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ABSTRA CT

The use of scroll compressors in refrigeration systems is becoming increasing popular.

However the development and use of a scroll machine as an expander to replace a

throttle valve has never been reported. This thesis describes the work carried out to

develop a two phase scroll expander for use in vapour compression refrigeration

systems. By this means the power requirements of the system would be decreased and

the refrigeration effect increased.

A computer simulation of the geometry of the scroll device was first developed. This

was attached to a package of subroutines developed to analyse compressor and

expander thermodynamic performance to obtain estimates of both scroll expander and

compressor performance.

The results of the expander compressor analyses were used to estimate the

performance of a scroll expander driving a second scroll compressor in a sealed unit

used in a large industrial chiller of 4MW thermal output.

By this means the power requirement for the main compressor was reduced by

approximately 10% while, due to the expansion in the expander being more nearly

isentropic than in the throttle valve, the refrigeration effect was simultaneously

increased by nearly 2%. This lead to an overall improvement in coefficient of

performance of nearly 13.5%. Further investigation of the system and more specially

on the scroll device appears to be justified.

A 3D simulation was then performed by the use of a CFD package called CFX4. This

gave an excellent understanding on the flow 'inside' the machine. From the flow

patterns obtained it is obvious that the scroll device behaviour appears to be excellent

as compressor but not so good as an expander. This is mainly due to the huge

recirculation during the filling process and due to the significant pressure drop of

approximately 2 bar (Max) associated with it.

x



Chapter 1
Introduction

1.1 Introductory Remarks

Studies in fluid flow analysis are generally conducted using either experimental or

numerical-computational approaches. From the theoretical point of view fluid

dynamics are highly developed, however the mathematical formulations are highly

complex and can only be solved analytically in very few simplified cases. On the

other hand advances in numerical analysis and computer hardware/software have

made feasible the solution of the relevant equations using numerical techniques.

This thesis is concerned with the development of a an efficient scroll expander

which can operate with two phase flow, and the modeling of its working

conditions.

During the last few years, numerical flow analysis techniques have become more

and more important in machine design. A key factor in obtaining a realistic

solution is mesh generation, considered as a basic problem requiring a sustained

effort. In fact, the interaction between the mesh characteristics and the development

of it of the solver calculation are closely linked as far as stability, convergence and

definition of the solution are concerned.

The study was carried out using Computational Fluid Dynamics (CFD) techniques.

The advantages of successful computational procedures compared with actual

experiments are significant. Computational studies are relatively cheap to perform.

Furthermore the parameters defining the geometry or the operating conditions of

the device can be varied at will and hence the required optimum can be achieved.

Scroll expanders present definite advantages over other machines. In addition, the

reduced number of parts, the ability to cope with two phase working fluids and the

inherent reliability proven in compressor mode are major reasons for its wider use

in energy recovery. The fast growing mass production of such units as compressors

is also likely to contribute to a lowering of the production costs for expander

applications.
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As is the case for all rotary volumetric machines, reverse motion is inherently

possible and, therefore the conversion of scroll compressor to scroll expander can

be envisaged. Smith's investigation for this type of machine indicated that the

machines most applicable for the expansion of a two phase flow are the Lysholm

twin screw expander and the scroll expander. As far as the first type is concerned,

work was initiated by Smith at the Centre for Compressor Technology, City

University London in late 1982.

In order to perform a thermodynamic analysis of the scroll compressor - expander

first we have to describe the physical behavior of the machine in terms of

mathematical equations. Functions of working volume, sealing lines, touching

conditions etc. in terms of crank angle, (i.e. time) form the foundations for the

analysis.

1.2 Present Contribution

The objective of this research project was to design and develop a two phase

expander to be used as a substitute of the throttle valve in a vapour compression

refrigeration system, and to model the thermodynamics and fluid mechanics of this

machine when operating in the compression mode. The major contributions of the

work presented in this thesis are:

1. A parametric study giving all the mathematical equations needed for the

modeling of the scroll compressor-expander. This includes the derivation of

mathematical expressions giving the working volumes, the sealing lines, the

touching conditions, the thickness and the lengths of the arms, etc. as functions

of the various design parameters (such as a and N ) and the crank angle 8

2. Implementation of the geometry developed into a Quasi One Dimensional Flow

package called SCORPATH. This gave some estimates of the performance of

the scroll compressor and expander operating under different working

conditions.

3. Design and development of a grid generation program that can handle the

complexity of the working volumes of the scroll device. Aspect ratios,

orthogonality, cell distortion and smooth distribution are some of the difficult

issues involved in the transient, structured, body fitted grid generation package

developed. This is a major contribution to the development and understanding

of these type of machines.

4. Coupling of the Transient Grid Generation Code developed with a

Computational Fluid Dynamics (CFD) package called CFX4. Implementation

2
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of the resulted executable yielded thermodynamic results, as well as an in depth

understanding of the flow patterns within the scroll device. Consequently

visualization software tools can be used to improve the overall behavior of the

device.

5. Finally a test case was devised and studied in which the scroll expander

substituted the throttle valve in a Carnot refrigeration cycle.

1.3 Thesis Layout

The thesis is structured as follows:

In chapter 2 previous efforts to develop two-phase expanders and compressors are

examined. Emphasis is placed on the work done on scroll compressors mainly

because knowledge on this topic is essential for the design and development of

scroll expanders. It is also demonstrated that the scroll device is the most

appropriate machine for the requirements of the present study. The existing, very

limited amount of work that has been done up to now on scroll expanders, is also

presented.

Chapter 3 describes the computation of thermodynamics and flow process in a

scroll compressor-expander based on the work of N. Stosic. It also contains a

discussion of the results from the Quasi 1-D flow modeling. The importance of the

relationship between build-in volume ratio and build-in pressure ratio and the use

of the correct pressure ratio is clearly defined. The significant point is that the

build-in volume ratio is a constant for any given scroll compressor or expander

design but the pressure ratio is not, and is a function of both the gas being handled

and the rotational speed. The linking of a scroll expander to a scroll compressor in

a sealed 'Expressor' unit is also described in this chapter. This may be used both in

new systems and for retrofit applications in place of a throttle valve. The results of

computer simulations of Expressor performance in a large industrial chiller are

shown.

In the first part of chapter 4 we present the necessary equations needed for the

analysis. As will be shown in section 4.4, these equations form the basis for the

development of the grid generation code. The derivation of the equations was

necessary since it is not based on any publish data, however it is partially based on

the patent of the inventor of the machine. Full analysis of the geometry is given in

appendix A. Then follows a survey on the different methods of grid generation and

finally the design and development of a grid generation program that can handle

3
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the complexity of the working volume of the scroll device is analyzed. Aspect

ratio, orthogonality, cell distortion, and smooth distribution, are some of the

difficult issues involved in the transient structured body fitted grid generation

package developed.

In chapter 5 we give the mathematical basis for a comprehensive general purpose

model of fluid flow and heat transfer from the basic principles of conservation of

mass, momentum and energy. This leads to the governing equations of fluid flow,

the so called Navier - Stokes equations. The governing equations are complex non

linear partial differential equations, which can be solved using numerical methods.

Discretization methods, advection schemes, time differencing schemes and

pressure / velocity coupling algorithms are discussed. Commercially available CFD

software packages are reviewed and CFX - FLOW3D is described in detail. Flows

inside scroll compressors - expanders are turbulent, time dependent, compressible

and for the case of the expander two phase. Furthermore these flows are driven by

the wall motion and, therefore, are characterized by moving boundaries. In the last

section of this chapter the results of the three dimensional modeling are shown.

Chapter 6 contains some concluding remarks and suggestions for possible future

research.

4



Chapter 2
Literature Survey

2.1 Introducflon

Since its invention by Perkins in 1834, there has been no major change in the

layout of vapour compression refrigeration plant. However, design aspects such as

refrigerating controls, amount of superheating, sub-cooling, etc. have been

modified over the years. All these modifications were related to production cost,

ambient conditions and other manufacturing related factors. The need to develop

more efficient compressors considering all aspects such as noise, vibration, weight,

efficiency as well as the losses due to throttling, still exists.

In this chapter we examine previous efforts to develop two-phase expanders and

compressors. Emphasis is placed on the work done on the scroll. It is also

demonstrated that the scroll device is the most appropriate machine for the

requirements of the present study. The existing, very limited amount of work that

has been done up to now on scroll expanders, is also presented.

2.2 Compressors

Compressors are generally divided into two different categories or types based on

the principle on which they operate. These types are positive displacement and

aerodynamic, the latter type is sometimes called dynamic. Figure 2-1 shows a chart

of common compressor types separated according to the above categories.

An area where confusion arises surprisingly often is in the specification of the

"duty" required from an industrial compressor. Different industries have different

conventions, some call for volume flow, others mass flow, and in the refrigeration

industry the "duty" is rated in the heat units absorbed by the refrigeration plant.

Over and above the basic "duty" specification, there is the question of

performance, tolerances and guarantees which can also be a subject of

misunderstandings.

The convention for rating compressors in the refrigeration industry is quite
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different from the convention used in the case of air, gas or chemical applications.

Compressors in the refrigeration industry are rated on the basis of their

refrigeration capacity at specific evaporating and condensing temperatures. This is

largely a function of mass flow.

Reciprocating

Piston Diaphragm

Compressors

Positive displacement	 Aerodynamic

Rotary	 Centrifugal	 Axal	 Ejector

One shaft
	

Two shaft
	

Three haft

Sliding Liquid Scroll
	

Roots Twin Stepped Tooth
	

Zmmern
vane	 ring	 screw	 rotor

Figure 2.1 Classification of common industrial compressors

22.1 Aerodynamic Compressors

In a turbine the working fluid enters at a high pressure and acquires increased

kinetic energy as it expands through a ring of fixed nozzles to a lower pressure.

The stream of fluid then undergoes a change of momentum as it flows trough

passages between blades attached to the rotor, and the component in a direction

tangential to the circle of rotation produces the output torque at the shaft.

This series of events is reversed in aerodynamic compressor. Input torque from

some external source imparts a change of momentum to the working passage

between the rotor blades. Having acquired an increased velocity, the fluid then

slows down with an accompanying rise of pressure while flowing through a ring of

fixed diffusers.

There are two main types of aerodynamic compressors, distinguished by whether

the flow through the machine is in the axial or radial direction. In these machines

the fluid undergoes a continuous steady-flow process and the speed of flow is very

high. For this reason comparatively small machines can handle large mass flows

and large work transfers, and the processes can be assumed to be adiabatic (Rogers
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&Mayhew 1980).

2.2.1.1 Centrifugal Compressors

The first commercial centrifugal compressor used in refrigeration service was

promoted by Willis Carrier in 1920. Since then the centrifugal compressor has

become the dominant type of compressor in large installations.

Centrifugal compressors serve refrigeration systems in the range of 200 to 10,000

kW of refrigeration capacity. Evaporating temperatures in multistage machines

may extend downwards to -i00 C, although one of the major uses of the

compressor is the chilling of water to about 6° C to 8° C in air conditioning

systems.

Centrifugal compressors are similar in construction to centrifugal pumps in that the

incoming fluid enters the eye of the spinning impeller and is thrown by centrifugal

forces to the periphery of the impeller. Thus the blades of the impeller impart high

speed to the gas. From the impeller the gas flows either into diffuser blades or into

a volute, where gas momentum is lost and its pressure increases. The centrifugal

compressor may be manufactured with only one wheel if the pressure ratio is low,

although these kind of compressors are generally multistage. Centrifugal

compressors operate with adiabatic efficiencies of 70 to 80 percent.

2.2.2 Positive Displacement Compressors

In this type of machine gas is drawn into the compressor, it is trapped within it and

is then positively displaced out of it by the movement of one or more components.

The term "trapped" is used to indicate that the quantity of gas involved in the

compression processes, is not affected by either the suction or discharge cycles of

the machine. These types of compressor can develop at the discharge port exactly

that pressure which is necessary to discharge the gas from the machine, subject of

course to the power available and the physical constrains of the compressor design.

2.2.2.1 Reciprocating Compressors

Reciprocating compressors have been in existence for a very long time. The basic

principle of a piston or reciprocating compressor is that gas is drawn into a cylinder

by the movement of a piston. Originally, the piston's movement leaves a free space

and the gas flows into this to fill it. The piston then reverses the direction of its

7
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movement and forces the gas back out of the cylinder. Valves are fitted to both

inlet and outlet which ensure that the gas enters and leaves by different ports.

From the action of the piston compressor it is clear that this device belongs to the

type of positive displacement machines. The air or gas is sucked in, compressed

and then pushed out, that is displaced by the movement of the piston. The higher

the pressure of the system into which the gas is to be discharged the greater the

force required to move the piston during the compression-discharge cycle and

hence the greater the input power of the device. Consequently, the power input to a

reciprocating compressor increases with its discharge pressure. The maximum

possible discharge pressure of a piston compressor is dictated by the available

power, subject to the mechanical and thermal limitations of the design, and is not

in any way affected by the speed.

By construction, at the end of the compression/discharge stroke, there is still some

space left between the piston and the top of the cylinder. This is the so called

clearance volume and the gas trapped in there is at discharge pressure. Due to this

pressure, if at the end of the compression/discharge stroke the force at the back of

the piston is released the gas in the clearance volume expands pushing the piston

backwards some distance until the forces on either sides of the piston become

equal. Two points arise from this situation.

Firstly, the expansion of the gas does useful work in moving the piston backwards,

so recovering much of the compression work put into the gas in the clearance

volume.

Secondly, no additional gas is drawn into the cylinder until the clearance volume

gas has expanded down to the suction pressure. After this point is reached, further

movement of the piston reduces the pressure in the cylinder below suction pressure

and suction flow past the inlet valve commences. Thus the volumetric efficiency of

a compressor with clearance volume is directly affected by the clearance volume.

2.2.2.2 Screw Compressors

The so called "twin" screw compressor is the type of compressor which has been

developed for the widest list of applications and has the largest range of available

sizes. Compared to some other types, for example piston compressors, the history

and therefore technology, of screw compressors is relatively young. The screw

8
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compressor was developed in the 1930s and first became popular for refrigeration

service in Europe in the 1960s.

The screw compressor consists essentially of two meshing rotors in a casing. The

male rotor drives the female rotor in a stationary housing. The refrigerant enters the

one end of the compressor at the top and leaves the other end at the bottom. At the

suction position of the compressor a void is created into which the inlet vapor

flows. Just before the point where the interlobe space leaves the inlet port, the

entire length of the cavity or gully is filled with gas. As the rotation continues the

trapped gas is moved circumferentially around the housing of the compressor.

Further rotation results in meshing of the male lobe with the female gully,

decreasing the volume in the cavity and compressing the gas. At a certain point into

the compression process the discharge port is uncovered and the compressed gas is

discharged by further meshing of the lobe and the gully. A major feature of this is

that there is zero clearance volume.

2.2.2.3 Scroll Compressors

After the 1970's energy crisis, conservation has been the most emphasized topic for

air conditioners. The demand for air conditioners with higher efficiency have been

required from the distributors to meet the customer's needs concerning energy

savings. Under such a situation, there came a strong demand for higher efficiency

compressors, because the improvement of the compressor efficiency is the most

economical method in spite of technological difficulties. Thus most compressors

manufactures have been eagerly improving conventional compressors. However,

some of them turned their attention to scroll devices.

The concept of scroll devices goes back to the beginning of this century. The scroll

machine was invented by Leon Greux, a French scientist in June 1905 and was

patented on 3rd October 1905. It is currently attracting the designers attention

because of its high efficiency and smooth operation. One of the main reasons why

scroll machines were not fully developed or substantially improved for such a long

period, was the lack of precise production techniques needed for the construction

of such machines. However designers started looking at these kind of devices

again in the early 1970's.

The scroll compressor was not commercially successful until 1976. This was

primarily because of sealing and wearing problems which placed severe limitations

on the efficiencies, operating life and pressure ratios attainable. Such sealing and

9
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wear problems were of both radial and tangential types. However, since then a lot

of work is been done and many problems were overcome.

Scroll compressors have a lower level of noise arid vibration, than rolling piston

rotary compressors, and because of this, they are used extensively as air conditioner

refrigeration compressors.

Compared to the other types of compressors, the inherent advantages of the scroll

compressors are:

• fixed build-in volume ratio making it valveless and more reliable as well as

adaptable to variable speed,

• large inhaling hole and nearly continuous inhaling making it have small

pressure drop,

high volumetric efficiency,

. low noise.

However, designing and manufacturing this machine is very difficult. The early

1970's, research and development work on the scroll compressor has been carried

out steadily until now. Practical application however, was not achieved until

recently mainly for the following reasons

very high precision tooling is required for the production of the scroll

compressor,

• a complicated process is required to assemble the parts involved in the

compression mechanism.

2.2.2.3.1 Working Process

The main components of the scroll compressor are shown in Figs. 2.2a and 2.2b.

There are the fixed scroll, orbiting scroll, anti-rotation coupling, crankshaft and

crankcase. The outside suction port and the outside discharge port are in the fixed

scroll. The inside suction ports are located at the vane profile termination, the

inside discharge ports are located at the vane profile start. The area of the inside

suction ports varies periodically with the crankshaft rotation. The gas is inhaled

from the outside suction port then gets into the suction pockets tangentially through

the inside suction ports. After compression it leaves the displacement volume

tangentially through the inside discharge ports, then enters the central pockets.

Finally it leaves the compressor axially through the outside discharge port.

10
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Figure 2.2b Scroll compressor rotating mechanism
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The working process can be divided into five stages: steady suction, suction

closing, compression, initial discharge, and steady discharge. In the steady suction

stage, the displacement volume increases from zero to a maximum, the crank angle

range is broad and the suction time is long. In the suction closing stage, the volume

begins to decrease gradually, but the inside suction ports are not closed off, so the

gas returning phenomenon arises and the pressure of the closed pockets is higher

than the nominal suction pressure, this increases the volumetric efficiency. In the

compression stage, leakage has the main influence on the compressor efficiency. In

the initial discharged stage, the compressor starts to discharge forcibly, the gas

scurries through the inside discharge ports when the pocket pressure is different

from the central pockets. In the steady discharge stage, the gas leaves the

compressor but the effective area of the outside discharge port decreases because of

the orbiting scroll interference. So the velocity increases. A detailed survey of

scroll compressors follows.

2.2.2.3.2 Scroll Members

Conventional scroll members are mirror imaged pairs comprising a single

appropriately shaped spiral vane, of uniform thickness and height, protruding from

an end vane plate. Spirals of the involute type are most commonly used,

particularly the involute of a circle. The basic parameters defining the scrolls are

displayed on fig.2.3. They are the base circle radius, rb; orbiting radius, r 0 ; vane

height, H and vane thickness, T.

Vane thckness T

jose circie radius

Figure 2.3 Basic geometric parameters

2.2.2.3.3 Principle Of Operation

The members are appropriately phased, and eccentrically mated, so as to form

various pockets bounded by the vanes and their respective end plates, as shown in
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fig.2.4 Most commonly one scroll is fixed and the other is made to orbit by a crank

mechanism. Through relative motion of the members the pockets, initially opened

to the surroundings, are first formed, sealed off, progressively moved inwards

while reducing in volume, and finally merged into a common discharged volume.

Conversely simultaneous rotation of the members about their respective geometric

centre yields an equivalent relative motion of members. However the first scheme

only was considered in the present study.

The inherent advantages of such a scroll machine are valveless compression

virtually constant volumetric efficiency, nearly continuous suction and discharge

flow, smooth operation, low relative velocity and potentially low unbalance.

( a )	 (b)	 (c)

(d)	 (e)	 (f)

Figure 2.4 Working volumes in a scroll compressor

2.2.2.3.4 Analytical Model

To model the scroll suction compression and discharge process, descriptions of

volume in the pair of compression pockets and area open for suction and discharge

flow as functions of time are required. These geometric relationships are more

conveniently described as functions of scroll orbit angle, or crank angle.

13
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The volume in a pair of scroll pockets for a typical scroll compressor is shown in

fig.2.5 from the start of suction (SOS) through the end of discharge (EOD). The

process from the start of compression (SOC) to the start of discharge (SOD) is

approximately a closed compression process; only leakage or porting for some

pneumatic operations such a back chamber, prevent it from being truly sealed.

Soc

/ N _
1

Anqie
SOS	 EOD

Figure 2.5 Volume in a pair of typical scroll pockets from SOS to EOD.

However as far as the "closed" process is concerned, by the time the inner wrap tips

open at SOD, the control volume in the pocket is no longer "closed", and the

problem of defining a boundary to the control volume in the open regions must be

resolved.

SUCTION PROCESS

The suction gas flow in a scroll compressor is driven by the opening and closing of

the pair suction pockets. The pair of suction pockets referred to are shown

crosshatched in fig.2.6 for a typical scroll compressor geometry. The volume in the

suction pockets, and the inlet cross - sectional area into the pockets varies with the

crank angle. During most of a scroll orbit cycle, the volume in the suction pockets

increases and causes gas to be pulled into the pockets. But near the end of the orbit

cycle, the volume in the pockets begins to decrease until they are abruptly closed

off at the end of one complete cycle. (Note that the end of the suction process

coincides with the start of the closed compression process)

C)

E

0
>

14



Orbiting
scro

FL--'
Sc

Chapter 2
	

Literature Review

To adequately model the scroll suction process, the flow dynamics into the control

volume of the suction pockets must be considered. The instantaneous mass of

suction gas contained within the suction pockets control volume can be defined by

the time differential continuity equation.

---(m) = ri
	 (2.1)

Where : m, = mass of gas in suction pockets control volume

= mass of gas into or out of suction pockets

Figure 2.6 Typical pair of scroll suction pockets

The instantaneous mass flow rate of suction gas entering or leaving the control

volume can be described using the steady one-dimensional, isentropic flow

equation.

m =CD pA Sp 2(h Up -h dO )	 (2.2)
sp

Where : CD = Discharge coefficient for flow into or out of suction pocket

p = Density of gas

A = Suction pocket cross sectional area

= Enthalpy of gas upstream or suction pocket inlet

hdo = Enthalpy of gas downstream

15
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Also, the first law of thermodynamics on a time rate basis is applied to the suction

pockets control volume.

[h	
v	 V	

out	

(2.3)
+—+gz]1 —,m [h+—+gz]

OUt	 2

Where:	 = Energy contain within the control volume

For all equations it is assumed that gas properties are uniform throughout each

defined region, e.g. properties are uniform throughout the suction pockets. In

applying the above equation it is reasonable to assume that the following terms are

negligible and can be eliminated: heat transfer, boundary work and kinetic and

potential energies. One might question why the boundary work term can be

neglected since the suction pockets volume changes considerably during each

cycle.

=	 -
	 (2.4)

Where: Psp = Pressure in suction pockets

'sc = Pressure in suction chamber
Vp = Volume in pair of suction pockets

The reason is that the pressure difference across the suction pockets control volume

boundary is quite small, consequently the product in the work term is negligible

compared to the enthalpy terms. What is left then is the classic filling process

energy equation where it is assumed the time rate change of energy in the control

volume equals the time rate change of internal energy.

= m h	 (2.5)

Where: u, = Internal energy of gas in the control volume

To utilise eq. (2.2) for the mass flow rate into or out of the suction pockets the

conditions in the suction pockets and the suction chamber surrounding the orbiting

scroll must be known. Immediately after the start of the cycle, the volume in the

pocket is still quite small. During this early part of the suction process it can be

assumed that quasi - static filling of the suction pockets takes place so that at any

instant in time the volume in the pockets is completely filled with gas. This

assumption allows the analysis to be initiated as conditions in the suction pocket

can then be defined. With the conditions in the suction pockets and suction
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chamber specified, the mass flow rate into the pockets can be computed. The

continuity equation then determines the instantaneous mass in the suction pockets

so that the conditions in the pockets can be defined for that time increment. This

process is continued until the end of the suction cycle.

What results from using this scroll suction model (Nieter J.F. & Gacne D.P. 1988)

is the ability to predict the pressure rise in the suction pockets that occurs as the

volume in the pockets is reduced near the end of the suction process. This increase

in suction pockets gas pressure indicates that early compression takes place before

the displacement volume of gas is sealed off at the start of the actual closed

compression process (S.O.C). Besides predicting the early compression of suction

gas, this suction process model can also produce a continuous function for

instantaneous mass flow rate at suction which is important for accurate prediction

of suction pressure pulsations in the manifold system.

COMPRESSION PROCESS

The compression process pertains to "closed" compression after the outer wrap tips

seal off at SOC and continues until the inner wrap tips open at the SOD. Farther

compression effectively continues after SOD, through the discharge process until

EOD. Therefore the following relationships that are used to model the compression

process are actually applied from SOC to EOD as well. For all process equations, it

is assumed that gas properties are uniform through each region, e.g. properties are

uniform throughout the compression and discharge pockets.

The instantaneous mass of gas contained within the control volume for a pair of

compression pockets can be described by the differential continuity equation.

=	 0	 0

(m-m )	 (2.6)outdt

Where: m = Mass flow rate of gas in the volume

Leakage's are also included in the above equation, however a detail analysis about

leakage's follows later on in this chapter.

The gas state in the control volume during the compression process normally is

modeled by one of two approaches: either using the polytropic process, or using the

first law of thermodynamics (energy conservation). The polytropic process model
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is quite often a good approximation to employ for displacement compressors. It

simply uses the relation:

1 ip

= p01i 
_R_
P SOC

Where: Subscript C: control volume

The greatest difficulty with this model is obtaining an accurate value for the
polytropic exponent 	 , a good approach is to measure II in a laboratory

experiment. However the first law of thermodynamics on a time rate basis can be

applied to the control volume using:

u )=Q-W+rn. rh 
v2	 ° [

h++z]	 (2.8)I	 Out
dt	 C C	 in[ 

+---+gz —m
Out

This approach is more difficult that the polytropic model. The general energy

equation given must be reduced to usable form, typically a differential equation of

gas temperature in the control volume. Further reduction of the general form

involves obtaining a number of partial differentials relating enthalpy and pressure

to temperature and specific volume. These are trivial for the ideal gas properties,

but for real gas properties are more difficult to compute, in such cases the

polytropic approach would be completely inappropriate. Finally, the greatest

obstacle using eq.(8) is in obtaining reasonably accurate values of heat transfer Q.

Models used for heat transfer in positive displacement compressors have been

fairly documented for reciprocating piston types, but much less so for other types,

and almost not at all for scroll compressors.

DISCHARGE PROCESS

The instantaneous mass flow rate of discharge gas exiting or back-flowing into the

control volume can be described using the steady, one dimensional isentropic flow

equation for a nozzle.

rn (0) = p A C	 2gd(h - h d O )	 (2.9)D	 D D D

Where: AD = Discharge port area

CD = Appropriately chosen flow coefficient

(2.7)
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As stated previously, the relationships used to model the state of gas in the control

volume during the discharge process are the same as those used during the "closed'

compression process.

Gas pulsation's in compressors manifolds have a significant effect upon suction and

discharge processes. Modeling this interaction between the discharge flow process

and the manifold pressure pulsation's can be accomplished in a number of ways.

Probably the most powerful and flexible of these approaches is the transfer matrix

which is performed in the frequency domain.

In the transfer matrix approach, pressure pulsation's are modelled by combining the

steady state acoustical impedance description of the manifold with an acoustical

source: the oscillatory gas flow in or out of the port. Since the mass flow rate

through the discharge port is a periodic function of time or crank angle, it can be

represented by a finite Fourier series.

LEAKAGES

Minimizing leakage from the compression chamber is a significant subject in any

type of compressor.

Compression chambers of the scroll compressor are the spaces configurationaly

formed between the fixed scroll wrap and the orbiting scroll wrap, so there occurs

clearance through the fine clearances from the higher pressure chamber to the

lower pressure chamber, as shown in fig.2.7. There are two kinds of leakage, one is

the radial flow through the axial clearance, and the other one is the tangential

leakage flow through radial clearance. In the scroll compressor, leakage from the

higher to the lower pressure pockets is the largest factor governing both the

volumetric and adiabatic efficiencies.

1-D APPROACH

Considering only the leakage between the tips and bases, flow rates that include

frictional effects are determined using (Gaillat J. L. 1988):

rn = A bt j2Lp p D h /(fL)	 (2.10)

Where: Abt = Leakage flow area between tips and bases

= Inter pocket pressure difference
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= Upstream density

Dh = Hydraulic diameter

f = Friction factor - Moody

L = Inter pocket tip/base leakage path

To solve this equation iteration is required since the friction factor f, is dependent

on the Reynolds's number, which in turn is dependent upon mass.

Tip ciear

Lower Higher
pressur Pressure
pocket	 ocket

Radial clearance

Lower	 Higher
pressure	 pressure

pocket	 pocket

Figure 2.7 Leakages in a scroll machine

Flank leakage is modeled as a converging nozzle. With a known pressure

difference and flank clearance, an assumption of isentropic steady-state

compressible flow yields.

r = KAf PUPU	 - R p ]
	

(2.11)

Where: K = Contraction coefficient - empirical

Af = Leakage flow area between vane flank surfaces

= Upstream pressure

R = Down stream to upstream pressure ratio
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The deficiency of the 1-D inviscid model is that viscous effects, while important,

are neglected. On the other hand, purely 1-D viscous flow (stokes flow) ignores the

convection effect, which may be significant when the pressure gradient is large.

To fully understand the flow through clearances, an approach based on

computational fluid dynamics (CFD), made by Yong H. 1994 is presented here.

The aim was to calculate the detailed flow field, including velocity, pressure and

mass flow across the clearance and assessing the threshold as to when a quasi 1-D

model is sufficient enough to predict the mass flow. The set-up of the problem is

illustrated in fig.2.8 One dimensional models or quasi 1-D models can be a good

approximation only when the ratio /L is very small.

Ri	 H	 P2
Ti

Figure 2.8 Tip clearance geometry

2-D APPROACH

Two dimensional Navier Stokes equations are used to calculate the flow field. The

flow is assumed to be compressible, viscous and laminar. The ideal gas law is

employed as the equation of state. The system of partial differential equations

governing this type of flow is described as follows in non-dimensional form for

Cartesian co-ordinate.

1	 Ev	 Fv1

_5_
(2.12)

a2=yi

Where: Q = [P, p, ps,, e]T

E=[ p2+p , 	 u(e+p)]T

F = [p , Pu Pv2P v(e+p)]T

p is density, u and v are velocity components, e is total energy, P is pressure, a is

the speed of sound and y is the ratio of specific heats. Reynolds's number Re is
defined as: Re = p 1 a 1 H/ji 1 . The viscous terms are:
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	0 	 1	 r	 o	 1

	

txx	 tyx	
(2.13)

E 

= [	

txy	

= [
+ vt y + Pr'(Y - 1)_i a2 utxx + vtxy + tp(y —l)'

x]

1u
Where shear stress: 	 =	 +	 etc.

and Pr is Prandtl number. The viscosity follows Sutherland's law:

r
J__L2iJ Too+110	 (2.14)

jt 00	[-r]	 T+110

A finite volume method was used to discretize eq.(12) so that a system of algebraic

equations for five unknown variables (p, u, v, p, e) were derived. With the

appropriate upstream boundary conditions where total pressure and temperature

were specified and downstream conditions where static pressure was set, the

equations are integrated to steady state using Mac-Cormac method; which is

second order accurate. Upstream and downstream locations are defined as some

distance up and down the step (about 10 H).

2.3 Two Phase Expanders

A vapour compression refrigeration system is characterised by the direct two-phase

expansion of the entire flow, from the exit of the condenser to the entrance of the

evaporator. Fig.2.9 illustrates the cycle on a T-S diagram.

With reference to basic fundamental thermodynamic principles it can be stated that

this process (expansion) has the ability to produce a specific amount of work.

However since the fluid expands entirely in the two phase area, it is necessary to

design and develop an expander which could accept a two phase flow of liquid and

gas at reasonable efficiency and reliability.
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Figure 2.9 Refrigeration cycle with isentropic expansion

Up to date a lot of work is been done to develop two phase expanders that could be

used to substitute throttle valve and recover some power from the expansion

process in a refrigeration cycle. Two phase expanders such as biphase turbines,

and screw expanders have been developed, however efforts to develop and produce

scroll expanders started recently, and not much information is available.

Instead of throttling the refrigerant to produce cold liquid, the refrigerant could be

expanded in a two phase expander. The work conventionally lost in the irreversible

throttling process could be recovered as shaft power, which could in turn assist in

driving a second compressor (or the main compressor ). The electricity

consumption for refrigeration could be reduced by approximately 10% also the

coefficient of performance will be increased by 13%. Apart from the above

application two phase expanders could be used in low grade heat recovery

(Trilateral Flash Cycle).

It is a well known fact that conventional turbines and reciprocators are not suitable

for the expansion of hot liquids in this manner since liquid droplets erode turbine

blades and reduce the aerodynamic efficiency of the turbine, while they wash the

lubricating oil off the cylinder walls of reciprocating expanders and so promote

wear and seizure of the mechanism. Therefore some alternative methods have been

investigated for this purpose. These are:

1. Scroll expander

2. Lysholm total flow expander

3. Specially designed two phase turbines
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2.3.1 Scroll Expander

In recent years, scroll machinery has been put into practice as compressors, taking

advantage of their higher efficiency and their low noise/vibration. However the

scroll principle can be applied also to the expansion process.

Unfortunately not much work is been done on scroll expanders. However the very

small and limited amount of work that has been done is concerning only the single

phase flow.

In 1988 Yanagisawa et. al. published a paper (in Japanese) with the title "study on

fundamental performance of scroll expander". Equations of volume pressure and

output torque were derived. Moreover, practical losses which occur in the scroll

expander were analysed theoretically. It was also shown that the leakages through

axial clearances increase the flow rate of the expander and decrease the torque

greatly. An experimental scroll expander was also developed and showed

reasonable performance and recorded its maximum efficiency of 75%.

In 1992 Morishita et. al. used the scroll principle to develop a scroll expander to

use it in the Otto cycle spark ignition engine. The theory and experience of the

scroll compressor was extended to an engine with a scroll compressor and a scroll

expander. The scroll compressor compresses the air fuel mixture, and the scroll

expander is used to get power from the heat of the combustion. The flow is

continuous and uni-directional. Which is different from that of the reciprocating

engine. Although the Brayton cycle engine is possible with a scroll compressor and

expander, the temperature of the scroll expander could be extremely high due to

the continuous combustion. The requirement of the scroll material was becoming

very severe. The spark ignition engine was therefore studied in their report, based

on the air standard Otto cycle.

PRINCIPLE

The scroll engine Morishita recommends consists of two main components, the

scroll compressor and the scroll expander. The elements were assumed to have the

same geometric dimensions and to be synchronised via a proper mechanism. After

several degrees of rotation, the compressed air-fuel mixture discharge is to

commence. The volume of the combustion chamber (innermost) of the scroll

compressor is minimum at this angle, actually is zero. The discharge port of the

scroll compressor and the combustion chamber of the scroll expander were
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connected via a discharge valve, the compressed air-fuel mixture is transferred to

the combustion chamber of the scroll expander. The volume change rate of the two

connected chambers is the same during the transfer process. The discharge valve is

then closed this corresponds to the end of the compression process.

The air fuel-mixture is ignited in the combustion chamber of the scroll expander.

The combustion is assumed to take place instantly. The pressure of the combustion

chamber of the scroll expander increases suddenly. The orbiting scroll of the

expander is therefore driven by the high pressure of the combustion gas. The gas

pressure decreases during expansion. This corresponds to the expansion process.

The expansion ends when the gas reaches the outermost chamber. The gas is then

exhausted from the expander.

Another paper on the scroll expanders was published by the Swiss Federal Institute

of Technology on 1994. That paper describes a 1 to 3.5 kW hermetic scroll

expander-generator modified from a standard hermetic scroll compressor, an

organic Rankine cycle test facility build to test up to 10 kW, and a set of

experimental results using HCF134a in the dry vapour domain. Peak overall

isentropic efficiencies in the range of 63% to 65% for speeds of rotation varying

2400 and 3600 rpm were reported.

2.3.2 Lysholm Total Flow Expander

The idea to use a Lysholm twin screw machine as a direct two-phase expander (of

geothermal brines) stems from the patents of Sprankle [1973][1976]. The Lysholm

design consists of a pair of parallel rotors with meshing helical lobes which form

compression or expansion chambers in the casing. This configuration was patented

in Sweden by Lysholm in 1934. The design has found its main use as a heavy duty

air compressor known for its reliability. The use of the Lysholm design as an

engine has been suggested at several times, including the suggestion for its use in

geothermal energy conservation. Lysholm [1967] had earlier proposed his

machines for dry gas expanders.

The Lysholm twin screw expander is a positive displacement machine which

operates by the direct expansion of fluids. With the aid of fig.2.l0 the principle of

operation of the expander can be described as follows. The pressurized fluid flows

through the throttle T and enters the high pressure pocket formed by the meshed

rotors, the rotor case bores and the case face. This pocket designated by A in the
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figure, is mostly hidden by the rotor lobes, but it can be seen in the plan section

view. As the rotors turn, the pocket elongates, splits into a V, and moves away

from the inlet port to form the region designated by B. With continued rotation, the

V lengthens, expanding successively to C,D and E as the point of meshing of the

rotors appears to retreat from the expanding fluid. The expanded fluid at a low

pressure is then discharged into the exhaust port. Energy is extracted from the fluid

in the piocess. Engine geometry determines the theoretical volumetric expansion

ratio, which is the ratio of the final to the initial chamber volumes.

EXPANDING

ROTORS

Figure 2.10 Layout of Lysholm screw Expander

Testing of the Lyshoim engine has since been conducted by the Lawrence

Livermore Laboratory (LLL), by the Jet Propulsion Laboratory (JPL), and by the

department of Mechanical Engineering at University of California, Berkely. The

unit tested was an air compressor with 152.4 mm rotors modified by Sprankle. A

maximum efficiency of 55% was observed for a power output of 30 kW at 5000

rpm. Latterly a smaller version of this (130 mm rotors) was build from which a

maximum expander efficiency of 53% was obtained at 47 kWe output (Steidel

[19821). Despite extensive experimental work, there had been a general lack of

theoretical analysis on the Lyshoim screw expander. Steidel proposed an empirical

model using curve fitting. More recently Taniguchi et al [1988] developed an

analytical method for estimating the performance of a two phase screw expander.

The operation of a screw expander was simulated by the expansion of a fluid

between two pistons with appropriate leakage paths. Good agreement was

obtained against the experimental results from a prototype machine with a
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diameter of 81.6 mm and a length of 135 mm. However, the various frictional

losses and the two phase interaction were not accounted in the procedure.

2.3.2.1 City University And Lyshoim Expander

Besides the work world wide, a research programme on two phase expanders was

initiated by Smith at City University, London beginning in late 1982. This was

intended primarily as a means of improving power recovery from geothermal

resources. The work concentrated on the development of twin-screw expanders

using suitable organic fluids operating in a closed cycle system.

A unique test rig was constructed and on it twin screw expanders attained adiabatic

efficiencies of more than 70% at power as low as 25 kW when operating in the

two phase mode. Ii addition to the experimental work, a programme of analytical

studies was developed from earlier work on the computer modeling of screw

compressor performance carried out at the university of Sarajevo by Stosic.

Smith and Stosic concluded from their investigation that the failure of the earlier

investigators to get good results was entirely due to the design of such machines

with inappropriate build in volume ratios. However, they also examine the

possibility to replace the throttle valve in the refrigeration cycle with a screw

expander. They obtained an overall adiabatic efficiency for the expander, including

- bearing, seal and timing gear losses, to be of the order of 70% over a large range of

operating conditions.

2.3.3 Two Phase Turbines

During the same period, work was initiated at JPL and LLL to seek an alternative

efficient two phase expander system aimed at overcoming the restrictions imposed

by the positive displacement type machines. Austin [1973] and his geothermal

group at the LLL proposed a two-phase impulse turbine for geothermal application

in which the two phase brine from geothermal wells would be passed though the

turbine. It was hoped that the water drops would be small enough for the steam

and water to behave as a homogeneous fluid and give these turbines efficiencies

comparable to those of vapour turbines. However the detail calculations on drop

sizes and trajectory showed that the liquid drops in two phase turbines would be

too large to follow the gas phase, and that the liquid would impinge on the blades

and form a thin liquid film. The friction drag of this film would be so high that the
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efficiency of single-stage impulse turbines would be limited to little more than

50%.

As a result of low efficiencies achieved by two phase impulse turbines a rotary

separator turbine was developed by Biphase Energy Systems [1982]. The basic

idea was to replace the throttle valve with a separator system in the traditional

flashed steam cycle system. In place of the throttle valve, the geothermal fluid is

expanded in a two phase nozzle with an adiabatic efficiency of around 90%. The

high velocity liquid and vapour so formed are then separated in a rotary drum. The

steam is then passed to the steam turbine, while the liquid is either used in a liquid

turbine to produce additional power or pressurised in a diffuser to reduce the re

injection power. This rotary separator turbine was investigated and tested in the

laboratory and at three geothermal resources. The machines were reported to

operate well and a power gain of some 20 -25% more than that from a single flash

system was achieved. A maximum adiabatic efficiency of the separator system of

35% was measured although it was predicted that improved designs with up to

50% efficiency were attainable in the future. It was thought that the impact and

other losses in the rotary separator would limit the turbine efficiency as severely as

the liquid friction in blade turbines.

Further work on a specially designed two-phase turbine was attempt by Elliot

[1982] at the JPL using either steam for total flow or organic fluids. The two phase

turbine utilised a uniform mixture of liquid and gas accelerated in a two-phase

nozzle which is similar in design to that used in the rotary separator turbine. The

mixture acts directly on an axial flow or tangential impulse turbine. Based on this

concept he predicted an upper limit efficiency of about 65% for two phase

turbines, and probably only attainable with organic working fluids. This prediction

could not be justified by the extensive experimental program carried out on both

JPL and LLL, which showed that this efficiency was not attainable and a

maximum efficiency of only 55% was achieved using organic fluids. However it

was found that the JPL two-phase nozzle study calculated velocities which are

within 2 - 4 percent of measured values and the nozzle showed good performance

over a wide range of operating conditions.

Carrier [1994] introduced in their chiller plant a device using a high efficiency two

phase nozzle, followed by separation of the liquid and vapour components for

independent power recovery. This biphase turbine is introduced as a throttle valve

replacement. The adiabatic efficiency recorded is 50% and the turbine is linked
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directly to the main compressor to reduce the power output to the electric motor.

Gains in COP of 3 - 5% are stated to be possible by this means. See figure 2.11.

Figure 2.11 Refrigeration cycle, Carrier

As it was said above, Carrier has linked the expander with the compressor and

therefore the expander run at the same speed as the compressor. This might result

in a not so good working performance of the expander for the case where the

system will run at off design conditions. This thesis uses a completely different

way to recover the work from the expander.

2.4 Conclusions

Since the expansion process in the vapour compression cycle occurs entirely in the

two-phase region, a mechanical expander which can operate with two phase

mixtures and operate at high efficiency is the most important part of this study,

because the success of the whole project depends upon this. As it can be seen from

the literature review the need to design and develop a machine like this still exists.

As is the case for all rotary volumetric principles, reverse motion is inherently

possible and, therefore the conversion of scroll compressor to scroll expander can

be envisaged. Smiths investigation for this type of machine indicated that the

machines most applicable for the expansion of a two phase flow are the Lyshoim

twin screw expander and the scroll expander.

29



TWO PHASE
EXPANDER

Chapter 2	 Literature Review

Scroll expanders present definite advantages over potential volumetric machines.

In addition, the reduced number of parts, the ability to cope with two phase

working fluids and the inherent reliability proven in compressor mode are major

reasons for its wider use in energy recovery. The fast growing mass production of

such units as compressors is likely to also contribute to a lowering of the

production costs for expander applications.

Figure 2.12 The proposed cycle

What is recommended by this project is instead of coupling the expander with the

main compressor, introduce a second smaller compressor that will run in parallel

with the main one. All the work that will be produced from the expander in terms

of shaft power will be used to drive this new compressor which in turn will

contribute to the mass flow rate. This design appears to be more complicated than

the one Carrier uses, but the main reason is the performance of the expander at off

design conditions. The cycle is illustrated above (figure 2.12).
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Chapter 3
Quasi One Dimensional
Flow Modeling

3.1 Introduction

In this chapter we describe the computation of thermodynamics and flow process

in a scroll compressor and a scroll expander with reference to Stosic's work. This

chapter discusses also the results from the Quasi 1-D flow modeling. The

importance of the relationship between built-in volume ratio and pressure ratio and

the use of the correct pressure ratio is clearly defined. The significant point is that

the built-in volume ratio is a constant for any given scroll compressor or expander

design but the pressure ratio, which is a function of the gas being compressed or

expand is not. Speed also affects the relationship between pressure and volume

ratios.

