barrel 

(US$/BBL); hereafter named as “WTI”; 

3. Gasoline, New York Harbour Reformulated Blend stock for Oxygen Blending 

(RBOB), quoted in US C/Gal; hereafter named as “Gasoline”; 

4. 1-1 Crack Spread of Gasoline with WTI, quoted in US $/BBL; hereafter named as 

“CS_Gasoline_WTI”5; 

                                                 
4 The “leverage effect” terminology is first used by Black (1976) who suggests that negative shocks on stock 

prices increase volatility more than positive ones. The intuition behind it is that a lower stock price reduces the 

value of equity relative to debt, thereby increasing the leverage of the firm and thus making it a more risky 

investment.  
5 The spot series of the two 1-1 crack spreads with the WTI have been constructed after converting the Fuel Oil 

and Gasoline spot prices that are quoted in US C/gallon into US $/Barrel, taking into account that there are 42 

gallons in one barrel and 100 cents per dollar. Then, the two series are rebased to 100 so they can later be 

transformed to logarithmic prices and apply our modelling methodology.   
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5. 1-1 Crack Spread of Fuel Oil with WTI, quoted in US $/BBL; hereafter named as 

“CS_HO_WTI”; 

6. Natural Gas, Henry Hub, quoted in US Dollars/Million British Thermal Units 

(US$/MMBTU); hereafter named as “NG”; 

7. Propane, Mont Belvieu Texas, quoted in US C/Gal; hereafter named as “Propane”; 

8. PJM, Interconnection Electricity Firm On Peak Price Index, quoted in US 

Dollars/Megawatt hour (US $/Mwh); hereafter named as “PJM”. 

 

Form the total sample, the period 12/09/2000 to 12/09/2007, consisting of 1,827 observations, 

is used as the in-sample period, whereas the period 13/09/2007 to 1/02/2010, consisting of 

623 observations, is used as the out-of-sample testing period. The remaining analysis on the 

properties and descriptive statistics of the data relates only to the in-sample period while the 

VaR performance is assessed in the out-of-sample period. Figure 1 shows the time series of 

the spot log-prices and their first differences. We see that all energy markets are very volatile 

and some of them, such as the PJM, Heating Oil crack spread, Natural Gas and the Propane 

markets, seem to exhibit more distinctive jumps in their price behaviour. Moreover, the 

graphs indicate a distinct upward trend, which is more obvious for the WTI, Gasoline, and 

Heating oil markets, reflecting the continuous rally in commodity prices during the second 

part of our sample. A rigid supply, in combination with an expanding global demand for 

crude oil and its by-products resulted in big demand-supply imbalances, which in turn led to 

the great variability observed in energy prices. Finally, when looking at the spot log-price 

differences we see that most of the series vary with time and also form clusters, which 

indicate the presence of time-varying volatility.  

 

Descriptive statistics are estimated for the natural logarithm of the spot prices and reported in 

Table 2 for both the spot price series in logarithmic levels (Panel A) and their first differences 

(Panel B). As can be seen in panel B, the annualized volatility (as measured by the standard 

deviation of log-returns) of most energy markets ranges from 13% for the Heating Oil – WTI 

crack spread to 240% for PJM, which is significantly larger than the typical volatility 

observed in financial markets. Overall, the two crack spreads have lower volatility than the 

outright series due to the high correlation between the prices of their constituent contracts. 

Looking at panel A of Table 2, is observed that for all energy markets, with the exception of 

NG and Propane, the skewness is positive, indicating that extreme high values are more 

probable than low ones. Turning next to the log-price changes, the results regarding the 
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coefficients of skewness are mixed, with all three fuel markets and the crack spread of WTI 

with Gasoline being negatively skewed, whereas the rest of the energy markets are positively 

skewed (see panel B, Table 2). Also, the coefficient of kurtosis, which gives an indication of 

the probability of extreme values, is above three for all energy markets, implying that log-

returns are leptokurtic; this suggests that the probability of extremely high or low returns is 

much higher than that assumed by the normal distribution. This effect is more obvious for the 

NG, Propane, PJM and the two crack spreads in which case the high value of the coefficient 

of kurtosis (between 10.67 and 45.15) is indicative of spikes in the price series. 

 

As a result, the assumption of normality is overwhelmingly rejected for all the energy 

markets, on the basis of the Jarque-Bera (1980) test which is significant at the 1% level. It is 

obvious that non-normality occurs mostly due to the large price movements and spikes in all 

energy markets that eventually lead to fat tails. Moreover, looking at panel A in Table 2, we 

see that the average logarithmic price for most energy markets is reduced when the filtered 

series is examined (i.e. when jumps are excluded) indicating that jumps have, on average, a 

positive impact on log-prices 6. The only exceptions are the WTI and Gasoline markets where 

jumps have a negative impact on log-prices. In panel B we also report the Ljung-Box (1978) 

Q(k)-statistic and Engle’s (1982) ARCH test (Q2(k)-statistic), where we test the significance 

of autocorrelation in the returns and squared returns for lags one and 20, respectively. From 

the reported values there is evidence of serial correlation for most of the log-return series with 

the exception of WTI and Gasoline. In addition, based on Engle’s ARCH test we find 

significant serial correlation in the squared log-returns of all energy markets, which indicates 

the presence of time-varying volatility in the return series. 

 

Finally, in order to identify whether the series are mean reverting, a comparison procedure 

known as “confirmatory data analysis” is performed, where two tests for unit root non-

stationarity, the Augmented Dickey-Fuller (ADF; Dickey and Fuller, 1979) and the Philips-

Perron (PP; Phillips and Perron, 1988), and one test for stationarity, the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS; Kwiatkowski et. al, 1992), are employed. For the results to be 

robust, all three tests should give the same conclusion. From the results in panel A of Table 2 

we can infer that the price-levels of most energy markets are not stationary, a conclusion 

confirmed by all three tests; the only exceptions are the two crack-spreads and the PJM 

                                                 
6 A detailed discussion on how the filtered series is estimated is given in the following section.  
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markets where price levels appear to be stationary on the basis of the ADF and PP tests. On 

the other hand, in Panel B of Table 2 we can see that the first differences of the spot log-price 

series are strongly stationary for all energy markets, indicating the presence of mean reversion 

in the series. This conclusion, although it may not have been expected due to the presence of 

jumps in most of the energy series, can be justified by the fact that these jumps seem not to 

affect the stationarity of the series because they are short-lived and price levels eventually 

revert to their mean after a jump has occurred.  

 

4. Empirical findings  

The input parameters for the Monte Carlo simulations are estimated from the historical spot 

price series of the different commodities. We consider first the jump parameters. Estimating 

the jump parameters, especially for energy prices, can be quite complicated because usually 

there is no indication of the exact time the jump will occur, and thus jumps can only be 

observed as part of the historical spot time series. There are two widely used approaches for 

estimating the jump parameters, the first being the Recursive Filter (R-F) (Clewlow and 

Strickland, 2000; Clewlow et al 2000), and the second being the Maximum Likelihood (M-L) 

(Ball and Torous, 1983). Empirical analysis suggests that the R-F estimation method can be 

superior to the M-L method when it comes to estimating jump parameters in energy markets; 

this is because the former method can pick the lower frequency, higher volatility jump 

components, instead of the higher frequency, lower volatility jumps that are estimated better 

with the latter. According to Clewlow and Strickland (2000), a potentially undesirable 

property of the M-L method is that it tends to converge on the smallest and most frequent 

jump components of the actual data. As energy price return series exhibit jumps that range 

from very high frequency and low volatility to low frequency and high volatility, it is 

important to be able to efficiently capture the latter ones.     

 

Therefore, given that jumps in the energy markets are relatively infrequent but of large 

magnitude, the R-F method is more appropriate. Correct identification and measurement of 

jumps is very important. For instance, Nomikos and Soldatos (2008) point out the importance 

of spikes in electricity prices especially for market suppliers because, although their costs 

depend on the variable price for electricity, their revenues are mainly fixed; in fact, these rare 

spikes are the most important motive for hedging in the energy markets. In addition, these 

rare but large returns, significantly affect the value of medium- and long-term energy real 
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investments, as is the case for example when pricing an undeveloped oil field. In particular, 

according to Dias (2003), the two main sources of uncertainty in an oilfield development 

project are fluctuations in the oil prices (market uncertainty), and variations in the volume and 

quality of the reserves (technical uncertainty). A mean-reverting model with jumps can 

capture both the mean-reverting price evolution of the underlying resources, as well as the 

sudden changes in prices due to unexpected news in the market.  

