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Abstract 

Abstract 

The aims of this work were to assess the effects of different stimulus parameters on 
chromatic sensitivity, with particular emphasis on the effect of retinal illumination, 
and to investigate aspects of suprathreshold visual performance under mesopic 
conditions. 

All investigations were performed using visual psychophysical techniques. 
Chromatic thresholds were obtained using dynamic luminance contrast noise to 
isolate responses to colour signals. The effects of stimulus size and spatial 
distribution were examined in normal trichromats, dichromats and subjects with 
acquired colour vision deficiency. The chromatic sensitivity of normal trichromats 
was investigated with reduction in light level. Measurements were also performed to 
assess the possible involvement of rods in chromatic processing at threshold. 
Suprathreshold performance in the mesopic range was assessed in terms of the 
relative contributions of colour and luminance contrast to a measure of stimulus 
conspicuity and to visual search time. The conspicuity of a stimulus defined by 
colour and luminance contrast was defined as the value of achromatic contrast of a 
similar stimulus with an equal perceived conspicuity. An empirical model was 
developed from an extensive data set of conspicuity matches, to enable prediction 
of conspicuity for a wide range of coloured stimuli. Visual search performance for 
both achromatic and coloured stimuli was investigated under mesopic conditions, 
and results for the coloured stimuli were compared to the measure of stimulus 
conspiculty combined with an achromatic search time calibration. 

The results revealed that chromatic sensitivity is dependent on stimulus size, spatial 
distribution, eccentricity of presentation and level of illumination. These factors are 
suggested to reflect changes in cone performance and the relative cone 
contributions to the postreceptoral chromatic channels. Chromatic sensitivity was 
found to be independent of rod activity in the mesopic range, suggesting separate 
processing of rod signals and threshold colour signals under mesopic conditions. 
Measurements of stimulus conspicuity under mesopic conditions revealed individual 
variations in response to both luminance contrast and chromatic signals indicative 
of individual differences in gain control of postreceptoral mechanisms. Conspicuity 
was successfully modelled as a function of photopic contrast, scotopic contrast, 
chromatic difference to the background and the level of illumination. The nonlinear 
relationship between search time and luminance contrast was found to change with 
reduction in light level, reflecting increased contrast thresholds and diminishing 
effectiveness of unit physical contrast. Mesopic visual search was also found to 
depend on the photopic contrast, scotopic contrast and chromatic content of the 
stimulus, but with an apparent greater emphasis on scotopic contrast and reduced 
emphasis on colour compared to the measure of stimulus conspicuity. Conspicuity 
was successfully used to predict visual search times, and was found to be an 
improved indicator of search performance than either photopic or scotopic 
contrast. 
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Ch 1. Introducdon 1.1. Anatomy and physiology of the eye and the visual pathway 

1 Introduction 
This body of work consists of an investigation of the characteristics of human 

colour vision both under daylight conditions and at low light levels, and explores 

aspects of visual performance under conditions of low ambient illumination. The 

next sections introduce topics that are relevant to the investigations described in the 

subsequent chapters. These are followed by a summary of the experimental work 
described in each chapter. 

1.1 Anatomy and physiology of the eye and the visual 

pathway 
Vision is arguably the most important special sense of humans. A vast amount of 
information about our surroundings is provided through sight. The process of 

vision begins with the detection of light in the eye, from which signals are produced 

that are modified and coded in the retina and transported through the optic nerve to 

reach the brain. In the brain these signals are interpreted to create the sensation of 

sight. 

1.1.1 The eye 

The eye is an irregular spheroid, which is housed in the bony orbit of the skull and 

surrounded by cushioning fatty tissue. The wall of the eye is made up of three 

layers, shown in Figure 1-1. The outer layer consists of the transparent cornea, the 

white opaque sclera, and the transition region between the cornea and sclera - the 

limbus. The cornea and sclera are composed of densely woven collagen fibres and 

provide a rigid protective layer, and a site of attachment for the six extraocular 

muscles that control movement of the eye within the orbit. The cornea has a greater 

curvature than the main body of the eye and forms its primary refractive element. 
Structures within the limbus are involved in the drainage of fluid inside the eye. The 

middle layer of the eye-wall comprises the iris, the ciliary body, and the choroid, 
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known collectively as the uvea. The iris has a central opening, forming the pupil. 
The iris contains pigment that makes it Opaque, so light can only enter the eye 
through the pupil. The iris consists of two layers of smooth muscle fibres, the 

pupillary constrictor muscles and the pupillary dilator muscles; these muscles alter 

the size of the pupil and are controlled by the autonomic nervous system. The 

ciliary body forms a ring of tissue just inside the sclera, the anterior of which is 

continuous with the iris and extends to the ora serrata, the anterior edge of the 

retina. 'Fhe majority of the ciliary body consists of the ciliary muscle. On the inside 

of this muscular annulus the epithelium (a basic human tissue type that forms a 

covering or lining) is arranged in folds forming the ciliary processes, which attach to 

the suspensory ligaments (zonule fibres) of the lens. 

comes 

aqueous 
11 

iris 

tens 

zonule fibers 

Ora serrsta 

Optic axis I. - vi sual axis 

vitreous humor 

retin 

A 

choroid' N 
lamina cribosa 

pn 
tea 

sheath 

Figure 1-1. Horizontal cross section through the human eye, reproduced from (Boynton 
1979) after (Rodieck 1973). 

The remainder of the uvea comprises the choroid. The choroid is a vascular coat 

between the sclera and the retina via which oxygen and nutrients are supplied to the 

outermost portion of the retina. The innermost layer of the eyeball is the retina. The 

retina is a multilayered structure comprising the pigment epithelium, the light 

responsive photoreceptors, and other nerve cells with which the photoreceptors 

form connections. The process of vision begins with the absorption of photons by 

the visual pigments, which are contained in the photoreceptors and the nerve cells 

in the retina are responsible for the preliminary processing of light signals. The 
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retina also contains blood vessels supplying the inner portion of the retina. These 

vessels are derived from the main retinal artery and vein, which arrive and depart at I 
the optic nerve head. 

The inner body of the eye is divided into three chambers. The anterior chamber 

extends from the cornea to the iris, the posterior chamber hes between the iris and 

the ciliary body and lens, and the large vitreous chamber is the cavity posterior to 

the ciliary body and lens. The anterior and posterior chambers are fined with a 

transparent fluid known as aqueous humor, which is secreted by the epithelial cells 

of the ciliary body. Aqueous humor circulates through the anterior and posterior 

chambers, providing a route for nutrient and waste transport; it is then drained via 

structures in the limbus, and recycled. The vitreous chamber is filled with the 

transparent gel-like vitreous humor, which acts as a structural support for the retina. 
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Figure 1-2. The optical density spectrum of the human lens, reproduced from (Pokorny 
and Smith 1997). The dashed curve represents the lens absorption spectrum of a 20 year 
old (van Norren and Vos 1974), and the solid curve that of a 70 year old according to the 

two-component function of Pokorny et al. (1987). 

The lens 

The lens is a multilayered structure of cells enclosed in a fibrous capsule. It is 

positioned posterior to the iris, and held in place by connections between the ciliary 

processes of the ciliary body and the zonule fibres attached to the capsule. All light 

that enters the eye through the pupil also passes through the lens. Changes in the 

shape of the lens cause corresponding changes in refractive power, which is used to 
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maintain the image of an object in sharp focus, a process knov'-n as accommodation. 

\\, 'hfle the eve is focussed for an ob'ect at infinitv, the ahan- muscle is relaxed and 

the zonule fibres exert a pull on the lens flattening its shape. During 

accommodation, the cilian- muscle contracts, releasing tension in the ZOIIUIC fibres, 

and the elasticity of the lens capsule causes the lens to become rounded in shape 

(Helmholtz 1924/1896). 

The visible spectrum is the region of the electromagnetic spectrum extending 

roughly from 380 nm to 780 nm. The lens absorbs light in the short wavelength 

region of the visible spectrum and is primarfly responsible for light losses in the 

optic media (van Norren and Vos 1974). Estimates of lens density spectra have 

been obtained from measurements in excised human lenses and compari,, ()n ()f 

normal spectral sensitivity cun-cs with those of obsen-ers who have had the 

crystalline lens removed (Wyszecki and Sti-les 1967; 1982), and dcduced from rod 

spectral sensitivity cun-es (van Norren and Vos 1974) using the template of 

photopigment spectral absorbance curves defined by Dartnall (1953). Thc optical 

density profflc of the lens is shown in Figure 1-2. Lens density increases with age 

and can be modelled as a combination of an age invariant and age varying 

Im component (Pokorny et al. 1987), which i phes that the lens changes in spectral 

profile as well as density. 

1.1.2 The retina 

The retina consists largely of transparent structures, including somewhere in the 

order of 200 million ncn-e cells. Light enters the inner retina and passes through 

this arrangement of nerve cells before reaching the light sensitive portion of the 

photoreceptors. Nen-e cefls (neurons) consist of a ccH bodv, dendrItcs (branches of 

the cell through which inputs are made), and an axon (a long process ending in 

terminal branches through which outputs are transmitted). Neurons usuallv conduct 

electrical activity in the form of action potentials, which are generated at a freclucricy 

(firing rate) that relates to the strength of the input signal. Many nerve cells -, vithin 

the retina, however, do not respond in this way. The response characteristics of 

specific cells are detaflcd below. Communication between neurons occurs at 
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cl-icrfUcal synapses, where neurotransnutters are released from the transMitting cell 

and interact with receptors on the receiving ceU. 
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Figure 1-3. The layered structure of the human retina. Modified from (Wyszecki and SuIcs 
1982) after (Dowling and Boycott 1966). 

The rctina is organiscd anatomically and functionally in layers. The traditional 

labelling of these layers, which arc given below and illustrated in Figure 1-3, is based 

on the classification of Polyak (1941). The outermost layer is- the pigment 

epithelium, the next four IaN-ers: the photorcceptor layer, the outer limiting 

membrane, the outer nuclear layer (ONL), and the outer plexiform layer (OPL), 

relate to the photorcceptors themselves. The outer and inner segments of the 

photoreceptors he in the photoreceptor layer, which is the site for light absorption. 

Tlic outer liftliting membrane separates the inner segments and the ONL. 

Photorcccptor nuclei form the ONL, and their axons and term-inals constitute the 

OPL, the location where photoreceptors transfer signals to other neurons. The next 
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layer is the inner nuclear layer (INL), which contains the nuclei of the bipolar, 

horizontal and amacrine cells. Cell bodies of the horizontal cells are situated 

outermost in this layer, with the amacrine cefls positioned innermost and the 

bipolars positioned centrally. These cefls form intermediate links in the chain ()f 

signal transportation from the photoreceptors to the ganglion cells. Axon terminals 

of the bipolar cefls contact ganglion cell dcndrites in the inner plexiform layer 

contacts are also made with the amacrine cel-Is in this layer. The ganglion cell layer 

contains the nuclei of the ganglion cel-Is and those of displaced amacrinc cell,,, -. 
Ganglion cell axons constitute the optic fibre layer. Ganglion cel-I axons traverse the 

retina and converge at the opUc nerve head, where they exit the %van of the eyc as 

the optic nerve. The innermost layer of the retina is the inner limiting membrane, 

x-, -hich separates the retina from the vitreous humor. In addition to the neural 

structure, cefls known as Nluller cells are oriented radial-ly throughout the retina. 

Muller cel-Is extend from the inner segments of the photoreccptors to the vitreous, 

,, vhere the ends of the cefls form the inner limiting membrane. 

The primary transportation of signals in the retina is via a system of vertical wiring 

from the outer to the inner retina. N'crtical pathways begin with the photoreccptors, 

which pass signals to the bipolar cells, which in turn transport information to the 

ganglion cells. These pathways consist of different wiring patterns. In a 1: 1 wiring 

pattern, a single bipolar cell contacts a single ganglion cell; this pattern of xviring 

facilitates signalling of fine spatial detafl. Vertical pathways may also be convergent, 

where single ganglion cells receive information from more than one bipolar cell, 

which in turn have connections with several photoreceptors. This pattern of wiring 

produces high sensitivity. These wiring patterns occur in parallel, Le. photoreceptor 

signals are transmitted along multiple vertical pathways. There are also systems of 

lateral pathways in the retina via the horizontal and amacrine cells, by which signals 

from neighbouring or distant locations may be compared. Lateral wiring patterns 

are thought to facilitate or inhibit communication between the photoreccptors and 

the ganglion cells. The initial stages of visual processing take place by virtue of this 

vertical and horizontal wiring. 
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a. The pigi-nent epithelium 

I'lle pignicnt cpIthehum contains the pigmcnt melanin. Nlelanin absorbs light after it 
has passed through the neural retina, reducing scatter that would othmvise degrade 

the retinal image. The choroidal circulation supplies the outer retina with oxygen 

and nutrients, transported x-la the pigment epithelium in which the apex of the 

photorcceptors are embedded. The pigment epithelium is also involved In 
biochemical reactions with the photoreceptors relating to the regeneration and 

renewal of the photopigments. 
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Figure 1-4 (A)-(B). Rod and cone photoreceptors, reproduced from (0y. "ter 1999). 
Schematic of photoreceptor anatomy (A), and organisation of photopigment discs in cone 

and rod outer segments (B). 

b. The photoreceptors 

There arc two classes of photoreccptor in the human retina, the rods and the cones. 

Both classes consist of an outer segment containing numerous membrane discs in 

which the visual pigments are stored. The generation of discs is a continual one with 

new discs formed and shed in less than 2-weeks. The names rod and cone refer to 

the shape of the outer segment in the two classes of receptor, which are illustrated 
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in Figure 1-4. A narrow connecting tissue joins the outer segment to the inner 

segment. The inner segment is continuous with the cell nucleus and axon, and is the 
location of the cell's metabolic processes. In humans, rod receptors have axon 
terminals that are termed spherules, and cone receptors have axon terminals that are 
termed pedicles. Both rod and cone photoreceptors release the neurotransmitter 

glutamate. Neurotransmitter release occurs maximally in the dark. The 

photoreceptors do not generate action potentials, but respond in a sustained 

manner to photon absorption, with response amplitude relating approximately to 

the logarithm of intensity (Baylor 1987). The time-course of the rod response is 

longer than that of cones. Absorption of a single photon by a rod receptor is 

sufficient to produce a rod response and a small number of these events are 

sufficient to yield conscious signal detection (Hecht et aL 1942), but rods become 

saturated and unable to signal changes in intensity at moderate levels of illumination 

(Aguilar and Stiles 1954). The operating range of intensity for cones is higher than 

that of rods, they have a higher absolute threshold, and they are unlikely to saturate 

even at very high intensities. The term scotopic is used to describe conditions under 

which the rods operate alone, i. e., below the absolute threshold of the cones, and 

the term photopic is used to describe conditions under which the visual response is 

cone mediated, i. e., above the level of rod saturation. The region in between the 

scotopic and photopic, where both rods and cones contribute to the visual 

response, is known as the mesopic: region. This region spans a range of light levels, 

that extends from 5000 scotopic trolands, just below rod saturation (Aguilar and 
Stiles 1954), to almost absolute threshold, depending on background and stimulus 

conditions. A stimulus luminance of 3 photopic: cd m' is often quoted as a guide for 

the upper limit of the mesopic range for centrally viewed fields of the order of a few 

degrees in size (CIE 1978), and a corresponding guideline for the lower limit is 0.01 

photopic cd nf2. The mesopic range therefore encompasses lighting conditions 
from for example, twilight, night driving and emergency lighting levels to about the 

luminance of blue sky (Makous 1998). 

Rods contain the photopigment rhodopsin, whereas cones contain one of three 

different photopigments. All four photopigments consist of the pigment known as 

retinaL but the pigment may be bound to four different proteins; these are caUed 
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opsins. 'Me opsin detennines the relative probabilities that different wavelengths of 
light are absorbed by retinal. Photoreceptors respond only to the number of 
photons absorbed and transmit no wavelength specific information. The three 

classes of cone are labelled L-, M- and S-cones due to their photopigments 
absorbing maximally in the long, middle and short wavelength regions of the visual 
spectrum, respectively. The spectral absorption characteristics of the photopigments 
found in the three classes of cone ate discussed below in section 1.2.1. The 

absorption spectrum of rhodopsin (shown in Figure 1-5) was first measured by 

K6nig in the late 19th century using the method of spectrophotometry (described in 

section 1.2.1). K 6nig realised that the spectral absorption curve of rhodopsin was 

proportional to the spectral sensitivity of human vision at night (under scotopic 

conditions, see section 1.2.5), when corrections were made for the absorption 

characteristics of the ocular media (see section 1.1.1 a. ). 
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Figure 1-5. The absorption spectrum of rhodopsin, reproduced from (Wald and Brown 
1965). The three sets of points represent the absorption spectrum of rhodopsin obtained 
from rod outer segments in vitro; the spectral sensitivity of rod vision measured at the 
cornea, corrected for transmission of the ocular media; and scotopic spectral sensitivity 

measured in a lensless eye. 

Stiles and Crawford (1933) discovered another important functional difference 

between rods and cones relating to their directional sensitivity. They found that 

cone photoreceptors exhibit a marked improvement in sensitivity to light passing 

through the centre of the pupil than to light passing through the margins of the 

P, 
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pupil; this is known as the Stiles-Crawford effect. Ibis difference is thought to be 

due to the greater likelihood that a quantum of light will be absorbed if it enters 

along the axis of a cone outer segment rather than obliquely. Rod photoreccptors 

show some directional sensitivity, but the Stilcs-Crawford effect in rods is much 

reduced compared to that of cones (Van Loo and Enoch 1975). 

C. Phototransduction 

The process of transforming light into an electrical signal is known as 

phototransduction. This chain of events begins with the absorption of photons by 

the photopigment in a photoreceptor, and results in a reduction of neurotransn-Littcr 

release by the photoreceptor. In the dark retinal assumes the configuration termed 
11-cis retinal. When a photon is absorbed by a photopigment, for example, 

rhodopsin, retinal is converted from 11-cis retinal to the form all-trans retinal. This 

in turn activates the opsin portion of the molecule, which while activated can 
interact with other molecules in the disc membrane. 

Following conversion of retinal into its all-trans form, the rhodopsin molecule 

begins to break down into retinal and opsin. The photopigment is then said to be 

bleached and cannot be affected by light. Regeneration of the photopigment 

involves the conversion of retinal back to its 11-cis configuration by the action of 

enzymes, before it can recombine with opsin. Ibis conversion takes place in the 

pigment epithelium and requires time and energy. The regeneration of cone 

photopigment is faster than that of rhodopsin, and is in part responsible for the 

difference in temporal response of the two types of receptor. Under steady 

illumination., equilibrium is reached between the rates of photopigment bleaching 

and regeneration. 

The photoreceptor outer segment membrane contains ion channels that are open in 

the dark. The inner segment contains metabolically driven ion pumps, which 

continually pump sodium ions out of the cell. The movement of sodium ions into 

the outer segment then to the inner segment and out of the cell is known as the 

dark current. Events occurring in the phototransduction cascade related to the 
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activation of opsin, act to close the outer segment ion channels, causing the 

transmembrane potential to become more negative (hyperpolarise) and the rate of 

neurotransmitter release to decrease. 

d. Bipolar cells and ganglion cells 

Bipolars relay signals from the photoreceptors to the amacrines and the ganglion 

cells. There are at least nine types of bipolar cells with which the cones synapse 
(Wassle and Boycott 1991). These types are divided broadly into two categories; 

midget bipolars and diffuse bipolars (Polyak 1941). Nfidget bipolars have small 
dendritic fields and often contact single cones, whereas diffuse bipolars receive 
input from a number of cones and have relatively large dendritic fields. The other 

main classification of bipolar cells is based on their sensitivity to light. Bipolars that 

depolarise (transmembrane potential becomes less negative) when light intensity 

increases are labelled ON cells, whereas those that depolarise when light intensity is 

reduced are labelled OFF cells. ON and OFF bipolars terminate at different levels 

in the IPL, referred to as sublaminar b and sublarninar a, respectively. In the central 

retina the majority of midget bipolars of both types (ON, OFF) receive signals from 

a single M- or L-cone, whereas in the far periphery there is an increased incidence of 

midget bipolars contacting more than one cone (Wassle et al. 1994). There are six 

types of diffuse bipolar, which connect to a number of cones (5-10 in the central to 

n-dd-peripheral retina), including both M- and L-cones (Wassle 1999). Each L- and 
M-cone contacts at least one ON and one OFF midget bipolar and it is likely that 

they also contact at least one of each of the six types of diffuse bipolar cell (Wassle 

1999). The ninth type of cone bipolar is the S-cone ON bipolar, which receives 
input from several S-cones (Kouyama and Marshak 1992), and is thought to be the 

only route for transport of S-cone ON signals. There does not appear to be an OFF 

bipolar for the S-cones, but there are indications that S-cones contact both midget 

and diffuse OFF bipolars (Calkins 1999). Only a single ON bipolar type has been 

identified for the rod system, which, in the primate, receives input from 15-40 rods, 
depending on retinal eccentricity (Wassle and Boycott 1991). The pathways of rod 

signals beyond the rod ON bipolar are discussed below in section 1.1.2 g. 
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The final neurons in the vertical pathways of the retina are the ganglion cells. The 
human retina contains a large variety of ganglion cells - over 20 types have been 
described, but the majority fall into two types, midget cells and parasol cells. Midget 

and parasol cells are found throughout the retina (Polyak 1941). Niidgct ganglion 

cells contact midget bipolar cells, retaining the ONIOFF convention. In and 
around the fovea there is 1: 1 wiring between these neurons (Polyak 1941). In the 

peripheral retina, midget bipolars connected to single L- and M-cones converge 
onto midget ganglion cells, providing combined M- and L-cone input to these cells 
(Dacey and Lee'1999). Diffuse bipolars synapse with parasol ganglion cells, which 

are also of the ON or OFF type. The recently identified small bistratified ganglion 

cell receives input from S-cone ON bipolars and from a diffuse bipolar that is 

connected to N1- and L-cones, producing a blue-ON/yellow-OFF response (Dacey 

and Lee 1994b). 

Bipolar cell responses consist of sustained graded potentials. Ganglion cells on the 

other hand generate axon potentials, which are "all-or-none" responses. Ganglion 

cells either fire in a sustained manner during the duration of a stimulus or respond 

transiently to stimulus onset and/or offset. 

e. Horizontal and amacrine cells 

Lateral connections in the retina begin with the horizontal cells, which make 

connections with photoreceptors. There are at least two types of horizontal cell; the 

two types that have been identified are labelled Hl and H2 cells. Both HI and H2 

cells hyperpolarise in response to light. H1 cells preferentially contact Land M- 

cones, and make no contacts or infrequent contacts with S-cones (Dacey et al. 
1996). Hl cell axon terminals also contact rods (Kolb ct al. 1980). It is thought, 

however, that there is no communication between the two ends of the cell, i. e. 
between rod and cone input (Wassle and Boycott 1991). H2 cells preferentially 

contact S-cones, and also receive surnmed input from L- and M-cones Pacey et al. 
1996), but do not contact rods (Kolb et al. 1980). Horizontal cells are thought to 

provide a feedback mechanism to the photoreceptors, and to possibly play a role in 
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generating receptive field surrounds of bipolars and ganglion cells (see sections 1.1.2 

f and 1.2.2). 

The second stage of lateral connections in the retina involves the arnacrine cells. 
Amacrine cells are numerous in type, which may be an indication of the number of 
different lateral pathways in the retina. Amacrine cells receive input from and make 

synaptic contacts with bipolars, other amacrines, and ganglion cells. The responses 

of only two distinct types of amacrine cell have been investigated. The first type of 

amacrine that has been characterised is the AI arnacrine, which responds in an 

additive manner to signals from L- and M-cones (Dacey and Lee 1999). The second 

type of arnacrine that has been characterised, the AII arnacrine, plays an important 

role in the transport of rod signals in the retina (Wassle and Boycott 1991), see 

section 1.1.2 g. below. Little is understood about the specific functions of 

arnactines. 

The responses of horizontal cells are in the form of sustained graded potentials. 
Different types of amacrine cell either produce sustained potentials or, like the AI 

amacrine, respond in a transient manner to the onset and offset of a stimulus 
(Dacey and Lee 1999). 

f. Receptive field structure of ganglion cells 

The receptive field of a neuron is the region of space, which when stimulated 

produces a change in the celrs response. Receptive fields are often described by 

maps that indicate whether an increase or decrease in the cell's activity occurs in 

response to the presence or absence of light in different regions of the field. 

Receptive field maps do not indicate how a cell responds to other stimulus 

characteristics such as movement. Early receptive field maps were obtained from 

recordings in the lateral geniculate nuclei (see section 1.1.4) of primates (Wiesel and 
Hubel 1966). The types of receptive field map found in the lateral geniculate nuclei 
(LGN) are also observed in ganglion cells. 
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Figure 1-6. Representations of the receptive field structure of XViesel and Hubcrs Type I 
and Type II cells, reproduced from (Dacey 1996). See text for a description of each cell 

type. 

Ganglion and LGN cell receptive fields have been shown to typically consist of 

either a concentric centre-surround organisation, meaning that the cells respond 

maximally to differential illumination of a central region and its surrounding area, or 

consist of opponent input from cones in a coextensive field. Wiesel and Hubel 

found three different groups of cells with the first type of receptive field 

organisation, which they termed Type I, Type III and Type IV cells. 11ey found 

one class of cell with the latter receptive field organisation, which they termed Type 

II cells. Diagrammatic representations of Type I and Type II cells are shown in 

Figure 1-6. For a centre-surround cell with what is termed an ON centre receptive 
field, the cell is optimally stimulated by light covering the centre of the receptive 
field and not the surround, whereas light falling on the surround causes inhibition of 

the cells response. Similarly a cell with an OFF centre receptive field is excited 

maximally when light covers the surround and not the centre, and light falling on 

the centre results in response inhibition. Ught falling on the whole receptive field of 

cells with an antagonistic centre-surround organisation, produces a weak response. 
Thus, these antagonistic centre-surround receptive fields signal contrast, with ON 

centre cells excited by positive contrast and OFF centre cells excited by negative 

contrast. Cells with coextensive receptive field inputs are ideal for signalling 

wavelength information, but no spatial information. It has been suggested that Type 

I and Type II cells do not form two distinct groups, rather that there is a continuum 
between these types of cell in the retina and LGN (Derrington et al. 1984; Reid and 
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Shapley 1992). The retinal circuitry underlying ganglion cell receptive field structure 
is discussed further in section 1.2.2 below. 

Rod pathways 

The primary pathway for signals originating in the rod receptors is via the rod ON 

bipolar; however, rod bipolar cells do not synapse with ganglion cells. The output of 
the rod bipolar is transferred to the AII arnacrine cell, which in turn, feeds into the 

cone circuitry (Wassle and Boycott 1991). The output of AII amacrine cells either 

excites diffuse ON cone bipolar cells or inhibits diffuse OFF cone bipolars, which 

synapse with ON and OFF ganglion cells, respectively. There is also anatomical and 
human psychophysical. and electrophysiological evidence for a second rod pathway 
Paw et al. 1990; Sharpe and Stockman 1999; Bloomfield and Dacheux 2001). The 

physiological and psychophysical evidence suggests the presence of a slow sensitive 

rod signal, which is likely to be conducted through the primary rod pathway, and a 
fast, less sensitive signal that predominates at higher mesopic light levels. The 

anatomical origin of the pathway for this fast rod signal is via rod-cone gap 
junctions., whereby rod signals may be fed into cone bipolar-ganglion cell circuits at 

an earlier stage in the pathway. Rod input to ganglion cells varies with ganglion cells 

type. A strong input of rod signals to parasol ganglions can be detected at low levels 

of illumination (Lee et al. 1997). Small bistratified ganglions appear to receive no 

rod input; but a weak rod response can be recorded from midget ganglion- cells (Lee 

et al. 1997). 

Spatial organisation of the retina 
There is substantial spatial variation across the retina, with the density, size and 

arrangement of each type of retinal cell changing with eccentricity. The region of the 

retina responsible for signalling the finest spatial detail is the fovea. When one looks 

directly at an object (fixates an object) the image of that object falls on the fovea. 

There is a small depression in the retina at this location caused by lateral 

displacement of cells in the inner retinal layers, leading to a thinning of the retinal 

structure, and creating a more direct path for light to reach the photoreceptors (see 

Figure 1-7). 'ne absence of blood vessels in the centre of the fovea, however, is the 
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primary factor responsible for the reduction in light scatter and absorption at this 
loca6on. 
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Figure 1-7. Thinning of the retina at the fovea due to the lateral displacement of cells in the 
inner retinal lavers. Reproduced from (ON-ster 1999). 

The outer segments of cones in the fox-ea are long and thin, allowing the highest 

density of these ccfls found over any area in the retina: 120,000 to 324,000 

cones/mm' (Curcio et al. 1990). There are also a greater number of 1: 1 vertical 

patlix-vays to the optic nerve from fox-eal cones. The ah-nost flat central area of the 

fox, ca is knoxvn as the foveola. There arc no rod receptors in the ccntre of tile 

fox-cola, over a region corresponding to about 1'' visual angle (Osterberg 1935). S- 

cones arc also absent from the central fox-cola over a small area that falls within the 

rod free region. The -area surrounding the fovca is known as the parafo%-ca, which 

extends up to about 8" visual angle, and the region beyond this up to about 20 is 

called the pcrifo%, ea. These regions arc classified by the thickness of different retinal 

lavcrs within tlicm. 

There arc approximately 4.5 milhon cones in the retina and 91 millimi rods ((*Lircio 

ct al. 1990). The distribution of cones Us abruptly outside the fovca to 4-50()(, ) 
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concs/mn-i-'l and thereafter dechnes slowIv to a minimum of 3000 cones/mm2 in the 

pcriplicry (Osterberg 1935; Curcio et al. 1990). The maximum density of S-cones 

occurs bet-x,. -ccn 0.1 - 0.3 mm eccentricity, and is greater than 2000 S-cones/mm' 

(C'urcio et al. 1991). The S-cones account for 4-80, o of the total number of cones. 

In-vivo estimates of the percentage of L- and -NI-concs in two colour normal 

subjects, obtained using a combination of adaptive optics and retinal densitorrictry, 

produced values of 50.6-75.80, o and 20.0-44.20, o for the L- and NI-cones, respectively 

(Roorda and Williams 1999). Psychophysical estimates of the relative numbers of L- 

and M-concs suggest that, on average, L-cones outnumber NI-cones by a ratio of 2: 1 

(Kremers ct al. 2000). Rod density grows from 0 rods/mm2 at the centre of the 

foveola to a peak density of roughly 190,000 rods/mm' at an cccentricitN, of about 

20'', dropping to a value of 60,000-70,000 at the extreme periphery (Osterberg 1935; 

Curcio et al. 1990). Photorcccptors arc absent over the area of the optic disc, which 

causes a physiological "blind spot" in the visual field corresponding to an area of 5- 

6" horizontally and 7-8') vertically, positioned at about 16" temporally. The number 

of ganglion cells in the human retina is estimated to be between 0.7 to 1.5 nullion. 

The density of ganglion ceHs peaks 'ust outside the fovea at roughhý 35,000 

c S/MM2 ell, and gradually drops to a level of about 100 cells/mm' in the extreme 

periphery (Curcio and Allen 1990). 
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Figure 1-8. The optical density of the macular pigment, reproduced from O)okorny and 
Smith 1997). The circles indicate the function proposed by Vos (1972), and the squares 

sho,, k, the data of Wyszecki and Stiles (1967; 1982). The mo functions have been normahsed 
to produce cunýes of equal area. 
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Ch 1. Introduction 1.1. Anatomy and physiology of the eye and the visual pathway 

Another topographical feature of the retina is the macula lutea; a region of yellow 
pigment (known as the macular pigment) that permeates the inner layers of the 

retina and covers the fovea and much of the parafovea (Wyszecki and Stiles 1982; 
Vos 1972). Macular pigment density has been estimated from the differences 

between measurements of absolute threshold obtained at the fovea and in the 

periphery where there is little or no density of pigment (Wald 1945a; Wyszccki and 
Stiles 1967), or from the differences between foveal and peripheral colour matches 
(Ruddock 1963). The macular pigment absorbs light in the short to middle 

wavelength region of the spectrum, with peak absorption occurring at 460 run. The 

optical density spectrum of the macular pigment is shown in Figure 1-8. 

1.1.3 The optic nerve, optic chiasm and optic tracts 

a. The optic nerve 
Coded signals emerge from the ganglion cells and travel along the optic nerve and 

optic tracts to reach the lateral geniculate nucleus and finally the cortex; constituting 

the primary visual pathway (see Figure 1-9). The 1 million or so ganglion cell axons 
traverse the retina to converge at the optic nerve head. The optic nerve head is 

positioned nasally in the retina just below the horizontal meridian, giving rise to the 

physiological "blind spot", described in section 1.1.2 h. The bundles of ganglion cell 

axons exit the eyeball at this location, and form the optic nerve. The axons travel to 

the optic nerve head in a systematic pattern, with fibres from ganglion cells 

temporal to the fovea arranged to avoid crossing of the fovea itself, see Figure 1-10. 

Axons emanating from the region in and around the fovea form what is known as 
the pupilomacular bundle. 'Me initial arrangement of nerve fibres within the optic 

nerve relates to the relative positions of the ganglion cells from which the fibres 

originate, with the pupilomacular bundle occupying a large temporal section. At the 

optic nerve head the ganglion cell axons are divided into bundles before passing 

through the collagenous structure, the laminar cribrosa, after which the axons gain a 

myelin sheath (wrapping that increases the speed of action potential propagation). 
The optic nerves from each eye run though their respective optic canals and merge 

to form the optic chiasm, from which the optic tracts emerge. The arrangement of 

axon bundles within the optic nerve at this point is shifted relative to the 
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Ch 1. Introduction 1.1. Anatomy and physiology of the eye and the visual pathway 

arrangement at the optic nerve head, with the pupilomacular bundle occupying the 

central region surrounded by axons from gradually more peripheral regions of the 

retina, as shown in Figure 1-10. 

Optic nerve 

Optic tract 

Optic radiation 

iiasm 

ate 

Figure 1-9. The primary visual pathway, reproduced from (Zeki 1993). 

The optic chiasm and optic tracts 

At the optic chiasm, fibres from the nasal hemiretinas cross from their respective 

optic nerves to the optic tracts transporting signals to the contralateral side of the 

brain. Fibres originating in the temporal hemiretinas travel along the optic tracts 

transporting signals to the ipsilateral side of the brain. This process is known as 
decussation. The decussation of axons in the chiasrn appears to be imperfect, with 

some nasal retinal fibres travelling along the ipsilateral optic tract and some 

temporal retinal fibres crossing over to the contralateral tract, leading to a double 

representation of the fovea in each hemisphere of the visual cortex (Bunt and 
Minkler 1977; Fukuda et al. 1989). Ibete is further teorganisation of the 
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Ch I. Introduction 1.1. Anatomy and physiology of the eye and the visual path-waý 

arrangement of neuronal fibres xvithin the optic tracts before reaching their target 
dcstinations. 

From 
paptllo, ac-: 

1, 
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nrr 9 

cL 
Figure 1-10 (a)-(c). The pattern of ganglion ceH axons as thev traverse the retina to form 
the optic nen-c "al,. The distribution of axons in the optic nerv e, originating from different 
areas of the retina, before leaving the orbit (b), and near the optic chiasm (c). Reproduced 

from (Oyster 1999). 

1.1.4 The lateral geniculate nuclei and other subcortical nuclei that 

receive retinal projections 

a. The lateral geniculate nuclei 

The vast majority of ganglion cel-I axons terminate in the lateral gcniculatc nuclCi 

(1, (; N), through which information is relayed to the primary visual cortex. The 

lateral gcniculate nuclei in primates (shown in Figure 1-11) are traditionalk. 

described as comprising six distinct layers, but interlaminar regions have also been 

identified (Kaas et al. 1978; Jones and Flendry 1989). The vcntral lavers, numbered 

1-2, are made up of neurons vvith large cell bodies and termed the magnocellular 

lavers. The dorsal lavers, numbered 3-6, consist of small-bodicd nerve cells and arc 

termed the parvocellular layers. The intcrlan-iinar regions are also termed 

koiiloccflular layers because the neurons in these regions have the smallest cell 
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bodies and the regions can be quite distinct in some species. In general, the axons of 

parasol ganglion cells project to the magnocellular layers of the LGN, forming -,, -hat 

is termed the magnoccIlular pathway; and the axons of midget ganglion cells project 

to the parvocellular lavers, forming what is known as the parvocellular pathway 
(Perry ct al. 1984). Cells of the parvocellular and magnocellular pathways are often 

referred to as P-cells, and M-cells, respectivch-. There is evidence that neurons In the 

konlOCCUL11'. 11- layers constitute a third pathway from the retina to the visual cortex 
(Casagrande 1994); the konloccflular layer cells proiccting to cortical regions known 

as blobs (Hendry and Yoshloka 1994), which are believed to be colour selective (see 

section 1.1.5 c). It has been reported that the small-bistratified ganglion cells project 

to the pat%-()ccllular layers of the LGN (Rodieck 1991), but blue-ON cells have also 
been identified in the interlaminar regions of the primate LGN, suggesting that the 

blue-yello,, v colour channel ma) be part of this third visual pathway (Martin et al. 