Therefore, while it would be convenient to identify a compressor - expander by its

build-in pressure ratio since this is the basis of the correct selection for efficiency,

it is not practical to do so unless the compressor - expander is always going to

operate on only one gas. This is the case with air compressors so that typically

these use the pressure ratio for identification, whereas gas or refrigeration

compressors normally use the built in volume ratio. The feature of the "built-in

volume ratio" has been treated on the basis that it is a constant value in scroll

machinery. While this is true in the majority of cases, it is possible to incorporate

into the compressor - expander features which enable it to be varied. (such as

controlling the opening - closing of the discharge port)

The linking of a scroll expander to a scroll compressor in a sealed 'Expressor' unit

is also described in this chapter. This may be used both in new systems and for

retrofit applications in place of a throttle valve. The results of computer

simulations of Expressor performance in a large industrial chiller are shown.
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3.2 Theory

The equation set consists of the conservation equations for energy and mass

continuity together with a number of algebraic equations defining various

phenomena, which accompany the fluid suction, compression and discharge. The

mathematical model employs the differential kinematics relationship which

describe3 the instantaneous operating volume and its change with the rotational

angle, as well as the equations of conservation of the mass and the energy for the

adopted control volume. These are applied for each phase of the process that the

fluid is subjected to: suction, compression and discharge. The solution of the

equation set is performed numerically by employing the Runge-Kutta 4th order
method.

The model takes also into account the following effects:

• The working fluid can be any ideal or real gas or liquid gas mixture of known

properties (internal thermal energy , enthalpy).

• Inevitable leakage of the working medium which occur at any stage of the

process through axial or radial clearances is taken into account.

• Account can be taken of the effect of liquid such as oil, water or refrigerant

injecting during suction, expansion or discharge for lubricating, sealing or

cooling purposes.

3.2.1 Assumptions

Some assumptions need to be made in order to ensure an efficient computation,

these are:

• The fluid flow is assumed to be quasi-one dimensional.

• Gas or gas-liquid mixture inflow or outflow through the compressor suction or

discharge port was assumed isentropic.

• The leakage of the fluid through the clearances is assumed to be adiabatic.

3.2.2 Conservation Equations

The main difference of this model (comparing with other models) is the use of the

non-steady flow rather than the steady flow energy equation. Stosic proved that

this practice is computationally beneficial in evaluating the properties of real

fluids, as compared with the conventional methods using enthalpy as the

dependent variable.
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Non-Steady Flow Energy Equation: 
[JV 

=rnhJ_(rnh)+Q+W (3.1)

Where: 0 Crank angle.

h = h(0) Specific enthalpy.

in = m(0) Mass flow rate.

Q = Q() Heat transfer between fluid and sarroundings.

dv
W = P -i-- Thermodynamic work supplied to the gas.

ENERGY GAIN DUE TO THE GAS INFLOW [mh]

The energy gain due to the gas inflow into the working chamber is represented by

the product of the mass intake, and its average enthalpy. As such the energy inflow

varies with the crank angle. During the suction period gas enters the working

volume bringing the average gas enthalpy which dominates in the suction

chamber. While this process is taking place, a certain amount of the compressed

gas leaks into the working chamber through the axial and radial clearances. The

mass flow rate of the leaking gas as well as its enthalpy are determined on the

basis of the gas leakage equations.

Total inflow enthalpy is also affected by the amount of enthalpy flow into the

working chamber in the case of oil injection. Therefore if oil is injected into the

working chamber, the oil mass inflow together with its enthalpy must be included

in the inflow terms.

The mass inflow rate consists of:

m. =m +m +m.in	 suc	 l.g	 oil

Where rn	 Suction mass flow rate.

rn = Mass flow rate due to leakage gain.

m 01 = Mass flow rate due to the injection of oil.

The velocity of the oil depends on the amount of oil injected. The velocity of the

leaking gas will be analysed later on this chapter. Now as far as the suction fluid

velocity is concerned the following equation is used:

(0 =	 - h 1 )
	

(3.3)

(3.2)
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Where t is the suction coefficient, assumed to take a value of t =0.6 While "1"

and '2" denote conditions upstream and downstream of the considered port.

The fluid total inflow component consists of the following components:

(mhj =m,uc hsuc )+(rn i.g h i.g J+(rn oji hoi)	 (3.4)

ENERGY GAIN DUE TO GAS OUTFLOW [mh]

The energy loss due to the gas outflow from the working volume is defined by the

product of the mass outflow and its average gas enthalpy. During the compression

this is the gas which leaks through the clearances from the working chamber into

the neighbouring chambers at a lower pressure, where as in the case of delivery

this is the gas entering the discharge plenum.

The mass outflow rate consists of:

m 0 = m d S + m11	 (3.5)

where m di, = Discharge flow rate.

= Mass flow rate due to leakage loss.

The discharge fluid velocity can be calculated by the use of equation 3.3 but with

the appropriate discharge coefficient p.. Therefore the fluid total outflow enthalpy

consists of:

(mhj _.jmdS hdiS)+1m11 h 11 J	 (3.6)

Each of the mass flow rates satisfies the continuity equation:

=VpA

Where: V [mis] denotes fluid velocity

p [kg/rn3 ] fluid density

A [m2] the flow cross section area and

The mass continuity equation of the model is:

(3.7)
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rdml	 0

	

= m. —m 0 	(3.8)

HEAT TRANSFER [Q]

The heat exchange between the fluid and the compressor/expander tip and casing

(and through it to the surrounding) due to the difference in temperatures of gas and

casing and spiral surfaces is accounted for by the heat transfer coefficient

evaluated from the expression:

	

Nu = 0.023 Re° 8 	(3.9)

Here the surface over which the heat is exchanged, as well as the wall temperature

depend on the crank angle. The characteristic velocity for Re number is computed

from the local mass flow and the cross sectional area.

WORK SUPPLIED [WI

The thermodynamic work supplied to the gas during the compression process is

represented by:

Where : P = Pressure in control volume

dv/dt Working volume

3.2.3 Gas Leakage

The leakages in a scroll machine affect the total flow rate and therefore play an

important role because they influence the process by affecting the mass flow rate

(and therefore the volumetric efficiency), and the work efficiency. Two types of

leakages according to their direction with respect to the working chamber exists:

gain and loss leakages. The loss leakage leave the working chamber towards

neighbouring chamber with lower pressure. On the other hand gain leakages come

from the neighbouring working chamber which has a higher pressure.

The fluid flow through the clearance is taken into account for the computation of

the leakage velocity. The process is essentially adiabatic (Fanno flow). The present

model treats only the gas, no attempt is made to account for leakages of gas-liquid
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mixture. The clearance gap is assumed to have a rectangular shape and the mass

flow of the leaking fluid is expressed by the continuity equation:

=IL1V1P1Ag =1/hAg
	 (3.11)

where: = Vp

Ag = 1g cg

ög

ji (Re,Ma)

-The mass velocity of the leaking gas

-The clearance ("gap") cross sectional area

-The leakage clearance length (sealing line)

-The leakage clearance width ("gap")

-The "discharge" coefficient.

The computation of the leaking gas velocity follows from the momentum equation

which accounts for the fluid wall friction:

dp	 2 dx
COdO) +—+f----

I	 2Deg
(3.12)

Where: f(Re,Ma) is the friction coefficient (dependent on Re and Mach number)

Deg is the effective diameter of the clearance gas (Deg 2g)

dx is the length increment

From the continuity equation (and assuming that T constant to eliminate gas

density in terms of pressure) the equation can be integrated in terms of pressure

from high pressure side (position "2") to the lower pressure side (position "I ") of

the gap to yield:

1	 D2 D2
YI[d] = WIPI 

=	 RT2[C+2;n(%)]
(3.13)

Where = -s--- +	 characterizes the flow resistance 	 (3.14)
Deg

Lg = clearance length in the leaking flow direction

f = friction factor and

= local resistance coefficient

can be evaluated for each clearance gap in function of its dimensions and shape

and flow Re and Ma numbers. The full procedure would require incorporation into

model of the friction and drug coefficients in terms of Re and Ma number for each
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type of clearance. However Stosic recommends a value of 	 0.6.

3.2.4 Oil Injection

Injection of oil or other liquids for lubrication, or sealing purposes, modifies

substantially the thermodynamic process in a scroll machine. A convenient
parameter to define the injected oil mass flow is the oil to gas mass ratio, mojl/mgas

In addition to lubrication major purpose for injecting oil is the cooling of the gas.

In the present model the heat exchange with the gas is determined from the

differential equation for the instantaneous heat transfer between the surrounding

gas and an oil droplet. Assuming that the droplets retain a spherical form, with a

prescribed Sauter mean diameter ds, the heat exchange between the droplet and

gas can be expressed in terms of a simple cooling law:

Q 0 = hø Aø (Tg1 - T0 )	 (3.15)

Where: A0 is the droplet surface A0 = (ds2 it)

ds2 is the mean Sauter diameter of the droplet and
h0 is the heat transfer coefficient determined from the empirical expression

Nu 2+0.6 Re° 6 Pr° 33	 (3.16)

The exchanged heat must balance the rate of change of heat taken or given away

by the droplet in the unit time.

= mC 11	 = m0C0. 
dT

	

dØ	 (3.17)

Where Coil is the oil specific heat and the index 'o" denotes oil droplet. The rate

of change of oil droplet temperature can be expressed now as:

di!;= hoAo(Tgas_To)	
(3.18)

dØ	 m0C01w

A simplified integration of the equation between the two time (angle) steps yields

the new oil droplet temperature at each new time (angle) step:

37



Chapter 3
	

Quasi One Dimensional Row Modeling

T 
= Tgas + kTOb	

(3.19)°	 1+k

Where: Tob is the oil droplet temperature at the previous time step k is the non-

dimensional time constant of the droplet, k = 'rw / A4 with t = m0 Coil / h 0 A0

being the real time constant of the droplet. For the given mean Sauter diameter ds

the non-dimensional time constant takes a form:

k 
= m00011w =	 (3.20)

h 0 A 0 zlØ	 6 h 0 LIØ

The obtained droplet temperature is further assumed to represent the average
temperature of the oil, i.e. Toil 	 T0 , which is further used to compute the

enthalpy of the gas-oil mixture.

Because the inclusion of a complete model of droplet dynamics would

unnecessarily complicate the computer code, Stosic developed and used the above

described simplified approach. The inputs parameters are only the mean Sauter

diameter of the oil droplets, ds and oil properties - density, viscosity and specific

heat.

3.2.5 Computation Of Fluid Properties

For the ideal gas, the internal (thermal) energy of the gas oil mixture is given by:

= mRTgas +(mT).1 
= 

Pv +(m T)	 (3.21)
y-1	 '—i	

cv

Where R is the gas constant. The pressure and temperature of the fluid in the

working chamber can be explicitly calculated by the help of the equation for oil.

(y-1)(1+k)u(mT).1	 (3.22)Temperature: T = (1 + 
k)mR + (m ).

PROPERTIES OF REAL GASES

For the case of a real gas the situation is more complex. Many gases differ in their

properties from ideal gases. The above theory is based on the compression of ideal

gases. In the application of industrial compressors allowances have to be made

where possible for the differences between real and ideal gases.

Real gases do not behave exactly in the manner of ideal gases, and in some
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instances the differences can be quite significant, particularly when the pressure

and temperature are in the region of the critical conditions.

Accurate equations of state are inconvenient for everyday calculations because they

lead to unwieldy expressions. They are most used for the preparation of tables and

diagrams of properties. When tables are not available, and for conditions where the

perfect gas laws are too inaccurate, correction factors may be applied to the perfect

gas relations. Thus the equation of state, for example, can be written as

where Z is the compressibility factor. The value of this factor depends upon the

gas and it is also a function of the pressure and temperature. The combination of
Z çb(p, T) and the above equation is the complete characteristic equation.

3.3 Results of the 1-D Flow Modeling

As it was stated earlier in this study the Quasi One Dimensional Flow Modeling

was performed with the aid of an advance commercial package called

"SCORPATH", written by Professor N. Stosic. The performance characteristics

over a wide range of speed and other operating conditions have been analysed.

3.3.1 Scroll Compressor

The function of the compressor is to raise the pressure of the vapour leaving the

evaporator to a value at which its corresponding saturated vapour pressure is high

enough to enable heat to be rejected to its surroundings by means of a condenser.

Because in a scroll compressor the opening of the delivery port is determined

entirely by the geometry of the machine, there is a certain build - in volume ratio

and a corresponding build in pressure ratio for a particular gas. If the pressure in

the working chamber has not reached the pressure in the delivery pipe when the

port is uncovered, gas flows back into the working chamber. On the other hand, if

the pressure inside the working chamber at the instant of opening exceeds that of

the delivery pipe, gas rushes out suddenly at an unresisted expansion. In either

event there is a loss of efficiency.

-
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Build In Volume Ratio 2.5:1 Pressure Ratio 5:1
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Figure 3.1 Pressure - Volume diagram for condition where system pressure ratio is
much greater than build in Volume ratio. Speed 3000 RPM. Working fluid R134A,
dry vapour.

Ideally the build - in pressure ratio should match the actual pressure ratio for

maximum efficiency but this is not possible in practice because a compressor in

any given installation may have to operate at different pressure ratios, depending

on the evaporating and condensing temperatures. Nevertheless there is usually one

pressure ratio which corresponds to average or design conditions and the machine

can be designed for this.

In figures 3.1 to 3.4, the pressure-volume and pressure-angle diagrams

corresponding to the conditions of greater and smaller pressure ratio, than the build

in volume ratio are shown. The dramatic increase in scroll pocket pressure shortly

after the start of discharge due to the strong back flow is apparent in figures 3.1 and

3.2. This back-flow effect results in an increase in compressor power over what

would be required if the compressor pressure ratio matched the system. The area

located under the curve and above the dashed line in figure 3.1 represents this

increase in compression power. The total compression power is proportional to the

enclosed pressure-volume area.
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Build In Volume Ratio 2.5:1 Pressure Ratio 5:1
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Figure 3.2 Pressure - Angle diagram for condition where system pressure ratio is
much greater than build in volume ratio. Speed 3000 RPM. Working fluid R134A
dry vapour.

In figures 3.3 and 3.4, the pocket pressure after the start of discharge increases

more gradually due to normal flow and over-pressure before peaking and then

slowly decreasing back to discharge pressure. There is no increase in power due to

back flow, only the increase in power due to over-pressure. Generally speaking the

area between the discharge pocket curve and the discharge pressure curve for both

cases ( greater-lower pressure ratios) represents the increase in compression power

due to over-pressure.

As was said above there is an average pressure ratio that corresponds to the build in

volume ratio of the machine. Figures 3.5 and 3.6 illustrates this. As it can be seen

from these figures there is not any major decrease or increase on the pressure after

the discharge port is open. This is because there is more pressure equilibrium

between the discharge pipe and the chamber.

During the suction period which is quite long some fluctuations on the pressure

were recorded, this is due to the fact that some gas might flow backwards due to

the pressure difference caused from the opening of the suction port. Now as far as

the compression is concerned figures 3.5 and 3.6 shows that the process which

takes long appears to be very smooth. This is because the momentum term pV 2 is

small since gas density is not large.
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Build In Volume Ratio 2.5:1 Pressure Ratio 1.5:1
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Figure 3.3 Pressure - Volume diagram for condition where system pressure ratio
is less than build in Volume ratio. Speed 3000 RPM. Working fluid R134A dry
vapour.
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Figure 3.4 Pressure - Angle diagram for condition where system pressure ratio is
less than build in Volume ratio. Speed 3000 RPM. Working fluid R134A dry
vapour.
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Figure 3.5 Pressure - Volume diagram for condition where system pressure ratio is
the same with the build in Volume ratio. Speed 3000 RPM. Working fluid R134A

dry vapour.
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Figure 3.6 Pressure - Angle diagram for condition where system pressure ratio is
the same with the build in Volume ratio. Speed 3000 RPM. Working fluid

R134A dry vapour.
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The relationship between build-in volume ratio and build-in pressure ratio and

individual gas properties is also important. The physical situation is that a scroll

compressor has a built-in volume ratio. It draws in volume of gas V 1 and reduces

this internally to a smaller volume V 2. The build-in volume ratio is therefore the

ratio of these, i.e.

v-v1R- V2

However, we have already seen that the optimum efficiency occurs when the

pressure ratio is approximately the same with the built-in volume ratio. The

significant point is that the build-in volume ratio is a constant for any given

compressor design but pressure ratio is not. Z is a function of the gas being

handled. For an isentropic compression process we have

P2 j'1

Pl t\V2)

where y is the isentropic index of the gas concerned, i.e. C//CV. The isentropic

index varies quite widely for different gases, typical examples at atmospheric

pressure and temperature being: [O'Neill, P. A. 1993 Industrial compressors pp.

309]

Fluid	 I
Propane	 1.14
Ammonia	 1.29
Air	 1.4
Helium	 1.63

Thus if a compressor has a build-in volume ratio of 3.5:1 the build in pressure ratio

with the above gases would be:

Fluid	 Pressure ratio
Propane	 4.17
Ammonia	 5.03
Air	 5.77
Helium	 7.71

If however, we are dealing with a polytropic process then the equation will become

P2 =(v117

P1	 v2)

and the pressure ratio will depend on the value of i. Raymon, L., et. al. 1988
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Figure 3.7 Pressure - Volume diagram for different pressure ratios. Working fluid
R134A dry vapour.
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Figure 3.8 Pressure - Angle diagram for different pressure ratios. Working fluid
R134A dry vapour.
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Figures 3.7 and 3.8 shows influence of operating pressure ratio, on the pressure

curve. Under the ideal condition the discharge pressure changes in a stepwise

manner at the start of the discharge process. At higher pressure ratio operation, the

discharge pressure rises smoothly as an extension of the compression process and

the over- compression becomes small as the pressure ratio increases. On the other

hand over-compression becomes very large at an operating pressure ratio lower

than the build-in pressure ratio.

Figure 3.9 shows relationships between adiabatic and volumetric efficiencies for

different pressure ratios. The pressure ratio at which adiabatic efficiency peaks

depends on the built-in volume ratio as noted earlier. An optimum operating

pressure ratio moves to low pressure ratio with increasing leakage. The reason is

that the leakage loss becomes large as the operating ratio increases. The

characteristic of volumetric efficiency versus pressure ratio is quite different. The

back leakage increases a little with increasing pressure ratio but only to a small

degree. There are also leakage and fluid injection effects which greatly affect the

choice of volume ratio for a given pressure rise.

Idiabatic Efficiency	 Volum etric Efficiency 
1

100

90

80

70
(I

60

so

40

30
0	 1	 2	 3	 4	 5

Pressure Ratio

Figure 3.9 Efficiencies - Pressure Ratio. Speed 3000 RPM, Build In Volume
Ratio 2.5:1. Working fluid R134A dry vapour.
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As the scroll compressor is a positive displacement machine, the discharge

pressure is not dependent on compressor speed, however Rotational Speed can be

used to control the capacity of the machine. Ideally this would be true only if there

is no leakage. Figure 3.10 shows the influence of the rotational speed on the

pressure curve. As the rotational speed increases, the discharge pressure increases.

On the other hand, pressure during suction process becomes slightly low but

pressure during compression is almost the same. This is due to the leakage, which

is influenced by the rotational speed. Leakage takes place between the radial

(flank) and tangential (tip) clearance. Both kinds of leakage raise the delivery

temperature, because the vapour which is throttle back to a lower pressure is

subsequently recompressed adiabatically. A sudden rise in delivery temperature is a

sign of excessive leakage. The presence of oil is an important factor in achieving

good sealing

The influence of leakage on the scroll compressor performance is mainly indicated

in the compression power and the volumetric efficiency, which is the ratio of the

volume flow rate to the theoretical delivery. The leakage through tip clearance,

increase the pressure during the compression process but lessens somewhat the
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Figure 3.10 Pressure - Angle diagram for different rotational speed. Working
fluid R134A dry vapour.
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over-compression during the discharge process. On the other hand, the leakage

through flank clearance, accelerates the pressure rise during a later part of the

compression process and increases the succeeding over-compression. When both

the leakages are considered, the compression pressure increases.

Figure 3.11 shows that the volumetric efficiency increases with increasing

rotational speed though it decreases at extremely high speed operation. Figure 3.12

shows that power and mass flow rate also increase with speed. Figures 3.13 and

3.14 shows how the mass flow rate and the power of the compressor change when

system is working at off design conditions.

Increasing of rotational speed increases an over-compression loss at low pressure

ratio operation but mocleTates a toss t. kg,b. we atic

operation, which leads to a higher optimum operating pressure ratio. Therefore,

dimensions of scroll wrap must be selected such as it has a maximum efficiency at

an actual operating pressure condition by taking into account of rotational speed

and leakage.

Most refrigeration systems reject heat to the atmosphere, and the ambient

conditions change throughout the year. Process refrigeration plants that operate

year round are particularly subjected to a wide range of condensing temperatures.

The response of a scroll compressor to changes in condensing temperature is

analyzed here. Firstly the behavior of the machine was examined by varying the

condensation temperature and keeping fixed the evaporating temperature. This

forces the compressor to operate at off design conditions, as far as the operating

pressure ratio is concern.

Figure 3.15 shows the changes in the adiabatic and volumetric efficiency for a

scroll compressor as a function of condensing temperature, for an evaporating

temperature of -1OC. As the temperature increases the volumetric efficiency drops

off. On the same figure the increase of the pressure ratio due to the increase of the

condensation temperature, and therefore pressure is shown. The remaining

important characteristic is the power, shown on Figure 3.16. The work of

compression in kJ/Kg increases as the condensing temperature increases.

48



140

120

100

80

60

40

20

0

C/pter 3
	

Quasi One DimensArzaI Flow Fi*de/ing

Aabatic Effiency	 Vumetric Ethciencyl

100

80

.- 60
0

a,
0

40

20

0	 -t--

0	 1000	 2000	 3000	 4000	 5000	 6000

Speed (RPM)

Figure 3.11 Efficiencies - Speed. Working fluid R134A dry vapour.

power	 Mass Flow Ra

3

2.5

.,	 a,

a,

0
0	 1000	 2000	 3000	 4000	 5000	 6000

Speed (RPM)

Figure 3.12 Power I Mass Flow Rate - Speed. Working fluid R134A dry vapour.

49



180

140

120

100

' ::

40

20

Chapter 3
	

Quasi One Dimensional F.bw Modeling

	

3	 - ______________ ______________ ______________ ______________ 	 1 00 %

II1

	

2 .5	

7___ 
7

1iII_______ II
_	

ii
0	 1000	 2000	 3000	 4000	 5000	 8000

Speed (RPM)

Figure 3.13 Mass Flow/Rate-Speed. Working fluid R134A dry vapour. Different
load conditions

100%
85%
70%

[—Load 50%

0	 ---------	 --
0	 1000	 2000	 3000	 4000	 5000	 6000

Speed (RPM)

Figure 3.14 Power! Mass Flow Rate - Speed. Working fluid R134A dry vapour.
Different Load conditions

50



70

60
C,

50
C
0

40

20.
0

10

Chapter 3
	

Quasi One Dimensknal Flow Modeling

-----Volumetric Efficiency	 Adiabatic Efficiency	 Press

	

100	 20

	

90	 _____ _____	 18

	

80	 16

	

70	 _____ _____ _____ _____ _____ 	 -- 14

	

60	 - ___ ___	 12

	

•i3 50	 -- ____ -	 10C-..------.

	40	 ___ ___ ___ ___ -- 8

	

30	 ---------	 6

	

20	 4

	

10	 ____ ____ ____ ____	 --• 2

	

0	 .';:;	 II;	 --b	 - _I	 I	 ---I -	 0
0	 10	 20	 30	 40	 50	 60	 70	 80	 90

Condensation Temperature (Degrees C)
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Figures 3.17 and 3.18 shows the behavior of the machine for different condensation

temperatures but fixed operating pressure ratio. This was achieved by varying both

the condensing and evaporating temperatures. As it can be seen from figure 3.17

the volumetric efficiency remains approximately the same, and the adiabatic

efficiency appears to be better than the one in figure 3.15. Figure 3.18 shows that

the adiabatic work of compression remains approximately the same. The Indicated

power curve follows a similar trend to that of figure 3.16 but with match greater

range.

A few comments on the significance of the trends in Figs. 3.15 to 3.18 follow.

With more moderate differences between the condensing and evaporating

temperatures the expectation is that the power required by the compressor will

increase with an increase in condensing temperature. The refrigerating capacity

always decreases with an increase in condensing temperature. Another important

characteristic which is not shown on the graphs is the coefficient of performance,

which decreases monotonically as the condensing temperature increases.

From the standpoint of power and efficiency, a low condensing temperature is

desirable; thus condensers should use the coldest air or water available.

Volumetric Efficiency	 Adiabatic Efficiency	 Press R]

100

90

80

70

;60

50

20

10

0
0	 10	 20	 30	 40	 50	 60	 70	 80	 90

	
100

Condensation Temperature (Degrees C)

Figure 3.17 Efficiencies / Condensation Temperature. With fixed pressure ratio.
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Figure 3.18 Power-Work of Compression / Condensation Temperature. With
fixed pressure ratio. Working fluid R 1 34A dry vapour.

3.3.2 Scroll Expander

As was said earlier, the function of a compressor is to admit the fluid from a low

pressure region, compress it and deliver it to a high pressure region. An expander

carries out the reverse processes with the object of producing work.

In section 3.3.1 the importance of the correct build in volume ratio for a scroll

compressor was analyzed. In the case of the expander the build in volume ratio is

also extremely important. If the pressure in the working chamber has fallen below

the pressure in the delivery pipe, (over-expansion) when the port is uncovered, gas

flow back into the working chamber. As can be seen from fig 3.19 the delivery

port opens before the pressure in the working chamber has fallen enough, (under-

expansion) this results in an unresisted expansion, which in this case corresponds

to the waste of a certain amount of energy.
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Figure 3.19 Pressure / Angle. Speed 3000 RPM. Working fluid R134A wet
vapour.

The most distinctive feature of the results is the shape of the pressure-volume

diagram, of which a typical result is shown in figure 3.20. As can be seen the

initial filling process, which is normally assumed to take place at approximately

constant pressure, is in fact associated with a small pressure drop and therefore

some expansion. This pressure drop is due to the acceleration of the fluid as it

enters the varying space between the spirals. Theoretically this pressure drop must

be larger than the pressure change associated with gas discharge from compressors

through the same area in the reverse direction. This is because the fluid entering

the suction pocket of the expander has a very high liquid content and therefore a

much greater density. However figure 3.20 shows that the pressure drop during the

suction process of the expander is smaller than the change of pressure during the

discharge process of the compressor.

However it must be noted that the pressure-volume characteristics of wet vapours

are different to those of dry vapours and these lead to the need for a larger build-in

volume ratio for scroll expanders.

54



Chapter 3
	

Quasi One Dimensional Row Modeling

1 .00E+06

9.00E+05

8.00E^05

7.00E+05

6.00E+05

0,

(a,
5.00E+05

0.

4.00E+05

3.00E+05

2.E-i-05	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 -I----I-------	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I

	

0.0000
	

0.0005	 0.0010	 0.0015	 0.0020	 0.0025	 0.0030

Volume (m'3)

Figure 3.20 Pressure / Volume diagram of a two phase expansion process. Speed
3000 RPM. Working fluid R134A wet vapour.

Figures 3.21 and 3.22 shows some performance characteristics of the expander

with respect to rotational speed change. The adiabatic efficiency is shown to

increase together with the speed, a similar behaviour is recorded for the mass flow

rate and the power. As can be seen adiabatic efficiencies are of the order of 70%

over a wide range of operating conditions. The reason for the comparatively high

efficiency at low speeds is that leakage, which is then relatively large is in the

same direction as the bulk flow and hence its effect on performance is not so

adverse. From fig. 3.21 we can see a huge drop of the Volumetric efficiency with

speed. This is because the momentum term associated with filling becomes very

large at high speeds.

Figures 3.23 and 3.24 shows how mass flow rate and power change, over a wide

range of load conditions.
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Figure 3.22 Power / Speed. Working fluid R134A wet vapour.
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3.4 Applications Of the Scroll Compressor - Expander

The concept of improving the coefficient of performance of vapour compression

refrigeration cycle systems by utilising the throttle expansion process to generate

mechanical power is well known. It has the advantages not only of its potential use

to reduce the power requirement to the main compressor but also, by expanding

more nearly reversibly, of increasing the refrigeration effect per unit mass of fluid

passing through the evaporator. However, until relatively recently its practical

embodiment has not been followed with much interest by the refrigeration and air

conditioning industry. The main reasons for this lack of interest were:

I) Gains in COP produced by improved compressor performance and reduced

heat exchanger temperature differences were more cost effective and significant.

II) Efficient means of recovering power from two-phase expansion were not

available.

At present, the situation has changed in that:

a) The continuing gains obtained from improved compressor performance and

reduced heat exchanger temperature differences have reached a stage where

further advances are diminishing in significance and escalating in cost to the

point where such improvements are no longer cost effective.

b) As a result of the relatively high efficiencies in modern compressors, the gains

achievable from two-phase expanders, which are relatively constant, have

become more significant.

3.4.1 Cycle Proposed

To make use of the work produced from the expander in terms of shaft power and

therefore reduce the power requirements of the compressor, the scroll expander

needs to be coupled with the compressor. This might create some performance

problems with the expander. Since it is well known that the mass flow rate of the

refrigerant varies, mainly because it depends on the load, the scroll expander must

not be coupled directly to the main compressor because this will force the expander

to run at the same speed with the compressor. The result of this will be a not so

good working performance for the expander when the system will operate at off

design conditions. To overcome this problem and allow the expander to adjust its

speed for any instantly mass flow rate (which depends on the load) it was decided

to coupled the expander with a second compressor.

The second compressor will work in parallel with the main one, it will be driven
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only by the work produced from the expander and it will contribute to the system in

terms of mass flow rate, The whole cycle is illustrated below.

Figure 3.25 The proposed cycle. ('Expressor')

3.4.2 The proposed Model

A study was performed on a standard vapour compression refrigeration cycle using

refrigerant R134a. Although several working fluids, as for example R22 or propane

etc. could be used for the desired applications, HFCI34a was chosen for ease of

use, non flammability and mainly because of global environmental acceptance. The

cycle was operating on the following conditions:

Evaporating temperature: 5°C

• Superheating	 : 1OC

• Condensing temperature : 35°C

• Sub cooling	 : 0°C

Parameters	 Main compressor Second compressor Expander

Width (m)	 0.5	 0.12	 0.1

Height (m)	 0.062	 0.02	 0.0165

Thickness (m)	 0.00006	 0.00003	 0.000025

Speed (RPM)	 2200	 3000	 3000

Mass flow rate (kg/s) 	 23.44	 1.55	 25.1
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Figure 3.26 Scroll machine.

3.4.3 Expander Characteristics

These are shown in figures 3.21 to 3.24. As may be seen overall adiabatic

efficiencies, which include bearing, seal and timing gear losses, are of the order of

70% over a range of operating conditions. For the design conditions of this model

the power output of the expander is approximately 52 kW.

3.4.4 Compressor Characteristics

These are shown in figures 3.11 to 3.14. Since leakage in compressors opposes the

bulk flow, its effect on idiabatic efficiencies should be greater than in expanders.

However as it was said earlier in this Chapter the pressure-volume characteristics

of wet vapours are different to those of dry vapours and these lead to the need for a

larger build in volume ratio for the expander. The larger build in volume ratio for

the expander implies that the leakage flow is relatively larger. Hence the superior

compressor efficiency at higher speeds.

60



Chapter 3
	

Quasi One Dimensional Row Modeling

3.4.5 Combined Characteristics

The expander and compressor characteristics may be combined to show how the

proposed model will perform over different rotational speeds. Figures 3.27 to 3.29

show these performance. Figure 3.27 shows how the mass flow through the second

compressor compares with that through the evaporator and hence the main

compressor. From figure 3.28 it may be seen that the expander will be able to drive

the compressor to produce an increased mass flow rate at speeds above 3000 RPM.

As far as the performance gains are concern, firstly it should be noted that if the

scroll expander is used (as proposed) then the mass flow through the expander will

be increased by the extra mass flow it induces in the coupled compressor.

Secondly, the inclusion of the expander has the additional advantage of making the

expansion process more nearly isentropic and hence increases the evaporation

effect per unit mass flow.

The refrigeration effect was increased from 157.177 kJlkg to 160.082 kJlkg, 1.8 1%

increase. The power requirements of the main compressor were decreased from

923.199 kW to 827.266 kW, 10.39% decrease. Now as far as the coefficient of

performance is concern it was increase from 4.29 to 4.87 which corresponds to an

increase of approximately 13%. (This is only given as an example at one operating

point).

This study has demonstrated that an Expressor unit comprising a scroll expander

driving a scroll compressor in a sealed unit is a viable and stable device for use as a

throttle valve replacement in large vapour compression chiller systems which can

produce improvements in the Coefficient of Performance of the order of 13% at the

design operating conditions.

Since it is not connected mechanically to the main compressor, an Expressor may

be readily incorporated into a chiller unit even as a retrofit device.
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Chapter 4
Geometry And Grid
Generation

4.1 Introduction
In order to perform a thermodynamic analysis of the scroll compressor - expander

first we have to describe the physical behavior of the machine in terms of

mathematical equations. Functions of working volume, sealing lines, contact

conditions etc. in terms of crank angle, (i.e. time) form the foundations of the

analysis. In the first part of this chapter we present the necessary equations needed

for the analysis. As will be shown in section 4.4 these equations form the basis for

the development of the grid generation code. The derivation of the equations was

necessary since it is not based on any published data. However it is partially based

on the patent of the inventor of the machine. Full analysis of the geometry is given

in appendix A

During the last few years, numerical flow analysis techniques have become

increasingly important in machine design. A key factor in obtaining a realistic

solution is mesh generation, considered as a basic problem requiring a sustained

effort. In fact, the interaction between the mesh characteristics and the development

of the solver are closely linked as far as stability, convergence and definition of the

solution are concerned. Therefore section 4.4 of this chapter deals with the design

and development of a grid generation program that can handle the complexity of

the working volume of the scroll device. Aspect ratio, orthogonality, cell distortion,

and smooth distribution, are some of the difficult issues involved in the transient

structured body fitted grid generation package developed.

4.2 Geometry
The basic elements in a scroll compressor are the identical scroll wraps whose

quality is vital to the compressor's performance. Geometrically speaking the wraps

are usually made on the basis of an involute of a basic circle (bC).
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As can be seen from the literature survey, there is almost nothing published on the

geometry of the scroll compressor. However even in the very few papers published

so far on this topic, only basic principles are stated. Therefore it was decided to

develop our own unique geometry based on the patent of the innovator of the scroll

engine Leon Greux [1905]. A detailed analysis of the geometry needed for the

design of a scroll machine is shown in appendix A, however some of the basic

equations are shown here:

The involute spiral of a circle is an appropriate curve for a scroll compressor

because of its simplicity of construction. if one unwraps a string from a circle,

keeping the string taut, the end of the string will trace out an involute spiral. The

envelope, formed by orbiting (revolving without rotating) an involute about a

separate origin, is in itself an involute spiral which differs from the original

involute by its starting angle. To build a spiral of this type both the inner and outer

curves must be known.

The curves C1 CFQ , C2 CF/, C3 C00 and C4 C01 , defining the inner and

outer surfaces of the fixed and orbiting spirals of the compressor are shown in

figure 4.1. The meaning of the subscripts is : FO Fixed Outer, Fl = Fixed Inner,

00 = Orbiting Outer, and 0/ = Orbiting Inner. The analytical expressions

describing the curves CCFQ , C2 CR , C3 C00 and C4 C01 . are:,

CI=CFQ :	 = r''
y 1 )	 sin(,)— ,cos(,)J'

C2 C : flt2')= (cos(co+y)+cosin(co+y)')

Y2)
(4.1)

C3 C00 : 1x3 = 
(r(cos()+q,sin(q))+dcos(0)\

y3) r(sin() - cos()) + d sin(e)J'

C4 CO3 :	
= ( r(cos(ço + y) + sin( + y)) + d cos(0)')

y4) r(sin( + )— cos( + ))+ dsin(8))'

It is now assumed that the curves C1—0 0 and C4 CO3 have been constructed in

such a way that they never intersect each other, but there exist points at which they

are tangent. The same assumptions are also made for the pair of the curves C2—CFI

and C3 C00 . At these touching points the following relations hold
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ço1 =2k7r+-+O, ço3=2kir++O,

= jr+ ço1 — 1 ' q,2 = ir+ — 7,	 ^ 0 (i=1,2,3,4), d =r( g - 2').	 (4.2)

O<y=constant<r/2, kE\W, OE9L

Clearly, the relations between the angles q, q and 0 refer to the contact

conditions of the curves C/ CFQ and C4=C01 , while the relations between the
angles	 and 0 refer to the touching conditions of the curves C2 CF, and

c3=coo.

flfl

3 'W

Figure 4.1. Generating circles and involutes.

The derivation of the working volumes leads to a number of formulae. For

example the volume of the suction chamber only is described by four different

equations depending on the relative position of the spiral walls of the device.

Therefore it has been decided not to put all those equations here. As already stated

a mathematical analysis is shown in appendix A.
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Figure 4.2. 3-D View of the Scroll Machine using the involute of a circle

New types of curves named as "The Involute of a Basic Square" and " The

Involute of a Basic Triangle" have been recently studied [1992] in an attempt to

improve or replace the conventional one. The involute of a basic square can be

obtained when unwrapping a string from a square as shown in figure 4.3.

Figure 4.3. Formation of involute of square, wrap design.

It is obvious from the formation process that, the curve consists of several quarter

circles, that is, its curvature changes every quarter circle. Something quite similar

happens with the involute of the basic triangle.

Besides the types of curve mentioned above an Archimedes spiral can also be used

for the design of scroll machinery. However when using this type of curve extreme

caution must be taken in order to avoid any problems regarding contact conditions.

(i.e. leakages)
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4.3 Theory Of Grid Generation
One of the main problems in computing numerical solutions of Partial Differential

Equations (PDE) is the generation of the mesh for the solution domain. The grid

has to be well-constructed otherwise it may lead to instability or lack of

convergence. Numerical grid generation has now become a fairly common tool in

the numerical solution of PDE on arbitrarily shaped regions and several

commercial packages are available (Thompson, 1988). A comprehensive survey of

procedures and applications has been given by Thompson eta!. (1982; 1984).

Body-fitted curvilinear coordinate systems, used in modern CFD codes generated

to maintain coordinate lines coincident with the boundaries, were introduced to

extend the capabilities of Finite Difference Methods (FDMs) to deal with complex

geometries and assist in the imposition of boundary conditions without the need for

special procedures at the boundaries. Motion of the boundaries is also possible, the

coordinate system adjusting to follow variations developing in the evolving

physical solution. In any case, the numerically-generated grid allows all

computations to be done on a fixed square grid in the computational field which is

always rectangular by construction. However, the cost of the greater flexibility

afforded by the use of body-fitted grids and general coordinates is an increase in

complexity of the equations to be solved, due to the non-linear coordinate

transformation.

The first step in the generation of the grid is the transformation of the physical

space (complex-geometry domain) into a computational domain (simple-

rectangular domain), where all numerical algorithms, finite difference, finite

volume or finite element, are implemented. Numerical grid generation techniques

may be roughly classified into three categories:

(a) Complex variable methods.

(b) Algebraic methods.

(c) Differential Equation Techniques.

Complex variable methods are restricted to two dimensional problems and so their

applicability is very limited. These techniques have the advantage that the

transformation used are analytic or partially analytic as opposed to the other

methods that are entirely numerical. Algebraic and differential equations

techniques can be used for complicated three-dimensional problems. In the next

sections we present the main approaches to the generation of meshes for structured

grids. Then, special techniques for gridding complex geometries will be discussed.
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4.3.1 Algebraic Methods

Algebraic mesh generation methods determine the coordinate positions by

interpolating among boundaries and / or intermediate surfaces using known

functions of sets of data points. The main advantages of algebraic mappings are

that they are direct and the metrics of the transformation can be computed

analytically. However, since inherent smoothing properties are missing,

discontinuities can arise in the mesh.

Several interpolation methods are used, and are classified as unidirectional and

multidirectional methods. In the unidirectional interpolation method, the

interpolation, in one curvilinear coordinate direction only, occurs between points.

These points can, however lie on boundary (or interior) curves of surfaces, and in

this sense the unidirectional interpolation can be considered to be between these

curves or surfaces. Several interpolation techniques are available (Lagrange,

Hermite, Splines, Tension Splines, B-Splines etc.), the most general procedure

being the 'multi-surface procedure (Eiseman. 1979) of which Lagrangian or

Hermitian interpolations are special cases. This procedure is constructed from the

interpolation of a specified vector field, defined from piecewise-linear curves

determined by the boundaries and successive intermediate control surfaces. These

vectors are taken to be tangential to the coordinate lines intersecting the surfaces,

so that integration of this vector field produces the position vector field for the grid

points.

Multi-directional interpolation involves interpolation among functions of curves or

surfaces. The most general method used is the 'transfinite', described in detail by

Rizzi and Erikson (1981). The interpolation generates the mapping by combining

unidirectional interpolation with Boolean sums, and matches the function at any

number of points.

4.3.2 Partial Differential Equation Methods

These techniques are the most highly developed for generating grids. The grid

points are obtained by the solution of a set of partial differential equations, which

can be hyperbolic, elliptic or parabolic. If the coordinate points are specified on

the entire closed boundary of the physical region, the equations must be elliptic,

while if the specifications is only a portion of the boundary the equations would be

parabolic or hyperbolic.
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The use of elliptic PDEs to generate grids has been treated extensively by

Thompson (1974). This procedure transforms the physical space into the

computational space where the mapping is controlled by general Poisson-type

systems. The generation system guarantees a one-to-one mapping for boundary

conforming curvilinear coordinate systems on general closed boundaries. The

advantages of using this technique are to generate a smooth grid, complex

boundaries being easily treated, without overlap of grid lines (extremum

principles). However, grid point control on the interior is difficult to achieve, and if

boundaries are changing in time, (as in the case of a scroll compressor / expander)

since the grid has to be computed for each time step, large amounts of computer

time may be consumed.

The most simple elliptic partial differential system is the Laplace equation:

V2 tj =0	 (i=1,2,3)

where ' is the coordinate vector in the computational domain.

This system exhibits an extremum principle and considerable smoothness. Control

of the coordinate line distribution in the field can be obtained by generalizing the

elliptic generating system for the Poisson equations:

V 2 ' = P	 (i=1,2,3)

in which the 'control functions' P , can be fashioned to control the spacing and

orientation of the coordinate lines. In the absence of the control functions the

coordinate lines will tend to be generally equally spaced away from the boundaries

regardless of the boundary point distribution. Variations of elliptic systems are

noted in Thompson et al. (1982; 1984).

A number of different algorithms have been used for the solution of these

equations, including point and line SOR, ADI (Alternating-Direction-Implicit-

Technique) (Thompson et al., 1982; Thompson, 1984). The convergence can be

accelerated by using multiple grid iteration (Forsey and Billing, 1988). For general

configurations, point SOR is certainly the most convenient to code and has been

found to be rapid and dependable, using over-relaxation, for a wide variety of

configurations. Since the system is nonlinear, convergence depends on the initial

guess in iterative solutions. Algebraic grid generation procedures may be used to

generate this initial guess. Transfinite interpolation generally produces a more
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reliable initial guess than unidirectional interpolation does because of its reduced

skewness.

A fundamental development of the hyperbolic generation system was made by

Starius (1977). Hyperbolic systems are applicable to domains in which the inner

boundary is specified but the surrounding outer boundary is arbitrary, and therefore

of interest only for use in calculation on physically unbounded regions where the

precise location of a computational outer boundary is important. The parabolic

system can be applied to generate the grid between the two boundaries of a doubly-

connected region with each of these boundaries specified. The grid control is

generally weak and difficult compared with the elliptic methods. However the

weakest method in the grid control is the grid generation method. Both parabolic

and hyperbolic grid generation systems have the advantage of being generally faster

than elliptic generation systems, but, as noted, are applicable only to certain

configurations.