 

The R-F algorithm is then implemented as follows: By assuming that jumps are relatively 

infrequent and that the diffusive volatility can be estimated based on the sample standard 

deviation of returns, we identify as jumps those “extreme” returns that are more than three 

standard deviations away from the mean, consistent with most studies in the literature. Now, 

given that we have identified some of the returns as jumps, we calculate a new estimate of the 

diffusive volatility by recalculating the sample standard deviation of returns, after filtering out 

those returns previously identified as jumps. During the filtering process, when a jump is 

identified, its respective log-price is being removed from the series and then replaced by the 

average of the previous and the next log-price. Then the new returns are calculated based on 

the filtered series. The new calculation gives us a lower estimate of the diffusive volatility 

and, based on that lower volatility, we repeat the same procedure in order to identify new 

jump returns. The process is repeated until the estimates converge and no further jumps can 

be identified. Finally, we calculate the jump parameters necessary for calibrating our models, 

on an annual basis, from the following relationships: 

 

 = Number of jump returns/ Time period of the data 

J = Average jump size of returns 

J = Standard deviation of jump returns 

 

Panel A of Table 3 presents the estimated jump parameters used in the MRJD models, as 

calculated by the Recursive Filter algorithm; these parameters include the jumps’ daily 

frequency (Φ), daily standard deviation (σJ) and average jump size ( J ). We observe that the 

average size of the jump returns is negative for the WTI, Gasoline, and PJM markets, whereas 

for the rest is positive. As for the daily jump frequencies, the highest frequency is observed 

for the crack spread of WTI with Gasoline, followed by the other volatile markets, i.e. the gas 

and electricity markets. Finally, in terms of the jumps’ volatility we see that the highest daily 
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standard deviation values are calculated for the Gasoline (10.78%), Natural Gas (16.14%) and 

PJM (51.94%) markets, which are also the markets with the highest unconditional volatilities 

as evidenced in Table 2.  

 

In addition, we test whether jumps arrive at random intervals, like the model predicts, or come 

in clusters, by comparing the arrival rate of daily jumps, as identified by the R-F 

methodology, to the arrival rate of a random series of jumps generated by a Poisson process 

with a frequency equal to the frequency of jump occurrence as reported in panel A of Table 3 

for each energy market. The Kolmogorov-Smirnov (K-S) test statistics for the null hypothesis 

that the two samples are from the same distribution are reported in Table 4, where we can 

clearly see that the null hypothesis cannot be rejected for any of the energy markets. This 

confirms that there is no clustering behaviour observed in the occurrence of jumps for all 

markets examined. Similarly, we also test whether there is a seasonality in the occurrence of 

jumps; for instance it may be the case that jumps in certain markets, such as natural gas, may 

be more frequent in the winter months than in the summer months. For that we regress the 

number of jumps in each quarter against quarterly dummies, for the seven year period 

examined, and for all energy markets. None of the energy markets is found to exhibit any 

seasonality during each of the four quarters.7.  

 

Finally, for comparison purposes, the jump parameters were also calculated using the 

Maximum Likelihood Estimation method, based on the methodology by Ball and Torous 

(1983) and Weron and Misiorek (2008). On average, the volatility of jumps identified by the 

M-L method is smaller, consistent with the intuition that the R-F method is able to capture the 

larger in size jumps; in addition, the average jump size detected by the M-L method is smaller 

than the average jump size detected with the R-F method and the frequency of jumps detected 

with the M-L method is larger than that estimated with the R-F method. These results are 

consistent with the tendency of the M-L method to converge on the smallest and most 

frequent jump components of the actual data. Since through our modeling procedure we want 

to capture the low frequency but high volatility jumps in energy markets we use the jumps 

identified through the R-F procedure in the ensuing analysis8.   

 

                                                 
7 Additionally, six-month jumps’ data, representing the cold and warm seasons, were also regressed against 

seasonal dummies, with the results confirming again that there is no seasonality effect in the occurrence of jumps 

for most of the energy markets.  
8 Results for these tests are available from the authors. 
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Turning next to the coefficients of mean reversion, these are estimated using a modified 

version of equation (3), following the methodology used by Dixit and Pindyck (1994): 

 

0 1 1 . ;     (0, )t t t t regresx a a x N                                                                                    (5) 

 

where lnt tx S . Because we want to estimate the diffusive risk of the model, the regression is 

applied to the filtered (i.e. without jumps) series when considering the MRJD models; the 

filtered series is the returns series that excludes all returns that have previously been identified 

as jumps. In the case of the simple MR models, the regression of equation 5 is applied to the 

un-filtered (i.e. with jumps) series. Then, for both cases, we calculate the estimates for a  and

  using the following equations: 

 

1̂ln(1 )a a                                                                                                                  (6) 

 
1

. 2

1

ˆ2ln(1 )

ˆ1 1
regres

a

a
 




 
                                                                                                   (7) 

 

The long-term mean (μ) is calculated from the un-filtered historical time series of each 

commodity for all models. In order to estimate the mean reversion rate used after a jump 

occurs, we estimate the following regression on the un-filtered series: 

 

0 1 1 2 1 3 . ;        (0, )t t t t t t t regresx a a x a x DUM a TIME N                                                              (8) 

 

where tDUM is a dummy variable that takes the value of one when a jump occurs and zero 

otherwise, irrespective of the jumps’ direction. We include a linear time trend in the 

regressions to allow for gradual shifts in the “normal” price (Pindyck, 1999)9. The trend 

coefficient is significant, albeit small in size, in all cases except for the two crack spreads. The 

presence of a trend in those series is also confirmed visually by looking at the graphs in 

Figure 1. Therefore, we use the de-trended series to estimate the different speeds of mean 

reversion and capture the real expected evolution of the log-price series. The mean reversion 

                                                 
9 We have also used in our regressions the quadratic trend model, which is another extrapolation model 

commonly used for commodities, however the regression coefficients of the additional term t2 were insignificant 

for all the energy markets considered in our study. 
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rate after a jump occurs is then calculated from the coefficients of equation (8) using the 

following formula: 

 

 1 2ln 1JDa a a                                                                                                                   (9) 

 

All estimates are annualized assuming 252 trading days per year. Finally, one important 

parameter of the mean reverting process is the half-life, defined as the time required for the 

log-price to go back half way to its long-run mean from its current level, subject to no other 

shocks occurring, and is estimated using the following equation: 
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Panel B of Table 3 presents the two mean reversion rates and the daily standard deviations 

used in the MR and MRJD models, for all energy markets. A general observation is that the 

estimated mean reversion rate for the returns following a jump is higher for all markets, 

compared to the diffusive mean reversion rate, which indicates that when a jump occurs 

prices tend to revert back to their long-term mean faster. The high speed of mean reversion for 

the spikes is one of the significant features of this model, which also improves the fit of the 

model to the observed prices in the market. In addition, the estimated mean reversion rate for 

the un-filtered series is higher when compared to that of the filtered series, suggesting that 

when spikes are extracted from the sample the coefficient of mean reversion decreases. The 

exception to that are the three fuel markets (WTI, Heating Oil and Gasoline) and Propane, 

where the daily mean reversion rate estimated for both the un-filtered and filtered series is 

similarly small for all three, in the range of 0.1% to 0.2%. This observation reflects the fact 

that for the seven year period examined, the fuel markets exhibit a distinctive upward trend, 

with a small tendency to revert to a long-term mean. However, when looking at the αJD values 

these are in the range of 0.8% for Propane (the smallest rate amongst the eight energy 

markets) to 2.1% for Gasoline, indicating that after a jump occurs prices do tend to revert 

faster to their long-term mean.  
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We also note that the highest speed of mean reversion for both the un-filtered and filtered 

series occurs for the PJM market, which is also the most volatile market with estimated daily 

volatility of 15.8% and 13.2%, respectively. When we compare the speed of mean reversion 

for the spikes amongst the eight energy markets, we see that PJM has the highest (11.5%), 

followed by the Heating Oil - WTI crack spread (4.1%). This means that following a positive 

(negative) jump, prices will be reduced (increased) by 11.5% and 4.1%, respectively each day 

in order to return to their long-term mean. However, when the impact of the spikes has died-

out, prices will revert to their mean at a much lower daily rate of 5.5% and 1.3%, respectively. 