1997). The two lateral geniculate nuclei provide differentiation of information 

pertaining to each half of the visual field. The left LGN receives input from the 

right hernificld and the right LGN input from the left licrilifield. There is also 

separation of information from each eye within each LGN. Layers 1,4 and 6 receive 

Input from the contralatcral eye, and layers 2,3 and 5 from the ipsilateral eye. 

Jig 

Figure 1-11. Thc la. vci-cd strLicturc ofthe lateral gcniculatc nucleus reproduccd 
frorn (Zeki 1993). 
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Ch 1. Introduction 1.1. Anatomy and physiology of the eye and the visual pathway 

Mapping of the retina onto the LGN retains the spatial organisation of the ganglion 
cells, With the fovea and parafovea given an enlarged spatial representation 

compared to the periphery of the retina. Ibus the LGN contains overlapping 

representations of the visual field arising from different types of ganglion cells. 
Representations in different layers of the LGN arc in register (aligned), so that a 
single point in the visual field is mapped in up to six points in different laycrs of the 
LGN, falling along a single dorsovcntral projection line through the LGN (Walls 
1953). 

b. Receptive fields, and the magnoceflular and parvocellular pathways 

Receptive fields of LGN cells may be made up of inputs from several ganglion cells, 
but the response properties of LGN cells are very similar to those of their retinal 
inputs. The majority of neurons in the lateral geniculatc nuclei have antagonistic 

ccntre-surround receptive fields. Cells in the magnocellular layers do not have 

wavelength-specific responses, but have receptive field ccntres with sumrned input 

from L- and M-cones. Cells with centre-surround receptive fields in the 

parvocellular layers may be wavelength-specific or respond to a broadband of 

wavelengths. The parvocellular layers 5 and 6 consist predominantly of cells with 
ON centre receptive fields, while those in layers 3 and 4 consist of mostly OFF 

centre cells (Schiller and Malpeli 1978). In the magnoccRular layers there is no 

segregation of ON and OFF centre cells. LGN cells appear to be less sensitive than 

ganglion cells to illumination of both centre and surround of their receptive fields, 

leading to an enhancement of the antagonistic signal (Hubcl and Wicsel 1961). The 

parvocellular layers also contain Type II cells, which exhibit wavelength-specific 

responses. The coding of colour by midget and small bistratified ganglions, which 

project to the parvocellular LGN, is discussed in section 1.2.2 below. 

M-cells are tuned to achromatic modulation and P-cells chromatic modulation, 

although P-cells can also respond to appropriate spatiotemporal input. M- and P- 

cells have comparable responses to their ideal stimuli (Lee 1996). The size of the 

receptive field centre of an NI-cell is related to the spread of its dendrites (Dacey 

and Lee 1994a). The centre size of a P-cell 's receptive field may be determined by 
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dendritic spread, but the centre size of a midget ganglion in and around the fovea is 

determined by the size of a single cone. Anatomically there is a large difference 

between the receptive field centre size of M- and P-cells. Thus, the retina is sampled 

over two spatial scales. M- and P-cells also differ in their temporal responses, with 
M-cells exhibiting a band-pass response to luminance modulation, peaking at 20-40 

Hz under photopic conditions, compared to the low-pass temporal response of P- 

cells to chromatic modulation, which falls off above 20-30 Hz (Lee et al. 1989; Lee 

et al. 1990). 

c. Other nuclei that receive ganglion cell input 

Other destinations of the 10% of optic tract fibres that do not terminate in the 
LGN include the superior colliculus, the pretectal nuclei, the accessory optic system, 

and the suprachiasmatic nucleus. 'Fhe superior colliculus is also a layered structure, 

within which the retinal projections provide a representation of the contralateral 

visual field in the right and left portions of the structure. These inputs originate 
from ganglion cell types other than parasol or midget cells. The interaction of these 

inputs along with inputs from the cortex and subcottical areas, including signals 
from other sensory systems, is thought to be involved in the onset of saccadic eye 

movements. 'Me pretectal nuclei also receive input from ganglion cell axons, in 

particular the nucleus of the optic tract and the pretectal olivary nucleus. The 

activity of the nucleus of the optic tract appears to be linked to eye movements and 

possibly has a role in optokinetic nystagmus (alternating fast and slow eye 

movements associated with movement). The pretectal olivary nucleus forms part of 

the pupillary light reflex. The bilateral projection of axons of the pretectal olivary to 

other nuclei in the light reflex pathway is responsible for constriction of the pupil in 

both eyes in response to light shone in one eye (the consensual reflex). There are 

also small retinal inputs to what is termed the accessory optic system, which is 

thought to be involved in the coordination of eye and head movements. The 

suprachiasmatic nucleus is involved in the regulation of the body's biological clock 

that is responsible for generating the circadian rhythms of certain bodily functions. 

The suprachiasmatic nucleus also receives input from retinal ganglion cell axons. 
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Figure 1-12. The visual cortex, reproduced from /cki 

1.1.5 The visual cortex 

I lic dcstinati()n ()f ncuronal axons originating in the latcral 'C111CL11,11C M11,1"U, 1, Th,, 

primary visual cortex, otherwise kno-,, -n as the striate cortex duc t, ) it, triped 

appearance. The bundle of fibres linking the LGN with the cortex arc termed the 

optic radiations. The primarý- visual cortex, otherwise known as N'l, is located in the 

occipital lobe of the cerebral cortex (shox,. -n in Figure 1-12). It is found ()11 tile 

medial side of each cerebral herrusphere deep within what is known as tile calcarinc 

sulcus, see Figure 1-13. There arc Vvo main types of cortical neuron,, p. %-rainidal 

cells and granule cells (othervý, Ise knov. -ri as stellate cells), named after their cell body 

shape and spread of their dcndrites. Pyrarmclal ceUs often pro)ect to distant cortical 

sites or subcortical targets, whereas steflate cel-Is tend to make intracortical 

connections. The cerebral cortex consists of six layers of cell bodies, collcuivch- 

termed grey matter. White matter, consisting of axons carrying input and Output 

signals, underlics thcsc ccllular laycrs. 
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/ 

Figure 1-13. Location of the primary v1sual cortex, VI, and extra striate areas V2-V5-a. 
Reproduced from (Zeki 1993). 

Separate subdivisions of layer 4 (4Ccc, 4CP) in the primary visual cortex receive the 

main input from the magnoceflular and panoceflular layers of the LGN. This layer 

consists mainly of granule cells, whereas the other cortical layers consist mainly of 

pyramidal cells. Tlie right 1, (:, N projects to layer 4 in the right hen-11'sphere and the 

left LGN to layer 4 in the left herrusphere, in this , vay the right and left hemispheres 

contain a complete representation of the contralateral halves of the visual field. 

These representations retain the enlarged spatial weighting given to the fovea witli 

respect to the peripherýý, found in the LGN. This change of spatial organisation 

from the retina to the cortex is described as the cortical magnification factor. The 

cells of layer 4 project to more superficial layers in V1 (layers 2 and 3) and other 

cortical areas. Cells in the remaining layers of the visual cortex connect to specific 

targets either xvithin the cortex or in subcortical areas. 

a. Rcccpti-,, e fields of cortical neurons 

The response ch arac teris tics of cortical neurons are generally rnore complex than 

those of ganglion cells or geniculate cells. Cortical cefls have been categoriscd by 
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their receptive fields into concentric, simple, complex and hypercomplex cells. 
Concentric cells have a centre-surround receptive field organisation. Ibesc cells are 
found in layer 4 of V1, they respond monocularly, and are likely to receive direct 

input from the LGN (HubcI and Wiesel 1968). Simple cells also have receptive 
fields that are arranged into antagonistic ON and OFF regions, but organised in 

parallel bands. There are often ON or OFF bands separating an opposing central 

strip, or there may be adjacent excitatory and inhibitory bands, an example is shown 
in Figure 1-14. These cells respond to an incremental or decremental bar of light 

with a specific orientation (Hubel and Wiesel 1962). A moving bar of correct 

orientation may be a more effective stimulus than a stationary one, but the direction 

and velocity of movement may also be critical. The majority of simple cells are 
located in layer 4 of VI, but are also present in other layers. . 

Figure 1-14. Diagram of the receptive field structure of simple cells in the visual cortex. 
Inputs from ON Centre LGN cells make up the ON Centre region of the simple cell 

Reproduced from (Hubel and XViesel 1962). 

Complex cells do not have receptive fields that can be characterised by excitatory 

and inhibitory regions. These cells respond to a stationary or moving bar of 

preferred orientation throughout their receptive field (Hubel and Wiesel 1962). 

Complex cells are rare in layer 4, but are found in more superficial and deeper 

layers. These cells often receive input from both eyes. Hypercomplex cells are 

similar to complex cells, but respond optimally to a bar of specific length (Hubel 

and Wiesel 1965). These cells are only found outside V1. Hubel and Wicsel (1962; 

1965) suggested that cortical neurons increase their required stimulus specificity the 

further they occur along the path of information processing. They proposed that 

simple cells were constructed from a linear arrangement of concentric cell receptive 
fields, and that complex cells receive inputs from several simple cells with the same 

orientation preference. These authors further proposed that hypercomplex cell 
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input originates from two or more complex cells with identical orientation 

preferences. 

Orientation and ocular dominance columns 

The orientation specificity of simple, complex and hypercomplex cells lead to an 
important feature of the organisation of visual cortical neurons. Cells of a particular 

orientation are grouped together within the cortex in what are known as orientation 

columns that travel perpendicular to the surface of the cortex. Adjacent columns 
differ in orientation systematically, by an angle of about 10' (Hubel and Wiesel 

1974). Cells within a column correspond to a particular region of the visual field, 

and cells in neighbouring columns correspond to neighbouring areas of visual field. 

A further organisational feature of the visual cortex is the presence of ocular 
dominance columns. Cortical cells that have binocular input have receptive fields 

that are identical for the two eyes in terms of size and specificity, and correspond to 

contralateral areas of the visual field, but usually receive a stronger input from one 

eye. This leads to an arrangement of cortical cells in columns that correspond to the 

ocular dominance (right or left) of their input (Hubel and Wiesel 1968). 

c. Further functional segregation in the cortex 

Within the primary visual cortex there are zones that have been called blobs, which 
differ from their surrounding regions, labelled interblobs. These zones were 
identified by cytochrome staining; they are located within the centre of ocular 
dominance columns and are in register throughout the layers of the cortex. Some 

neural cells within the blobs have concentric centre-surround receptive fields, which 

appear to code both form and colour, and others respond to all wavelengths of 

light, but neither show orientation specificity (Lvingstone and Hubel 1984). Cells in 

the interblob regions have orientation but no wavelength specificity (Livingstone 

and Hubel 1984). Cells receiving inputs from parvocellular neurons in the LGN 

connect to cells in the blob and intetblob regions, whereas magnocellular 

projections appear to be routed to layer 4B in V1. Fibres within the blob and 
interblob zones project to distinct thin striped regions in the cortical area adjacent 

to V1, known as V2 (Livingstone and Hubel 1984). Neurons from layer 4B, on the 
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other hand, project to distinct thick striped regions in V2 (Livingstone and Flubel 

1987). These thick and thin stripes in V2, in turn, connect v. -ith different visual areas 
in the cortex (Shipp and Zeki 1989b; Shipp and Zeki 1989a). In this wav the 

magnoccHular and parvoccl-lular pathw-ays remain largely distinct from the retina to 

the cortex. I'l-Lis functional segregation is iflustrated in Figure 1- 15. 

Lateral geniculate body 
(LGB) 

Figure 1-15. Structural organisation of V1. The figure depicts orientation colunins and 
blob, ý in VI, and dlustrates that input signals from the LGN to layers 4Ccx 'and 4CP arc 

transported to other layers in V1 and either onto prestriate corucal areas, or return to the 
LGN, or project to other subcor6cal nuclei. Reproduced from (I fart Jr. 1992). 

The cortex of the occipital lobe, anterior to VI, contains mariv representations of 

the contralatcral visual field in areas that are part of what is known as the prestriate 

cortex. These areas extend into the parictal and temporal lobes of the brain. Some 

of these areas appear to be tuned for processing particular ispcct,, of visual 

information. The area irrimcdiately antcr or to the pri arý v sual cortex s V2, I Im III which 
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xx-as introduced above. V2 receives major input from N'I and has the same 

retinotopic organisation, with the vertical meridian of the visual field forming the 

border between these two areas. V2 neurons extract more specific information from 

the visual field map than V1 neurons, as they consist mostly of complex cells with 

some hypercomplex cells. As described above, the distinct areas (stripes) in N'2 

continue the functional segregation of information in the visual pathway. Area NA 

-\x-hich surrounds V2, also contains a topographical map of the retina. V3 rccewcs 

projections from layer 4B in V1 and the thick striped regions in V2. V3 consists 

mainly of orientation-specific cells and is likely to be associated with the processing 

of form (Zeki 1978). V4 receives its major input from the thin stripes in V2, with a 

small input from VI J)eYoe and Van Essen 1985; Shipp and Zeki 1985). V4 

consists mostly of complex cells, and appears to be involved in the processing of 

colour and form, with most of the cells being colour selective (Zeki 1973). Area V5, 

otherwise known as -NIT, is thought to be involved in motion processing as its cells 

exhibit a strong preference for movement in a particular direction (/eki 1974). 

Neurons in layer 4B of V1 project to V5, along with neurons in the thick stripes of 

V2 (DcYoc and \'an Essen 1985; Shipp and Zeki 1985). The segregation of neurons 

on the basis on physiological function that begins in the LGN appears to diverge in 

the visual cortex, forn-ung the first stages of information extraction from the visual 

field. 

1.2 Colour vision 
The current understanding of human colour vision has developed over the last three 

and a half centuries. It was Isaac Newton in the late 17"' and early 18" centurý- who 

first reallsed that colour is a sensation not a property of the electromagnetic 

radiation that xvc refer to as light. He also reabsed that the sensation of colour 

associated xvith an object is related to the spectral reflectance of the object. The next 

major advancement was made by Thomas Young, which he presented in 1801. He 

believed that it was inconceivable for the number of receptors in the eyc to equal 

the number of colours seen, and proposed that there were only three colour 

receptors in the eve, which could be differentially activated bv the light stimulus. 

51 



Ch 1. Introduction 1.2. Colour vision 

This idea later became known as the trichromatic theory of colour vision. James 

Clerk Maxwell took up Young's trichromatic theory in the mid 19' century, carrying 

out colour mixing experiments, which formed the basis of modem colour 

specification and colorimetry. Further support for trichromacy came at about the 

same time from Hermann von Helmholtz, who proposed that trichromacy was 
possible if there were three receptors within the eye with overlapping spectral 

sensitivity curves. Trichromatic theory, however, was thought to be at odds with the 

subjective appearance of colours, which led Edwald Hering in the 1870s to propose 
his opponent colour theory. Hering noted that there were four primary colour 

sensations: red, green, yellow and blue, but that yellowish blues and reddish greens 

were never seen. He suggested, therefore, that colour sensations arose from colour- 

opponent processes, with red opponent to green and yellow opponent to blue. 

These two colour vision theories were thought to be incompatible, but 

reconciliation came with the suggestion that both theories could be accommodated 
in a zone model of colour vision; with trichromacy holding at the receptor level, and 
the opponent colour theory holding at some later stage of processing. 

1.2.1 Trichromacy and cone spectral sensitivities 

'Fhe coding of colour in the visual system begins at the level of the cone 

photoreceptors. Colour vision is only possible over the operating range of the 

cones, i. e., under photopic or mesopic conditions. Under scotopic conditions 
humans have no colour vision, and it is generally believed that rods play little or no 

part in colour vision throughout the mesopic range (see section 1.3-3, however, for 

a further discussion of this topic). The probability that a photon is absorbed by a 

photoreceptor is wavelength dependent, but the response of an individual 

photoreceptor relates only to the number of photons absorbed and signals no 
information about the wavelength of light; this is known as the principle of 

univariance. The basis of trichromacy is the existence of three photoreceptors in the 

eye with overlapping spectral sensitivities; hence, the probability of absorption of a 

photon of a particular wavelength differs for the three types of cone. 
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A number of different methods have been employed to verify the existence of, and 
determine the spectral sensitivities of the three types of cone photoreceptor (L-, M-, 

and S-cone). Direct measurements of photopigment absorption spectra have been 

carried out using retinal densitometry, microspectrophotometry and suction 

electrode recordings. The method of retinal densitometry involves passing light into 

the eye and measuring the intensity that is reflected back through the pupil. From 

such measurements the amount of light absorbed by the photopigments as it travels 
into and back out of the eye, can be inferred, once losses due to absorption by the 

pigment epithelium are accounted for. Rushton's investigations using retinal 
densitometry (Rushton 1963; Rushton and Baker 1964; Baker and Rushton 1965) 

confirmed the existence of the rod photopigment, plus both a middle-wavelength 

sensitive and a long-wavelength sensitive cone photopigment in the normal human 

eye, and the absence of the long-wavelength sensitive cone photopigment in 

protanopia; a particular type of human colour vision deficiency thought to arise 
from an absence of L-cones (see section 1.2.10). The technique has shortfalls in 

determining photopigment spectral sensitivity curves, however, because it does not 

permit measurement of photopigment spectral sensitivity in the tails of the curves 

where sensitivity is low. Nficrospectrophotometry involves measuring the spectral 

transmission of a small beam passed through the outer segment of an individual 

cone in vitro, compared to a reference beam. Results of measurements using 

microspectrophotometry have verified the presence of three types of cone 

photoreceptor in the normal human eye plus the rod receptors, containing 

photopigments with peak sensitivities in different regions of the visible spectrum 
Partnall et al. 1983). The procedure was also used to provide evidence in support 

of the belief that the colour vision deficiency deuteranopia, arises from an absence 

of the middle-wavelength sensitive photopigment. Although n-licrospectro- 

photometry allows relatively accurate measurement of photopigment peak 

sensitivity (Xmj, measured curves differ in the tails from those determined from 

indirect methods (Stockman and Sharpe 2000). 'Me procedure for measuring the 

electrical response of a single cone to light by drawing its outer segment into a tiny 

electrode, is known as suction electrode recording. Suction electrode recordings 
have been obtained from L-cones (Kraft et al. 1998), and found to agree with cone 

spectral sensitivity curves derived from indirect methods. 

v 
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Prior to successful physical measurements, indirect estimates of cone spectral 

sensitivities were achieved, based on psychophysical data. The spectral sensitivity of 

the three cone types can be derived from the results of colour matching 

experiments. Colour normal observers are termed normal trichromats. A trichromat 

can match one half of a bipartite field filled with a monochromatic test light, by 

altering the intensities of three primary lights presented in the opposite half of the 
field. For some test wavelengths a proportion of one or two primaries must be 

added to the test field to achieve a match. Any set of colour stimuli constitutes a set 

of primaries if each primary cannot be matched by an additive mixture of the other 

two; primaries are typically red, green and blue. 'Me relative proportions of three 

monochromatic primary lights required to match monochromatic test lights taken 
from the equal energy spectrum (unit radiant power at every wavelength), constitute 

colour matching functions (CMFs). Any set of CNIFs based on three primaries can 
be linearly transformed into CMFs for any other set of primaries; the fundamental 

CNIFs are equivalent to the cone spectral sensitivity functions measured at the 

cornea. In 1931 the Commission Internationale de VEclairage (CIE) defined a 

standard colorimetric observer with colour matching properties representative of 

normal trichromats. The CIE colorimetric observer is discussed in more detail in 

section 1.2.3 below. The CMFs of the 1931 standard colorimetric observer were 
based on the colour matching data of Wright (1928-1929) and Guild (1931) 

obtained over a 2' field, and the photopic spectral luminous efficiency function V(X) 

defined by the CIE in 1924 (standard spectral luminous cfficiency functions are 
discussed in more detail below in section 1.2.5). It was later thought that the 1924 

V(7. ) function underestimated sensitivity below 460 nm, and modifications by Judd 

(1951) and Vos (1978) were proposed to CIE 1924 V(X) and the CIE 1931 CNIFs, 

leading to the Judd-Vos modified CIE 1931 CNIFs. Other sets of CNIFs have been 

proposed by Stiles and Burch for a 2* field (Stiles and Burch 1955), a 10* field (Stilcs 

and Burch 1959), and by Speranskaya (1959) for a 10' field. The CIE incorporated 

Speranskaya's colour matching data with Stiles and Burch's 10* measurements to 

produce CMFs of the CIE 1964 supplementary colorimaric observer for a 10' field. 

A frequently used estimate of the cone spectral sensitivities was derived from a 

transformation of the Judd-Vos modified CIE 1931 CNIFs (Smith and Pokorny 
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1975), but several other estimates of the cone fundamentals have been based on 
different sets of CMFs, listed above (Vos and Walraven 1971; Vos et al. 1990; 

Stockman et al. 1993; Stockman et al. 1999; Stockman and Sharpe 2000). 

Cone sensitivities may also be measured using psychophysical techniques under 

conditions that aim to isolate the response of a particular cone type (see section 
1.3.1 b. below). This type of measurement is difficult in colour normals, but more 

successful in colour deficient observers lacking in one or two cone types. To 

compare measurements for colour deficient observers with those of colour normals, 

the colour deficient observers must have cone sensitivities in their remaining cones 

that match those in normals. Appropriate observers can be selected from genetic 

analysis of the photopigment gene array. Recent measurements in S-cone 

monochromats (who have only S-cones and rod photoreceptors), and in protanopes 

and deuteranopes of known genotype, have highlighted differences between several 

estimates of the cone fundamentals and cone spectral sensitivity data from colour 
deficient observers (Sharpe et al. 1998). This has led Stockman and Sharpe (2000) to 

propose new cone fundamentals based on a 2' conversion of the Stile Burch 10' 

CMFs, which the authors suggest are an improvement on the Smith-Pokorny cone 
fundamentals. The Stockman and Sharpe fundamentals are shown along with those 

of Smith and Pokorny in Figure 1-16. 
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Figure 1-16. Estimates of the cone fundamentals, reproduced from (Gegenfurtner and 
Sharpe 1999). Ile open symbols represent the Smith and Pokorny fundamentals, and the 

lines represent the Stockman and Sharpe fundamentals, see text for details. 
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1.2.2 The coding of colour in the visual system 

To extract information about both the intensity and wavelength of light from the 

output of the cone photorcccptors, signals from the three types of cone must be 

compared. This comparison of cone signals is carried out by neural elements in the 

visual pathway beyond the photorcceptors. Cells that perform the differencing 

operation between cone signals exhibit what is termed spectral opponcncy. A 

spectrally opponent cell might respond in an cxcitatory manner to input from one 

cone type and in an inhibitory manner to input firom another cone type. It is 

generally believed that there are two channels along which signals from ceNs with 

opposing cone inputs are transmitted: the red-green channel in which signals from 

L- and M-cones are compared, and the blue-yellow channel in which signals from 

the S-cones are compared to a combined signal from L- and M-cones. Ibcse 

channels are thought to pertain to the parvocellular pathway. Ganglion cells 

displaying spectrally opponent behaviour have been found in the primate retina, 

which serves as a good model for the human retina; but the retinal circuitry 

subserving such cells is not fully understood. 

Type 2 

+ 
e 

bkwON 

Figure 1-17. The receptive field structure of Wiesel and Hubel's type II cell. Reproduced 
from (Dacey 1996). 

Investigations into the origins of blue-yellow spectral opponency have revealed that 

a distinct type of ganglion cell is involved. T'he small bistratified ganglion cell 

receives input from S-cones, and is excited by blue fight and inhibited by yellow 

light across its receptive field with a blue-ON/yellow-OFF configuration (+B -Y 

cell) (Dacey and Lee 1994b). These authors suggested that the bluc-ON response 

originates from S-cone ON-bipolar input, and the yellow-OFF response may be 

attributable to input from an OFF-cone bipolar with connections to both M- and I, 
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cones. Small bistratified ganglion cells exhibit the properties of Wiesel and Hubers 

(1966) type 11 cells; cells that exhibit spectral opponency with spatially coextensive 
fields, see Figure 1-17. The identification of a +Y -B ganglion cell, although not 

confirmed, has also been hinted at (Lee 1996). 

The retinal circuitry underlying red-green opponency is presently unclear. The 

midget ganglion cell is the primary candidate for supplying spectral opponency 
because these cells are the only cells identified thus far, that selectively make 

connections with either L- or M-cones (via ON or OFF midget bipolars). Parasol 

ganglion cells carry no wavelength specific information as they make connections 

with diffuse bipolars, which in turn, receive input from all three types of cone. The 

specificity of the midget ganglion system only appears to hold, however, over the 

central retina, where midget ganglions receive input from a single L- or M-cone. In 

the periphery, where midget ganglion cells make connections with more than one 

cone, these connections do not appear to be exclusive to a particular cone type 
(Dacey 1996). This lack of wavelength specificity in the peripheral retina may 

explain the well documented degradation of red-green colour vision in the periphery 
(Weale 1953; Moreland and Cruz 1959; Noorlander et A 1983; Nagy and Doyal 

1993). The =ddget ganglion cell system in the central retina will supply an excitatory 

or inhibitory response to red or green light, but an opponent input to the surround 
is required to form red-green spectrally opponent cells. The origins of such an 

opponent signal are also unclear. H1 and H2 horizontal cells receive input from 

more than one cone type and, therefore, cannot provide cone-specific input to the 

surrounds of receptive fields. Recordings from Al amacrines show that these cells 

also receive additive input from L- and M-cones, excluding them from a role in the 

generation of cone-specific receptive field surrounds, also. There may be other, as 

yet uncharacterised amactines, with a tole in cone-specific spectral opponency. 
Horizontal cells and the AI amactinc could, however, provide a mixed-surround 
input. The mixed-surround receptive field model predicts that spectral opponency 

arises from the greater weighting given to the cone-specific centre compared to the 

surround receiving input from more than one type of cone (DeValois and DeValois 

1993). 'Me circuitry for such a model is shown in Figure 1-18. 
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Figure. 1-18. Diagrammatic representations of receptive field structure for colour coded 
cells according to the mixed-surround model, both in the central retina and the periphery. 

Reproduced from Pacey 1996). 

The receptive field structure evident in retinal ganglion cells is preserved in cells of 

the LGN; therefore, the next major stage of colour processing takes place in the 

cortex. Colour coding in the cortex is poorly understood, and mainly restricted to 

the response properties of cells in the primary visual cortex and prestriatc areas V2 

and V4. In these regions colour information appears to be utilised in highly colour 

specific pathways, and also in the extraction of colour-dcfined structure. There arc 

cells found in V1 that have similar colour response properties to LGN cells, but in 

V1 of the monkey, doubly-opponent cells have also been identified (XViesel and 
Hubel 1966). These cells exhibit spectral opponency with an antagonistic spatial 

receptive field organisation. They are mostly simple cells and respond maximally to 

oriented bars defined by specific colour differences, such as a red bar with a green 

surround. 'Mere are also cells in the primary visual cortex of the monkey that 

respond to colour contrast, independent of the colours involved (DcValois and 
DeValois 1975). Such cells n-, Light be excited by a specifically oriented red bar with a 

green surround and also a green bar with a red surround, for example. Ilese cells, 

termed multiple colour cells, appear to respond to structure, whether it is luminance 

or colour based. The thin stripes of V2 consist mainly of cells with wavelength 

selective responses (DeYoe and Van Essen 1985). V4 is known to consist of 

predominantly colour specific cells (Zeki 1973). V4 appears to be arranged in colour 

columns, where the ceRs in each column respond to a specific colour. CeUs within a 

column may differ in their demands on the shape of stimulus that will produce an 

optimum response, but require the same stimulus colour. 
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1.2.3 Colorimetry and the CIE standard colorimetric observers 
The foundation of the field of colour science known as colorimetry, is the 

trichromatic generalisation. The trichromatic generalisation describes the properties 

of trichromatic colour matching, and states that given a set of three primary stimuli, 
A colour stimuli can be matched by an additive mixture of these three primaries, 

where matches may involve addition of a negative amount of one or two of the 

primaries. In colorimetry, the relative proportions of the three primaries required to 

match a colour stimulus are known as tristimulus values. Two stimuli with the same 

tristimulus values under identical viewing conditions look alike to normal 
trichromats. Colour matching functions consist of the tristimulus values for 

monochromatic stimuli of equal radiance, for a given set of primaries. In 

colorimetry, colour matching functions can be used as weighting functions to 
determine the amounts of the primaries, for which they are defined, that will match 

any colour stimulus. If P is a colour stimulus with spectral radiant power 

distribution P(, %) and A, B, C are a set of primaries so that a match is expressed by 

P=AA+BB+cC Eq. 1-1 

then the tristimulus values A, B, C are given by 

K fP (k) T (k) d, % Eq. 1-2 

K fP (, %)b- (k) d% Eq. 1-3 

K fP (, %)-c (k) d, % Eq. 1-4 

where i (k), ý (k), -E (, %) : appropriate colour matching functions, and K-- scaling 

constant. 

The CIE 1931 standard colorimetric observer was introduced in that year to provide 

the first international standard for the specification and measurement of colour 

stimuli, for use in industry and science. The standard was based on the average 

colour matching properties of a set of normal trichromats, as there were no reliable 

estimates of the cone spectral sensitivities at that time. 'I'he CIE defined two 
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equivalent sets of colour matching functions based on the colour matching 

experiments of Wright (1928-1929) and Guild (1931) and the CIE 1924 spectral 

luminous cfficicncy function V(X) (see section 1.2.5 below). Only relative colour 

matching values were supplied by Guild and Wright, leading the CIE to derive sets 

of CMFs under the assumption that a linear combination of the colour matching 

functions should equal V(X). Ile first set of CNIFs 7 (X), R (?. ), E (k) was defined 

for a set of real primaries, chosen because they could be calibrated accurately. Tbc 

units of. the tristimulus values R, G, B were defined such that equal proportions of 

the primaries matched an equal energy white (a stimulus with a flat spectral radiance 
distribution). In this colorimetric specification, known as the RGB system, the 

tristimulus values were negative over some regions of the visible spectrum; the 
CNIFs for the RGB system are shown in Figure 1-19. 
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Figure 1-19 (A)-(B). Colour matching functions of the CIE 1931 standard colorimetric 
observer, for the RGB system (A), and the XYZ system (B). Reproduced from ox7yszecki 

and Stiles 1982). 

The second colorimetric specification defined by the CIE in 1931 was a linear 

transformation of the RGB system to obtain positive tristimulus values over the 

whole spectrum. The tristimulus values were denoted 3ý Y, Z and associated CMFs 

these are shown in Figure 1-19. The transformed RGB 

primaries become imaginary primaries in the XYZ system, but cqual energy white is 

still matched by equal proportions of the primaries. 'Me linear transform used to 

obtain the XYZ system from the RGB was chosen out of the different possibihties 
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available, to equate the Y(%) colour matching function with the CIE 1924 photopic 

spectral luminous efficiency function V(X); linking colorimetry to the field of 
photometry. I'lie advantages of the XYZ system led to the global community 

adopting it as an international standard for colour specification. 
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Figure 1-20. Colour matching functions of the CIE 1964 standard colorimetric observer, 
for the RGB system (A), and the XYZ system (B). Reproduced from (Wyszecki and Stiles 

1982). 

The colour matching data of Guild and Wright, on which the 1931 standard 

colorimetric observer was based, were obtained for a centrally viewed field of size 2' 

angular subtense. This small field size was chosen to limit the influence of rods in 

colour matching. Later investigations suggested that colour matches for larger field 

sizes were not adequately predicted by the 1931 observer, and so an alternative set 

of colour matching functions were defined by the CIE in 1964. The 1964 

supplementary standard colorimetric observer was based on the data of Stiles and 
Burch (1959), and of Speranskaya (1959), who obtained colour matching data for a 

10* field. The supplementary CMFs 3; 0 
(k), 710 (k), i; o 

(%) (shown in Figure 1-20) 

also purport to describe rod free colour-matches, for the constituent data were 

either obtained at high stimulus luminances or were cortected for rod intrusion. A 

further complication of large field colour matching is the presence of the Maxwell 

spot - an area of toughly 4' around the point of fixation that differs in colour 
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appearance to the remainder of the field, which is attributed to the macular pigment. 
Colour matches from which the 10' colour matching functions were derived, were 

made for the area extraneous to the Maxwell spot. 

The two CIE standard colorimetric observers define the colour matching 

characteristics of an ideal observer, based on the colour-matching data of real 

observers. The CIE 1931 standard observer is recommended for field sizes up to 4" 

angular subtense and the 1964 supplementary colorimetric observer is 

recommended for large-field colour matches under photopic 'Viewing conditions. 
'Me colour matching properties of individual normal trichromats often differ from 

those of the CIE standard observers. This is in mainly due to individual differences 

in the optical density spectra of the lens and macular pigment (see sections 1.1.1 a 

and 1.1.2 h). Individual differences in lens density can be large even between young 

observers (van Norren and Vos 1974). I. Arge variations in macular pigment density 

have also been found between individuals (Werner et A 1987). I'liese differences 

account for much of the variation in individual colour matching data and deviations 

from the properties of the CIE standard colorimetric observers. 

1.2.4 Chromaticity diagrams 

For either the CIE 1931 or the CIE 1964 colorimetric system, colour stimuli can be 

represented on a two-dimensional diagram. Such diagrams were first introduced by 

Maxwell and are referred to as chromaticity diagrams. In a chromaticity diagram two 

normahsed tristimulus values are plotted as Cartesian coordinates, known as 

chromaticity coordinates. For the CIE 1931 XYZ system the chromaticity 

coordinates x, y, z are given by 

x 
Eq. 1-5 

(X+Y+Z) 

y=y Eq. 1-6 
(X+Y+Z) 

z 
Eq. 1-7 (x+Y+Z) 
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Hence 

X+y+z=l Eq. 1-8 

Chromaticity coordinates for the CIE 1964 standard colorimetric system are 

calculated in a similar way from the ttistimulus values XIO., Y10 and Z10. 
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Figure 1-21 (A)-(B). Chromaticity diagrams associated with the XYZ systems of the CIE 
1931 (A) and CIE 1964 (B) standard colorimetric observers. Reproduced from (Wyszecki 

and Stiles 1982). 
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Equation 1-8 highlights that only two chromaticity coordinates are independent, 

which is why they can be represented on a two dimensional diagram. It is usual to 

plot the x and y coordinates. 'Me chromaticity diagrams associated with the XYZ 

systems of the CIE 1931 and 1964 standard colorimetric observers arc shown in 

Figure 1-21. The chromaticity coordinates of monochromatic stimuli plot as a 

curve, known as the spectral locus. Ibc line joining the wavelengths at either end of 

the visible spectrum is known as the line of non-spectral purples. The chromaticity 

of all real colour stimuli fall with the boundary created by the spectral locus and the 

line of non-spectral purples. 

Chromaticity diagrams are useful for illustrating the relationships between colour 

stimuli, but they do not dcfine how a colour stimulus will be pcrccivcd by a colour 

normal observer. Colour perception is more complicated, and depends on many 

factors including stimulus luminance, the conditions of observation, and inter- 

observer differences such as those discussed in section 1.2.3. It should also be noted 

that equal distances between chromaticity coordinates of colour stimuli plotted on 

the CIE 1931 (x, y)-chromaticity diagram and the CIE 1964 (xlo, yj)-chromaticity 

diagram do not necessarily relate to equal perceptual colour differences between 

stimuli. 

1.2.5 Photometry and the CIE standard photometric observers 

Photometry is the field of colour science used to measure the visual effectiveness of 
light relative to its spectral radiant power distribution. Photometry is analogous to 

the field of radiometry, but takes into account the spectral response of the human 

eye. Photometry is governed by the laws of proportionality and additivity, often 

referred to as Abney's laws, which state that in terms of brightness, if stimulus A 

matches stimulus B and if the radiant power of both stimuli are altered by a factor cc 

then cc A will match cc B (proportionality law), and that for stimuli A, B, C and D, if 

A matches C and B matches D then (A+B) will match (C+D) (additivity law). These 

laws also govern colorimetry, where the matching operation is colour matching 

instead of brightness matching. 
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The spectral luminous efficiency of the eye, also referred to as the VX response, may 
be described as something akin to the brightness response of the eye for 

monochromatic lights across the visible spectrum. Measurement of spectral 
luminous efficiency varies in complexity depending on the viewing conditions. 
Under scotopic conditions the VX response is simply the spectral sensitivity curve of 

the rod photoreceptors measured at the cornea. Under photopic conditions the VX 

response is determined from activity of the three types of cone. The photopic 

response curve is dependent on the method of measurement, but is relatively stable 

over a large range of intensity. The mesopic case is more complicated still; spectral 
luminous efficiency curves are dependent on the relative activity of the three types 

of cone and the rods, and not only depend on the method of measurement, but also 

on the level of retinal illumination. 