Orthogonality is one of the most desirable properties in grid generation techniques.

Orthogonal coordinate systems produce fewer additional terms in transformed

partial differential equations, and thus reduce the amount of computation required.

This also makes the application of boundary conditions more straightforward, and

permit a greater degree of vectorization on supercomputers. A severe departure

from orthogonality will introduce truncation error in 'different expressions'.

Orthogonality in three dimensions is difficult to achieve, and only exists when the

coordinate lines on the bounding surfaces follow lines of curvature, i.e., lines in the

direction of maximum or minimum curvature of the surface. It is possible,

however, to have the system locally orthogonal at boundaries, and/or to have

orthogonality of surface coordinates. Since a part of the truncation error decreases

as the grid becomes more orthogonal, it is of interest to generate grids which are

'nearly-orthogonal'. Various generation procedures of orthogonal systems are

surveyed in Thompson (1980).

4.3.3 Adaptive Grids

Adaptive grids are generated with the object of directing the distribution of grid

points so that a functional relationship on them may represent the physical solution

with sufficient accuracy. As the physical solution develops, grid points move,

concentrating in regions of large gradients in the solution as they emerge.

Movement of grid points is coupled to their neighbours, and cannot be too far or
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too fast, otherwise oscillations may occur.

Different techniques for constructing adaptive grids have been proposed. Brackill

and Saltzman (1980) have developed a technique for constructing an adaptive grid

using a variational approach. It offers a powerful method for constructing

computational grids; however, a considerable effort must be expended in solving

the equations which govern the grid generation. Many applications of adaptive

grids require grid motion along one coordinate. The equidistribution scheme is a

minimization process applied in a one-dimensional form, and the grid points are

distributed so that the weight function is equally distributed over the field. A

number of applications of the use of one-dimensional equidistribution are cited in

the survey on adaptive grids given by Thompson (1984). The grid speed scheme

developed by Hindman and Spencer (1983) also incorporates the idea of

equidistribution. The grid speeds are established by differentiating the steady grid

equation, and solving the resulting equation. To advance the grid to the next time

level the grid speeds are integrated. Several other approaches are discussed by

Thompson (1984).

Once adaptivity criteria have been formulated, it is necessary to move points

around the domain so that the flow solution has a minimum error. Three basic

strategies may be employed to do so: (i) redistribution of a fixed number of points,

(ii) local refinement of a fixed set of points, (iii) local increase in algorithm order.

Solutions to PDEs obtained using numerical methods in conjunction with adaptive

grids show significant improvements in either accuracy or resolution. Oscillations

associated with cell Reynolds number and with shocks in fluid mechanics

computations have been shown to be eliminated with adaptive grids. The adaptive

grid is most effective when it is dynamically coupled with the solution, so that the

solution and grid are solved together in a single continuous problem. The

development and application of adaptive grids have been surveyed by Eiseman and

Eriebacher (1987).

4.3.4 Moving Boundary Grids

Moving Boundary procedures have recently been developed by a number of

research groups and are included in the most advanced commercially available

CFD codes. Moving boundaries are a chief feature of the flow in the scroll machine

where the fluid flow is driven by the motion of the wall.
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Details of the application of moving boundaries procedures to the Navier-Stokes

equations are given by Demirdzic and Peric (1990), and Hawkins and Wilkes

(1991).

4.3.5 Computational Grids For Complex Geometry Domains

There are three basic types of computational grid in current use:

(i) Single-block, fully structured grids,

(ii) Multi-block grids,

(iii) Unstructured grids.

Single-block fully structured grids, discussed above, are traditionally used in Finite

Difference Methods (FDMs). As shown in figure 4.4 they transform the physical

space into a rectangular (or hexahedronal in 3-D) computational space. In complex

geometry domains, to have accurate solutions of the flow, special techniques are

required for gridding, such as multi-block and unstructured grids.

xl

Figure 4.4 Samples of a single-block grid. (a) Physical domain. (b) Computational
domain
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4.3.5.1 Multi-Block Grids

The multi-block approach is a very popular method of applying structured grids to

complex geometrical regions. The physical domain is segmented into sub-regions

which constitute contiguous blocks. Each block has to be transformed into a

hexahedron, so that several local curvilinear systems are constructed and connected

together. However, the global distortion of the grid is relatively less accentuated.

Grid points at block interfaces have to be treated so that points at the common edge

of any two adjacent blocks are continuous and so that slope continuity may be

enforced.

Multi-block grids are very powerful in that they allow the use of a wide range of

mesh topology for a given configuration and different coordinate systems are

allowed in each block. They are restricted to the grid generation technique -

algebraic or partial differential equations. Although the concept of a multi-block

mesh is very attractive from a mesh generation point of view, additional

complexities are introduced in the solution procedures, that involve a slow-down of

the calculation time.

Examples of three-dimensional multi-block grids applied to complex geometry are

given in the literature by Weatherill and Forsey (1984), and are noted in the survey

given by Thompson and Warsi (1983). Multi-block grids have been implemented

in the latest Releases (3.12, 3.2, etc.) of CFX-FLOW3D.

4.3.5.2 Unstructured Grids

Unstructured meshes, traditionally used in FEM, are generally composed of

triangles andlor arbitrary quadrilaterals in 2-D, and tetrahedra and for hexahedra in

3-D. Therefore the number of cells surrounding a typical node of the mesh is not

constant. Techniques for the generation of unstructured meshes are discussed in

detail by Peraire et. Al. (1990). It was found that to have an adaptive mesh,

triangulation is necessary to allow easy transition between small and large

elements.

The unstructured nature of the mesh requires a local coordinate system for each

element. The resultant mesh, therefore, is poorly ordered and less amenable to the

use of vectorization algorithms. Also larger computer time storage is required in

comparison with structured grids. However, unstructured meshes are more efficient

in complex geometry domains, and offer the possibility of incorporating adaptivity.
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In order to minimize computer time requirements, renumbering strategies for

unstructured grids have been proposed.

4.4 Development Of Grid Generation Code
In this subsection we analyze the development of the grid generation code, which is

used for the requirements of this project . The area for which we need to create the

grid, is the working chamber of the machine (see figure2.4). Since this area

depends on the boundaries of the working volume, and since these boundaries are

changing with time, it can be concluded that we need a technique to move the mesh

to its new position with respect to the movement of the boundaries. What we have

done is to re-calculate the vertices. At this point we have to make it clear that we

are not doing re-meshing, we are using some analytical mathematical equations

that we develop to re-calculate the coordinates of the vertices. The topology is

maintained the same.

At the beginning we tried to use commercial grid generation packages (Patran,

Femgv, Sophia etc.). One of the limitations we found with these packages is their

inability to handle complex moving geometries, if the geometry is fixed in space

then these packages will produce a good mesh. If however, movement is involved

then problems arise.

4.4.1 Two Block Grid Generation Code

After we took the decision to develop our own grid generation code the first step

was to describe mathematically the working volumes. As can be seen from figure

2.4, the working volumes are mainly described by two curves each. Equations 4.1

and 4.2 (touching conditions) define these curves. The next step was to decide

about the number of blocks. At the first attempt we used a two block grid, the first

block was used for the one working chamber and the second one for the other

chamber. The first thought was that we would select a certain number of points

along each curve and then interpolate between the points to find intermediate

vertices. The problem was how to subdivide each curve. One idea was to use

uniform distribution, If we used this option then we would not have any idea how

the points on the one curve were related to the points on the other. Therefore we

thought that since the curves are similar to each other (both are involutes of a

circle), maximum orthogonality would be obtained if we found where the curves

have the same gradient (parallel) and fit straight lines between them. With this
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method we only needed to subdivide the one curve. The idea was that we would

select a point on one curve, then calculate the gradient of the curve at that point and

then use a numerical technique to find which point on the other curve has a

gradient as close as possible to the first one. Note also that there might be more

than one point that would satisfy this condition (case of same gradients), therefore

a second restriction was imposed. This was that the second point must give the

minimum distance between the two curves. Once we knew these two points then

we could fit a straight line to connect them, or perform a linear interpolation to

calculate intermediate points. The number of the elements would depend on the

number of intermediate points and on the number of points selected on the first

curve. This logic was supposed to be true for all the different processes of the

machine (suction, compression, discharge). A major problem was the point where

the two working chambers approached each other (in space). When these two come

in contact their vertices should coincide, otherwise errors will occur in the solver.

This problem was overcomed by calculating the vertices only on the one site and

forcing the vertices of the other block to take the same values.

After spending a considerable amount of time, the program was ready. The grid

movement was successful, the user would need to specify the number of

subdivisions on the curve, the number of intermediate points, the number of

subdivisions on the Z axis, the time, and the rotational speed which is needed for

the calculation of the crank angle with respect to time. The grid results were very

disappointing the biggest problem was the skewnes of the grid especially on the

discharge process. At the end of the discharge process overlapping occurs. This

overlapping results in the calculation of negative volumes. The results of this first

attempt are shown in figures 4.5 to 4.15
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Figure 4.5 Crank angle 2000

Figure 4.6 Crank angle 300°
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Figure 4.7 Crank angle 4000

Figure 4.8 Crank angle 500°
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Figure 4.9 Crank angIe 6000

Figure 4.10 Crank angle 700°

Figure 4.11 Crank angle 800°
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Figure 4.12 Crank angle 860° Figure 4.13 Crank angle 900°
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Figure 4.14 Crank angle 950°
	

Figure 4.15 Crank angle 10000

4.4.2 Four Block Grid Generation Code

Having identified the problems from our first attempt we decided to make some

changes. The first was that we would use four blocks instead of two. Initially the

two blocks would be more or less equal, but as the domains move inwards the

block on the inside begin to expand where as the other one continues its shrinking

mode. This coincides with the beginning of discharge as shown in figure 4.24.

Then, some elements will be compressed and others will expand. This would give

the flexibility needed to control the vertices within the discharge chambers and

therefore avoid overlapping (which results in negative volumes). The second and

biggest change was the implementation of transfinite interpolation. This would

control the case where we do not know the intermediate points and we want the

intermediate curvature to be as close as possible to the boundaries i.e. the discharge

chamber.

4.4.2.1 Implementation of Transfinite Interpolation

The problem of generating a curvilinear coordinate system can be formulated as a

problem of generating values for the Cartesian coordinates in the interior region

80



Chapter 4	 Geometry And Grid Generation

from specified values on the boundaries. This, can be done directly by interpolation

from the boundaries, and such coordinate generation procedures are referred to as

algebraic generation systems. As was mentioned in section 4.3.1, these systems are

divided into two major categories, Unidirectional and multidirectional

interpolation. Transfinite interpolation falls in the second category.

In two directions we may write a linear Lagrange interpolation function

individually in each curvilinear direction:

r(,n) =	 cbnJ) r(,n)
	

ni

r(,n) =	 iírnjjJ T('flm)

This interpolation is now called 'Transfinite' since it matches the function on the

entire boundary defined by =O and =I in the first equation, or by n=O and n=J in

the second. The final form of the transfinite interpolation is shown below:

N
r(,n)=Øn(Jr(n,n)+ Yitrn1JT(uirn)

n=1	 m=1

.	 t øn1'mT(n,h1m)
n=im=1

The transfinite interpolation form above, interpolates the entire set of intersecting

arbitrary curves. The interpolation function defined above with N=M=2, using the

Langrange interpolation polynomials as the blending functions, is termed the

transfinite bilinear interpolant and is the one used in this project. With N=M=3,

this form is the transfinite biquadratic interpolant. Other immediate candidates for

the blending functions are the Hermite interpolation polynomials and the splines.

The results are shown on figures 4.16 to 4.26 As it can be seen there is some

improvement but not to an acceptable level. Initially we thought of subdividing

both curves and using a faster distribution on the one curve so that the pairs of

points will face each other as closely as possible. This was to be done by

implementing a geometric or other series that would control the distribution.

Eventually this proposal was abandoned, mainly because this would not guarantee

the required orthogonality and it would also need numerical opimisation.

(4.3)
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Figure 4.16 Crank angle 2000

Figure 4.17 Crank angle 300°
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Figure 4.18 Crank angle 4000

Figure 4.19 Crank angle 500°
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Figure 4.20 Crank angle 6000

Figure 4.21 Crank angle 700°

Figure 4.22 Crank angle 800°

84



Figure 4.23 Crank angle 860° Figure 4.24 Crank angle 9000
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Figure 4.25 Crank angle 950° Figure 4.26 Crank angle 10000

4.4.3 Mid-Planes Based Grid Generation Code

After careful consideration of the problem it was decided to rewrite the code based

on a completely new procedure. The new idea was to find a curve that would be

located somewhere in the center of the two boundary curves. This curve would be

something like a mid-plane, and instead of subdividing the one or both the

boundary edges we would march along this mid-plane (see figures 4.27, 4.28). First

we selected a point on the mid plane. Then we drew a straight line that passed from

this point and intersected the one curve of the working volume perpendicularly.

Then a second line would be drawn, in this case the line passing from the same

point on the mid-plane and cutting the other curve of the domain perpendicularly as

shown in figure 4.29. By this method we ensured that the elements close to the

curves would have maximum orthogonality. Therefore now the objective was

firstly to find this mid-plane and secondly to find the points on the curves that

would satisfy this condition. After spending some time, two different numerical
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techniques were found for the mid-plane and the points on the curves respectively.

Eventually, these techniques were not used mainly because they led to excessive

computational time. The next step was then to find analytical functions that would

satisfy the requirements specified above. After spending a considerable amount of

time, some mathematical equations were developed for the mid-plane, and for the

points needed for the lines. These are:

XMP FO OI	
1COS + + — 7	 -

2 
JS1flq_\ 

2 )	 I

YMP_FO_OIJ 
=	

sinO l
2 

Jcos_	
2 )	 J

(4.4)

(XMP 00	 1 COS +1 + -	 ( -
2 

JsinQ+	
2 )	 I

YMP 00_F!) 
=	

sino
2 

Jcos+	
2 )	 )

where MP_FO_OI is the mid plane between the fixed outer and orbiting inner

curves, and MP_OO_FI is the mid plane between the orbiting outer and fixed inner

curves

Therefore now that we had three points we could either connect them with two

lines or, assume that these points are lying in the circumference of a circle, find the

center of the circle and then fit a circular arc to connect the points. In this case the

interpolation would be performed along the arc as shown in figure 4.30. In the

program the user has the option either to use straight lines or circular arcs. The

latter appears to produce better grids in terms of smoothness.
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Figure 4.27 Scroll geometry and mid-planes. Crank angle 17d.

Figure 4.28 Working volumes and mid-planes. Crank angle 170°.
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Figure 4.29 Working volumes, mid-planes and samples of lines.
starting from points on mid-planes and finishing at the boundary
curves forming angles of 900. Crank angle 1700.

Figure 4.30 Working volumes, mid-planes and samples of circular
arcs passing from mid-planes and finishing at the boundary curves
forming angles of 90°. Crank angle 170°.
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Unlike the previous two versions of the program, this method is not the same for

all the processes. The general idea is the same but the program is divided into four

parts. The first part covers all the suction process of the compressor and a large part

of the compression process. It stops at the point where the edges of the spirals start

sliding along the circular arcs (see appendix A). The second part covers the rest of

the compression process. The third part is for the discharge process and finally the

last part is concerned with the inclusion of the discharge pipe in the grid. However

before we proceeded to analyze each part of the code, we had to analyze the

implementation of a non uniform element distribution. This option together with

the transfinite interpolation and the mid-planes are the 'heart' of this final and

eventually successful attempt to create a robust, transient, body fitted, structured

grid generation package, with maximum orthogonality and aspect ratio within

acceptable limits specifically developed for scroll machinery.

4.4.3.1 Implementation of Non Uniform Distribution Functions

With the above approach (mid-planes) the biggest problem i.e. departing from

orthogonality was overcome. The next step was to find a way to control the

element distribution. Eventually two different mathematical models were

implemented. These are, hyperbolic function distribution and circular function

distribution (Thompson 1985).

In general, interpolation between r 1 at =O and r2 at =I can be written as

r () q'(/I)r2 + [1_ q(/I)ri ]	 (4.5)

where q' can be any function such that	 (0)0 and 'p (l)=l. The linear

polynomial case is obtained here with q(/I) i/I. The function q in this form

may contain parameters which can be determined so as to match the slope at the

boundary, or to match interior points and slopes.

The interpolation function, q, in this form is often referred to as a 'stretching'

function, and the most widely used function is the exponential:

- exp (a c/I) —1	
(4.6)

exp(a)-1

where a is a parameter that can be determined to match the slope at a boundary.
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Thus. Since from equation 4.5

r =	 - r1)q'

we can determine a from the equation

	

(re)	
r2 —r1	 a

	

1	 I exp(a)_1

with (r) 1 specified.

The truncation error is strongly affected by point distribution, and studies of

distribution functions have been made in that regard. The exponential, while

reasonable, is not the best choice when the variation spacing is large, and

polynomials are not suitable in this case. The better choices are the hyperbolic

tangent and the hyperbolic sine. The hyperbolic sine gives a more uniform

distribution in the immediate vicinity of the minimum spacing, and thus has less

error in this region, but the hyperbolic tangent has the better overall distribution.

(M. Vinokur, 1983, J.F. Thompson, 1983). These are implemented as follows

(following M. Vinokur, 1983), with the spacing specified at either both ends, or a

point in the interior, or a point distribution on a curve.

Let the arc length, s, vary from 0 to 1 as varies from 0 to I: s(0)=0, s(I)=1. Then

let the spacing be specified at =0 and —I:

s(0)=L1s 1 , s(I)= z1s2
	 (4.9)

The hyperbolic tangent distribution is then constructed as follows. First,

1' B = ,jz1s 1 s2	 (4.10)

Then the following nonlinear equation is solved for 8:

sinhö 1
8 B

(4.11)

The arc length distribution then is given by
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s()=	
u()

A+(1_A)u()

where

(4.12)

u() - { 
+ tanh[8(/I - )11

-	 tanh (-- 8)	
f	

(4.13)

If this is applied to a straight line on which r varies from r 0 to r1, we have for the

point locations:

r(4)= r0 +(r1 —r0)s
	

(4.14)

The points are then located by taking integer values of :

=O,1,2.... .,I

Clearly, the arc length distribution, s(), is here the function of q of equation 4.5.

Note that B is essentially the ratio of the specified spacing to the linear spacing,

1/1. If B is greater than unity, i.e. if the specified spacing exceeds the linear

spacing, the hyperbolic functions all revert to circular functions in all the relations

of this section.

With the spacing zl s specified at only —_O, the construction proceeds as follows.

First B is calculated from

B=14
	

(4.15)

and eq. 4.11 is solved for 8. The arc length distribution then is given by

tanh{48(/I -1)]
(4.16)s()=1+

tanh(8)

With the spacing specified only at =I the procedure is the same, except that

relation 4.13 is replaced by

s() 
=	 tanh(8/I)

tanh(8)	
(4.17)

If the spacing zl s is specified at only an interior point s = o, B is again calculated
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from 4.15, and then Sis determined as the solution of

2

1+1—I =
sinhö

I B	 cosh8-1+1/ci

The value of at which s = c is obtained by solving the nonlinear equation,

X - tanh1	 sinh S
5	 1/a+cosh8-1]

The arc length distribution then is given by

	

s() -	
1+sinh{S(—x)/I]1

	

-	 sinh(öx/1)

(4.18)

(4.19)

(4.20)

This last distribution is based on the hyperbolic sine. From this, a distribution

based on the hyperbolic sine with the spacing specified at one end can be derived.

Here B is evaluated from 4.15, and then Sis determined as the solution of,

sinhS 1
S	 B

The arc length distribution then is given by

s() sinh(5/I)
sinh S

(4.21)

(4.22)

if the spacing is specified at —0. With the specification at 4=!, the distribution is

In the code, the above method is implemented in such a way that the following

three options are available:

I) Both initial and final divisions are specified.

II) Only initial division is specified.

ifi) Only final division is specified.

However, the program is optimized and there is no need for the user to choose

between these options. The only thing that the user has to define is whether the

distribution is uniform or non uniform.
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It has to be noted at this point that the functionality and the behavior of all the

mathematical equations used in this program were first checked using Matlab.

Matlab is a mathematical package that offers good graphics. The main reason for

using Matlab was the advantage of viewing the behavior of the curves first, and

then deciding whether or not to implement them into the code.

4.4.3.2 Suction - Part of Compression

Since the two working volumes are identical we will analyze only the one. In this

new approach the grid is made up of four blocks with two blocks in each working

chamber. From the figures that follow it can be seen that each working volume

appears to have only one block. In fact there is a second block but it is so small it

can not be seen at this stage. The importance of this 'hidden' block will become

apparent later on. (i.e. for the rest of the compression process). This part of the

code is not so complicated as the other parts. First we calculated the grid on the

'hidden' block using transfinite interpolation and then we calculated the grid on the

other block using the mid-planes technique. At this point it should be stated that

another 'sub-block' was introduced within block 3 as shown in figure 4.31.

Actually this is not a block by itself, but forms a part of block 3 and is used to put

additional smoothness in the connection between the two blocks.

Figure 4.31 Blocks structure during compression process. Crank angle 82d3.
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No matter how small are the elements of the 'hidden' block, the use of non-

uniform distribution functions discussed above ensures that the increase of the size

of the elements on the vicinity will be as smooth as possible. In fact at the edge of

contact between the two blocks (block 3 and 4) the elements on each side either

have exactly the same size or there is a maximum difference of 1.2 between them.

The grid for this process is shown in figures 4.37to 4.50

4.4.3.3 Remainder of Compression

This part of the grid is more complicated than the first one. In this case the so

called 'hidden' block begins to expand in a non uniform way. For convenience this

'hidden' block will be called block 4 for the rest of this chapter. The expansion

should be as smooth as possible in order to avoid oscillations on the solution. In

this case the edges the hidden block 4 are shown in figure 4.32

Edge 1 B4
	

Edge 4 B4

Edge 2 B4

Block 4

Edge 3 B4

Part of Block 3

Perpendicular
from Mid plane
to Fixed Inner\

Perpendicular
from Mid plane
to Orbiting Out?A

Mid plane

Remainder of Block 3

Figure 4.32 Blocks structure during compression process. Crank angle 82cP.

The size of edge 4B4 remains the same until the discharge process. Even though

the size remains the same, because it is the clearance between the two curves, the

relative position will change according to the crank angle. The sizes of the edges,
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1B4, 2B4 and 3B4 were found experimentally. It has to be noted here that this was

the most time consuming procedure in the development of the code. This is mainly

because without an analytical solution, everything was optimized experimentally.

Once the four edges were clearly identified and their mathematical definition

known we continued with the non uniform subdivision of the edges and then used

tranfinite interpolation to calculate vertices in the interior of block 4. The next step

now was to construct the mesh for part of block 3. In this case the edges were

found experimentally and this was also very time consuming. Then the edges were

non uniformly subdivided and finally, transfinite interpolation was used to

calculate points on the interior. For the remainder of block 3, the non uniform

distribution was employed again, and the interior vertices were calculated using the

mid plane technique. The grid for this section is shown in figures 4.51 and 4.52.

4.4.3.4 Discharge Process

In this case, edge 4B4 comes in contact with the corresponding edge of block2. In

order to avoid any problems, we have to make sure that the vertices in each side

match. The way we did this was to calculate the vertices only on the edge 4B4 and

then to force the other edge to have these values. This process is more or less the

same as the previous one. There are however two main differences. These are: (a)

the edge 4B4 is expanding and (b) part of block 3 disappears very slowly and very

smoothly. It mast be reemphasised that the size, type, etc. of the edges of block 4

and those of the part of block 3, were found and optimized using the extremely

time consuming technique of trial and error. This was the biggest problem we

faced. The grid for the case of block 4 and part of block 3, if there is any, are

calculated using the transfinite interpolation, and non uniform distribution, where

as the grid of the remaining of block 3 was created using the combination of mid

plane technique and non uniform distribution. The results for this section are

shown in figures 4.53 to 4.55.

4.4.3.5 Inclusion of the Inlet Pipe

The development of this code was the biggest challenge of the project. The next

step i.e. the inclusion of a pipe into the grid was also a great challenge. The pipe is

located at block 4 and is adjacent to the edge 1B4. The problem here is not how to

constrain a pipe into the grid. The main problem in this case is that the pipe is fixed

in space. Everything (elements) around the pipe can move but the grid of the pipe
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has to remain stationary. This pipe is of great importance, because using this pipe

we will specify the boundary conditions needed for the analysis.

In order to do this, Block 4 was divided into four parts. The one part is the pipe,

and the other three are the parts around the pipe. Once the user set the flag for the

pipe ON then the program is waiting for the diameter of the pipe. Everything is

automatic. The user has to specify only the diameter, height and the number of K

subdivisions, if the pipe diameter is too big, for the size of the machine then the

program returns a warning, requesting a smaller diameter. Once the diameter is

within acceptable limits then the code calculates the position of the pipe, and then

the number of elements of the pipe. The number of cells for the pipe is not

determined by the user. if the grid of the pipe is too coarse then there is an indirect

way to add more elements in there. To do this the user can increase the number of

the elements of block 4, and this will automatically increase the number of

elements in the pipe. The four parts of block 4 are shown below (figures 4.33 to

4.36). The difficult part of this section was once again the specification of the

edges. The combination of transfinite interpolation with non uniform distribution

was the grid generation tool for this case. The final results for this section are

shown in figures 4.56 to 4.64.

Figure 4.33 Grid of Parts 1 and part 3 of Block4 Crank angle 925°, Diameter of
pipe 0.02 m. (Transfinite interpolation)
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Figure 4.34 Grid of Part 2 of Block4 Crank angle 925°, Diameter of pipe 0.02 m.
(Transfinite interpolation)

Figure 4.35 Grid of Part 4 of Block4 Crank angle 925°, Diameter of pipe 0.02 m.
(Transfinite interpolation)

Figure 4.36 Grid of Block4 Crank angle 925°, Diameter of pipe 0.02 m.
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4.4.3.6 Use of the Code

Before we proceed with the final description of how to use the code, we have to say

something about how the grid is constructed in three dimensions. As is known, the

height of the scroll compressor-expander is constant, therefore the grid constructed

in two dimensions (x,y) can be simply extruded in the Z-axis. Please note that the

constant height of the machine does not permit us to solve the problem by a two

dimensional approach. The reason is because the flow "in" (case of expander) or

"out" (case of compressor) is coming from the Z-axis (pipe).

To run the program there are two main options. The first one is to call it from CFX

as a sub-routine (the code is implemented into CFX4), and the second one is to run

it independently. Let us first analyze the case where the program is running

independently. In this case there is an input file in which the user can specify all the

parameters needed for the generation of the grid. The first thing the user has to

specify is the size of the machine. This is done by giving the base circle radius, the

thickness of the walls, the height of the walls, the clearance and the length of the

spirals. Then the crank angle must be given. The crank angle is the parameter that

will indicate whether the working volumes are in the Suction, Compression, or

Discharge stage. The next step is to specify the number of elements in each block.

Note that blocks which share the same edge should have the same number of

elements along that edge. This is done by specifying the number of subdivisions

along each axis (I,J,K).

Once the process of subdivision is completed, the type of interpolation for the

interior points has to be specified. There are two options as shown in figs 4.37 to

4.50. These are either the use of linear interpolation along a straight line or

interpolation along a circular arc. Next is the decision about the type of

distribution. Options are: Uniform distribution or Non uniform distribution. Finally

comes the option of the pipe. This option is not available for any crank angle. This

is obvious because we cannot have a pipe in the grid during the suction, or

compression processes. If, however, the user specifies a pipe by mistake at those

conditions, its requirement is ignored. At the end of the run an output file called

'GROUT' is created. The grid calculated and stored into file 'GROUT' is only for

that specific crank angle the user defined at the input file. To view the results we

have our own post processor Fortran program, using GINO Libraries.

For the case where the program is called from CFX there is only one major change.
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That is the crank angle is related to real time and speed. In this case the user has to

specify the rotational speed of the machine, the time step (needed for the

simulation) and only the initial crank angle, all the other parameters are the same as

for the case where we run the program independently. For example if we have ten

time steps, the program will be called ten times. Each time the program is called a

new crank angle is calculated (because of the increase in time) from the relation

between speed and time. As a result of this a new grid for that specific time step is

created, and given to the solver. This process continues until the last time step.
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Figure 4.37 Grid 150*20* 1. Crank angle 1800, Non Uniform Distribution, Circular arcs

Figure 4.38 Grid 150*20* 1. Crank angle 180°, Uniform Distribution, Straight lines
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Figure 4.39 Grid 150*20* 1. Crank angle 270, Non Uniform Distribution, Circular arcs

Figure 4.40 Grid 150*20* 1. Crank angle 270°, Uniform Distribution, Straight lines
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Figure 4.41 Grid 150*20*1. Crank angle 3300, Non Uniform Distribution, Circular arcs

Figure 4.42 Grid 150*20* 1. Crank angle 330°, Uniform Distribution, Straight lines
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Figure 4.43 Grid 150*20*1. Crank angle 4500, Non Uniform Distribution, Circular arcs

Figure 4.44 Grid 150*20*1. Crank angle 450°, Uniform Distribution, Straight lines
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Figure 4.45 Grid 150*20* 1. Crank angle 5400, Non Uniform Distribution, Circular arcs

Figure 4.46 Grid 150*20*1 . Crank angle 540°, Uniform Distribution, Straight lines
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Figure 4.47 Grid 150*20* 1. Crank angle 6300, Non Uniform Distribution, Circular arcs

Figure 4.48 Grid 150*20* 1. Crank angle 630°, Uniform Distribution, Straight lines
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Figure 4.49 Grid 150*20*1. Crank angle 7200, Non Uniform Distribution, Circular arcs

Figure 4.50 Grid 150*20* 1. Crank angle 720°, Uniform Distribution, Straight lines
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Figure 4.51 Grid 150*20* 1. Crank angle 8000, Non Uniform Distribution, Circular arcs

Figure 4.52 Grid 150*20* 1. Crank angle 850°, Non uniform Distribution, Circular Arcs
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Figure 4.53 Grid 150*20*1. Crank angle 900°, Non Uniform Distribution, Circular arcs

Figure 4.54 Grid 150*20* 1. Crank angle 950°, Non Uniform Distribution, Circular arcs
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Figure 4.55 Grid 150*20* 1. Crank angle 10000 , Non Uniform Distribution, Circular arcs

Figure 4.56 Grid 150*20* 1. Crank angle 930°, Non Uniform Distribution, Circular arcs,

inlet pipe diameter 0.02m
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Figure 4.57 Grid 150*20* 1. Crank angle 960°, Non Uniform Distribution, Circular arcs,

Inlet pipe diameter 0.02m

Figure 4.58 Grid 150*20* 1. Crank angle 1000°, Non Uniform Distribution, Circular arcs,

Inlet pipe diameter 0.02m
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Figure 4.59 Grid 150*30* 1. (Refined mesh) Crank angle 
9300 , Non Uniform Distribution,

Circular arcs, Inlet pipe diameter 0.02m

Figure 4.60 Grid 150*30* 1. (Refined mesh) Crank angle 960°, Non Uniform Distribution,

Circular arcs, Inlet pipe diameter 0.02m
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Figure 4.61 Grid 150*30* 1. (Refined mesh) Crank angle 9900, Non Uniform Distribution,

Circular arcs, Inlet pipe diameter 0.02m

Figure 4.62 Grid 150*30* 1. (Refined mesh) Crank angle 930°, Non Uniform Distribution,

Circular arcs, Inlet pipe diameter 0.01 (smaller pipe diameter)
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Figure 4.63 Grid 150*30*1. (Refined mesh) Crank angle 960°, Non Uniform Distribution,

Circular arcs, Inlet pipe diameter 0.01 (smaller pipe diameter)

Figure 4.64 Grid 150*30*1. (Refined mesh) Crank angle 990°, Non Uniform Distribution,

Circular arcs, Inlet pipe diameter 0.01 (smaller pipe diameter)
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Figure 4.65 Blocki mesh: 150*30*20, Block2 mesh: 30*30*20, Block3 mesh: 150*30*20

Block4 mesh: 30*30*20, Pipe mesh: 10*10*30, Total number of elements 219000.

Crank angle 930°, Non Uniform Distribution, Circular arcs, Inlet pipe diameter 0.02m
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Chapter 5
Three Dimensional
Flow Modeling

5.1 Introduction

In this chapter we give the mathematical basis for a comprehensive general purpose

model of fluid flow and heat transfer from the basic principles of conservation of

mass, momentum and energy. This leads to the governing equations of fluid flow,

the so called Navier - Stokes equations. The governing equations are complex non

linear partial differential equations, which can be solved using numerical methods.

Discretization methods, advection schemes, time differencing schemes and

pressure I velocity coupling algorithms are discussed. Commercially available CFD

software packages are reviewed and CFX - FLOW3D is described in detail.

Flows inside scroll compressors - expanders are turbulent, time dependent,

compressible and, for the case of the expander, two phase. Furthermore these flows

are driven by the wall motion and, therefore, are characterized by moving

boundaries. In the last section of this chapter the results of the three dimensional

modeling are shown.

5.2 Theory

All of CFD, in one form or another, is based on the fundamental governing

equations of fluid dynamics, the continuity, momentum, and energy equations.

These equations speak physics. They are the mathematical statements of three

fundamental physical principles upon which all of fluid dynamics is based: namely

the conservation of mass, momentum and energy.

• Mass is conserved.

• Newton's second law, F=ma.

• Energy is conserved.
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5.2.1 Governing Equations

The equations that result from applying the Conservation of Mass law to a fluid

flow is called the continuity equation. The Conservation of Momentum law is

nothing more than Newton's second law (F= ma). When this law is applied to a

fluid flow, it yields a vector equation known as the momentum equation. The

Conservation of Energy law is identical to the First Law of Thermodynamics, and

the resulting fluid dynamic equation is named the energy equation. In addition to

the equations developed from these universal laws, it is necessary to establish

relationships between fluid properties in order to close the system of equations. An

example of such relationships is the equation of state, which relates the

thermodynamic variables pressure p, density p, and temperature T. The derivation

of all the above equations is shown in Appendix B.

5.2.1.1 The Continuity Equation

Physical principle: mass is conserved

(5.1)

Equation (5.1) is a partial differential equation form of the continuity equation. It

was derived on the basis of an infinitesimally small element fixed in space. The

fact that the element was fixed in space leads to the specific differential form given

by equation (5.1), which is called the conservation form. The forms of the

governing flow equations that are directly obtained from a flow model which is

fixed in space are, by definition, called the conservation form.

5.2.1.2 The Momentum Equation

Physical principle: F= ma (Newton's second law)

Equations (5.2a) to (5.2c) are the x, y, and z components respectively, of the

momentum equation (in conservation form). They are called the Navier - Stokes

equations in honor of two men, the Frenchman M.Navier and the Englishman G.

Stokes, who independently obtained the equations in the first half of the nineteenth

century.
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d(pu) + V 
. (pUv) =	

dr +	 + d + 
pf	

(5.2a)
dt	 dx dx	 dy	 dz

d(Pv)+v.(pVv)=_J	 (5.2b)
+ xy+ YY

dt	 dx dx	 dy	 dz

and

d(pw)	 ___ ___
+V(pwV)=-	

di	 dr	 dr	 (5.2c)

	

+ xz
	 YZ+_+pf

dt	 dz dx	 dy	 dz

5.2.1.3 The Energy Equation

Physical principle: Energy is conserved

Equation (5.3) below is the conservation form of the energy equation written in

terms of total energy e + V2/2.

a [ ( v1	 r ' V2" ]

	

. d	 dT	 d ( dT'
=pq+—Ik--I+

d xL dx)

+-_(kit d(up) - d(vp) - d(wp) + d(ur) + d(ui) + d(ur)
dz' dz)	 dx	 dy	 dz	 dx	 dy	 dz

+ d(vr) + d(v) +
	

+ d(w) + d(wr) + d(w) 
+pf •V

dx	 dy	 dz	 dx	 dy	 dz

5.2.2 Mathematical Behavior Of Partial Differential Equations

The partial differential equations for continuity, momentum, and energy in fluid

flow have a certain mathematical behaviour. This behaviour might be different

from one case to another, depending, for example, on the local Mach number of

the flow. The same equations may have different mathematical behavior depending

on whether the flow is locally subsonic or supersonic. The behavior may also be

different depending on whether the flow is steady or unsteady. Any differences in

mathematical behavior of these equations reflect different physical behavior as

well. There are two separate techniques for determining the classification of partial

differential equations: Gramer's rule, and the eigenvalue method. Both these

methods lead to the same results.
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Quasi-linear second order partial differential equations in two independent

variables can be classified into three types: hyperbolic, parabolic, and elliptic. This

distinction is based on the nature of the characteristics, curves along which

information about the solution is carried. Every equation of this type has two sets

of characteristics.

In the hyperbolic, the characteristics are real and distinct. This means that

information propagates at finite speeds in two sets of directions. In general the

information propagates in a particular direction so that one datum needs to be given

at an initial point on each characteristic; the two sets of characteristics therefore

demand two initial conditions. If there are lateral boundaries, usually only one

condition is required at each point because one characteristic is carrying

information out of the domain and one is carrying information in. There are

however exceptions to this rule.

In parabolic equations the characteristics degenerate to a single real set.

Consequently, only one initial condition is required. At lateral boundaries, one

condition is needed at each point.

Finally, in the elliptic case, the characteristics are imaginary or complex so there

are no special directions of information propagation. Indeed, information travels

essentially equally well in all directions. Generally, one boundary condition is

required at each point on the boundary and the domain of solution is usually closed

although part of the domain may extend to infinity. Unsteady problems are never

elliptic.

These differences in the nature of the equations reflect in the methods used to solve

them. It is an important general rule that numerical methods should respect the

properties of the equations they are solving.

The Navier -Stokes equations are a system of non-linear second order equations in

four independent variables. Consequently the classification scheme does not apply

directly to them. Nonetheless Navier -Stokes equations do posses many of the

properties outline above and many of the ideas used in solving second order

equations in two independent variables are applicable to them but care must be

exercised.

118



Chapter 5
	

Three Dimensional Row Modefing

5.2.2.1 Hyperbolic Flows

To begin, consider the case of unsteady inviscid compressible flow. A

compressible fluid can support sound and shock waves and it is not surprising that

these equations have an essentially hyperbolic character. Most of the methods used

to solve these equations are based on the idea that the equations are hyperbolic and,

given sufficient care, they work quite well.

For steady compressible flows, the character depends on the speed of the flow, if

the flow is supersonic, the equations are hyperbolic while the equations for

subsonic flow are essentially elliptic.

It should be noted however, that the equations for a viscous compressible flow are

still more complicated. Their character is a mixture of elements of all of the types

mentioned above; they do not fit well into the classification scheme and numerical

methods for them are difficult to construct.

In terms of CFD, the computation of flow fields that are governed by hyperbolic

equations is set up as "marching" solutions. The algorithm is designed to start with

the given initial conditions, say in the y axis, and sequentially calculate the flow

field, step by step, marching in the x direction.

5.2.2.2 Parabolic Flows

Information travels only downstream in these equations and they may be solved

using methods that are appropriate for parabolic equations. Parabolic equations,

like hyperbolic equations, lend themselves to marching solutions.

5.2.2.3 Elliptic Flows

When a flow has a region of recirculation i.e. flow in a sense opposite to the

principal direction of flow, information may travel upstream as well as

downstream. As a result, one cannot apply conditions only at the upstream end of

the flow. The problem then acquires an elliptic character. This situation occurs in

subsonic (including incompressible) flows and makes solution of the equations a

very difficult task. The major mathematical characteristic of elliptic equations is

that a disturbance is felt everywhere throughout the domain, therefore the solution

must be carried out simultaneously at all the points of the domain.

It should be noted that unsteady incompressible flows actually have a combination

119



Chapter 5	 Three Dimensional Row Modefing

of elliptic and parabolic character. The former comes from the fact that information

travels in both directions in space while the latter results from the fact that the

information can only flow forward in time. Problems of these type are called

incompletely parabolic.

5.2.3 Numerical Solutions To Partial Differential Equations

We have seen in the sections above that the equations governing the motion of

fluids are partial differential equations. The transformation of these equations to

what is known as an algebraic equation it is called discretization. In essence

discretization is the process by which a closed-form mathematical expression, such

as a function or a differential or integral equation involving functions, all of which

are viewed as having an infinite continuum of values throughout some domain, is

approximated by analogous (but different) expressions which prescribe values at a

finite number of discrete points or volumes in the domain.

Analytical solutions of partial differential equations involve closed - form

expressions which give the variation of the dependent variables continuously

throughout the domain. In contrast, numerical solutions can give answers at only

discrete points in the domain, called grid points. The discretization methods fall

into three main categories: (a) Finite Difference method, (b) Finite Element method

and (c) Finite Volume Method.

5.2.3.1 Finite Difference Method

This is the oldest method for numerical solution of the partial differential equations

believed to have been introduced by Euler in the 18th century. It is also the easiest

method to use for simple geometries.

The starting point is the conservation equation in differential form. The solution

domain is covered by a structured grid. At each grid point, the differential equation

is approximated by replacing the partial derivatives by approximations in terms of

the nodal values of the functions. The result is one algebraic equation per grid

node, in which the variable value at that and at a certain number of neighbor nodes

appears as a number of unknowns.

Taylor series expansion or polynomial fitting is used to obtain approximations to

the first and second derivatives of the variables with respect to the coordinates.

When necessary, these methods are also used to obtain variable values at locations
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other than grid nodes (interpolation).

On structured grids, the finite difference method is very simple and effective. It is

especially easy to obtain higher - order schemes on regular grids. The restriction of

simple geometries is a significant disadvantage.

5.2.3.2 Finite Element Method

The domain is broken into a set of discrete volumes of finite elements that are

generally unstructured. The distinguishing feature of finite element methods is that

the equations are multiplied by a weight function before they are integrated over

the entire domain. In the simplest FE methods, the solution is approximated by a

linear shape function within each element in a way that guarantees continuity of the

solution across element boundaries. Such a function can be constructed from its

values at the corners of the elements. The weight function is usually of the same

form.

This approximation is then substituted into the weighted integral of the

conservation law and the equations to be solved are derived by requiring the

derivative of the integral with respect to each nodal value to be zero; this

corresponds to selecting the best solution within the set of allowed functions (the

one with a minimum residual). The result is a set of non-linear algebraic equations.

An important advantage of finite element methods is the ability to deal with

arbitrary geometries; there is an extensive literature devoted to the construction of

grids for finite element methods. The grids are easily refined; each element is

simply subdivided. Finite element methods are relatively easy to analyze

mathematically and can be shown to have optimal properties for certain type of

equations. The principal drawback, which is shared by any method that uses

unstructured grids, is that the matrices of the linearized equations are not as well

structured as those for regular grids making it more difficult to find efficient

solution methods.

A hybrid method called the control-volume-based finite element method should

also be mentioned. In it, shape functions are used to describe the variation of the

variables over an element. Control volumes are formed around each node by

joining the centroids of the elements. The conservation forms in integral form are

applied to these control volumes in the same way as in the finite volume method.

121



Chapter 5	 Three Dimensional Flow Modeling

The fluxes through control volume boundaries and the source terms (associated

with the creation or destruction of ) are calculated element-wise.

5.2.3.3 Finite Volume Method

The third, and probably most popular, numerical discretization method used in

CFD is the finite volume method. This method is similar in some ways to the finite

difference method, but some implementations of it also draw on features taken

from the finite element method. The finite volume method was developed

specifically to solve the equations of heat transfer and fluid flow and is described in

detail by Patankar (1980).

The finite volume method uses the integral form of the conservation equations as

its starting point. The solution domain is subdivided into a finite number of

contiguous control volumes (CV), and the conservation equations are applied to

each CV. At the center of each CV lies a computational node at which the variable

values are to be calculated. Interpolation is used to express variable values at the

CV surface in terms of the nodal (CV center) values. Surface and volume integrals

are approximated using suitable quadrature formulae. As a result, one obtains an

algebraic equation for each CV in which a number of neighbor nodal values

appear.