This is consistent with the stylised fact of energy markets that, following a jump, prices 

quickly revert back to their long-run mean at a faster rate than when a normal shock occurs.  

 

The results for the calculated half-lives, in days, of the smooth and jumpy returns are also 

presented in panel B. The half-lives of the jumpy returns are calculated using equation 10 and 

represent the respective durations we are using in our MRJD models for the higher mean 

reversion rate (αJD) after a jump occurs. We can see that for all energy markets the half-lives 

of the jumpy returns are much shorter than the ones for the smooth returns; also, the smallest 

half-life duration for the jumpy returns is observed for the PJM market (6 days), followed by 

the crack spread of Heating Oil - WTI (17 days), reflecting the higher mean reversion rates 

observed in those markets. This is expected as the PJM is the most volatile market which 

experiences frequent and sudden positive and negative jumps, bringing smooth returns back 

to their long-term level faster, when compared to the other energy markets. The highest half-

life duration of jumps is that of Propane (87 days) followed by NG (72 days). For the fuel 

markets, the half-life of the jumpy returns for WTI, HO, GASOLINE and the Gasoline – WTI 

crack spread is 36, 67, 34 and 26 days, respectively. Finally, we also note that, as expected, 

when jumps are removed from the series the estimated volatility is reduced for all energy 

markets which means that spikes play a very significant role in terms of explaining the 

volatility in the market. 

 

Turning next to the volatility estimates, the coefficient estimates for the GARCH(1,1) and 

EGARCH(1,1) models, using equation 5 for the specification of mean, are presented in Table 

5. The regression is applied to both the un-filtered and filtered series, with the estimates used 

for the MR and MRJD models, respectively. Because results are qualitatively similar, only 

those estimated from the un-filtered series are reported in the table. All GARCH coefficients 

are significant at the 5% level, verifying the presence of time-varying volatility in all energy 
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markets. In addition, we observe that the sum of the coefficients 1  and 2  for the GARCH 

models is greater than the coefficient 3  of the EGARCH model, indicating that the volatility 

persistence in the latter case is reduced, which is consistent with the literature on volatility 

models. Looking at the estimates for the 2  coefficients of the EGARCH models, which 

measure the leverage effect, we can see that they are significant in all cases indicating the 

presence of asymmetries in the way past shocks affect the current volatility. For the WTI, 

Heating Oil and Heating Oil – WTI crack spread returns, the coefficient estimate 2 is 

negative at the five percent level, indicating the presence of a “leverage” effect; in other 

words negative shocks have greater impact on volatility than positive shocks. One possible 

explanation for this finding may be that price shocks for the aforementioned markets are more 

supply- than demand-driven, due to the fact that the market has been operating at the steep 

part of the supply stack in recent years. This phenomenon can be attributed to the very low 

spare capacity in world energy production, with small supply disruptions causing large price 

increases due to difficulties of rapid replacement of any production shortfalls. This is in 

contrast to what one expects to find in commodity markets as well as recent empirical 

evidence by among others Baumeister and Peersman (2008) who point out that oil price 

surges can almost entirely be explained by shifts in global demand (positive shocks), with the 

contribution of supply shocks (negative shocks) on crude oil price volatility diminishing 

considerably over the recent years. This inconsistency in the findings can be attributed to the 

fact that over the past few years other exogenous factors, in addition to the market 

fundamentals of supply and demand, have been driving the oil markets. As a result, the fuel 

markets in particular have become more prone to movements of a much broader range of 

financial indicators like international currencies’ exchange rate movements relative to the US 

dollar, interest rates, equity markets’ performance, as well as the widespread use of “paper” 

derivative products both for the purposes of risk management as well as for speculation.  

 

For the remaining energy markets, the asymmetry parameter is positive at the 5% significance 

level, which implies that positive shocks, as described by unexpected demand shocks, have 

greater impact on volatility compared to negative shocks, which is consistent with the 

presence of an “inverse leverage” effect. We can argue that since the beginning of the new 

millennium, worldwide economic growth gave rise to stronger than expected demand for 

energy products that are critical to the global economy. As a result, demand outpaced the 

near-term ability of the market to bring forth proportionate additional supplies; the resulting 
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tightness in the global energy markets caused prices to increase, and the impact of this 

increase has been felt throughout the whole chain of production. Along the same lines, 

Kanamura (2009) finds that demand for US natural gas prices is highly inelastic in the short-

term, with the energy use being independent of the price change, suggesting the presence of 

an “inverse leverage” effect. So, when an unexpected demand shock occurs, energy prices are 

expected to exhibit this “inverse leverage” effect, a conclusion that can be drawn from our 

results; this is also consistent with the findings in Eydeland and Wolyniec (2003) regarding 

the energy markets.  

5. Simulation of Estimated Models  

After estimating the parameters of the model, we use Monte Carlo (MC) to simulate the 

behaviour of each market; the simulations are carried out based on equation 4 and the paths 

are simulated 100,000 times. The starting date of the simulations is the same as the initial date 

of our historical prices, i.e. 12/09/2000, with the horizon of the simulated distribution 

extending up to 12/09/2007; in total 1827 trading days. Since the main purpose of this paper 

is to propose models that can capture the distributional characteristics of the underlying 

market, MC simulation is a valuable tool for helping with the selection criteria of the best 

model. Clewlow et al. (2000; 2001) use Monte Carlo simulations on different variations of the 

MRJD model and demonstrate how these models can be used to price energy options whose 

payouts are path-dependent, or rely on multiple energies. In addition, other applications of 

MC simulation include pricing of various energy derivatives contracts, policy development 

and risk monitoring. Hence, because we want to determine whether our models can capture 

the major characteristics of the distribution of energy spot prices, in what follows we perform 

a distribution analysis which will help us analyze the price behaviour over a period of time 

and, at the same time, assist us with testing, benchmarking, and selecting the most appropriate 

model for describing each one of the energy markets we examine. 

 

The descriptive statistics of the actual log-returns’ series, along with the average per time-step 

simulated paths for all models used in our analysis, are presented in Table 6. The average of 

the simulated values at time t across all possible paths is calculated as: 
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where, St, is the simulated spot price of path  at time t, and n  is the number of MC 

simulations. From Table 6 we see that for almost all the energy markets, the models that most 

closely match the skewness and kurtosis of the underlying distributions are the ones that 

incorporate jumps, namely the MRJD-OLS and the MRJD-EGARCH. It can also be noted 

that in the case of WTI, the skewness produced by the MRJD-OLS model is identical to the 

actual one, whereas the kurtosis value is the highest among the competing models, thus also 

following very closely the actual one. It is only in the Heating Oil and Propane markets that 

the MR-GARCH(1,1) model is able to better match the skewness and kurtosis of the actual 

price path. Therefore, it seems that our approach to allow for a different speed of mean 

reversion after a jump occurs, and to also extend the models to incorporate time-varying 

volatility in their specification modelled as an EGARCH process, improves the fit that our 

models have in terms of capturing the skewness and kurtosis of the actual series, for almost 

all energy markets. 