A number of different methods have been used to measure photopic spectral 
luminous efficiency, including direct heterochromatic brightness matching, 
heterochromatic flicker photometry and the minimally distinct border method. In all 

these methods the reference field is usually chosen to be a white stimulus of broad 

spectral power distribution, or a monochromatic stimulus of fixed wavelength, 

while the test field is a monochromatic stimulus of variable wavelength. In direct 

heterochromatic brightness matching (HBNý two halves of a field of different 

spectral composition (the test and reference) are matched for brightness by 

alteration of the radiant power of the test half of the field. Such measurements ate 
difficult because they require the observer to isolate the perception of brightness 

from hue and saturation, attributes that can differ substantially between the two 

halves of the field. A variant of HBM is the step-by-step method, where the test and 

reference field are both monochromatic and the reference field is varied in 

wavelength to be constantly separated from the test wavelength by a fixed number 

of nanometres. The main problem with HBM is that it does not obey the 

photometric law of additivity. For example, if two monochromatic stimuli are 

matched with a fixed reference stimulus, the sum of the monochromatic stimuli will 

often produce a stimulus that is less bright than the reference stimulus with double 

the radiant power. This phenomenon is known as subadditivity, and is thought to be 

due to cone-cone interactions. A method that satisfies the law of additivity to a 
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close approximation, is flicker photometry Oves 1912). In heterochromatic flicker 

photometry a4FP) two spatially coextensive fields are rapidly alternated, and the 
flicker frequency plus the radiant power of one field is altered to minimise the 

perception of flicker. 'Me perceptual attribute that is matched is analogous to 
brightness, but is usually referred to as flicker brightness. The procedure known as 
the minimally distinct border method (NIDB) produces results that are comparable 
to HFP (Wagner and Boynton 1972). In this method the test and reference field are 
juxtaposed and the radiant power of the test field is altered to minimise the 

appearance of the border between the two halves of the whole field. The method 

requires optical correction of the chromatic aberration of the eye. For HBN1, HFP 

and MDB the reciprocal of test stimulus radiant power required to match the 

reference stimulus., is plotted against wavelength, and the curve normalised to unity 

at its maximum value to obtain the spectral luminous efficiency curve. For step-by- 

step HBNf, the spectral luminous efficiency function is derived from the integral of 

the function dVx/dX. 
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Figure 1-22. The CIE standard luminous cfficiency functions for photopic (V(%)) and 
scotopic vision (V'(%)). The V(A. ) curve peaks at 555 run and maximum sensitivity of the 

V'(X) function is at 507 nm. Reproduced from (Wyszecki and Stiles 1982). 

In 1924 the CIE defined the standard photometric observer for photopic vision, 

described by the photopic spectral luminous cfficiency function V(%). Ile V(X) 
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function was based on the measurements of Coblentz and Emerson (1918), Hyde, 

Forsythe and Cady (1918), Gibson and Tyndall (1923), and Hartman (1918), 

amalgamated into a smooth function by Gibson and Tyndall (1923). The 

experimental data were acquired for a central 2' field using a number of the 

methods described above, but was predominantly based on HFP measurements. 

For this reason, V(%) is generally considered to represent flicker photometric 

matches. The CIE standard photometric observer for scotopic: vision was 

established in 1951, defined by the scotopic: spectral luminous efficiency function 

V'(X). The V'(X) curve was constructed from the data of Wald (1945b) and 
Crawford (1949). Wald measured absolute thresholds for monochromatic test 

stimuli at eccentric locations i. e., the minimum radiance to just detect a flashing 

stimulus, whereas Crawford's dark adapted observers obtained direct brightness 

matches for a centrally viewed 20' field. Figure 1-22 shows the standard luminous 

efficiency functions for both photopic and scotopic vision. The peak sensitivity of 

the photopic luminous efficiency function is at 555 nm and that of the scotopic 
function is at 507 nm. This shift is spectral response of the eye towards shorter 

wavelengths with reduction in illumination is known as the Putkinje shift. The shift 
in peak spectral sensitivity is evident in mesopic spectral luminous efficiency curves 

as the adaptation level is reduced from the photopic to the scotopic range. Mesopic 

spectral luminous efficiency curves and proposed systems of mesopic photometry 

are discussed in more detail in section 1.3.2 below. Due to the difficulties outlined 

above and other factors considered in section 1.3.2, there is currently no standard 

photometric observer for mesopic vision. 

Measurements of spectral luminous efficiency subsequent to those that formed the 

basis of the CIE 1924 V(?, ) function, suggested that the V(X) curve underestimated 

sensitivity in the short wavelength region of the visible spectrum. Modifications to 

the curve below 460 mn by Judd (1951) and later alterations by Vos (1978) led to 

the definition of the Judd-Vos modified Vm(X) function, which is shown in Figure 

1-23. Although this function is more representative of the photopic spectral 

response of colour normal observers it has not replaced the CIE 1924 V(%) function 

for general photometric applications; all instrumentation is based on V(X). The 
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Judd-Vos modified Vm(X), however, is often used in vision science. No spectral 
luminous efficiency fiinction has been formally recommended by the CIE that 
describes the photometric characteristics of a large-field. In deriving the 

y, O 
(X) colour matching function of the CIE 1964 colorimetric observer, Stiles and 

Butch (1959) incorporated flicker photometric matches obtained at the wavelengths 

of each of their primary stimuli. In 1978 the CIE (CIE 1978) reported that the 

y1o colour matching function provides a good fit for flicker matches in other 

regions of the visible spectrum, and, therefore, provisionally advocated use of 
'f, O 

(?, ) as a spectral luminous efficiency curve for large-field photopic vision. 

i 

i Lo 
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. 001 

Figure 1-23. The Judd-Vos modified Vm(X) function (continuous line) compared to the 
CIE 1924 standard luminous efficiency function, V(X) (dashed line). Reproduced from 

(CIE 1978). 

'ne luminous efficacy of radiation is a quantitative description of the ability of fight 

to elicit a visual response. The photopic (K(X)) and scotopic (K! (X)) luminous 

efficacy for monochromatic radiant flux, are defined by equations 1-9 and 1-10, 

respectively. 

K(k) = K. V(, %) Eq. 1-9 

K'(X) = K' V'(2, ) Eq. 1-10 
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where K,,, = 683 lumens per watt ýrn. W) and IV.. = 1700 lumens per watt ýrn. Wl). 

Tbus, the photopic luminous flux ((D, ) for a stimulus of radiant flux (D. x is givýn by 

(D, = K,. f(De, 
XV 

(X) &, Eq. 1-11 

and scotopic luminous flux ((D', ) is given by 

OF = K' (D Vl (, %) dX Eq. 1-12 vmfe, ). 

The spectral luminous efficiency curves of normal trichromats often differ from 

those of the CIE standard observers. As mentioned earlier, spectral luminosity 

curves are highly dependent on the method of measurement, but large variations are 

also observed between the luminous efficiency functions of colour-normals 

obtained under identical conditions (Gibson and Tyndall 1923). Deviations from 

the standard curves and inter-observer variations can be attributed in part to the 
individual differences in optical density spectra of the crystalline lens and macular 

pigment, referred to in section 1.2.3. Another source of individual differences in 

photopic luminous efficiency functions relates to the relative numbers of L- and M- 

cones in the retina, which ate known to vary between colour normals (see Kremers 

et al. 2000). The photopic spectral luminous efficiency function represents 

postreceptoral function, and is usually modelled as a linear combination of the 

activity in the L- and M-cones. The relative weighting of L- and M-cone spectral 

sensitivity curves required to produce a good fit to the Vx function for a particular 

observer varies depending on the relative number of L- and M-cones (Kremers et al. 
2000; Brainard et al. 2000). 

1.2.6 Chromatic discrimination 

The ability of normal trichromats to discriminate between different colour stimuli 

can be quantified using visual psychophysical techniques. One extensively applied 

method is the measurement of wavelength discrimination. Given a monochromatic 

stimulus at fixed wavelength X, wavelength discrimination (AX) is measured by 

determining the smallest difference in wavelength that produces a just-noticeable 

change in appearance. Such experiments commonly employ a bi-partite field, one 
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region of which is filled with light of the fixed test wavelength, and the other region 
is filled with light of variable wavelength. The just-noticeable difference between the 
test and variable fields can be found by direct adjustment whilst maintaining a 
brightness match between the two fields. Alternatively the dispersion of a series of 
matches between the two fields can be taken as a measure of discrimination. A 

wavelength discrimination curve can be obtained by measuring A% for values of X 0-- 
throughout the visible spectrum. It is usual to plot (AX. + A%)/2 against X, where 
AX, and AX- are the just-noticeable differences in the direction of longer, and 

shorter wavelengths, respectively. Wavelength discrin-dnation curves 

characteristically indicate poor discrimination at the ends of the visible spectrum 

and have two maxima and three minima. An example of a wavelength 
discrimination curve is given in Figure 1-24. Wavelength discrimination is 

dependent on field size, eccentricity, presentation duration, fight adaptation and 

stimulus intensity. 
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Figure 1-24. Wavelength discrimination curve showing data obtained by Wright and Pitt 
(1934). Reproduced from (Wyszecki and Stiles 1982). 

Chromatic discrimination has also been extended to measurements of just- 

noticeable differences throughout chromaticity space. Wright (1941) performed 

such an investigation using mixtures of pairs of either two monochromatic stimuh, 

or one monochromatic stimulus and one nonspcctral purple. In one half of a 2' 
bipartitc ficld the mixturc of the two lights could bc varicd, whilc the othcr half 

consisted of a test mixture. Observers were required to adjust the variable field so 
that it differed from the test field by a constant amount, whilst maintaining a 
brightness match between the two fields. Wright asked his observers to choose a 
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criterion difference larger than the just-noticeable difference to lessen task difficulty. 

'Me results of Wr-ight's experiment are shown in Figure 1-25. The bars indicate 

criterion differences in perception, which vary considerably in length in different 

regions of the CIE 1931 chromaticity diagram. 
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Figure 1-25. The results of Wrighes measurements of just noticeable differences in 
chromaticity, plotted in CIE 1931 chromaticity space. Reproduced from (Wyszecki and 

Stiles 1982), after (Wright 1941). 

MacAdam (1942) carried out a related experiment in which he measured the 
dispersion of a series of colour matches made by a normal trichtomat. In the 
instrument Mac. Adarn designed, the variable half of a 2' bipartite field could be 

altered in colour along a line in CIE 1931 chromaticity space, while the luminance 

of the field was automatically held constant. Starting with the variable field differing 

in chromaticity from the test field along a particular direction of chromaticity space, 
Mac. Adam's observer repeatedly made colour matches between the test and variable 
fields. The dispersion of a number of such matches was taken as one standard 
deviation of the distance in the CIE 1931 chromaticity diagram between the variable 

71 



Ch 1. Introduction 1.2. Colour vision 

and test field settings. MacAdarn determined in a further experiment that this 

measure was equivalent to one third of the just-noticeable difference. For each test 

chromaticity investigated, MacAdam. fitted an ellipse to the discrimination data from 

different directions of chromaticity space, which were constrained to be symmetrical 

about the test chromaticity. These ellipses, which have come to be known as 
NfacAdam's chromatic discrimination ellipses, are shown in Figure 1-26, with axes 

plotted 10 times their actual length. Figures 1-25 and 1-26 Mustrate that Wrighes 

and NfacAdaas data are broadly comparable. 
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Figure 1-26. The results of MacAdam's measurements of chromatic discrimination based 
on the dispersion of a series of colour matches, showing Mar-Adam's ellipses plotted in CIE 

1931 chromaticity space, with ellipse axes 10 times their actual length. Reproduced from 
(Wyszecki and Stiles 1982), after (MacAdarn 1942). 

Further colour matching experiments were carried out by Brown and MacAdam, 

(Brown and MacAdam. 1949; Brown 1957), for which the lun-dnance of the 

matching field was allowed to vary in addition to the chromaticity. From such data, 

discrimination ellipsoids can be fitted. Cross sections of Brown and MacAdarrýs 

ellipsoids in the plane of constant luminance, were comparable to MacAdam! s 
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original chromatic discrimination ellipses, but showed large variations in the ratio of 

the major to minor axes between observers. Wyszecki and Fielder (1971) also 
measured colour matching ellipsoids, carrying out a comparison of their results with 

those of MacAdam and Brown. Wyszecki and Fielder also assessed the repeatability 

of individual observers matches, and found the wid-iin-subjects variability could be 

large. Brown (1951) also investigated the effect ofteducing stimulus luminance on 

the precision of colour matching. Brown noted changes in both the size and 

orientation of the resulting ellipses; the findings of these experiments are discussed 

further in chapter 4. 

0. E 

0.. « 

0.4 

vi 

0.1 

0.. 

5 540 560 

500 

620 640 

77c 

11 90\ I I y v i I I I 
4 60\ 

450 
0 4 440 

450 
40 

420 

C IE 1 
Dl 

976 
ogro 

UCS 
m 

U. df U. 0 UZ 

Figure 1-27. The CIE 1976 uniform colour space. Reproduced from (Wyszecki and Stiles 
1982). 

1.2.7 Uniform chromaticity diagrams and uniform colour spaces 

Since definition of the CIE 1931 chromaticity diagram a number of transformations 

of the diagram have been suggested, which aim to make distances between 

chromaticities more representative of perceptual differences between colour stimuli 

of equal luminance. One such transformation, proposed by MacAdam, was 

recommended by the CIE in 1960, producing what is referred to as the (u, v)- 

uniform chromaticity-scale (UCS) diagram. The transform of the 1931 (x, y)- 

chromaticity coordinates into 1960 (u, v)-coordinates is given in Eq. 1-13 below. In 
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1976 the CIE recommended a modified version of the 1960 UCS diagram, which 

represented an improvement in uniformity of chromaticity scaling. The transform 

for the 1976 (u', V) UCS diagram is given in terms of the coordinates (u, v) in Eq. 

1-14 below and is shown in Figure 1-27. 

4x 
U 

-2x+12y+3 Eq. 1-13 
6y 

V=- 
-2x+12y+3 

I u =u 

v'= 1.5v 
Eq. 1-14 

To represent perceptual differences between colour stimuli that differ in both 

chromaticity and luminance, a three-dimensional colour space is required; two 

approximately uniform colour spaces have been recommended by the CIE, which 

aim to satisfy this condition. The CIE 1976 (L*, u*, v*)-space (CIELUV) is based 

on rectangular coordinates and is produced by plotting the quantities L*, u* and v* 
defined below 

Y3 

L* = 116 -16 
(Y. ) y 

L* = 903.3(yy 

u* = Of (u'- u,, ) 

v* = Of (v'- v,, ) 

for 
y>0.008856 
Y. 

for 
y<0.008856 
Y. 

Eq. 1-15 

where the Y tristimulus value and (u', v)-chromaticity coordinates with the 

subscript n, refer to the white reference stimulus, which is often taken as one of the 

standard illuminants defined by the CIE. Ilese standard illuminants are described 

by their relative spectral radiant power distributions and are representative of 
different light sources, for example, standard illuminant D65 is representative of a 

phase of natural daylight. The CIELUV space incorporates a (u', v')-chromaticity 

plane for constant L*. The second uniform colour space recommended by the CIE 

was the 1976 (L*, a*, b*)-space (CIELAB). In this space the quantities L*, a* and b* 

defined as in Eq. 1-16, are plotted in rectangular coordinates. 
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y 
Y, 

L* = 116(y. 
, 

-16 

L* = 903.3 : ý7 
y 
Y. 

for 
y>0.008856 
Y. 

for 
y 

<- 0.008856 
Y. 

Eq. 1-16 y3 

a*=500[(X)y- 
Y 

x� Y. 

b* = 200 -Z 
Y. Z. 
y 

if 
xY 

or 
z 

:50.008856 , then they are replaced by 7.787 
X+ 16 

X. , Y. Z. X,, 116' 

7.787 
Y )+ 16 

or 7.787 
(Z+ 16 

, respectively. 
Y. 116 Z. 116 

Tristimulus values with the subscript n, again refer to a white reference stimulus. 

The CIELUV space is applicable to sources and the CIELAB space applicable to 

surface colours. Both spaces ate defined for photopic viewing conditions. 

Associated with these two colour spaces ate colour difference formulae, which aim 

to predict the magnitude of a colout difference between two colour stimuli. These 

are defined in Eq. 1-17 and 1-18 below. 

AE = 
[(AL*)2 + (AU*)2 + (AV *)2 

1 Y2 
Eq. 1-17 

AE = 
[(ALj2 

+ (Aa j2 
+(Ab* 

)2 1 y2 

Eq. 1-18 

where AE: magnitude of the colour difference, AL*: difference between the two 

stimuli in the quantity L*, Au*: difference in the quantity u*, Av*: difference in the 

quantity v*, Aa*: difference in the quantity a*, Ab*: difference in the quantity b*. 

1.2.8 Colour spaces based on retinal physiology 
Colour stimuli can also be represented in colour spaces that relate to the early stages 

of visual processing. In cone excitation space the acdvity (teladve number of 

quantal absorptions) of the three cone types is plotted along orthogonal axes. In this 
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space colour stimuli that fall along any one straight line through the origin have 

equal chromaticity, but vary in intensity. Cone excitations can be calculated from 

current estimates of the cone fundamentals (see section 1.2.1 above). By making the 

assumption that S-cones do not contribute to luminance, MacLeod and Boynton 

(1979) introduced a chromaticity diagram based on an isoluminant plane of cone 

excitation space i. e., any plane where the sum of L-cone activity (L) and M-cone 

activity (M) is constant. In this diagram (shown in Figure 1-28) the quantity I is 

plotted on the abscissa and s on the ordinate, where I and s are defined in Eq. 1-19. 

I 

.8 

.6 

mi 
.4 .4 .4 

1 

Figure 1-28. MacLeod-Boynton chromaticity diagram. Modified from (Kaiser and Boynton 
1996). Lines labelled (P) and (D) show the colour confusion lines of a protanope and 

deuteranope, respectively. 

L 
L+M 

m 
L+Nf 

s 
L+M 

Eq. 1-19 

where S: activity of the S-cones. The quantity m also falls along the abscissa and is 

equal to (L+Ný-I. In this way, horizontal lines in the chromaticity diagram represent 

constant S-cone excitation and vertical lines represent constant L- and M-cone 

excitation, i. e. tritanopic colour confusion lines. Protanopic and deuteranopic 
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isochromatic lines also fall along straight lines in this diagram. It should be noted 

that steps of equal cone excitations do not correspond to equal perceptions of 

colour difference in this diagram. 

Cone contrast space is based on the premise that cone excitations are recoded in the 

retina as contrast signals. Such a space is useful for representing colour stimuli 

relative to a background field, where stimuli can be compared independently of the 

adaptive state of the cones. It was suggested by Von Kries (1905/1970) that cone 

signals were normalised individually, and so in cone contrast space the activity of 

each cone type is computed for an incremental/decremental stimulus relative to the 
background activity for the same cone type. Contrast is computed according to the 
Weber-Fechner law, which states that the ratio of an increment stimulus to its 

adapting level is constant. This relation was first suggested by Weber in relation to 

sensory discrimination, and Fechner investigated its applicability to visual 
discrimination. The Weber-Fechner law has been found to hold approximately for 

almost all sensory receptors. In cone contrast space, cone contrasts CLI, Cm and Cs 

are calculated according to Eq. 1-20 and plotted on orthogonal axes. 

CL L-LO 
Lo 

cm = 

M-mo 

mo 

cs 

S-so 

so 

Eq. 1-20 

Where L, M, S: excitations of the L-3, M- and S-cones, respectively, for the 

incremental/ decremental, stimulus and 4, Ný, SO: excitations of the L-, M- and S- 

cones, respectively, for the background. 

Opponent modulation spaces aim to represent the postreceptoral stage of 

processing where cone contrast signals are believed to be coded into two opponent 

colour mechanisms and a luminance mechanism. Derrington, Krauskopf and 
Lennie (1984) introduced an opponent modulation space (known as DKL space) 
based on the ideas of MacLeod and Boynton (1979) and Krauskopf, Williams and 
Heeley (1982). 
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Figure 1-29 (A)-(B). Diagrammatic representation of DKL space (A), and the orientations 
of the constant L& M-cone axis OabeHed constant R&G axis) and the constant S-cone 

axis OabeHed constant B axis) in the CIE 1931 chromaticity diagram (B). Reproduced from 
(Derrington et A 1984). 

Krauskopf and his colleagues (Krauskopf et A 1982) suggested from results of their 
investigations into the nature of colour processing beyond the photoreceptors, that 
there are three main cardinal axes in colour space that relate to independent visual 
pathways: a luminance mechanism and two chromatic opponent mechanisms. Based 

on these findings, Derrington, Krauskopf and Lennie (1984) defined a space with 
three orthogonal axes: the luminance axis, the axis of constant I, and INI-cone 
excitation and the axis of constant S-cone excitation. A schematic of their space is 
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shown in Figure 1-29. They considered ganglion and LGN cells with antagonistic 

receptive fields and defined three "ideal" cells, which would respond maximally to 

modulation along one of these axes and show no change in response to modulation 

along the two orthogonal axes (null axes). They recognised that the response of a 

real cell could then be modelled as linear combinations of these "ideal" cells. They 

defined an "ideal" luminance cell with summed input from L- and M-cones, and 

two chromatic "ideal" cells; one with opponent inputs from L- and M-cones and the 

other with S-cone input opposing input from L- and M-cones. In their 

electrophysiological recordings from macaque LGN cells they found that all 

parvocellular cells tested had one null axis that corresponded to either the constant 
S or the constant L&M axis, indicating that two classes of parvocellular cells exist 

with uniform response properties to isoluminant chromatic stimuli. Brainard (1996) 

detailed a method for computing DKL space coordinates for a colour stimulus 

relative to an adapting background from consideration of the properties of the three 

cardinal mechanisms. '11le response of the luminance mechanism can be scaled in 

terms of photopic luminance, but the choice of scaling constants for the constant S 

and constant L&M mechanisms are arbitrary. Brainard suggests that each 

chromatic mechanism should be scaled to give a response of unity for a stimulus 

with a pooled cone contrast, where pooled cone contrast is the square root of the 

sum of squared cone contrasts. 

1.2.9 Colour order systems 

A colour order system is a methodical organisation of object colours, with samples 
displayed to represent the relationship between all object colours in the given 

system. One category of colour order system is the colour appearance system. 
Relationships between colour stimuli in a colour appearance system are based on 

the visual perception of colours. The only example of a colour appearance system 

that will be described here is the Munsell system; other examples of this type of 

system are the Swedish natural colour system, the German DIN (Deusches Institut 

fur Normung) system and the Optical Society of America system. The Munsell 

system developed by A. H. Munsell, originated in 1905, and its arrangement of 

colours produces approximately constant perceptual differences between 
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neighbouring samples throughout the system in each of three perceptual attributes: 
hue, value and chroma. Munsell hue has the usual meaning of hue, Munsell value 
describes the lightness of a sample and correlates with sample reflectance, and 
Munsell chroma describes the amount by which a colour stimulus differs from an 

achromatic stimulus of the same lightness. There are 10 hues in the Munsell system; 
five principal hues (R: red, Y: yellow, G: green, B: blue and P: purple) and five 

intermediate hues (YR, GY, BG, BP and RP) that are arranged around a circle with 

equal spacing. The value scale is perpendicular to the hue circle. The grey scale, 

which runs through the centre of the hue circle, consists of 10 steps with white 
designated value 10 and black value zero. The scale of Munsell chroma runs radially 

outwards from the centre of the hue circle; larger numbers indicate stronger 

colours. A schematic of the system is shown in Figure 1-30. Samples are displayed 

in the Munsell Book of Color. The book consists of matt or glossy chips arranged 

with a constant hue on each page and the value scale printed vertically on the page 

and the chroma scale printed horizontally. 

Orange 
jo 

co 

Figure 1-30. Diagram Mustrating how the MunseU colour order system is arranged. 
Reproduced from (Hunt 1987). 

1.2.10 Congenital colour vision deficiencies 

Congenital colour vision deficiencies arise from inherited photopigment 

abnormalities. Colour deficient subjects are named in relation to the number of 
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cone photopigmcnts present in the retina, as anomalous trichromats, dichromats or 

monochromats. There are three types of anomalous trichromat, termed 

protanomalous, deuteranomalous or tritanornalous depending on whether there is 

an abnormality in the long wavelength sensitive (LWS), middle wavelength sensitive 
(MWS) or short wavelength sensitive (SWS) cone photopigment. The spectral 

sensitivity of the abnormal photopigment varies markedly among different 

anomalous trichromats of the same type; thus, the severity of the defect differs 

greatly. A dichromat lacks one of the three photopigments, and is termed 

respectively, a protanope, deutcranope or a tritanope if the LWS, MWS or SWS 

photopigment is absent. The term monochromat refers to subjects lacking two cone 

photopigments, or subjects with no cone photopigments. A rod monochromat is 

bereft of all three cone photopigments. The absence of the cone system means that 

rod monochromats can only detect differences in lightness between colour stimuli, 

they have poor visual acuity, nystagmus (unsteady fixation) and are photophobic 
(have an aversion to bright light). Cone monochromats lack two cone types. Cone 

monochromadsm is very rate and is usually characteriscd by a lack of LWS and 
MWS photopigments: a condition known as S-cone monochromatism. S-cone 

monochromats are generally believed to lack the capacity for colour vision, although 

there are a number of reports of S-cone monochromats requiring two primaries for 

colour matches, i. e. having dichromatic colour vision, which is thought to arise from 

interactions between S-cones and rods (Pokomy et al. 1970; Alpern et al. 1971; Hess 

et al. 1989; Reitner et al. 1991). S-cone monochrornats have visual acuity that is 

lower than normal plus in some cases nystagmus and photophobia. 

Both protan and dcutan colour vision deficiencies are both more common in males 

than females because they arc defects linked to the X-chromosome (of which 
females have two and males only one). The incidence of red-grccn defects also 

varies with race. Protanopia and deutcranopia arc present in the European male 

population with incidences of 1.01% and 1.28%, respectively, whereas protanornaly 

and deuteranomaly have an incidence of 1.07% and 4.61%, respectively (Sharpe et 

al. 1999). The corresponding figures for females ate 0.02% (protanopia), 0.03% 

(protanomaly), 0.01% (deuteranopia), and 0.36% (deuteranomaly) (Sharpe et al. 

1999). Tritan colour vision deficiencies are equally likely in males and fernales. 
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Estimated rates of incidence in the UK are 1 in 13,000 to 1 in 65,000 (Wright 1952). 

S-cone monochromacy, like red-green defects, is X-chromosome-linked. It affects 

approximately one in 100,000 males (Sharpe et al. 1999); all reported cases have 

been male. Other types of cone monochromacy are extremely rare, making it 

difficult to estimate the rates of incidence. Estimates of the incidence of rod 

monochromacy vary, 'but a Northern European survey in 1990 produced the figure 

of 1 in 50,000 for both sexes (see Sharpe and Nordby 1990). 

Observers with dichromatic and monochromatic vision produce abnormal colour 

matches compared to normal trichromats, and are unable to distinguish between 

some colours that appear different to colour normal observers. They also have 

altered chromatic discrimination and their relative luminous efficiency functions 

generally also differ from those of colour normals. Anomalous trichromats require 

three primary stimuli for colour matching, and may have normal chromatic 
discrimination, but their colour matches differ from those of normal trichromats. 

Matches to a monochromatic yellow can be obtained from mixing a red and green 

monochromatic primary, and the relative proportion of red to green (R/G ratio) 

can be used to differentiate between normal trichromacy, protanomaly and 
deuteranomaly. This ratio was first used by Lord Rayleigh in 1881 who discovered 

red-green anomalous observers, and the match is often referred to as a Rayleigh 

match. Tritanomaly is best distinguished from normal trichromatism by comparison 

of chromatic discrin-dnadon in the green to blue spectral range. Wavelength 

discrimination curves for anomalous trichrornats show characteristics that fall 

somewhere in between those of normal trichromats and dichromats of the same 

type. The relative luminous efficiency functions of deuteranomalous and 

tritanornalous subjects obtained using flicker photometry, are similar to those of 

normal trichromats, whereas protanornalous subjects exhibit low luminous 

efficiency for the red end of the visible spectrum (Wright 1946). 

Dichromats make colour matches using only two primaries and cannot distinguish 

between stimuh of certain chromaticities in the absence of brightness cues. For each 

type of dichromat, stimuli that can be matched by adjustment of intensity only, plot 
in the CIE 1931 chromaticity diagram on what are termed isochromatic lines, 
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converging at the copunctual or confusion point. These copunctual points for the 

three types of dichromat have been measured experimentally and are located outside 

the spectrum locus (Smith and Pokorny 1975). Figure 1-31 shows examples of 
isochromatic lines for each class of dichromat, plus the location of the copunctual 

point for protanopes and tritanopes (the deuteranopic copunctual point faus outside 

graph (B)). 
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Figure 1-31 (A)-(C). Diagrams illustrating isochromatic lines for each class of dichromat: 
protanopes (A), deuteranopes (B), and tritanopcs M. Reproduced from (Wyszecki and 

Stiles 1982). 

Protanopes and Deuteranopes cannot discriminate between wavelengths from the 

red end of the spectrum to about 520 run and 530 mn, respectively and their 

wavelength discrimination curves consist of a single minimum at about 495 nrn. 

Wavelength discrimination for tritanopes is absent from about 445 to 480 nm. 

Dichromatic relative luminous efficiency curves differ from those of normal 
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trichromats in shape and peak sensitivity, leading to notable differences in sensitivity 

over particular regions of the visible spectrum. Protanopes exhibit a marked shift in 

peak sensitivity towards shorter wavelengths compared to colour normals, from 555 

run to about 540 nm, and sensitivity at the red end of the spectrum is greatly 

reduced (Pitt 1935). The peak sensitivity of a deuteranope's relative luminous 

efficiency curve is marginally shifted towards longer wavelengths and is located at 

around 560 nm (Pitt 1935). Tritanopes have the same peak sensitivity as normals, 
but their relative luminous efficiency functions display reduced sensitivity at short 

wavelengths (Wright 1952). Examples of luminous efficiency curves for dichromatic 

observers are illustrated in Figure 1-32. 
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Figure 1-32. Spectral luminous efficiency functions for the three classes of dichromat, after 
(Pitt 1935) (protanope and deuteranope), and (Wright 1952) (tritanope). The curves are 

displaced vertically for clarity. Reproduced from (Wyszecki and Stiles 1982). 

Rod monochromats can only make matches in terms of relative intensity. The 

relative luminous efficiency curve of a rod monochromat peaks between 500 and 

510 nin and is similar to the standard spectral luminous efficiency curve for scotopic 

vision (Nordby et al. 1984; Sharpe et al. 1988). Cone monochromats are generally 

believed to only make matches between colour stimuli by adjustment of their 

relative intensities. S-cone monochromats have relative luminous efficiency 

functions similar to the S-cone spectral sensitivity function, with a maximum at 

around 440 nm. There is some evidence to suggest that in S-cone monochromats 
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under mesopic conditions, the rods and S-cone interact, resulting in dichromatic 

colour perception (Reitner et al. 1991). The nature and characteristics of L- and M- 

cone monochromatism are still poorly understood. 

1.2.11 Tests for colour vision deficiencies 

There are many different colour vision tests used to detect and/or classify colour 

vision deficiency, based on different psychophysical methodologies. Three widely 

used tests will be discussed here: the Ishihara pseudoisochromatic plates, the 

Farnsworth-Munsell 100-hue test and the Nagel anomaloscope. Pseudoisochromatic 

plates utilise the fact that dichromats cannot discriminate between certain 

chromaticities when luminance cues are absent. The Ishihara plates are a screening 

test for red-green colour deficiencies, i. e. protanopia, protanomaly, deuteranopia 

and deuteranomaly, but also aim. to distinguish between protan and deutan defects. 

The test pattern (a numeral or pathway) and background are divided into circular 

patches that vary in luminance, which has the effect of removing edge cues and 

luminance cues, forcing the observer to discriminate between the test and 

background solely using colour signals. To overcome the problem of reproducing 

exact chromaticities in the printing of the plates the chromaticity of the test and 

background patches are also varied about given coordinates. The average spectral 

reflectances of the test and background stimulus are chosen to he approximately 

along isochromatic lines for ptotanopes and deuteranopes when viewed under an 

illuminant representative of average daylight, such as CIE standard illuminant C. 

The plates consist of four different designs: in the first design normal trichromats 

(NTs) see a particular number and red-green deficient observers (RGs) see another, 

in the second NTs see a number and RGs do not, in the third RGs see a number 

that NTs cannot see, and the fourth is used to distinguish between protan and 

deutan defects and consists of two numerals, one of which is the only one detected 

or appears brighter and clearer for protan defects, and the other numeral is the only 

one detected or appears brighter and clearer for deutan defects, and both are seen 

by colour normals. 
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The Farnsworth-Munsell 100-hue test (F-M 100-hue) was developed by Farnsworth 

in 1943. It is a test of hue discrimination ability and only detects colour vision 
deficiency if it is moderate or severe. The test consists of 85 Munsell sample papers 

mounted in black cylindrical housings known as caps, which form a hue circle of 
fixed chroma. The caps are numbered and arranged contiguously in four boxes with 

two caps fixed at the ends of the boxes at appropriate intervals in the hue circle 
(numbers 1,22,43 and 64). Subjects are required to arrange the caps within each 
box between the two fixed samples to form a continuous series of colour. The test 

should be undertaken -using an illuminant that- approximates average daylight 

(usually CIE standard illuminant C). Hue discrimination error scores for each cap 

are obtained from the sum of the differences between the numbers of neighbouring 

caps as arranged by the subject. The total error score is equal to the sum of cap 

error scores minus 170, and is a measure of overall hue discrimination ability. Cap 

error scores are also plotted on a polar diagram where the distribution of errors may 

indicate a protan, deutan or tritan defect; specific ranges of cap numbers encompass 

dichromatic colour confusion axes. 

The Nagel anomaloscoPe utilises the different Rayleigh match characteristics of red- 

green colour deficient subjects and normal trichromats to classify red-green defects. 

In the Nagel anomaloscope a 3' bipartite field is presented to the observer, the 

bottom half of which is filled with yellow light (589 nm) that can be adjusted in 

intensity, and the top half is filled with a variable mixture of red (670 nrn) and green 

(546 mn), which is maintained at a constant luminance. Observers are firstly 

required to make a match between the two halves of the field by adjusting the 

mixture of red and green primaries and the intensity of the yellow light. Secondly, 

the observer is required to make a match by altering the intensity of the yellow light 

to a red-green mixture set by the experimenter. Normal trichromats are able to 

make a precise match within a smallrange of R/G ratios. Anomalous trichromats 

make matches outside the range of colour normals, with a precision that can be 

equivalent to that of colour normals, but their repeated matches are often more 

variable. Protanornalous subjects have larger R/G ratios than normal trichromats, 

and deuteranomalous subjects have smaller R/G ratios than NTs. The matching 

range of both protanopes and deuteranopes encompasses all R/G ratios, i. e., they 
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can make a match for any R/G ratio by adjusting the intensity of the yellow fight. 

Protanopes and subjects with protanomaly must lower the intensity of the yellow 
light to make a match with a high proportion of red, reflecting their reduced 

sensitivity at long wavelengths. This characteristic is utilised to differentiate between 

protanopes and deuteranopes. 

1.3 The dual nature of the retina and aspects of visual 

function under mesopic conditions 
The human visual system can operate over a range of intensities spanning almost 10 

log units. Changes in pupil size account for about 1.3 log units of this range of 

adaptation, but the majority is due to the operating characteristics of the rod and 

cone photoreceptors. As mentioned in section 1.1.2 b. the cones function at 

intermediate to high intensities, whereas the rods function when photons are less 

abundant; but their operating ranges overlap over a region of three to four log units. 
It was stated above in section 1.1.2 b. that the term mesopic is used to describe 

vision under conditions where both rods and cones contribute to the visual 

response. The mesopic range encompasses levels of intensity from rod saturation to 

the absolute threshold of the cones, but the relative contribution made byrods and 

cones in mesopic vision varies as a function of light adaptation, stimulus size, 

eccentricity, duration, and spectral content. The rod and cone systems are generally 

considered to operate independently. This is a good approximation under many 

conditions, but the literature contains several reports suggesting deviation from rod 

and cone independence; these are discussed in section 1.3.3. 