The finite volume method can accommodate any type of grid, so it is suitable for

complex geometries (a structural orthogonal grid is recommended, whenever

possible). The disadvantage of finite volume methods compared to finite difference

schemes is that higher than second order methods are more difficult to develop in

3D. This is due to the fact that the finite volume approach requires two levels of

approximation: interpolation and integration.

5.2.3.4 Comparison Of The Discretization Techniques

There are, several differences between the three methods and these include the

following:

•	 the finite difference method and the finite volume method both produce

numerical equations at a given point based on the values at neighboring

points, whereas the finite element method produces equations for each

element independently of all other elements. It is only when the finite element

equations are collected together and assembled into the global matrices that

the interaction between elements is taken into account.
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.	 the finite element method takes care of derivative boundary conditions when

the element equations are formed, and then the fixed values of variables must

be applied to the global matrices. This contrasts with the other two methods

which can easily apply the fixed-value boundary conditions by inserting the

values into the solution, but must modify the equations to take account of any

derivative boundary conditions.

There are, however, several common features. These features are that each method:

produces equations for the values of the variable at a finite number of points

in the domain under consideration.

•	 requires that we know the boundary conditions of the problem.

•	 can produce explicit or implicit forms

Finite difference methods are based on the substitution of difference equations for

the partial derivatives in partial differential equations. These difference equations

link the values of variables at a set of points to the derivatives and so a grid of

points is used throughout the spatial domain. The finite difference method requires,

that the grid points is topologically regular. This means that the grid must look

cuboid in a topological sense.

Finite elements produce the numerical equations for each element from data at

known points on the element and nowhere else. Consequently, there is no

restriction on how the elements are connected as long as the faces of neighboring

elements are aligned correctly. This means that the faces between elements should

have the same nodes for each of the adjoining elements. This flexibility of element

placement allows a group of elements to model very complex geometry.

Algorithms that have been developed using the finite volume method have tended

to use a regular grid to take advantage of the efficiency of computation, just like

the grids used with finite difference methods. Recently, however, to enable

calculations to be carried out in complex geometries, algorithms have been

developed with the finite volume method that can utilize irregular finite element-

like meshes. Both finite element and irregular mesh finite volume programs pay a

computational overhead for this geometrical flexibility. This flexibility slows down

the programs considerably.
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5.2.4 Pressure I Velocity Coupling Procedures

The process of discretization of the governing differential equations lead to a set of

non -linear, coupled algebraic equations, which are solved using iterative methods.

One of the most popular early techniques for solving the 2-D incompressible

Navier-Stokes equations is the Vorticity-Stream-Function method (Gosman et al.,

1969). The main attraction of this approach is the fact that pressure does not appear

in the formulation; however difficulties in specifying the vorticity at boundary

conditions at sharp corners may cause problems in obtaining a converged solution.

A change of variables is made replacing the velocity components with the vorticity

and the stream function i. Using these new dependent variables, the two

momentum equations can be combined to lead to the parabolic vorticity transport

equation and an elliptic PDE in the form of a Poisson equation. This allows the

separation of the mixed elliptic-parabolic PDE into one paiabo%ic. and ont

that can be solved with any standard iterative method such as SOR (Succesive

Over-Relaxation). In order to determine the pressure, an additional equation,

referred to as a Poisson equation for pressure is solved.

The extension of the vorticity-stream function approach to three-dimensional

problems is complicated by the fact that a stream function does not exist for a truly

three-dimensional flow. However, using a velocity-potential vector, it is possible to

have a vector Poisson equation and a vector vorticity transport equation, which

must be separated into three parabolic and three elliptic PDEs. As a result, it does

not appear that the vorticity-stream function approach offers any advantage over

the primitive-variable approach when solving a 3-D problem (Roache, 1972). The

latter uses the incompressible Navier-Stokes equations in the primitive-variable

form, and then non-dimensionalizes them.

The artificial compressibility method of Chorin (1967) is one of the early

techniques proposed for solving the incompressible Navier-Stokes equations in the

primitive-variable form. An artificial compressibility is introduced which vanishes

when the steady-state solution is reached and makes the differential equations a

mixed set of hyperbolic equations which can be solved using a standard time-

dependent approach.

The most common primitive-variable approach, however, involves the use of a

Poisson equation in place of the continuity equation in order to separate the

pressure effects into a single equation. This technique was first used by Harlow and
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Welch (1965) in conjunction with their Marker-and-Cell (Mac) method, for solving

the incompressible Navier-Stokes equations for transient flows. Approximate

initial values are given to the pressure gradients to find velocities from the

momentum equation and the pressure from the Poisson equation. This procedure is

repeated until the solution converges. The Alternating-Direction-Implicit (ADI)

scheme is applied to the momentum equations (Ghia et al., 1981) and a SOR

method is used to solve the Poisson pressure equation.

5.24.1 Simple Algorithms

All the above methods converge slowly, suffered from stability problems and were

very difficult to use in 3-D flows. In the early 1970s a pressure-correction

technique referred to as SIMPLE (Semi-Implicit Method for Pressure-Linked

Equations) procedure was developed by Patankar and Spalding (1972). The

SIMPLE procedure marked a significant improvement and is currently used, in one

of its many forms, in all general purpose CFD codes.

This procedure is based on a cyclic series of guess-and-correct operations to solve

the governing equations and is, with its variants SIMPLER and SIMPLEC, the

most widely used in solving for the pressure field. It was first proposed for

parabolic flows, and then was soon adapted to general 3-D elliptic problems. The

velocity components are first calculated from the momentum equations using a

guessed pressure field. The pressure and the velocities are then corrected so as to

satisfy continuity. This process continues until the solution converges. The actual
pressure p at the generic iteration step is written as

p = p0 + p'

where p0 is the estimated (or intermediate) value of pressure and p' is the pressure

correction. Similarly in 2-D

u=uO +u, 	v=vo+v,

where u0 and v0 are estimated values, and u' and v' are the velocity corrections.

Using these equations and approximate forms of the momentum equations, we

obtain a pressure correction which is a Poisson equation in the pressure correction
p' and the estimated velocity vector. Once the first guess of the pressure is made

and the velocities are then estimated by the momentum equations, the pressure-
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correction is solved to find p', then p and finally u, and v using the approximate

form of the momentum equations. These new values are then used as estimated

values and the process is repeated until the solution converges.

Because the pressure correction equation tends to overestimate the value of p' in

certain cases, the rate of convergence was found to be unsatisfactory. Under-

relaxation techniques were used to improve the convergence properties. A new

technique was then proposed by Patankar (1981), called SIMPLER (SIMPLE

Revised), where initially the velocity field is guessed. Velocity corrections are

computed in the same manner as in SIMPLE, but a complete Poisson equation is

used to compute the pressure. With this procedure the need of under-relaxation is

greatly reduced and a convergence solution is obtained in a fewer iterations,

although more computational effort is involved per iteration. The original

implementation of this scheme required the use of staggered grids in order to

prevent a numerical instability known as 'checkerboarding', which occurred on a

single grid because the velocities were insensitive to small oscillations in the

pressure solution, and vice versa.

The SIMPLEST method (Spalding, 1980) is based on an explicit treatment of

convective terms and implicit treatment of diffusive terms in the momentum

equations. The SIMPLEC method, proposed by Van Doormal and Raithby (1984),

uses consistent under-relaxation for the momentum and pressure corrections. This

method has been shown to allow faster convergence in prcssure gradient-dominant

and drag forces-dominant problems.

5.2.4.2 Piso Algorithms

An alternative pressure-correction scheme was proposed by Issa (1985) as a

Pressure-Implicit with Splitting of Operators (PISO) technique. In order to remove

completely the need to iterate between pressure and velocity equations, a second

pressure-correction equation is solved in each iteration, much like SIMPLER

yielding pressure and velocity fields that are second-order accurate in time. This

allows its use as a non-iterative method (one cycle per time step), but it requires an

accurate solution of the linearized equations.

Although this method appear to be preferentially indicated for problems where

conservation of mass and momentum are particularly important, it does require

pressure and velocity equations to be solved to tight convergence tolerances, and in
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practice the scheme is often implemented in an iteration loop similar to that used

for SIMPLE. It was proved to be faster than SIMPLE for transient problems in

which the flow field varies markedly at each step, but not for 'smooth' time-

dependent flows (Ciofalo and Collins 1988). At last, in the PISOC method similar

modifications to SIMPLEC are applied.

A review of pressure-velocity coupling algorithms is given by Latimer and Polland

(1985). The SIMPLE-like and PISO-like methods have all been implemented in the

previous versions of CFX-FLOW3D (single-block versions). Only SIMPLE and

SIMPLEC methods are available in the more recent multi-block versions of CFX-

FLOW3D. In fact, these are the only ones that have been proved to be robust for

more general purpose applications.

5.2.4.3 PressureNelocity Coupling Techniques for FEMs

As in FDM, early calculations using FEM circumvented the pressure/velocity

coupling problem by using the vorticity-stream function formulation. Techniques

in use to date for handling the coupling between velocity and pressure are the

Penalty Method, the Lan grange Multiplier Method or a combination of these, and

the PALM Method (Smith, 1985). In other cases either the momentum and

continuity equations are solved directly or a SIMPLE-like iterative procedure is

devised.

The Penalty Method, first presented by Zienkiewizc (1977), uses a penalty

parameter which, multiplied by the pressure, is introduced in the right-hand side of

the continuity equation, and should be zero for the continuity condition. This

parameter is very small so that the continuity equation is nearly satisfied. The

pressure, given as the ratio of the divergence of the velocity vector and the

vanishing penalty parameter, is substituted into the momentum equation, thereby

eliminating pressure. A general discussion of the penalty method is given by Reddy

(1982), while Baker (1984) has described the use of the penalty method in three-

dimensional parabolic flows. In the Lagrange Multiplier Method, the pressure is

considered as a linear function or piecewise constant over quadratic or linear

velocity elements respectively (Gresho et al., 1980). That is, the approximation for

pressure has to be of lower degree than that used for the velocity.

Solution existence can be only guaranteed for those velocity/pressure element

nodal arrangements that satisfy the Babuska-Brezzi condition (Babuska and Aziz,
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1982; Brezzi, 1974). That is, on a triangular element it is required to have velocity

on more than each vertex (for example also on the medians), and pressure at more

than at the centroid (for example, at three internal point centroids).

5.2.4.4 Rhie-Chow Interpolation Method

In order to prevent a 'checkerboard' pressure field that may develop when velocity

components and pressure are located at the same grid point and the FDM are

applied, a common approach has been the use of 'staggered grids'. In this case

pressures and scalars are defined at the centroids of the control volumes, while the

velocities are defined at the centroids of the faces to which are normal. However,

this approach may become quite cumbersome in the presence of non-orthogonal,

body-fitted grids.

The Rhie-Chow algorithm (Rhie, 1981; Rhie and Chow, 1983) allowed the

required components on the cell faces to be computed from the values of velocity

and pressure at the cell centroids in non-staggered grids without including

checkerboarding. It works on 3-d body fitted grids, and allows a natural application

of SIMPLE-like algorithms. The Rhie-Chow algorithm has been incorporated into

CFX-FLOW3D since its release 2 version; and it is also implemented into most

last-generation computer codes.

An improvement to this algorithm has been carried out within the last versions of

CFX-FLOW3D to allow applications to be treated where large pressure gradients

occur which balance strongly varying body forces. Details of this formulation are in

the user manuals (Anonymous, 1994a; 1994b).

5.2.5 Advective-Term Methods

In recent years, a significant amount of research effort has been directed toward

discretization of the combined convection (transport due to fluid flow) and

diffusion (transport due to variations of 0 from point to point) fluxes. Inaccurate

modeling of these terms can seriously degrade overall accuracy and stability of the

solution. In many cases, it is almost impossible to refine the grid sufficiently so that

the numerical errors will reduce to acceptable levels. Thus, it is essential to have a

convection-diffusion formulation that leads to a stable and accurate solution with

grids of modest fineness. Whereas many methods have been formulated, there

exists no clear consensus about a preferred method. The more accurate schemes
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tend to be less robust and slower.

th order to help subsequent discussion, some of the more common models will be

described. We shall consider a simple situation of steady one-dimensional flow

where only convection and diffusion terms are present. If 0 is the variable advected

at a constant velocity u, then, integrating the relevant advection term over the

control volume shown in figure 5.1 gives

JU___=U(0e —0w)

As values of 0 are only known at the center of each control volume, a linear profile

can be taken to estimate cbe and . The result is the Central Difference Scheme

(CDS):

Oe = (0 -	 and	 cbs, = j (Op - Ow)

The factor ½ arises from the assumption of the interfaces being midway. This

scheme is formally second-order accurate, but can lead to spurious spatial

oscillation ('wiggles') of the solution (Roache, 1972) or physically non-realistic
solutions unless the cell Peclet number (Pe = p u Ax/F, where Llx is the cell

width, and F is the diffusion coefficient) is less than 2. There has been some

misunderstanding in the literature as to the nature of these oscillations; however, it

is now accepted that they are related to an accuracy problem rather than to a

stability problem (Vreugdenhil, 1989). It is also relevant that, when CDS is used

and the cell Peclet number is high, the linearized governing equations lose diagonal

dominance. This makes the CDS algorithm lose its 'robustness', and very small

under-relaxation factors, or very small time steps, are needed to obtain

convergence.
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Figure 5.lTypical control Volume
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An unconditionally stable but rather 'crude' approximation is to assume that the

value at the face is the same as the nodal value upstream of the face. This technique

is the basis of the Upwind-Difference Scheme (UDS). It was first put forward by

Courant et a!. (1952) and subsequently by Gentry et al. (1966). This scheme

introduces a false 'numerical diffusion' and produces a result that is actually the

solution to a different problem.

The exponential scheme which uses the exact solution profile would give a highly

desirable behaviour, but at very high computational cost and without being able to

be applicable to more general situations. An easy-to-compute scheme that has the

qualitative behavior of the exponential scheme is the Hybrid Difference Scheme

(HDS). It was developed by Spalding (1972), and applies a central difference

scheme for the Peclet number range —2 ^ Pe ^ 2 and an upwind difference

outside this range by ignoring diffusion. This advection model is used as a default

in many FDM programs. It is again first-order accurate and cannot eliminate false

diffusion errors, but it is slightly better than upwind differencing because second-

order central difference will be the result across streams and in regions of low flow.

Since it is the grid Peclet number that decides the behavior of the numerical

schemes, it is, in principle, possible to refine the grid (i.e., to use smaller zix) until

Pe is small enough (<2 ) for the central differencing scheme to yield a reasonable

solution. In most practical problems, however, this strategy requires excessively

fine grids, which are usually not feasible on economic grounds.

A large number of differencing schemes have been proposed to prevent numerical

diffusion while preserving robustness and avoiding 'wiggles'. They include the

following approaches:

(a) Higher-order upwind schemes, based on the use of more than one grid point

value in the finite difference expression of the advective fluxes, such as the

second-order upwind, third-order upwind (QUICK), or the related 'power law'

schemes (Patankar, 1980) (PLDS), 'Hermitian Polynomial' schemes (Glass and

Rodi, 1982), and 'spline' methods (Rubin and Graves, 1975).

(b) 'Skew' schemes, such as the 'skewed upwind' (SUS) and the 'skewed upwind

weighted' (SUWDS) schemes (Raithby, 1976), the 'mass flow weighted'

(Hassan et al., 1983), the 'vector upstream' (Lillington. 1981), 'bounded skew

upwind' (BSUDS) (Syed and Chiappetta, 1985), and 'flux bending' schemes
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(Gosman and Peric, 1985): all take some account of the angle at which the fluid

crosses the coordinate lines.

(c) Methods based on a locally exact solution of the governing equations, such as

the 'finite analytic' method (Chen et al., 1981), and the 'locally analytic'

scheme (LOADS) (Wong and Raithby, 1979). These formulations do give

stable and accurate results but are rather complex and expensive for regular

use.

(d) Modified-central differencing schemes, such as CONDIF (Runchal, 1987), and

NONDIF (Hedberg, 1989).

Among these we give some details of advection schemes available in CFX-

FLOW3D. The Higher-order Upwind scheme (HUM) represents a more accurate

upwind scheme, which uses an additional nodal value further from the face.

Assuming equal spatial increments, Ø4, is given by:

3	 1
=w---Øww

A formally more accurate scheme than HUV is the quadratic upwinding scheme

known as QUICK (Leonard,1979). This is an upwinded scheme which is third-

order accurate for the advection and second-order accurate for the diffusion terms.

This scheme uses two upstream points and one downstream point, which makes it

slightly unstable:

Ø

	

	 cbp 3=-

	

4	 8

The higher order upwinded schemes can suffer non-physical overshoots in their

solutions. For example, turbulent kinetic energy can become negative. The CCCT

scheme is a modification of the QUICK scheme which is bounded, eliminating

these overshoots. The scheme has:

(3	
\\	

(3
=

where a is a parameter that depends on the curvature of the variable 0. Full details

for the calculation of a are given by Alderton and Wilkes (1988).
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CONDIF is a modification of central differencing in which the coefficients are

written in such a way as to be diagonally dominant, and upwind differencing is

used at any points at which the solution may have a non-physical overshoot. Again

full details are given by Alderton and Wilkes (1988).

A survey of comparative studies on advection schemes is given by Patankar (1988).

While some reviews are in favour of the QUICK scheme, others report over- and

under-shoots, oscillations and convergence problems, and conclude in favour of

HUW or even UDS. Also, higher-order schemes imply a significant increase in

computational complexity. Bums and Wilkes (1987) handled this problem using

the 'deferred correction approach', that is, they included the extra terms on the

right hand side of the equation in the source term (associated with the creation or

destruction of 0).

Convection-diffusion formulation in Finite Element methods have followed a

similar pattem, and various comparable upwinding schemes have been proposed.

Because of non-linearity of the advection terms, Newton-Raphson or Picard

iteration methods are commonly used. A control-volume formulation was

introduced by Baliga and Patankar (1980), who used a shape function based on the

direction of the local velocity vector. In the Galerkin formulation of the finite-

element method, a streamline upwind procedure was employed by Brooks and

Hughes (1982).

5.2.6 Time Stepping procedures

In steady-state problems, the generic transport equation for the variable 0 can be

written as:

F(cb)=S0

In time-dependent problems this equation becomes:

The time derivative of the flow variable 0 can be discretized with a degree of
implicitness ' (0 <	 ^ 1)

1(n+i
1t'
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which can be written in the same form as the steady-state equation (5.31):

F(çb'') = S0

Thus the same basic algorithms can be used, though some extra storage is required

for the values of the variables at step n. For a degree of implicitness =1.0 we

have, for example, the fully implicit backward time differencing scheme; for ,'

=0.5 there is the time-centered scheme of Crank-Nicolson and for =0.0 the

scheme is fully explicit. The fully implicit and the Crank-Nicolson schemes are

unconditionally stable in the mathematical sense, while the explicit method is
subjected to the Courant stability criterion, e.g., the Courant number Cr ^ 1,

(where C r = c/(zi x/zI t), with c as celerity of propagation in the analytical

solution and LI x the width of the smallest cell).

In Finite Element Methods, Crank-Nicolson or backward Euler time stepping may

be used. However, more general time-splitting techniques are becoming popular,

some of which have recently been reviewed by Glowinski and Pironneau (1992).

5.2.7 Solution Techniques For The Linearized Equations

The discretizationflinearization techniques described above lead, at the generic

inner iteration (SIMPLE iteration), to very large systems of linear equations

representing either scalar transport equation or the pressure correction equation,

having the general form:

Ax= b

In the pressure correction case, the coefficient matrix is symmetric. In all cases, if

the 'deferred correction technique', described above, is used the matrix A contains

only seven non-zero diagonals (in 3-D problems) and is efficiently stored as a

N x 7 array, N being the overall number of control volumes in the grid.

To solve such a large system only iterative methods, such Gauss-Seidel and

Successive Over-Relaxation (SOR) methods, are applicable. These consist in

guessing and solving the equations respectively until the iterative procedure

converges.

Whereas the Gauss-Seidel (point-by-point, line-by-line or ADI) methods have been

commonly used for the solution of linear algebraic equations, these methods
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converge very slowly, especially when a large number of grid points are involved.

For large three dimensional problems, it has been found that a more reliable

technique is the Strongly Implicit Procedure (SIP) proposed by Stone (1968). This

technique has proved to be the best in the solution of the pressure correction

equation having a high degree of accuracy. It applies a 'factorization strategy',

which consists in replacing the original sparse matrix A by a modified matrix A+T,

such that it can be decomposed into upper and lower triangular matrices. The

matrix T has to be selected so that the ADI procedure can be applied.

Recently, new techniques have been proposed, some of which are extensions of the

SIP method. Lin (1985) has proposed the use of three free parameters to accelerate

the convergence of Stone's method. In the methods formulated by Schneider and

Zedan (1981) and Peric (1987), the five diagonal matrix in Stone's method is

replaced by a nine-diagonal matrix. As a result, these modified methods (Modified

Strongly-Implicit, MSI) are applicable to the discretization formulations which lead

to nine-diagonal matrices. They have also been shown to be more efficient when

applied to file-diagonal systems.

5.2.8 Commercially Available Codes

Computational Fluid Dynamics has been used for numerical prediction of fluid

flows and heat transfer since the 1960s. With the development of computer

hardware, computational techniques have been vigorously proposed, tested and

refined to the point that these are recognized as cost-effective and convenient

means of obtaining detailed data for complex physical situations. Many powerful

CFD programs are available based on the three above mentioned (section 5.2.3)

numerical methods with varying degrees of modeling capabilities. Among these,

commercially available codes are: CFX-FLOW3D, STAR-CD, PHOENICS,

FLUENT, ASTEC, FIRE, FEAT, FIDAP, P/FLOTRAN, NEKTON.

Grid generation and post-processing packages are often included. Pre and post

processing are also available from specialized companies and referred to as

visualization software, such as CAD, PATRAN, FEMVIEW, UNIRAS and AVS.

The power and flexibility of the CFD packages available today are such that there

is now little need to develop purpose-build programs for specific problems.

Vector-processing and parallel processing capabilities of new supercomputers have

made some impact both on computer programming and on the development of
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numerical algorithms that have been specifically designed to achieve a high degree

of vectorization and speed up computational time. A recent survey of a number of

CFD codes has been presented by Wolfe (1991) and by Collins and Ciofalo (1991).

(a)Finite Volume Codes. TEACH (Gosman and Pun, 1974) can be considered the

'ancestor' of many CFD codes based on FVMs. It was developed in the early

1970s at Imperial College, and could handle problems of 2-D flows; it

employed a k-e turbulent flow model and the SIMPLE algorithm. Several last

generation codes, such as PHOENICS, CFX-FLOW3D, STAR-CD and

ASTEC, can be considered as 'offsprings' of TEACH. These codes solve 3-D

flows in laminar and turbulent regimes, with steady and time dependent

conditions, in complex geometries treated by body-fitted grids. PHOENICS and

CFX-FLOW3D are based on structured grids, while STAR-CD and ASTEC

can use unstructured grids. Details of CFX-FLOW3D, which was used

throughout this research, are given in the next section.

(b) Finite Element Codes. FEAT, developed at the Berkeley Nuclear Laboratories,

is a 'classic' finite element code for CFD and heat transfer problems. Also

FIDAP is widely used. In addition to these, most general purpose FE packages

such as MSC/NASTRAN, ADINA/ANSYS, NISA-il and ABAQUS, include

CFD modules although they are less advanced than specialized CFD codes. A

review of FE methods for CFD problems is given by Lohner (1987).

5.2.8.1 CFX-FLOW3D: CODE OVERVIEW

CFX-FLOW3D, also known as HARWELL-FLOW3D up to a few years ago, is a

general purpose thermofluid-dynamic computer code born, as other computer

codes of the same family, in the early seventies and developed from the research

work at Imperial College. The original version of FLOW3D was limited to simple

staggered and rectilinear grid, Cartesian or cylindrical coordinates, (Wilkes et al.

1985, Jones et a!. 1985, 1986). HARWELL-FLOW3D was marketed with the

release 2 of the code (Burns et al., 1986, 1987). A body fitted coordinate system

was implemented in a structured non-staggered grid, and the Rhie-Chow algorithm

(Rhie and Chow, 1983) was used to prevent 'chequerboarding'. The

pressure/velocity coupling algorithm was a SIMPLE-family algorithm. Linear

equations solvers were used (Kightley and Jones, 1985), and higher order advection

treatment schemes (including HUW and QUIVK) (Thompson and Wilkes 1982).

Adaptive gridding, combustion models, coupling with radiation codes, some two-
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phase flow capabilities, and new advection treatment schemes were introduced,

like CCCT and CONDIF.

Description Of The Code

The suite of CFX-FLOW3D programs consists of a number of modules: (a) Pre-

Processing Modules, or Geometry and Grid Generators; (b) Interactive Frontend;

(c) Solution Module of CFX-FLOW3D; (d) Post-Processing, or Graphics Modules.

The geometry and Grid Generators may be used to define the finite difference grid.

The grid coordinates are dumped to disk in a form readable by the frontend.

Through the use of a flag in the Frontend, the program is informed that the grid

information is to be read from the disk. Use of these modules is optional. The grid

can also be defined within the Frontend. The geometry and Grid Generators include

the interactive grid generator CFX-BUILD. Body-Fitted Grids are generated using

transfinite interpolation.

The Frontend takes the input specification of the problem and converts it from a

form convenient for the user into a form designed for efficient execution. Detailed

error checking is performed. Facilities are available to provide a database which

calculates the physical properties of some common fluids. The problem is specified

in a single data file using the Command Language, that is a set of English-like

commands, subcommands, and associated keywords. In the Interactive Frontend,

this data file is constructed automatically via a series of displays on the screen.

User-defined Fortran routines may be included for features that are too complex to

be described using the Command Language.

The solution module solves the discretized representation of the problem. It

receives the information in a form that permits maximum efficiency to be obtained

on different types of computers including vector processors. The solution Module

has only a few output facilities- for example, for printing and dumping the solution

to disk files.

The Graphics Modules produce the main graphics output, interrogating the disk

files written by the solution module. Interfaces to other post-processing packages

have been constructed, and there are a number of post-processing options available

for various workstations. Use of these modules is optional, and described in the

ENVIROMENT User Guide.
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In the present work no use was made of the pre-processing facilities such as the

interactive grid generator (CFX-BUILD former SOPHIA), since this so far does not

allow for transient grids automatically. In fact, it would have been necessary to

construct the grid for each time step. Use of the Fortran user subroutine USRGRD

was found to be more flexible to define a time dependent grid. Problem

specification was made using the Command Language file.

The main features of the code are summarized in table 5.1

Computational Domain

The generic computational domain in 2D is shown in figure 5.2

Porous
region

-1	
Symmetry plane

Inlet	 Thin surface	 _________

outlets

/I

Walls

/

Figure 5.2 Generic CFX-FLOW3D 2-D computational domain and structures
which can be defined within it.

Multi-block grids are constructed by patching together a number of simple,

rectangular grids to form a grid that is not restricted to be topologically rectangular.

Topological features within the domain of each block are described using patches

(Boundary condition surfaces and interblock boundaries). The generic block grid

include NI, NJ, NK volumes along the 'intrinsic' directions I, J, K respectively.

The grid is defined by specifying the coordinates of the grid vertices in physical

space, arbitrarily oriented.

The generic control volume, is shown in figure 5.3. The corners of the volume are

numbered, and 'intrinsic' directions are indicated following the 'compass rose'

convention. In order to invoke boundary conditions the control volumes lying on

the perimeter of a grid block, considered outside the solution domain, are added
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(automatically) to constitute dummy control volumes. The interior control volumes

are called active control volumes. Two dimensional problems are treated as three-

dimensional with two symmetry or periodicity planes. If cylindrical coordinates are

used, a special treatment is implemented to deal with the singularity created by the

fact that the axis is included in the computational domain.

(I,J+ 1 ,K)

(I,J+1,K+1
(I+1,J+1,K+1)

(I+1,J,K+1)

(I,J,K)
	 (1+1 ,J,K)

Figure 5.3 Generic control volume. Indices of corners are shown

A summary of CFX-FLOW3D commands and keywords is reported in the manual.

The schematic flow chart for the code is shown in figure 5.4. the 'inner' iterations

of the linear solvers, are nested in the loop of the 'outer' iterations, which in turn

are nested in the time stepping ioop. The 'outer' iteration process is stopped either

completely or for the current time step of a transient problem, when the chosen

convergence criteria are satisfied. The criteria are for example: maximum number

of outer iterations, the tolerance on a residual, the CPU limit. In the tolerance on a

residual criterion, iterations are stopped when the overall residual mass source Em

(the sum of the absolute mass source residual in all control volumes) falls below a

predicted value SORItvIAX.
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Figure 5.4 Schematic flow chart of CFX-FLOW3D.
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Table 5.1
Main features and capabilities of CFX-FLOW3D, Release 4.2

1. Physical Models and Geometry
Physical Space Coordinates:	 Cartesian / Cylindrical

Type of Flow:	 Laminar / Turbulent
Steady / Unsteady
2-Dimensional I Three Dimensional
Incompressible / Weakly Compressible, Fully Compressible
Isothermal / Non Isothermal
Forced / Natural Convection
Buoyant: Boussineq approximation of fully compressible
Multiphase flow: multi-fluid model I homogeneous model

Boundary Conditions: Solid Walls
Symmetry or Periodicity Surfaces
Inlet I Outlet Faces
Pressure Boundary
Mass Flow Boundary

Turbulence Models: 	 k-E for high Reynolds number /
Low Reynolds number model
Higher order turbulence models:
Algebraic Reynolds Stress model (ASM)/
Differential Reynolds Stress model (RSM)/
Differential Reynolds Flux model

Two gaseous model 5:

eddy break-up model / mixed-is-burnt model

Langrangian

Rectangular / body-fitted
Multi-block
Rotating coordinate system
Adaptive Grids

Solids / Thin Walls / Porous Regions
Heat Conduction in Solids
Radiative Heat Transfer (via RAD3D code)
Chemical Kinetics for single-phase chemical reactions
Additional Scalar Transport Equations for fluid mixture

2. Numerical Methods
multi-block unstructured, non staggered grid

Fully Implicit Backward Euler Differencing a

Crank Nicolson (central) differencing

SIMPLE / SIMPLEC b

Central /Upwind / Hybrid / HUW
QUICK / CONDIF / ICCG

Line Relaxation I
Preconditioned Conjugate Gradient (ICCG)
Full field Stone's Method I
Block Stone's Method
Algebraic Multi-Grid

a 
This option should not he used with transient gridding

b
PISO and PISOC are available on the new Release

140



Chapter 5	 Three Dimensional Flow Modeling

5.3 Results Of The 3D Modeling

In this study the three dimensional flow modeling was performed by the use of a

finite volume CFD code known as CFX-FLOW3D. In Chapter four the design and

development of a grid generation package, that can handle the complexity of the

grid, for a scroll compressor - expander was analyzed. The next step was to

implement this transient grid generation package with CFX-FLOW3D. The final

stage before running the code was to write the Command Language that described

the physics of the problem. The Command Language is shown in Appendix C.

In solving fluid flow problems we need to be aware that the underlying physics are

complex, and the user must have skills in a number of areas. Prior to setting up and

running a CFD simulation there is a stage of identification and formulation of the

flow problem in terms of the physical and chemical phenomena that need to be

considered. Typical decisions that might be needed are whether to model a problem

in two or three dimensions, to exclude the effects of ambient temperature or

pressure variations on the density of an air flow, to choose to solve the turbulent

flow equations etc. To make the right choices requires good modeling skills,

because in all but the simplest problems we need to make assumptions to reduce

the complexity to a manageable level whilst preserving the salient features of the

problem in hand.

Flows inside scroll compressors - expanders are turbulent, time dependent,

compressible and for the case of the expander two phase. Furthermore these flows

are driven by the wall motion

When the solver runs it produces a large amount of data that has to be analyzed.

The analysis can be divided into two major categories, (a) CFD analysis, i.e. check

to see if the solution is reliable, and (b) Thermodynamic analysis i.e. use CFD as a

tool to improve understanding of the behavior of the thermodynamic system under

consideration. The following two sub-sections 5.3.1 and 5.3.2 discus the results

obtained from the CFD simulation with reference to the above two categories.

5.3.1 CFD Analysis

Three mathematical concepts are useful in determining the success or otherwise of

CFD algorithms: convergence, consistency and stability. Convergence is the

property of a numerical method to produce a solution which approaches the exact

solution as the grid spacing, control volume size or element size is reduced to zero.
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Consistent numerical schemes produce systems of algebraic equations which can

be demonstrated to be equivalent to the original governing equations as the grid

spacing tends to zero. Stability is associated with damping of errors as the

numerical method proceeds. If a technique is not stable even round off errors in the

initial data can cause wild oscillations or divergence.

Engineers need CFD codes that produce physically realistic results with good

accuracy in simulations with finite (sometimes quite coarse) grids.

Performing the actual CFD computation itself requires operator skills of a different

kind. Specification of the domain geometry and grid design are the main tasks at

the input stage and subsequently the user needs to obtain a successful simulation

result. The two aspects that characterize such a result are convergence of the

iterative process and grid independence. The solution algorithm is iterative in

nature and in a converged solution the so-called residuals-measures of the overall

conservation of the flow properties are very small. Progress towards a converged

solution can be greatly assisted by careful selection of the settings of various

relaxation factors and acceleration devices. There are no straightforward guidelines

for making these choices since they are problem dependent.

Optimization of the solution speed requires considerable experience with the code

itself, which can only be acquired by extensive use. There is no formal way of

estimating the errors introduced by inadequate grid design for a general flow. Good

initial grid design relies largely on an insight into the expected properties of the

flow. A background in the fluid dynamics of the particular problem certainly helps

and experience with gridding of similar problems is also invaluable. The only way

to estimate errors due to the coarseness of a grid is to perform a grid dependence

study, which is a procedure of successive refinement of an initially coarse grid until

certain key results do not change. Then the simulation is grid independent. A

systematic search for grid-independent results forms an essential part of all high

quality CFD studies.

Figure 5.5 shows how the residuals change with iterations. Figures 5.6 to 5.10

show how residuals, pressure, and velocities (p, u, v, w) change with the number

of elements in the domain (grid dependency study). From figure 5.6 it can be seen

that the residuals do not change significantly for a number of elements higher than

60000. In figure 5.7 the pressure follows a similar trend to the residuals but in this

case the solution is stable for a number of elements higher than 40000. For the case
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of u velocity which is shown in figure 5.8 stability appears to be insured for a

number of elements higher than 70000. As far as v, and w velocities are concern

they appear to be stable earlier, 30000 elements for v and 60000 for w.

As it can be seen from the figures the solution changes when the number of

elements is less than 70000 and it appears to be stable for number of elements

above that. Figure 5.11 show another important parameter that might affect the

solution, namely the length of the time step. It is obvious that the smaller the time

step the easier for the code to achieve convergence. However there is no need to

use extremely small time steps because then more computational time will be

needed. As can be seen from figure 5.11 the solution does not change for time steps

less than 5.55E-05 seconds. This is the time step we use for the 3D simulation, it

corresponds to a change of half a degree on the crank angle when the rotational

speed is 1500 RPM. For higher or lower rotational speeds the time step is adjusted

so as to reflect only half a degree change on the crank angle.

-UMOM -VMOM -WMOM -MAt

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100

ITERA11ONS

Figure 5.5 Residuals - Iterations. Speed 3000 RPM.
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Figure 5.6 Residuals - Number of Elements. Speed 3000 RPM.
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Figure 5.7 Pressure - Number of Elements. Speed 3000 RPM.
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Figure 5.8 U velocity - Number of Elements. Speed 3000 RPM.
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Figure 5.9 V velocity - Number of Elements. Speed 3000 RPM.
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Figure 5.10 W velocity - Number of Elements. Speed 3000 RPM.
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Figure 5.11 Residuals - Time Step. Speed 3000 RPM.
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5.3.2 Thermodynamic Analysis

After the CED analysis is completed the results can be used to improve

understanding of the behavior of the suction process of the scroll expander, and

discharge process of the scroll compressor. As was shown in section 5.3.1 the

system is said to be grid independent for 70000 elements or more. The results

shown in the figures of this section are obtained from a grid of 70000 elements.

In this section we use different types of graphic techniques to present the results.

These are contour plots, vector plots, and streamlines. The xy plots are not used in

this section mainly because they represent the variation of one dependent variable

versus another independent variable. A disadvantage of xy plots is that they usually

do not illustrate the global nature of a set of CFD results on one view. On the other

hand, contour plots, vector plots, streamlines and particle tracking do provide such

a global view.

5.3.2.1 Expander Characteristics

Figures 5.12 to 5.71 give an excellent understanding of the behavior of the suction

process of the scroll expander. The results cover rotational speeds from 1000 RPM

to 6000 RPM, the entry conditions are defined in section 3.4.2. What it is shown in

these figures is the result of the compressible turbulent and transient flow

modeling. It has to be noted here that in order to come to this stage the simulation

was performed in steps. The first step was an incompressible laminar transient

simulation, followed by an incompressible turbulent transient simulation, the

model used for the turbulence parameters was the high Reynolds k e. The next step

was to calculate changes of density. In this case density changes were calculated

from the equation of state but they were only affected by pressure because the

temperature was fixed. This simulation was called weakly compressible turbulent

transient flow. The final step (which is presented here) allows density calculation

to depend on the changes of both pressure and temperature. In all the above models

the simulations were performed for the rotational speed range of 1000 RPM to

6000 RPM (every 1000 RPM). It has to be mentioned at this point that the results

presented here are only the 1/10 of the total results obtained.

As far as the results are concerned it is very difficult, perhaps impossible, to

compare them with the results obtained from the quasi 1-D modeling (chapter 3).

In that case the expander show good overall working performance. However the

3-D modeling which is more advanced and much more accurate indicates that this
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is not 100% true. A careful examination of the figures that show the pressure

contours will show that there are quite significant pressure differences within the

flow domain. At higher rotational speeds these pressure differences are higher. The

velocity vector graphs show that there are areas of re-circulation both in z and y-

planes. If we look at the stream lines figures we will see that the flow pattern is not

so good. At the beginning, the flow is coming in from the inlet pipe with a constant

velocity, it hits the bottom wall of the expander and as a result there is a build up

of pressure at that point. Then the flow goes in all directions hitting the side walls

while the velocity begins to decrease. After the flow hits the side walls, the velocity

decreases further and there also is re-circulation.

From this simulation it is obvious that the scroll expander will have major

problems that will affect its operating behaviour (specially during the suction

process). The reason for this is mainly the significant pressure drop that takes place

during the filling process. At higher speeds the pressure drop within the working

volume is of the order of 2 bar. From this modeling, and with the use of the

visualisation packages, we manage to get the feeling of how the fluid will behave

in such a machine. To give a better understanding of what we learn let us examine

the case of an expansion that takes place in a turbine or in a screw expander, and

then compare it with the scroll-expander. The reason for doing this is to identify

the major problem of the scroll expander. What happens in those cases is that the

flow 'in' is coming in a completely different way, angle of attack, and the machine

will also behave in a completely different way. The flow hits the blades of the

expander and as a result of this there is a movement of the blades. In our case the

fluid is coming from the top but the expected movement of the spirals is horizontal,

(90° degrees difference). Unlike the case of the screw expander the flow 'in' in a

scroll expander hits first the bottom of the machine (stagnation point occurs there),

which results in the build up of pressure there, and then the residual flow moves

the wall spirals. This is also the main reason for the fluid to swirl. Please note that

all these facts are taking place during the suction process of the scroll expander. It

looks like things will improve during the expansion process, but the results are not

clear in that case.
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5.3.2.2 Compressor Characteristics

As for the case of the expander, the simulation of the discharge process of the

scroll compressor was also performed in steps, the same ones as for the case of the

expander. However the results in this case, which are shown in figures 5.72 to

5.143 indicate that the scroll compressor is an excellent positive displacement

machine. We have approximately uniform pressures within the domain. The

velocity vectors shows that there is a small area of re-circulation closed to the

outlet pipe, but this is something reasonable for this type of machine. The stream

line figures show that some swirling is taking place, mainly in the outlet pipe.

Close to the walls the velocity is relatively low and uniform. As the walls move

inwards the fluid velocity near the pipe increases and takes its peak value inside the

discharge pipe. The velocities within the pipe are not uniform and are higher on the

side of the moving spiral. Almost under the pipe we can see that there is some area

of re-circulation. This area increases as the flow approaches the inlet of the

discharge pipe. Now as far as the pressures are concerned it can be seen that

everywhere in the domain except from the area below the discharge pipe the

pressure is at its highest value and is also uniform. As the flow approaches the

discharge pipe from all sides small pressure drops begin, these pressure drops

continue smoothly until about the middle of the discharge pipe where they stabilize

for the rest of the outlet pipe.

The midplane (Z-plane=-O. 1) velocity vectors characterize the nature of the flow

within the entire volume. The flow vectors indicate the nature of the flow

depending upon the location. Three dimensional flow tends to move vertically

upwards as it approaches the central section of the volume which is directly below

the discharge port. The flow characteristics exhibited here possess a strong axial

component combined with an in-plane (horizontal) vortex component occurring in

all axial levels. The results show that this basic vortex flow pattern persists in the

area below the discharge port throughout the entire axial extent of the flow volume.

The calculations indicate that the flow passing through the discharge port is not

uniform.
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Figure 5.12 Scroll-Expander. Rotational speed 1000 RPM, Pressure contours,
Z-plane =-0.2, step100, 50 degrees (8.333m sec) after suction commences
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Figure 5.13 Scroll-Expander. Rotational speed 1000 RPM, Speed vectors,
Z-plane =-0.018, step= 100,50 degrees (8.333m sec) after suction commences
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Figure 5.14 Scroll-Expander. Rotational speed 1000 RPM, Pressure contours,
Z-plane =-0.1, step= 100, 50 degrees (8.333m sec) after suction commences
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Figure 5.15 Scroll-Expander. Rotational speed 1000 RPM, Speed vectors,
Z-plane -0.1, step=100, 50 degrees (8.333m sec) alter suction commences
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Figure 5.16 Scroll-Expander. Rotational speed 1000 RPM, Pressure contours,
Z-plane -0.0025, steplOO, 50 degrees (8.333m sec) after suction commences
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Figure 5.17 Scroll-Expander. Rotational speed 1000 RPM, Speed vectors,
Z-plane =-0.0025, step=100, 50 degrees (8 333m sec) after suction commences
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Figure 5.18 Scroll-Expander. Rotational speed 1000 RPM, Pressure contours,
Arbitraiy plane, step=100, 50 degrees (8.333m sec) after suction commences

Figure 5.19 Scroll-Expander. Rotational speed 1000 RPM, Speed vectors,
Arbitraiy plane, step= 100, 50 degrees (8.333m sec) after suction commences
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Figure 5.20 Scroll-Expander. Rotational speed 1000 RPM, Stream lines
steplOO, 50 degrees (8.333m sec) after suction commences

Figure 5.21 Scroll-Expander. Rotational speed 1000 RPM, Stream lines,
step=100, 50 degrees (8.333m sec) after suction commences
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Figure 5.22 Scroll-Expander. Rotational speed 1000 RPM, Pressure contours,
Z-plane =-0.2, step= 200, 100 degrees (16.66m sec) after suction commences
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Figure 5.23 Scroll-Expander. Rotational speed 1000 RPM, Speed vectors,
Z-plane =-0.01S, step=200, 100 degrees (16.66m see) after suction commences
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Figure 5.24 Scroll-Expander. Rotational speed 1000 RPM, Pressure contours,
Z-plane =-0. 1, step=200, 100 degrees (16.66m sec) after suction commences
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Figure 5.25 Scroll-Expander. Rotational speed 1000 RPM, Speed vectors,
Z-plane =-0.1, step=200, 100 degrees (16.66m sec) afler suction commences
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Figure 5.26 Scroll-Expander. Rotational speed 1000 RPM, Pressure contours,
Z-plane =-0.0025, step=200, 100 degrees (16.66m sec) after suction commences
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Figure 5.27 Scroll-Expander. Rtationa1 speed 1000 RPM, Speed vectors,
Z-plane =-0.0025, step=200, 100 degrees (16.66m sec) after suction commences
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Figure 5.28 Scroll-Expander. Rotational speed 1000 RPM, Pressure contours,
Arbitraly plane, step=200, 100 degrees (16.66m sec) after suction commences
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Figure 5.29 Scroll-Expander. Rotational speed 1000 RPM, Speed vectors,
Aibitraiy plane, step=200, 100 degrees (16.66m sec) afler suction commences
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Figure 5.30 Scroll-Expander. Rotational speed 1000 RPM, Stream lines
step=200, 100 degrees (16.66m sec) after suction commences

Figure 5.31 Scroll-Expander. Rotational speed 1000 RPM, Stream lines,
StCp2OO, 100 degrees (16.66m sec) after suction commences
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Figure 5.32 Scroll-Expander. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0.2, step= l00, 50 degrees (2.777m sec) after suction commences

4.2091F+01
3.5075E^ 01
2.8060E-i-01

I	-  -, / / /	 I / / 
I I I I / t

	

/ / / / / / / / 1	 . \ -N--; -	 / /	 '	
/ /

\////////1 t\ .
\///////I 4 t\ .