  

To formally compare the actual returns’ distribution with the average of the simulated series 

per time-step, we calculate the two-sample Kolmogorov-Smirnov (K-S) test. The two-sample 

K-S test is a non-parametric test for the equality of two probability distributions. The test 

effectively compares the distance between the actual and the simulated distribution around 

their mean, and the reported statistic is the maximum vertical deviation between the two 

curves. One of the advantages of the K-S test is that the value of the statistic is not affected by 

scale changes like using the logarithm of prices, as is the case in our data; it is a robust test 

that only considers the relative distributions of the data. In our case, the first sample 

1,..., mX X  of size 1826m   observations, which are the actual spot log-price returns, has a 

distribution with cumulative density function (c.d.f.)  F x , and the second will be in every 

case the average per time-step simulated sample 1,..., mY Y  of the same size 1826m  , having a 

distribution with c.d.f.  G x . The null hypothesis of the K-S test is that F and G are from the 

same continuous distribution, with the alternative hypothesis that they are from different 

continuous distributions: 

 

0 1:  vs. :H F G H F G    
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Results from the K-S tests are also presented in Table 6; based on the calculated K-S test 

statistic we accept the null hypothesis that the actual and the average per time-step simulated 

distributions are identical at the 5% significance level, for the Gasoline, the two crack Spreads 

of WTI with Heating Oil and Gasoline, and the PJM markets. This is true for most models 

with the exception of the GBM where the null hypothesis of equality of distributions is 

overwhelmingly rejected. Comparing the values between the different models we can see that 

generally the models that incorporate jumps have the lowest value for the K-S test indicating 

that, at least nominally, these provide the closest match to the underlying distribution. For the 

remaining markets, although the null hypothesis that the samples are drawn from an identical 

distribution is rejected, the value of the K-S statistic is lower for the models that contain 

jumps in their terms. Furthermore, in Table 6, the models with the smallest K-S test-statistic 

value are indicated with a (+). It can be seen that the models producing the lowest K-S test-

statistic are the MRJD-EGARCH(1,1) for WTI, Heating Oil, Heating Oil-WTI crack spread, 

Natural Gas, and Propane markets, the MRJD-OLS model for Gasoline and Gasoline-WTI 

crack spread, and finally the MR-EGARCH(1,1) for the PJM market. Overall, from the 

distributional comparison of the actual log-price returns and the average per time-step 

simulated returns, we can conclude that the addition of jumps in the simple mean reversion 

model - while allowing for a different speed of mean reversion after a jump occurs for a 

period of time equal to the estimated half-life of the jumpy returns - as well as the addition of 

the EGARCH (1,1) process, improves the fit of the simulated returns to the actual 

distributions, for most of the energy markets under investigation. 

 

Furthermore, the relative goodness of fit for the various models is assessed by examining how 

closely each endogenous variable from our simulations tracks the actual spot logarithmic 

prices for the seven year period we examine. Clewlow and Strickland (2000) use the 

likelihood ratio test and the Schwartz Bayesian Information criterion to compare their various 

models. In our case, because we want to test the simulations’ goodness of fit, we use three 

quantitative and one qualitative measure to check how closely the individual variables track 

their corresponding data series. The three quantitative measures are the root-mean-square 

error (RMSE), the root-mean-square percent error (RMSE %), and Theil’s inequality 

coefficient (Theil’s U) (Theil, 1961). The RMS error measures the deviation of the average 

simulated log-price from its actual time path, while the RMS percent error evaluates the 

magnitude of the RMS error as a percentage of the underlying spot price; finally, Theil’s U 

measures the RMS error in relative terms.  
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Table 7 presents the comparison results for our models based on the RMSE, RMSE%, and 

Theil’s U metrics. We can see that, based on all three comparative statistical measures, the 

MRJD-EGARCH (1,1) is the best model for tracking the actual time path of the WTI and 

Gasoline log-prices with the statistics for the MRJD-OLS being very similar. For the Heating 

Oil market, the best model appears to be the MRJD-OLS, which is marginally better than the 

MRJD-EGARCH (1,1) on the basis of the RMSE and RMSE% statistics. For all the 

remaining markets the model that best captures the price paths of the underlying series 

appears to be the MRJD-OLS, a result which is verified by all three statistical measures, with 

the MRJD-EGARCH exhibiting the second-best performance. It is only for the Gasoline_WTI 

crack spread that the MR-OLS and MR-EGARCH (1,1) models appear to perform better than 

the respective models incorporating jumps. Hence, our initial motivation to use Poisson jumps 

and to allow for two different speeds of mean reversion in the modelling procedure, in order 

to explain the spikier behaviour of the energy log-prices, combined with an EGARCH 

specification for the variance, is validated by the above findings.  

 

Although the statistics presented above are very helpful by giving an indication on the relative 

quality of each model, another important criterion is how well the model captures the turning 

points in the data. For that, a very useful test can be a simple visual inspection of the sample 

price processes and the associated log-return prices (Clewlow and Strickland, 2000). 

Therefore, we produce a graphical comparison of the simulated prices with the actual data, 

plotting at first a random simulated price path and the observed data, and at second the 

distribution of the daily log-returns as a histogram and the daily log-returns for the average 

per time-step simulated prices as an overlaid line. Figure 2 shows the plot of a random 

simulated path for the MRJD-EGARCH (1,1) model over the actual path of the log-prices, for 

all energy markets. We can see that the MRJD-EGARCH (1,1) model can capture most of the 

major turning points in the data, tracking close enough the actual path. In particular, a major 

feature of our model is the fact that following a jump in the prices, the price series mean-

reverts to its mean at a faster rate which is consistent with the pattern observed in the market. 

In addition, Figure 3 shows the distribution of the actual spot daily log-returns as a histogram 

and the daily log-returns for the average per time-step simulated prices as an overlaid line, for 

all energy markets. We observe that the MRJD-EGARCH (1,1) model captures very well the 

kurtosis and the skewness of the actual log-returns for almost all energy markets. This 

observation enhances our findings from Tables 6 and 7, where the MRJD model with an 
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EGARCH specification for the variance is amongst the best performing models in terms of 

approximating the actual returns’ distribution.  

6. Out-of-sample VaR evaluation 

In order to evaluate the efficiency of the proposed spike models in an out-of-sample setting, 

we consider their performance in generating 99% one-day VaR forecasts for each one of the 

energy markets.10 The period used to estimate the parametric VaR models is from 12/09/2000 

to 12/09/2007 consisting of 1827 observations, whereas the period used for the out-of-sample 

evaluation is from 13/09/2007 to 1/02/2010 (623 observations). Based on the models that 

were estimated in the previous section, 100,000 Monte Carlo price paths are estimated to 

generate one-day ahead VaR forecasts for each one of the 623 observations in the out-of-

sample period and then the one-day 99% VaR is calculated as the relevant percentile of the 

distribution of simulated paths. Mathematically: 

 

𝑉𝑎𝑅𝑡(𝛼) = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒{𝑟𝑡
𝑠, 𝑎}                                                                                              (12) 

 

where 𝑟𝑡
𝑠 represents the simulated returns at time t. 

 

The performance of the spike models is also compared to that of two widely used benchmarks 

in VaR applications, the Risk Metrics and the Historical Simulation approaches. RiskMetrics 

(RM) uses an Exponentially Weighted Moving Average (EWMA) specification for the 

volatility assuming a value of λ = 0.94 for the volatility decay factor, as is widely used in the 

literature. The Historical Simulation (HS) method is amongst the simplest ones for estimating 

the VaR as it uses the past history of returns to generate the distribution of possible future 

returns. Under the HS methodology, the VaR with coverage rate, a, is calculated as the 

relevant percentile of the sequence of past returns, obtained non-parametrically from the data.  