1.3.1 Differences between rod and cone mediated vision 

a. Absolute threshold 

Threshold is defined as the probability that a change in a particular stimulus 

attribute is detected. Visual thresholds are often taken as 50% probability of seeing a 

change. Absolute threshold defines the minimum stimulus for vision when the eye 
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is fully adapted to the dark, and depends on the size, duration and location of the 
test stimulus. Rod threshold is usually measured at a peripheral retinal location 

where there is a high density of rod receptors. Cone threshold can be measured by 

utilising the fact that rods ate absent from the centre of the fovea. Absolute 

thresholds measured using small, brief stimuli are dependent on the number of 
quanta entering the eye during a single presentation. Marriott (1963) obtained 

measurements using such stimuli of wavelength 555 nin (the wavelength of 
maximum sensitivity for cone vision) imaged within the foveal centre, and found a 
mean threshold of 602 quanta (range 490-872 quanta). The absolute threshold 

measured in this way for rods using stimuli of wavelength 507 nm presented in the 

periphery, is of the order of 80 quanta (Baumgatdt 1972). These results indicate that 

rod vision is about 7.5 dines more sensitive than cone vision for stimuli of small 

area. Absolute thresholds measured using long presentation times and large stimuli 

are expressed in terms of retinal illuminance. Absolute rod threshold measured in 

this way for a 6' diameter 200ms stimulus has a mean of -3.46 log scotopic: trolands 

with a range of -3.22 to -3.97 log scotopic: trolands (Sharpe et al. 1989). A lower 

mean value of absolute rod threshold was obtained by Pirenne et al. (1957) using a 
large field, which corresponded to -4.36 log scotopic trolands. Under such 

conditions, where spatial and temporal summation is possible, Barlow (1972) 

determined that cones require a stimulus of 4 log units greater intensity than that 

required by rods at absolute threshold. 
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Figure 1-33. An example of a typical dark adaptation curve, reproduced from (Schwartz 
1994). 
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b. Dark adaptation and increment thresholds 

The process of recovery of rod and cone sensitivity following adaptation to high 

ambient illumination is known as dark adaptation. A typical dark adaptation curve is 

illustrated in Figure 1-33. Usually a broadband, white light is used to provide light 

adaptation, also known as the bleaching stimulus. After the white adapting stimulus 
is extinguished, detection thresholds arc measured for a brief stimulus presented 

against a totally dark background. Within a few minutes following the initial rapid 
fall in threshold a plateau is reached, which represents the cone detection threshold. 
After a further few minutes threshold falls for a second time until the level of rod 

absolute threshold is reached, which takes approximately 30 to 40 minutes. The 

second fall of threshold begins at what is termed the rod-cone break, and marks the 

point at which the rods become more sensitive than the cones. Above the rod-cone 
break the stimulus is detected by the cones and below the break it is detected by the 

rod system. 
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Figure 1-34. Graph to illustrate, for a monochromatic test stimulus, the effect of cone 
spectral sensitivity on the rod-cone break in the dark adaptation curve, and the effect of rod 

spectral sensitivity on absolute threshold. Reproduced from (Schwartz 1994). 

Ile shape of dark adaptation curves depends on several factors including the 

intensity and duration of the bleaching stimulus, the size, duration, location and 

wavelength of the test stimulus. As the intensity of the bleaching stimulus is 
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reduced, cone sensitivity becomes less affected and the cone plateau is reached 

earlier or may no longer be evident (Hecht et al. 1937). Dark adaptation curves 

obtained with a small stimulus imaged on the rod free area of the fovea also show 

no rod-cone break and threshold does not fall below the level of the cone plateau 
(Hecht et al. 1935). Alteration of the test stimulus wavelength results in a change in 

the level of the cone plateau and absolute threshold, and changes the time at which 

the rod-cone break occurs. These factors can be approximately related to the 

spectral luminous efficiency functions of the cones and rods (see Figure 1-34). For 

long wavelength test stimuli the rods never become more sensitive than the cone 

system, and again no rod-cone break is present in the dark adaptation curve (Hecht 

et al. 1942). 
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Figure 1-35. Tbreshold vs. intensity curve obtained using the two-colour method, with a 1- 

stimulus, showing a rod and cone branch. Nx denotes the increment threshold and M. 
denotes the radiance of the background field. Reproduced from (Wyszecki and Stiles 1982) 

after (Stiles 1939). 

The threshold for detection of a test stimulus added to a uniform adapting 

background is described as an increment threshold. Such threshold measurements 
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may be used to investigate the process of light adaptation. The spectral properties of 

the background and test ate often chosen with the aim of isolating different visual 

mechanisms such as the rod system from that of the cones. This is achieved by 

selecting a chromatic adapting background (usually monochromatic) to which the 

mechanism under investigation is not sensitive and an incremental test stimulus 

(also usually monochromatic) to which it is sensitive, a scheme known as the two- 

colour threshold method. If increment thresholds arc measured for increasing 

background intensities, threshold vs. intensity (IVI) curves can be plotted. TVI 

curves obtained using the two-colout method in the extrafoveal. retina typically 

consist of a rod branch and cone branch, see Figure 1-35. 
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Figure 1-36. Five of Stiles 7t-mechanisms: ni-ns measured using Stiles' two-colour 
threshold technique. Reproduced from (Boynton 1979), after data tabulated in (Wyszecki 

and Stiles 1967). 

Stiles used the two-colout threshold method (often referred to as Stiles' two-colour 

threshold technique) to measure foveal thresholds and TVI curves for test 

91 

FREQUENCY (THt) 



Ch 1. Introduction 1.3. The dual nature of the retina and aspects of visual function 

wavelengths across the visible spectrum against different chromatic adapting O__ 
backgrounds. Stiles investigations led to the discovery of seven cone-mediated 

mechanisms with different spectral sensitivity curves, known as the 7r-mechanisms 

(Stiles 1959), five of which are shown in Figure 1-36. The 7r-mechanisms are 

generally broader than the spectral sensitivity curves of the three cones types, and 
are thought to represent the behaviour of channels that the cone signals feed into; 

however, the three mechanisms 7c,, 7r2, and 7C3 appear to be associated primarily with 

the S-cones, 7r4 and 7r4' the 1ý4-concs, and 7r, and 7rs' the Icones. 
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Figure 1-37. Dark adaptation curves (on the left) and increment threshold curves (on the 
right) for a rod monochromat, modified from (Blakemore and Rushton 1965a). 'Me flued 

symbols represent measurements for a stimulus 5' in diameter, and the open symbols 
represent measurements for a stimulus 6- in diameter. The dashed lines indicate how to find 

the equivalent background luminance at any stage during dark adaptation (see text for 
details). 

The mechanisms of dark adaptation and light adaptation are closely related. One of 
the most important factors in visual adaptation is the bleaching and regeneration of 
photopigments in the rod and cone photorcceptors. Following exposure to light, a 
proportion of retinal photopigment is bleached, and these molecules take time to 

resynthesize. The bleaching and recovery of the rod photopigment rhodopsin was 
studied by Rushton (1961) in a rod monochromat using retinal densitometry (see 

section 1.2.1). Rushton discovered that log threshold during dark adaptation is 
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proportional to the amount of bleached rhodopsin. He also noted, however, that 

measurements of threshold after bleaching depended on the parameters of the test 

stimulus. Rushton suggested, therefore, that threshold was related to, but not 

entirely determined by the recovery of rod photopigment. The results of ideas and 
investigations by Crawford (1937; 1947) indicated that adaptation could be 

explained in terms of an equivalent background luminance. Further evidence in 

support of Crawford's suggestion was obtained by Blakemore and Rushton (1965a). 

At any stage during dark adaptation, the equivalent background luminance is the 
luminance of the background that produces an increment threshold equal to that of 
threshold measured in total darkness; this concept is illustrated in Figure 1-37. 
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Figure 1-38. Graph illustrating that equivalent background luminance is independent of 
stimulus size, reproduced from (Blakemore and Rushton 1965a). Data points represent 

equivalent background luminances found from dark adaptation and increment threshold 
measurements in a rod monochromat, for a stimulus 5' in diameter (filled symbols) and for 

a stimulus 6o in diameter (open symbols). 

Blakemore and Rushton (1965a) obtained dark adaptation curves for a rod 

monochromat after 50% of rhodopsin was bleached, followed by measurement of 
increment threshold curves. They obtained measurements for two test stimuli 

differing in area: one test stimulus 5' in diameter and the other 6" in diameter. For 

each test stimulus, at intervals during the period of dark adaptation they found the 

equivalent background luminance. From these results, Blakernore and Rushton 

showed that equivalent background luminance was independent of test stimulus 

area over an extended range of threshold variation (see Figure 1-38). This result 
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implied that the amount of available rhodopsin was related to equivalent 
background luminance, and that the equivalent background luminance along with 
the spatial attributes of the test stimulus, determined threshold. 11cse findings 

compliment the view of Barlow (1964), that the neural noise (or dark-light) of 

photoreceptors containing a proportion of bleached pigment, produces a signal 

equivalent to that in response to a real light of equivalent background luminance 

when almost A the photopigment is regenerated. 

KAN CURVE FOR 
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Figure 1-39. Rod increment threshold curve showing rod saturation. Reproduced from 
(Aguilar and Stiles 1954). 

c. Saturation of the rod and cone systems 

Aguilar and Stiles (1954) obtained a measure of rod saturation from increment 

threshold data. They measured the threshold for detection of a 9' diameter 

incremental test field flashed at 9' eccentricity, as a function of background 

intensity. By using a green test light on a red adapting background and taking 

advantage of the difference in the Stiles-Crawford effect for rods and cones, they 

were able to favour detection by the rod system. Figure 1-39 shows their results. 

'Me TVI curve rises from the flat region indicating the level of absolute threshold, 
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to a region from about -1 to 2 log scotopic trolands where the rods obey the Weber- 

Fechner law i. e., where AI/I is constant g: intensity). At high intensities the rod 

system fails to respond to the incremental stimulus and the system is said to be 

saturated. Aguilar and Stiles estimated the intensity at which rods saturate from the 

point at which AI/I became greater than 100 times the value at moderate intensities, 

where AI/I was approximately constant. This produced an estimate for rod 

saturation between 2000 and 5000 scotopic trolands. 

Cone saturation has been investigated through measurement of increment threshold 

curves for the 7t mechanisms. Stiles found that TVI curves for the 7C4 and 71, 

mechanisms did not appear to saturate even at very high levels of intensity, but 

there is evidence that the blue sensitive 7cl, 7C2, and n3mechanisms do exhibit 

saturation (Mollon and Polden 1977). If the chromatic adapting background is 

presented as a flash to which the test stimulus is added rather than as steady state 

adaptation, however, TVI curves for the M-cone and L-cone mediated 7E4 and 71, 

mechanisms indicate that saturation does occur (Shevell 1977). 

Spatial and temporal characteristics of rod and cone pathways 

There are notable differences between the rod and cone system in relation to their 

spatial and temporal resolution. In general terms, the rods comprise a very sensitive 

system for the detection of light incident on the retina, whereas the cone system 

allows resolution of spatial and temporal detail. Properties of the rod system that 

contribute to its high sensitivity are its ability to sum responses over time and over a 

relatively large retinal area. Cone pathways, on the other hand, are able to signal 
information relating to small areas of the retina and brief events in time. It is mainly 

the L- and M-cones via the achromatic postreceptoral channel that are responsible 
for high spatial and temporal resolution. The S-cones do not facilitate good spatial 

vision because of their scarcity in the retina. There is also evidence to suggest that 

the temporal response of the S-cones is inferior to that of the L- and INI-cones 

(Boynton and Baron 1975). 
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The spatial summation characteristics of the retina can be investigated by 

considering the area over which Ricco's law (total spatial summation) holds. Ricco's 

law states that the number of quanta required for detection threshold does not vary 

with stimulus size up to a critical size, known as Ricco's area, ie. the product of 

stimulus area and intensity is constant. Riccds area depends on test wavelength, 
duration and retinal location, and background lun-dnance, and is typically of the 

order of a few minutes to one degree of visual angle in diameter. Estimates of 
Ricco! s area obtained by Barlow (1958) indicate that Ricco! s area for the rods is 

roughly 10 times that for the cones (Hess 1990). Tbc temporal equivalent to Ricco's 

law is Bloch's law, which states that the product of intensity and stimulus duration 

determines threshold up to a critical duration of presentation. Complete temporal 

sunimation is dependent on stimulus size, wavelength and retinal location. Bloch's 

law holds for cones up to durations of the order of 30-50 ms, and for rods up to 

durations of the order of 100 ms (Hess 1990). 

The properties of spatial vision are often investigated by measuring the threshold 

contrast for detection of sinusoidal gratings. If reciprocal thresholds are obtained 
for gratings of different spatial frequency, the resulting curve is referred to as the 

contrast sensitivity fimction. Contrast sensitivity reaches a peak at intermediate 

spatial frequencies and falls off sharply at high frequencies. Measurements under 

conditions that approximately isolate the rod and cone systems at 100 eccentricity 
(D'Zmura and Lennic 1986) and those acquired for a rod monochromat (Hess et al. 
1987), reveal that under mesopic conditions the two systems have comparable 

contrast sensitivity at low spatial frequencies, but that the high frequency cut-off for 

the rod mechanism is much lower than that of the cones. This leads to acuities of 6 

cycles degý' and 15 cycles degý' at 20 scotopic trolands for the rod and cone systems, 

respectively. 

Critical flicker frequency (CFF) is the frequency of presentation of a stimulus 

modulated in intensity either sinusoidally or with a square wave profile, at which the 

perception of flicker can no longer be detected and the stimulus appears continuous 
(a sensation described as flicker fusion). Critical flicker frequency is dependent on 

retinal illuminance (Hecht and Verrijp 1933). For predominantly cone-mediated 

96 



Ch 1. Introduction 1.3. The dual nature of the retina and aspects of visual function 

flicker detection (a small stimulus presented at the fovea), CFF peaks at about 45 

Hz in the region of 10,000 photopic trolands. For a peripheral target at low retinal 
illuminances, where flicker is detected by tods, CFF peaks at about 10 Hz. If, 

however, flicker is investigated under conditions that favour detection by rods at 
high levels of illuminance, up to 30Hz flicker can be detected (Conner and 
MacLeod 1977). There is evidence to suggest that rod vision in fact comprises two 

temporal channels (also see section 1.1.2 g), a slow channel that operates at low 

intensities and a second fast pathway that is able to detect greater rates of flicker at 
higher intensities (Conner 1982; Hess and Nordby 1986). 
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Figure 1-40. Mesopic luminous efficiency curves obtained using heterochromatic 
brightness matching. Retinal Mun-dnance is lowest for the curve at the top of the figure and 

highest for the curve at the bottom. 'Me curves are displaced vertically for clarity. - 
Reproduced from (Sagawa and Takeichi 1986). 

1.3.2 Mesopic spectral luminous efficiency 

As stated in section 1.2.5 there is currently no standard luminous efficiency function 

for mesopic: vision. There are, however, many examples of mesopic: spectral 
luminous efficiency functions in the literature, and several proposed systems of 

mesopic photometry. Direct heterochromatic: brightness matching (HBN1) has been 
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the most widely used method of obtaining spectral luminous efficiency curves in the 

mesopic range Oý, inney 1958; Sagawa and Takeichi 1986; Sagawa and Takeichi 1987; 
Ikeda and Shimozono 1981; Yaguchi and Ikeda 1984; CIE 1989; CIE 2001). 

Examples of mesopic luminous efficiency curves obtained using HBNf are shown in 

Figure 1-40. The method of flicker photometry, which has been successfiffly applied 
to- the measurement of photopic spectral luminous efficiency, has also been 

investigated in the mesopic: range. Vienot and Chiron (1992) compared mesopic 
flicker photometric measurements to those obtained using HBN1. Ibcy found that 

unlike the brightness matching results, the flicker data did not exhibit a continuous 
function with adaptation level, but were found to he on one of two branches of a 
discontinuous curve. 11ey reported that judgements of minimum flicker became 

very difficult close to the break in the curve. These results indicate that more than 

one mechanism is involved in detecting flicker under mesopic conditions. Vienot 

and Chiron reported that at the discontinuity, one observer was able to make 

minimum flicker judgements for a 445 nm test stimulus with two radiance settings, 
depending on the flicker frequency. These findings suggest that the method of 
flicker photometry is inappropriate for measurement of mcsopic spectral luminous 

efficiency curves. 

The majority of currently proposed systems of mesopic photometry are based on 
HBN1. Six systems based on brightness matches for 10' diameter fields have recently 

undergone assessment by the CIE (Palmer 1968; Sagawa and Takeichi 1987; Sagawa 

and Takeichi 1992; Nakano et al. 1988; Trezona 1991; CIE 2001). In section 1.2.5 

the phenomenon of subadditivity was discussed in relation to HBM under photopic 

conditions. In the mesopic range a second type of additivity failure occurs, known 

as superadditivity (Yaguchi and Ikeda 1983). In this case if two monochromatic 

stimuli are matched with a fixed reference stimulus, the sum of the monochromatic 

stimuli will often produce a stimulus that is brighter than the reference stimulus 

with double the radiant power. A number of systems of mesopic photometry based 

on brightness matching have been designed to specifically address the problems of 

subadditivity and superadditivity. An alternative method of obtaining mesopic 

spectral luminous efficiency curves has been employed by He et al. (1997; 1998), 

based on measurements of reaction times. 'ne authors claim that reaction time 
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measurements reflect processing of the magnocellular channel and, therefore, obey 

the laws of additivity within a given level of adaptation for criterion reaction times. 

He et al. (1998) have developed a system of mesopic photometry from reaction time 

measurements, which they report overcomes the problems associated with 

photometry based on HBM. 

1.3.3 Rod-cone interactions 

Psychophysical investigations under mesopic conditions have revealed effects that 

indicate interactions between therod and the cone systems and thus, a break down 

of rod and cone system independence. Rod-cone interactions have been reported to 

alter detection thresholds, the perception of flicker, and colour processing. These 

effects are discussed below. 

'Mere is evidence that rod sensitivity is altered by stimulation of cones in the 

surrounding background field (Makous and Boothe 1974; Frumkes and Ternme 

1977; Latch and Lennie 1977; Makous and Peeples 1979; Buck and Makous 1981; 

Shapiro 2002). Shapiro (2002) investigated the effects of backgrounds that isolated 

the L-cone and S-cone system, respectively, and found that the L-cone system, but 

not the S-cone system contributed to the reduction of rod sensitivity. There are also 

reports in the literature of scotopic background stimulation raising increment 

thresholds for the cones (Latch and Lennie 1977; Ternme and Frumkes 1977; Buck 

1985a; Buck 1985b). The magnitude of both these rod-cone interaction effects is 

dependent on the size of the background field. 

Under conditions where rods and cones are both able to detect a flickering stimulus, 

constructive and destructive interference of rod and cone signals can occur 
(MacLeod 1972; van der Berg and Spekreiise 1977). MacLeod showed that it is 

possible for rod and cone signals to cancel exactly, producing a null point in the 

perception of flicker. Several studies have reported that cone mediated detection of 

flicker (greater than 18 Hz) may be raised at the fovea and in the periphery as a 

results of rod-cone interactions (Goldberg et al. 1983; Alexander and Fishman 1984; 

1986; Coletta and Adams 1984; 1986). Ile threshold luminance for flicker detection 
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is increased under dark adapted conditions, and reduced for rod saturating 
backgrounds or during the recovery of rod sensitivity following a bleach. The 
interaction appears to be laterally mediated, and is thought to be a consequence of 
rod modulation of horizontal cell feedback mechanisms in flicker detection (Arden 

and Hogg 1985). Frurnkes et al. (1986) found that the opposite interaction also 
occurs: their results indicated that stimulation of neighbouring cones has an 
influence on rod-mediated flicker. 

Reported effects of rod-cone interactions on colour processing are summariscd 
here, but are described in more detail in chapter 4. Rod signals are known to disrupt 
large field colour matches (Frezona 1970; Shapiro ct A 1994). Rod activity has been 

associated with the impairment of wavelength discrimination (Stabell and Stabell 

1977), and changes in the hue and saturation of colour stimuli (Stabell and Stabell 
1996) in the periphery compared to the fovea. Rod impairment of chromatic 
discrimination has also been documented (Nagy and Doyal 1993; Knight et A 1998; 
Knight et A 2001), and the interaction between rods and Iconcs has been reported 
to produce colour sensations (McCann and Benton 1969; McKee et al. 1977). The 

phenomenon of superadditivity (see section 1.3.2 above) that occurs for brightness 

matching under mesopic conditions is also thought to be a consequence of rod- 
cone interactions. 

1.4 A summary of the investigations 

The investigations that constitute this body of work are described and the ensuing 

results discussed, in the following six chapters. 

In chapter 2 the experimental equipment is deta2ed, and calibration procedures 
described. The methodology employed in each experiment is also included in 

this chapter. 

Chapter 3 consists of an investigation into the effects of different spatial 

attributes of the visual stimulus on chromatic sensitivity, carried out under 

photopic conditions. The results that are described and discussed within chapter 
3 include those obtained from colour-normalso and subjects with congenital 
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colour vision deficiency, and those with acquired colour vision deficiency. The 

data from colour normals obtained as part of this study allows the changes in 

chromatic sensitivity arising from changes in spatial parameters to be compared 

with changes due to factors such as retinal illuminance, investigated in chapter 4. 

9 Chapter 4 describes a study of chromatic sensitivity in colour-normals under 

mesopic conditions, where changes in chromatic sensitivity are investigated as 

retinal illuminance is reduced. This chapter also includes an assessment of the 

influence of tod signals on chromatic thresholds in the mesopic range. 

9 In chapter 5, the concept of a stimulus conspicuity metric is discussed, and the 

development of an empirical model for describing the conspicuity of a target 
defined by colour and luminance contrast at different levels of illumination is 

reported. The results of a comparison between this model of conspicuity and 

other models of mesopic vision are discussed. 

9 Chapter 6 contains an investigation into the characteristics of visual search 

performance under mesopic conditions, both for achromatic targets and targets 
defined by colour and luminance contrast. The application of the conspicuity 

model developed in chapter 5, to predict mesopic visual search performance is 

assessed in this chapter. 

e The results of all these investigations are discussed collectively in chapter 7. 

The major findings are as follows: 

9 The threshold for detection of colour is dependent on the spatial attributes of 

the 'stimulus, but to a much greater degree is dependent on the level of 
illumination as it is reduced into the mesopic range. Differences are evident in 

the behaviour of the red-green and blue-yellow chromatic mechanisms to 

changes in parameters of the stimulus. 

9 At chromatic threshold in the mesopic range, chromatic signals and rod signals 

appear to be processed independently. 

0 As defined in this study, stimulus conspicuity in the mesopic range is a function 

of stimulus photopic and scotopic contrast, the chromatic content of the 

stimulus and retinal illuminance. Conspicuity is predominantly dependent on 

photopic contrast and chromatic difference to the immediate background at low 
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photopic/ high mesopic light levels, whereas scotopic contrast is the major 
determinant of conspicuity in the low mesopic range. 
11-le relationship between visual search time and luminance contrast changes as 
background luminance is reduced, reflecting the increase in contrast thresholds, 

and also a reduction in the effectiveness of a unit change in physical contrast. 

In' the low mesopic range, visual search performance is predominantly 
dependent on the scotopic contrast of the stimulus. At low photopic/ high 

mesopic light levels colour is an important determinant of visual search 

performance, particularly when luminance contrast is low. In addition, for the 

stimulus conditions employed in the visual search procedure, scotopic contrast 

appears to be an important determinant of search time, even in the low 

photopic range. 

The conspicuity model developed chapter 5 can successfully be used to predict 

visual search performance, and represents a better predictor of performance in 

the mesopic range than either stimulus photopic or scotopic contrast. 
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2 Equipment and methods 

All the experiments in this body of work consisted of visual stimuli presented to 
human subjects using a cathode-ray tube (CRT) display. For the major part of the 

experimental work, a single set of equipment comprising a CRT display, control 

computer and pupil measurement system was used. For the experiments in chapter 
5, a second almost identical experimental system was also used; these are referred to 

as system-1 and system-2, respectively. For the experiments in chapter 4, a single 

channel Maxwellian view optical system was used in addition to system-1. 

All the experiments, which are described in detail in the sections below, were 

conducted using common psychophysical techniques; these included the staircase 

method, the method of adjustment and the measurement of search time. In the 

staircase method, an attribute of the stimulus is either increased or decreased in a 

stcp-wise fashion in accordance with the observer's response to the stimulus. With 

well chosen staircase parameters (start value, step size and determination of end 

point where a plateau in the response is reached) the staircase method is an efficient 

procedure, and by randon-dy interleaving a number of staircases response bias due to 
knowledge of the procedure can be reduced (Cornsweet 1962). Staircase procedures 

were used in chapters 3,4 and 5. In the method of adjustment, the observer has 

direct control over setting the level of a particular stimulus attribute. The method of 

adjustment is fast, but highly subjective. It is ideally suited to record the rapid 

change in sensitivity that occurs immediately following light adaptation, and for this 

reason was used to measure dark adaptation curves in chapter 4. Measurement of 

response time is a common method of recording visual performance for a given 

task, and was employed in the experiments in chapter 6, where the reponse time 

recorded was search time. As search time may be related to the accuracy with which 

the task is performed, response accuracy was monitored by classifying stimuli 
following detection (see section 2.6). 
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2.1 CRT display-based systems 

The display used in b()th systcm- I and systcm-22, was a 20" ('R I monitor sý stern- 1: 

Sony trinitron multiscan SFII, model CN)SI'21"; system-2: Sony trinitron, model 

GD. '\l-40()PS'l). Control programs ran ()n a PC (Ile-wictt Packard Vcctra) under 

NIS-DOS, with the monitor drix-cn by an 8-bit graphic,; card (system 1: Hercules 

Graphite Terminator, system-2: Videologic GraphixStar 560), with a rcsOlLItI()II Of 

1280 x 1024 pixels. Obsen-cr responses were recorded vla a button 1)()x attached to 

an input/output board (Amplicon PC30AT). 

<- 70 cm 

Figure 2-1. CRTmonitor-bascd sý stein. 1: 21)" colour CRTmonitor, 2: infrared nurror 
mounted at 45-, on ,,, -hich a neutral density filter can be fixed at 4--),, (shown by the dotted 

line). 3: infrared camera and near infrared LFD's to diffusely illuminate the front of the ex-C., 
4: chin and forehead rest, 5: hood to restrict light from the screen reaching the observer 

without first passing through the filter. 
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Ch 2.1 'cluipment and methods 

Obsen-ers' licad movcmcnts xcre restrictcd by usc of a chin rcst and forclicad 

support. The viewing distancc %vas 70 cm throughout, producIng a display arca of 

22' bv 27/ '' visual ang1c. I ý. acli expcrimental room was made sufficiently light proof to 

allow dark adaptation to the lowest stimulus lutninancc used in anv of the 

experiments. A diagram of the equipment is shown in Figurc 2-1. 
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Figure 2-2. Spectral profile of the neutral density filters calibrated at 45- incidence, labelled 

xvith their nominal density at normal incidence. All the filters show an increase in 
transmittance from 680 to 780 nm. 

2.1.1 Neutral density filters 

An operating range of stimulus lun-iinancc spanning 4 log units was achieved using 

neutral density filters. The spectral transmittance of a sample from each filter was 

measured with a spcctrophotometcr (Cary 05). Measurements were made between 

380 and 60 nm at 2 ni-n intcivals. These data were extended to 780 nm bv 

lengthening a regression line fit to the data bct-\vccn 720 and 760 tim, and then 

converted to points at 5 nm inten-als. These data were then transformed to optical 

densities and entered into the control programs. The filters were calibrated either at 

45'' incidence, or at normal incidence, depending on their mounted position when in 

use. The optical density profile of each filter calibrated and used at 45" incidence is 

shown in Figure 2-2. The optical dcnsity spectrum for each filter was used in the 

control program of every experiment to modify the effective spectral po-,,., er 
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distribution of each of the three phosphors of the display when combined with the 
filter. 

Neutral density filters were used to reduce stimulus background luminance in the 

study of chromatic sensitivity described in chapter 4, the measurements of 

conspiCUlty detailed in chapter 5, and the visual search experiments described in 

chapter 6. For all three studies a tunncI was built between the monitor and the chin 

rest to prevent light from reaching the observer without passing through the filter, 

which was mounted at 45". The mounting angle was dictatcd by the orientation of 
the infrared mirror (see Figure 2-1), which provided a support for the filters. For 

background luminances of 10 cd M-2 and above, no filter was used. For all 
background luminances below 10 cd rif 2a neutral density filter was used, and the 
display luminance was maintained at approximately 10 cd M-2 to ensure that a large 

gamut of chromaticities and range of luminance contrasts were available. Nf can filter 

densities and effective stimulus background luminances are given in each relevant 

chapter. The filters calibrated at normal incidence were used in the dark adaptation 

experiments described in chapter 4. Ibc filters were mounted in a pair of light-tight 

goggles. Filter density was increased at intervals during the experiment to extend the 

range through which stimulus luminance could be gradually lowered. 

2.1.2 Pupil measurements 

Measurements of natural pupil diameter were made in chapter 5 from video images 

of the pupil. The front of the eye was diffusely illuminated with near-infrared 

radiation and images obtained with an infrared camera. The two experimental 

systems: system-1 and system-2, employed different methods of extracting pupil 

sizes from these images. System-1 incorporated the pupillometer developed by 

Barbur (1987), in which best circles are fitted to video images of the pupil every 20 

ms. System-2 incorporated a frame grabber (ArcSoft Zipshot PA-10) to capture the 

video images, and pupil diameters were obtained by averaging the number of pixels 
in the vertical and horizontal diameters of each pupil image, using a calibration to 

convert to millimetres. The calibration between image pixels and millimetrcs was 
obtained by measuring the pixel diameter of two artificial pupils of known physical 
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diameter, positioned in place of the observer's eye. This calibration was performed 

at the beginning and end of each experimental session. 

2.1.3 CRT monitor calibration 

In order to generate stimuli with a specific photopic luminance and chromaticity on 

a CRT monitor, it is necessary to know the chromaticity of the red, green and blue 

phosphors, and the relationship between electron gun voltage and luminance for 

each of the red, green and blue guns. The experiments in chapter 5 required that 

stimuli with a specific photopic luminance and scotopic luminance be generated, 

where the photopic luminance was calculated according to the Y10(k) colour- 

matching function of CIE 1964 supplementary standard observer, which is generally 

accepted to represent the photopic luminous efficiency for a 10' field. In t1-ds case, 

the spectral radiance of the three phosphors must also be entered into the control 

program in addition to the luminance versus gun voltage data. It is then possible to 

convert the luminance calibration data specified in terms of the CIE 1924 luminous 

efficiency function V(%), to equivalent calibration data with luminance specified in 

terms of -y, O(, %). Thus, the following calibrations were required for each monitor: 

First, the radiance of each of the phosphors was measured using a calibrated 

telespectroradiometer (either Gamma Scientific model RD2 or the National Physical 

Laboratory's visual displays spectroradiometer, which is based on a commercially 

available double-grating monochromator, manufactured by Bentham). Radiance 

data were acquired at 5 nrn wavelength intervals from 380 nm to 780 nm, with each 

of the guns set at maximum voltage. These data for the two monitors are shown in 

Figure 2-3. Second, the luminance versus gun voltage relationship was measured for 

each of the three electron guns with a calibrated photometer (either LMT L1003 or 

LMT L1009). Measurements were acquired every 2 voltage steps of the 256 steps 

available for the 8-bit graphics card and polynomials were fit to the data to obtain 

values for all 256 steps, an example can be seen in Figure 2-4. The chromaticities of 

the three phosphors were calculated from the phosphor radiance data according to 

the following equations (Eq. 2-1 - Eq. 2-5). The phosphor chromaticities are plotted 

for the two monitors (system-1 and system-2) in Figure 2-5. 
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x 

+Y+ 
Eq. 2-1 

Eq. 2-2 (+Y+ /) 

\=f1, 
ý ,x 

(/-) d/- Eq. 2-3 

Eq. 2-4 

kfI., 
, 
-/ (/. ) d/. Eq. 2-5 

where x, v: CIF 1931 chromaticitv coordinates-, X, Y, k CIF. 1931 tristimulus 

values; k: normahsing factor; 1, ý.: phosphor radiance, xz ('11: 1931 

colour matching functions. The lurrunance versus gun voltage relationship of a CAU' 

monitor does not remain constant during its lifetimc, -with maximum luminance 

decreasing marginally over time. The luminance versus gun voltage calibration, 

therefore, was carried out at a frequency of roughly once a month for the duration 

of the experimental work. 
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Figurc 2-3. calibration. Phosphor radiance data t'()r the red R), green Gy and blue 
ji, phosphors for systern I and system 2. 'I'he phosphors of the two monitors have simflar 

spectral power distnbufions, but differ in absolute radiance. 
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Figure 2-4. I. timiiiýincc verstis gLin voltage calibration for the red (R), grecti (G) and IALIC 
(B) phosphors of the CRT monitor for system-1. For an 8-bit graphics card there arc 256 

voltage step,,, measurements arc acquired every 2 voltage steps and polynomials fit to the 
data to obtain values for all 256 steps. 
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Figure 2-5. Phosphor chromaticitics for system- I and system-22, calculated from the 
Me"Isured spectral power distribution of the phosphors, plotted in the CIF, 1931 (x, y)- 

chromaticitý- diagram. The phosphor chrorriaticitles for the m, o monitors x-verc very similar. 

2.1.4 Colorimetric transformations 

I-or a three primarv s\-stcin displav system such as a CRT 1-i-ionitor, stimulus 

chrorriaticity is restricted to a gamut of chromaticities, which at its largest, consists 

of the triangular region bounded by the chromaticities of the three phosphors, but 
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which dirrurnshcs in size Nvith increasing stimulus luminance. Within the bounds of 

chromaticity and luminance set by the display's characteristics, any combination of 

photopic luminance and chromaticity can be generated. A stimulus specified bN 

both its photopic luminance and scotopic lurrunance, ho,, x-cx-cr, is restricted further 

in its chromaticity. Stimuh with the same ratio of scotopic to photopic luminance 

have chromaticitics that fall on a single line in the region of chromaticity space that 

can be reproduced on the monitor (liarbur et al. 1998a), -which %vill be referred to as 

the S-by-11 line. An example of such a line is plotted in I-igurc 2-6. For the 

experiments in chapter 5, previously developed algorithms (Barbur et al. 1998) vvere 

applied to calculate the available chromaticitics for a stimulus -with a given photopic- 

scotopic luminance pair. Errors prcscnt in the calculations xvcrc rcflcctcd in the 

generated values of scotopic luminancc, -which differed from the spccificd values. 

Hov. -ever, it was possible to compute to xvithin rounding crrors, the actual scotopic 

lun-unances of the stimuh used from radiance data generated by the program for 

each stimulus computed using the settings of the three electron guns and the 

calibration data. 

phosphor chromaticities 
gamut of chromaticities 

0.8 constant S: P ratio 

0.6 1- 0 
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0 0.2 0.4 0.6 0.8 
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Figure 2-6. P. xaniplc of the region of x, %, -chromaticity space that can bc r(. -I)r, duccd on a 
typical CRT monitor (shown bv the dashed hnc) and a line of chromaticitics, "vithin that 

r cgion that can be generated for stimuli vvith a particular rafio of scotopic luminance to 
photopic luminancc (constant SAI ratio, or S-by-P line, dioxii b%- thc c(, nnnu, k, ý, litic'. 

Fol-lowing the initial display cahbration, the abihty of the cxpcrimci1tal s\,.,, -tcm to 

accurately reproducc stimuh of a givcn lurninancc and chromaticitv, or a given 
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photopic luminance contrast, scotopic lun-unancc contrast and chromatic difference 

(CD) was assessed (contrast was defined according to F, q. 2-8 and CD according to 

I ̀ , q. 2-11). The colorimetric properties of sample stimuh were measured using a 

calibratcd telespuctroradionictcr (Gamma Scientific inodcl RD2) and compared to 

parameter vaILICS specified in the control program. All measured values were within 

5" o of those specified, cN-cn ,,. -hcn neutral densitv filters were used. 

NDF 

Figure 2-7. Diagram of the single channel Nlavxellian vievv optical system. So: source 
I14: lenses; FS: Field stop-I NDF: neutral dcnslt\, Filter, S: shutter; 

NS: aperture stop. 