	

\///////I	 \

\ //////I
\ 1 1 / / / / I I \ \	 - -	 - - - , /

	

1 / / / / /	 ' 'A'	 - - , 
1

	

\i/ i /ii	 '(\	 -

	

/ / 1 / I	 -	 -	 -	
/

Figure 5.33 Scroll-Expander. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0.018, step= 100, 50 degrees (2.777m sec) after suction commences
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Figure 5.34 Scroll-Expander. Rotational speed 3000 RPM, Pressure contours,
Z-plane =4).!, step= l00, 50 degrees (2.777m sec) afler suction commences
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Figure 5.35 Scroll-Expander. Rotational speed 3000 RPM, Speed vectors,
Z-plane =4).!, step=100, 50 degrees (2.777m sec) after suction commences
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Figure 5.36 Scroll-Expander. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0.0025, step=100, 50 degrees (2.777m sec) after suction commences
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Figure 5.37 Scroll-Expander. Rotational speed 3000 RPM, Speed vectors,
Z-plae ='-0.0025, step=100, 50 degrees (2.777m sec) after suction commences
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Three Dimensional Fbw Modehig

Figure 53S Scroll-Expander. Rotational speed 3000 RPM, Pressure contours,
Arbitrary plane, step= 100, 50 degrees (2.777m sec) after suction commences

Figure 5.39 Scroll-Expander. Rotational speed 3000 RPM, Speed vectors,
Arbitrary plane, step= 100,50 degrees (2.777m sec) after suction commences
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Three DimensAna/FAbw Mode/rig

Figure 5.40 Scroll-Expander. Rotational speed 3000 RPM, Stream lines
stejP 100, 50 degrees (2.777m sec) after suction commences

FigUre 5.41 Scroll-Expander. Rotational speed 3000 RPM, Stream lines,
SteP100, 50 degrees (2.777m sec) after suction commences
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Figure 5.42 Scroll-Expander. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0.2, step=200, 100 degrees (5.54m sec) after suction commences
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Figure 5.43 Scroll-Expander. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0.018, step=200, 100 degrees (5.54m sec) after suction commences

165



9.8562E-4-O
9.7250E±O
9.5938E+O
9.4626E-i-O

I

9.3314E±O
9.2002E+O
9.O69OEU

Chapter 5
	

Three Dimensional Fbw Modeling

Figure 5.44 Scroll-Expander. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0.1, step=200, 100 degrees (5.54m sec) after suction commences
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Figure 5.45 Scroll-Expander. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0.1, step=200, 100 degrees (5.54m sec) after suction commences
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Figure 5.46 Scroll-Expander. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-O.0025, step200, 100 degrees (5.54m sec) after suction commences
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Figure 5.47 Scroll-Expander. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0.0025, stcp=200, 100 degrees (5.54m sec) after suction commences
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Three DmenshnalFk'w Modeling

Figure 5.48 Scroll-Expander. Rtationa1 speed 3000 RPM, Pressure contours,
Aibitiaiy plane, step=200, 100 degrees (5.54m sec) after suction commences

	

. 4.2091E±OI	 TT

	

3.5075F+O1	 '

	

I

2.8060F^01	 j

2.1045E+O1

	

1t.44J30E+Oi	 4 .
7.0151E+O0
0.0000E+00

:jH	 ;:::.•.H,- -../.,;i. ---.-t.-. ----------.----,

Figure 5.49 Scroll-Expander. Rotational speed 3000 RPM, Speed vectors,
Mbitraiy plane, step=200, 100 degrees (5.54m see) after suction commences
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Figure 5.50 Scroll-Expander. Rotational speed 3000 RPM, Stream lines
step=200, 100 degrees (5.54m sec) after suction commences

Figure 5.51 Scroll-Expander. Rotational speed 3000 RPM, Stream lines,
step=200, 100 degrees (5.54m sec) after suction commences
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Figure 5.52 Scroll-Expander. Rotational speed 6000 RPM Pressure contours,
Z-plane r..O.2, step= 100, 50 degrees (1.389m sec) after suction commences
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Figure 5.53 Scroll-Expander. Rotational speed 6000 RPM, Speed vectors,
Z-plane =-0.018, step=100, 50 degrees (1.389m sec) after suction commences
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Figure 5.54 Scroll-Expander. Rotational speed 6000 RPM, Pressure contours,
Z-plane =-0. 1, step= 100,50 degrees (1.389m sec) after suction commences
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Figure 5.55 Scroll-Expander. Rotational speed 6000 RPM, Speed vectors
Z-plane -0.1, step=100, 50 degrees (1.389m sec) after suction commences
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Figure 5.56 Scroll-Expander. Rotational speed 6000 RPM, Pressure contours,
Z-plane =-0.0025, step= 100, 50 degrees (l.389m sec) after suction commences
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Figure 5 • 57 Scroll-Expander. Rotational speed 6000 RPM, Speed vectors,
Z-plane =-00025, step=100, 50 degrees (1.389m sec) after suction commences
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Figure 5.58 Scroll-Expander. Rotational speed 6000 RPM, Pressure contours,
Ajj,itraiy plane, step=100, 50 degrees (1.389m sec) after suction commences

Figure 5.59 Scroll-Expander. Rotational speed 6000 RPM, Speed vectors,
AEbitxaly plane, step= 100, 50 degrees (1.389m sec) after suction commences
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Figure 5.60 Scroll-Expander. Rotational speed 6000 RPM, Stream lines
step=100, 50 degrees (1.389m sec) after suction commences

Figure 5.61 Scroll-Expander. Rotational speed 6000 RPM, Stream lines,
stCpl00, 50 degrees (1.389m see) afler suction conunences
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Figure 5.62 Scroll-Expander. Rotational speed 6000 RPM, Pressure contours,
Z-plane =-0.2, step=200, 100 degrees (2.778m sec) after suction commences

	

SS'	 \	 \

ss-SssS.sSs

	

S	 S

	

1// / // /	 :

	

I I / / / / / 1	 \ \	 - - - / / /

	

•/////// I	 \ \

Figure 5.63 Scroll-Expander. Rotational speed 6000 RPM, Speed vectors,
Z-plane =-0.ois, step=200, 100 degrees (2.778m see) after suction commences
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Figure 5.64 Scroll-Expander. Rotational speed 6000 RPM, Pressure contours,
Z-plane =-0. 1, step=200, 100 degrees (2.778m sec) after suction commences
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Figure 5.65 Scroll-Expander. Rotational speed 6000 RPM, Speed vectors,
Z-plane =-0. 1, step=200, 100 degrees (2.778m sec) after suction commences

176



1.0849E-
1.0325E-

m 9.8000E
9.2753E-

I

8.7505E
8.2258E-
7.7011E-

Chapter 5
	

Three Dimensional Fbw A*idehfrg

Figure 5.66 Scroll-Expander. Rotational speed 6000 RPM, Pressure contours,
Z-plane = 0 0025, step200, 100 degrees (2.778m sec) after suction commences
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Figure 5.67 Scroll-Expander. Rotational speed 6000 RPM, Speed vectors,
Z-plane =-0.0025, step=200, 100 degrees (2.778m sec) after suction commences
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Figure 568 Scroll-Expander. Rotational speed 60')') RPM, Pressure contours,
Arbitraiy plane, step=200, 100 degrees (2.778m sec) after suction conunences

Figure 5.69 Scroll-Expander. Rotational speed 6000 RPM, Speed vectors,
Arbitrazy plane, step=200, 100 degrees (2.778m sec) after suction commences
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Figure 5.70 Scroll-Expander. Rotational speed 6000 RPM, Stream lines
step200, 100 degrees (2.778m sec) after suction commences

Figure 5.71 Scroll-Expander. Rotational speed 6000 RPM, Stream lines,
step200, 100 degrees (2.778m sec) afler suction commences
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Figure 5.72 Scroll-Compressor. Rotational speed 1000 RPM Pressure contours
Z-plane =-0.2, step=100, 50 degrees (8.333m sec) after discharge commences
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Figure 5.73 Scroll-Compressor. Rotational speed 1000 RPM, Speed vectors,
Z-plane =-0.018, step=100, 50 degrees (8.333m sec) after discharge commences
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Figure 5.74 Scroll-Compressor. Rotational speed 1000 RPM, Pressure contours,
Z-plane =-0.1, step= 100, 50 degrees (8.333m sec) after discharge commences
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Figure 5.75 Scroll-Compressor. Rotational speed 1000 RPM, Speed vectors,
Z-plane =-0.1, step=100, 50 degrees (8.333m sec) after discharge commences
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Figure 5.76 Scroll-Compressor. Rotational speed 1000 RPM, Pressure contours,
Z-plane =-0.0025, step= l0O, 50 degrees (8.333m sec) after discharge commences
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Figure 5.77 Scroll-Compressor. Rotational speed 1000 RPM, Speed vectors,
Z-plane =-O.0025, step= 100,50 degrees (8.333m sec) after discharge commences
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Figure 5.78 Scroll-Compressor. Rotational speed 1000 RPM, Pressure contours,
p bitrary plane, step= 100, 50 degrees (8.333111 sec) after discharge commences
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Figure 5.79 Scroll-Compressor. Rotational speed 1000 RPM, Speed vectors,
Arbitraiy plane, step= 100,50 degrees (8.333m sec) after discharge commences
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Figure 5.80 Scroll-Compressor. Rotational speed 1000 RPM, Stream lines
step= 100,50 degrees (8.333m sec) after discharge commences

Figure 5.81 Scroll-Compressor. Rotational speed 1000 RPM, Stream lines,
step= 100, 50 degrees (8.333m see) after discharge commences
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Figure 5.82 Scroll-Compressor. Rotational speed 1000 RPM, Stream lines
step= 100, 50 degrees (8.333m sec) after discharge commences

Figure 5.83 Scroll-Compressor. Rotational speed 1000 RPM, Stream lines,
step= 100, 50 degrees (8.333m see) after discharge commences
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Figure 5.84 Scroll-Compressor. Rotational speed 1000 RPM, Pressure contours,
Z-plane =-0.2, step =200, 100 degrees (16.66m sec) after discharge commences
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Figure 5.85 Scroll-Compressor. Rotational speed 1000 RPM, Speed vectors,
Z-plane =-0.018, step=200, 100 degrees (16.66m sec) after discharge commences
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Figure 5.86 Scroll-Compressor. Rotational speed 1000 RPM, Pressure contours,
Z-plane =. 0. 1, steprr200, 100 degrees (16.66m sec) after discharge commences
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Figure 5.87 Scroll-Compressor. Rotational speed 1000 RPM, Speed vectors,
Z-plane =0.i, step=200, 100 degrees (16.66m sec) after discharge commences
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Figure 5.88 Scroll-Compressor. Rotational speed 1000 RPM, Pressure contours,
Z-plane =-0.0025, step=200, 100 degrees (16.66m sec) after discharge commences
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Figure 5.89 Scroll-Compressor. Rotational speed 1000 RPM, Speed vectors,
Z-Plane =-0.0025, step'200, 100 degrees (16.66m sec) after discharge commences
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Figure 5.90 Scroll-Compressor. Rotational speed 1000 RPM, Pressure contours,
Arbitrary plane, step=200, 100 degrees (16.66m see) after discharge commences
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Figure 5.91 Scroll-Compressor. Rotational speed 1000 RPM, Speed vectors,
Arbitrary plane, step200, 100 degrees (16.66m see) after discharge commences
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Figure 5.92 Scroll-Compressor. Rotational speed 1000 RPM, Stream lines
step200, 100 degrees (16.66m sec) after discharge commences

Figure 5.93 Scroll-Compressor. Rotational speed 1000 RPM, Stream lines,
step200, 100 degrees (16.66m sec) after discharge commences
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Figure 5.94 Scroll-Compressor. Rotational speed 1000 RPM, Stream lines
step=200, 100 degrees (16.66m sec) after discharge commences

Figure 5.95 Scroll-Compressor. Rotational speed 1000 RPM, Stream lines,
step =200, 100 degrees (16.66m sec) after discharge commences
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Figure 5.96 Scroll-Compressor. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0.2, step= 100, 50 degrees (2.777m sec) after discharge commences
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Figure 5.97 Scroll-Compressor. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0.018, step= 100,50 degrees (2.777m see) after discharge commences
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Figure 5.98 Scroll-Compressor. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0. 1, step= 100, 50 degrees (2.777m sec) after discharge commences
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Figure 5.99 Scroll-Compressor. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0. 1, step= 100, 50 degrees (2.777m sec) after discharge commences
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Figure 5.100 Scroll-Compressor. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0.0025, steplOO, 50 degrees (2.777m sec) after discharge commences
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Figure 5.101 Scroll-Compressor. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0.0025, steplOO, 50 degrees (2.777m sec) after discharge commences

194



9.7588E+O
9.6792E+O
9.5996E+()
9.5200E-1-O

9.4405E+O
9.3609E+O
9.2813E+O

Chapter 5
	

Three Dimensional Fk'w i%*deling

Figure 5.102 ScrollComp reSSOr. Rotational speed 3000 RPM, Pressure contours,
Arbitraiy plane, step= 100, 50 degrees (2.777m sec) after discharge commences
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Figure 5.103 Scroll-Compressor. Rotational speed 3000 RPM, Speed vectors,
Arbitrary plane, step= 100, 50 degrees (2.777m sec) after discharge commences
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Figure 5.104 Scroll-Compressor. Rotational speed 3000 RPM, Stream lines
step 100, 50 degrees (2.777m sec) after discharge conunences

Figure 5.105 Scroll-Compressor. Rotational speed 3000 RPM, Stream lines,
step= 100, 50 degrees (2.777m see) after discharge commences
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Figure 5.106 Scroll-Compressor. Rotational speed 3000 RPM, Stream lines
step100, 50 degrees (2.777m sec) after discharge commences

Figure 5.107 Scroll-Compressor. Rotational speed 3000 RPM, Stream lines,
step= 100, 50 degrees (2.777m see) after discharge commences
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Figure 5.108 Scroll-Compressor. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0.2, step=200, 100 degrees (5.54m sec) after discharge commences
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Figure 5.109 Scroll-Compressor. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0.018, step=200, 100 degrees (5.54m sec) after discharge commences
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Figure 5.110 Scroll-Compressor. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0. 1, step=200, 100 degrees (5.54m sec) after discharge commences

3.183E+01
3.11I9E-1-0J

2.5455E±01

1.9091 E+U1
I .272KE-f-() I

	

6.3638E±0()	 -

	

(UXJ{)0E±0()	 - -- --. .-. - -	 . . . -
- - ,_-__ ......-.---..-----

- / //_-'/ , .	 . 
--------.----.-----'

,,/I/Il/•

	

,,,,,,tii	 ::1

	

I / / I / / I	 1 •\	
/ /

, iitiill .. . 
/ / - -

T,ff!l1l11\	 .---.

	

tilt	 II	 1\\\\\N'...

Ii	 1	 I	 I

	

tilt	 Ii	 I	 I'	 ''.'.'..
1111

\ \\ \ '

"\

Figure 5.111 Scroll-Compressor. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0.i, step=200, 100 degrees (5.54m sec) afler discharge commences

199



9.7588E+05
9.679213+05
9.599613+05

H 9.520013+05

I

9.440513-4-05
9.360913±05
9.281313+05

Chapter 5
	

Three Dimensional Fbw MxNng

Figure 5.112 Scroll-Compressor. Rotational speed 3000 RPM, Pressure contours,
Z-plane =-0.0025, step=200, 100 degrees (5.54m see) after discharge commences
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Figure 5.113 Scroll-Compressor. Rotational speed 3000 RPM, Speed vectors,
Z-plane =-0.0025, step=200, 100 degrees (5.54m see) after discharge commences
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Figure 5.114 Scroll-Compressor. Rotational speed 3000 RPM, Pressure contours,
Axbiliaiy plane, step=200, 100 degrees (5.54m sec) after discharge commences

Figure 5.115 Scroll-Compressor. Rotational speed 3000 RPM, Speed vectors,
Aibitrary plane, step='200, 100 degrees (5.54m sec) after discharge commences
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Figure 5.116 Scroll-Compressor. Rotational speed 3000 RPM, Stream lines
step200, 100 degrees (5.54m sec) after discharge commences

Figure 5.117 Scroll-Compressor. Rotational speed 3000 RPM, Stream lines,
steP200, 100 degrees (5.54m sec) after discharge commences
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Figure 5.118 Scroll-Compressor. Rotational speed 3000 RPM, Stream lines
step=200, 100 degrees (5.54m sec) after discharge commences
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Figure 5.119 Scroll-Compressor. Rotational speed 3000 RPM, Stream lines,
step=200, 100 degrees (5.54m sec) after discharge commences
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Figure 5.120 Scroll-Compressor. Rotational speed 6000 RPM, Pressure contours,
Z-plane =-0.2, stepr= 100, 50 degrees (1.389m see) alter discharge commences
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Figure 5.121 Scroll-Compressor. Rotational speed 6000 RPM, Speed vectors,
Z-plane =-0.018, step'100, 50 degrees (1.389m see) after discharge commences
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Figure 5.122 Scroll-Compressor. Rtationa1 speed 6000 RPM, Pressure contours,
Z-plane =-0.1, step 100, 50 degrees (1.389m see) after discharge commences
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Figure 5.123 Scroll-Compressor. Rotational speed 6000 RPM, Speed vectors,
Z-p1a =-0.1, slep=100, 50 degrees (1.389m see) after discharge commences
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Figure 5.124 Scroll-Compressor. Rotational speed 6000 RPM, Pressure contours,
Z-plane --0.0025, step= 100, 50 degrees (1.389m see) after discharge commences
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Figure 5.125 Scroll-Compressor. Rotational speed 6000 RPM, Speed vectors,
Z-Plane =-0.0025, step=100, 50 degrees (1.389m see) after discharge commences
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Figure 5.126 Scroll-Compressor. Rotational speed 6000 RPM, Pressure contours,
Axbitraiy plane, step=100, 50 degrees (1.389m see) after discharge commences

FigUre 5.127 Scroll-Compressor. Rotational speed 6000 RPM, Speed vectors,
Axbitraiy plane, ster 100, 50 degrees (1.389m sec) after discharge commences
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Figure 5.128 Scroll-Compressor. Rotational speed 6000 RPM Stream lines
step= 100, 50 degrees (1.389m sec) after discharge commences

Figure 5.129 Scroll-Compressor. Rotational speed 6000 RPM, Stream lines,
step= 100, 50 degrees (1.389m sec) after discharge commences

208



94 .5488

78.7907

63.0326

•47.2744

31.5163

15.7581

I 0.0000

94.5488

78.7907

63 . 0326

47.2744

31.5163

1
 15.7581

0.0000

Chapter 5	 Three DA'nensAnaI Fkw Modeling

Figure 5.130 Scroll-Compressor. Rotational speed 6000 RPM Stream lines
step=100, 50 degrees (1.389m sec) after discharge commences

Figure 5.13 1 Scroll-Compressor. Rotational speed 6000 RPM, Stream lines,
step= 100, 50 degrees (1.389m see) after discharge commences
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Figure 5.132 Scroll-Compressor. Rotational speed 6000 RPM, Pressure contours,
Z-plane =-0.2, step=200, 100 degrees (2.778m sec) after discharge commences
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Figure 5.133 Scroll-Compressor. Rotational speed 6000 RPM, Speed vectors,
Z-plane =-0.018, step=200, 100 degrees (2.778m sec) after discharge commences
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Figure 5.134 Scroll-Compressor. Rotational speed 6000 RPM, Pressure contours,
Z-plane =-0. 1, step=200, 100 degrees (2.778m sec) after discharge commences
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Figure 5.135 Scroll-Compressor. Rotational speed 6000 RPM, Speed vectors,
Z-plane =-0.1, step=200, 100 degrees (2.778m sec) after discharge commences
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Figure 5.136 Scroll-Compressor. Rotational speed 6000 RPM, Pressure contours,
Z-plane =-0.0025, step200, 100 degrees (2.778m sec) after discharge commences
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Figure 5.137 Scroll-Compressor. Rotational speed 6000 RPM, Speed vectors,
Z-plane =-0.0025, step=200, 100 degrees (2.778m sec) after discharge commences
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Figure 5.138 Scroll-Compressor. Ritational speed 6000 RPM, Pressure contours,
Axbitraiy plane, step=200, 100 degrees (2.778m sec) after discharge commences
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Figure 5.139 Scroll-Compressor. Rotational speed 6000 RPM, Speed vectors,
AEbitraxy plane, step=200, 100 degrees (2.778m sec) after discharge commences
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Figure 5.140 Scroll-Compressor. Rotational speed 6000 RPM, Stream lines
step= 200, 100 degrees (2.778m sec) after discharge commences

Figure 5.141 Scroll-Compressor. Rotational speed 6000 RPM, Stream lines,
step=200, 100 degrees (2.778m sec) after discharge commences
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Figure 5.142 Scroll-Compressor. Rotational speed 6000 RPM, Stream lines
step=200, 100 degrees (2.778m sec) after discharge commences

Figure 5.143 Scroll-Compressor. Rotational speed 6000 RPM, Stream lines,
step=200, 100 degrees (2.778m sec) afler discharge commences
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Chapter 6
Conclusions and
Future Work

This chapter presents some conclusions which can be drawn from the work done

and also a few suggestions for possible future work.

61 Conclusions

In this study, an analytical model for the geometry of scroll machines, and a grid

generation program with automatic moving mesh capabilities has been developed

and used together with a finite volume code to model the flow of a scroll

compressor - expander. The geometry was also attached to a package of

subroutines developed to analyse compressor and expander thermodynamic

characteristics based on a Quasi 1-D modeling approach. The proposed grid

generation program developed is capable of resolving the complexity of the

rotating working volumes of these machines.

The main findings can be summarised as follows:

1. The importance of the relationship between built-in volume ratio and pressure

ratio and the use of the correct pressure ratio is clearly defined. The significant

point is that the built-in volume ratio is a constant for any given scroll

compressor or expander design whereas the pressure ratio, which is a function

of the gas being compressed or expanded is not. Speed also affects the

relationship between pressure and volume ratios.

2. A scroll expander driving a scroll compressor in a sealed unit could be used as

a throttle valve replacement in large vapour compression chiller systems. Such

a device would be stable in operation and increase the Coefficient of

Performance.

3. The development of a grid to analyze motion in space and time, and the use of

non uniform distribution functions such as the Hyperbolic tangent distribution
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together with the transfinite interpolation has produced excellent results. The

non uniform distribution gives the flexibility to user to put fewer elements in

areas which are not so important or to concentrate elements in crucial areas so

as to allow the solver to capture the activity of the fluid with a higher accuracy.

Aspect ratio, orthogonality, cell distortion, and smooth distribution, are some

of the difficult issues involved in the transient structured body fitted grid

generation package developed. All these issues increase the speed of

convergence.

4. Flows inside scroll compressors and expanders are turbulent, time dependent,

and compressible. The flow inside the scroll expander is two phase as well.

Furthermore these flows are driven by the wall motion. An interesting feature

of the predicted flow patterns of the scroll expander, is the significant pressure

drop which takes place within the flow domain during the filling process and

the existence of re-circulation areas. It is clear that at these areas a stagnation

point occurs. However the important conclusion from this case is the fact that

these re-circulation areas are directly related to the geometry of the machine,

the movement of the boundaries, and the direction of the flow.

5. The significant finding for the case of the scroll compressor is that we have

approximately uniform pressures within the flow domain. There are also some

areas of re-circulation but unlike the case of the expander are related to the

discharge pipe. The calculations indicate that the flow passing through the

discharge port is not uniform. Another important finding is the swirling that

takes place, mainly in the outlet pipe. This swirling appears to be an extension

of the re-circulation which is underneath the discharge pipe.

6. From the results presented in Chapter 5, we can conclude that both qualitative

and quantitative results were obtained from the numerical predictions. These

results have indicated that modern CFD codes, such as CFX4, are probably

capable of simulating flows in scroll compressors and expanders. These codes

can be used in such a way that they can provide a powerful and reliable

comprehensive analysis tool for the design of such machines. However the

computational cost of this simulations is something that needs to be taken into

consideration.
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6.2 Future work

The following areas, arising from the present work, are considered suitable for

further investigation:

1. The grid generation code has not been optimised to execute the minimum

number of operations. Therefore, further attempts will be necessary in order to

make this code more efficient for practical purposes. In this optimisation,

one should concentrate on the calculations of the non uniform distribution

functions.

2. It may be of interest to adjust the code in such a way that can be used in an

adaptive grid strategy in conjunction with the solver. When an adaptive grid is

used, the grids are clustered where sharp gradients are present such as in the

case of a shock. By concentrating the grids only at the locations where sharp

gradients are taking place, one can avoid the use of unnecessary grids at

locations where there is no need and therefore save on storage and

computational time.

3. A further recommendation would be to put the discharge pipe in different

angles. As it was said earlier some swirling is taking place inside the discharge

pipe for the case of the compressor. if we examine the flow patterns underneath

the pipe and the stream lines inside the pipe we will see that the swirling is due

to the direction of the flow underneath the pipe, therefore the use of the

discharge pipe in different angles might decrease the presence of this swirling.

Another pipe related recommendation would be the modeling of the flow

through the discharge pipe when an adjusting pressure valve is fitted on it. This

will give us an indication of how the flow underneath will be affected from the

pressure valve.

4. Now, after significant progress in both software and hardware technology, it is

possible to carry out coupled simulations such as fluid-structure interactions.

One way to do this is to solve the governing equations within one code, another

approach would be the use of two different codes one to do the fluids and the

other to do the structure calculations. The second approach will require a

coupling interface as well. The design and development of a scroll compressor

- expander require a detailed examination of structural behaviour and fluid

dynamics. In this study only the fluid side of the problem was investigated.
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Therefore another recommendation would be a fully coupled analysis of fluid

structure interaction.

5. Finally, in this thesis 3-D numerical studies have modeled only the fluid

dynamics of the suction process of a scroll expander and the discharge process

of a scroll compressor. This was due to the prohibitive computational cost.

However, the expansion and discharge process of the scroll expander, and the

suction and compression process of the scroll compressor are still to be

modeled. As it is well known, the biggest and most difficult part of a 3-D

Numerical Simulation is the grid generation. In this case the grid generation as

well as the setup of the program have been developed, and the remaining task is

the provision of powerful computing facilities. Modeling all the processes of

the scroll compressor - expander in 'one run' is another recommendation that

can be done in the future.
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Appendix A
Scroll
Compressor-Expander
Geometry

A.1 Introduction

In this Appendix the geometry of the scroll compressor-expancer is ana'yzed. Th

derived equations are general parametric equations which amongst others can be

used for

• The design and construction of scroll compressor-expander devices.

• The generation of boundary-fitted, orthogonal, block-structured,

transient grids used in CFD analysis.

• The determination of the working volumes of scroll devices as

functions of the crank angle 0 and the parameters ci and N

determining the lengths of the devices' spirals.

Al2 Geometry of the Scroll Device

A.2.1 Basic Geometry

In this section the equations defining the inner and outer surfaces of the fixed and

orbiting spirals of the compressor are derived. Figure (A-i) depicts the Cartesian

system XY which is used in the treatment of the problem. The centre of a

generating circle with radius r, is located at the point

s=(J.

The meaning of the term "generating" will become apparent later in this section.

The line segment BP, shown in figure (A-i), is constructed so that it is tangent to

the generating circle at the points B, hence perpendicular to the radius B. Its
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length BP is equal to the length GB of the arc GB, as measured anti-clockwise,

that is

BP±SB, BPGB=r,	 q'^O,	 2,r>e^O, E=constant,	 (A.1)

where by definition, qi is the angle GSB subtended by the chord GB and

E ASG is a given constant angle in the semi-open range [0, 2,r). Clearly, the

coordinates of the point B are given by

(rcos(+e)+S
B = I	 X , ço ^ 0, 2,r> e ^ 0, s = constant.	 (A.2)

rs1n(+e)+S)

The curve C, also shown in figure (A-i), is defined as the geometric locus of the

points P satisfying the relations (A.1). From this definition and the geometry

shown in the figure, it is obvious that the parametric equations of the points P and

hence the curve C, are

Y

Figure (A-i). General geometry of the involute.
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. 
(x" - (SD + DE S) - (r cos(p + e)+ BP sin( + e) + S, -

y)EF—PF)rsin(co+e)—BPcos(ço+E)+S

(A.3)
(r cos( + s) + rço sin(p + e) + S,

rsin(p+ e)—rçocos(ço+ e)+S)'

The starting point G of this curve is obtained form the above equations for = 0.

This is the only common point between the curve and the generating circle and its

coordinates are

G (x
G " (rcos(s)+S'

YG) rsin(E)+Sj' 2>e^O

The gradient m of the curve C at any of its points P, can easily be obtained from
equation (A.3). Differentiation of this equation once with respect to , yields

(dx\

C: 
I dy I	 sin(ç+e))

	 qi^O, 2,r>e^O, e=constant,	 (A.5)

and hence the gradient m is given by

m = tan(q + e),	 q ^ 0, 2r> £ ^ 0, e = constant
	

(A.6)

This is equal to the gradient of the radius SB, a fact obvious from figure (A-i).

Consequently, the tangent L to the curve C at the point P is parallel to the radius

SB, and according to relations (A.1)

The tangent L to the curve C at a point P and the tangent BP to the
generating circle are perpendicular, while L is parallel to the radius SB,	 (A. 7)
that is SB I BP, L I BP, SB I L,

where the coordinates of the points B and P are given by the relations (A.2) and
(A.3) respectively.

A second Cartesian system XY' is defined so that its origin is located at the point

S = —d 
(cos(0)

sin(0)) , 
d = constant, 0 E

(A.4)
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and its axes are parallel to the axes of the XY coordinate system as shown in

figure (A-i). The symbol R denotes the set of the real numbers.

The curves C1 CFQ , C2 CR , C3 C00 and C4 C01 , defining the inner and

outer surfaces of the fixed and orbiting spirals of the compressor are shown in

figure (A-2). The meaning of the subscripts is: FQ = Fixed Outer, F/= Fixed Inner,

00= Orbiting Outer, and 0/ = Orbiting Inner. The analytical expressions for these

curves are obtained from equations (A.1), (A.2) and (A.3) applied for different

values of the parameter e and different locations of the point S. The values of e

and S corresponding to each of these curve are given below

Cl CFQ : S=
	 e=0,

C2=C, : S=
	 e=y, 0<y= constant <,r/2,

(A. 8)

C3 C00 :
	 (cos(Jr+6)") e=2r,

(cos(,z +
: S=dj(0)J e=ir+y, O<y=constant<,r12,

where by definition, y is a constant angle, called thickness angle, and

0<r<d=constant,	 (A. 9)

Combining these equations with the relations (A.3), we obtain the equations

describing the curves CI— CFO, C2— CR , C3 C00 and C4 C01 . Thus,

CI CFQ : 
(x1 = r05(00))

ly1)	 sin(q)— cos(q.'))'

C2 C, : 1x2 = 1c05+nun1+1)

Y2)	 sin(+ 7)— cos(+
(A.1O)

	

C3=C00 : 1x3")	 (r(cos(c9) + qsin(9)) + d cos(9)")

	

L y3 )	 r(sin(cp) - cos()) + d sin(0))'

-	 (x4"	 (r(cos(p + y) + sin( + y)) + d cos(0)C4 —0O3 :	 1=—I

	

y4 )	 r(srn(ço + ')— cos(q + y))+ dsin(0)
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C:- C

3 'UU

Figure (A-2). Generating circles and invo lutes.

where q'^O, O<y=constant<r/2, 8ER,	 O<r<d=constant.

The starting points of these curves, according to equations (A.4) and (A.8) are

(A.11)
+ d cos(0)"\	 (r cos(y) + d cos(9)")C3 C00 : G3 

= - dsin(0) J' 
C4C01:	

rsin(y)+dsin(0))
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From the relations (A.8), (A.9) and (A.1O) we can easily deduce the following

facts, important for the treatment of the present problem. The curves C1 CF0 and

C2 -CF/ are associated with a generating circle whose centre coincides with the

origin of the XY Cartesian system, while the curves C3 —000 and C4 CO3 are

associated with a second generating circle whose centre is located at the origin of
the X'Y Cartesian system. The parameter q appearing in the definitions (A.1O)

of the curves, is always measured anti-clockwise. However, for the curve C1 CF0

it is measured from the positive X semi-axis, for the curve C2 CR it is measured

from the line 0G2 , for the curve C3 C00 it is measured from the negative X

semi-axis and for of the curve C4 C01 it is measured from the line SG4 . Finally,

the angle 0 is measured anti-clockwise from the negative X semi-axis. All these

facts are shown in the figure (A-2).

The gradients m (i=1,2,3,4) of the curves C, (i_-1,2 ,3,4 ) for any given value of the
parameter q, are obtained from equation (A.6) upon introduction of the values of

the parameter e given in equations (A.8), thus

C1 C 0 : m1=tanq,

C2 CR : in2 = tan( + y), , ^ 0, 0< y = constant < ,r /2,

(A.12)
C3 C00 : m3=tanço,

C4=C01 : m4 =tan(co+y), p ^0, 0<y=constant<ir/2.

We now proceed with the determination of the distances between the pairs of the

curves C1 CFQ , C2 CR , and C3 C00 , C4 C01 . As it will be shown below, these

distances are equal throughout the lengths of the spirals. They are thus independent
of the value of the parameter .

By construction, the points P1 , P2 , P3 and P4 , shown in figure (A-3),
correspond to the same, arbitrary value of the parameter , say co. The segments

B,P (i=1,2,3,4), drawn from these points, are tangents to the generating circles at

the points B (i=1,2,3,4). The points Q1 and Q3 are the intersections of the curves

C1 and C3 with the produced segments 82P2 and B4P4 . Finally, the lines L1

(i=1,2,3,4), also shown in the figure, are the tangents to the curves C, (i=1,2,3,4)

at the points Q1 , P2 . Q3 , and P4 respectively.

225



x

-1

Appendi)' A
	

Scroll Compressor-Expander Geometry

CF C

'-'3 '-'00

Figure (A-3). Generating circles, involutes and their tangents.

Clearly, the values of the parameter	 corresponding to the points Q 1 , P2 , Q3,

and P4 , are given by

P2 and P4 : ço=w,	 w^O

(A. 13)
°1 and Q3 :	 =w+r, w^O, O<y=constant<r/2.

Substitution of these values into equations (A.1O) yields the coordinates of the
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above mentioned points. Hence

01	
(XQI"1 = Icos(w + + (w + y)sin(w +

YQ1)	 sin(w+ ) — (w+ )cos(+	
=	 7,

• (xp2") 1cos(w+r)+wsin&+r)	 -
P2 .	 i	 i—ri .	 I,

YP2)	 sin(w + - U)coS(U) +
(A.14)

03 :	 3=1ros++(+ S1fl +y+dof'	 2=w+y,
kYQ3 )	 r(sin(w + - (w + ) cos( w +	 + d srn(8))

p4	 - Ir(cos(w + + asin(w + y)) + d cos(Of
y) - r(sin( + - wcos(w + )) +dsin(0)J'	 =

where co ^ 0.

Furthermore, combining equations (A.13) with equations (A.12), it is easy to prove

that the lines L1 (i=1,2,3,4), 082 and SB4 are parallel, with gradients given by

m1 =m2 =m3 =m4 =tan(w+y),

On the other hand, the line segments B2Q1 and B4 Q3 are perpendicular to the radii

0B2 and SB4 and hence they are also perpendicular to the lines L1 (1=1,2,3,4).

From the above discussion it is evident that B2Q1 and B4Q3 are perpendicular to

the curves C (i=1,2,3,4), at the points Q 1 , P2 , Q3 , and P4 . Consequently, P2Q1

is the distance between the curves CCFO and C2 CR , while P4 Q3 is the

distance between the curves C3 C00 and C4 C01 . These distances, easily derived
from equations (A.14), are independent of the parameter q. They are equal and

depend only on the common radius r of the generating circles and the thickness
angle 7, that is,

Distance between C1 and C2 = P2 Qi=j( xp2 - xQl ) 2 + (yp2 - YQI)2 = r
(A. 15)

Distancebetween C3 and C4 = P4 Q3= \fp4_xQ3)2+(yp4_yQ3) =ry,

where	 0< y = constant < r /2,	 0< r <d = cons tan t.
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It is worth noting that the distance between the curves is equal to the lengths of the
arcs G7G2 or G3G4 , to which the thickness angle	 subtends. Furthermore, the

curves Cl— CF0 , C2 CR C3 C00 and C4 CO3 are perpendicular to the generating

circles at their starting points.

A.2.2 Contact Conditions

It is now assumed that the curves CI CFQ and C4 CO3 have been constructed in

such a way that they never intersect each other, but there exist points at which they

are tangent. The same assumptions are also made for the pair of the curves C2—CR

and C3 C00 . Two such touching points are illustrated in figure (A-4). Clearly, at

these points the touching curves (either C1 and C4 or C2 and C3 ) have the same
coordinates and the same gradients. However, the value of the parameter 	 at

these points would be different for each curve. Denoting the values of q,

corresponding to the curves C1 (i=1,2,3,4 ), by (i=1,2,3,4 ) respectively and

introducing equations (A.1O) and (A.12), the above assumptions for the pair of
curves C1 and C4 are fully described by the following relations

rcos(ço1 ) + rço1 sin(q 1 ) = —r cos( 4 + 2') - rca4 sin(ca4 + y) - d cos(0),

rsin(q 1 ) - rca1 cos(q 1 ) = —rsin(,4 + 2') + rço cos (ca4 + y) - d sin(0),	 (A.16)

tan(ca1 )= tan(q'4 + 1)

while the corresponding equations for the pair of the curves C2 and C3 are

rcos(q 2 + 7)+rp2 sin(q 2 + y) = —rcos( 3 )—r 3 sin(q 3 )— dcos(G),

rsin(ca2 + y) - rq 2 cos (ca2 + 2') = —rsin(ca3 ) + rca3 cos( 3 ) - d sin(0),	 (A.17)

tan(p2 + y) = tan(ço3).

The above algebraic systems obey the conditions

^O (i=1,2,3,4),	 O<7=constant<yr/2, OeR,

(A.18)
O<r<d = constant.

The last of equations (A.16) and (A.17) have the following general solutions

228



Appendix A
	

Scroll Compressor-Expander Geometry

C 1 = C.o

Figure (A-4). Involutes and their innermost touching points.
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q 4 =(2k+1)7r+q'1 —y,	 kE\W,	 ç,, ç04^O,

q 4 =2kir+q 1 -7,	 kE\W,	 q'1, qi^O,
(A. 19)

4=—(2k+1)r+q'1—y,	 kE\W,	 ç,, q4^O,

q 4 =-2kir+ç 1 —y,	 kEW,	 q,, ço4^O,

and

q12 =(2k+1)7r+q 3 —y,	 kE\W,	 q'2, q'3^O,

q,2 =2k,r+cp3 —y,	 kE\W,	 Q2, O3^O

(A.20)
q'2=—(2k+1)r+ç3—y,	 ç2, q3^O,

ço2 =-2kr+ço3 —,	 kE\W,	 q3^0,

where the symbol \W denotes the set of the whole numbers.

Introducing the solutions (A.19) into equations (A.16) and the solutions (A.20) into

equations (A.17), squaring and adding the resulting expressions, we obtain the

following relations

d=r[(2k+1)r—y],

c,2 =(2k+1),r+q3—y,

d=r[(2k+1)ff+y},	 = —y—(2k+1)r,

q2=3—y—(2k+1)r,

d = rj4 + [2kir + 2,1 -
	 = 2k,r + -	

(A.21)

d=r,14+[2k,r+2c03_ ]2,	 = 2kr + (p3 —7,

d=rj4+[2coi_y_2k,r]2,	 q4=q,1—y-2kr,

d=r/4+[2q,3_y_2k,r]2	 = ço3—y-2kr,
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where	 ç01 ^0(i=1,2,3,4),	 0<y<,r/2,	 O<r<d,	 kE\W.

The restriction imposed upon d from the last of the relations (A.18) implies that
the last four of the above solutions are unacceptable since they depend on either

or q 3 and hence such a d is not constant. In order to select one of the first two

solutions, we impose the following "extra" condition : the distance d must have

the minimum possible value satisfying the relations (A.16), (A.17) and (A.21).

Under this condition, the first of the above equations for k = 0 yields

d = r(,z - 7),

ço4 =ii+ço1 7,	 2+c)37,	 (A.22)

q 1 ^0 (i=1,2,3,4), 0<y=constant<ir/2,	 0<r<d=constant.

We must of course justify the imposition of the "extra" condition mentioned

above. Any other constant value of d given by equations (A.21), except the

minimum, produces spirals that not only touch but intersect each other as well. For

example the second of equations (A.21), for k = 0 furnishes

d = r(ir + 7),

q2_q372r,

^ 0 (i-1,2,3,4), 0< y = constant < r /2, 0< r <d = constant.

This value of d differs from the minimum given by equation (A.22) by 2ry which

according to expressions (A.15), is twice the thickness of the spirals. This increase

of d corresponds to a movement of the orbiting spiral away from the origin 0 by
2ry. Consequently, for d = r(Jr + 7) the spirals touch and intersect each other

simultaneously as shown in the figure of next page.

Having found the expression for the distance between the centres of the two

generating circles, we proceed with the determination of the relation between the
parameters ç, and 0 at the touching points. Substituting equations (A.22) into

equations (A.16) and (A.17), and after some algebraic calculations, we obtain

tan(ç,) - cot(0), tan( 3 ) = - cot(0),

4_ 71+77,	 21 q3-7, q^O (i=1,2,3,4),	 d=r(ir—y),	 (A.23)

0<y=constant<r/2, &e9.
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L.1

Figure (A-5). The involutes touching internally.

These trigonometric equations have the following general solutions

or O=2kr++q 1 or

(A.24)

Jr	 Jr
ço3 =2kJr+-+O or 9=2kJr+-+q 3 or
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In order to select one of the above solutions, we impose the restrictions implied

from the relations (A.23) and figure (A-4), that is

O<ç0 1 <(p4 ,	 O<ç'3 <ç 2 ,	 (A.25)

and hence at the touching points the following relations hold

ço1 =2kr++O, co3=2kir++O,

o4 -2r+q'1 7, ço2 =ir+ço3 —y, q^O(i=1,2,3,4), d=r(r—y),	 (A.26)

O<y=constant<2r/2,	 kE\W, OE9.

Clearly, the relations between the angles q' 1 , p and 0 refer to the touching

conditions of the curves CCFo and C4=C01 , while the relations between the
angles q,	 and 8 refer to the touching conditions of the curves C2 CR and

C3=coo.

Two other solutions satisfy equations (A.23) and the restrictions (A.25), namely

1=(2k+1)r++0, q,3=(2k+1),r+!+0, 4=r+q'1—y, q2=r+q3—y.

These however correspond to the internal touching points as shown in figure (A-5),

and are unacceptable.

A.2.3 Starting Points - Inner Circular Arcs

Under the conditions (A.22) and (A.26) not only the external curves touch with the

internal curves in pairs (C1 CFO, C4 CO3 and C2—CFI, C3—000 ), but for a

specific value of 8 the external curves CICFO and C3—000 touch externally as

well. This situation is illustrated in the figure (A-6). Clearly at the point of

touching these curves have the same coordinates and equal gradients. Denoting the
value of the parameter at this point by q' for the curve C1 CFQ and by c'3S for

the curve C3—000 , and introducing the relations (A.1O) and (A.12), the touching
conditions are fully described by the following relations

COS(q'1) + rço1 Sifl( (Pis)	 —r cos(q 3 )— rco3 sin(q 3 ) - d cos(0),

TSifl( (Pis ) - rço cos Q'is)	 TSjfl(3 ) + rço3 COS( 3 ) - d sin(0)	 (A.27)

tan(p) tan('3).
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Y.