 

To select the best model in terms of its VaR forecasting power, a two stage evaluation 

framework is implemented. In the first stage, three statistical criteria are used to test for 

unconditional coverage, independence, and conditional coverage, as proposed by 

Christoffersen (1998). A VaR model successfully passes the first stage evaluation only when 

it can satisfy all three statistical tests, at the 5% or higher significance level. In the second 

                                                 
10 95% one-day VaR forecasts are also calculated but are not reported because results are very similar with the 

99% forecasts that are reported in the tables.  
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stage, a loss function is constructed in line with Lopez (1999) and Sarma et al. (2003) to test 

the economic accuracy of the VaR models that have passed the first evaluation stage. The loss 

function is based on the notion of Expected Shortfall (ES), also termed Conditional VaR 

(CVaR), which measures the difference between the actual and the expected losses when a 

VaR violation actually occurs. Using this loss function, the models are ranked and an 

economic utility function able to accommodate the risk manager’s needs is specified as 

follows: 

𝐿𝐹𝑖 =
1

𝑇
∑ [𝑟𝑗 − 𝐸𝑆𝑖(𝑎)]

2𝑇
𝑗=1                                                                                                    (15) 

 

𝐸𝑆𝑎 = 𝐸[𝑟𝑡|(𝑟𝑡 ≤ −𝑉𝑎𝑅𝑡(𝑎))]                                                                                              (16) 

 

where the ES is defined as the average loss over the VaR violations from the N out-of-sample 

violations that occurred for the ith VaR model, under the following conditions: 

 

𝑟𝑗 − 𝐸𝑆𝑖(𝑎) = {
0,                            𝑖𝑓 𝐸𝑆𝑖(𝑎) ≤ 𝑟𝑗

𝑟𝑗 − 𝐸𝑆𝑖(𝑎),         𝑖𝑓 𝑟𝑗 < 𝐸𝑆𝑖(𝑎) 
                                                                  (17) 

 

The proposed LF uses the ES rather than the VaR measures to compare with the actual 

returns, as the VaR returns do not give an indication about the size of expected loss when a 

violation occurs. Evidence in the literature shows that ES is a more coherent risk measure 

than VaR (Acerbi, 2002; Inui and Kijima, 2005). The model that minimizes the total loss, 

hence returns the lowest LF value, is preferred relative to the remaining models. The 

economic evaluation framework that uses the proposed LF can provide useful information for 

evaluating the VaR estimates for regulatory purposes. That is because by using the ES 

measure in the LF, the additional information on the magnitude of a loss that exceeds the 

estimated VaR is incorporated into the evaluation process. 

 

Table 8 reports the average VaR or Expected Tail Loss in percentage points, the frequency of 

violations or number of hits in percentage points, and the results from the second evaluation 

stage, i.e. the Expected Shortfall, and the Loss Function that measures the economic accuracy 

of the models. In the second evaluation stage only the models that pass all three of 

Christoffersen’s tests for unconditional coverage, independence, and conditional coverage, at 

the 5% significance level, and thus they do not reject the null hypothesis, are indicated in 
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bold. A 5% significance level is chosen as the acceptance threshold for the three tests, because 

the smaller the significance level the fewer the number of violations is, which leads to larger 

Type II errors that can be very costly for the risk manager. Also, the model that minimizes the 

total loss, hence returns the lowest LF value, is preferred relative to the remaining models, 

and is indicated with an asterisk. In those cases where the frequency of hits is zero the 

respective models are unsuitable candidates for the application of both the statistical and the 

economic evaluation tests. 11 A dash indicates that the test is not applicable for each 

respective modelling approach. In addition, in those cases where the frequency of hits is too 

high, above 20%, the respective models are unsuitable candidates for the application of the 

two statistical tests for unconditional and conditional coverage; in these cases a dash is also 

inserted. However, this does not mean that these models should be immediately rejected but it 

should be noted that consistently overestimate in the former case, and underestimate in the 

latter case, the actual VaR. 

 

The results show that there is always at least one model that passes all three statistical tests at 

the 1% significance level; the only exception is for Natural Gas where no model is able to 

pass the first evaluation stage. In the majority of cases, it is only the MC simulation models 

that successfully pass the first evaluation stage, thus overall prevailing against the more 

traditional Risk Metrics and Historical Simulation methodologies. For WTI and Heating Oil, 

it is the MRJD-GARCH model that passes the first evaluation stage and also delivers in the 

second stage the lowest loss function value. In addition, for the remaining energy markets, i.e. 

Gasoline, Propane, and the two crack spreads with WTI, it is the MRJD-EGARCH model that 

outperforms all competing models; the only exception is for PJM where the Historical 

Simulation method is the best performing one. Therefore, whenever a risk manager wants to 

choose a single approach for calculating the VaR for all energy commodities that he/ she 

holds, as it is usually the case in practice, the results indicate that the MC simulations 

incorporating jumps and a GARCH or an EGARCH volatility specifications, as proposed in 

this paper, are the most reasonable, efficient, and consistent candidates. 

   

                                                 
11 The mean reverting models without jumps are not included in the analysis as they do not provide any hits 

during the first statistical evaluation stage.  
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7. Conclusions 

In this paper we examine the behaviour of spot prices in the eight energy markets that trade 

futures contracts on NYMEX. Given the stylised properties of those markets, we propose a 

mean-reverting spike model that incorporates two different speeds of mean reversion to 

capture the fast mean-reverting behaviour of prices after a jump occurs and the slower mean 

reversion rate of the diffusive part of the model. We also extend this model to incorporate 

time-varying volatility in its specification, modelled as an EGARCH process. Estimation 

results indicate the presence of a “leverage effect” for WTI, Heating Oil, and Heating Oil – 

WTI crack spread spot log-price returns, whereas for the remaining energy markets the 

presence of an “inverse leverage” effect is found. 

 

The comparison of the different models used in this paper is done using 100,000 Monte Carlo 

simulations in each case. Results indicate that the inclusion of Poisson jumps to the mean 

reverting model, in combination with the use of a different speed of mean reversion after a 

jump occurs for a duration equal to the half-life of the jumps’ returns, improves the fit 

significantly for all energy markets. Our modelling approach captures very well both the 

skewness and kurtosis of the actual series. Furthermore, the addition of the EGARCH (1,1) 

specification for the variance improves significantly the fit of the simulated returns to the 

actual distributions, for most of the energy markets under investigation. This finding is 

validated by the reported Kolmogorov-Smirnov statistics, as well as by comparing visually 

the simulated to the actual price series. Moreover, the proposed models, incorporating jumps 

and a GARCH or an EGARCH volatility specifications, are the most efficient and consistent 

candidates for estimating VaR for the majority of the energy markets examined in this paper. 

Hence, overall, our modelling approach for energy pricing combined with the findings of this 

paper is relevant for both policymakers and market participants as it can be applied for 

forecasting, risk management, derivatives pricing, and policy development and monitoring 

purposes. 
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Table 1: Empirical models of energy prices 

“GBM” stands for Geometric Brownian Motion; “MR” for 

Mean Reversion; “MRJD” for Mean Reversion Jump 

Diffusion, “OLS” for Ordinary Least Squares (constant 

volatility) 

1 GBM 

2 MR-OLS 

3 MR-GARCH (1,1) 

4 MR-EGARCH (1,1) 

5 MRJD-OLS 

6 MRJD-GARCH (1,1) 

7 MRJD-EGARCH (1,1) 
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Table 2: Descriptive statistics of energy markets 

Descriptive statistics and the properties of the logarithmic spot prices and their first differences (returns) are 

presented in Panels A and B, respectively. *, **, *** denote significance at the 10%, 5% and 1% significance 

level, respectively. Two tests for unit root non-stationarity, the Augmented Dickey-Fuller (ADF; Dickey and 

Fuller, 1979) and the Philips-Perron (PP; Phillips and Perron, 1988), and one test for stationarity, the 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS; Kwiatkowski et. al, 1992), are employed. The Jarque-Bera (1980) 

test for normality on the logarithmic differences is 2 distributed with 2 degrees of freedom. Q(k) is the Ljung-

Box (1978) Q-statistic test for kth order autocorrelation. The Q2(k)-statistic is the Engle’s (1982) ARCH test. 

Both tests are 2 distributed with k degrees of freedom. Daily data from 12/9/2000 to 12/9/2007. 