2.2 Maxwellian view optical system 
], ()r the cxpcrimcnts in chapter 4a bleaching stimulus was required. A single 

channel Maxv. -ellian view optical systcm was used to provide light adaptation. A 

diagram of the equipment is shown in Figure 2-7. The source was a 12 V tungsten- 

halogen lamp, supplied with a constant current of 8.2 Amps from a stabdised power 

supply. An electromechanical shutter was connected to a computer to control the 

shuttcr ()pciiing timc. To measure the conventional retinal illunimaticc or Troland 

Valuc providcd by the systcrn, a whitc rcflcctance standard (BaSO, ) was positioned 

in the exit bearn at a fixed distance fton-i the pupil plane. 

The lun-unance of the reflectance standard was measured using a calibrated 

photometer (LNIT 1.1003) aligned at 45" to the surface, and the Troland Valuc 

calculated frorn the follovving formula 

10"7rdl, 

p 
Eq. 2-6 
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Ch 2. Equipment and methods 2.2. Max-, x-clhan vicv- optical sN-stem 

where T: 'I'i-()Iaiid Value, d: distance from the pupil plane to the reficctance 

standard, I.: luminance of the surface of the rcflectance standard, [1: reflectance of 

the white standard. The size of the bleaching field -,,. -as 30". 

2.3 Colour vision test employing luminance contrast noise 

In chaptcrs 3 and 4, a colour vision test x-vas used to investigate chromatic sensitivity 

under photopic and mesopic conditions, respectively. In order to measure 

chromatic thresholds it is necessary to extract the use of colour signals and eliminate 
detection of luminance contrast signals. This . vas achieved by employing luminance 

contrast noise to mask detection of luminance contrast signals, thus eliminating the 

need to present isoluminant stimuli. Luminance contrast (1, C) noise Nvas created by 

dividing the stimulus and surround into small patches, and allowing the luminance 

of neighbouring patches to varý- -while maintaining a constant mean luminance, 

Figure 2-8 shovvs an schematic of this procedure, , -, -here the patches make up an 

array of checks. Thc magnitude of the noise was varied by increasing or decreasing 

the range of luminances incorporated. 

The colour vision test used in chapters 3 and 4 was based on the test designed b), 

Barbur ct al. (1992). Stimuli consisted of a 15 x 15 array of checks generated in a 

uniform, achromatic background. A single stimulus presentation began %vith tile 

chrornaticitý- of the vvhole array equal to that of the background, then a selection of 

checks underwent a change in chromaticity forming the test target, and finally 

returned to the achromatic background chromaticity. The change in chromaticity 

was in any one of a number of specified directions away from the background 

chromaticitv towards the spectrum locus. Chromatic changes were isoluminant "vith 

respect to the CIF. 1924 standard obsen-er for photopic vision The difference 

in chromaticity from the background (CD) was measured as a Fuclidcan distance in 

CIF 1931 (x, v)-chromaticity space and control-Icd by a randoml%- Interleaved 

multiple - staircase procedure (one staircase corresponding to each direction of 

colour space tested). 
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1) = j(, --, "ý+ 
j+(y, 

Yj Eq. 2-7 

where, x, 1931 chrorriaticity coordinates of the test target; x,,, y,,: CIF 1931 

chromaticity coordinates of the background. The value derived from each staircase 

gave the chromatic threshold measured for one colour direction. Staircase step sizes 

were adjustcd in rclation to the final thrcshold valuc to maximisc the cfficlencv of 

the measurement procedure. Chromatic difference was measured in Cllý', 1931 

chromaticity space because the control program was originally developed to obtain 

results for comparison with those of NlacAdam (NlacAdam 1942). The results in 

chapter 3 are presented graphically in CIE, 1931 space and those in chapter 4 are 

presented in graphically in CIF 1976 space. For the purpose of statistical analysis in 

chapters 3 and 4, chromatic thresholds expressed in C11, ' 1931 Units were 

transformed to equivalent thresholds in CIF 1976 space. 
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Figute 2-8. An example of dynamic luminance contrast noise. The lummance profile of the 
checks that make up the array is across the width of a 6- StIMUILIS, for three 

sequential frames. The frame duration for the photopic cxperiments was 53 nis. In this 
example the mean luminance remains constant at 10 cd rn 2 across the whole stimulus while 

individual checks vary in luminance with each frame within a specified percentage of the 
background lun-unance. 

2.3.1 Colour vision testing under photopic conditions. 

T"vo different Stimulus coil figurations were used to III nvestigatc the effect of stimulus 

parameters on chromatic thresholds in chapter I In the first configuration the test 

target consisted of vertical bars defined only by colour, which poppcd-up in the 

middle of cacli presentation as they underwent a change 1 in 1 is chromaticity. Thi 

stimulus -was designcd to mcasure thresholds for dctection of a colour defincd 

s, -111 be rcfcrrcd to as the pattcrn tcst. An cxample of the pattcrn spatial pattcrii, and \\ 
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test stimulus is shown in Figure 2-9. For the second stimulus configuration the test 

target was formed by a square block, which was defined at all times by a luminance 

contrast pedestal. This stimulus was designed to measure thresholds for detection of 
pure colour changes independent of structure, and will be referred to as the colour 

test. An example of the colour test stlMulus is shown in Figure 2-10. 
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Figure 2-9.1 ̀ xample of the stimulus for the pattern test, designed to measure thresholds 
for detection of a colour defined spatial pattern. In the middle of each presentation a 

selection of the checks undenvent a change in chromaticity forming coloured vertical bars. 

4,93 

-vi 

Kim a 

Figure 2-10. F' xample of the stimulus for the colour test, designed to measure thresholds 
for detec6on of colour changes, independent of structure. The central block xvas defined by 
a lun-iinance contrast pedestal and uncicn-vent a change in chromaticity in the middle of each 

presentation. 
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I, 'or both stimulus paradigms, the duration of prcscntation was 1500 ms, dividcd 

into achromatic, chromatic, and achromatic periods of length 600,300, and 600 ills. 

DN-narnic changes in lununance contrast noise occurred even, 53 ins, and took 

values of ± 16" o of the mcan luminance of thc stimulus. The achromatic 

background chroniaticitý, ,, -as chosen as the chromaticity of NIacAdam white: x= 

0.305, y 0.323 (NIacAdam 1942). When testing normal trichromats and patients 

with acquired colour vision deficiency, 12-16 colour directions were investigated, 

equally spaced in (x, v)-chromaticity space. When testing dichromats, directions 

close to the particular dichromatic colour confusion line passing through the 

background chromaticity were prcferentially selected, , x, ltli a total of 16-18 

dircctions investigated. For the pattern test the luminance of the background and 

array -, vas 24 cd m For the colour test the luminance of the background and test 

target was 24 cd m and the luminancc of the surrounding array was 18 cd in', thus 

creating a luminance pedestal for the target. 
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Figure 2-11. A graphical representation of the combIna6on of dynarnic luminance contrast 
and light flux nolse used in the mesopic colour vi I s on test. The luminance profile of checks 

that rnade tip the array is shoxvii across the width of a 0, stimulus, for three sequential 
frames. The frame duration in the mesopic experiments was 107 ms. The mean luminance 

of the central five checks was modulated in addition to the random variation in luminance 
of each individual check. 

2.3.2 Colour vision testing under mesopic conditions 

To measurc chromatic scnsltivity undcr mesopic conditions it is nccessan- to 

eliminate detection of both photopic and scotopic luminance contrast signal, -,. The 

colour vision test employed in chapter 4 incorporated three types of masking: 

luminance contrast (I. C) noise, large field light flux (IT) noise and a luminance 
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contrast pedestal (l, CP). Sinular to the , vaý- in v. -hich LC noise masks photopic 

luminance contrast signals, LF noise was introduced to mask spatially pooled rod 

signals (Barbur et al. 1994a). LF masking N-vas provided by the random modulation 

of the mean luminance of the test target within a percentage range of the mean 

luminance of the stimulus. Figure 2-11 shou7s a schematic of luminance contrast 

noise and light flux noise combined. The presence of a luminance contrast defined 

pedestal hcIpcd further to mask the detection of luminance contrast changes 

associated with the onset of a chromatic stimulus. 

A 

target square 
fixation 

array 

neutral target 
chromaticity 

change of target 
chromaticity 

neutral target 
chromaticity 

Figure 2-12 (A)-(B). Fxample of the stimulus used to measure chromatic thresholds under 
ri-icsopic conditions, %vith the array centred at the fovea. 'ITie target square %vas defined by a 
luminance contrast pedestal and underwent a change in chromaticity in the middle of each 

presentation (B). 
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target dimensions size of array check dit-nclisions 

xx 6'' 24' x 24' 
4" x 4'' 12" x 12" 48' x 48' 

Table 2-1. Dimensions for the two sizes of stimulus used to measure chromatic thresholds 
under mesopic conditions. 

Two stimulus sizes \vere used, providing test targets of diameter 2'' and 4'' angUlar 

subtclisc, the dimensions of which arc shown in Table 2-1. In both cases 

the central 5x5 check square xas defined by an LCP, forming the test target. All 

stimuli were presented on a uniform, neutral background. Figure 2-12 shows an 

example of this stimulus. Nleasurcments were carried out using the two stimulus 

sizes at different retinal eccentricities. For the eccentric measurements the stimulus 

was al, %vays presented in the right herni-ficId. Monocular viewing with the right eye 

was used for all these measurements, therefore, the results show changes in the 

sensitivity of solcIv the nasal retina at different eccentricities. 

Dynamic change,, in luminance contrast and light flux noise occurred every 107ms 

to ensure that rod generated luminance contrast signals were masked. l'or the 

majority of the nicasurct-ricnts a single stimulus was 1500 ms in durati()n, divided 

into achromatic, chromatic, and achromatic periods of length 500,500, and 500 ms. 

The tinung , vas adjusted for the experiments in section 4.3.6, where a comparison 

was made between thresholds measured after dark adaptation and those measured 

on the cone plateau of the dark adaptation cutve. The new timing consisted of 

achromatic, chromatic, and achromatic periods of 500,600, and 100 ms, 

respectively. 

2.4 Dark adaptation experiments 

Dark adaptation cL, I-\-c,, wcrc measured in chapter 4 to determine the duration of the 

cone plateau. Light adaptation was provided using the single channel Maxwellian 

N-jew optical svstern described in section 2.2. Immediately after a2 minute period of 

light adaptation of retinal illurninance (I'roland Value) 5 log tds, detection 

thresholds , x-ere measured over a 25 n-unute period using the method of adjustment. 
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A white-light stimulus presented on a CRT display was used to measure threshold 

variation with time. Target luminance was reduced over a range of more than 3 log 

units using neutral density filters mounted in a pair of goggles. In this way the 

optical density could be increased rapidly, at intervals during the experiment. The 

target was a modified Landolt ring with a ratio of outer to inner diameter of 5: 3 and 

with a1 () sector removed. The target was flashed on for 120 ms and off for 400 ms 

in a repetitive cycle, and was presented randomIN- in one of three different positions 

on an arc to the right of fixation (see Figure 2-13 for an illustration of the stimulus). 

The subiect could increase or decrease the luminance of the target in steps by 

pressing a button. The size of each increment/ decrement v. -as 30') (, of the target 

luminance. Threshold values were recorded by pressing a third button xvhcri the 

target was judged to be )ust barely visible. 

Alternative 
target positions 

Fixation 
+ 

27 

220 

Figure 2-13. The stimulus used in the dark adaptation experiments. '11-ie vvhitc-light target 
%vas presented to the right of fixauon in one of three positions on arc of fixed eccentricity. 

2.4.1 Calculation of appropriate dark adaptation times 

For all experiments performed at a background luminance of 10 cd m or lower, 

obsen, crs were adapted to the level of the background prior to beginning 

120 



Ch 2. F, quipment and methods 2.4. Dark adaptation experiments 

measurements. For backgrounds of 10 cd m2 and above, an adaptation time of 5 

min was used. Adaptation times for lower background luminances were calculated 

bv assuming an exponential function bem-een log luminance aild adaptation time, 

using the niinin-ium value of 5 min at 10 cd in' and setting the adaptation time for 

the lo\-,, c,, t background luminance used as 30 inin. 

2.5 Visual matching procedure 

In chapter 5, a rnatching procedure was used to relate the conspiculty of a test target 

defined by luminance contrast and colour, to the conspicuity of a similar reference 

target (matcli target) defined by achromatic contrast. The test and match targets 

were based on Landolt rings; theN- had an outer to inner diameter ratio of 5: 3, but a 

sector removed to provide the gap. Tlie test target was defined by its photopic 

contrast ((-,, ) value, scotopic contrast (Cj value and chromatic difference (CD) with 

respect to the background. The match target had the same spectral power 

distribution as the background, but differed in luminance to create a target of 

achromatic contrast. Defined in this way the match target had equal N -alues of 

photopic and scotopic contrast. The two rings were presented briefly at a fixed 

eccentricity. The obser-\-cr was asked to indicate by pressing buttons on a response 

box, whether the test or match target was the most conspicuous; this was 

alternatively explained as choosing the target that was the most noticeable, the most 

obvious, or the most clearly visible. A psychophysical staircase was employed to 

\-ary the contrast of the match target. The output of the staircase procedure gave the 

contrast value for the achromatic match target that appeared cquall) 

conspicuous -, is the test target. Niatclics could then be obtained in this way for 

different test target combinations of photopic contrast, scotopic contrast and CD 

value. Initially, a pilot study was carried out to Investigate the conspicuity of targets 

\-, -ltli zero photopic and scotopic contrast. I"oflowing the pilot study, amendments 

were made to the design of the matching procedure before collection of an 

cxten, s, 1vc data set of tcst-match pairs. 
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A 

Alternative 
test positions 

Match target 
Cachromatic 

Alternative 
match positions 

20 Fixation 
+ Test target 

//3.50 
Cp, C, CD 

11 270 71 

220 

Figure 2-14 (A)-(B). Diagrams of the stimulus used in the pilot matching experiments. 
Angles in normal type refer to angles subtended at the eve; angles 11 týpe refer to 

angles in the plane of the display (A). The test target was defined bv Cp, G, and CD. The 
match target was defined by positive achromatic contrast. The test target was presented to 

the right of fixation and the match target is presented to the left of fixa6on (. \)'-(B). 
Separation of the test target and match target was fixed and the pair of rings 1, ', - presented 

randomly in any one of three positions on a 3.5,, arc (B). 

2.5.1 Design of the matching procedure for the pilot study 
For the pdot studv, the test and match rings were 2" angular sul)tcnsc in diameter, 

%vith a 45'' sector removed, and were presented at an eccentricity of 3.5''. The test 

target was al-, vays flashed to the right of fixation and the match target always to the 
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left. The two targets were constantly separated by 180" in the plane of the display, 

and \x-cre presented randornly in one of three different positions to ininfl-nise the 

effects of adaptation at a single location, see Figure 2-14 for all example of tile 

Stimulus. 

The background field was chosen to have the chromaticity of NIacAdam white: x =ý 

0.305, y=0.323. During a single presentation the rings were flashed sirnultancouslý 
for 500 rns. Observers were asked to indicate by pressing a button, whether the test 

or the match ring was the most conspicuous. Six values of match contrast were 

obtained in a single experiment by running six interleaved staircases concurrently. 

In the pilot study photopic luminance was calculated using the CII., 1924 luminous 

efficiency function for photopic vision, and scotopic lurninance was calculated using 

the ('11", 1951 lurninous cfficiency function for scotopic vision. Contrast was 

calculated according to l, q. 2-8, 

C= 
L -L1) 

I 
Eq. 2-8 

xx-here C: contrast (photopic or scotopic), L,: luminance of the target (photopic or 

scotopic), and I.,,: lurnInance of the background (photopic or scotopic). Photopic 

and SCOtOpiC luminance were calculated according to Eq. 2-9 and FIq. 2-10, 

respectively. 

1, = K, 
', 

1, 
ý, ý- V (4) R Eq. 2-9 

xx-here J,: photopic luminance, K maxi mum photopic luminous cfficacN, 

radiance of the target or background, V(k): CIE 1924 standard photopic luminous 

efficieno, function, 

= K' Ii ? 
(X) d? II) J C, Eq. 2-10 

Nvhcre L': scotopic luminance, K,,, ': maximum scotopic luminous efficacy, L,., ý': 

radiance of the target or background, V(k): CIE 1951 standard scotopic luminous 

cfficiciicv function. The chromatic difference (CD) was measured as a distance in 

the ('I 1 197/ 6 (u', v')-chromaticitv diagram, 
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CD + , 
)+(Vý-V' Eq. 2-11 

xvhcre u', x-',: C11", 1976 chromaticity coordinates of the target; and Li',,, CIE 

197 6 chromaticity coordinates of the background. 

2.5.2 Re-design of the conspicuity matching procedure 

I-olloxving the pilot study, amendments were made to the conspiculty matching 

procedure before collection of an extensive data set. The diameters of the test and 

match rings were increased to 3", to increase the possible area of receptor signal 

summation. The eccentricity of presentation was increased to 7", corresponding to a 

retinal location with increased rod dcnsitv, to increase possible effects of rod 

intrusion. Photopic luminance was calculated using the CIF. 1964 V, (ý-)colour 

matching function, according to Eq. 2-1 

fl,,, Eq. 2-12 

where I,: 10-dcgree photopic luminance, K,: maximum photopic luminous 

efficacy, L, ý,: radiance of the target or background, V, (ý. ): CIF 1964 colour 

matching function. Scotopic lurrunancc was calculated using F. q 2-10, and contrast 

according to F. q. 2-8. Chromatic difference values -wcrc measured as distances in a 

transformed version of the CIE 1964 (x,,,, y, )-chromaticitv space, using the 

'll: 1931 (x, y)-space into CII., 1976 (u', v' -space, %vhich is transform that converts C 

given in Fq. 2-13, 

4x 9N 
u Eq. 2-13 (-2x + 12y + 3) (-2x + 12y + 3) 

Nvhcre u', x-': CIF, 1976 chromaticity coordinatcs, and x, N-: (: 11', 1931 chromaticity 

coordinates. Coordinates in this transformed colour space will be referred to as (u, ', 

v,,, ')-coordinatcs. C'D values were calculated using Eq. 2-11, but with (u',, N-', ) and 

(r u 1" v', ) replaced by (u ...... and (u,, ',,, ]F The CI 
, 1964 supplenientan 

colorimetric obsenýer was used in this case as it is representative of the colour 

matches of normal obsen-ers over a large field and was, therefore, considcred to be 

more sultable for a stimulus location of "'' eccentricity than the (-11. ' 1931 2" 

obsen-er. However, the 10'' colour matching functions wcre derived from 
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� 

measurements made at photopic lununanccs and exclude effects of rod intrusion in 

the matches. It is unlikely, therefore, that thev will predict colour matches at 

mc,, opic Icvels, but it is probable that prediction errors would be smaller for the U)'' 

colour matching functions than for the C, 117' 1931 2" colour matching functions. 

A 

Alternative 
target positions 

30 

2.5. Visual n", 11clillig 1)1-()cc'(ILI"c 

Test target 
Cp, Cs, CD 

goo 
Fixation 3 Match 

............ target 
Cachromatic 

70 

---------- 

270 

220 

Figure 2-15 (A)-(B). Diagram of the stimulus used in the conspicuitv matching 
cxperiments. AtigIcs in normal type refer to angles subtcnded at the eý, c; angles in italic type 
refer to angles in the plane of the display (A). The test target was defined bv Cp, C, and CD. 
The match target was defined by positive achromatic contrast. Separation of the test target 
and match target is Fixed (A)-(B). The pair of rings \,.,, as presented randon-iIN, in any one of 

our positions on a 7- arc to the right of fixation (B). 
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A presentation time of 500 ms was retained, which was chosen as a compromise 
between a transient and sustained presentation time. The two rings were presented 
in one of four different positions on a 7' arc to the right of fixation. Figure 2-15 

shows an example of the stimulus. The four positions were used to reduce the 

effects of adaptation at a single location. 

The match target was presented on the arc either above or below the test target, 

while separation of the two targets remained at 38* in the plane of the screen 

throughout. This switching of relative test and match target position was used to 

prevent the observer from attending solely to one target, for example the match 

target, during an experimental run. Observers were asked to indicate by pressing a 
button, whether the higher or lower target was the most conspicuous. Presentations 

were restricted to one half of the visual field to reduce the required spread of 

attention, and thus reduce task complexity. Binocular viewing was employed to 

simulate viewing conditions in the real world. Ile switch to binocular viewing (the 

original design of the conspicuity matching procedure employed monocular 

viewing) meant that a combined response from the right and left eye was obtained, 

which is subject to differences in sensitivity of the nasal and temporal retina. It did 

eliminate the need to compare conspicuity judgements made using the nasal vs. the 

temporal retina. The chromaticity of the background field was x,,, = 0.306, y1o = 
0.326. This chromaticity, specified for the 10' observer, was calculated from the 

combined spectral power distribution of the display phosphors, when set to 

produce the chromaticity of MacAdam white, x=0.305, y=0.323. 

In a single experiment two match results were obtained from two interleaved 

staircases, one with a high starting contrast and one with a low starting contrast, as 
recommended by Cornsweet in the "double-staircase method" (Comsweet 1962). It 

was found from preliminary measurements performed over a number of days, that 

there was a significant effect on values of match contrast (Cj due to the day of 

measurement. Analysis of variance (ANOVA) performed for four different sample 

conditions at different light levels, showed the day to be a significant factor 

(p<0.05) in three of the four cases. Ile most likely reason for this was large 

variation in observer criterion between different days. Hence, six values of match 
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contrast were obtained over three days (two values per day); to capture the 

increased variability of C.. values generated from testing over a number of days. 

During each experiment, measurements of natural pupil diameter were made using 

the methods described in section 2.1.2. For system-1, the mean pupil diameter was 

taken from a dynamic recording of pupil size, lasting 20 seconds. For system-2, the 

mean pupil diameter was calculated from a number of static images of the pupil, 

acquired during the experiment. 

The staircase procedure was also redesigned to allow the most efficient 

measurement of matching contrast, for a large range of possible contrasts. Ideally, 

the step sizes of the staircase procedure should relate to the just noticeable 
difference Ond) in contrast for successive presentations of the achromatic match 

target. just noticeable differences in contrast for successive presentations of the 

achromatic match target were estimated from the spread of matches obtained for 

two simultaneously presented achromatic targets (an achromatic test target and an 

achromatic match target). The spread of C.. values was taken as two standard 
deviations of a series of 36 matches made by two observers. The spread of C.. 

values for a test target of high achromatic contrast was much greater than the 

spread of C.. values for a test target of low achromatic contrast. The spread of C,,, 

values divided by test target contrast, however, was found to be approximately 

constant across a number of light levels in the mesopic range. From the finding that 

the jnd for simultaneous presentation was proportional to the contrast of the target, 
it is not unreasonable to assume that the jnd in contrast for successive presentations 

would also be proportional to the contrast of the target. As the potential range of 

match contrast was large, the possible range of jnds was also large. Hence, the 

staircase design had to be a compromise over all the conditions to be tested. 

Estimates of the range of jnds were made from the measurements of two observers. 
The values of contrast used were those judged to be the largest and smallest likely 

values of match contrast for the test target specifications used in the experiment. 
The largest step size was chosen to be 5 times the largest estimated jnd and the 

smallest step size was set at the smallest estimated jnd. This lead to some 
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redundancy in the staircase procedure for targets of very high or very low 

conspicuity. 

2.6 Visual search task 
A visual search procedure was employed in chapter 6 to measure the search time 

needed to find a target presented amongst a scene of distracter elements. The 

stimulus elements were designed to be similar to those used in the conspicuity 

matching experiments. Each stimulus consisted of a single target and 19 distracters, 

which were rings with an outer to inner diameter ratio of 5: 3 and with a sector 

removed. Distracters were displayed with the missing sector (gap) oriented either 

upwards or downwards, whereas the gap in the target ring was oriented obliquely in 

one of four positions shown in Figure 2-16. Stimulus elements were constrained to 

a central, circular region within the background field. The target could be displayed 

at any position within this region to simulate visual search across the central visual 
field in a real scene. 'Me circular region was divided into cells and the target and 
distracters were arranged in random cells within the field and positioned randomly 

within the cells. The test target and distracters were defined by their photopic 

contrast (Cd value, scotopic: contrast (C) value and chromatic difference (CD) to 

the background, in the same way as the targets used in the conspicuity matching 

experiments. Photopic luminance, scotopic: luminance and chromatic difference 

were calculated according to Eq. 2-12, Eq. 2-10 and Eq. 2-11, respectively. 

In a single presentation the stimulus was displayed until detection was recorded or 

until the maximum allowable visual search time limit was reached. The subject was 

required to fixate the centre of the field preceding each presentation, but was not 

restricted in his/her eye movements whilst searching for the target. The subject was 

asked to press a response button immediately that he/she detected the target, and 

the display was simultaneously replaced with a uniform grey. Manual reaction times 

were recorded with a precision of 1 ms. The subject was then required to specify by 

means of a four-choice response box, the orientation of the gap in the target ring, to 

verify correct target identification. If the target was not detected during the 
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presentation time, it was represented with the stimulus elements rearranged, up to 

five times. If a target was not detected after five presentations it was omitted from 

the remainder of the experiment. Search times were recorded in milliseconds. The 

percentage that each test target stimulus went undetected during a single 

presentation (time-out rate) was recorded for each target, and the percentage that 

each target was incorrectly identified (response error rate) was also recorded in 

order to assess the accuracy of the observers' responses. 

270 

-7 Top left Top right 

B] 

Distracter size 20-30 
Bottom left Bottom right 

Figure 2-16 (A)-(C). Stimulus used in the visual search experiments (A). Ten of the rings 
were defined by colour and luminance contrast, 10 were defined by achromatic contrast. 
The target took one of 12 specifications at random; six defined by colour and luminance 

contrast and six dcfined by positive achromatic contrast. The target was presented with the 
gap oriented in one of four oblique positions (B). Distracter rings were presented with the 

gap oriented either upwards or downwards (C). 
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The central circular field was 22' in diameter. The target diameter was 2.5* visual 

angle, and distracter elements ranged in size from 2'-3' angular subtense. Both 

target and distracters had a 45" sector removed to provide the gap; see Figure 2-16 

for illustrations of the target and distracters, and a typical stimulus. The target size 

was reduced from the 3' used in the conspicuity matching experiments to allow for 

a greater number of distracters in the search stimulus. The gap size was reduced in 

comparison with the 90' gap used in the conspicuity matching experiments to 
increase task difficulty. The chromaticity of the background field was that of 
Mac. Adatn white: (x = 0.305, y=0.323), which was equivalent to that used in the 

conspicuity matching experiments. The maximum duration of a single presentation 

was 8 sec. Each target was presented 48 times and the search times averaged over 

the whole circular stimulus field. 
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3 Effect of stimulus parameters on chromatic 

sensitivity 

3.1 Introduction 

In order to test for colour vision deficiency or to investigate chromatic sensitivity, 

one needs to isolate the use of colour signals. Modulation of wavelength or 

chromaticity is usually accompanied by changes in luminance contrast, so to elicit 

responses to colour alone, detection of luminance contrast signals must be avoided. 

There are at least two possible approaches for minimising the involvement of 

luminance contrast signals; one is to establish complete isoluminance, and the other 

is to mask the detection of luminance contrasts that may be present in a coloured 

stimulus. The second approach can be achieved to some extent by superimposing 

stimuli on a luminance pedestal, thus raising the local luminance difference 

threshold. A more elegant solution of raising the luminance contrast threshold is to 

bury stimuli in luminance contrast noise. 

To present stimuli of equal luminance, one must consider the luminous efficiency 

response of the observer one wishes to test. There are large differences between the 
luminous efficiency functions of normal trichromats and subjects with congenital 

colour vision deficiencies (Wright 1946), and significant variations amongst normal 

trichromats themselves (Gibson and Tyndall 1923). These variations between 

individuals mean that isoluminance must be set for each observer to ensure isolation 

of colour signals. Luminance matches between two stimuli are usually made using 
flicker photometry: the two stimuli are imaged on the same retinal location and 

rapidly alternated, and by adjusting the frequency of alternation and radiance of the 

stimuli a criterion of minimum flicker can be met. However, if isoluminance is set in 

this way, and the "isoluminant" stimulus is presented with a temporal modulation 

133 



Ch. 3. Effect of stimulus parameters on chromatic sensitivity 3.1. Introduction 

that differs from the condition under which minimum flicker was achieved, the 

isolun-dnance condition may no longer be valid. 

The use of luminance contrast noise to mask detection of luminance contrast signals 
has long been employed in colour vision testing, being the principle behind the 

design of pseudoisochromatic plates. In plates such as the Ishihara 

pseudoisochromatic plates, the target and surround differ in colour, but are both 

divided into patches that vary in lightness. In the presence of this spatial luminance 

noise it is only possible to distinguish the test from the surround by a difference in 

the chromatic signal. The modulation of luminance in a cimputer generated stimulus 

may be purely spatial (static), or may be varied temporally as well as spatially 
(dynamic). Static luminance contrast noise (LC noise) incorporated in a CRT 

display-based test, has been demonstrated to mask detection of static patterns 
defined by photopic luminance contrast signals, in normal trichromats, dichromats 

and anomalous trichromats (Regan et al. 1994). Static LC noise does not, however, 

mask detection of transient luminance contrast signals, or luminance contrast 
defined motion signals. Temporal modulation of the background field has been 

used to selectively reduce the sensitivity of visual mechanisms tuned to detection of 
luminance contrast defined motion (Barbur et al. 1986). Use of a dynamic 

background perturbation technique is also thought to achieve better isolation of the 

chromatic signal by masking transient luminance contrast signals. In another CRT 

display-based test, dynamic LC noise has been shown to successfully mask photopic 
luminance contrast signals in normal trichromats and dichromats (Barbur et al. 
1992). Results from normal trichromats have shown that luminance contrast 

thresholds are markedly increased with increasing amplitude of dynamic LC noise, 

whereas chromatic thresholds remain relatively unaffected by the increase (Barbur et 

al. 1994b). Chromatic discrimination ellipses (see section 1.2.6) obtained by normal 

trichromats using these two CRT display-based tests (Barbur et al. 1992; Regan et al. 
1994), differ in size. There are many stimulus differences between the tests, which 

could be responsible for the difference in ellipse size. In this study, the effects of the 

spatial extent and distribution of the stimulus on measurements of chromatic 

sensitivity have been investigated. 
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Impaired colour vision may accompany lesions of the visual pathway from the 

retina to the visual cortex. Acquired colour vision deficiency is typically 

characterised by onset after birth, nature and severity that change over time, and 

differentially affected right and left eyes. Acquired colour vision deficiency is a 

common consequence of visual pathology and detection of colour vision 

abnormalities is often used as a diagnostic tool, for example, in conditions such as 

glaucoma. Assessment of acquired colour vision loss may also be used to monitor 

progression of the underlying condition e. g., in optic neuritis, and where the 

mechanisms of the pathology are understood, provide information on how colour is 

processed in the visual system. 

Patients with acquired colour vision deficiency often exhibit other abnormalities of 

visual function, and lesions can cause nonuniform defects over the visual field. Also, 

marked variations in spectral sensitivity may be elicited in response to different 

temporal frequencies (Alvarez and King-Smith 1984). It is questionable, therefore, 

whether stimulus luminance can be equated using flicker photometry in these 

patients, making it more desirable to mask detection of stimulus specific luminance 

contrast signals in other ways. Dynamic LC noise has been shown to mask photopic 

luminance contrast signals in patients with acquired colour vision deficiency (Barbur 

et al. 1994b; Barbur et al. 1997). 

Acquired colour vision deficiencies do not typically follow the patterns of congenital 

colour vision loss, so investigation of chromatic discrimination restricted to 

dichromatic isochromatic zones, for which many colour vision tests are designed, is 

of limited benefit. A better characterisation of colour vision deficiency can be 

obtained by measuring chromatic discrin-dnation spread throughout different 

directions in chromaticity space. This is an advantage of the computer-controlled 

test, which can be tailored to probe chromatic sensitivity along different axes in 

colour space. In addition, the flexibility of such tests also allows the use of stimuli 

with different spatial configurations. 

This chapter contains an investigation into the effects of the size and spatial 
distribution of the test stimulus on measurements of chromatic sensitivity under 
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photopic conditions. In particular, whether changes in these stimulus characteristics 

produce sin-fflar effects in normals, subjects with congenital colour vision deficicncv 

and subjects exhibiting acquired colour vision defects. The invcstigation , vas carried 

out using a colour vision test similar to that reported by Barbur ct al. (1994b), 

emploving dynarruc LC noise. T\vo test stimuli xvere emplovcd, which differed in 

spatial arrangement and could be manipulated in size. One stimulus was designed to 

elicit thresholds for detection of a spatial pattern defined only by its difference in 

chromaticity to the surround, and the second stimulus was designed to measure 

chromatic discrimination thresholds for a spatially defined block i. e., colour changes 

independent of structure. 

3.2 Subjects and Methods 

The experimental technique used to measure chromatic disc rimination was 

described in section 2.3.1. The two stimulus configurations were also described in 

section 2.3.1. The pattern test was used to measure thresholds for detection of a 

spatial pattern that was dcfined solely by chromatic signals, buried in a pattern 

defined by luminance contrast. For this test, subjects xverc required to respond 

when they detected coloured vertical bars. The stimulus for the colour test consisted 

of a large square defined by luminance contrast, and was used to measure detection 

thresholds for pure colour changes independent of structure. I-or the colour test, 

subjects were required to respond when they detected the presence of any colour 

change in the square stimulus, which was superimposed on a pattern defined bN' 

luminance contrast. 

3.2.1 Subjects 

)f the subject,, involved in this investigation, six %x, crc nornial iricl)n t%\. () %%-ere 

dichromats, and two vvere subjects with acquired colour vision deficiency. Thc 

colour normal observers were tested with the Ishihara plates. The mean age of the 

colour normal observers was 22 yrs, range 20-26 N-rs; four , %-ere male and two were 

female. Thc dichromats were diagnosed using the Nagel anornaloscopc. Both 
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dichromats were deutcranopes, and wiE be referred to as d-I and d-2. The two 

sub ects with acquired colour vision deficiencN- have been labelled Sub'ect A and 

Subject B. Subject A was fcmale, and was diagnosed with optic ncuropathy of 

unkno-, vii aetiology. Subject B was also female, and was diagnosed with toxic optic 

ncuropathy. T he data for Subject B was kindIv donated by Dr. 
_J 
anct Wolf. 
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Figure 3-1. The three pattern test stimuli P1, P2 and 113, designed to measure thresholds 
for detection of a colour defined spatial pattern. In the middle of each presentation a 

selection of the checks underxvent a change in chromaficjtNT forming coloured vertical bars. 
The relative scaling of the bars was maintained for all three stimulus sizes. 
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3.2.2 Methods 

Chromatic discrin-imauon thrcsholds -were mcasurcd for the pattcrii and colour tcst 

over different spatial scales. Three sizes of pattern test (PI, P2 and P3) and three 

sizes of colour test (Cl, C2 and C3) were investigated. Dimensions of the pattern 

and colour test stimuh are given in Table 3-1 and Table 3-2, and the stimuli are 
displaved in Figure 3-1 and 1-igurc 3-2. Stimuh P-) and (. 2 had equal arrav 

dimensions and sirnilar test target areas: 7.2" squared and 10-2- squared, rcspcctl\-el\-. 

Parameters common to both the pattern and colour test are given in section 2.3.1. 

Size of array liar dimensions Check dimensions 
Pi 3.6" x 3.6" 0.15'' x 3.12" 9' x 12' 
p-) 5.4" x 5.4" 0.22" x 4.68" 13' x 17' 

P3 10.8" x 10.8" 0.43" x 9.37'' 26' x 35' 

Table 3-1. Stimulus dimensions for the three siZes of pattern test stimuli, Li,; cd to measure 
thresholds for detection of a colour defined spatial pattern. 

Size of array Block dimensions Check dimensions 
5.4" x 5.4'' 1.8" x 1.8'' 19' x 19' 

C2 5.4" x 5.4" 3.2" x 3.2'' 19' x 19' 
C3 5.4" x 5.4" 4. -" x 4.7" 19' x 19' 

Table 3-2. Stimulus dimensions for the three sizes of colour test stimuli, used to measure 
thresholds for colour changes, independent of structure. 
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Figure 3-2. The three colour test stlinuh C1, C12 and C. 3, designed to ineaurc threshold,,, 
Cor detection of colour changes, independent of structure. The test square xvas defined by a 
luminance contrast pedestal and was always seen by the subject. The square underwent a 

change in chromaticity in the nuddle of each presentation. 
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Six normal trichromats carried out measurements for the three versions of the 

pattern test, acquiring two sets of thresholds for each stimulus. Three of the colour 

normal observers also performed measurements for the three versions of the colour 

test. Measurements were made monoculatly with the dominant eye. The results 

were obtained as polar coordinates in CIE 1931 (x, y)-chromaticity space, which 

when plotted form what have come to be known as MacAdam discrimination 

ellipses (MacAdarn 1942). The region within an ellipse can be thought of as the 

isochromatic region for a normal trichromat. Elliptical fits were made to the (x, y)- 

coordinates using a direct least squares fitting algorithm (Fitzgibbon et al. 1999). 