C 3 C00

Figure (A-6). The trimming point of the external involutes.

These are, of course, subject to the conditions (A.18) and (A.22). That is

d=r(ir—y),	 '	 s^ O , O<r<d=constant,
(A.28)

9E9, 0< y= constant<ir/2.

Given that	 -	 <2,r, the general solution of the last of (A.27) has the form

Pis =	 +	
3S = q 1 + ,i,	 1S = 3S	

(A.29)
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Substituting any of the first two of these solutions into equations (A.27), squaring

and adding the resulting expressions and after some rearrangements, we get

d = nt,	 '1S = '3S +	 =	 + 2r.

These relations do not agree with the first of the expressions (A.22) and they are

therefore unacceptable. On the other hand, combining the last of the solutions

(A.29) with equations (A.27) and (A.28), following steps similar to the steps
described above and rejecting negative values for	 and q35, we find that the

curves C1 CFQ and C3 =C00 touch externally when

is'	 IS3S'

d = r(r—y), c	 3S ^0, 0< r<d = constant,	
30)

OeR, 0< =constant<r/2.

The first of these relations implies the condition

d ^ 2r,

which is evident from the geometry shown in figures (A-2), (A-3) and (A-4). Note
that for d r(r— y), the above inequality furnishes (7r - 2) ^ y . Given that

, / 2> it —2, the condition 0 < = constant < it / 2 appearing in most of the

above equations, must be substituted by

0<y=constant^ir-2.	 (A.31)

Evidently, for values of the parameter q' less than the critical angle

cr	
()2_i = [(it_y)/2]2 —1, 0<y= constant^it-2,	 (A.32)

there exist values of the crank angle 9 for which the spirals intersect each other.

We are therefore forced to introduce one more condition while defining the curves

(i=],2,3,4), namely

'2
= 7t-7) 

—1	 0<=constant^ir-2.	 (A.33)-	 2)
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This condition, being a general one, holds true at the contact points of the curves C

(j=1,2,3,4) as well. Thus, in the case of the curves C1 CF0 and C3—000 , though

equations (A.26) imply that the values (p and q of the parameter (p at the points

of touching can lie anywhere in the semi-open interval [0, 00) as the crank angle

O varies in the range (_00, + 00), the above inequality restricts the range of

and (p3 to values greater than or equal to (per' thus

2

(pt , (p3 ^ 1S =	 (per =	 2J —1, 0< y = constant ^ —2.	 (A.34)

Similarly, for the curves C2CFI and C4 C01 , according to equations (A.26) and
(A.34), the values (p and (p4 of the parameter (p at the points of touching satisfy

the relation

2

(pa ' 4 ^(p2S (p4S ((per +_7) 2 J —1

(A.35)

0<1 = constant^r-2.

The above two restrictions must hold regardless of the value of the crank angle 0.

It must be stressed here that for values of or (p4 less than 2s or the

curves C2 CF, and C4 CO3 do not have any contact points, since a drop in the
value (p or (p4 below 2s = (p = (Pcr + 7t — 2') implies a drop in the values of (p

or (p3 below (per• This of course, according to restriction (A.34), is unacceptable.

However, for values of the parameter (p in the closed interval [(per' ((per + JT —

we require that -as the moving spiral rotates in a circular orbit round the fixed

spiral- the curves C2 CF/ and C4 CO3 are continuously in touch with the starting

points G3 and G1 of the curves C3 C00 and CI CFQ respectively. This is of great

importance in the design of the scroll compressor if leakage of the flow from the

discharge chamber to the last pair of compression chambers is to be avoided.

The above requirement can be satisfied if and only if the sections of the curves

C2 CF, and C4—001 , defined for values of (p in the range cr ^ (p ^ ((per + It— y),

are replaced by the paths followed by the starting points of the curves CI CFO and

C3—000 as the scroll device is in motion. It will be proved below that these paths

are circular arcs. The relevant geometry is shown in figures (A-7a) and (A-7b).
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C

C ORB

Figure (A-7a). Replacement of internal involutes by circular arcs.
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Figure (A-Th). Contact of spiral tips with inner circular arcs.
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The condition (A.33) alters the starting points of the curves, which are not any

more given by equations (A.11). Instead, equations (A.1O) upon introduction of the

critical angle	 yield the starting points or tips G1 and G3 of the curves C1CF0

and C3 C00 respectively, that is

(COS(cocr ) + cr Sifl(cocr )
C1 CF0 :	 = r1

S1fl(cr)	 cr COS(cr )J'
(A.36)

(_ T(COS((Pcr) +	 sifl(q)) + d cos(7r +
C3 C00 : G3 = - 

r(sin('Pcr) - 'Pcr COS('Pcr)) + d sin( +0)

The starting points G2 and G4 of the curves Cf CR and C4—0O3 will be discussed

later on in this sub-section.

The introduction of the values 'P2s = c°4S = ( + it - y) into equations (A.1O)

furnishes the coordinates of the points T2 and T4 shown in figures (A-7). At these

points the tips G1 and G3 touch the curves C2 CF/ and C4 C01 nearest to the

generating circles for the first time respectively, thus

(COS ('Pcr ) + ( q'cr + 'r - y)Sifl(cocr )'
C2 CF/ T2 =

Sfl('Pcr) - ('Pcr + it 7) COS('Pr

(A.37)

(T(COS('Pcr ) + ('Per + it - 7) Sjfl(4)) + d cos(ir +
C4=C01 : T4 = 

T (Slfl('Pcr) - ('Per + - 7) COS('Pcr )) + d sin(it +

The independent variable describing the motion of the spirals of the machine is the

crank angle 0 as it varies in the open interval (_00, + 00), Thus, according to

the second of equations (A.36), the motion of the tip G 3 , is a circle (hereafter

called CQRB ) with radius d and center located at the point QQRB whose

coordinates are

XQ ORB	 (COS(Pcr ) + 'Pcr sin(cOcr )

[YQ,O	 Sfl('Pcr) - cr COS ('Pcr )J•	
(A.38)=-d

By construction this circle passes through the points G 1 and T2 , and at the point T2

its slope is equal to the slope of the curve C2—CR . Indeed, subtracting the first of

equations (A.36) and (A.37) from equation (A.38), squaring and adding the

resulting expressions, rejecting negative Solutions and after some algebraic

manipulations, we obtain the distances GIQORB and T2QQRB
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2
GIQORB = 2r( 1+ q Cr) , T200RB = r(r - 7).

These expressions, according to equation (A.22) and (A.32) are equal to the radius

d of the circle CORB, that is

GIQQRB = T2QORB = d,

and hence, this circle passes through the points G1 and T2.

In order to determine the slope of the circle at the point T2 , we require the value

OIim2 of the crank angle 0 corresponding to this point. By definition, at T2 the tip

G3 touches the curve C2 CR for the first time and therefore 3 = 'P3S = Pcr and

2S = (q3 + ir - y). Substituting these values into equation (A.26) and

introducing equation (A.32), we get

2

Oli2 = cr -	 j-2' 
J 

—1 -	 0<	 cons tan t ^ r —2.	 (A. 39)

It is worth noting that according to this relation, 01jm2 lies in the interval

J24_	
(A.40)

2011m2< 2

The slope of the circle CORB at any point of its circumference, as derived from the

second of equations (A.36), is given by

where 0E9.
tan(;ir+ 0)

Combining the above expression with the relation (A.39), we obtain the slope of

the circle CORB at the point T2

—1	 I ,r
slopeof CoRe at T2 =	 -=---cot +cocrj=tancocr.

tan(+Oijm2 )	 2

On the other hand, for the curve C2—CF, at the point T2 we have

2S (qc + r - y), and according to equations (A.12) the slope of the curve

at this point is given by

slope of C2 at T2 = tan(q'cr + r) = tan(qcr).
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This is equal to the slope of the circle CQRB and guarantees geometric continuity of

first order for the circle and the spiral at T2.

Another useful parameter in the present analysis is the value OIjml of the crank

angle 0, attained when the tips of the curves ClCFo and C3 C00 are just in

touch. This situation is illustrated in figure (A-6). From this figure and the above
discussion, it is evident that G1 and G3 are in touch when ç, =	 = q and hence

8Iiml = +	 - /, ,

where i1 is the angle MOB easily determined from figure (A-6). Thus

(rqi,.
ii = arctanl	 = arctan(q).

r)

Combining the above two equations and making use of the definition (A.33), we

obtain

_____	 (sr— 7)12

	

_arctan[[ 
2 ]	

(A.41)

The upper and lower bounds of OIiml are easily deduced from this equation. Thus,

(/4J	

,J24

O<,r—arctan----2	 <OIiml <ir+	
2	

<3n12. (A.42)

It is now possible to replace the section of the curve C2 C, defined for values of

ç, in the range 'cr ^ ç ^ (Q'cr + 2r - 7), by the minor arc T2G1 of the circle CORS,

defined for values of	 in the closed interval [0iimi 0Iim2 + 27r] as shown in

figures (A-7a) and (A-7b). This replacement guarantees the required continuous

touching of the tip G3 of the moving spiral with the inner surface of the fixed

spiral. It also guarantees geometric continuity of the first order (smooth blending)

at the point T2 between the circle CORB and the curve C2 as defined by equations

(A.1O) for q ^ (q'cr + r - y) . Finally, the arc T2G1 meets the curve C1 at its

starting point G1 rather smoothly, a prerequisite for the manufacturing of the scroll

device. This way G1 coincides with the starting point G2 of the inner surface of

the fixed spiral.
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Before proceeding with the replacement of the innermost part of the curve C4C01,

it is necessary to obtain the equations of the curves C, (i=1,2,3,4), when referred to

the rotating XY e Cartesian coordinate system. This is achieved by subtracting the

"instantaneous" coordinates

(SX	
d1

sj -	 sin(0))'

of the origin S of the XY' system from equations (A.1O), which thus take form

(x1*'\	 =	 çsin((p)) + d cos(6)J
Cl =CFQ . I	 i

	

y1 )	 r(sin(q3)— qcos(qi))+ dsin(0)

(x2* = [r(cos( + y)+ q'sin(q + y)) + d cos(0)J
I	 Iy2 	 r(sin( + y)— cos(qi + y))+ d sin(0)

(A.43)
(x3*	 (cos(q)+qsin(qi)'\

C3 C00 . I J=—rI
y3 )	 sin(q)—qcos(qi)

(cos(q+ y)+ qsin(q,+ 1)"
C4 C00 :	 *1=-ri

Evidently, the definitions of the curves C, (i=1,2,3,4 ) are independent of the

system of reference and hence the meaning of the parameters q' and 0 is not

altered in the new system of coordinates. The same is true for the thickness angle
' and the particular values	 (i=1,2,3,4), ç 5 (i=1,2,3,4),	 °Iimi and °ijm2•

Introduction of the critical value	 into the first and third of the equations (A.43)

furnishes the expressions for the tips G7 and G3 in the X*Y* system of reference.

Thus

(r(cos(cocr ) + Pcr Sifl(cocr )) + d cos(0)"\
CI CFQ : G1 = 

r(sin(qY) — cr COS(c9cr)) + dsin(0)J'

(A.44)
(cos(q'cr)+ 'cr Sifl(cocr)')

C3 C00 : G3 =	
- cr cOs(cocr))

Similarly, substitution of the values 'zs	 + r - y) into equations

(A.43), yields the coordinates of the points T2 and T4 in the X*Y* coordinate
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system, that is

(- r(cos(q) + ( ç + jr - Y) S ( cr )) + d cos(0)"\
C2= CF, : T2	

- r(sin(cr - cr + - y) COS ( cr )) + d sin(0)
(A.45)

( COS(cocr )+(co +r 7)S1fl(cr)'
C4=C00 : T4 =

Sfl(cr) — (cr + — y) COS(cr )J

From the first of equations (A.44), it is at once obvious that as the crank angle 0

varies the relative motion of the tip G1 is a circle (hereafter called Crnx) with

radius d and centre located at point 0RX•

= (COS(c9cr)+ cr S1fl(9cr)

YQ,FIx)	 Sfl(cr) - cr COS(cr	
(A.46)

It will be shown below that this circle passes through the points G3 and T4 and at

the point T4 its slope is equal to the slope of the curve C4 C01 . Subtracting the

second of equations (A.44) and (A.45) from equation (A.46), squaring and adding

the resulting expressions, rejecting negative values and after some algebraic

manipulations, we obtain the distances G3QF,x and T4Q

,	 1/2

G3QRx =2r(1+ qrcr) = d, T4QFIX =r(r- y)=d.

These are equal to the radius d of the circle CRX and hence, this circle passes
through the points G3 and T4.

The slope of the circle CF/X at any point of its circumference, as derived from the

first of equations (A.44), is given by

—1
where 0ER.

tan(0)

On the other hand, by definition, at T4 the tip G1 touches the curve C4 CO3 for
the first time and hence	 =	 and	 4S = (q + r - y).

Consequently, the corresponding value of the crank angle 0, according to
equations (A.26) for k = 0 is given by

8	 cr — 2 = °11m2
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Combining the above two relations we get the slope of the circle CRX at the point

T4 , that is

—1	 (	 (rslope of CRX at T4	 = —cot1 c°cr --1 = cotl -- c'cr I = tan(q).
tan(011m2 )	 2,i	 )

For the curve C4 CO3 at the point T4 we have qi =	 = (ccr + ir - y), and

according to equations (A.12), the slope of the curve at this point is given by

slope of C4 CO3 at T4	 tan(q'4 + y) = tan(q r + = tan(qicr).

The above two equations guarantee that the slope of the curve C4 at the point T4 is

equal to the slope of the circle CF/x and secures smooth blending between the

circle and the curve C4 CO3 at this point.

As in the case of the curve C2 , the section of the curve C4 CO3 defined for values
of in the range c'cr ^ q' ^ ('cr + r - '), is replace by the minor arc T4G3 of the

circle	 defined for values of 9 in the closed interval [iimi' °11m2 + 2,r] as

shown in figures (A-7a) and (A-7b). With this replacement we secure the required

continuous touching of the tip G1 of the fixed spiral with the inner surface of the

moving spiral. We also secure geometric continuity of the first order (smooth

blending) at the point T4 between the arc T4G3 and the curve C4 CO3 as defined
by equations (A.1O) for ç, ^ (q'cr + r - y). Additionally, the minor arc T4G3

meets the curve c3 c00 at its starting point G3 rather smoothly, a prerequisite for

the manufacturing of the spirals of the device. This way G3 coincides with the

starting point G4 of the inner surface of the moving spiral.

After the replacement of the innermost sections of the curves C2 CF, and C4CO3

by the arcs T2G1 and T4G3 the tips G1 and G3 are in continuous touch with these
arcs for values of the crank angle 0 in the closed interval [0Iiml' 0lim2 + 2k].

Th the limiting case when 0 °Iiml' the two tips are in touch as depicted in figure

(A-b). At the other limiting case when 0 = 01im2 + 2,r, tips G1 and G3 are in

touch with the curves and C2=C, at the points T4 and 7 respectively as

shown in figure (A-7b). Intermediate positions of the tips for values of the crank
angle 0 in the range °Iiml <0 < °Iim2 + 2,r, are shown in figures (A-i 1).
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A.2.4 Length of Device's Spirals

This section completes the geometry and the design of the scroll compressor used

in the numerical investigations of the fluid flows presented elsewhere in this thesis.

The rotation of the orbiting spiral of the compressor is described by the crank angle

0. Hence, the geometry of every chamber completes a full cycle of changes

returning to its original configuration, as 0 continuously increases (or decreases)

by 2,r. The innermost touching points of the curves C (i=1,2,3,4) as given from

equations (A.26) when k = 0, are

= .+0,	 i=l,3,	
i3O 

= ,r++0 V, i=2,4,	 (A.47)

where by definition, the single-subscript notation of the angles q is related to their

double-subscript notation as follows

'j=k	

i=1,2,3,4,	 k E \W	 (A.48)

The relations (A.47), upon introduction of the inequalities (A.34) and (A.35),

become

0=c9i,o—^per—,	 i=l,3,

(A.49)

0=	 -	 +7 ^ Pcr - 2' i=2,4.

These inequalities can be reduced further using the expression (A.39), that is

0^01im2
	 (A.50)

The maximum value of 0, as suggested by the form of equations (A.26) and the

above inequality, may not exceed the value of (°Ijm2 
+ 2r) and therefore

0Iim2 0< 61im2 
+ 2,r.	 (A. 51)

For the sake of clarity the end, outermost points of the curves C (i=1,2,3,4 ) are

denoted by S, (i=],2,3,4 ), while the maximum values of the parameter ,

defining these points are denoted by w (i=],2,3,4) respectively. The locations of

the points S (i=1,2,3,4) are shown in the figure below.
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s3 - -—

Figure (A-8). The angles co and the location of the points S.

Obviously, the angles w1 (i=1,2,3,4) can be selected arbitrarily and independently

of each other and hence the spirals of the machine can have unrelated and arbitrary

lengths. However, in practice for self explanatory reasons, the spirals are always

constructed to have equal lengths. In the present study, the choice of the maximum

angles co (i=1,2,3,4 ) is based on a specific well defined range of volume ratios.

Volume ratios and the reasons for selecting this particular range are discussed
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extensively elsewhere in this thesis. The precise values of the angles co (i=1,2,3,4)

are determined by another important factor, namely the position of the end points

S, (i=1,2,3,4).

The pairs of the curves C,	 (i=1,3 ) describe the geometry of the external and

internal surfaces of the compressor's spirals. It is therefore necessary to select such
values for w (i=1,2,3,4 ) that the distances S7S2 and S3S4 are minimum and

equal to the constant thickness of the spirals. According to equations (A.15), this is

achieved when

s1s2=s3s4 = Ti.	 (A. 52)

Equations (A.34) and (A.35) and the definition of the angles w (i=1,2,3,4) imply

the following relation

cr ^q, ^w, O^j^k, i=1,3, j,kE\W,	 (A.53)

where	 are the values of the parameters	 at the various touching points of the

curves C1 (i=1,2,3,4 ). The above condition, upon introduction of equations

(A.32) and (A.39), take the form

W, W3^_+Oiim2=41Cr>O
	

(A.54)

According to relations (A.26) and (A.51) this condition furnish at least one pair of

touching points between the spirals as described by equations (A.1O).

In the most general case the angles W (i-1,3 ) must be allowed to cover all

possible values equal to or greater than the above minimum value, hence

(01, W3=2N2r+a#(.I+Oiim2)
	

(A.55)

where by definition N is an arbitrary whole number and the angle a obeys the

condition

0 ^ a < 2ir.	 (A.56)

For the sake of convenience, we introduce the parameter /3 defined by

/3 a + °1im2
	 (A. 57)
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The range of /3 is deduced from the range of the parameter a. Given that
0 a < 2,r, /3 lies in the semi-open interval

°Iim2 /3 < (01im2 + 2r).	 (A.58)

Combining the definition (A.57) with equation (A.55), we obtain

(01, (0 = 2Nr + - + /3, /3 E [OIim2 011m 2 + 2,r), N e \W.	 (A.59)

Assuming that the curves C2 and C4 are long enough, there exists a value O of

the crank angle 6 for which the suction process begins. At this instance the end

points S and S3 come in touch with the curves C4 and C2 respectively, and

hence equations (A.26) and (A.59) furnish

d2)i =	 0)3 -

l,N3,N_2N++fl_2IC2+OS,

(A.60)

Jr
2,N c'4N =(2N^1),r+—+fl–y=(2k+1)r+-+O,-7,

2

kE\W, NE\W, O<y^r-2, GIim2^fl, Os<(Oiim2+2Jr)•

The functionality of the compressor under study is based on the existence of the

touching points between its spirals. Hence, the most appropriate choices for the

end, outermost points S2 and S4 of the curves C2 and C4 are the points
corresponding to the angles q'2,N and q'4,N given by equations (A.60). In this case

- (04 =(2N+1)Jr+--+fl–y=(2k+1)7r+ i +O5 –v,
(A. 61)

kE\W, NeW, O<y^ir-2, Olim2^fl, Os<(Oiimz+2J

If the angles o. (i=1,2,3,4) were to be accepted as given by equations (A.59) and

(A.61) it would be impossible to construct the spirals of the compressor due to the

considerable difference in the length of their external (C1 , C3 ) and internal

(C2 , C4 ) surfaces. This difficulty can easily be avoided. The lengths of the curves

C1 and C3 are extended by adding r to the angles W and (03 given by equations

(A.60). Then equations (A.60) and (A.61) yield
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(01= U)3_(2N+1)7r++fl—(2k+1)7t+2+e5,

2 (04 =(2N+1)7r++fl—y=(2k+1)2r+-+O—Y,	 (A.62)

ke\W, N e\W, O<y^r-2, OIim2^ IB 9s<(fuim2+2T)

The end, outermost points S1 (i=1,2,3,4 ) of the curves C (i=1,2,3,4) are obtained

from equations (A.1O) upon introduction of the relations (A.62). After some

algebraic manipulations the formulae giving the coordinates of the end points are

- r sin(/3) - (P cos(fl)
- - cos(fl) - (P sin(/3)J'

- 
T[ 

sin(/3) - ((/) - ') cos(/3)
- - cos(fl) - ((P - 7)sin(fl)J'

(A. 63)

-	 r(sin(fl) - (P cos(J3)) + d cos 0
r(— cos(/3) - (Psin(J3)) + d sin

- ( r(sin(fl) - ((P - y) cos( J3)) + d cos 0
- r(— cos(8) - ((P - )sin(J3)) + d sin

O<r^d12, O<y^r-2

where by definition

(P(2N+1)r+ir/2+J3.	 (A.64)

It is worth noting that according to equations (A.62)

and ' 2 04 Y	 (A.65)

The distances S7S2 and S3S4 obtained from the relations (A.63) satisfy the

requirement (A.52).

The relation connecting the angles 0 and /3 is deduced from equations (A.62) as

described bellow. The inequalities (A.51) and (A.58) guarantee that both angles 0
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and /3 are defined in the same semi-open interval [°Ijm2 OIim2 + 2ir). On the other

hand the relation (A.40) implies that the lower and upper bounds of this interval are
—rtI2 and [(r2 _4)112 ^ 3ir]1 2 . These bounds lie well inside the closed interval

[2,r, 2,z], and hence

- 2,r <—iv /2 ^ /3, o < (iir2 —4+ 3ir) /2 < 2ir.	 (A.66)

As a result of this condition, equations (A.62) can be valid if and only if k = N,

NE\W, thus

OS = fl	 °Iim2 ^ Os , /3< (011m2 +2ir),	 (A.67)

or according to definition (A.57)

= a + °Iim2
	 (A. 68)

If k and N where to be taken different, then either /3 or O would have been

absolutely greater than 2,r violating the condition (A.66).

It is important to note that the relation k = N was proved to be true only when
9 = O, and in this case N is the maximum value of k entering equations (A.26).

For any other value of 0 the maximum value of k, hereafter called Kmax is

determined from the restriction (A.53). This restriction, when combined with the

relations (A.26) and (A.62), furnishes

2(N - Kmax )ir ^ (0— Os ),	 OIimZ ^ O, 0< (Iim2 + 2ir),	 Kmax N E \W. (A. 69)

Given that N and Kmax are whole numbers, the above inequality and the relations

(A.40), (A.51), (A.57) and (A.58) yields the following conditional solutions for

Km in terms of N , depending on the value of the crank angle 0

Kmax = N, °s	 0 ^ 011m2'	 Kmax N E \W,

(A.70)

Kmax = N 1, (°Iim2 + 2ir) > 0 > 0,,	 Kmax N E \W.

From the definition of Kmax it is obvious that at any instance of the scroll device's

operation, there exist 2(Kmax + 1) pairs of touching points between the curves

C, (i=1,2,3,4). These are obtained from equations (A.26) for k = O12•••Km,5 . It

must be emphasised that these points do not include the touching points due to the

replacement of the innermost sections of the curves C2 Cfl and C4=CO3 by

circular arcs as discussed in the previous section.
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The value of N is of paramount importance in the design of the scroll compressor-

expander. It determines the length of the spirals , the number of the pairs of the

touching points, and the number of the working chambers. It also controls together

with the angle a the maximum volume of the suction chamber and hence the

volume of the trapped fluid. In practice the selection of N is based on volume and

pressure ratio considerations as discussed elsewhere and is left to be decided by the

designer of the device. The minimum possible value of N is determined by the

requirement that the device has long enough spirals to be able to function as a

compressor. For N = 1, even when a= 0, that is /3= O2, the device has a pair of

touching points given by equations (A.26) and it works properly as a compressor.

This situation is depicted in figures (A-9) below

Figure (A-9). Scroll device with N 1 and a=O at 0 = 0 = /3 = 011m2.
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It will be shown below that even for N = 0 the device has long enough spirals to

function perfectly well as a compressor if the angle a exceeds a certain minimum

value amin . This is due to the replacement of the curves C2 and C4 by circular arcs

for values of q, in the interval [c'cr, Qcr + it - y] and to the resulting continuous

touching of the tips G1 and G3 with these arcs for values of the crank angle 0 in

the closed interval [ OIim1 011m2 + 2ir] . Obviously, the device can function as a

compressor if and only if there are two pairs of touching points between the

surfaces of its spirals. The limiting case occurs when the two tips G 1 and G3 are

just in touch and the lengths of the spirals are such that there exists one extra pair

of touching points between the curves C1 (i=1,2,3,4) as shown in figures (A-b). In

this case, by definition 0 = °Ijml 
while the angles W2 and (04 correspond to the

outer touching points. Thus, according to equations (A.26), (A.57), (A.62) and the

definition of O, we have

= t9s = 0hmi ' i8 = /3min = amin + 0Iim2	 N = 0'
(A.71)

= Co4 = 2,O	 4,O 7t+7t12+Iimin 7=it+7T/2+011m1 Y

The second of these equations becomes

i8min = 0Iiml
	 (A. 72)

Combining this equation with the relations (A.39), (A.41) and (A.57), we obtain

flmin = °Iiml = cr - arctan	 + it,
(A.73)

3,r
amin = 0IjmI - °Ijm2 - - arctan cr

Note that according to relations (A.40), (A.42), (A.68) and (A.73), for N = 0 the

first of the equations (A.70) must be applied and therefore in this particular case

'max = N = 0.

A direct consequence of the replacement of the innermost sections of the curves

C2=CFI and C4—0O3 by circular arcs, is the increase of the pairs of touching points

between the device's spirals for values of the crank angle 0 lying in the open

interval ( Oijmi '0iimz 
+ 2it). Obviously, this alters the number of chambers formed

by the spirals. Both the total number of touching points (hereafter denoted by T)

and the total number of chambers (hereafter denoted by CB) depend on the value

of the crank angle 0 and the design parameters N and a. The kind of dependency
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of the actual values of T and GB on 0, N and a is obtained with the help of

equations (A.39), (A.41), (A.67) , (A.68) and (A.73), and it is given in tabular

form below. Using the above mentioned equations, it can be proved that the

relation between the angles amin and a dictates the relation between the angles 0

and OIiml and vice versa. Thus, the following reciprocal relations hold

a> amin	 >	 +-	 (011m2 + 2,r)> O > OIjml > °Iim2

a = amin	 =	 (0	 + 2,r)> 9 = °timl > °Iim2

a < amin	 O <0iimi	 (0iim + 2r)> 0Ijml > 0s > 011m2

These inequalities and the geometry of the scroll device guarantee the validity of

the following:

Table (A-i)

If
	

and
	

then

a> amjn	 011m2	 < °Iiml
	

1max = N

T 2(Kmax +1)=2N+2

GB T + 1= 2N +3

O 0Iiml <	 -'max N

T	 2(Kmax +1)+12t +3

CB TA +1= 2N +4

0Iiml <0 ^ Os 	 Kmax = N

TP 2(Kmax+1)+2214

CB T+12N5

Os <O<(22r+9)	 Kmax N —1

Tp 2(Kma, +1)+221 +2

Cfi = T +1= 2N +3
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If	 and	 then

a amin	 01im2 ^O<OIiml 0S	 Kmax = N

T = 2(Kmax +1) = 2N +2

GB = T +1= 2N +3

=	 = Os 	 'max = N

T =2(Kmax+1)+1=2N+3

GB = T +1= 2N +4

9Iiml = 0s <0< (2,r+ °Iim2) Kmax = N—i

T =2(Kmax +1)+2=2N+2

GB =T^1=2N-I-3

If	 and	 then

a < am jn	 91im2 ^ 0 ^ 9	 Kmax = N

T = 2(Kmax -i-1)=2N-i-2

CB =T+1=2N+3

OS< O < OIjmI	 Kmax=Nl

T =2(K+1)=2N

GB =T+1=2N+1

Kmax=Ni

T =2(K +1)+1=2N+1

GB = T +1 = 2N +2

°Iimj <O<(2Jr+91.2)	 Kmax Ni

T =2(K+i)+2=2N+2

GB =T+1=2N+3
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C 3 coo

C l = C0

Figure (A-b).	 Scroll device with N = 0 and a = am jn = 0Iiml - 011m2 at

00s 	 /3min	 °Iiml

The above discussion concludes the necessary details required for the full

understanding of the geometry and the touching conditions of the spirals of the

scroll compressor-expander.
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A.3 Working Chambers and Working Volumes

A.3.1 An Overview

This section gives a detailed account of the geometry of the working chambers of

the scroll device -often called pockets- and concludes with the determination of the

working volumes as functions of the crank angle 0 and the other design
parameters such as N , a, y, etc.

For the sake of clarity and convenience the following definitions are introduced:

pressure inside the discharge chamber at the start of disharge cycle
pressure ratio of the compressor

pressure inside the suction chamber at the end of the suction cycle

volume of the suction chamber at the end of the suction cycle
volume ratio of the compressor

volume of the discharge chamber at the start of disharge cycle

As mentioned previously, the angles w (i=],2,3,4) can be selected arbitrarily and

hence the spirals of the machine can have unrelated and arbitrary lengths.

However, in practice the spirals are always constructed to have equal lengths which

can be determined from the required pressure ratio. When designing scroll

compressors-expanders, more often than not, volume ratios are preferred to

pressure ratios. This is due to the fact that pressure ratios are sensitive to factors

not related to the geometry of the machine, such as the physical properties of the

working fluid.

For any value of the crank angle 0 the scroll device has rotational symmetry of
1800 about the mid point of the segment connecting the centres of the two

generating circles. This symmetry is apparent in figures (A-i i) which show a plan

view of a scroll compressor for various values of 0. Furthermore, the geometry of

the device changes with period 2r as the orbiting spiral rotates around the centre

o of the fixed generating circle. The independent variable describing this

periodicity is the crank angle 0. The physical process that describes the motion of

the fluid through the device, though essentially periodic, repeats itself only after a

number of complete revolutions, say M, M E \W . Clearly, the number M

depends on the values of the parameter N and the angle a, introduced by the

relations (A.55) and (A.56).
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Figure (A-ha). Scroll device with N = 1 and a = 3000 - °IimZ at

8 = 8 - 600.
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Figure (A-llb). Scroll device with N = 1 and a = 3000 - °Iim2 at

0= 0 —120°.
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Figure (A-tIc). Scroll device with N = 1 and a = 3000 - OIimZ at

0= 0 —180°.

259



AppendA A
	

Scroll Compressor-Expander Geometry

Figure (A-lid). Scroll device with N = 1 and a = OO° - 0	 at11m2

0 = 0 - 240°.
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Figure (A-lie). Scroll device with N = 1 and c = 3000 - 
jim2 at

8 = O - 3000.
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Figure (A-hf). Scroll device with N = 1 and a = 300° - O im2 at

0 = 0 - 3600.
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Clearly, the number M depends on the values of the parameter N and the angle

a, introduced by the relations (A.55) and (A.56).

The geometry described in section A.2 allows the scroll device to operate either as

an expander or as a compressor. The selection of the plus or minus sign in the

above equation depends on the device's mode of operation. A clockwise rotation

means that the device operates as a compressor and equation (A.74) should be

taken with the minus sign. An anti-clockwise rotation means that the device

operates as an expander and equation (A. 74) should be taken with the plus sign.

The two modes of operation can easily be realised from the figures presented in

this chapter such as figures (A-1 1).

In practice it is important to be able to deduce the crank angle 0 from the rotation

angle 0. For this purpose two pieces of pseudo-code are given below

corresponding to the compressor and expander mode of the scroll device.

Compressor mode
	

Expander mode

0=9
	

6=6)
while (6 < 61im2)

	
while (0 ^ 011m2 + 2.ii)

ü= 6+ 2,r }
	

{ 0 = 0— 2,r }

A.3.2 Suction Chamber and its Working volume

When the scroll device operates as a compressor, the suction cycle begins at,
(9 O, ± 2nr and finishes after a full revolution of the moving spiral when

± 2n - 2r, n E \W. The suction is associated with a pair of working

chambers, sometimes called suction pockets. The volumes of these chambers

increase smoothly from zero at the start of the cycle to a maximum at the end of it.

The suction chambers are symmetrical and have the same geometry, shape,

volumes, etc. Therefore, without loss of generality, only one of these chambers

need to be studied, namely the chamber which is enclosed by the inner surface

defined by the fixed spiral C2 and the outer surface defined by the orbiting spiral

C3 , This chamber is clearly marked in figures (A-li). The reason for the selection
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of this chamber is simple, its outer wall, associated with the curve C2 , is fixed in

space when referred to the XY coordinate system.

The suction chamber under study is completely sealed and its geometry fully
defined by the curves C2 and C3 only when 6= O ± 2nr, n E \W . For any

other value of 0 this chamber is open at one end. In this case, in order to define

the volume of the trapped fluid, the chamber is notionally sealed with a straight

line connecting the end point S2 with a point F located on the curve C3 , as shown

in figures (A-il) and in detail in figure (A-12). The point F is selected in such a
way that coincides with the point S2 when 0= O ± 2nr, n E \W and the suction

chamber is fully closed. At this position the points S, S2 and F are collinear. We

decide to maintain this condition of collinearity for any value of the angle 8. Thus

F is the point at which the straight line L 1 , defined by the points S1 and S2,

intersects the curve C3 nearest to the point S2 . From this definition it is evident

that the location of the point F on C3 is not constant but varies slightly with the

value of the rotation angle 8.

The volume of the fluid trapped into the suction chamber when a suction cycle

ends and a compression cycle is about to begin, is independent of the shape and the

position of the sealing line L 1 as far as the points S2 and F coincide at this instant
when, of course, 0 = O ± 2n,r, n E \W. In fact, just before the sealing of the

suction pocket the points S1. 2 and F are nearly collinear and hence the straight

line L1 is the only natural selection. Moreover, this selection facilitates the

calculation of the suction volume since the line L1 is fixed in space and

independent of the value of the rotation angle 0.

Figure (A-12) and equations (A.26) and (A.62) imply that the values of the
parameter qi corresponding to the points S2 and F when 9= O ± 2nr, n e

are W2 and q 51 respectively, where

cseai(&3_7r)2N7r++O,

(A.75)

N \W, 0 ^ y < I1 —2, °Jjm2 ^ O, <(0km2 + 2ir).

The value c'F of the angle cc, defining the position of the point F on the curve C3

when 0 ^ O ± 2n,r, n e \W, differs only slightly from the value of q 1 . It can

therefore be written as

= ccseai +
	

(A. 76)
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Figure (A-12). Details of suction chamber of a scroll compressor with N = 1

and a=300°-Oijm2 at O=O_14O0.

where the correction angle 8cF is within few degrees from zero and is a function of

the rotation angle 0.

The analytical expression relating 8q, with 0 is obtained from the definition of

the point F, as the point of intersection between the line L 1 and the curve C3 . By

construction, the line L 1 passes through the points S 1 and S2 whose coordinates

are given by the first two of equations (A.63). It is therefore fairly easy to prove

that the equation defining the line L 1 has the form

L 1 : x sin 8— y cos /3 = r, x, y E R, °Iim2 /3 < (91im2 + 27r).	 (A. 77)
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The coordinates of the point

(xF
FEI	 I,

YF)

located on the involute C3 and the line L 1 , satisfy simultaneously the equation

(A.77) and the third of equations (A.1O). Thus,

XF sinfl— YF COSJ3 =

F= (xF\1 - (r(coscoF + 4F Sill coF)+ d cosE)
	

(A. 78)

r(sincF—Fcos'F)+dsinO

These relations obey the conditions

0= 6± 2nir,	 n e \W,	 61im2	 <(9 + 2,r).	 (A 79)

Combining equations (A.78), (A.75) and (A.76), and after tedious and laborious

algebraic manipulations, we obtain the relation between the correction and the
rotation angles 8F and 0 in the form

F(öq F )= o,

where

F(8q F )rcos(87F )+r(2NJr+.ir/2+fl+8,)sinSq1 F +[dsin(0_fl)_r], (A.80)

0=t9±2nr, flE\W, iim2^fi<(9iirn2+2

The roots of this equation cannot be determined analytically. Numerical techniques
must therefore be employed in order to solved it with respect to Sq. Various fixed

point methods (secant, bisection, fixed point iteration) have been tried. However,

the Newton-Ralphson iterative algorithm was found to be the fastest and most

accurate. This method is based on the formula

(	 F(ö)	 ')	 , iE\W,F,i+1 =	
- dF(6coF )I d8F 

)'F=o'F
(A.81)

and if a prediction 5Fj for the correction angle 8q'F is available, a better

prediction	 can be computed.

Differentiation of equation (A.80) once with respect to 5 and introduction of the

resulting expression, together with the function F(&pF ). into the above relation
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furnishes the formula

r cos ( S F,I ) + r(2N,r + + /3 + S(PF,I)S1n(8(PF,) + d sin(E) - /1) - r

F,i+1 84F,	
2

r(2Nyr + - + /3+ 8c°F, ) cos(6q?F,I)
2	 (A.82)

8= 0± 2n'r, i, n, N E \W, 01im2 /3' 0< (°Iim2 + 2,r).

The correction angle 8F is small compared to 	 and its absolute value is very

close to zero. Consequently, an obvious selection for the starting value of the
iteration is	 = 0. After Sq is computed to the required accuracy, equations

(A.62), (A.75), (A.76), (A.78) and (A.82) allow the numerical calculation of the

coordinates of the point F

The line L 1 , as defined above, is not only passing through the points SI , S2 and F,

it is also tangent to the fixed generating circle at a point hereafter denoted by Q1

The coordinates of this point which is fixed in space, are given by

X Q1	 (cos(w1)'\
=rI	 I

[YQJ]	 sin(w1))'

or, upon introduction of the first of equations (A.62)

01	
XQ1	 ( sin/i"

=rI	 I
[YQ1]	 —cosfl)'

011m2 ^ /3 < (81im2 + 27r)
	

(A. 83)

It can easily be proved by direct substitution that the point Q 1 is located on the line
L 1 and the circumference of the fixed generating circle. Furthermore, the gradients

of the radius 001 and the line L 1 , obtained from equations (A. 83) and (A. 77), are
equal to tan/I and - cot/I respectively. Consequently, 001 and L 1 are

perpendicular. Hence, L 1 is tangent to the fixed generating circle at Q as shown
in figure (A-12).

The equations of two more straight lines, namely L2 and L3 , are required for the

determination of the volume of the suction chamber. Figure (A-l2) shows the

positions of the lines L, (i=1,2,3) relative to the generating circles and the curves

C, (i=1,2,3,4).

By definition, the line L2 passes through F and it is tangent to the orbiting

generating circle at a point hereafter denoted by Q3 Of course, from an external

267



Appendi) A	 Scroll Compressor-Expander Geometry

point two tangents can be drawn to a circle. The ubiquity is resolved by selecting

the line L2 so that it coincide with the line L 1 when the suction chamber is
completely sealed at & = O ± 2nir, n E \W . The coordinates of the touching point

are obtained from the definition of the involutes and the statement (A.7). Since
the location of F on the curve C3 is determined by the angle PF' it easily can be

shown that

o (xQ3(rcos(coF+7r)_dcose" 	 (rcoscoE+dcose

= Y Q 1J - r SIfl(PF + r) d sin6 ) - I\T	 F + d sin 6

(A.84)
6=O±2n, nE\W,	 Oiim2^O<(Oiim2+27r),

Note that the angle q'. is adjusted by r. With this adjustment the angle defining

the point Q3 on the circumference of the orbiting generating circle is measured
anti-clockwise from the positive X semi-axis, as against 	 which is measured

anti-clockwise from the negative X semi-axis.

The equation describing the line L2 is deduced from the coordinates of the points F

and Q3 , given by equations (A.78) and (A.84) respectively. After some calculations

it can be shown that

L2	 YSlHF + XCOS F =—(r+dcos(c F - 0)),
(A.85)

6=O±2njt, nE\W, 0Iim2^0<(0m2+27

The line L3 is defined by any two pairs of points at which the curves C2 and C3

come in contact. It should be emphasised here that all here points are collinear. The
values of the parameter ç corresponding to the two outermost pairs of these

touching points, are obtained from the relations (A.26) and (A.51) and the
definition of Kmax . Thus,

3,Kmax =2KmaxJr+yr/2+O,

2,Kmax = (2Kma + 1)r + r /2+0— y,

3,Kmax-1 = 2( Kma	 1)2+,r/2+0,
(A.86)

(21 ma - 1)r + ir / 2 + 0— y

01im2 ^O<(O1j2+p), O^y<r-2
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Introducing these equations and equation (A.22) into the second and third of the

relations (A.1O), and after long algebraic manipulations on the resulting

coordinates, we obtain the following equation for the line L3

L3 : xsine—ycose=r,
(A. 87)

6=O±2nir, nE\W, eiim2^o<(eiim2+27r).

This line is tangent to the fixed and orbiting generating circles at two points

hereafter denoted by °2 and Q4 respectively. Their geometry is shown in figure

(A-12). The coordinates of these points are given by

Q2	

XQ2	 (COS(2,Kmax +

(YQ2J	
lfl(2,Kmax + 7))

[

XQ4	 (TCOS(c03,Kmax 
+,r)—dcos9

YQ4]	 r Sfl(3,Kmax + ) - 
d sin 6)'	

(A.88)

6=O±2nr, ne\W 0. <0<'	 +2.ir), O^y<,r_2,
I Iim2

,	 1im2

or, upon introduction of equation (A.86)

I sin(9'

[YQi r_ 06J,

Q4 
XQ4	 " rsin6—dcosO"

	

yQ4J_rCoSe_dsiflOJ	
(A.89)

6=0±2nr, flE\W, °lim2 ^O<(Oiim2+27t).

As mentioned above, the points °2 and Q4 are located on the line L3 and the

circumferences of the fixed and orbiting generating circles. This can be proved by

direct substitution of equations (A.89) into equation (A.87) and the equations of the

generating circles. Note also that the gradients of the radii 002 and SQ4 , obtained

from the foregoing equations, are identical and equal to - cot 0. On the other

hand, the gradient of the line L3 , as derived from equation (A.87), is tan 0.
Consequently, 0Q2 and SQ4 are perpendicular to the line L3 . Hence, L3 is
tangent to the generating circles at the points 02 and 04 as shown in figure (A-
12).
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The values of the angles q2Kmax and entering equations (A.88), have been

adjusted by y and r respectively. With these adjustments the angles defining the

points Q2 and 04 are measured anti-clockwise from the positive X semi-axis, as

they should.

Two more points are required for the determination of the working volume of the

suction chamber, namely the point 05 , defined by the intersection of the lines L1

and L3 , and the point Q6 defined by the intersection of the lines L2 and L3.

Equations (A.77), (A.85) and (A.87) form two algebraic systems. These, when
solved with respect to x and y, yield the following coordinates for the points 05

and 05

T	 ')(COSfl_COS6")

YQ5)	 sin(e—fl))sinfl—sinO J'

(A.90)

1Q6") = -	 1	 cosc9[r+dcos(q1F - e)1—rsinc9F"\
I,

1\ YQ6)	 cos(qi - ) sin E.1[r + d cos(q - 0)] + r cos F)

9= 0± 2n,r,	 n E \W,	 0 11m2 ^ 0, 13 < (°Iim2 + 2it).