Panel A: Logarithmic levels 

  WTI HO GASOLINE CS_GASOLINE_WTI CS_HO_WTI NG PROPANE PJM 

Mean Spot Level ($) $40.01 $46.15 $48.63 $109.17 $106.94 $5.44 $67.58 $49.81 

Mean (μ) 3.6890 3.8320 3.8843 4.6929 4.6723 1.6939 4.2133 3.9081 

Mean (excl. jumps) 3.6892 3.8318 3.8845 4.6927 4.6722 1.6932 4.2131 3.9067 

Maximum 4.381 4.511 4.793 5.019 4.815 2.944 4.851 5.701 

Minimum 2.861 2.981 3.011 4.568 4.604 0.528 3.287 3.002 

Standard Deviation 0.394 0.415 0.395 0.062 0.041 0.401 0.383 0.399 

Skewness 0.054 0.039 0.110 1.685 0.501 -0.377 -0.321 0.198 

Kurtosis 1.691 1.620 2.073 6.259 2.383 3.378 2.106 3.291 

KPSS 4.917 4.730 4.621 1.269 3.102 2.650 4.297 2.963 

ADF 
-0.657 -0.711 -1.384 -4.581*** -3.575*** -2.370 -0.795 -4.853*** 

(0.855) (0.842) (0.591) (0.000) (0.006) (0.151) (0.820) (0.000) 

PP 
-0.441 -0.668 -1.371 -4.488*** -3.505*** -0.789 -2.452 -8.644*** 

(0.900) (0.853) (0.598) (0.000) (0.008) (0.821) (0.128) (0.000) 

Panel B: Logarithmic differences (returns) 

Mean  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Maximum 0.106 0.119 0.183 0.118 0.057 0.623 0.363 0.963 

Minimum -0.172 -0.188 -0.178 -0.165 -0.053 -0.570 -0.244 -1.428 

Standard Deviation 0.023 0.026 0.030 0.013 0.008 0.049 0.024 0.152 

Annualised Volatility 0.365 0.410 0.480 0.210 0.130 0.778 0.376 2.410 

Skewness -0.454 -0.269 -0.264 -0.920 0.374 0.732 1.609 0.059 

Kurtosis 6.485 6.695 6.759 29.302 10.674 32.845 45.154 12.780 

Jarque-Berra 987.237 1061.348 1096.627 52893.450 4523.756 67970.450 135982.000 7281.879 

KPSS 0.162 0.165 0.061 0.021 0.046 0.035 0.060 0.086 

ADF 
-43.5919*** -45.7299*** -43.3930*** -45.279*** -34.019*** -25.7665*** -44.06193*** -25.5479*** 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

PP 
-43.9383*** -45.8342*** -43.4004*** -45.300*** -50.285*** -41.2204*** -44.04424*** -104.2735*** 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Q (1) 0.786 8.552*** 0.427 6.367** 15.231*** 2.564 1.7917 11.836*** 

Q (20) 22.502 29.155* 19.056 49.511*** 70.225*** 116.930*** 38.154*** 199.990*** 

Q2 (1) 13.763*** 46.025*** 43.495*** 197.110*** 59.978*** 438.58*** 365.75*** 14.014*** 

Q2 (20) 55.904*** 154.29*** 171.08*** 320.130*** 280.530*** 935.5*** 390.28*** 217.01*** 

 

 

 

 

 

 

 



 33 

 

 

 

Table 3: Estimated jump parameters, mean reversion rates, volatility, and half-lives 

The filtered series exclude all returns that have been identified as jumps (more than three times the standard 

deviation of the smooth returns). Φ is the daily frequency of a jump occurring, σJ is the daily standard 

deviation of jump returns, and 
J the average size of jump returns. The diffusive mean reversion rate α, is 

estimated using eq. 6 after running the regression of eq. 5. The mean reversion rate used after a jump has 

occurred αJD, for a period of time equal to the half-life of jump returns, is estimated using eq. 9 after running 

the regression of eq. 8. Also, σ is the daily standard deviation of log-price differences, as estimated from eq. 

7 for the un-filtered and filtered series, respectively. All estimates for the half-lives of both the smooth and 

jumpy returns are calculated using eq. 10. The half-lives of the jumpy returns, in days, are the respective 

durations we are using in our MRJD models for the higher mean reversion rate (αJD) after a jump occurs. 

Panel A: Jump parameters used in the MRJD models 

  Φdaily σJ J  

WTI 0.0192 0.0725 -0.0460 

HO 0.0159 0.0899 0.0086 

GASOLINE 0.0235 0.1078 -0.0089 

CS_GASOLINE_WTI 0.1873 0.0305 0.0208 

CS_HO_WTI 0.0405 0.0277 0.0065 

NG 0.0581 0.1614 0.0627 

PROPANE 0.0476 0.0816 0.0176 

PJM 0.0728 0.5194 -0.0214 

Panel B: Mean reversion rates, daily st. deviations, and half-lives of smooth and jumpy returns 

 Un-filtered series (MR) Filtered Series (MRJD) Half-lives for MRJD models, in days 

WTI       

α 0.001 0.001 998 

αJD - 0.019 36 

σ 0.023 0.022  

HO       

α 0.001 0.001 771 

αJD - 0.010 67 

σ 0.026 0.024  

GASOLINE       

α 0.002 0.002 362 

αJD - 0.021 34 

σ 0.030 0.027  

CS_GASOLINE_WTI       

α 0.023 0.012 60 

αJD - 0.026 26 

σ 0.013 0.009  

CS_HO_WTI       

α 0.020 0.013 55 

αJD - 0.041 17 

σ 0.008 0.007  

NG       

α 0.007 0.004 155 

αJD - 0.010 72 

σ 0.049 0.038  

PROPANE       

α 0.001 0.000 2635 

αJD - 0.008 87 

σ 0.024 0.017  

PJM       

α 0.075 0.055 13 

αJD - 0.115 6 

σ 0.158 0.132   
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Table 4: Comparison of the arrival rate of the actual daily jumps' series to 

the arrival rate of a Poisson generated series.  

Comparison of the actual distribution of daily jumps as identified by the R-F methodology, 

to the distribution of a series of jumps generated by a Poisson process with a frequency 

equal to the reported frequency of jump occurrence in panel A of Table 3, for each energy 

market. The null hypothesis of the two-sample Kolmogorov-Smirnov (K-S) test is that the 

two samples are from the same continuous distribution, at the 5% significance level.  

  K-S 

WTI 0.0011 

HO 0.0022 

GASOLINE 0.0005 

CS_GASOLINE_WTI 0.0011 

CS_HO_WTI 0.0044 

NG 0.0038 

PROPANE 0.0006 

PJM 0.0033 

 

 

 

Table 5: GARCH and EGARCH coefficient estimates from the un-filtered series 

The regression results of equation 5 are presented, considering a GARCH and an EGARCH estimate for the 

variance, respectively. The regression is applied to both the un-filtered and filtered series, with the estimates 

used for the MR and MRJD models, respectively. Results are qualitatively similar and only those estimated from 

the un-filtered historical series are reported in the table. p-values are in brackets. The GARCH and EGARCH 

volatility equations are the following: 
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  WTI HO GASOLINE CS_GASOLINE_WTI CS_HO_WTI NG PROPANE PJM 

GARCH(1,1)                 

β0 0.00003 0.00006 0.00012 0.00000 0.00000 0.00006 0.00004 0.00066 

(0.00001) (0.00001) (0.00002) (0.00000) (0.00000) (0.00001) (0.00000) (0.00011) 

β1 0.05992 0.09713 0.09090 0.13803 0.15535 0.13596 0.14783 0.13640 

(0.00695) (0.01123) (0.01055) (0.00609) (0.01002) (0.01522) (0.00668) (0.01310) 

β2 0.88950 0.81687 0.78194 0.88450 0.84440 0.86011 0.77278 0.84627 

(0.01741) (0.02545) (0.03025) (0.00342) (0.00812) (0.01312) (0.00779) (0.01301) 

EGARCH(1,1)                 

β0 -0.69575 -0.71312 -0.86639 -0.31057 -1.34905 -0.32579 -1.58968 -0.30804 

(0.10537) (0.11634) (0.15644) (0.02492) (0.12466) (0.04098) (0.09414) (0.02651) 

β1 0.10618 0.19570 0.19953 0.20868 0.35897 0.21273 0.36064 0.24126 

(0.01843) (0.01651) (0.02042) (0.01089) (0.02101) (0.01886) (0.01007) (0.01734) 

β2 -0.10648 -0.00630 0.00658 0.06972 -0.03414 0.07314 0.02848 0.03709 

(0.01404) (0.01002) (0.01179) (0.00822) (0.01211) (0.00896) (0.00887) (0.01212) 

β3 0.91928 0.92322 0.89790 0.98322 0.88680 0.97227 0.82680 0.96604 

(0.01341) (0.01486) (0.02098) (0.00256) (0.01208) (0.00543) (0.01207) (0.00484) 
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Table 6: Distributional comparison of the actual spot log-price returns to the average per 

time-step simulated path 

Distributional comparison of the actual spot logarithmic-price returns to the average per time-step simulated path 

for each model specification, ,

1

sn
ts

t

S
S

n





  , where St, is the simulated spot price of path  at time t, and n  is the 

number of MC simulations. K-S is the Kolmogorov-Smirnov (K-S) two-sample test statistic; an asterisk (*) 

indicates that we accept the null that the two samples are from the same continuous distribution, at the 5% 

significance level. The models with the smallest K-S test-statistic value are indicated with a (+).   