'Me deuteranope, d-1, performed measurements for the three pattern test stimuli, 
Pl-P3. Chromatic thresholds were acquired for the deuteranope, d-2, for stimuli P2 

and C2, only. Both subjects with acquired colour vision deficiency carried out 

measurements for pattern test stimuli P1-P3 and the colour test stimulus C2. 

Subjects A and B were affected bilateral1y; hence, measurements by aU observers 

were made monocularly with the dominant eye. Subject A exhibited what is likely to 

be a defect in her light adaptation mechanism, reporting discomfort from glare at 

moderate to high luminance, with structured stimuli appearing uniform. For this 

reason, the background lurrtinance was lowered from 24 to 8 cd rn-2 for both the 

pattern test and colour test, and a pedestal luminance of 16 cd m7' was used for the 

colout test. 

In order to make size comparisons between the chromatic discrimination ellipses 

obtained for the normal trichromats, the (x, y)-coordinates for each individual 

ellipse were transformed into points in the CIE 1976 (u', v')-uniform chromaticity 

space. The fact that equal differences in perception do not relate to equal 
differences in distance on the (x, y)-chromaticity diagram, makes it difficult to 

compare differences in ellipse dimensions in this space. In particular, caution should 
be taken in applying parametric statistical tests to ellipse dimensions in (x, y)-space, 

which assume that the data are of interval scaling. The (u', v')-chromaticity space, 

although still nonuniform, is a better approximation of a uniform colour space, and 
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over small regions of the space one can consider that differences in distance 

approach interval scaling. l, ', Ihptical fits were made to the (u', -cool( inatcs of each 

, set of thresholds, for each observer, to obtain the lengths of the major and minor 

serni-axes. A one-way analysis of variance (ANON'., \) was used to compare 

individualIN7, the ma'or and rninor axes lengths, for the three pattern test stin-iull and 

the three colour test stimuli. To compare differences bct-, vccn the pattern test 

stimulus 112 and the colour test stimulus C2, the stimuli with most similar array 

dimensions and test target areas, a t-test was used to assess differences in major and 

imnor axis lengths. For all the statisfical analvses, the level of significance was taken 

at a=0.05. 

3.3 Results 

3.3.1 Normal trichromats 

1`1gurc 3-3 shows the mean thresholds obtained by the six normal trichroniats for 

stimuli M-113, along with the elliptical fits for these data, plotted in (x, y) - 

chromafiCltýT space. As the stimulus size was increased, the mean thresholds 

decreased. The reduction in thresholds, however, was not uniform in all directions 

tested; sensitivity along the major axis (the blue and yellow colour directioll's) 

appeared to be more -affected than that along the minor axis (the red and green 

colour directions). The ellipses fitted to the mean thresholds in (u', v')-chromaticity 

space, also exhibited this nonuniform reduction in threshold \vith increase in 

-n \x h 
, stimulus size, see Table 3-3. The change in length of the minor set '-axis it 

-n -is. Te rcsLi t stirriLilus size, was less than the change in length of the major sei i-, i\ hI 

of the statistical analysis of the change in minor serni-axis length with stimulus size 

is displayed in Table 3-4, the full table can be found in appendix A. The ANOVA 

established that the reduction in minor semi-axis length \vith increase in pattern test 

stimulus size was highly significant. It was not possible to perform a similar 

ANOVA for the major axis, as the variance of the semi-axis lengths differed 

considerably for the three pattern sizes (Levene's test p<0.001, (I. cvcne 1960)). 
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Figure 3-3. Average thresholds for the six normal trichroinats t-()r the direc patict'n tcst 
stimuli 111-1)3, plotted in (x, y)-chromaticitýy space. Symbols represent data points and 
dotted lines represent fitted ellipses. The cross indicates the background chromaticity. 

III 1 p') P3 C1 C2 (, 1) 
Major serrii-axis 
Minor sen-ii-axis 

11.1 
5.7, 

8.8 
5.2 

6.0 
3.8 

4.8 
3.1 

4.2 
2.5 

3.1) 
2. () 

Table 3-3. NLijor and ininor semi-axis lengths for clhpses Fitted to the mcan data Cor six 
observers In (Li', v')-chrorriaticitv space, for the three sizes of the pattern test and the colour 

test. Units are distances in the CIE 1931 chrorriaticity diagnim x W". 

Nlajor scmi-axis Minor senii-axis 
Pattern test N/A i +- 
Colour test NS + 
P2 vs. C, 2 iý* 

Table 3-4. Results of the statistical analysis of the change in nialor and minor semi-axis 
length with Stin-lukis size, for the pattern test, the colour test and a compari'son of the two 
tests for normal trichromats. The semi-am. s lengths were for clhpses fitted to the incan clata 

III (LI', v')-chromaticity spacc. Significance levels are given as ***: p<0.001, -**: p<(). () 1, ': 
p<0.05, NS: not significant. 

Fhe incan results for three colour normal obscivers who performed measurement,, 

for stimull CI, C2 and C3 are shown in Figure 3-4, along with the respective 

c1liptical fits, plotted in (x, y)-chromaticity space. Similar to the pattern test results, 

thresholds for the colour test decreased with increasing test target Size. 
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f-igure 3-4. Avcragc thrcsholds for the three normal trichrommN for the thrcc colour test 
stimuh CI-C3, plotted in (x, y)-chromat-icity space. Symbols represent data points and 
dottcd lines represent fitted ellipses. The cross inchcates the background chromaticity. 

The change in sensitivity for different sizes of the colour test, howcvcr, appeared to 

ec ons than for the pattern tc't. Thc Icngths of bc more uniform across colour dir ti S 

the major and minor scmi-axes of the ellipses fitted in (u', %`)-space are shown in 

Table 3-3, and the results of the statistical comparisons of the major and minor 

semi-axis lengths for the colour test are displayed in Table 3-4 (the full statistical 

table is shown in appendix A). Thc AMWA for the colour test demonstrated that 

the reduction in semi-axis length , vith increase in block size was not significant for 

the major axis, but a significant change -, vas found for the minor axis. 

Figure 3-5 shows the comparison of chromatic thresholds obtained for the pattern 

test and the colour test for the stimulus configurations P-2 and ('2, %N-hich had sinillar 

test target areas. It is clear that the two stimulus arrangements produced a 

substantial difference in thresholds, with larger thresholds arising for the pattern 

test. The statistical comparison of the major and minor scn-u-axes for the pattern 

test vs. the colour test showed the differences in axis length to be highly sig-nificant, 

see Table 3-4. 
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3.3. Rcsults 

Figure 3-5. Avcragc chromatic thresholds for thrce normal trIchroniats for the pattern tcst 
stimulu, P2 and the colour test stimulus C'2, plotted in (x, y)-chromaticity space. The 

inbols represent data points and the dotted lines represent fitted ellipses. T he cross 
indicates the chromaticity of the background. 
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Figure 3-6. Cliroinatic thresholds for the deuteranope d-1 for the three pattern test sfimuh 
111-113, plotted in (x-y)-chromaticity space. Closed symbols indicate measured thresholds, 

open symbols indicate an arbitran, maximum value (see text). The dotted hne indicates the 
dcuteranopic confusion line that passes through the background chromaticity. 
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3.3.2 Dichromats 

1-igure 3-6 hovvs the chromatic thrc, ýhdd, ()braincd lvý dI t-ý)T- T11(. * T11tc: (' I). mcrn test 

stimuli. For several of the directions tested, d-1 did not detect the presence of the 

coloured vertical bars even for the maximum chromatic difference that could be 

reproduced on the display. In the directions that d-1 did detect the colourcd bars, 

the thresholds fell on two lines. These lines \%-ere oriented rOUghl. % with 

dcutcranopic colour confusion hncs, and were separated in the ý'CIIO\v-b1L1c direction 

by a region equivalent in width to the isochromatic region of a normal trichromat in 

this direction. The region formed by the two lines, extending towards the spectrum 

locus, is the isochromatic region for d-1. The results obtained for the three sizes of 

the pattern test stimulus were very similar, although there \vas some reduction of 

the thresholds in the vel-low-blue direction as the stimulus size was increased. 

P2 
C2 
Deutan line 

0.42 phosphor limits 
P2 normal trichromat 

0.37 

0.32 

0.27 

0.22 'III11 
0.2 0.25 0.3 0.35 0.4 0.45 

x 

Figure 3-7. Chromatic thresholck for the dcutcran(q)c (I -' f,, r thc pattcrn i( t iinlullis P-', 
and the colour test stimulus C2, plotted in (x, v)-chromaticity space. Closed svrnbols 

indicate measured thresholds, open symbols indicate an arbitrarv maximum va Itic. The 
dotted line indicates the deuteranopic confusion line that passes through the background 

chromaticity. 

Mcasurcmcnts made by d-2 for both the pattern test and the colour test are shown 

in Figure 3-,,. Thresholds were obtained for the two dimensions of the pattern test 

and the colour test with similar target areas: P-7 and C2. The isochromatic region for 
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d-2 was similar to that for d-1, although the separation between the two deutan lines 

was narro,, vcr, indicating a greater sensitivity in the yellow-blue direction for d-2. 

Thcrc was little difference in the results acquired for stimuli P2 and (2; In fact d-2 

exhibited Icss difference in thresholds along the yellow-blue direction for the two 

stimulus configurations, than the normal trichromats tested. 

Pi 

A P2 

0.59 P3 

Subject A Phosphor limits 
P2 normal trichromat 

0.48 

0.37 - 

0.26 - 

0.15 'IIIII 
0.1 0.2 0.3 0.4 0.5 

Pi 
P2 

B 
P3 

0.59 - 
Deutan line 

Subject B Phosphor limits 
P2 normal trichromat 

0.48 - 

0.37 - 

0.26 

0.15 
0.1 0.2 0.3 0.4 0.5 

x 

Figure 3-8 (A)-(B). Chromatic thresholds in subjects with acquired colour vision 
deficlencv for the three pattern test stimull 1) 1 -P3, plotted in (x, v)-chroma6cit-y space. 

Results for Subject A, a patient with optic neuropathy of unknown actiology (A). Results 
for Subject 11, a patient Nvith toxic optic neuropathy (B). Closed symbols indicate measured 
thresholds, open symbols indicate an arbitrary maximurn value (see text). In (13), the dotted 

line shovvs the deuteranopic colour confusion line that passes through the background 
chromaticitA,. 
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3.3.3 Patients -*Nrith acquired colour vision deficiencv 

The results of Subjects A and B for the three stimulus sizes of the pattern test are 

shown in Figure 3-8, plotted in (x, y)-chromaticity space. Subject A's Sncllcn visual 

acultv x-vas 6/18 in each eye, and although she could not discriminate coloured 

vertical bars she stifl found it possible to detect colour changes using the pattern 

test. The thresholds for Subjects A and B vverc considerably larger than those 

obtained by the colour normal observers for all three stimulus sizes. Both subjects 

also exhibited a much larger increase in thresholds as the stimulus size was reduced. 

For the smaller stiMuh PI and P22, it was not possible to measure thresholds in 

many of the directions tested because the maximum reproducible chromatic 

differcncc -was reached while still below threshold for the particular Subject. I-or 

Subject B, it was only possible to measure a single threshold using pattcrn PI. The 

pattern of chromatic sensitivity loss for Subject A, was that of dIft-111C I-s in all 

directions tested. The loss of chromatic sensitivity for Subject B, 11, ý%% L-\ cr. appeared 

to be greater along an axis roughly aligned -,,. -Ith a deutcranopic colour confusion 

hnc. 

I-Igurc 3-9 shows the results obtained bv the tx%-() subjects with acquired colour 

vision deficiency for the comparison bcoxecri thresholds obtained using colour test 

stimulus (. 2 and pattern test stAmulus P-2. Subject A's threshold contour for the 

colour test was marginally smaHer than for the pattern test. Similar to her pattern 

test results, the loss of sensitivity for the colour test %vas evenly distributed 

throughout chromaticity space. Subject B exhibited a substantial loss of chroma i I tic 

sensitivity for the pattern test, but produced smaller thresholds for the colour test in 

all colour directions where it was possible to measure thresholds, except for the 

bluc/violet directions. B's thresholds for the colour test were oriented roughly along 

a dcutan line, simflar to her pattern test results. 
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3.3. Results 

Figure 3-9 (A)-(B). Chromatic thresholds for subjects with acquired colour vision 
deficiency for pattern test stimulus P2 and colour test stimulus C2, plotted in (x, y)- 

chromaticity space. Results for subject A, a patient with optic neuropathy of unknown 
aetiology (A). Results for subject B, a patient with toxic op6c ncuropathy (B). Closed 

s\-mbols indicate measured thresholds, open symbols indicate an arbitrarv maximum value 
(see text). In (B), the dotted line shows the deuteranopic colour confusion line that passes 

through the background chromaticity. 
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3.4 Discussion 

Ile results of this investigation indicate that measurements of chromatic sensitivity 
under photopic conditions, depend on the spatial distribution of the test stimulus 
and also whether changes in chromaticity are associated with, or arc independent of 
stimulus structure. This dependence is more apparent in subjects with acquired 
colour vision deficiency than normal trichromats or subjects with congenital colour 
deficiency, and, therefore, has implications for the interpretation of colour vision 
test results in subjects with acquired colour vision losses. 

3.4.1 Detection of chromatic bars over different spatial scales 
For all observers, differences were seen in the results for the three sizes of pattern 
test stimulus., where observers were required to detect colour defined vertical bars 
buried in a luminance contrast defined pattern. Ile decrease in sensitivity with 

reduced pattern size was greatly exaggerated for the two subjects with acquired 

colour vision deficiency compared to normal trichromats and the dichromat tested. 
Differences in sensitivity elicited by the pattern test stimuli PI-P3, may relate to the 
differences in spatial frequency of the stimulL It has been reported that wavelength 
discrimination for equal-brightness monochromatic gratings is dependent on spatial 
frequency (Hilz and Cavonius 1970), with wavelength differences increasing with 
increased spatial frequency. Also, a study of contrast sensitivity to rcd-green and 
blue-yellow chromatic gratings Ofullen 1985) revealed low pass sensitivity curves 
that declined above 0.8 cycles degý', with reduced sensitivity for blue-yellow 

compared to red-green gratings in the low spatial frequency region. in the current 

study, the approximate spatial frequencies of the three stimuli were 2.1,1.4 and 0.4 

cycles deg7', for P1, P2 and P3, respectively. The observed decline in sensitivity over 
these spatial frequencies agrees with the findings of Mullen. 'nc greater rise in 
detection thresholds with spatial frequency in the bluc-ycHow direction is also 

consistent with the findings of Mullen over this frequency range. It is suggested that 

the change in blue-yellow threshold for deuteranope d-1 may also be attributed to a 
loss in sensitivity with increasing spatial frequency. 
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The pattern test results for the subjects with acquired colour vision deficiency show 

marked losses in sensitivity compared to normals, and exaggerated threshold 

increases with increasing spatial frequency of the stimulus. The smallest and only 

complete chromatic threshold contour for subject B is elongated along a 

deuteranopic colour confusion axis, which ties in with the finding of predominantly 

red-green deficiencies in optic nerve pathologies, including toxic optic neuropathy, 

using standard colour vision tests (Verriest 1963). No comment can be made on the 

orientation of results for the remaining pattern stimuli for this subject, as it was not 

possible to measure thresholds in all directions of chromaticity space investigated. 

'Me complete contours for subject A are indicative of a more uniform loss of 

chromatic sensitivity. These results are consistent with the study of optic neuritis by 

Mullen and Plant (1986), in which they reported individual variation in chromatic 

sensitivity losses to red-green and blue-yellow stimuli for 1 cycle degý' gratings, but 

on average, equal losses for both colout directions. The large differences in 

chromatic thresholds for the three stimulus sizes observed for subjects A and B may 

also be attributed to changes in spatial frequency of the stimulus, but illustrate a 

much greater dependence for subjects with acquired colour vision deficiencies than 

for normals and subjects with congenital colour vision loss. A possible explanation 

for such an enhanced deterioration in chromatic sensitivity for subjects with retinal 

or optic nerve pathologies is that uniformly distributed cell damage may lead to a 

reduced ability to surnmate chromatic signals over receptive fields. This is analogous 

to the suggestion that poor summation of chromatic signals causes the degradation 

of colour vision observed in the peripheral retina (Noorlander et al. 1983; Abramov 

et al. 1991; Nagy and Doyal 1993). 

3.4.2 Comparison of chromatic sensitivity inherently associated 

with and independent of stimulus structure 

The results of the pattern test compared to detection of colour changes independent 

of structure (colour test), reveal differences in chromatic thresholds for the two test 

stimuli both for normal trichromats and subjects with acquired colour vision 

deficiency. No significant differences were seen between the two tests for the 

deuteranope tested. Previous studies have revealed large differences between 
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chromatic detection thresholds associated with and independent of structure in 

subjects with cerebral achromatopsia (Barbur ct A 1994b) and a subject with optic 
neuritis (Barbur et A 1997). The current study indicates that small differences are 
also observed for normal trichromats, with the pattern test yielding larger thresholds 

than the colour test for all three subjects tested. This somewhat unexpected result 
differs to that reported by Barbur (1994b) for the one trichromat tested under 

similar conditions, where no changes in sensitivity were observed for the two 

stimulus paradigms. Ile lack of agreement between the two studies may stem from 

differences in the stimulus parameters used; for example, in the current study, a 
change in the spatial distribution of the pattern test stimulus would be sufficient to 

eliminate differences in thresholds obtained using the two tests (pattern test and 
colour test). Other investigations, however, report that the chromatic discrimination 

of normal trichromats is poorer for stimuli presented in the form of isochromatic 

plates than for uniform colour stimuli CLakowski 1966; Watanabe ct A 1998). Thc 

authors of these two studies suggest that differences in discrimination can be 

attributed to task differences, i. e. extracting form information from colour, vs. 
discriminating changes in hue. Results of the present study support this suggestion, 

as although both stimuli employ luminance masking similar to the design of 
pseudoisochromatic plates, the task differs between the two tests - the pattern test 

requiring detection of form and the colour test requiring detection of hue changes. 

The response of normal trichromats to changes in the area of the colour test 

stimulus produced little difference in sensitivity, although for the mean thresholds 

of the three subjects, a statistically significant difference was found along a red- 

green axis. These results indicate that at the fovca, an increase of the area of a 

uniform stimulus above 1.8' diameter had little effect on chromatic thresholds. It 

has been reported that hue appearance (Abramov et al. 1991), colour discrimination 

for temporally modulated red-green and yellow-blue chromatic gratings (Noorlander 

et al. 1983), and red-green colour discrimination for uniform stimuli (Nagy and 
Doyal 1993), all reach a plateau for sufficiently large field size, and that the critical 
field size, beyond which performance asymptotes, increases with eccentricity. 
Abramov et al (1991) obtained a measure of critical field size for invariant hue 

perception at different retinal locations. Their results for the periphery agree with 
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those of Nagy and Doyal (1993), who investigated the effect of field size on red- 

green chromatic discrimination at 10' and 25". Abramov et al (1991) also included 

measurements at the fovea, and found minimal changes in red, green, blue and 

yellow hue mechanisms for foveal field sizes larger than 0.3' in diameter. These 

results suggest that measures of foveal colour appearance/ colour discrimination 

may exhibit little dependence on field size for smaller sizes than those investigated 

in the present study, where some change in red-green thresholds were seen for field 

sizes greater than 1.8'. What is apparent from the current results, is that for normal 

trichromats, changes in the dimensions of a spatially defined block of colour have 

less effect on chromatic discrimination than changes in spatial scale of a colour 
defined pattern. 

The results for the two subjects with acquired colour vision deficiency also show 
larger thresholds for the pattern test compared with the colour test. This was not 

the general finding in the investigation of subjects with cerebral achromatopsia 
(Barbur et al. 1994b), where two out of three of the subjects investigated, exhibited 

a greater loss of sensitivity for detection solely of colour changes and the third 

subject showed reduced sensitivity for detection of a coloured pattern. In Barbur's 

(1997) study of subjects with optic neuritis, the one subject tested with the two 

stimulus paradigms, revealed close to normal thresholds for detection of pure 

colour changes, but greatly reduced sensitivity in all directions of chromaticity space 

when required to detect coloured vertical bars. 

The comparison of results for the pattern and colour test in the present study, 

support previous findings of different uses of chromatic signals leading to marked 
differences in chromatic sensitivity for subjects with optic nerve pathology (Barbur 

et al. 1997). From the results of his study of subjects with cortical deficits, Barbur 

(1994b) suggested that the cortical representation of form based on chromatic 

signals and the perception of colour changes in patterns defined by luminance 

contrast, may have different neural substrates. The results of the current study 

suggest that it is also possible that mechanisms for processing chromatic signals are 

affected differently in optic nerve pathologies. Further manipulation of stimulus 

parameters in an attempt to equate thresholds obtained using the pattern test and 
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colour test in subjects with such pathologies, may reveal more information about 
the coding of chromatic signals early in the visual system. 

152 



Ch 4. Chromatic sensitivity in the mesopic range 4.1. Introduction 

Chromatic sensitivity in the mesopic range 

4.1 Introduction 

Human colour vision extends to relatively low light levels, but as illumination is 

reduced, sensitivity to differences in wavelength and chromaticity deteriorates. 

Wavelength discrimination is reduced across most of the spectrum with decreasing 

retinal illuminance, the greatest loss occurring in the midwavelength region (McCree 

1960). An improvement in discrimination around 460 nm may be seen at low retinal 

illuminances, however, for a small field or flashes of short duration (McCree 1960; 

Mollon et al. 1992). Normal observers also show increased tritan errors on the FM 

100-hue test performed under low illumination (Bowman and Cole 1980; 

Knoblauch et al. 1987; Smith et al. 1991; Knight et al. 1998). Brown's study of 

foveal chromatic discrimination (1951) indicated that performance is impaired 

below about 3 cd M-2, with normal observers becoming tritanomalous at mesopic 

levels. 

Colour vision is also degraded in the retinal periphery. This is evident from studies 

of wavelength and colour discrimination (Weale 1953; Moreland and Cruz 1959; 

Noorlander et al. 1983; Nagy and Doyal 1993), although it has been reported that 

peripheral discrimination may approximate foveal discrimination for sufficiently 
large fields (Noorlander et al. 1983; Nagy and Doyal 1993). Reported changes to 

colour vision in the periphery have included shifts in hue and changes in saturation 

of monochromatic stimuli with eccentricity (Moreland and Cruz 1959; Stabell and 

Stabell 1976a; Stabell and Stabell 1996; Buck et al. 1998). These changes observed in 

the periphery have been attributed either to changes in the cone mechanisms, 
desaturation effects of rod signals, or rod-cone interactions; arguments that could 

equally be applied to the observed degradation of performance with reduction in 

retinal illuminance. It has been shown that large field colour matches have a rod 

contribution, so that four matching primaries are required to characterise colour 
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matches in order to satisfy the colorimetric laws of additivity (Trezona 1970) 

(Shapiro et al. 1994). Under conditions that differcritially minimise or maximise the 

stimulation of rods, the Stabells provided evidence for both a cone-bascd and a rod- 

based effect on the deterioration of wavelength discrimination (Stabcll and Stabell 

1977) and the change of hue and saturation of monochromatic lights in the 

periphery (Stabcll and Stabell 1996). Other studies employing differential 

stimulation of rods suggest that red-green (Nagy and Doyal 1993) and blue-yellow 

(Knight et al. 1998; Knight et aL 2001) chromatic discrin-dnation is impaired when 

rods are stimulated. The Stabclls (1996) have suggested that the desaturating effects 

of rods may be a consequence of rod input to spectrally opponent pathways, rather 

than the action of independent rod and cone pathways. 11cre is evidence from 

measurements of successive colour contrast that rod signals have access to 

chromatic pathways when below cone threshold (StabclI and Stabell 1994; Buck 

1997), and it has been reported that rods and Iconcs can interact to produce 

colour sensations (McCann and Benton 1969; NIcKcc et al. 1977). Little is known, 

however, of the possible neural mechanisms for such rod-cone interactions. 

Although these findings suggest that rod signals affect measures of colour vision in 

the periphery and may similarly affect colour vision at reduced levels of illumination 

either through desaturation effects or rod-conc interactions, these effects arc 

stimulus dependent, and it is by no means clear how the influence of these factors 

changes with light adaptation level and other stimulus conditions. 

The objectives of this study were twofold. The first aim was to characterise 

chromatic discrimination with reduction in fight level, for one location in 

chromaticity space, at two retinal locations: the fovea and the near periphery. The 

experimental procedure consisted of measuring thresholds for the detection of 

chromaticity changes against a neutral background, thus constituting a measure of 
chromatic sensitivity. TIds was achieved using a psychophysical staircase, unlike 

many previous measures of chromatic discrimination that have involved either 
finding by direct adjustment the just noticeable difference between two Coloured 
fields, or determining an estimate of discrimination from the standard deviation of a 
number of colour matches made between a fixed and variable field. Prc-. ious studies 

of chromatic discrimination have also required the setting of isoluminance, whereas 
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the experimental procedure used in this study employed dynamic luminance 

contrast to mask detection of both photopic and scotopic luminance contrast 

signals, which has the advantage of eliminating the need to set isoluminancc. The 

second aim was to investigate the contribution of rod signals to changes in 

chromatic sensitivity with reduction in illuminance. In particular, to determine 

whether the preferential loss of blue-yellow sensitivity at low light levels reported in 

the literature, can be attributed to rod involvement in chromatic processing. 

4.2 Subjects and Methods 

The experimental technique used to measure chromatic thresholds under mesopic 

conditions (mesopic: colout vision test) is described in section 2.3.2. The use of local 

dynamic luminance contrast noise has been shown to mask detection of luminance 

contrast signals in normal trichromats (Batbur et al. 1992). Barbur et al. (1998b) 

have also shown that in addition to local LC noise, random changes of mean 

stimulus luminance (light flux noise) can be used to mask the contribution rod 

signals make to the pupil response. To ensure adequate masking of both photopic 

and scotopic luminance contrast signals at the mesopic luminance levels used in the 

current study, the effect of luminance contrast and light flux noise levels on 

achromatic and chromatic thresholds was assessed. Chromatic sensitivity 

measurements were then performed at a number of mesopic light levels, with the 

stimulus centred either at the fovea, 3.5' or 7' in the periphery. The influence of rod 

signals on chromatic sensitivity was investigated by performing measurements 
following light adaptation on the cone plateau of the dark adaptation curve, and 

after complete dark adaptation to the luminance of the stimulus. 

4.2.1 Subjects 

Four observers took part in the experiments. All were normal trichromats according 

to the Ishihara plates and the colour vision test described in section 2.3.1. The age 

range was 22-49, subjects HA and HW were fernale, JB and SM were male. An 

observations were made monoculatly with the right eye and with natural pupils. 
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4.2.2 Assessment of the masking technique under mesopic 

conditions 
Achromatic and colour thresholds were measured by subject HXV using the mesopic 

colour vision test with no random luminance masking, and with luminance contrast 

(LC) and light flux g. F) noise set at ±20% of the Mean luminance of the stimulus. 

For the achromatic measurements, detection thresholds were obtained for both 

increments and decrements in target luminance. Colour measurements consisted of 
determining the threshold to detect a colour change for six directions in 

chromaticity space. Ibcsc directions corresponded to the prot2n, dcutan and tritzn 

colour confusion lines passing through the respective dichromatic copunctual points 
(Smith and Pokorny 1975) and the background chromaticity. For each dichromatic 

confusion line, thresholds in the two directions away from the background 

chromaticity have been labelled "I" and "2", for example "proun I" and "protan 2". 

Measurements were performed at a low photopic/high mcsopic background 

luminance and a mid-mcsopic background luminance, with the stimulus ccntred 

either at the fovea, 3.5*, or 7" from fixation in the right hcmificld. 'rhc masking- 

present and masking-absent conditions were compared by taking the ratio of the 

thresholds obtained for each condition. Chromatic thresholds were also measured at 
the mid-mcsopic: level, with the stimulus positioned at an eccentricity of 3.5". In this 

case, the effect of increasing levels of luminance contrast and light flux noise was 
investigated, for nine directions in chromatidty space. Ibc ranges of LC and LF 

noise were set at 0, ±20%9 ±40 and ±60% of the mean stimulus luminance. 

4.2.3 Investigation of chromatic sensitivity in the mesopic range 
Two observers performed measurements for a number of fight levels (HA: 6, HXV- 

7) in the range 45-0.0041 cd nf2 following appropriate dark adaptation to the 
background field (see section 2.4.1 for a description of the calculation of dark 

adaptation times). Table 4-1 shows the stimulus background luminances used, along 

with the corresponding mean filter densities for background luminances below 10 

cd m-'. Neutral density filters were employed to reduce stimulus luminance while 
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maintaining the CRT display in the mid to low end of its operating range of 
luminance (see section 2.1.1). The stimulus was centred either at the fovea, 3.5', or 
7' from fixation in the right hemifield, on the horizontal meridian. Eccentricities of 

3.5* and 7* were chosen because in the near periphery it was relatively easy to carry 

out the measurements, but beyond 7' the test became increasingly difficult. These 

eccentricities also correspond to retinal locations where there is a reasonable rod 
density. The achromatic background was chosen to have a chromaticity of 

x=0.305, y=0.323 (u'= 0.195, v'= 0.464), the chromaticity of MacAdam white 

WacAdam 1942). The level of random luminance modulation was set at ±20% of 

the mean luminance of the stimulus for testing at the Mgher light levels, and 

increased up to ±40% for the lower light levels and more peripheral measurements 

to compensate for increased luminance contrast thresholds. A luminance pedestal of 

constant contrast was used over the range of light levels investigated. 

Mean 
Nominal optical Background Dark 

filter density at luminance adaptation 
density 45" (cd m-) time (min) 

incidence 
NONE 0 45 5 
NONE 0 20 5 
NONE 0 10 5 

1.0 1.17 0.68 10 
2.0 2.25 0.056 16 
2.5 2.87 0.013 22 
3.0 3.39 0.0041 30 

Table 4-1. Filter densities, background luminances and dark adaptation times for photopic: 
and mesopic: measurements of chromatic sensitivity. 

To fally examine the loss of blue-yellow sensitivity in the mid-mesopic range, 

thresholds were measured with a change in background chromaticity from the 

neutral MacAdam white to a chromaticity of x=0.26, y=0.23 (u' = 0.198, v' = 

0.395), a bluish grey. This change allowed thresholds to be measured in the yellow 
direction of colour space at 0.056 cd m-2, which was not possible with the original 
background chromaticity due to the limits of the display's colour gamut. 
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Results were obtained as polar coordinates in CIE 1931 (x, N-)-chroniaticm' space, 

which when plotted formed MacAdam chromatic discrimination ellipses (MacAdam 

1942). Before plotting, however, the results were transformed Into coordinates in 

the CIF 197/6 (u', v')-chromaticity space. one of the colour spaces introduced bv the 

CIF to correct for the nonuniformity in the ClE 1931 chromaticity diagram. 

Flhptical fits were made to the (u', -, -')-coordinates using a direct least squares 

algorithm (Fitzgibbon et al. 1999). Elhpses were fitted at all bar the lowest stimulus 

background luminance. The effects of changes in stimulus luminance on four 

aspects of the fitted e1hpses plotted in (u', v')-space were Investigated: sensitivitV, 

orientation, e1hpticitv and asvmmettv. Orientation was taken as the alignment of the 

major axis of each ellipse with the abscissa; the angle measured counter-clockwise 

from the abscissa in degrees. Elhpticity gave a measure of ellipse elongation. At the 

lower light levels, using the original background chromaticity, it was not possible to 

measure thresholds in the yeflmv direction of colour space due to the limits of the 

colour gamut of the display. FApticity was, therefore, defined as the ratio of the 

,; cMi-major axis in the blue direction to half the minor axis length, i. e. only half of 

the fitted ellipse was considered. Asymmetn- along either the major or minor axis 

was taken as the ratio of the longer to the shorter sen-u-axis. Asymmetn- ', vas only 

computed in cases where it ,, -as possible to measure thresholds in all directions 

investigated. 

4.2.4 Investigation of possible rod involvement in chromatic 

processing 
Three obsen-ers: JB, SNI and H\X' performed measurement,, at a Single light level, 

both after dark adaptation to the level of the stimulus, and on the c, 11c plateau of 

the dark adaptation cun-e foflowing a white-light bleach. The stimulus %vas centred 

either at 3.5" or 7" to the right of fixation. Measurements were obtained for a test 

target of diameter 2') angular subtcnse at 3.5" and for a test target of 4'' diameter at 

7". The background chromaticity was chosen as x=0.26, v=0.23 (u' = 0.198, v, 

0.395), to ensure that it was possible to measure threshold,, in the yellow direction 

of colour space. The test target lun-unance was 0.09 cd m' with a corresponding 

background luminance of 0.45 cd M2 (the test target was dcfincd bv a lununance 
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contrast pcdestal). This was the lowcst stimulus luminance that could bc cmploycd 

for testing during the cone plateau, and was roughly 0.5 log units abovc cone 

threshold. 

-1 
A 3.51 eccentricity 

0.09 cdm-2 

I 

B 71 eccentricity 

0.09 cdm-2 

5 10 15 20 25 05 10 15 20 25 

1 

Time (min) Time (min) 

Figure 4-1(A)-(B). Fxamples of dark adaptation curves measured for subject I I%V. Filled 
circlcs represent measured thresholds, solid lines show curves fitted separately to the cone 
portion and rod portion of the data, and dotted lines show the fitted rod sci-isitivitV curve 

extended above the cone plateau. The dashed line at 0.09 cd M-2 indicates tile luminance of 
the stimulus used to measure chromatic thresholds. Curve obtained with a 2- stimulus 
positioned at 3.5,, ecccritricity (A). Curve obtained with a 41, stimulus positioned at 71, 

eccentrlcltý- 

The apparatus used to provide the bleaching stimulus was described in section 2.22. 

Subjects were light adapted to a5 log td field for 2 min. Preliminary dark adaptation 

measurements for subject HW, obtained using the method described in section 2.4, 

were used to establish the onset and duration of the cone plateau after bleaching. 

Dark adaptation curves were measured for a 2" ring target presented at 3.5" 

eccentricitv, and for a 4" ring target presented at T eccentricitN,. The onset and 

duration of the colic plateau for each eccentricity of presentation were estimated 

from two measured curves at each retinal location, cxarriples of which arc shown in 

Figure 4-1. The timings used for the chromatic sensitivity measurements at 3.5" and 

at 7", were chosen to fall within the estimates of the colic plateau location for tile 

two dark adaptation curves obtained at each eccentricity. At 3.5'' measurements 

were started 4 n-nn after the end of the bleach and continued for a further 4.5 min. 

At 7'' measurements were started 5 min after the end of the bleach and continued 

for a furthcr 3.75 rmns. 
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4.3 Results 

4.3.1 Effectiveness of the masking technique 

1-1gure 4-2, sho\-, -s the effects of the masking technique (combined luminance 

contrast and hght flux noise, plus lun-unance contrast pedestal) on both achromatic 

and chromatic thresholds. The plotted bars represent the logarithm ()f the ratio of 

thresholds for the masking-present to masking-absent condition. 

pos itive 

negative 
tritan 1 

tritan 2 

deutan 1 

deutan 2 

protan 1 

protan 2 

positive 
negative 

tritan 1 
tritan 2 

deLAan 1 
deutan 2 
protan 1 
protan 2 

B 

ý", P) cdmý-2 

eg 

-1 -05 0 05 
Log ratio of thresholds 

(masking presenUmasking absent) 

Figure 4-2 (A)-(B). Companson of the effect of masking to no masking on achromatic 
, mcl chromatic thre,; holds obtained at the fovea, 3.5- and 7- cccentncity. Achromatic 
thre, holds were measured for both positive and negative contrast stimuli. Chromatic 

thresholds v,, ere measured along m, o direcfions of each of the three dichromatic colour 
confusion axes, labelled tritan 1, tntan 2 etc. Measurements at V) cd m Measurements 

at 0.056 cd m2 (B). 