In order to obtain the instantaneous working volume of the suction chamber as

function of the crank angle 0 and the compressor's design parameters, we require

the expressions for a number of surface areas. The description of these surface

areas and the derivation of their analytical expressions are given below.

From the definition of the points Q1 , Q2 , S,	 and the diagram in figure

(A-12), it is clear that the section TKflXS2 of the involute C2 is defined for values

of the parameter q lying in the closed interval [2,Kmax0)2L When constructing

this section, the straight line segment Q2 TKmaX moves from its original position to

the position Q1S2 , sweeping an area hereafter denoted by AF . This area is shown

in figure (A-12) hatched with vertical lines. In complete analogy, the section

TKmaxF of the involute C3 is defined for values of the parameter qi in the range

When constructing this section, the straight line segment Q4TKm8X

moves to the position Q3F thus sweeping an area hereafter called A0 . This area is

shown in figure (A-12) hatched with horizontal lines.
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Figure (A-13). Determination of surface area under involute
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The determination of the surface areas AF and A0 is based on the definitions of the

curves C2 and C3 . Figure (A-13) portrays the orbiting generating circle together

with a section of the curve C3 starting from the tip G3 . The differential area dA,

also shown in the figure, is swept by a line segment tangential to the generating
circle, when the value of the parameter 	 changes by dq. According to statement

(A.7), any line tangential to the generating circle is perpendicular to the curve.

Thus, the differential area dA approximated to the second order, is a triangle with
base and height equal to rqdço and r respectively. Consequently

dA = !(r2q,zdq,).
	 (A.91)

The integration of this relation with respect to q' from an initial angle E to a final

angle £2 furnishes the marked area A shown in figure (A-13). Thus

A=!Jr
2co2dco=	 2 3	 3

2 E	
—r (e2_ e1 ).	 ('A.92)

The area is completely equivalent to the areas AF and A0 , the only difference been

the range of integration. By definition, integrating over the range [ '2,K max' w2 ] we
obtain the area AF, while integrating over the range [p3K max' q] we get the area

A0 . Combining equations (A.62), (A.67), (A.75), (A.76) and (A.86), these areas

can be expressed in the form

AF	 T{02 - Q'2,Kmax} =

3

rJ[(2N + 1)2r + + -

	

[(2Kmax	
2

+1)+_+8_] },
6

Ao = rfr - '3,Kmax}	
(A.93)

3

	

! r2 [2N++fl+s 1 —12K	

] }
F] 

L 
rna+—+O6

NKm,flE\W, °lim2 ^O,/3<(Oim2+27\ 
O<y^7r_2
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where Sq 1. is the correction angle obtained from the iterative algorithm (A.82).

The relations (A.67), (A.70) and (A.93) guarantee that equations (A.93) always
yield non-negative values for the surface areas AF and A0 . For 0 = O ± 2n,r,

n \W, these areas attain their minimum values AF =	 = 0. It is worth noting

that the angle 0 entering the foregoing equations, is the crank angle and not the

rotational angle 0. This is in agreement with what is stated in section A.2, since
the areas AF and A0 are part of the scroll compressor's geometry and only

indirectly related to the motion of the fluid through the device.

1?igure (A-14). Details of the regions DFand D0
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The determination of the instantaneous volume of the suction chamber cannot be

completed without the expressions for the surface areas of three more plane

geometric regions. These are, the region DF bounded by the straight line segments

Q1Q5 , QQ and the minor circular arc Q1Q2 ; the region D0 bounded by the

straight line segments Q3Q6 , Q4Q5 and the minor circular arc Q3Q4 ; and finally
the triangle FQ5Q6 . The regions DF and D0 are shown in figure (A-14), in

comparatively large scale.

The area A of the triangle FQ5Q5 is computed from the formula

A ={S(S—a)(S-b)(S-c)}"2,	 (A.94)

where by definition a, b and c are the triangle's sides and S is the triangle's

semi-perimeter, that is

aQ5Q6 , bFQ5 , cFQ6 , SL(a+b+c).	 (A.95)

The lengths a, b and c can be obtained from the coordinates of the points F, Q5

and Q6 . The resulting expressions are extremely long and they are not be stated

here. For computational purposes suffice to state the following

211/2az{(xQs_xQ6)2+(yQs_y06) j

2 1/2
b = {( xF - XQ5) + (YF - YQ5)	 ,	 (A.96)

1	 2	 2 1/2

c= t(xF_ xQ6) +(yF—yQ6) }

where the x and y coordinates entering these equations are given by the

expressions (A.78) and (A.90).

Figure (A-14) implies that the surface area ADF of the region DF is the difference

of the surface areas of the quadrilateral 0Q1Q502 and the minor circular sector

Q10Q2 . Hence,

ADF = { area of quadrilateral 0Q1Q5Q2 - minor circular sector Q10Q2 }.	 (A.97)
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Regardless of the value of the rotation angle 6, the quadrilateral 0Q1Q5Q2 is an

inscribed quadrilateral with angles 0Q1 Q5 = 0Q2Q5 r /2. Consequently,

area of quadrilateral OQIQ5Q2 = OQ Q1 Q = r 
1°SL	 (A.98)

The angle Q1°2 is easily obtained from the geometry depicted in figure (A- 14),

thus

angle Q1 ÔQ2 = 2arctan°1Q5l'J.	
(A.99)

By virtue of this equation, the surface area of the minor circular sector Q10Q2 is
given by

2	 IQIQSDsurface area of minor sector Q1002 = r arctanl	 I
r)

In view of equations (A.98) and (A.100), equation (A.97) becomes

ADF = r{IQ1Q5I - r arctan[i2slJ}.

(A. 100)

(A.l0l)

The expressions for the equal distances 	 and QZQSI obtained from the

coordinates of the points Q, Q2 and Q5 given by equations (A.83), (A.88) and

(A.90), have the form

(1— cos(E) -/3))
= 02051= sin(O—/3)

Hence, equation (A.101) reduces to

Ii- cos(6) - /3)	 tan[1 - cos(E) - /3)11
ADF = r2 t sin(E) - 6) - 

arc	
sin(E) - /3) ]

(A. 102)

(A. 103)

Completely analogous steps furnish the follow relations from which the surface
area ADO of the region D0 can be deduced with the help of the geometry shown

in figure (A-14)

ADO { area of quadrilateral SQ3Q6Q4 - minor circular sector Q3SQ4),

area of quadrilateral SQ3 Q6Q4 
= 1S031103061 = r Q3061'
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angle Q3Q4 = 2arctan°3Q6J

surface area of minor sector Q3SQ4 r2 arctanQ3Q6I"J

ADO = r{Q3 Q6 - r arctanQ6IJ}

(1 - cos(0 - /3))
Q3Q6 =	 = r

sin(0 - ,8)

Combing these equations, we obtain the expression for the surface area ADO of the

region D0 in the form

ADO = r2{1 - sin( F - 0) - arctan[1 - sin(q - 0)11

cos(qF —0)	 cos(F —0) IL
(A.104)

Figures (A-i 1) and (A-i2) show plan views of the scroll compressor-expander for

various values of the crank angle 0. A careful inspection of these figures reveals
that the base area A5 of the suction chamber can be computed using the following

formulae

Table (A-2)

If
	

then	 and

0=	 0=05±2n7r, n€\W
	

A5=

AF - A0 = 0

0 <0 < O ±2nir< 0< 0 ±2nir
fl E

AF —A0 —(AT+ADF—ADO)

0 =
	

0 = O, ± 2nr, n E	
AF - A0 + 2rd = 2rd

O <O<(O +2,r) O ±2n,r< 0< O ±2nr+2,r
n E \W

A5=

AF —A0 +(AI +ADF —A00)
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where, by definition O, 0 + it. Evidently, the surface areas entering the

equations in table (A-2) are given by (A.93), (A.94), (A.103) and (A.104).

The terms cos(q — 0) and sin(0 — c'F) appearing as denominators in the

foregoing expressions vanish for specific values of the rotation angle 0 and they

may cause computational problems while calculating the suction volume.

Specifically, for 0 = O ± nit, n E \W equations (A.67), (A.75), (A.76), and

(A.82) furnish

sin(0 -
	

= cos(qF — 9)i	 =	 (A.105)
O=6,±n,r	 O=O±n,r

This implies infinite values for the distances QJ Q5 , Q3Q6 , Q5 Q6 , FQ5 , FQ

and the areas ADF and ADO. However, as the rotation angle 0 approaches the

values 0 = Os ± nit, n \W, the area (AT + ADF - ADO ) tends to finite values.

Indeed,

lim(AT + ADF - ADO ) = 2rd
(A.106)0 —* ± (Zn + 1)ff

and

lim(AT +ADF ADO )— 0
(A. 107)

0 —* ± 2n,r

A.3.3 Compression Chamber and its Working volume

Following the suction process, the first compression cycle starts when
O = O - 2,r, 0= 0 ± 2nir, n E \W and completes after a full rotation when

o = - 4,r, 0= 0 ± 2n,r — 2ir n E \W. If the design of the scroll device

allows for more than one compression cycle, the mth, mEZ such cycle starts

when 0 = 0 ± 2nir— 2mir, n E\W, mEZ and completes when

0=O±2nir-2(m+1)ir, n€\W, m&Z ,where the symbol Z denotes the

set of the positive integers.

Due to the symmetry of the device each compression cycle is associated with a

pair of geometrically equivalent chambers. These chambers, regardless of the value

of 0, have the same shape and area. They also have rotational symmetry of 1800.

In the general case of the m th , mEZ compression cycle, the first of these

chambers is formed by the scroll device's surfaces defined by the curves C2 and C3
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and it is sealed by two pairs of touching points corresponding to the following

values of the parameter q

3,Kmax—m+1 = 2(K max - m + 1),r + r /2 + 0,

= 2(Kmax - m + 1)r+ r+ r/2+ O—y,

3,Kmax—m = 2(K max - m)ir + ir/ 2 + 0,	 (A.108)

2,Kmax—m = 2(Kmax - m)ir+ 'r+ r/2+ 0—y,

Olim2^ O <(OIim2+ 2 ), O^y<,r-2, mEZ.

Figure (A-15). Details of a compression chamber
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The second chamber is formed by the by the scroll device's surfaces defined by the

curves C1 and C4 and it is sealed by the touching points associated with the
following values of the parameter q

1,Kmax-m+I = 3,Kmax-m+1'	 4,Kmax-m+1	 2,Kmax-m+1

1,K max-in = q'3,K max-rn ' 	 4,K max-rn = 2,K max-rn

A plane view of the scroll compressor is shown in figure (A-15), where one of the

outermost compression chambers is clearly marked. From these figure as well as

figures (A-il) and (A-12), it is clear that following steps similar to the steps
leading to equations (A.93), we obtain the expression for the base area A m of

either of the symmetrical compression chambers of the mth, m Z compression

cycle. This expression has the form

A,m = r 2 i$ ,Kma(_m+1 2d _2 1,(ma,m+1 2d} =
q2,Kmax-m	 J3,Kmax-m

{[2(Kmax_ m+1)2+7r+7rI2+O_Y] - [2(Kmax—m)lr+lr+7r/2+9-7]3

(A. 109)

- [2(K m - m + 1)r + r /2 +	 + [2(K m - m)lr + .ir / 2 + 
]3}

°Iim2^ O /3 <(OIl m 2 +2), O<y^.ir-2, mZ

The formulae given above hold only for cases where the compression chambers are

formed by surfaces fully described by the curves (A.10). However, there are cases

in which parts of the walls are formed by the innermost circular arcs defined by

equations (A.36), (A.38), (A.44) and (A.46), as shown in figure (A-16). Clearly

the equation (A.109) cannot be applied. This equation is not valid under the
condition 8Iiml ^ 0 < (Iim2 + 2ir). In these cases, in order to determine the base

area Arn mth, mEZ, knowledge of the following areas is required:

• The area AD1 enclosed by the curve C1—C Q , the innermost circular arc T2G1

and the straight line segment T2 T2 , shown in figure (A-16). In figure (A-17)

this area is hatched with horizontal lines.
• The base area AD2. This is the section of the device's fixed arm, enclosed by

the straight line segments 77 and AC and the curves CI CFQ and C2—CR . It

is shown in figure (A-16) and partially in figure (A-l7) hatched with slant

lines. By construction, the straight line segment AC is perpendicular to all
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curves C1 (i=1,2,3,4 ), while by definition, the point B is located on this

segment and is the first touching point between the curves CI CF0 and C4C01.
The values of the parameter	 corresponding to point B are given by

equations (A.26) and have the form ç =	 = it / 2+8 and

q 44,0 —ir+;ir/2+Oy.

. The area AD3 enclosed by the two generating circles and their external

tangents, shown in figure (A- 16) cross-hatched.

Figure (A-16). Details of a innermost compression chambers.

280



C 1 = CF,

x

Appendix A
	

Scroll Compressor-Expander Geometry

• The area AD4 enclosed by the innermost circular arcs defined by equations

(A.36), (A.38), (A.44) and (A.46), for various values of the crank angle 0 in
the semi-open interval [Oijmi °11m2 + 2.ir),.

The determination of the above mentioned areas require knowledge of the sizes of

various angles and the lengths of a series straight line segments, which are

calculated below.

From figures (A-7a) and (A-17), the definition (A.36) of the tip point G1 and the

definition (A.41) of the angle 0IjmJ' it is at once obvious that

XÔF	 and XOG1 °Iiml - = c°cr - arctan cr'	
(A.11O)

cr

and hence,

G1 OFXOF—XÔG1 = arctan cr	
(A. 111)

Y

-	 r1

Figure (4-17). The base areas ADJ and AD2
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On the other hand, according to equations (A.37), the point 7 is located on the
curve C2=CR	 and the corresponding value of the parameter q is

= 2S = + q - y. Therefore, as suggested by equations (A.36) and (A.35),

the value of q corresponding to the point T, located on the curve CI CFQ , is

XÔH= 92S + ' = + cr

This equation and the definition of the curve CI— CFO furnish

HT2 =OH(XOH)= r(2r+ Pcr)'

consequently,

-. *	 (H7*
HOT2 = arctanl	 I = arctan(,r + cr)

(OH)

The coordinates of the point H, obtained form this equation, are given by

[X	

(C0S(cocr+it)'\	 (COScOcr\H	 1=—ri	 I.
YH)	 Sifl(cocr + it))	 \Sfl cr)

(A. 112)

(A.113)

(A. 114)

(A. 115)

The foregoing equation and equations (A.37) and (A.38) furnish the slopes of the
straight line segments T QORB and QORBH. These slopes are identical and equal

to - cot	 Therefore, the points T2', QORB and H are collinear. Similarly, from

equations (A.11O) and (A.112), it is cvident that the angle FOH is a straight angle

and thus the points F, 0 and H are also collinear. Furthermore, combining

equations (A.38) and (A.115), the distance HQORB is found to be

(A.116)HQQRB = T,

hence

HQORB = arctan Cr'HOQORB = arctan air)

and

OORB T = OHQORB +HÔ QORB - + arctan cr

(A.117)

(A. 118)

From figure (A-17) and equations (A.111) and (A.117) it is evident that the
triangles FOG1 and HOQORB are equal, that is
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AFOG1 = LHOQORB .	 (A.119)

As a result of this relation, the areas of the plane figures HFGIPT2*H and

QORB G1 PTQORB are equal and hence figure (A-17) easily yields the following

relation

area of QORB G1 F'T QORB - area of HFG1 PT H =

=area of HBFG1PTH+ 2

	 (A. 120)

The area of the plane figure HBFG1 PTH entering the foregoing equation is

swept by the tangent to the fixed generating circle BP, as it moves from the
position FG1 to the position HT. It can therefore be calculated following steps

completely analogous to the steps leading to equation (A.92), where of course
E1 =XÔF= cr and e2 =XÔH= r + q. Thus equation (A.120) takes the form

	

3	 31area of QORBGIPTQORB	 {(" q'cr)	 'cr	 (A.121)

The base area ADJ, as figure (A-17) suggests, is obtained by subtracting the area

ADI_c of the circular sector QORB G1 T2 , centered at QORB, from the area ADI F of

the plane figure QORB G1 PTQORB ,that is

AD1 = ADI_F - ADI_c.
	 (A. 122)

The area A91_ of the circular sector, determined with the help of equation

(A.118), is given from

AD1_c 
= 2 OQORB TZ r2= - - + arctan

2	 2 2	 cr}

Substitution of the relations (A.121) and (A.123) into equation (A.122) yields

r211
AD1 =	 + co) - cc + - arctan Pcr

(A. 123)

(A. 124)

The determination of the area AD2 is again based on the discussion leading to

equation (A.92). By definition , the values of the parameter corresponding to the

points A, B and C shown in figure (A-16), are given by
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Q1O = + 0,	 =7r+-+0y,

(A.125)

2A2,Oh+OY	 Q3C_7+O.

On the other hand, according to equation (A.112), the values of the parameter q7

corresponding to the points T and T2 are

(pu. =XÔH= 2S 7 7t + cr and	 2T2 = 2S = r + cr - y	 (A.126)

respectively.

From figure (A- 16) it is evident that the area AD2 is the difference of the areas

swept by the tangents to the fixed generating circle HT2 and HT2 as they move

form their original positions to the positions DB and DA. Thus, according to

equations (A.92), (A.125) and (A.126)

1 ,r/2-4-G	 ,r12+O-y	 1
AD2=- $r 2 co 2dço_ $r2co2dco=

L ,r+q',	 J
(A.127)

2/	 3	 3	
31F	 I(7	

\

=—.fl _+0 I
6 L2	

_+o_iJ

The base area AD3 is the difference between the areas of a parallelogram and a

generating circle. The width of the parallelogram is equal to the distance between

the centres of the generating circles while its breadth is equal to their common

diameter. Thus

AD3 =r(2d—)
	

(A.128)

The area AD4 is the common intersection of two identical circles. From elementary

geometry is known that such an area is given by R 2 (co - sin w)12, where R is the

common radius of the intersecting circles and w is the angle to which the common

chord subtends.

The co-ordinates of the point G 3 when referred to a system of axes XY shown in

figure (A-18), been parallel to XY and centered at the point QORB, are obtained

from equations (A.36) and (A.38), thus
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Figure (A-18). Details of the innermost miniscus

G3 = 1 XG3 - IXQ0RB "1 d07r + O) = _d0S e	 (A.129)
YG 3 )	 YQOIth)	 sin(,r+O)J	 sinO)

Consequently, the line segments QORB G3 and OS are parallel having the same

slope equal to - tan8. Referring to equation (A.41) and the figures (A-iS), (A-16)

and (A-17), we have

X'ÔG1 =XÔG1 = 2cr - arctanq.	 (A.130)

and therefore

G1 ÔS=GI QOrb G3 = 0— -	 - arctan 'cr) = 0— 0Hm1'

(A. 131)
Oiimi <0 <( O +2g).- -' limi
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Furthermore equations (A.37) and (A.38) furnish QORB 7T2 = r(,r - y) = d while by

definition OS= d . Hence

QORBiZ=OS=d.
	 (A. 132)

Application of the formula R 2 (co - sin w)12 mentioned above for R = d and

w =G QORB G3 0 - 8Iiml' furnishes

AD4 =-{(e 0iimi )S1fl(0Oiimi )}.	 (A. 133)

Having found the expressions for the areas ADI , AD2 and AD3 it is easy to

determine the area	 mtt,	 Z of the innermost compression chambers.

I	 I
=-	

2	 2d=—r I+—+0—y —[—+0-1 2	 1 21r	 ,r	

1}2	 I	 I
(2	 6 

ft	
2	 [2

o <0<(011m2 +27t)limi

Therefore,

(21—AD3)-2AD2-2AD1--AD4 _IA.D3AAAD4
2	 2	 2

(A.134)

(A.135)

A.3.4 Discharge Chamber and its Working volume

Following the compression process, the discharge cycle starts when

6 = 0± 2n,r— 2(m + 1),r, it e\W, mEZ , where the symbol	 denotes the

set of the positive integers, and completes when 6 0 ± 2nr - 2(m + 2)'r.

For values of the parameter 0 in the range °Jiml ^ 0 < (011m2 + 2.ir) the working

volume is given by equation

A D = -{(o Olimi ) sin(0 - Olimi )}
	

(A.136)

Where as for the rest of the discharge process is given by the formulae

A D =(21—AD3)-2AD2-2AD1
	 (A.137)
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(ç= lt+7t/2+O

(p4=lt,2+e-y	 /	 (P;-(P,0 it+it/2+9 i

(p3 It +It/2+ e

Figure (A-18). Determination of area of innermost chambers
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B.1 The Continuity Equation

Physical principle: mass is conserved

Consider the flow model shown on figure B.1 , namely, an infinitesimally small

element fixed in space, with the fluid moving through it. Here, for convenience we

adopt a Cartesian coordinate system, where the velocity and density are functions

of (x,y,z) space and time t. Fixed in this (x,y,z) space is an infinitesimally small

element of sides dx, dy, and dz, (figure B.!). there is a mass flow through this fixed

element, as shown in figure B.1. Consider the left and right faces of the element

which are perpendicular to the x axis. The area of these faces is dy dz. The mass
flow through the left face is (pu) dy dz. Since the velocity and density are functions

of spatial location, the values of the mass flux across the right face will be different

from that across the left face; indeed, the difference in mass flux between the two

faces is simply [[pu)/dx] dx. Thus the mass flow across the right face can be

expressed as {pu+ ['pu)Idx] dx } dy dz. The mass flow across both the left and

the right faces is shown in figure B.1. In a similar vein the mass flow through both

the bottom and the top faces, which are perpendicular to the y axis, is (pv) dx dz

and {pv+ [c'pv)Ic]dy } dx dz, respectively. The mass flow through both the front

and back faces, which are perpendicular to the z axis is (pw)dxdy and

{pw+ pw)I&dz} dx dz, respectively. Note that u, v, and w are positive, by

convection, in the positive x, y, and z directions, respectively. Hence the arrows in

figure B.1. Show the contributions to the inflow and outflow of mass through the

sides of the fixed element. if we denote a net outflow of mass as a positive

quantity, then from figure B. 1 we have
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Net ouflow in x dire ction.

d(pu)	 d(pu)
pu+ 

dx 
dx dydz—(pu)dydz = 	dxdydz

Net outflow in y direction:

d(pv)	 d(pv)
pv+	 dy dxdz—(pv)dxdz=	 dxdydz	 (B.1)

dy	 dy

Net outflow in z dire ction:

[	 d(pw) 1	 d(pw)
Ipw+	 dzldxdy—(pw)dxdy= 	 dxdydz
L	 dz	 ]	 dz

Hence, the net mass flow out of the element is given by

_____ ____ d(pw) l[d(pu)d(pv)	
Idxdydz	 (B.2)Net mass flow = I

L v	 dy	 dz ]

The total mass of fluid in the infinitesimally small element is p (dx dy dz); hence

the time rate of increase of mass inside the element is given by

Time rate of mass increase= --(dx dy dz)	 (B.3)

The physical principle that mass is conserved, when applied to the fixed element in

figure B.1, can be expressed in words as follows: the net mass flow out of the

element must equal the time rate of decrease of mass inside the element. Denoting

the mass decrease by a negative quantity, the statement can be expressed in terms

of equations (B.2) and (B.3) as

[d(pu) + d(pv) d(pw)
dx	 dy + dz 

]dxdYdz=_(dxdYdz)
dt

(B.4)

dp [d(pu) + d(pv) + d(pw)1 =
or	

dx	 dy	 dz ]
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p = p (x,y,z,t)
y
	

V = ui +vj +wk
U = u (x,y,z,t)
V = v (x,y,z,t)
w = w (x,y,z,t)

x

t9(P v)
pv+	 dy dxdz

dy [	 d(pw)
Ipw+	 dzdxdy

d(pu)
dx dydz

pvuxaz

Figure B.1 Model of the infinitesimally small element fixed in space and a diagram
of the mass fluxes through the various faces of the element-for a derivation of the
continuity equation.

z
Pu dy dz
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hi equation (B.4) the term in brackets is simply V (pV). Thus equation (B.4)

becomes

(B.5)

Equation (B.5) is a partial differential equation form of the continuity equation. It

was derived on the basis of an infinitesimally small element fixed in space. The

infinitesimally small aspect of the element is why the equation is obtain directly in

partial differential equation form. The fact that the element was fixed in space

leads to the specific differential form given by equation (B.5), which is called the

conservation form. The forms of the governing flow equations that are directly

obtained from a flow model which is fixed in space are, by definition, called the

conservation form.

B.2 The Momentum Equation

In this section, we apply another fundamental physical principle to a model of the

flow namely:

Physical principle: F= ma (Newton's second law)

The resulting equation is called the momentum equation. Unlike the derivation of

the continuity equation, where the model of an infinitesimally small element fixed

in space was used, here we will apply a different model. We will utilize the moving

fluid element model shown in figure B.2 because this model is particularly

convenient for the derivation of the momentum equations as well as the energy

equation (to be consider in section B.3). Momentum and energy equations can be

derived using the other model of flow shown in figure B. 1, each different model of

flow leads directly to a different form of the equations.

Newton's second law, expressed above, when applied to the moving fluid element

in figure B.2, says that the net force on the fluid element equals its mass times its

acceleration of the element. This is a vector relation, and hence can be split into

three scalar relations along the x, y, and z axes. Let us consider only the x

component of Newton's second law,

F = ma
	

(B.6)

where F and a are the scalar x components of the force and acceleration

respectively.
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Velocity
I components

uy
w	 (	 dr

yx +_--dY]dxdz	 rdxdy

dy

	

pdydz —	 Ip+"dx"dydz: ,j,	 :9x	 )
idydz *– -1 --_____________

	

a	
+ -ELd xJ dy dz

+	 d zJ dx dy

dx dz

z
Same fluid element
	 V2

at time t =

Figure B2 Infinitesimally small, moving fluid element. Only the forces in the x
direction are shown. Model used for the derivation of the x component of the
momentum equation.
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First, consider the left side of equation (B.6). We say that the moving fluid

experiences a force in the x direction. There are two sources of this force:

1. Body forces, which act directly on the volumetric mass of the fluid element.

These forces "act at a distance"; examples are gravitational, electromagnetic,

centrifugal, and Coriolis forces.

2. Suiface forces, which act directly on the surface of the fluid element. They are

due to only two sources: (a) the pressure distribution acting on the surface,

imposed by the outside fluid surrounding the fluid element, and (b) the shear

and normal stress distributions acting on the surface, also imposed by the

outside fluid "tugging" or "pushing" on the surface by means of friction.

Let us denote the body force per unit mass acting on the fluid element by f, withf

as its x component. The volume of the fluid element is (dx dy dz); hence,

Body force on fluid element acting in x direction = pf (dx dy dz)	 (B. 7)

The shear and normal stresses in a fluid are related to the time rate of change of the

deformation of the fluid element, as sketched in figure B.3 for just the xy plane.

The shear stress denoted by r in figure B.3a, is related to the time rate of change

of the shearing deformation of the fluid element, whereas the normal stress,

denoted by r in figure B.3b, is related to the time rate of change of volume of the

fluid element. As a result, both shear and normal stresses depend on velocity

gradients in the flow. In most viscous flows, normal stresses (such as i) are much

smaller than shear stresses and many times neglected. Normal stresses (say in

the x direction) become important when the normal velocity gradients (say du/dx)

are very large, such as inside a shock wave.

(a)
	

(b)

Figure B.3 Illustration of (a) shear stress and (b) normal stress
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The surface forces in the x direction exerted on the fluid element are sketched in

figure B.2. The convention will be used here that ib denotes a stress in the i
direction exerted on a plane perpendicular to the i axis. On the face abcd, the only

force in the x direction is that due to shear stress, i dxdz. Face efgh, is a distance

dy above face abed; hence the shear force in the x direction on face efgh is

[r,+(dr1 9y)dy 1dxdz . Note the direction of the shear force on the faces abcd and

efgh; on the bottom face, i is to the left (the negative x direction), whereas on the

top face, -i-(c9,jdy)dy is to the right (the positive x direction). These directions

are consistent with the convention that positive increases in all three components of

velocity, u, v, and w, occur in the positive direction of the axes. For example, in

figure B.2, u increases in the positive y direction. Therefore, concentrating on the

face efgh, u is higher just above the face than on the face; this causes a "tugging"

action which tries to pull the fluid element in the positive x direction (to the right)

as shown in figure B.2. In turn, concentrating on face abcd, u is lower just beneath

the face than on the face; this causes a retarding or dragging action on the fluid

element, which acts in the negative x direction (to the left) as shown in figure B.2.

The directions of all the other viscous stresses shown in figure B.2 including 't.,

can be justified in a like fashion. Specifically on face dcgh, i acts in the negative

x direction, whereas on face abfe, + (drJdz)dz acts in the positive x direction.

On face adhe, which is perpendicular to the x axis, the only forces in the x

direction are the pressure force p dy dz, which always acts in the direction into the

fluid element, and r dy dz, which is in the negative x direction. In figure B.2, the

reason why 'ti, on face adhe is to the left hinges on the convention mentioned

earlier for the direction of increasing velocity. Here, by convention, a positive

increase in the u just to the left face of adhe is smaller than the value of u on the

face itself. As a result, the viscous action of the normal stress acts as a "suction" on

face adhe; i.e. there is a dragging action toward the left that wants to retard the

motion of the fluid element. In contrast, on face bed, the pressure force [p +

(/&)dx]dy dz presses inward on the fluid (in the negative x direction). And

because the value of u just to the right of the face bcgf is larger than the value of u

on the face, there is a "suction" due to the viscous normal stress which tries to pull

the element to the right (in the positive x direction) with a force equal to [z +

(c9rh9x)dx]dy dz.

With the above in mind, for the moving fluid element we can write
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Net surface force in x direction = [ -	 +	 dx]dY dz

+	 ' dxJ_rxx]dYdz+[[Tx ^YX 
dY)J_r,x]dXdZ

+ r+	 dz –r dxdy
L	 dz )

The total force in the x direction F, is given by the sum of equations (B.7) and

(B.8). Adding, and canceling terms, we obtain

F = [-	
+ dXXX 

+ 
YX + d 

1dx dy dz +	 dx dy dz	 (B. 9)
[ dx dx dy	 dzj

Equation (B.9) represents the left-hand side of equation (B.6). Considering the

right-hand side of equation (B.6), recall that the mass of the fluid element is fixed

and is equal to
m = pdxdydz
	

(B.1O)

Also recall that the acceleration of the fluid element is the time rate of change of its

velocity. Hence, the component acceleration in the x direction, denoted by a, is

simply the time rate of change of u; since we are following a moving fluid element,

this time rate of change is given by its substantial derivative. Thus,

(B.8)

Du
a

Dt

Combining equations (B.6) and (B.9) to (B.l1), we obtain

Du dp d ___ ___

p—=--+ 
XX+

Dt	 dx dx dy dz

(B.11)

(B.12a)

Which is the x component of the momentum equation for a viscous flow. In a

similar fashion, the y and z components can be obtained as

Dv	 dpd	 dr	 c9r-	 Xy	 YY	 ZY

p	 - - 

-;;- dx + dy +	
+ (B. 12b)

Dw	 dp dr dv
+ XZ+ YZ+_+pf

Dt	 dz dx dy dz
(B. 12c)
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Equations (B.12a) to (B.12c) are the x, y, and z components respectively, of the

momentum equation. Note that they are partial differential equations obtained

directly from an application of the fundamental physical principle to an

infinitesimal fluid element. Moreover, since this fluid element is moving with the

flow, equations (B.12) are in non conservation form. They are scalar equations and

are called the Navier - Stokes equations in honor of two men, the Frenchman

M.Navier and the Englishman G. Stokes, who independently obtain the equations

in the first half of the nineteenth century.

The Navier - Stokes equations can be obtained in conservation form as follows.

Writing the left-hand side of equation (B.12a) in terms of the definition of a

substantial derivative we have

Du	 c9u
p—=p---FpV•Vu	 (B.13)

Dt	 dt

Also, expanding the following derivative,

d(pu)	 :9U+t9p
c9t	 dt

and rearranging, we have

du - d(pu)	 dp	 (B.14)
dt

Recalling the vector identity for the divergence of the product of a scalar times a

vector, we have

V . (puV) = uV . (pV)+ (pV) . Vu

(B.15)
or	 pV.Vu.=V.(puV)–uV.(pV)

Substituting equations (B.14) and (B.15) into equation (B.l3).

Du - d(pu)	
.(pV)+ V . (puV)p--- dt

	 dt
(B.16)

- d(pu) -
	 + V . (PV)] + V (puv)

- at	 [dt
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The term in brackets in equation (B.16) is simply the left-hand side of the

continuity equation, hence the term in brackets is zero. Thus equation (B.16)

reduces to

Du a(Pu)V(V)
iit = dt

Substitute equation (B. 17) into (B. 12a).

____	 dr
dt	 dy	 dz

Similarly, equations (B.12b) and (B.12c) can be expressed as

+V.(pv17)=-+	
dr	 dr

X)'	 YY+_2+

and

d(pw) + V
. (pwV) =	

___ dr dr

dz	
+ YZ++pf

at	 x dy	 dz

(B. 17)

(B.18a)

(B. 18b)

(B.18c)

Equations (B.18) are the Navier - Stokes equations in conservation form. In the late

seventeenth century, Isaac Newton stated that shear stress in a fluid is proportional

to the time rate of strain, i.e., velocity gradients. Such fluids are called Newtonian

fluids. (fluids in which r is not proportional to the velocity gradients are non

Newtonian fluids). For Newtonian fluids, Stokes in 1845 obtained

? =(V.V)21u
	

(B. 19a)

=%(V . V)2j-
	 (B. 19b)

rzz =(VV)2ji
	

(B. 19c)

ra du1
= r5 =tI —+

[ax

[du dw= =ti + —
Ldz dx

(B. 19d)

(B. 19e)
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ryz =

	 1 dw dv 1	(B.19f)

where u is the molecular viscosity coefficient and 2 is the second viscosity

coefficient. Stokes made the hypothesis that

2

which is frequently used but which has still not been definitely confirmed to

present day. Substituting equations (B.19) into (B.18), we obtain the complete

Navier - Stokes equations in conservation form.

B.3 The Energy Equation

Physical principle: Energy is conserved

In keeping with our derivation of the Navier - Stokes equations (i.e. the momentum

equation) in section B.2 we will use again the flow model of an infinitesimally

small fluid element moving with the flow (as shown in figure B.2). The physical

principle stated above is nothing more than the first law of thermodynamics. When

applied to the flow model of a fluid element moving with the flow, the first law

states that

Rate of change	 Net flux of	 Rate of work done

of energy inside = heat into
	 + on element due to	 (B.20)

fluid element	 element
	

body and surface forces

A	 =	 B	 +
	

C

where A, B, and C denote the respective terms above.

Let us first evaluate C; that is. Let us obtain an expression for the rate of work done

on the moving fluid element due to body and surface forces. It can be shown that

the rate of doing work by a force exerted on a moving body is equal to the product

of the force and the component of velocity in the direction of force. Hence the rate

of work done by the body force acting on the fluid element moving at a velocity V

is

pf .V(dxdydz)
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With regard to the surface forces (pressure plus shear and normal stresses),

consider just the forces in the x direction shown in figure B.2. The rate of work

done on the moving fluid element by the pressure and shear forces in the x

direction shown in figure B.2 is simply the x component of velocity u, multiplied

by the forces; e.g. on face abcd the rate of work done by r dx dz is ui dx dz,

with similar expressions on the other faces. To emphasize these energy

considerations, the moving fluid element is redrawn in figure B.4, where the rate of

work done on each face by surface forces in the x direction is shown explicitly. To

obtain the net rate of work done on the fluid element by the surface forces, note

that forces in the positive x direction do positive work and that forces in the

negative x direction do negative work. Hence, comparing the pressure forces on

face adhe and bcgf in figure B.4, the net rate of work done by pressure in the x

direction is

r	 (	 9(up)	 d(up)
I up —I up +	 dx I dy dz = -	 dx dy dz

dx	 dx

Similarly, the net rate of work done by the shear stresses in the x direction on faces

abcd and efgh is

d(ur )	 d(ur )
u +	 dy - u dx dz = -

	
dx dy dz

dy	 dy

Considering all the surface forces shown in figure B.4, the net rate of work on the

moving fluid element due to these forces is simply

[ d(up)d(ur)d(u1 y ) d(ur )1

+	 Idrdydz
dx	 dx	 dy	 dz ]

The above expression considers only surface forces in the x direction. When the

surface forces in the y and z directions are also included, similar expressions are

obtained. In total, the net rate of work done on the moving fluid element is the sum

of the surface force contributions in the x, y, and z directions, as well as the body

force contribution. This denoted by C in equation B.20 and is given by
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Id(UP)+
dx	 dy	 dz)	 dx	 dy	 dz

+ d(vr) + d(vr) + d(vr.)

dx	 dy	 dz

d(wr) d(w)d(wr)1

+ dx + dy	 dz ]

(B.21)

Note in equation (B.21) that the first three terms on the right-hand side are simply

V.(pV).

y

up dy dz

urdy dz

dy dz

z

g

[	 dur
ur +	 Yxddy Yjdxdz

h

zv.	
-iz-

e	 :ay	 I

___

dx

u dx dz

u r dx dy

(	 d(ouP)]
1.uP+ dx

+ dur dxJddz
dx

[qi +3_dxJdydz

[u1 +	 dzjdxdy

Figure B.4 Energy fluxes associated with an infinitesimally small, moving fluid
element. For simplicity, only the fluxes in the x direction ere shown. Model used
for the derivation of the energy equation.

B is the net flux of heat into the element. This heat flux is due to (1) volumetric

heating such as absorption or emission or radiation and (2) heat transfer across the

surface due to temperature gradients, i.e. thermal conduction. Define q as the rate

of volumetric heat addition per unit mass. Noting that the mass of the moving fluid

element in figure B.4 is pdx dy dz, we obtain

Volumetric heating of element = pq dx dy dz	 (B.22)
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In figure B.4, the heat transfer by thermal conduction into the moving fluid element
across face adhe is q dy dz, where q is the heat transferred in the x direction per

unit time per unit area by thermal conduction. (The heat transfer in a given

direction, when expressed in dimensions of energy per unit area perpendicular to

the direction is called the heat flux in that direction.) The heat transfer out of the

element across face bcgf is [ + (t9'j/dx)dx]dydz. Thus, the net heat transfer in

the x direction into the fluid element by thermal conduction is

[ -
	 +-/--dxJ]ddz = ----dxdydz

Taking into account heat transfer in the y and z directions across the other faces in

figure B.4 we obtain

Heating of
fluid element by
thermal conduction

= _[L+L+ Z JdxdY dz (B.23)

The term B in equation (B.20) is the sum of equations (B.22) and (B.23).

B
	 (B.24)

The heat flux due to thermal conduction, from Fourier's law of heat conduction, is

proportional to the local temperature gradient:

	

dT	 .	 dT	 .	 dT

	

q=–k-----	 q=–k----	 q=–k-----

	

cix	 cy	 c'Z

where k is the thermal conductivity. Hence equation (B.24) can be written

r	 a ( 
dT __[	

(B.25)B = pq+-I k— 1+
L	 a	 dx) dy	 dz dz)]

Finally the term A in equation (B.20) denotes the time rate of change of energy of

the fluid element. The fluid element has two contributions to its energy:

1. The internal energy due to random molecular motion, e (per unit mass). This is

the physical significance of the internal energy that appears in the first law of
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thermodynamics.

2. The kinetic energy due to translational motion of the fluid element. The kinetic
energy per unit mass is simply V2/2.

Hence, the moving fluid element has both internal and kinetic energy; the sum of
these two is the "total" energy. In equation (B.20), the energy in the term A is the

total energy, i.e. the sum of the internal and kinetic energies. The total energy is
e + V 2 /2. Since we are following a moving fluid element, the time rate of change

of the total energy per unit mass is given by the substantial derivative. Since the

mass of the fluid element is p dx dy dz, we have

A	 D e 
V2'

_ p__ +__Jdxddz	 (B.26)

The final form of the energy equation is obtained by substituting equations (B.2 I),

(B.25), and (B.26) into (B.20)

D ( V2'l	 . d ( dT	 d ( dT"l a ( dT
p— i e+— i =pq + — i k— i+ — i k— i+ — i k-

Dt	 2 )	 dx' dx) dy dy) dz' dz

- d(up) d(vp) d(wp) d(ur) d(ur,) d(ur) 	
(B.27)

dx	 dy	 dz	 dx	 dy	 dz

d(vr) + d(vr) + d(v) + d( w r) + d(wr) + d(wr) +pf.V
+ dx	 dy	 dz	 dx	 dy	 dz

This is the non conservation form of the energy equation; also note that it is in
terms of the total energy e +V 2/2. Once again, the non conservation form results

from the application of the fundamental physical principle to a moving fluid

element.

The left-hand side of the equation (B.27) involve the substantial derivative of the
total energy D (e + V 2/2)/D t. This is just one of the many different forms of the

energy equation; it is the form that comes directly from the principle of

conservation of energy applied to a moving fluid element. This equation can be

readily modified in two respects as follows;

1. The left-hand side can be expressed in terms of the internal energy e alone, or
the static enthalpy h alone, or the total enthalpy h0 = (I, + V 2/2) alone.
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2. For each of the different forms of the energy equation mentioned above, there

are both non conservation as well as conservation forms.

Note that the manipulations required to change the non conservation form to the

conservation form change only the left-hand side of the equations; the right-hand

side remains the same. Equation (B.28) below is the conservation form of the
energy equation written in terms of total energy e + V2/2.

d[ ( v2l
=pq+k_I+

dt[	 2)]	
[[e+Jv]	

. d (	 d
P1 e+— H+V.

dx dx) dy [ dy)

d i dT	 d(up) d(vp) d(wp) d(u r) d(ury)d(ur)+— k—	 _____ (B.27)dz dz) dx - dy	 dz	 d	 d

+ d(v,) + d(v) + d(v) + d(wr) 
+ 

c9 ( wr ) d(wr)
dx	 dy	 dz	 dx	 dy	 dz 

±p f V

B.4 The Equation Of State

The motion of a fluid in three dimensions is described by a system of five partial

differential equations: mass, three momentum equations, and energy. In these
equations there are seven unknowns p, p, e, T, u, v, w . In order to close the system

of fluid dynamic equations it is necessary to establish relations between the
thcrmodynamic variables p, p, e, T as well as to relate the transport properties

1u,k to the thermodynamic variables. It is obvious that two additional equations

are required. These two additional equations can be obtained by determining

relations that exist between thermodynamic variables. Relations of this type are

known as equations of state. According to the state principle of thermodynamics,

the local thermodynamic state is fixed by any two independent thermodynamic

variables, provided that the chemical composition of the fluid is not changing

owing to diffusion or finite-rate chemical reactions. (John C Tannehill page 258).

A perfect gas is defined as a gas whose intermolecular forces are negligible. A

perfect gas obeys the perfect gas equation of state,

p =pRT
	

(B.28)

where R is the gas constant. The intermolecular forces become important under

conditions of high pressure and relatively low temperature. For these conditions,
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the gas no longer obeys the perfect gas equation of state, and an alternatively

equation must be used. An example is the compressibility factor Z (equation

(3.23) section 3.2.5), another example is the Van der Waals equation of state,

(P+ap2)[-!__bJ=RT	 (B.29)

where a and b are constants for each type of gas.

For problems involving a perfect gas at relatively low temperatures, it is possible to

also assume a calorically perfect gas. A calorically perfect gas is defined as a

perfect gas with constant specific heats. In a calorically perfect gas, the specific
heat at constant volume c, the specific heat at constant pressure c,,, and the ratio

of specific heats	 all remain constant, and the following exists:

e = cT	 h=cT
	

(B.30)

For fluids that can not be considered calorically perfect, the required state relations

can be found in the form of tables, charts, or curve fits.

The coefficients of viscosity and thermal conductivity can be related to the

thermodynamic variables using the kinetic theory. For example, Sutherland's

formulas for viscosity and thermal conductivity are given by

T 312	 T312
p=C1	 k=C3

where C, - C4 are constants for a given gas. The Prandtl number

CII
Pr =

k

is often used to determine the coefficient of thermal conductivity k once p is

known. This is possible because the ratio c r /Pr, which appears in the expression

below is approximately constant for most gases.