 Mean Median Max Min Std. Dev. Skewness Kurtosis K-S 

WTI                 

Actual Path 0.00 0.00 0.11 -0.17 0.02 -0.45 6.48  

GBM 0.00 0.00 0.08 -0.08 0.02 0.00 3.00 0.501 

MR-OLS 0.00 0.00 0.12 -0.17 0.03 -0.16 3.87 0.058 

MR-GARCH(1,1) 0.00 0.00 0.12 -0.17 0.03 -0.17 3.94 0.059 

MR-EGARCH (1,1) 0.00 0.00 0.13 -0.17 0.03 -0.16 3.94 0.055 

MRJD-OLS 0.00 0.00 0.13 -0.21 0.03 -0.45 5.39 0.056 

MRJD-GARCH(1,1) 0.00 0.00 0.14 -0.21 0.04 -0.34 4.91 0.055 

MRJD-EGARCH (1,1) 0.00 0.00 0.13 -0.21 0.03 -0.42 5.28 0.054+ 

HO                 

Actual Path 0.00 0.00 0.12 -0.19 0.03 -0.27 6.69  

GBM 0.00 0.00 0.09 -0.09 0.03 0.00 3.00 0.491 

MR-OLS 0.00 0.00 0.14 -0.19 0.04 -0.10 3.92 0.067 

MR-GARCH(1,1) 0.00 0.00 0.14 -0.19 0.04 -0.10 4.03 0.065 

MR-EGARCH (1,1) 0.00 0.00 0.14 -0.20 0.04 -0.09 3.92 0.065 

MRJD-OLS 0.00 0.00 0.20 -0.19 0.04 0.08 4.97 0.060 

MRJD-GARCH(1,1) 0.00 0.00 0.21 -0.19 0.04 0.07 4.76 0.057 

MRJD-EGARCH (1,1) 0.00 0.00 0.20 -0.19 0.04 0.08 4.83 0.056+ 

GASOLINE                 

Actual Path 0.00 0.00 0.18 -0.18 0.03 -0.26 6.76  

GBM 0.00 0.00 0.10 -0.10 0.03 0.00 3.00 0.484 

MR-OLS 0.00 0.00 0.20 -0.20 0.04 -0.09 3.94 0.044* 

MR-GARCH(1,1) 0.00 0.00 0.20 -0.19 0.04 -0.09 4.00 0.045 

MR-EGARCH (1,1) 0.00 0.00 0.20 -0.20 0.04 -0.09 3.91 0.046 

MRJD-OLS 0.00 0.00 0.24 -0.26 0.04 -0.11 6.04 0.044*+ 

MRJD-GARCH(1,1) 0.00 0.00 0.24 -0.26 0.04 -0.10 5.79 0.045 

MRJD-EGARCH (1,1) 0.00 0.00 0.24 -0.26 0.04 -0.10 5.85 0.045 

CS_GASOLINE_WTI                 

Actual Path 0.00 0.00 0.12 -0.16 0.01 -0.92 29.30   

GBM 0.00 0.00 0.05 -0.05 0.01 0.00 3.00 0.463 

MR-OLS 0.00 0.00 0.12 -0.16 0.02 -0.32 9.47 0.029* 

MR-GARCH(1,1) -0.01 0.00 2.34 -2.57 0.48 -0.27 8.62 0.297 

MR-EGARCH (1,1) 0.00 0.00 0.12 -0.16 0.02 -0.29 8.52 0.025* 

MRJD-OLS 0.00 0.00 0.11 -0.08 0.02 1.15 6.69 0.023*+ 

MRJD-GARCH(1,1) 0.00 0.00 0.42 -0.43 0.08 -0.03 6.70 0.028* 

MRJD-EGARCH (1,1) 0.00 0.00 0.13 -0.11 0.03 0.44 4.58 0.024* 

CS_HO_WTI                 

Actual Path 0.00 0.00 0.06 -0.05 0.01 0.37 10.67  

GBM 0.00 0.00 0.03 -0.03 0.01 0.00 3.00 0.474 

MR-OLS 0.00 0.00 0.06 -0.06 0.01 0.13 4.89 0.031* 

MR-GARCH(1,1) 0.00 0.00 0.11 -0.12 0.02 0.02 8.23 0.031* 

MR-EGARCH (1,1) 0.00 0.00 0.06 -0.06 0.01 0.10 4.66 0.032* 

MRJD-OLS 0.00 0.00 0.08 -0.06 0.01 0.45 8.28 0.029* 

MRJD-GARCH(1,1) 0.00 0.00 0.13 -0.13 0.02 0.03 7.06 0.023* 

MRJD-EGARCH (1,1) 0.00 0.00 0.08 -0.07 0.01 0.20 6.33 0.022*+ 
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Table 6 cont. 

NG                 

Actual Path 0.00 0.00 0.62 -0.57 0.05 0.73 32.85   

GBM 0.00 0.00 0.17 -0.17 0.05 0.00 3.00 0.453 

MR-OLS 0.00 0.00 0.62 -0.57 0.07 0.26 10.42 0.059 

MR-GARCH(1,1) 0.00 0.00 0.73 -0.73 0.11 -0.06 8.83 0.070 

MR-EGARCH (1,1) 0.00 0.00 0.63 -0.57 0.08 0.13 7.44 0.056 

MRJD-OLS 0.00 0.00 0.49 -0.37 0.07 0.90 9.59 0.049 

MRJD-GARCH(1,1) 0.00 0.00 0.58 -0.55 0.11 0.12 5.66 0.052 

MRJD-EGARCH (1,1) 0.00 0.00 0.51 -0.40 0.08 0.43 6.16 0.049+ 

PROPANE                 

Actual Path 0.00 0.00 0.36 -0.24 0.02 1.61 45.15  

GBM 0.00 0.00 0.08 -0.08 0.02 0.00 3.00 0.505 

MR-OLS 0.00 0.00 0.36 -0.24 0.03 0.57 13.52 0.110 

MR-GARCH(1,1) 0.00 0.00 0.36 -0.24 0.03 0.60 14.71 0.107 

MR-EGARCH (1,1) 0.00 0.00 0.36 -0.25 0.03 0.55 13.18 0.108 

MRJD-OLS 0.00 0.00 0.23 -0.19 0.03 0.55 10.39 0.096 

MRJD-GARCH(1,1) 0.00 0.00 0.24 -0.21 0.04 0.20 6.34 0.093 

MRJD-EGARCH (1,1) 0.00 0.00 0.23 -0.20 0.04 0.33 7.19 0.092+ 

PJM                 

Actual Path 0.00 0.00 0.96 -1.43 0.15 0.06 12.78  

GBM 0.00 0.00 0.52 -0.52 0.15 0.00 2.99 0.467 

MR-OLS 0.00 0.00 1.09 -1.43 0.22 0.02 5.34 0.044* 

MR-GARCH(1,1) 0.00 0.00 1.16 -1.46 0.23 -0.01 5.97 0.041* 

MR-EGARCH (1,1) 0.00 0.00 1.14 -1.43 0.24 -0.02 4.99 0.039*+ 

MRJD-OLS 0.00 0.00 1.42 -1.46 0.23 -0.06 8.03 0.046 

MRJD-GARCH(1,1) 0.00 0.00 1.63 -1.69 0.31 -0.09 6.00 0.041* 

MRJD-EGARCH (1,1) 0.00 0.00 1.46 -1.51 0.26 -0.11 6.57 0.043* 
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Table 7: Comparison of the models’ goodness of fit to the actual spot log-prices 
Simulation error statistics on the difference between actual versus average simulated price paths. RMSE, RMSE 

%, and Theil’s U are respectively calculated as: 

       
2

2 2 22

11 1 11, % and

s aTT T TT
t ts a s as a

at t t tt t
t tt t tt

S S
S S S SS S

S
RMSE RMSE U

TT T T T

  

 
  

    

  
  

where ,

1

sn
ts

t

S
S

n





  is the average of the simulated values at time t across all possible paths, St, is the simulated 

spot price of path  at time t, n is the number of MC simulations, a

tS  is the actual value on any given time-step, 

and T is the number of discretised periods in the simulation. 