The results shmv that achromatic thresholds were raised in the masking-prcsent 

condition compared to the masking-absent condition, whereas chromatic thresholds 

(measured along the dichromatic colour confusion axes) %%-ere affected little by the 

presence of lun-unancc noise. At 0.056 cd m achromatic thresholds were raised less 

than at 10 cd m2 for a noise level of 20' o, hence, noise IcvcIs of greater amplitude 

were employed %-, -hen testing at the lowest background luminances. 

Figure 4-3 iflustrates the effect of increasing the amplitude of masking noise on 

chromatic thresholds in sevcral directions of chromaticity space. The s-timulus 
luminance -, vas 0.056 cd m2, and the level of masking increased from () to 60% of 
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the mean stimulus luminance. These results show that the magnitude of luminance 

contrast noise had little mfluencc on chromatic thresholds. 

RLM amplitude 
v LC=LF=O% 
0 LCm=LFm=20% 
(3 LCm=LFm=40% 

0.55 -a 
LCm=LFm=60% 

v phosphor limits 

0.5 - 

0.45 4a 

0.4 

0.056 cdm-2 
0.35 1111 

0.1 0.15 0.2 0.25 0.3 

U, 

Figure 4-3. Chromatic thresholds measured at 0.056 cd m2 for increasing levels of 
luminance contrast 0, C) and light flux J, I, ý masking. 

4.3.2 Foveal measurements 

Chromatic sensitivity measurements for subjects HA and HW obtained with the 

stimulus centred at the fovea, are shown in Figure 4-4. The results arc plotted in the 

CIFI 1976 (u', N-')-chrornaticity space. Threshold contours for the tvvo obseners 

were qualitatively smular. There was little change in sensitivity for test lununances of 

45,20 and 10 cd m 2, but below this level thresholds increased markedlv as test 

luminance \vas reduced. 

Despite the great reduction in sensitivity at the lower mesopic levels, subjects were 

a\varc of colour changes and could correctly label the principal hues. The threshold 
-2 increase for luminances of 0.056 cd M and below, was such that it was not possible 

to measure the threshold in all angles tested. There is a limit imposed by the 

phosphors of the monitor on the maxii-num saturation that can be produced at each 

anglc. For some angles the maximum saturation was reached while below the 

obser-, -cr's threshold. At the lowest test lutrunance (0-0041 cd m-") it was only 

possible to obtain thresholds at three of the test angles. 
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Figure 4-4 (A)-(B). Chnnnatic thrcý, h, )Id, %%itii T! ý( it tilc 6)vca, 
obtaincd 1). % subject I IA over six light levels (A), and by subject I I%V over seven light levels 

(B). AI and BI show measurements for all test luminances used. A2 and B2 sho., v an 
enlarged sec6on ýthe region indicated by the square on AI and B 1), in -,, -hIch tile results, for 
the highest three test lurninances can be seen in greater detail. The closed symbols indicate 
chromatic thresholds. The open symbols indicate that the maximum saturation that could 
be produced by the monitor was reached while stil-I below threshold for the obsen-cr, and 

an arbitrary maximum value has been assigned. 
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StiMulus IuMMance (cd rn ,) 

-TF 
45 20 10 0.68 0.056 0.013 

11 62 62 64 64 65 
1 I\V 67 67 66 69 71 69 

Table 4-2. Orientations of the Fitted, foveal chromatic discrimination ellipses for subjccts 
I 1A and I I\V, measured in (x, y)-chromaticity space. Orientation was defined as the angle 
bet-, veen the major axis of the ellipse and the abscissa, measured in a coun ter- clockwise 

direction. 

Stimulus luminance (cd m 
45 20 10 0.68 0.056 0.013 

HA 2.0 2.5 2.5 3.7 4.2 
FIV, 1) 1) 2.4 2.2 2.9 2.8 2.8 

Table 4-3. FlhpticIties of the fitted, foveal chromatic discrimination elhpses of subjects I IA 
and I I\V. Flhpticity was defined as the ratio of the major semi-axis length in the blue colour 

direction, to the average minor sen-ii-axis length, measured in (u', -, -')-chroniaticltý' space. 

Stimulus lurninancc (cd m 2) 
45 20 10 0.68 0.056 0.013 

Major HA 1.1 1.1 1.2 1.6 
axis HV' 1.0 1.1 1.2 1.1 

Mlnor HA 1.3 1.2 1.3 1.3 1. 
axis HW 1.0 1.0 1.0 1.2 1.2 1.1 

Table 4-4. Major and minor axis asymmetries for the fitted, foveal chromatic 
discrimination ellipses of subjects HA and 1AW. Axis asymmetry was defined as the ratio of 

the longer to shorter semi-axis length, measured in (u', v')-chromaticity space. 

The sets of Apses for both subjects were oriented approxiMately along the tritan 

colour confusion line that passes through the background chromaticity (tritan axis), 

which is also the axis of S-conc modulation (S-cone axis). In (x, y)-chromaticin, 

spacc this tritan axis makes an angle of 68" , vith the abscissa. Thc major axes of the 

ellipses for subject HA were inchncd a few degrees below this angle, and the 

orientation of HW's ellipses were close to 68", see Table 4-2. There was no 

sN, stematic variation of orientation with light level. The values of Apticity for the 

fitted ellipses arc glVen in Table 4-3. For subject HA, ellipticity generally increased 

with reduction in light level, leading to a doubling of ellipticity over the range 45- 

0.0056 cd m2- 'Subject HW' showed no systematic increase in ellipticity, although 

values tendcd to be greater for measurements obtained at the lower stimulus 

luminances compared those made at the higher lurninances. Thc values of 

asvnimetrv for the fitted eflipses are shown in Table 4-4. The eLlipscs obtained at 10, 
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20 and 45 cd m were roughly symmetric about the background chromat1cit-N, for 

both subjects. The ellipse obtained at 0.68 cd m2 for subject H%V -, vas also 

approximately symmetric, but the ellipse for subject HA showed a distinct 

asymmetry along the major axis. For light levels 0.056 cd m and (). 0 13 cd m 2, 

although thresholds were not obtainable at all angles, the raw data points and fitted 

data suggest that the complete ellipses would also exhibit asymn-ictry along the 

major axis. 

4.3.3 Thresholds obtained in the near periphery 

Nleasuremcnts obtained by both HA and H\X' with the stimulus ccntred at 3.5" 

eccentricity are shown in Figure 4-5. Thresholds were gencrally larger for this 

stimulus location than for the fox-eal measurements. Like the measurements 

obtained at the fovea, thresholds at lurrunances of 45,20 and 10 cd m were similar, 

and below 10 cd m2 sensitivity was greatly reduced with the fall in stimulus 

'Ihpsc orientation , vas again approximately independent of stimulus luminance. 1. 

luminance, but there was a shght change in the orientation of the t-, %-o sets of ellipses 

compared to the foveal data sets. The ellipses remained approximately aligned xvith 

the tritan axis, but xvith a tilt in the direction of the deutcranopic col()ur confusion 

line passing through the background chromaticity (dcutan axis). This lead to 

increases in the angles of orientation compared to the foveal data, see Table 4-5. 

The results obtained at 3.5" show no systematic increase in ellipticity or asymmetry 

with samulus lummiance for either subject (see Table 4-6 and Table 4- 7). 
. -\gain, it 

was not possible to measure asymmetries along the ma'or axis below 0.68 cd z m 

but the plotted data for the lower light levels suggested that asymmetries mav be 

prcscnt. 

StiMulus luminancc (cd m; ) 
45 20 10 0.68 0.056 0-013 

HA 66 67 65 68 69 
-1 

-7 

f -1 W 74 71 /1 76 73 

Table 4-5. Orientations of the fitted chromatic discnmina6on ellipses for subject, I IA and 
I\V, obtained at 3.5,, eccentricity. Onentation was defined as the angle between the major 
aXis of the elbpse and the abscissa, measured in a counter-clock, ise d rcc6on in (x, y)- v 

chromaticity space. 
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Figure 4-5 (A)-(B). Chromatic thresholds measured with the stimulus ccntred at 3.5ý, 

eccentricity, obtained by subject HA over six light levels (A), and by subject I IA' over seven 
light levels J3). AI and BI show measurements for all test luminances used, A2 and B2 

show an enlarged section (the region indicated by the square on Al and B 1), in which the 
results for the highest three test luminances can be seen in greater detail. The closed 

, symbols indicate chromatic thresholds. The open symbols indicate that the maximum 
saturation that could be produced by the monitor was reached while still below threshold 

for the observer, and an arbitrary maximum value has been assigned. 
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0.525 

Stimulus lunnnance (cd m, -) 
45 20 10 0.68 0.056 0.013 

HA 2.3 16 2.1 22.6 2.9 
f I\N' 2.4 3.2 2.1 2.8 1.9 2.3 

Table 4-6.1--Ihpticlues of the fitted chromatic discrimination elhpses of subjects I IA and 
I\V, ()btaincd at 3.5- eccentricity. E'llipticity was defined as the ratio of the major seryu-axis 
length in the blue colour direction, to the average nunor seryu-axis length, measured in 

(u', v')-chromaticitv space. 

Stimulus luminance (cd m -: ) 
45 20 1 () 0.68 0-056 0-013 

Major FIA 1.4 1.7 1.6 1.8 

axis HV 1.3 1.1 1.2 1.6 
Minor HA 1.1 1.2 1.1 1.2 1.3 

axis H \N' 1.2 1.2 1.0 1.1 1.2 1.1 

Table 4-7. \Ia)or and minor axis asymmetries for the fitted chromatic discrimination 
elhp, es of subjects FIA and IJXV, obtained at 3.5,, eccentricity. Axis asvmmetry vvas defined 

as the ratio of the longer to shorter semi-axis length, measured in (u', v')-chromaticItN 
space. 
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Figure 4-6 (A)-(B). G)mparison of chr, )niatic thrc, h(, Id, (d)t, iincd it thc ;, -) ý111ýj - 

eccentricm- for subject f IW. Measurements acquircd at 10 cd m2 (A), and at 0-0,56 cd in 2 

, '13). Closed sN-mbols indicate measured thresholds and open symbols rcprcscnt an arbitrar-, - 
maximum value. 
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Threshold measurements for subject HW with the stimulus positioned at 7" 

ccccntricity arc shown in Figure 4-7. For the two stimulus lurninanccs tcstcd, largcr 

thresholds were obtained at this eccentricitý, than for either the fovcal location or -at 

3.5" eccentricity. These data also showed a more pronounced change of ellipse 

orientation towards the deutan axis than the results at 3.5", with the angle of 

orientation increasing to 77'' and 78" (from 71" and 76") for the 10 and 0.056 cd m-2 

data, respcctivelý . 

0.55 

0.5 

0.45 

10 cd MA 
-2 

7 deg 
14 deg 

phosphor limits 

HW 

0.4 1111 
0.125 0.175 0.225 0.275 

UI 

Figure 4-7. Peripheral chromatic thresholds for subject I AX" obtained for a 4- stimulus at a 
luminance of 10 cd rn 2. 

The results of measurements performed by subject HW at 7" and 14" eccentricity 

are also shown in Figure 4-7, for a stimulus si7e of 4') at a luminance of 10 cd m2. 

I'lic clllpse orici-itation uicreased again with ecccntricity from 71" to 75" for 

eccentricities of 77 and 14", rcspcctl\-clv. With this larger field size, however, the 

angle of ellipse orientation at 7" was less that for the 2" diameter stimulus, the value 

being 71" compared to 77". In fact, using the larger field size of 4" diameter, the 

angle of orientation at 14" eccentricitýy was less than the angle at 7'' eccentricity for a 

stimulus size of 2'' diameter: 75" compared to 77". 

4.3.4 Change of background chromaticity 

For the 1()%x-cr mesopic levels, i. c., 0.056 and 0.013 cd m2, the data obtained at A 

three stimulus locations appeared to exhibit an asvnimetry along the ma)'or axis. 

4 deg. target 
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This apparent asymmetry corresponds to a reduced sciisitivity for S-cone 

decrements (i. e., towards yellow) and/or an increased sensitivity for S-cone 

increments (i. e., towards blue). It was difficult to evaluate these possible 

as%-mmetrics due to the aforementioned lirnits of the CRT display. '1*() overcome the 

constraints set by these luTuts and further invcstigate any asymmetries, 

measurements vvere obtained by subject HA at 0.056 cd m: and 3.5'' eccentricity, 

%vith a change in background chromaticity from u' = 0.195, v' = 0.464 to u' = 0.198, 

,, -' = 0.395 (see Figure 4-8). At this chromaticity, the background appeared a bluish- 

grev. Although the shift in background chromaticity %vas not Lirgc and the 

background stIH appeared fairly neutral in colour, it should be noted that this may 

have caused a shght reduction in sensitivity in both directions along the tritan axis 

(Poldcn and Nloflon 1980). With the shift of background chromaticitv it was 

possible to measure thresholds in A 18 directions; revealing an asymmem- along the 

major axis (ratio of longer to shorter semi-axis) of 1.8, in the direction described 

above. 

A Background chromaticity 
0 199,0 395 

0.525 
A 

'ý 195,0.464 
;, Iýnsphor limits 

*7k 
A 

0.475 

> 

0.425 

0.375 

0.056 cdm-2 HA (3.5 deg, ) 
0.325 11111 

0.1 0.15 0.2 0.25 0.3 

U. 

Figure 4-8. Chromanc thresholds for subject I 1A measured at 3.5, eccctitricity at a 
luminance of 0.056 cd M 2, for two backgrounds of different chromaticity. The first 

background chromaticity corresponds approximately to daylight at a colour temperature of 
6500K. The second is bluish grey in appearance and was selected to allow greater changes 

of chromaticit-v for all colour directions tested. Closed symbols indicate measured 
thresholds, open symbols represent an arbitrary maximum value. 
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4.3.5 Ellipses plotted in DKL space 

The CIF. 1976 (u', v')-chromaticity space was introduced to correct for the 

nonuniformity of the CIE 1931 (x, y) -chromaticity space. The (u', v')-space is a 

better approximation of a uniform space, but even at moderate levels of light 

adaptation the thresholds measured in this study were not independent of the 

direction tested. This complicates inferences about the ellipticity of the threshold 

contours and asymmetry of thresholds along a particular axis, e. g., the S-cone axis. 
A better way to investigate possible asymmetries is to plot the data in a colour space 

that is related to the early stages of chromatic processing. For this reason the fitted 

results obtained at the fox-ca and 3.5" were transformed into a plane of DKI. space 

(Derrington ct al. 1984), which models the response of the three proposed 

postreceptoral mechanisms: the luminance mechanism, the rcd-grcen chromatic 

mechanism and the vellow-blue chromatic mechanism. The chromaticitv 

coordinates of the threshold points in (x, y)-space were first transformed to express 

the relative activation of the three cone types (Nakano 1996) using the Smith and 

l'okorn\- cone fundamentals (Smith and Pokorny 1975). These cone excitations 

-erc then transformed to cone contrasts using the cone excita ons for the neu al ti tr 

background, and recoded into representations of the three postreceptoral 

mechanisms according to the DKJ- space model (11rainard 1996). The scaling of 

each colour opponent mechanism (l, -TNI and S-Lum) was chosen to produce a unit 

response -, vhen excited in isolation by a stimulus of unit pooled cone contrast 

(Brainard 1996). 

The ellipscs plotted in DKI. space were examined for changes in symmetry of the 

thresholds along the colour opponent mechanism axes, with changes in retinal 

illurninance. Asymmetry was calculated as the ratio of the negative value to the 

posItIvc value along each mechanism axis. Figure 4-9 and Figure 4-10 show the 

results obtained at the fovea and 3.5" eccent-riciq, transformed into planes of DKI. 

space. The fitted data have been plotted, with the luminance planes superimposed 

to compare the symmctty of L-NI and S-Lurn mechanisms at each light level. This 

transformation to DKL space was performed for the data acquired at background 

2 luniinanccs of 10-0.68 cd M only, because below this level the mcasurcd data was 

incornpictc and the elliptical fits less reliable. 
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Figure 4-9 (A)-(B). Chroma6c discriminanon elhpses obtained at the fovea, transformed 
into DKI, space. Lurn-Inance planes are superimposed. Results are sho%,, -n for M-o subjects 

(A): subject I LA and (B): subject I IW. 

The values of asymmetry calculated for each mechanism axis are shown in Table 4-8 

for the fox-eal data and Table 4-9 for the data acquired at 3.5" eccentricity. For both 

stimulus locations, subject HA tended to exhibit asymmetric channel 

thresholds in the direction of greater sensitivity for %I-cone signals, but with more 
balanced thresholds at 3.5" eccentricitv, whereas I M' tended to exhibit asymmetric 
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thresholds in the direction of a relative increase in L-cone sensitivitv, and showed 

more balanced thresholds at the fovea. 

Luminance cd/m"2 
45 

0.4 ----- 20 

- 10 

- 0.68 

0.2 

0 

-0.2 - 

HA 3.51 

-0.4 1 
-0.075 0 0.075 

L-M Luminance cd/mA2 
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----- 20 
ýB 

- 10 
0.3 0.68 
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-0.3 

-0.5 

1 HW 
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-0.075 0 0.075 
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Figure 4-10 (A)-(B). Chromatic discru-nination ellipses obtained at 3.5ýý eccentricity, 
transformed into DKI, space. Lun-unance planes are superimposed. Results are shown for 

two subjects (A): subject HA and (13): subject I I\X, '. 

For the ", -Lum mechanism, both subjects exhibited balanced thresholds at the 
fovea, apart from HA at 0.68 cd m 2, who showed a reduction in relative sensitivity 

to S-corie decrements. At 3.5'' eccentricitý- both subjects showed asymmetric 

thresholds with a reduced relative sensitivity for S-cone decrements. This suggests 
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that the apparent asymmetry along the S-cone axas of results plotted in (u', N-')- 

chromaticity space was in fact a true asymmetry for S-cone thresholck. 

fýovea Stimulus luminance (cd m 
45 20 1 () 0.68 

l, -NI HA 0.7 0.8 (). 7 0.6 

axis HW 1.0 1.0 1.1 1.2 

S-Lum HA 0.9 1.0 1.1 1.4 

axis H\X, ' 1.0 0.9 0.8 1.0 

Table 4-8. I-M and S-Lum mechanism asymmetries for the fitted chromatic discrunmation 
elhpsc,, of subjects HA and I INN', obtained at the fovea. Axis asymmem- -was defined as the 

ratio of the negative to the posi6ve value along each mechanism axis in DKI. space. 

3.5" 

ecc. 
Stimulus luminance (cd m -) 

45 20 1 () 0.68 
HA 0.9 0.9 0.1 0.9 

axis HW 1.2 1.3 1.0 1.2 
S-Lum HA 1.3 1.6 1.5 1.7 

axis MV 1.3 1.8 1.2 1.5 

Table 4-9. and S-Lum mechanism asvmmetnies for the fitted chromatic discrimination 
ellipses of subjects HA and IJ\X', obtained at 3.5,, eccentricity. Axis asymmetry %vas defined 
as the ratio of the negative to the positive value along each mechanism axis it, DM. space. 

4.3.6 Dark adapted vs. cone plateau measurements 

The results of the investigation into the effect of rod signals ()II chromatic 

thresholds arc shown in Figure 4-11 and Figure 4-12. Chromatic thresholds for the 

three obsen-crs measured using the 2" target at 3.5'' ecccntncitN-, both after dark 

adaptation and during the cone plateau of the dark adaptation cun, c, are shown in 

Figure 4-11. Under these conditions, threshold contours varied somewhat betv. -cen 

the obsen-ers. Subjects JB and H%X' exhibited somewhat larger thresholds than SM, 

and SNI and MV displayed asymmetric thresholds along the S-conc axis, -, X-hcreas 113 

did not. f-lo%-, -cx-er, none of the three observers showed marked differences I)ct-, %-een 

their thresholds measured under the tx-, -() conditions of adaptation. 

Fhe measurements were repeated at 7" eccentricity for a 4'' target. 'I'll's ccceiitricitN- 

corresponds to a retinal location with a greater rod densitý-, and the larger target si ize 

increases the area for potential rod signal pooling. The results obtained after dark 
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adaptation and during the cone plateau of the dark adaptation curve, for the same 

three obsct%-crs are shown in Figure 4-12. Again there were noticeable differences in 

thresholds for the three subjects; SNI's chromatic scrisifivity was supcrior to that of 

JB and I I\V, and only HW' exhibited asymmetric thresholds along the S-cone axis. 

For all three subjects, ho\,, -e\-er, chromatic thresholds measured under the two 

different conditions of adaptation showed no significant differences. 

> 

0.125 0.175 0.225 0.275 

0.425 

0.375 

n ll? rl 

B 3.5 deg. ecc. 
Dark adapted 

0.425 IHM6 A Cone plateau 

0.375 

0.325 
' sm 

I11 
0.125 0.175 0.225 0.275 

0.125 0.175 0.225 0.275 

uI 

0.425 

0.375 

nA9 ýýr; 

Figure 4-11 (A)-(C). Comparison of chromatic threshold,, measured after dark adaptation 
and dLiring the cone plateau of the dark adaptation curve. The results were obtained with a 

stimulus of 2'' diameter centred at 3.5ý, eccentricity at a luminance of 0.09 cd in 2. The 
results arc slio,, -,, n for three subjects: sub)ect_113 (A), sub)ect SNI (B) and subject I IW (C). 
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Figure 4-12 (A)-(C). Comparison of chromatic thresholds ineasured aftcr dark adaptation 
and during the cone plateau of the dark adaptation curve. The results \-, -crc obtained with a 

2 stimulus of 4'' diameter centred at 7ý eccentricity at a luminance of 0.09 cd m. The results 
are shown for three subjects: subject JB (A), subject SM (13) and subject I RV (c). 

4.4 Discussion 

It is clear that the lo-, -, -erlng of background light adaptation into the nicsopic range 

causes a reduction in chromatic sensitivity. The results of this studv shoxv that the 

loss of chromatic sensitivity is obscn-cd both fo-, -cally and with the stimulus ccntred 
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3.5" and - in the periphen-, and that there are differences bet-\veen chromatic 

threshold contours at each eccentrlcltý-. Threshold contour changes that are 

observed with reduction in light level arc discussed below in relation to the loss of 

cone quantal catches and the difference in response characteristics of S-cones 

compared to L-and M-cones. It is known that dynamic luminance contrast noise 

falls to cause any significant increase in chromatic detection thresholds in the 

photopic range (Barbur et al. 1992) in agreement with Mullen et al. 's (1997) finding 

of independence between chromatic and luminance detection ryicchatusms. The 

results of this study suggest that under the conditions invesfigated, chromatic and 

lun-unancc contrast signals arc also processed separately in the mcsopic range. 

A dynainic lun-unancc contrast noise technique was employed to ensure detection 

was based on purely chromatic signals. This technique has been shown to raise 

achromatic detection thresholds in the mesopic range, but produce little effect on 

chromatic thresholds; n-unin-using detection of luminance contrast changes 

associated with the onset of a chromatic stimulus. It has, therefore, been assumed 

that the measured thresholds represent solely the sensitivity of chromatic 

mechanisms. 

The background light adaptation level had a marked effect on chromatic sensitivity. 

The worsening of sensitivity was particularly evident below 10 cd in The non- 

uniform elevation of chromatic thresholds observed at the fovea is consistcnt with 

the finding,, of Brown (1951). Brown reported a preferential reduction of 

discrin-unation along tritanopic colour confusion lines at mcsopic rctinal 

illuminances, which is evident in the results presented here from the increase in 

ellipticity that accompalucs the fall in light level, with the ellipses aligned along the 

S-cone axis. The selective loss of chromatic sensitivity along the axis of S-conc 

modulation is also consistent with the finding of tritan errors for the I'M 100-hue 

test N-0-ien performed under mesopic conditions (Bowman and Cole 1980; 

Fýnoblauch et al. 1987; Smith et al. 1991; Knight et al. 1998). 
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4.4.1 Ellipse orientation: inter-observer differences and changes 

with eccentricity and field size. 

Results obtained in the near periphery were qualitatively similar to fovcal 

measurements, but typically showed a reduction in chromatic sensitivity compared 

to the fovea. The deterioration with light level similarly began below 10 cd lif 2, but 

at larger eccentricities the direction of poorest sensitivity shifted away from the 

tritanopic axis towards the deuteranopic colour confusion line. In addition, for the 

thresholds obtained at the fovca and 3.5* in the periphery there were systematic 
differences in ellipse orientation between the two observers whos' results 

constituted the major part of the study. 

A potential difference between the two subjects leading to the observed differences 

in ellipse orientation, may relate to the density of their macular pigment, which is 
known to vary between individuals (Werner et aL 1987). (Hammond ct aL 1997) 
Smith et al (1995) computed that chromatic filtering by the macular pigment 
theoretically causes a rotation of tritan and red-green axes in chromaticity space, 
which is dependent on pigment density. An alternative possibility is that small 
differences in the wavelengths of cone photopigmcnt peak sensitivities between the 
two observers may cause the differences in orientation. Estimates of macular 
pigment density were not acquired for the two subjects, and it was not possible to 
obtain estimates of cone photopigment peak sensitivity, therefore, possible effects 
of these two factors remain unconfirmed. 

The shift in ellipse orientation with eccentricity was observed at 3.5', 7' and 14o in 

the periphery, and appeared to depend on stimulus size, as the degree of ellipse tilt 
at 3.5* was reduced for a field size of 4' diameter compared to that of 2'. Alterations 

of ellipse orientation seem to imply changes in the orientation of the tritan line 

along which the major axes of the ellipses appear to align. It is unlikely that changes 
in macular pigment density with eccentricity could account for these findings 
because minimal density of pigment is found at the larger eccentricities investigated 

(Hanunond et al. 1997), and the direction of ellipse tilt predicted by the modelling 

of Smith et al. (1995) is in the opposite direction to that observed here. One 

possible explanation for the change of ellipse orientation with eccentricity might be 
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that the increasing density of rods influences chromatic sensitivity, but this idea is 

rejected in the discussion below (section 4.4.2). It is generally thought that the only 
factors that can affect the orientation of a tritan line are changes in the wavelength 

of photopigment peak sensitivity, changes in pre-receptoral filtering, or rod 
intrusion effects. It is unlikely that any of these factors are responsible for the 

observed changes in ellipse orientation with eccentricity. '1he finding of such 

changes, therefore, challenges the representation of two cardinal post-receptoral 

colour mechanisms (Krauskopf et al. 1982), and may instead reflect the processing 

of multiple colour mechanisms. Evidence for the existence of such multiple colour 

mechanisms has been reported in the literature (Webster and Mollon 1991; 

D'Zmura 1991). It is suggested that the changes in ellipse orientation with 

eccentricity observed in this study may be a manifestation of changes in the 

sensitivity of such multiple mechanisms. 

4.4.2 The influence of rods on chromatic sensitivity in the 

mesopic range 

The results of tbis study have shown that there is a preferential reduction of 

sensitivity along the S-cone axis, and that asymmetrical S-cone thresholds are 

observed at mesopic light levels. The contribution of rod signals to this nonuniform 

and asymmetric sensitivity loss was assessed from measurements obtained under 
differential levels of rod activation. It is generally believed that the response of dark 

adapted cones may be isolated during the cone plateau of the dark adaptation curve, 
following sufficiently high light adaptation. This is due to the different recovery 

rates of rod and cone photopigments after bleaching and the assumption, therefore, 

that thresholds during the early part of the dark adaptation curve are set by the 

cones. During the cone plateau, cone threshold remains constant wl-ýile rod 

sensitivity continues to increase; the rod-cone break occurring when the sensitivity 

of the rods becomes greater than that of the cones. Blakemore and Rushton (1965b) 

determined indirectly the change in rod sensitivity above cone threshold, and found 

it to follow an extension of the rod portion of the dark adaptation curve. 1bus, it is 

possible to measure chromatic sensitivity at a level just above the threshold for the 

cones for a period during the cone plateau, whilst remaining below rod threshold. 
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On addition there is evidence that measurements of brightness and colour matches 

performed following the recovery of cones after light adaptation at intensities well 

above the cone threshold, are not affected by rod activity (Stabell and Stabeu 1976a; 

StabeU and StabeU 1976b). It is certainly the case that differential activation of rods 

is achieved under the two recovery phases of the dark adaptation curve, without the 

need to ensure isolation of cone responses during the cone plateau. Rod influences 

are minimal during the period of constant cone threshold, and after ffiU dark 

adaptation to the same background leveL rod influences are maximaL 

The comparison of results obtained for the My adapted cones with minimal rod 
influence, and those obtained after M adaptation of the rods, showed no effect of 

rod activity on chromatic thresholds for either of the two eccentricities investigated. 

These results suggest that neither the selective loss of chromatic sensitivity along the 

tritan axis nor the asymmetry in thresholds in the blue and yellow directions can be 

attributed to rod signals. This would seem to contradict evidence that in the 

mesopic range both rcd-green discrimination at 25" eccentricity (Nagy and Doyal 

1993) and yellow-blue discrimination at 7" eccentricity (Knight et al. 2001) are 
impaired by the influence of rods. Wavelength discrimination at 7.5" eccentricity 

also appears to be impaired by rod intrusion, but with little effect seen at 2.5' 
(Stabell and Stabell 1977). Knight (1998) also reported a reduction of tritan errors 
for the FNI 100-hue test that are observed at mesopic light levels, when testing was 
carried out during the cone-plateau stage of the dark adaptation curve. Ibis finding 

was also interpreted as evidence for rod involvement in chromatic mechanisms. 
There are a number of differences between these studies and the investigation 

carried out here, which include differences in eccentricity, stimulus size, and level of 
illumination. There are also differences in methodology; for example, in this study 

chromatic discrimination thresholds were measured from a neutral stimulus as 
opposed to measuring discrimination between suprathrcshold chromatic stimuli. 
Another major difference in methodology relates to the use of different techniques 

to eliminate detection of luminance contrast signals. Nagy and Doyal (1993) and 
Knight et al. (2001) used flicker photometry to set isoluminance, Stabell and Stabell 

(1977) simply stated that a brightness match was maintained for changes in 

wavelength; whereas in the present investigation, dynamic luminance contrast noise 
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was employed to mask detection of luminance contrast signals. It is questionable 

whether reliable matches can be made using flicker photometry at mesopic levels, as 

matches fall on two branches of a discontinuous curve (Vienot and Chiron 1992). 

Vienot and Chiron reported that close to the transition flicker matches are difficult 

and some observers will make matches on both branches at the transition 

illuminance level. If scotopic luminance contrast signals are not effectively 

eradicated, they could account for apparent differences between cone plateau 

thresholds and thresholds acquired after complete rod recovery through a 
desaturating effect that is independent of cone mechanisms. For their investigation 

using the I'M 100-hue test, Knight et al. (1998) maintained that the caps for which 
increased errors were seen after dark adaptation, did not coincide with the caps that 

produced the greatest rod excitation and, therefore, could not be attributed to 

action of an independent desaturating rod mechanism. A possible explanation for 

the absence of a rod effect on chromatic discrimination in the current study may be 

that the effects of rod-cone interactions are masked in the presence of luminance 

contrast noise. However, the effects of the many differences between the present 

study and those reporting rod-cone interactions are not clear and require further 

investigation. 

4.4.3 Changes in chromatic sensitivity with reduction of light 

level, with particular regard to the S-cone system 

An alternative explanation for the non-uniform loss of chromatic sensitivity may be 

found from consideration of the characteristics of the S-cones. 'Me general 

reduction of relative sensitivity with decreasing light level may be attributed to the 

reduction in quantal catch of the cone receptors and a corresponding decrease of 

signal to noise ratio. The greater loss of sensitivity along the S-cone axis could be 

explained by the scarcity of S-cones in the retina (Curcio et al. 1991), or by S-cones 

only approaching the Weber region for higher levels of excitation (Boynton and 
Kambe 1980; Yeh et al. 1993). T11is explanation can also account for the asymmetry 
in chromatic sensitivity that is observed for some subjects, which has also been 

reported for yellow-blue mechanism detection thresholds at photopic levels 

(Vingrys and Mahon 1998). If the level of S-cone excitation falls below the Weber 
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region at lower light levels, decrements in S-cone excitation will produce a move 
further away from the Weber region, leading to a reduction in sensitivity. Similarly, 
increments in S-cone excitation will produce a move into the Weber region, leading 

to an improvement in sensitivity. This behaviour would predict the observed 

asymmetry. reduced thresholds towards the blue and increased thresholds towards 
the yellow. This hypothesis also predicts that changes in background adaptation 
level should either enhance or reduce the observed asymmetry in chromatic 
thresholds when S-cones are involved. DeMarco et al. (DeMarco ct A 1994) 

observed symmetry in such thresholds at - 100 cd rn72, and Shinomori et aL 
(Shinomori et al. 1999) observed equal sensitivity to both directions of saw-tooth 
temporal modulation of S-cone excitation at 3 cd tzf2, although they were able to 

produce differences by adaptation to such asymmetrical stimulL The asymmetry in 

the thresholds for increments and decrements of S-conc excitation is not observed 
in all subjects and appears to depend on luminance, eccentricity, stimulus size and 
probably other factors including filtering by the ocular media. More experimental 

work is therefore needed to test this hypothesis and to explain why the chromatic 
threshold asymmetry along the tritan axis is not present in all subjects for the same 
experimental conditions. 
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5A model of conspicuity in the mesopic range 

5.1 Introduction 

Luminance contrast is a major determinant of performance in different visual tasks. 
For example, as luminance contrast is increased an improvement is seen in both 

visual acuity (Ludvigh 1941) and reading speed (Legge et al. 1987). Reaction time to 

the appearance of luminance contrast gratings, or increment light flux changes, 
decreases with increasing contrast (Flarwerth and Levi 1978), and search times are 

reduced for increased luminance contrast (Barbur et al. 1991; Nasanen et al. 2001). 

Performance typically improves with increasing contrast until a plateau is reached 

after which performance is independent of contrast. 'Me characteristics of such 

task-specific performance curves, however, are determined by many additional 

stimulus factors. 

Colour can also be an important determinant of performance in a variety of visual 

tasks, where performance may depend on the combination of saturation and hue. 

For example, when spatial and transient achromatic signals are masked, reaction 

times to uniform chromatic stimuli exhibit a wavelength dependence (Ueno et al. 
1985), and reaction times to photopically isoluminant red-green gratings are reduced 

as the colour contrast of the grating is increased (Parry 2001). For both photopically 
isoluminant chromatic targets and chromatic targets with identical luminance 

contrast, visual search time differs depending on the hue of the target (Batbur and 
Forsyth 1990; Nagy and Sanchez 1990; D'Zmura 1991). 

Considering this dependence of visual task performance on stimulus contrast and 

colour, it would be advantageous to obtain a measure of the combined effectiveness 

of these stimulus parameters. The measure proposed in this study is conspicuity, 

which describes the discHniinability of a target from its surroundings, and takes into 

account both the colour contrast and luminance contrast of the stimulus. Recent 
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studies of visual search have proposed that target discriminability/ saliency/ 

conspicuity is an essential determinant of visual search performance (Verghese and 
Nakayama 1994; Itti and Koch 2000; Palmer et A 2000), supporting the need to 
develop measures of stimulus conspicuity. 

The need for a greater understanding of the relative contribution of colour and 
luminance contrast to conspicuity is perhaps more pertinent in the mesopic range. 
The absence of a standard luminous efficiency function for incsopic vision means 

that luminance contrast cannot be computed under these conditions as it can for 

either- photopic or scotopic vision. Hence, when considering the relationship 
between luminance contrast and visual task performance, performance can only be 

measured in terms of photopic luminance contrast or scotopic luminance contrast, 

neither of which describes fully the adaptive state of the eye under mesopic 

conditions. Even in the achromatic mesopic domain, therefore, one needs to obtain 

a measure of the relative contribution of photopic contrast and scotopic contrast to 

task-specific performance. In addition, little is understood of the relationship 

between visual task performance and colour in the mcsopic range. Hence, a measure 
based on contributions from these three parameters (photopic contrast, scotopic 

contrast and colour contrast), such as stimulus conspicuity, would be a valuable, 

practical way of assessing the visual effectiveness of a stimulus in the mesopic range. 