C
k= ---6u

Pr
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C.1 Hyperbolic Tangent Distribution

*	 SUBROUTINE HYPERBOLIC TANGENT	 *
*	 DECEMBER1996	 *

* This routine MUST be called ONLY when the argument BETA is LESS than 	 *

* one. In this case the hyperbolic functions are used. See reference	 *

* Thompson	 *

* ARGUMENTS:	 *

* NSUBDIV INTEGER*4. On entry specifies the number of subdivisions	 *
*	 which is one less than the number of nodes. Unchanged on 	 *
*	 exit.	 *

* ALPHA	 *
* BETA = REAL*8 . On entry specify the parameters defined by eqs 	 *
*	 (A.6) and (A.7) respectively. Unchanged on exit. 	 *
*	 Note that in the cases ICASE=2 or ICASB=3, ALPHA is not 	 *
*	 used and can have any REAL*8 value	 *
* ICASE = INTEGER*4 . On entry has one of the following values and 	 *
*	 corresdponding meanings:	 *
*	 1 (one) if both initial and final division are specified. 	 *
*	 See equationS (A.9) and (A.lO). 	 *
*	 2 if only the initial division is specified. See equation 	 *
*	 (A.13) and finally	 *
*	 3 if only the final division is specified. See equation 	 *
*	 (A.14).	 *

* IERROR = INTEGER*4. On exit has one of the following values 	 *
*	 0 (zero) = no error in subroutine 	 *
*	 1 (one) = BETA passed to routine is greater or equal to 1 	 *
*	 or ICASE has a value different than 1, 2 or 3	 *
*	 2 Denominator in N-R method to small. 	 *
*	 3 No convergence achieved while solving for delta	 *

SUBROUTINE HYPERB(NSUBDIV,BETA,ALPHA,
A	 ICASE,IERROR)
IMPLICIT DOUBLE PRECISION (D)

C IMPLICIT REAL*4(AH 2OZ), INTEGER*4(IN)
PARAMETER(MAXITERP=1000,EFZEROP=1 .OD- 1 8,TOLP=1 .OD-03,

AIDPHIP1000,ONE 1 .OD+00)
COMMON /ARRAY/ SXI(IDPHIP)

*

WRITE(*,*)' SUBROUTINE HYPERBOLIC TANGENT'
IERROR=0
IF(ICASE.LT.l OR. ICASE.GT.3) THEN
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IERROR= 1
RETURN

ENDIF
IF(BETA.GE.ONE) THEN

IERROR= 1
RETURN

ENDIF

* Solution of eq (A.8) with respect to delta, using Newton-Raphson
* method. Original value obtained by expanding hyperbolic sine.
* Correction is the -(Function/Derivative of Function)

ITER=O
CORRECTION=1 .OD+1O
DELTA=DSQRT(6.OD+OO*(ONEBETA)/BETA)
DO WHILE(CORRECTION.GT.TOLP.AND.ITER.LE.MAXITERP)

DERIV=BETA*DCOSH(DELTA)ONE
IF(DAB S(DERIV).LE.EFZEROP)THEN

IERROR=2
RETURN

ENDJIF
CORRECTION=(BETA*DSINH(DELTA)DELTA)fDERIV
DELTA=DELTA+CORRECTION
ITER=ITER+ 1

END DO
IF(ITER.GE.MAXITERP) THEN

IERROR=3
RETURN

ENDIF

SUBDIV=FLOAT(NSUBDIV)
PARONOM=DTANH(O.5D+OO*DELTA)

DO KSI=O,NSUBDIV
RATIO=FLOAT(KSI)/SUBDIV
IF(ICASE.EQ. 1) THEN

UKSI=DTANH(DELTA*(RATIOO.5D+OO))

UKSI=O.5D+OO*(ONE+UKSI/PARONOM)
SKSI=UKSJJ(ALPHA+(ONEALPHA)*UKSI)

ELSE IF(ICASE.EQ.2) THEN
SKSI=DTANH(O.5D+OO*DELTA*(RATIOONE))

S KSI=ONE+SKSI/PARONOM
ELSE

SKSI=DTANH(O.5D+OO*DELTA*RATIO)
SKSI=SKSI/PARONOM

ENDIF
*	 Array starts from one and not zero. Dimensions
*	 are 1 to (NSUBDIV+1) and not 0 to NSUBDIV

SXI(KSI+1)=SKSI
END DO

RETURN
END

306



AppendLv C
	

Program Listing

C.2 Trigonometric Tangent Distribution

*	 SUBROUTINE TRIGONOMERTRIC TANGENT	 *
*	 DECEMBER 1996	 *

* This routine MUST be called ONLY when the argument BETA is GREATTER *
* than one. In this case the hyperbolic functions are used. See ref.	 *

* Thompson	 *

* ARGUMENTS:	 *

* NSUBDIV = INTEGER*4. On entry specifies the number of subdivisions 	 *
*	 which is one less than the number of nodes. Unchanged on 	 *
*	 exit.	 *

* ALPHA	 *
* BETA = REAL*8 . On entry specify the parameters defined by eqs 	 *
*	 (A.6) and (A.7) respectively. Unchanged on exit. 	 *
*	 Note that in the cases ICASE=2 or ICASE=3, ALPHA is not 	 *
*	 used and can have any REAL*8 value	 *
* ICASE = INTEGER*4 . On entry has one of the following values and	 *
*	 corresponding meanings: 	 *
*	 1 (one) if both initial and final division are specified. 	 *
*	 See equations (A.9) and (A.10). 	 *
*	 2 if only the initial division is specified. See equation 	 *
*	 (A.13) and finally	 *
*	 3 if only the final division is specified. See equation 	 *
*	 (A.14).	 *
* TERROR = INTEGER*4 . On exit has one of the following values	 *
*	 0 (zero) = no error in subroutine 	 *
*	 1 (one) = BETA passed to routine is less or equal to 1 	 *
*	 or ICASE has a value different than 1, 2 or 3 	 *
*	 2 Denominator in N-R method to small. 	 *
*	 3 No convergence achieved while solving for delta 	 *
************************************************************************

SUBROUTINE TRIGON(NSUBDIV,BETA,ALPHA,
A	 ICASE,IERROR)
IMPLICIT DOUBLE PRECISION (D)

C IMPLICIT REAL*4(AH 2OZ), INTEGER*4(IN)
PARAMETER(MAXITERP= I 000,EFZEROP= I .OD- 1 8,TOLP= I .OD-03,

AIDPHIp l000,ONE=1 .OD+00)
COMMON /ARRAY/ SXI(IDPHIP)

WRITE(* , *)' SUBROUTINE TRIGONOMETRIC TANGENT'
IERROR=0
IF(ICASE.LT.1 .OR. ICASE.GT .3) THEN

IERROR=1
RETURN

ENDIF
IF(BETA.LT.ONE) THEN

IERROR=1
RETURN

ENDIF

* Solution of eq (A.8) with respect to delta, using Newton-Raphson
* method. Original value obtained by expanding hyperbolic sine.
* Correction is the -(Function/Derivative of Function)

ITER=0
CORRECTION= 1 .OD+ 10
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DELTA=DSQRT(6.OD+OO*(BETAONE)fBETA)
DO WHILE(CORRECTION.GT.TOLP.AND.ITER.LE.MAXITERP)

DERIV=BETA*DCOS(DELTA)ONE
IF(DAB S(DERIV) .LE.EFZEROP)THEN

IERROR=2
RETURN

ENDIF
CORRECTION=(BETA*DSIN(DELTA)DELTA)IDERIV
DELTA=DELTA+CORRECTION
ITER=ITER+1

END DO
IF(ITER.GE.MAXITERP) ThEN

IERROR=3
RETURN

ENDIF

SUBDIV=FLOAT(NSUBDIV)
PARONOM=DTAN(O.5D+OO*DELTA)
DO KSIO,NSUBDW

RATIO=FLOAT(KSI)/SUBDIV
IF(ICASE.EQ. 1) THEN

UKSI=DTAN(DELTA*(RATIOO.5D+OO))
UKSI=O.5D+OO*(ONE+UKSI/PARONOM)
SKSIUKSJ/(ALPHA,(ONEALPHA)*UKSI)

ELSE IF(ICASE.EQ.2) THEN
SKSI=DTAN(O.5D+OO*DELTA*(RATIOONE))
SKSI=ONE+SKSJJPARONOM

ELSE
SKSI=DTAN(O.5D+OO*DELTA*RATIO)
SKSI=SKSI/PARONOM

ENDIF
Array starts from one and not zero. Dimensions
are 1 to (NSUBDIV+1) and not 0 to NSUBDIV
SXI(KSI+1)=SKSI

END DO

RETURN
END
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C.3 Transfinite Interpolation

*	 SUBROUTINE PREPARE FOR TRANSFINITE INTERPOLATION	 *
*	 MARCH 1996	 *

* This routine MUST be called ONLY when the definition of the edges is known and *
* the distribution of the vertices along the edges completed. (SEE common block) 	 *

* ARGUMENTS:	 *
* IMAX = INTEGER*4 . On entry specifies the number of subdivisions	 *
*	 which is one less than the number of nodes on the I-Direction. 	 *
*	 Unchanged on exit.	 *
* JMAX = INTEGER*4 . On entry specifies the number of subdivisions	 *
*	 which is one less than the number of nodes on the J-Direction. 	 *
*	 Unchanged on exit.	 *

* XXX = 2-Dimensional Array. 	 *
*	 On exit has the X-values of the boundaries of the BLOCK	 *

* YYY = 2-Dimensional Array.	 *
*	 On exit has the Y-values of the boundaries of the BLOCK	 *

C
SUBROUTINE PREPARE_FOR_TRANS (XXX,YYY,IMAX,JMAX)
PARAMETER (NI:= 1 00,NJ= 100)

C
IMPLICIT DOUBLE PRECISION (D)

C IMPLICIT REAL*4(AH 2OZ), INTEGER*4(IN)
C

COMMON /ARRAY/ X_EDGE 1 (NI),Y_EDGE1 (NI),X_EDGE2(NI),Y_EDGE2(NI),
A	 X_EDGE3(NI),Y_EDGE3(NI),X_EDGE4(NI),Y_EDGE4(NI)

C
DIMENSION XXX(NI,NJ)
DIMENSION YYY(NI,NJ)

C
IMIN= 1
JMIN=1

C
DO 230 J=JMIN,JMAX

XXX(IMIN,J)=X_EDGE4(J)
YYY(IMIN,J)=Y_EDGE4(J)

230 CONTINUE

DO 235 J=JMIN,JMAX
XXX(IMAX,J)=X_EDGE2(J)
YYY(IMAX,J)=Y_EDGE2(J)

235 CONTINUE

DO 240 I=IMIN,IMAX
XXX(I,JMIN)=X_EDGE 1(I)
YYY(I,JMIN)=Y_EDGE 1(I)

240 CONTINUE

DO 245 I=IMIN,IMAX
XXX(I,JMAX)=X_EDGE3(I)
YYY(I,JMAX)=YEDGE3(I)

245 CONTINUE
RETURN
END
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*	 SUBROUTINE TRANSFINITE INTERPOLATION 	 *
*	 MARCH1996	 *

* This routine CAN be called ONLY from the subroutine PREPARE_FOR_TRANS *
* ARGUMENTS:	 *

* IMAX = INTEGER*4. On entry specifies the number of subdivisions 	 *
*	 which is one less than the number of nodes on the I-Direction. 	 *
*	 Unchanged on exit. 	 *
* JMAX = INTEGER*4 . On entry specifies the number of subdivisions	 *
*	 which is one less than the number of nodes on the i-Direction. 	 *
*	 Unchanged on exit.	 *

* XX	 = 2-Dimensional Array. 	 *
*	 On entry has only the X-values of the vertices along the 	 *
*	 boundaries of the BLOCK	 *
*	 On exit has all the X-values of the vertices of the BLOCK	 *

* YY	 = 2-Dimensional Array. 	 *
*	 On entry has only the Y-values of the vertices along the 	 *
*	 boundaries of the BLOCK	 *
*	 On exit has all the Y-values of the vertices of the BLOCK	 *

C
SUBROUTINE TRANS (XX,YY,IMAX,JMAX)
PARAMETER (NI= 1 00,NJ= 100)

DIMENSION xx(NI,NJ),yy(NI,NJ)
DIMENSION xxl(NI,NJ),yy 1(NI,NJ),xx2(NI,NJ),yy2(NI,NJ)

400 DO 410 I=1,IMAX
DO 410 J=1,JMAX
RI 1=FLOAT(I- 1 )/FLOAT(IMAX- 1)
RI2=FLOAT(IMAX-I)/FLOAT(IMAX- 1)
xxi (I,J)=RI1 *)Q((JMAX,J)+R12*)Q(( 1 ,J)
yy 1 (I,J)=RIi *yy(4AX,J)+RJ2*yy( 1 ,J)

410 CONTINUE

DO 420 I=1,IMAX
DO 420 J=1,JMAX

RJ1=FLOAT(J- 1 )IFLOAT(JMAX- 1)
RJ2=FLOAT(JMAX-J)IFLOAT(JMAX- 1)
XX2(I,J)=RJ1 * (XX(I,JMAX)-XX1 (I,JMAX))+RJ2*(XX(I, 1 )-XX 1(1,1))
YY2(I,J)=RJ 1 *(YY(J,JyJYy1 (I,JMAX))+RJ2*(YY(I, 1 )-YY 1(1,1))

420 CONTINUE

DO 430 I=1,IMAX
DO 429 J=i,JAX

XX(I,J)=XX1 (I,J)+XX2(I,J)
YY(I,J)=YY1 (I,J)+YY2(I,J)

429 CONTINUE
430 CONTINUE

RETURN
END
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C.4 Geometry

('GEOMETRY-WORKING VOLUMES-SEALING LINES- PEPRENDICULAR ');
('CIRCULAR ARCS OF SCROLL MACHINES-WITH RESPECT TO CRANK ANGLE');
fidxO=fopen('xO' ,'wt+');
fidyO=fopen('yO' ,' wt+');
fidxl=fopen('xl' ,'wt+');
fidyl=fopen('yl','wt+');
fidx2=fopen(' x2','wt+');
fidy2=fopen('y2' ,'wt+');
fidx3=fopefl('x3' ,'wt+');
fidy3=fopen('y3' ,'wt+');
fidx4=fopen(' x4' ,' wt+');
fidy4=fopen('y4' ,' wt+');
fidx5=fopen(' x5' ,' wt+');
fidy5=fopen(' y5' ,' wt+');
fidXk=fopen(Xk' ,'wt+');
fidYk=fopen('Yk' ,' wt+');
fidXk1zfopen('Xk1','wt+');
fidYkl=fopen('Ykl','wt+');

ZOOM ON

rb=O.75;
theta=27.O*piJ9;
a=theta;
c=O.026;
g=O.3;
1(pi_g).*rb;
1=1-c;
Pos=sqrt(((pi-g)."2./4)- 1);
Pis=pi+sqrt(((pig). A2J4) 1 )-g;
M=5.5;
Pof=M*pi;
Pif=(M*pi)g;

if theta >2.O*pi
C SUCTION');

('starting and finishing angles for the working volumes');
fi fz40*pi+pii2.O;
f4f=f 1 fi-pi-g;
fi s=f 1 f+theta;
f4s=f4f+theta;

f4f=(M.*pi)g;
f4s=f4f+theta;
fi s=f4s-pi±g;
fi f=(M- I )*p;

('starling and finishing angles for the outer spirals');
Pos=fI s;
Pof=fl f,,
('starting and finishing angles for the inner spirals');
P1s=f45;
Pif=f4f;

311



AppendA C
	

Program Listing

('starting and finishing angles for the mid planes');
Posm=f1s;
Pofm=(4.5 .*p i+f 10/2;

end

if theta <_2.O*pi
('COMPRESSION-DISCHARGE');
Xos=rb. *(cos(Pos)+POS*sin(Pos));

Yos=rb.*(sin(Pos)Pos.*cos(Pos));
Xis=rb. *(cos(pis+g)+pis. *sjn(Pjs+g));

Yis=rb.*(sin(Pis+g)Pis. *cos(pjs+g));
Yoo 1=(((XosXis).A2)((2.*(XosXis).*tan(Pos).*Yis))+(Yos).A2.(Yis).A2);
Yoo2=2.*(YosYis(XosXis). *tan(po5));

Yoo=Yoo 1/Yoo2;
Xoo=Xis-tan(Pos). *(yooyis);
r=((Xis-Xoo).'2.+(Yis-Yoo)/2)!O.5;
Xfc=Xis:O.O1 :Xos;

Yoc=Yfc1.*sin(a);
XocXfc1.*cos(a);

end

('OUTER SPIRALS');
p=Pos:O. 1 :Pof;
('p=O:O.Ol:Pof');
xO=rb.*(cos(p)+p. *sin(p));
yO=rb.*(sin(p)p.*cos(p));

x1=rb.*(cos(p)^p.*sin(p))1.*cos(a);

y 1=rb.*(sin(p)p.*cos(p))1.*sjn(a);

('INNER SPIRALS');
p=Pis:O. 1 :Pif;
('p=O:O.Ol :Pif);
x2=rb.*(cos(p+g)+p.*sin(p+g));
y2=rb.*(sin(p+g)p.*cos(p+g));
x3_rb.*(cos(p+g)+p. *sin(p+g))(l. *cos(a));
y3=rb.*(sin(p+g)p. *cos(p^g))(1.*sin(a));

('MID PLANE 1 FIXED OUTER - ORBITING INNER');
p=Pos:O.1 :(M1).*pi;
('p=O.O:O.Ol :(M1).*pi;');

('THIS SECTION IS TO PLOT THE MID PLANE');
GPI=pi;
RGEN=rb;
GAMMA=g;
CLEARAN=c;
PHI=p;
THETA=a;
GPIGAMz(GPI-GAMMA)/2.O;
DCENTR(RGEN*(GPIGAMMA)CLEARAN);
COSPHI=cos(Pffl);
SINPHI=sin(PHI);
XMP=RGEN*(COSPHI+(PHI+QPIGAM). *SINP} DCENTR*cos(THETA)/2.O;

YMP=RGEN*(SJNPHI(PHI+GPIGAM).*COSPHI)DCENTR*sin(THETA)/2.O;
x4=XMP;
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y4=YMP;
('THIS SECTION IS TO FIND THE ANGLE PHIFO');
('PEPPENDICULAR TO FIXED OUTER');
('CHOOSE A POINT ON THE MID PLANE');
p=7.O*piI9;

ppp=p;
PHI=p;
COSPHI=cos(PHI);
SINPHI=sin(PHI);
XMP 1 =RGEN*(COSPHI+(PHI+GPIGAM). *SINPHI) DCENTR*cos(THETA)/2.O;
YMP 1=RGEN*(SINPHI(PHI+GPIGAM). *COSPHI) DCENTR*sin(THETA)/2.0;
xmm=XMP1;
ymm=YMP1;

('!--->3');
RMP 1=sqrt(XMP 1 *XMP 1 +YMP 1 *YMP1);
COS_OMEGA=YMP1fRMP1;
if COS_OMEGA>0.999999

COS_OMEGA =1.0;
end
if COS_OMEGA<-0.999999

COS_OMEGA=- 1.0;
end
OMEGA=acos(COS_OMEGA);
if XMP1<0.0

OMEGA=2.0*GPIOMEGA;
end
('!--->4');
SINALPHA=RGENIRMP 1;
if SINALPHA>0.999999

SINALPHA =1.0;
end
if SINALPHA<-0.999999

SINALPHA=- 1.0;
end
ALPHA=asin(SINALPHA);

PHI_FO=GPI-(OMEGA+ALPHA);

while PHI_FO>0.0
PHI_FO=PHI_FO2.0*GPI;

end
while PHI_FO<0.0

PHI_FO=PHI_FO+2.0*GPI;
end

SINPHI_FO=sin(PHI_FO);
COSPHI_FO=cos(PHI_FO);
XFO=RGEN*(COSPHI_FO + PHI_FO*SINPHI_FO);
YFO=RGEN*(SINPHI_FO - PHI_FO*COSPHI_FO);
RFO=sqrt(XFO*XFO + YFO*YFO);
('!--->6');

while RFO<RMP1
PHI_FO=PHI_FO + 2.OD+00*GPI;
SINPHI_FOsin(PHIFO);
COSPHI_FOcos(PHI_FO);
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XFO=RGEN*(COSPHI_FO + PHI_FO*SINPHI_FO);
YFO=:RGEN*(SINPHI_FO - PHI_FO*COSPHI_FO);
RFO=sqrt(XFO*XFO + YFO*YFO);

end
('IF(RFO NE. RMP1)i dont know how to do it in matlab');
PHI_FO=PHI_FO - 2.0*GPI;
phi=PHI_FO;
('!') ;
XFO=RGEN*(COSPHI_FO + PHI_FO*SINPHI_FO);
YFO=RGEN*(SINPHI_FO - PHLFO*COSPHI_FO);

xstep=(xmm-XFO);
ystep=(ymm-YFO);
xplot=XFO:xstep: xmm;
yplot=YFO:ystep:ymm;

('THIS SECTION IS TO FIND THE ANGLE PHI_Ol');
('PEPPENDICULAR TO ORBITING INNER');
('!--->7');

XMP 1 =XMP 1 +DCENTR*cos(THETA);
YMP 1 =YMP 1 +DCENTR*sin(THETA);

('--->3');
RMP1=sqrt(XMP1 *XMp1+yMpl *YMP1);
COS_OMEGA=YMP1/RMPI;
if COS_OMEGA>0.999999

COS_OMEGA =1.0;
end
if COS_OMEGA<-0.999999

COS_OMEGA=- 1.0;
end
OMEGA=acos(COS_OMEGA);
if XMP1<0.0

OMEGA=2.0*GPIOMEGA;
end
('!--->4');
SINALPHA=RGEN/RMP 1;
if SINALPHA>0.999999

SINALPHA =1.0;
end
if SINALPHA<-0.999999

SINALPHA=- 1.0;
end
ALPHA=asin(SINALPHA);
('!--->8');
PHI_OI=-(OMEGA+ALPFIA+GAMMA);

while PHI_OI>0.0
PHI_OI=PHI_OI2.0*GPI;

end
while PHI_OI<0.0

PHI_OI=PHI_OI+2.0*GPI;
end

SINPHI_OIG=sin(PHI_OI+GAMMA);
CO5PHI_OIGcos(PHI_OI+GAMMA);
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XOI=RGEN*(CO5PHJ_OJG + PHI_OI*SINPHI_OIG);
YOI=RGEN*(SINPHI_OJG - PHI_OI*COSPHI_OIG);
ROI=sqrt(XOI*XOI+YOI*YOI);

while ROI< RMP1
PHI_OI=PHI_OI + 2.0*GPI;
SINFHI_OIG=sin(PHI_OJ+GAMMA);
COSPHI_OIG=cos(PHJ_OJ+GAMMA);
XOI=RGEN*(COS pHI_OJG+pHJ OI*SINPHI 010);
YOI=RGEN*(SINPIJJ_OJGpHJ_OJ*CO5pHJ_OJG);
ROI=sqrt(XOI*XOI+YOI*YOI);

end

PHI_OI=PHI_OI;
phi 1=PHI_OI;
XOI=RGEN*(COSpHJ_OJG+PHIOJ*SINpHIOJG)DCENTR*cos(THETA);
YOI=RGEN*(5INPHI_OJGpHI_OJ*COSpFJJ_OJG)DCENTR*sjn(THETA);
xstep 1=(xmm-XOI);
ystep 1 =(ymm-YOI);
xplotl=XOI:xstepl :xmm;
yplotl=YOI:ystepl :ymm;

('SUBROUTINE THREE_POINT_ARC');
xl 1=XOI;
Yl 1=YOI;
X22=xmm;
Y22=ymm;
X33=XFO;
Y33=YFO;

IVERTIC12_YESP=1;
IVERTIC 1 2_NOP=2;
IVERTIC 1 3_YESP=1O;
IVERTIC 1 3_NOP=20;
('!--->3');

X12=O.5D+00*(X1 1+X22);
Y12=O. 5D+0O*(Y1 1+Y22);
X13=0.5D+O0*(X1 1+X33);
Y13=O.5D+OO*(Y1 1+Y33);

('--->4');
IAUX=IVERTIC 1 2_YESP;
AUX=abs(Y1 1-Y22);
if AUX>0.0

IAUX=IVERTIC 1 2_NOP;
end
IAUX1=IVERTIC 1 3_YESP;
AUX=abs(Y1 1-Y33);
if AUX> 0.0

IAUX1=IVERTIC 1 3_NOP;
end
IAUX=IAUX+IAUX 1;

('!--->5');
AUX=IVERTIC 1 3_NOP+IVERTIC 12_NOP;
gnk 1=IVERTIC 1 3_NOP-f-IVERTIC 1 2_YESP;
gnk2=IVERTIC I 3_YES P+IVERTIC 1 2_NOP;
if IAUX == AUX;

GRAD 12 =-(X22-X1 1)/(Y22-Y1 1);
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C12 =Y12GRAD12*X12;
GRAD 13 =-(X33-X1 1)/(Y33-Y1 1);
C13 =Y13GRAD13*X13;
AUX=abs(GRAD 12-GRAD 13);
if AUX<=0.0

ANGLE=GPI;
('RETURN')

end
X0=-(C12-C1 3)/(GRAD 12-GRAD 13);
Y0=-(C 12*GRAD 13-C 13*GRAD1 2)/(GRAD 12-GRAD 13);

elseif IAUX==gnkl
GRAD13 -(X33-X11)/(Y33-Y11);
C13 =Yl3GRAD13*X13;
X0=X12;
YO=GRAD13*X0+C13;

elseif IAUX=gnk2
GRAD12 =-(X22-X1 l)/(Y22-Y1 1);
C12 =Y12GRAD12*X12;
X0=X13;
YO=GRAD12*X0+C12;

else
('All points on straight AND horizontal line')

ANGLEGPI;
end

X10=X1 l-X0;
Y1OYI 1-YO;
X30=X33-X0;
Y30=Y33-Y0;
RADIUS2X1O*XlO+YlO*Y1O;
RADIUS=sqrt(RADIUS2);
ANGLE=acos((X1 O*X30+Y1 O*Y30)/RADIUS2);

X12=Xl1-X22;
Y12=Y1 1-Y22;
X32=X33-X22;
Y32=Y33-Y22;
gnk4=X 1 2*Y32X32*Y 12;
if gnk4> 0.0

ANGLE=-ANGLE;
end

GONIA_A=asin(abs(Y 10)/RADIUS);
XIOY1O=X10*Y10;
if X1OYI0<0.0

GONIA_A = -GONIAA;
end
if X1O<0.0

GONIA_A =GPI+GONIA_A;
end
if GONTA_A<0.0

GOMA_A =2.OD+00*GPI+GONIA_A;
end
gpi2=GPIJ2.0;
if GONTA_A==gpi2

if Y10<0.0
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GONJA_AGPJ+GONIAA;
end

end

gnkangle=ANGLE;
gnkgonia_a=GONIAA;
aktina=RADIUS;
step=ANGLE/ 10.0;
ANGLECGQNIAA+ANGLE;
de1taphi=GONIAA•step:ANGLEC

Xk=RADIUS*cos(deltaphj)+XO;
Yk=RADIUS *sin(deltaphi)+YO;

Xkl =XkDCENTR*cos(THETA);

Yki =YkDCENTR*sin(THETA);

('MID PLANE 2 ORBITING OUYFER FIXED INNER');
p=Pos:0.O1:(M1).*pi;
('p=O.O:O.Ol :(M_1).*pi;');

('x5=(b.*(cos(p+pi)+(p+pig). *sin(p+pi)))+(.rb. *(cos(p)+(p).*sin(p))..(1 *cos(a))))/2;');

x5=x4DCENTR*cos(THETA);

y5=y4DCENTR*sin(THETA);

p=ppp;
xmm=((rb. *(cos(p+pi)+(p+pi..g). *sin(p^pi)))+(..rb. *(cos(p)+(p) *sjn(p)) (I *cos(a))))/2;

('PEPPENDICULAR TO ORBITING OUTER');
p=phi;
xm55=rb . *(cos(p)+p . *sin(p))1*cos(a);

ym55=rh.*(sin(p)p.*cos(p))1.*sjn(a);
xstep5=(xmm-xm55);
ystep5=(ymm-ym55);
xplot5=xm55 :xstep5 :xmm;
yplot5=ym55 :ystep5 :ymm;

('PEPPENDICULAR TO FIXED INNER');
p=phil;
xm66=rb.*(cos(p+g)+p.*sin(p+g));
ym66=rb. *(sin(p+g)p. *cos(p+g));

xstep6=(xmm-xm66);
ystep6=(ymm-ym66);
xplot6=xm66 :xstep6:xmm;
yplot6=ym66:ystep6:ymm;

Yoo=0;
Xoo0;

('FIXED CIRCLE');
Xfcl 1=-rb:0.01:rb;
YfcI 1=((rb!'2.-(Xfcl 1-Xoo)."2)/'O.5)+Yoo;
Yfc22=((rb A2 . (Xfc 11 -Xoo).'2)/'O.5)+ Yoo;

('ORBITING CIRCLE');
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Xocl l=-Xfcl ll.*cos(a);
Yoci l=-Yfcl ll.*sin(a);
Yoc22=-Yfc22-l. *sin(a);

('GRANK CIRCLE');
r=1;
Xgc=-r:O.O1 :r+O.0054;
Ygc=((r.A2.(XgcXoo).A2).AO.5)+Yoo;

('saveabcde xO yO xl yl');
('save abcde xO yO xl yl -ascii -double -tabs');

('IF YOU WANT TO PRINT INTO FILES THE COORDINATES OF THE');
('PERPENDICULAR STRAIGHT LINES PUT PRINTLINES=1 OTHERWISE 0');
('NOTE ALSO THAT THE COORIDINATES WILL BE STORED IN THE FILES');
('xO,yO and xl,yl RESPECTIVELY');
PRINTLINES=2;
if PRINTLII'TES==1

fprintf(fidxO,' % 10.4f\n' ,xplot);
fprintf(fidyo,' % 10.4f\n',yplot);
fprintf(fidx0,' % 1 0.4ñn' ,xplotl);
fprintf(fidy0,' % 1 0.4f\n' ,yplotl);
fprintf(fidxl ,'% 1O.4ñn' ,xplot5);
fprintf(fidy 1,' % 1O.4f\n' ,yplot5);
fprintf(fidx I,' % 1 0.4f\n' ,xplot6);
fprintf(fidy 1,' % 1 O.4f\n' ,yplot6);

end

fprintf(fidxO,' % l0.4f\n' ,xO);
fprintf(fidy0,' % 1 0.4f\n' ,yO);
fprintf(fidx 1,' % 1 0.4f\n' ,x 1);
fprintf(fidy 1,' % 1 0.4ñn' ,yl);

fprintf(fidx2,' % 1 0.4f\n' ,x2);
fprintf(fidy2,' % 1 O.4f\n' ,y2);
fprintf(fidx2,' % 1 O.41\n' ,Xfc);
fprintf(fidy2,' % 1 O.4ftn' ,Yfc);

fprintf(fidx3,' % 1 0.4ñn' ,x3);
fprintf(fidy3,' % 10.4f\n' ,y3);
fprintf(fidx3,' % 1 O.4f\n' ,Xoc);
fprintf(fidy3,' % 1 O.4ñn' ,Yoc);

fprintf(fidx4,' % 10.4f\n' ,x4);
fprintf(fidy4,' % 1 O.41\n' ,y4);
fprintf(fidx5,' %1O.4f\n',x5);
fprintf(fidy5,' % I O.4f\n' ,y5);
fprintf(fidXk,' % 10.4ñn' ,Xk);
fprintf(fidYk,' % 10.4f\n' ,Yk);
fprintf(fidXkl ,' % 1O.4f\n' ,Xkl);
fprintf(fidYkl ,' % 1O.4f\n' ,Ykl);
fclose(fidxo);
fclose(fidyo);
fclose(fidxl);
fclose(fidy 1);
fclose(fidx2);
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fclose(fidy2);
fclose(fidx3);
fclose(fidy3);
fclose(fidx4);
fclose(fidy4);
fclose(fidx5);
fclose(fidy5);
fclose(fidXk);
fclose(fidYk);
fclose(fidXkl);
fclose(fidYkl);

s= 1;
if s>2

('WORKING VOLUME SPIRALS, GENERATING CIRCLES, CRANK CIRCLE');
plot(xO,yO,x l,yl ,x2,y2,x3,y3 ,Xfc,Yfc,Xoc,Yoc,Xfc 11 ,Yfc 11 ,Xfc 11 ,Yfc22,Xoc 11 ,Yoc 11 ,Xoc 11 ,Y
oc22,Xgc,Ygc,Xgc,Ygc 1)
axis([-13,13,-13,13])
axis(' equal')
end

s=3;
if s>2

('WORKING VOLUME SPIRALS, MIDPLANES PERPENDICULAR STRAIGHT LINES');
plot(xO,yO,x l,yl ,x2,y2,x3,y3,x4,y4,x5,y5,Xfc,Yfc,Xoc,Yoc,xplot,yplot,xplotl ,yplotl ,xplot5,yplot5,
xplot6,yplot6)
axis([-13,13,-13,13])
axis(' equal')
end

s=3;
if s>2

('WORKING VOLUME SPIRALS, MIDPLANES PERPENDICULAR CIRCULAR ARCS');
plot(xO,yO,x I,yl ,x2,y2,x3,y3 ,x4,y4,x5,y5,Xfc,Yfc,Xoc,Yoc,Xk,Yk,Xk I ,Yk 1)
axis([-13,13,-1 3,13])
axis('equal')
end

s= 1;
if s>2
('WORKING VOLUME SPIRALS, GENERATING CIRCLES,');
('MIDPLANES PERPENDICULAR STRAIGHT LINES');
plot(xO,yO,x3,y3,x l,yl ,x2,y2,x4,y4,x5 ,y5 ,Xfc 11 ,Yfc II ,Xfc 11 ,Yfc22,Xoc Ii ,Yoc 11 ,Xoc II ,Yoc22,x
plot,yplot,xplotl ,yplot 1 ,xplot5 ,yplot5 ,xplot6,yplot6)
axis([-13,13,-13, 13])
axis('equal')
end

if theta >2.O*pi

('COMPRESSION - DISCHARGE');
('SPIRALS, GENERATING CIRCLES,');
('MIDPLANES PERPENDICULAR STRAIGHT LINES');

plot(xO,yO,x3,y3,xl ,yl ,x2,y2,x4,y4,x5,y5,Xfc,Yfc,Xoc,Yoc,Xfc 11 ,Yfc 11 ,Xfcl 1 ,Yfc22,Xoc 11 ,Yoc
11 ,Xoc 11 ,Yoc22,xplot,yplot,xplotl ,yplotl ,xplot5 ,yplot5,xplot6,yplot6)

axis([- 14,14,- 14,14])
axis(' equal')

end
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C5 Command Language (CFX4)

/* SCROLL EXPANDRER	 *1
/* TRANSIENT GRID COMPRESSIBLE, TURBULENT FLOW */
/**********************************************************/
>>CFXF3D

#CALC
NII=60;
NJ1=20;
NK 1=6;
N12=20;
NJ2=20;
NK2=6;
N13=60;
NJ3=20;
NK3=6;
N14=20;
NJ4=20;
NK4=6;
NI5=10;
NJ5=10;
NK5=20;

#ENDCALC
>>SET LIMITS
TOTAL INTEGER WORK SPACE 5000000
TOTAL REAL WORK SPACE 15000000
MAXIMUM NUMBER OF BLOCKS 5
MAXIMUM NUMBER OF PATCHES 50
MAXIMUM NUMBER OF INTER BLOCK BOUNDARIES 30
END

>>OPTIONS
THREE DIMENSIONS
TURBULENT FLOW
HEAT TRANSFER
COMPRESSIBLE FLOW
TRANSIENT FLOW
TRANSIENT GRID
END

>>USER FORTRAN
USRGRD
USRTRN
END

>>MODEL TOPOLOGY
/*****************/

/* CREATE BLOCKS */
/*****************I

>>CREATE BLOCK
BLOCK NAME 'BLOCK-i'
NUMBER OF I CELLS #NI1
NUMBER OF J CELLS #NJi
NUMBER OF K CELLS #NKi
END

>>CREATE BLOCK
BLOCK NAME 'BLOCK-2'
NUMBER OF I CELLS #NI2
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NUMBER OF J CELLS #NJ2
NUMBER OF K CELLS #NK2
END

>>CREATE BLOCK
BLOCK NAME 'BLOCK-3'
NUMBER OF I CELLS #N13
NUMBER OF J CELLS #NJ3
NUMBER OF K CELLS #NK3
END

>>CREATE BLOCK
BLOCK NAME 'BLOCK-4'
NUMBER OF I CELLS #N14
NUMBER OF J CELLS #NJ4
NUMBER OF K CELLS #NK4
END

>>CREATE BLOCK
BLOCK NAME 'BLOCK-5'
NUMBER OF I CELLS #N15
NUMBER OF J CELLS #NJ5
NUMBER OF K CELLS #NK5
END

/*****************/
1* CREATE PATCH */
/*****************/

>>CREATE PATCH
BLOCK NAME 'BLOCK-i'
PATCH NAME 'PATCH-i. 1'
PATCH TYPE 'INTER BLOCK BOUNDARY'
LOW I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-i'
PATCH NAME 'PATCH-1.2'
PATCH TYPE 'WALL'
HIGH J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-i'
PATCH NAME 'PATCH-i.3'
PATCH TYPE 'WALL'
HIGH I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-I'
PATCH NAME 'PATCH-1.4'
PATCH TYPE 'WALL'
LOW J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-i'
PATCH NAME 'PATCH-i.5'
PATCH TYPE 'WALL'
LOWK
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-i'
PATCH NAME 'PATCH-1.6'
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PATCH TYPE 'WALL'
HIGH K
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-2'
PATCH NAME 'PATCH-2.l'
PATCH TYPE 'WALL'
LOW J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-2'
PATCH NAME 'PATCH-2.2'
PATCH TYPE 'WALL'
HIGH I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-2'
PATCH NAME 'PATCH-2.3'
PATCH TYPE 'INTER BLOCK BOUNDARY'
HIGH J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-2'
PATCH NAME 'PATCH-2.4'
PATCH TYPE 'INTER BLOCK BOUNDARY'
LOW I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-2'
PATCH NAME 'PATCH-2.5'
PATCH TYPE 'WALL'
LOW K
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-2'
PATCH NAME 'PATCH-2.6'
PATCH TYPE 'WALL'
HIGH K
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-3'
PATCH NAME 'PATCH-3.1'
PATCH TYPE 'INTER BLOCK BOUNDARY'
LOW I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-3'
PATCH NAME 'PATCH-3.2'
PATCH TYPE 'WALL'
HIGH J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-3'
PATCH NAME 'PATCH-3.3'
PATCH TYPE 'WALL'
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HIGH I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-3'
PATCH NAME 'PATCH-3.4'
PATCH TYPE 'WALL'
LOW J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-3'
PATCH NAME 'PATCH-3.5'
PATCH TYPE 'WALLs
LOWK
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-3'
PATCH NAME 'PATCH-3.6'
PATCH TYPE 'WALL'
HIGH K
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-4'
PATCH NAME 'PATCH-4.I'
PATCH TYPE 'WALL'
LOW J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-4'
PATCH NAME 'PATCH-4.2'
PATCH TYPE 'WALL'
HIGH I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-4'
PATCH NAME 'PATCH-4.3'
PATCH TYPE 'INTER BLOCK BOUNDARY'
HIGH J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-4'
PATCH NAME 'PATCH-4.4'
PATCH TYPE 'INTER BLOCK BOUNDARY'
LOW I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-4'
PATCH NAME 'PATCH-4.5 1'
PATCH TYPE 'WALL'
LOWK
PATCH LOCATION 1 5 1 20
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-4'
PATCH NAME 'PATCH-4.52'
PATCH TYPE 'WALL'
LOWK
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PATCH LOCATION 6 15 11 20 11
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-4'
PATCH NAME 'PATCH-4.53'
PATCH TYPE 'WALL'
LOW K
PATCH LOCATION 1620 1 20 11
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-4'
PATCH NAME 'PATCH-4.54'
PATCH TYPE' INTER BLOCK BOUNDARY'
LOW K
PATCH LOCATION 6 15 110 11
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-4'
PATCH NAME 'PATCH-4.6'
PATCH TYPE 'WALL'
HIGH K
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-5'
PATCH NAME 'PATCH-5.1'
PATCH TYPE 'WALL'
LOW J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-5'
PATCH NAME 'PATCH-5.2'
PATCH TYPE 'WALL'
HIGH I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-5'
PATCH NAME 'PATCH-5.3'
PATCH TYPE 'WALL'
HIGH J
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-5'
PATCH NAME 'PATCH-5.4'
PATCH TYPE 'WALL'
LOW I
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-5'
PATCH NAME 'PATCH-5.5'
PATCH TYPE 'INTER BLOCK BOUNDARY'
HIGH K
END

>>CREATE PATCH
BLOCK NAME 'BLOCK-5'
PATCH NAME 'INLET'
PATCH TYPE 'PRESSURE BOUNDARY'
LOW K
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END

I*****************/

1* GLUE PATCHES */
/*****************/

>>GLUE PATCHES
FIRST PATCH NAME 'PATCH-li'
SECOND PATCH NAME 'PATCH-2.3'
ORIENTATION CHANGE 'HIGH J' 'HIGH I' 'HIGH K'
END

>>GLUE PATCHES
FIRST PATCH NAME 'PATCH-2.4'
SECOND PATCH NAME 'PATCH-4.4'
ORIENTATION CHANGE 'LOW I' 'LOW J' 'HIGH K'
END

>>GLUE PATCHES
FIRST PATCH NAME 'PATCH-3.1'
SECOND PATCH NAME 'PATCH-4.3'
ORIENTATION CHANGE 'HIGH J' 'HIGH I' 'HIGH K'
END

>>GLUE PATCHES
FIRST PATCH NAME 'PATCH-4.54'
SECOND PATCH NAME 'PATCH-5.5'
END

>>MODEL DATA
>>TITLE

PROBLEM TITLE 'SCROLL EXPANDER R134a'
END

>>PHYSICAL PROPERTIES
>>FLUID PARAMETERS
VISCOSITY 0.206E-4
END

>>COMPRESSIBILITY PARAMETERS
WEAKLY COMPRESSIBLE
UNIVERSAL GAS CONSTANT 8314.0
FLUID MOLECULAR WEIGHT 102.03
REFERENCE PRESSURE 9.489E+05
END

>>HEAT TRANSFER PARAMETERS
FLUID SPECIFIC HEAT 1020.0
THERMAL CONDUCTIVITY 0.0211
ENThALPY REFERENCE TEMPERATURE 288.0
END

>>TRANSIENT PARAMETERS
TIME STEPS 200*8.333E5
END

>>SOLVER DATA
>>PROGRAM CONTROL
MAXIMUM NUMBER OF ITERATIONS 100
OUTPUT MONITOR BLOCK 'BLOCK-4'
OUTPUT MONITOR POINT 1053
MASS SOURCE TOLERANCE 1.OE-5
END

>>DEFERRED CORRECTION
EPSILON START 101
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EPSILON END 101
K START 101
KEND 101
END

>>CREATE GRID

>>MODEL BOUNDARY CONDITIONS
>>SET VARIABLES

#CALC
UIINL=40.0;
TEINL=0.002*UINL*UINL;
CH=0.02;
EPSINL=TEINL** 1 .5/(0.3*CH);
#ENDCALC

PATCH NAME 'INLET'
PRESSURE 9.489E+05
TEMPERATURE 310.0
END

>>OUTPUT OPTIONS
>>DUMP FILE OPTIONS

U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 10
END

>>DTJMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 20
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 30
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 40
END

>>DJJMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
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PRESSURE
GEOMETRY DATA
TIME STEP 50
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 60
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 70
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 80
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 90
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 100
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 110
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE

327



Appendix C
	

Program L/stiig

GEOMETRY DATA
TIME STEP 120
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 130
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 140
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 150
END

>>DTJMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 160
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 170
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 180
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
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TIME STEP 190
END

>>DUMP FILE OPTIONS
U VELOCITY
V VELOCITY
W VELOCITY
PRESSURE
GEOMETRY DATA
TIME STEP 200
END

>>DUMP FILE FORMAT
UNFORMATTED
END

>>STOP
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