  GBM MR-OLS MR-GARCH(1,1) MR-EGARCH (1,1) MRJD-OLS MRJD-GARCH(1,1) MRJD-EGARCH (1,1) 

WTI               

RMSE 0.695 0.652 0.651 0.652 0.385 0.399 0.387 

RMSE % 0.188 0.169 0.168 0.168 0.099 0.103 0.100 

Theil’s U 0.090 0.096 0.095 0.096 0.053 0.055 0.053 

HO               

RMSE 0.792 0.634 0.635 0.666 0.379 0.390 0.385 

RMSE % 0.207 0.158 0.159 0.167 0.096 0.099 0.098 

Theil’s U 0.098 0.088 0.089 0.093 0.050 0.051 0.051 

GASOLINE               

RMSE 0.860 0.528 0.524 0.554 0.377 0.382 0.380 

RMSE % 0.218 0.131 0.130 0.138 0.095 0.096 0.096 

Theil’s U 0.108 0.071 0.070 0.074 0.049 0.050 0.049 

CS_GASOLINE_WTI               

RMSE 0.361 0.067 7.629 0.075 0.166 0.401 0.177 

RMSE % 0.077 0.014 1.620 0.016 0.035 0.085 0.038 

Theil’s U 0.039 0.007 0.668 0.008 0.017 0.043 0.019 

CS_HO_WTI               

RMSE 0.224 0.048 0.092 0.054 0.045 0.105 0.054 

RMSE % 0.048 0.010 0.020 0.012 0.010 0.022 0.012 

Theil’s U 0.024 0.005 0.010 0.006 0.005 0.011 0.006 

NG               

RMSE 1.371 0.477 1.263 0.627 0.508 0.814 0.566 

RMSE % 0.857 0.301 0.781 0.392 0.376 0.539 0.397 

Theil’s U 0.377 0.145 0.324 0.195 0.135 0.233 0.155 

PROPANE               

RMSE 0.739 0.573 0.558 0.590 0.327 0.386 0.353 

RMSE % 0.178 0.131 0.128 0.135 0.080 0.092 0.085 

Theil’s U 0.084 0.072 0.070 0.074 0.038 0.046 0.042 

PJM               

RMSE 4.051 0.497 0.565 0.593 0.546 0.930 0.641 

RMSE % 1.019 0.126 0.144 0.151 0.140 0.238 0.164 

Theil’s U 0.449 0.064 0.074 0.078 0.071 0.124 0.084 
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Table 8: 99% VaR results for long positions 
99% VaR results for long positions across all energy commodities. The table reports the average VaR or Expected Tail 

Loss (ETL) in percentage points, the frequency of violations or number of hits in percentage points, and the results from 

the second evaluation stage, i.e. the Expected Shortfall (ES), and the Loss Function (LF) that measures the economic 

accuracy of the models. In the second evaluation stage only the models that pass all three of Christoffersen’s tests for 

unconditional coverage, independence, and conditional coverage, at the 5% significance level, are indicated in bold. Also, 

the model that minimizes the Loss Function, is preferred relative to the remaining models, and is indicated with an 

asterisk. In those cases where the frequency of hits is zero the respective models are unsuitable candidates for the 

application of both statistical and economic evaluation tests. A dash indicates that the test is not applicable for the 

respective modelling approach. 

    RM HS MCS-GBM MCS-MRJD-OLS MCS-MRJD-GARCH MCS-MRJD-EGARCH 

W
T

I 

Avg VaR (ETL) 2.30% 2.03% 2.62% 2.78% 2.27% 2.45% 

No Hits (%) 31.46% 4.17% 5.14% 1.61% 1.12% 1.44% 

ES -3.30% -8.33% -7.92% -5.90% -6.44% -6.37% 

LF (x10^4) 1.373 0.090 0.120 0.402 0.298* 0.311 

H
O

 

Avg VaR (ETL) 2.04% 2.10% 2.14% 2.36% 1.93% 1.81% 

No Hits (%) 32.10% 2.57% 2.89% 1.12% 0.80% 1.12% 

ES -2.82% -8.30% -8.10% -8.06% -8.61% -8.06% 

LF (x10^4) 1.059 0.041 0.048 0.050 0.031* 0.050 

G
A

S
O

L
IN

E
 Avg VaR (ETL) 2.45% 2.37% 2.64% 3.80% 3.97% 4.06% 

No Hits (%) 30.50% 1.93% 3.53% 0.96% 0.80% 0.80% 

ES -3.47% 11.00% -9.63% -10.33% -12.64% -12.64% 

LF (x10^4) 1.808 0.136 0.207 0.167 0.088 0.088* 

C
S

-

G
A

S
O

L
IN

E
-

W
T

I 

Avg VaR (ETL) 1.27% 2.41% 2.38% 2.73% - 2.93% 

No Hits (%) 31.30% 2.73% 4.98% 2.25% 0.00% 0.80% 

ES -1.80% -6.72% -5.45% -5.97% - -9.83% 

LF (x10^4) 1.000 0.146 0.232 0.192 - 0.033* 

C
S

-H
O

-W
T

I Avg VaR (ETL) 0.87% 1.80% 1.57% 2.22% 1.67% 2.41% 

No Hits (%) 31.46% 2.73% 5.14% 2.57% 0.32% 1.44% 

ES -1.25% -4.56% -3.49% -4.36% -7.64% -5.50% 

LF (x10^4) 0.420 0.064 0.120 0.073 0.004 0.034* 

N
G

 

Avg VaR (ETL) 2.84% 4.17% 4.49% 3.11% - - 

No Hits (%) 32.91% 0.80% 0.80% 0.32% 0.00% 0.00% 

ES -3.97% 15.88% -15.88% -18.51% - - 

LF (x10^4) 2.327 0.108 0.108 0.050 - - 

P
R

O
P

A
N

E
 Avg VaR (ETL) 1.87% 4.13% 3.91% 3.72% 3.74% 4.94% 

No Hits (%) 29.53% 1.77% 2.57% 1.28% 0.48% 0.64% 

ES -1.54% -4.59% -4.27% -2.01% -2.13% -2.43% 

LF (x10^4) 2.590 1.114 1.204 2.239 2.157 1.971* 

P
JM

 

Avg VaR (ETL) 10.44% 13.42% 14.19% - - - 

No Hits (%) 25.84% 0.80% 1.61% 0.00% 0.00% 0.00% 

ES 13.80% 58.75% -49.38% - - - 

LF (x10^4) 30.366 0.739* 1.858 - - - 
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Figure 1: Graphs of daily log-spot and first log-differences for the crude oil, gasoline oil, and 

heating oil (WTI, Gasoline, HO), the two 1-1 crack spreads with the crude oil 

(CS_Gasoline_WTI, CS_HO_WTI), and for the electricity, natural gas, and propane markets 

(PJM, NG, Propane). Data period is from 12/09/2000 to 12/09/2007. 
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Figure 2: Random simulated path of spot log-prices from the MRJD-EGARCH (1,1) model 

plotted against the actual path, for all energy markets. 
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Figure 3: Histogram of the average simulated spot log-price returns per time-step for the 

MRJD-EGARCH (1,1) model plotted as a solid line against the actual returns, for all energy 

markets.  
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