Engel (1971; 1974; 1977) developed a measure of conspicuity based on the area 

within which a target object could be detected, during an exposure that was 

sufficiently short to preclude eye movements (75 msec). Further studies employed 

measures of conspicuity based on Engcrs definition. Jenkins and Cole (1982; 1984) 

measured the maximum eccentricity at which a target object could be detected with 

a fixed probability during a presentation time of 250 ms. Kooi and Toct (1999) 

defined conspicuity as the largest lateral separation between fixation and the target 

object, at which the target is just barely noticeable for a 250 ms presentation. These 

measures were developed to efficiently quantify the ability of a target to attract the 

attention of an observer during a single glance of the stimulus, such as might occur 
during visual search. Both Engel (1977) and Kooi and Toet (1999) showed that such 

a measure of conspicuity correlates well with visual search performance. An 
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alternative method of measuring stimulus conspicuity was adopted by Barbur and 

Forsyth (1990). 'Mey quantified the conspicuity of a target grating by determining 

the achromatic contrast of a similar grating that produced an equal perceived 

conspicuity. Under this definition, conspicuity can be thought of as a measure of 

effective contrast. In this method, stimulus conspicuity is measured using an 

achromatic reference scale, which must itself be calibrated for a given visual task. 

The advantage of this calibration approach is that luminance contrast for stimuli of 

the same spectral power distribution as the surrounding background, can be defined 

unambiguously. Using such a calibration Barbur and Forsyth (1990) demonstrated a 

good correlation of their measure of conspicuity with visual search performance. 

In the present study, a matching method similar to that of Barbur and Forsyth 

(1990) was used to measure the conspicuity of a uniform target defined by colour 

and luminance contrast by determining the achromatic contrast of a similar target 

that was equally conspicuous. '1he target investigated was based on a Landolt C and 

an intermediate presentation time was used. This method was employed, firstly, on 

the premise that a local measure of the visibility of a target against its immediate 

background might make a suitable predictor of performance for a broader range of 

visual tasks than a conspicuity measure based on the ability to capture attention 

using brief presentation times. For example, the conspicuity matching method 

might be expected to provide a better prediction of acuity or reading speed. 
Secondly, the conspicuity matching method allows direct comparison with a large 

number of existing models of mesopic vision. These are models that have been 

proposed as systems mesopic photometry, but at present, have not been accepted 

by the CIE. Such models aim to predict the mesopic luminance of a stimulus in 

terms of the luminance of a particular reference stimulus, and can, therefore, be 

used to predict a measure of mesopic luminance contrast for a stimulus. Such values 

of mesopic luminance contrast could be compared to the measure of conspicuity 

provided by the conspicuity matching method, i. e., a value of mesopic luminance 

contrast predicted by one of the proposed systems of mesopic photometry could be 

compared to the equivalent achromatic luminance contrast determined using the 

conspicuity matching method. For scales of conspicuity based on distance or area 

such as Engers measure of conspicuity, only an indirect comparison would be 
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possible between distance/area and luminance contrast predicted by a system of 
mesopic photometry. 

The aims of this investigation were firstly, to develop a matching procedure to 

equate the conspicuity of a target defined by colour and luminance contrast to a 

similar target defined by achromatic luminance contrast, and obtain measures of 
conspicuity for targets with a large range of colour/lun-dnance contrast 

combinations, throughout the mesopic range. The second aim. was to develop a 
model of the relationship between the measure of conspiculty employed and the 

physical parameters of the target stimulus, based on the set of acquired conspicuity 
data. 'Me final aim was to compare the measure of conspicuity developed in this 

study to measures of mesopic luminance contrast obtained from currently proposed 

systems of mesopic photometry. 

5.2 Subjects and methods 
As stated in the introduction, the matching procedure consisted of measuring the 

conspicuity of a test stimulus by determining the achromatic luminance contrast of a 

similar stimulus that was judged to be equally conspicuous. Initially, a pilot study 

was carried out to test the design of the matching procedure and investigate the 

conspicuity of a restricted sample of target stimuli. A description of the matching 

procedure was given in section 2.5 and details specific to the pilot study can be 

found in section 2.5.1. For the remainder of the matching experiments a modified 

version of the procedure was used, the details of which were given in section 2.5.2. 

The revised procedure was used to obtain an extensive set of conspicuity matches 

from which an empirical model of conspicuity was derived. Measurements of 

natural pupil diameter were made alongside the measurements of conspicuity to 

allow calculation of retinal illuminance. Descriptions of the procedures used to 

obtain pupil diameters were given in section 2.1.2. 

For A experiments the test target was defined by its photopic contrast (C), 

scotopic contrast (C) and chromatic difference (CD) to the background. For the 
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pilot study CD was defined according to the CIE 2colorimetric observer and V(X) 

was used to compute photopic luminance, see section 2.5.1 Eq. 2-8 - Eq. 2-11. For 

subsequent investigations CD was defined according to the CIE 10' colorimetric 

observer and -ylo(%) was used to compute 10' luminance (L10), see section 2.5.2, 

Eq. 2-12 and Eq. 2-13. The reference/match target was defined by achromatic 

luminance contrast, i. e. the match target had the same spectral power distribution as 

the background. 1he luminance contrast of an achromatic stimulus is independent 

of the spectral luminous efficiency function; hence an achromatic stimulus has equal 

values of photopic and scotopic contrast. Ile conspicuity of an achromatic 

reference stimulus can, therefore, be defined unambiguously in terms of contrast. 

The matching achromatic-contrast scale was restricted to a single polarity: that of 

positive achromatic luminance contrast. It is also possible to measure the 

conspicuity of a target defined by colour and luminance contrast using a negative 

achromatic contrast reference scale, but initial investigations indicated that the 

conspicuity of a negative contrast target differed from the conspicuity of a positive 

contrast target. Measures of conspicuity obtained using a positive and a negative 

contrast reference scale cannot, therefore, be expected to yield identical results. For 

the purpose of the current study, it was not necessary to obtain matches for both 

negative and positive contrast reference scales. 

5.2.1 Subjects 

Two female observers HA and HW (age 22 and 26) carried out the pilot matching 

experiments. Five observers participated in the remainder of the matching 

experiments. Observer A was male and observers B, C, D and E were female. 'Me 

mean age was 28.6, range 20-42. Ihese five observers are also referred to as 

observers 1-5 in some of the figures, where 1 is equivalent to A and so on. JO, a 27 

year old male, acted as an additional subject for the measurements of pupil size. All 

subjects were normal trichromats; according to the Ishihara plates and the 

computerised colour vision test described in section 2.3.1, and had good chromatic 

discrimination according to the FM 100-hue test. All subjects also had a high 
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contrast visual acuity of 0.0 log minimum angle of resolution (logNIAR) or better 

and low contrast acuity of 0.2 logMAR or better, measured using the Bailic-Lovie 

high and low contrast acuity test chart. None of the subjects had central visual field 

defects (30" field), or signs of any other ocular abnormality. 

5.2.2 Methods for the pilot study 

In the pflot study the test target had zero photopic contrast (C,, = ()) and zero 

scotopic contrast (C, = 0), but a non-zero chromatic difference to the background 

(CD). Under these conditions with a three primarý- system such as a CRT monitor, 

the target chromaticity is restricted to a range of values that lie on a single line in 

chromaticity space (S by P linc), which passes through the background chromaticity 

(see section 2.1.4). Chromatic difference values may be measured from the 

background chromaticity in either of two directions of chromaticity space described 

by this line. With the CRT monitor used, the two directions corrcsponded to 

reddish stimuh and greenish stimuli (see Figure 5-1); these two directions will be 

referred to as the red condition and the green condition. 

Mean 
Nominal optical Background Dark CD (min-max) 

filter densitv at lurn1nance adaptation 
densitv 45" M 

2) (cd -un) time (n red cond. green cond. 
incidence 

NONE 0 45 5 0.01 -0.06 0.01 - 0.09 
NONF 1)0 5 0.01 -0.15 0.01 - 0.09 
NONE 0 10 5 0.01 -0.15 0.01 - 0.09 

1.0 1.17 0.68 10 0.02 -0.16 0.02- 0.09 
2.0 2.25 0.056 18 0.05 - 0.16 1 0.06 - 0.09 

Table 5-1. Stimulus values used in the Pilot conspicuity matching experiments. Test targets 
had zero photopic and zero scotopic contrast. For the lowest two light levels, neutral 

density Filters were used to lower the luminance of the display. A range of suprathreshold 
CD values was investigated for both possible colour conditions (red and green'), ill steps of 

0.01 CD. 

The two observers HA and HW, obtained measurements over five light JCN-cjs in the 

low photopic and mesopic range (45 - 0.056 cd m ). For the lowcst t-, x, o light levels 

neutral density filters were used to lower the background lununancc, as descnbed M 

section 2.1.1. 
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S by P line 
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Figure 5-1. S by 11 Line in CIF 1976 (u', v')-chromaticity space denoting the range of 
chrornaticities available for a stimulus xv1di zero photop1c and zero scotopic contrast on a 
tý-pical CRT monitor. Filled circles indicate the chromaticities of the red, green and blue 

phosphors. 

At each light level, matches were made for suprathreshold CD values for both the 

red and green conditions, in steps of 0.01 CD up to the maximum CD that could be 

reproduced on the display. The maximum achievable CD value for both the red and 

green conditions was restricted by the limits of the phosphors of the display, and 

varied with light level. Matches were made monocularly with the right eye for both 

subjects. The two subjects adapted to the luminance of the background prior to 

beginning measurements. Dark adaptation times were calculated using the method 

described in section 2.4.1. The stimulus conditions investigated are shown in Tablc 

5-1. 

5.2.3 Methods for coHection of a conspicuity matching data set 

A revised version of the matching procedure was used to obtain an extensive set of 

conspicuity matches; see section 2.5.2 for details of the revised procedure. Matches 

were obtained for a large range of test target combinations of CP5 Cs and CD, at six 

discrete light levels spanning a three and a half log unit range of luminance. The test 

target parameters were chosen to cover a wide range of contrast combinations 

spread over a large region of colour space. The background light levels will be 

referred to as level 1 to level 6, where level I has the highest value of 1,,,, and level 6 
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the lowest value of Lj, Again, neutral density filters were used to lower the 

background luminance, as described in section 2.1.1, while the luminance of the 

display remained approXiMately constant. 

S by P lines 
0 chromaticities 

0.6 - 

0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

01 
0 0.1 0.2 0.3 0.4 0.5 0.6 

UI 

Figure 5-2. S by P hnes in CIE 1976 (u', v')-chromancity space denoting the range of 
chromaticities avaflable for stimuli \1111th the combinations of photopic and scotopic contrast 

used in the conspicuity matching experiments. Symbols indicate the chromaticities 
investigated. 

Due to the finding from preliminary measurements of differences in the conspicuitN- 

of positive and negative contrast stimuli, conditions with combinations of both 

positive and negative values of C. and C, were included in the experimental design. 

Results of the pilot study also advocated inclusion of conditions "vith Zero C and P 
C, Contrast thresholds were measured, for an achromatic target similar to that used 

in the matching procedure, at each of the sLX light levels. Contrast thresholds 

increased with reduction in luminance. At the lowest light level, a contrast of 0.2 

was approximately double the measured threshold and thus considered sufficiently 

above threshold to be included in the range of conditions for the matching 

experiments. Initiafly, five values of photopic contrast and scotopic contrast were 

incorporated into the experimental design, creating 25 contrast pairs. I-or each ratio 

of scotopic to photopic contrast the target chromaticity was restricted to a range of 

values lying on a single line in chromaticity space (S by P line), see section 2.1.4. For 

each contrast pair three CD values were chosen, distributed along each S by P line 

to incorporate different colour directions and different CD values. The chosen 

sumulus chromaticities are shown in Figure 5-2. These combinations of Cp, C, and 
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CD resulted in a total of 75 test target specifications for cacti light level. To Increase 

the sampling of zero contrast conditions, an additional two zcro contrast conditions 

were included in the design, to make a total of 77 specifications for cacti light lc\-cl. 

During a trial run, however, it was found that not all the combinations produced 

targets that were sufficiently suprathrcshold to perform the matching task, 

particularly at the lower light levels. Target combinations were subjccfivclý 

eliminated on the basis that they were so poorly visible that it was not possible to 

carry out the task. After this elimination procedure, an additional rnagnitudc of 

contrast was included at the lowest two light levels to increase the number of 

experimental conditions for these background luminances. A total of 473 conditions 

were included in the final experimental design, the lurninancc contrast values 

incorporated are shown inTable 5-2. 

Eight levels 1,2,3,4 Light levels 5,6 
C. (actual values) C, (normfial values) C, (actual values) C, (nominal values) 

0.5 0.5 
0.4 0.4 0.4 0.4 
0.2 0.2 0.2 0 1) 
0000 

-0.2 -0.2 -0.2 -0.2 
-0.4 -0.4 -0.4 -0.4 

-0.5 -0.5 
Table 5-2. The values of photopic and scotopic contrast incorporated into the 

cu ty matches. The scotopi experimental design used to collect a data set of conspi I Ic contrast 
values are only nominal because errors present in the algorithm used to reproduce each 
C, CD triplet were reflected in the scotopic contrast value, see section 2.1.4. An additional 

magnitude of contrast was included for the lowest two light levels to 'Increase the number of 
viable conditions. 

The five obseivers A-E carried out six matches for all 473 conditions over the six 

light levels, using a randomised order of presentation. Observers adapted to the 

lun'Unancc of the background prior to beginning measurements, with appropriate 

dark adaptation times calculated using the method described in section 2.4.1. 

'Aleasurcmcnts were carried out using one of two experimental systems: systcm-1 

and , N,,, tcm-2, as described in chapter 2. The background luminances used for 

system-1 and svstem-2, calculated using the neutral density filter transmittances 

particular to each system, are shown in Table 5-3 along with the respective dark 

adaptatioii times. Table 5-3 also shows the number of conditions included in the 
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experimental design at each light level. All matches were performed binocularly to 

simulate viewing in the real world. Measurements of the right eye pupil diameter 

were made during each run of the experiment, using the methods described in 

section 2.1.2. This allowed calculation of the retinal illuminance or Troland Value 

(E) according to Eq. 5-1, for every pair of match contrast values obtained in a single 

experimental run, for each subject. 

E=n 
(d )'Lb 

2 
Eq. 5-1 

where E: retinal illuminance in trolands, d: pupil diameter in mm, 4,: background 

luminance in cd m. All observers were trained with the matching procedure for 

several hours in order to stabilise their criterion for judging differences in 

conspicuity, prior to coHection of matches for the conspicuity matching data set. 

System-1 Sys em-2 
mean mean dark 

light num. nominal optical bkgd optical bkgd adapt. 
level cond filter densityat luminance densityat luminance time 

density 45' L10 45' L10 (min) 
incidence incidence 

1 77 NONE 0 10 0 10 5- 
2 76 0.8 0.95 1.1 0.98 1.0 10 
3 73 1.5 1.64 0.23 1.71 0.19 15 
4 63 2.0 2.34 0.046 2.40 0.040 20 
5 105 2.5 2.93 0.012 3.02 0.010 25 
6 79 3.0 3.42 0.0038 3.78 0.0017 30 

Table 5-3. Filter densities, background luminances and dark adaptation times for system-1 
and system-2 at each of the six light levels investigated. Also shown, are the numbers of 

conditions included in the experimental design at each light level. 

Outlier results were found for individual observers and repeat measurements made 

once the complete set of 473 matches had been obtained. Outliers were deteniiined 

on the basis of having a coefficient of variation (c. var) beyond the normal range, i. e. 

c. var >X+ 2S , where X and S are the mean and standard deviation of the c. vat 

values computed per background light level. 'Fhe cocfficicnt of variation for each 

target condition was calculated from the six measured match contrast values (Cj, 

according to Eq. 5-2. 
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coefficient of variation Eq. 5-2 Ix 

n 

where n: number of samples, i. e. 6; x: each C. value; R: mean of each 6 C. values. 

It was appropriate to calculate outliers in this way because the coefficient of 

variation corrected for the increase in standard deviation of the matches with 
increasing contrast (see section 2.5.2), which is a consequence of Weber-Fechner 

behaviour, and the c. var values for each light level were approximately normally 
distributed. For each outlier condition, two additional C.. values were measured in 

order to improve the estimate of the mean match contrast. 

Subject D obtained matches for a sample of test target conditions using both 

experimental systems. Six matches were made on each of three days for seven 

conditions at light level 1 and seven at light level 4. Results obtained using the two 

systems were compared by performing a two-way analysis of variance (ANOVA) on 

the resulting Cn values, for factors "system" and "test target condition". 

To examine differences in the perceived conspicuity of positive and negative 

achromatic contrast stimuli, each observer performed a series of matches for targets 

of achromatic contrast. Twenty four matches were acquired over three days for a 

test target with C. = 0.4, Cs = 0.4, CD =0 and for a test target with C. = -0.4, Cs = 

-0.4, CD = 0, in both cases the match target was of positive achromatic contrast. 

Measurements were performed for two light levels: light level 1 and light level 4. 

5.2.4 Analysis of the conspicuity matching data set 

Firstly, the variability of the matching procedure was assessed. The within-subject 

variability was calculated from the standard error of the mean of the six C.. values 

obtained for each test target condition, expressed as a percentage of the mean C.. 

The between-subject variability was calculated from the standard deviation of the 

five mean Cm values for each observer, expressed as a percentage of the mean across 

the five observers. Both the within-subject and between-subject variability was 

expressed as a percentage of the mean value to account for the increase in spread of 
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the matches with increasing C.. The within-subject variability was compared to the 

precision of each of the five observeis judgements. Measurement precision was 

assessed from the spread of results for matching a positive achromatic test target 

with a positive achromatic reference as this was assumed to be the most precise 
judgement. Precision was calculated as the standard error of a sample of six matches 

made for a test target with CP = Cs = 0.4, CD = 0, expressed as a percentage of the 

mean C,,,. 

The design of the conspicuity matching experiment incorporated a single dependent 

variable (Cj and four explanatory variables (CP, C,, CD and E). The dependent 

variable (or response variable) was taken as the mean of the six match contrast 

values obtained for each experimental condition by each observer (mean Cj. An 

Analysis of variance (ANOVA) was carried out to investigate the effects of the 

explanatory variables and their interactions on the response variable. The response 

variable (mean Q had a positively skewed distribution and so was transformed to 

obtain a normal distribution and obtain approximate interval scaling. The 

transformation applied was the natural logarithmic function, one of the Box-Cox 

family of trans formations (Box and Cox 1964). Retinal illuminance (E) also had a 
positively skewed distribution due to the choice of logarithmically scaled light levels; 

hence, E was transformed using the logarithmic function to the base 10. An analysis 

of variance assumes that the explanatory variables are approximately independent, 

to verify this a correlation matrix was calculated for the explanatory variables. Ile 

correlation coefficient between two variables is given by Eq. 5-3, 

1(Xi 

-7)(yi -7) ý(E(xi 
-3Z), ) (1 (yi - 7), ) 

Eq. 5-3 

where r: correlation coefficient, and (x,, y, ), (x2, y), ... (x,,, yj are n paired 

observations of the two variables X and Y. 

Separate ANOVAs were implemented to investigate different subsets of the data. 

The initial ANOVA was performed on the complete data set of 2365 mean CM 

values (473 conditions for each of the five observers). A second ANOVA was 

carried out to investigate the effects of both the magnitude and sign of the 
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luminance contrast terms (Cp and Q. Further ANOVAs were performed to assess 

the dependence of match contrast on the explanatory variables with change in light 

level. The level of significance for all analyses was taken as a=0.05. 

An empirical model was derived from the conspicuity matching data set, in which 

the conspicuity of a stimulus defined by colour and luminance contrast was related 

to the conspicuity of an achromatic stimulus. Model parameters were based on the 

explanatory variables CP, C, CD and logIOE, and their interactions. A multiple 

regression procedure based on the principle of minitnising the squared error was 
implemented to obtain fits to the raw data. 

5.3 Results 

5.3.1 Results of the pilot study 

The results of the conspicuity matches made for test targets with zero photopic and 

scotopic contrast, but a non-zero chromatic difference, are shown in Figure 5-4 for 

observers HA and HW. For the three highest light levels, 45-10 cd m-2 ,a CD of 0.01 

was sufficiently above threshold to perform the matching task; below these light 

levels, the lowest CD for which a match could be mcasured, rosc to 0.02 at 0.68 cd 

in' and 0.05 at 0.056 cd m72. 'Ibis rise reflects the large increase in chromatic 

thresholds with reduction in light level, reported by Walkey et al. (2001) and 
described in chapter 4. It can be seen from Figure 5-3 and Figure 5-4 that the 

achromatic contrast required to match, in terms of conspicuity, a target defined 

solely by colour difference, rises approximately linearly with increasing CD. This 

relationship was similar for the two observers and roughly independent of light level 

for the majority of light levels investigated. 
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Figure 5-3 (A)-(E). Conspicuity matches for targets xith zero photopic and scotopic 
contrast obtained by subject IIA over five light levels Equivalcrit achromatic match 

contrast is plotted against stimulus chromatic difference for the two directions in 
chroma6city space. Dashed fines indicate linear fits to the data. Note that there is a different 

scale on the ordinate for 20 cd M2 data (B). 
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Figure 5-4 (A)-(E). ( ý()iispicuity matches for targets with zero photopic and scotopic 
cotitrast ()btained by subject I l\V over five hght levels (A)-O, '). EquIValent achromatic 

match contrast is plotted against stimulus chromatic difference for the two directions in 
chromaticity space. Dashed lines indicate linear fits to the data. 
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For subject FJW, the relationship between CD and matching achromatic contrast 

(C. J was similar for the red and green conditions. The gradients of regression lines 

fitted to the data tended to be slightly lower for the green condition (mean = 0.85, 

range = 0.49-1.08) than for the red (mean = 1.15, range = 0.83-1.44), but there was 

no systematic variation of gradient with light level. The results for subject FIA were 

similar to those of H\X, " for the green condition: the mean and range of gradients for 

the linear fits being 1.25 and 0.52-1.52, respectivcIv. For the red condition, 

results were comparable to those of HW for 10-0.056 cd m2 (mean gradient = 1.30, 

range = 1.07-1.52), but somewhat different relationships resulted at the two highest 

light levels. At 45 and 20 cd m2 the slopes of the regression lines were 2.46 and 
3.86, respectively. There are three possible explanations for HA producing a larger 

gradient for the reddish targets at these light levels. Firstly, that FfA could detect a 

residual luminance contrast signal (the targets were only isoluminant according to 
'IE standard observer for photopic vision). SecondIv, that Fl. \ displaved a the C 

difference in judgements criterion, or thirdly that the contribution of chromatic 

channels to conspicuitý' was weighted more heavfly for these light levels. The 

intercepts of the regression lines were roughly sinular for both observers. The linear 

fits did not pass through zero, which suggests either that there is a nonlinear 

relationship between C, and CID very close to threshold, or reflects different noi ise 
levels in the chromatic channels compared to the lunUnance channel. 

Figure 5-5 shows the chromatic threshold data obtained for subjects VIA and 1-4W in 

chapter 4. Chromatic thresholds for the red and green conditions investigated in the 

pflot stud), -, -, -ere inferred from the intercepts of the threshold contours and the hne 

indicating the colour directions of the red and green stimuh, for each subject. At 

each light level, chromatic thresholds for the red and green stimuli were grossIv 

sim-ilar. Like%vise, the slopes of the hnear functions between conspicuity and CD 

were similar for the red and green conditions for both subjects across the majorit-v 

of light levels. These results suggest that the relationship between the red and green 

stimuli at threshold was preserved in the suprathreshold measurements of 

conspcult, ý. 
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Figure 5-5 (A)-(B). Chromatic thresholds for subjects I IA (A) and I l\\' (B) at 3.5, ý 
ecccivricity for a number of 1-ight levels in the mesopic range, obtained in chapter 4. The 
dashed Inic indicates the colour directions of the red and green stimuh used in the pilot 

study. 

5.3.2 The conspicuity matching data set 

The conspiculty matching data set consisted of 2365 data points: 473 from each 

observer. The average results obtained bv the five observers for two of the light 

levels investigated, are shown in Figure 5-6. The plots displav the average results 

obtaincd for several different test target combinations coflapsed onto a single axis: 

or CD. For each hght level up to seven discrete values of C, were cithcr ('r, (', 

in%-cstigatcd. The plot vvith C, as the abscissa represents the avcra c match contrast 9 

across all conditions with cacti given value of C., The values of C, and CD 

investigated, varied from one test target condition to another. I lence, the range of 

C, and CD values had to be coded into discrete levels with a flat frequency 

distribution, and match contrast averaged over A conditions with each given level 

of C, or (A), to create plots with C, and CD as the abscissa. For this reason the 

plots arc intended for qualitative analysis only. The relationships between match 

contrast and these three test target parameters, changed considerably ovcr the 3 log 

units fall in background lun-unance. For the higher light level, match contrast 

11 ig increased lincarly xvith increasing magnitude of Cr, with a rriarginally hi her slope 

for negative coiitra,, -, t. Match contrast varied little Nvith C, although there was some 

5.3. Rcsults 
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increase for negative values of C., and it incrcascd approxunatcly linearly -,,. -ith 

increasing (A). At the lower light level, an almost flat response was obtained with 

variation in both C, and C. D, but match contrast increased approximatclv lincariv 

with the magnitude of C., with a much steeper slope for negative contrasts. 
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Figure 5-6 (A)-(C). A%cr. ivc II IA I( f) (IIIIIf J( I ; -. t-,;,, (r, (r 
I. = I() 
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, and a low mesopic (I. i,, =00 111 light level. I >a1a points rrprc, %Cnt the mean 
in. odi (ontrast over a numbcrof test target conditions collapsed onto a %ingle &)us: 

either C.,, (A). C, (B) or CD ý(, ) Frror bars indicate t2 standard deviaticno frtm the mean. 
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Ch 5. A model of conspicinty in the mesopic range 5.3. Rcsults 

Vigurc 5-- the indtvidual observer's responses to test targets with zero 

phot()pic contrast and approximately 7cro scotopic contrast for the two highest hght 

levels invcstigatcd. Thcsc test target conditions were similar to those used in the 

pdot study. and inc(irporvcd %nmuli for both the red and the green condition (see 

section 5.2.2). The v2nation in with CD at both background luminances was 

appr, )xim2tcly linear f(, r all subjects, with little or no effect of stimulus hue (red or 

green). Linear fits were made to the combined responses from the two possible 

c,, I()tjr directi(, n,. C()mpanson of the gradients of these regression lines revealed 
large diffcrctxc% bcv,,. -ccn observers: the range of gradient at light level I was 1.6- 

and at light level 2 %vas 121.4. 
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Ch 5. A model of conspicuity in the mesopic range 5.3. Results 

The stimuli investigated, were designed to be isolununant for both the CIE 10" 

observer and the CIE standard observer for scotopic vision (d-isoluniinant), but 

may not have been d-isolurninant for the participating observers, as the spectral 
luminous efficiency curves of normal trichromats are known to varýy (Gibson and 
Tyndall 1923). One possible explanation for the differences in gradient then, is that 

the observers were able, to different extents, to detect lun-unance contrast signals in 

addition to colour signals. An alternative explanation for the differences in gradient 

is that the obser-vers could detect little or no lurrunance contrast, but weighted the 

chromatic content of the stimuli differently. This in turn could either be due to 
differences in criterion, or possibly individual differences in the contribution of 

colour channels to the perception of conspicuity. 

5.3.3 Comparison of the two experimental systems 

The results of the two-way ANOVA performed on the sample of measurements 

acquired by observer 1) on both experimental systems, are shown in Table 5-4. The 

dependent variable was the natural logarithm of mean C, and the two factors 

investigated were "system" and "test condition". The ANOVA showed that the 

system used (system-1 or system-2) had no effect on the match contrast values 

obtained. ']'he log of match contrast was dependent on the condition tested 

(p<0.001) and this effect varied with the system used (p<0.01), but there was no net 

effect attributable to the system. The full ANOVA table is shown in appendix A. 

FACTOR SIGNIFICANCE_ 
System NS 

Condition 
Svstem * Condition 

Table 5-4. Results of ANOVA for the sN, stern comparison, for two levels of the sN-stern and 
14 levels of the condition. Significance levels are given as ***: p<0.001,1-: p<o. ()I, 
p<0.05, NS: not significant. The ANOVA shows that there was no effect on n1atch 

contrast due to the systern used. 

5.3.4 Achromatic matches 

A comparison of matches obtained for test targets with positive achromatic contrast 

and negative achromatic contrast can be seen in Figure 5-8. All five obsen-ers 
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icuous than the posit' judged the negative achromatic test target to be more conspi I Ive 

achromatic test target. The increase in conspicLuty for the negative achromatic 

target, however, differed greatly with obscn-er: mean C... for the ncgativc contrast 

target was judged to be 1.02 to 2.772 times greater than the positive contrast target 

across the two hght levels, although a similar trend can be seen for each observer 

across the two light IcN-cls. Thcse differences in the obsener's responses suggest 

either differences in Judgement criterion, or differences in visual processing of 

luminance increments and decrements between individuals. 

contrast 
--0- +ve 

1.4 -[AI Llo=10 -ve 
1.2 

E 0.8 - 
u 

0.6 - -217 

0.4 -- 
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=eýL- : 3#Z -e--- =4- 
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0 
1 

observer 

1.4 

1.2 

1 
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0.6 

0.4 

0.2 
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B] Ljo 0.042 
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Figure 5-8 (A)-(B). Comparison of conspicuity matches for test targets of positive or 
ncgatix-c achromatic contrast, for all five subjects. The magnitude of contrast was 0.4. 

Matches %vere obtained at a low photopic (L,, ) 10) light level (A) and a mid-i-nesopic (1,1,, 
0.042) light level (B). Error bars indicate 2 standard errors from the mean of six 

matches. 

5.3.5 Measurement variabilitv 

The wlthin-subjcct variability and measurement precision was calculated for each 

observer, see section 5.2-4. The xvithin-subject variability varied with test condition, 

light lc\-cl and observer. The mean within-subject variability for any one data point 

is shown iii Figure 5-9 for each observer. The mean within-subjcct variability was 

10("o, but N-ariability could be large for individual data points for some subjects; for 

example, two of the subjects showed a maximum variability of 41% for a single 
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condition. Measurement precision calculated for light levcls I and 4 is shown in 
Table 5-5, and the mean value for each observer is plotted in Figure 5-9. 

Measurement precision also varied with observer, from 4.1%-8.9"o. The mean 

within-subJect variability for each observer was 1.5 to 1.8 times theLr measurement 

precision, indicating that in general, the conspicwtv matches were fairly precise. 

Precision obsen, er observer obser-\-cr observer observer 
(se as 0, ýo of mcan) 1 2 3 4 5 

hght level 1 5.2 6.0 8.1 4.3 4.9 
Eght le-, -cl 4 7.5 6.0 8.9 4.1 4.7 

Table 5-5. Match precision for each observer for two hght levels. Match precision was 
calculated as the standard error of the mean of six matches made for a test target of positive 

achromatic contrast, expressed as a percentage of the mean. 

20 

15 

10 

5 

0 

A mean 
precision 

1 

observer 

Figure 5-9. Within-subject variability and measurement precision for each observer. 
Within-subJect variability was calculated for all 473 test conclitýions, here the mean values are 
plotted. Defim6ons of within-sub'ect variabihtý and measurement prcc' jY ision are given in the 

text (see section 5.2.4). 

The bctween-subject variability was calculated for each light level across an test 

conditions. The mean variability for each light level is shown in Figure 5-10. 

Bctween-sul)jcct variability was large for some conditions (up to 85" o) and tended 

to be high oil average, but decreased with reduction in light level from 46" o to 220 o. 
It should be noted that estimates of within-subject and bct-, veen-subjcct variabdity 

may not be representative of population variability because of the small sample si 1ze 

of only five subjects. 
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Figure 5-10. Between-subject variability as a function of light level. Between -subject 
variability \,, -as calculated for all test conditions xxqthln each light level, here the mean values 

are plotted. The definition of between-subject variability is given in tile text (see section 
5.2.4). 

5.3.6 Dependence of match contrast on test target parameters in 

the conspicuity matching data set (results of ANOVA) 

Thc indepcndciicc of the e%planaton, variables C., C, CD and log,,, I, ' was 

investigated by computing a correlation matrix, which is shown in Tablc 5-6. The 

correlation coefficients indicate that there was almost no correlation between C,, 

CD and log,, F., but that there was some correlation between Cp and C, and C, and 
CD. The correlations involved, however, were small and, therefore, were unlikely to 

affect markedly the analyses of variance. 

CI! C, CD 
C, 0.267 

CD -0.007 -0.375 
10g, 

''I" -0.053 0.099 -0,094 
Table 5-6. The correlation matrix for the explanatory variables C, C'D and loginF. - 

The results of the initial ANOVA, performed on the complete set of 2365 matches, 

is shown in Table 5-7, and the full ANOVA table is gl-,, Cn in appendix A. The 

factors entered into the analysis were C C, CD and log,, F, plus all two-way and Pý 
thrcc-way interactions. Fffects of the factor "observer" were also considered. The 

analysis revealed that (,,, C, CD and logE had significant effects (p<0.001) on the 

response (Iogj, ). All two-waY interactions between the factors were also found to 
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be highly significant (p<0.001, bar C, x CD: p<0.01). Only one of the three-way 

interactions was significant: the interaction between C., C, and CD (P<0.001). The 

analysis indicated that the value of match contrast was dependent on the photopic 

contrast, scotopic contrast and chromatic difference of the test plus retinal 
illuminance. The effects of these parameters were, however, not simply additive due 

to the significant interactions between patameters. Ibete was also a significant 

effect on the response attributable to the observer (p<0.001). 

factor significance 
CP 
C. 
CD 
logjOE 
observer 
Cp x C. 
Cp x CD 
C x logjOE 

p C, x CD 
C. x logIOE 
CD x logjOE 
C x C, x CD 

p Cp x C, x log, OE NS 
Cp x CD x logjOE NS 
C. x CD x loý-,,,, E NS 

Table 5-7. Results of ANOVA performed on the complete data set for all main effects, 
two-way interactions and three-way interactions between the explanatory variables. The 

dependent variable was log, (mean Cn). Significance levels are labelled as ***: p<0.001, 
p<0.01, *: p<0.05, NS: not significant. 

Results of the second ANOVA, designed to investigate effects of the magnitude 

and sign of the luminance contrast terms (CP and Cj, are shown in Table 5-8, with 

the full table shown in appendix A. The magnitude and sign of the luminance 

contrast terms were defined according to Eq. 5-4 and Eq. 5-5, respectively. 

ICI =C 
ifc>o 

Eq. 5-4 
-C ifc<o 

1 ifc>o 

signC=- 0 if C=O Eq. 5-5 

-1 ifc<o 
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where C may be photopic or scotopic contrast (C. or Q. The results indicated that 

there were significant effects due to the magnitude and sign of both photopic and 

scotopic contrast (p<0.001). For both sign CP and sign C, the response variable was 
higher for the level "-1", indicating that negative contrast stimuli were judged to be 

more conspicuous. 

factor significance 
CD 
log, OE 
observer 
lc i 

p IC-1 
sign C 

p 
sign C, 
CD x logjOE 
CDx JC J 

P CDx IC, l 
CD x sign C 

p CD x sign C, NS 
log, OE xIC I 

p logjOE xIC, I 
log, OE x sign C 

p logjOE x sign C, 
Ic'I x 1C. 1 NS 
C x sign C 

p p C x sign C, 
p C, x sign C 

p C, x sign C, 
sign C,, x sign C, 

Table 5-8. Results of the ANOVA designed to investigate the effect of both the magnitude 
and sign of the luminance contrast terms, performed on the complete data set. The 

dependent variable was loge(mean C. ), and the factors were I CP 1,1 C. 1, sign Cp, sign C., 
CD and logioE, plus all two-way interactions. Significance levels are labelled as 

p<0.001, **: p<0.01, *: p<0.05, NS: not significant. 

An analysis of variance was also performed for each individual light level to 
investigate the dependence of match contrast on the explanatory variables, with 

change in background luminance. The results of these ANOVAs are shown in 

Table 5-9, with fiffl tables shown in appendix A. Photopic contrast retained a 

significant effect until the lowest light level tested. Scotopic contrast had a 

significant effect at all but the highest light level. Chromatic difference was highly 

significant over the three highest light levels and exhibited minimal or no 
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significance over the lowest three light levels. No effect was found for log retinal 
illuminance at any individual light level. For all light levels the effect of photopic 

contrast varied with the level of scotopic: contrast. The effect of photopic: contrast 

also varied with the level of chromatic difference for five of the six background 

luminances. Effects of scotopic: contrast varied with the level of CD at the lowest 

two light levels only. Some variations in the effect of CP, C. and CD were apparent 
for different levels of log retinal illuminance, but these variations did not follow 

trends with background luminance. 

factor light 
level 1 

light 
level 2 

light 
level 3 

light 
level 4 

light 
level 5 

light 
level 6 

CP NS 
CS NS 

CD NS 
Iog, OE NS NS NS NS NS NS 

observer 
CP x CS 

Cp x CD NS 
Cp x IogOE NS NS NS NS 
C. x CD NS NS NS NS 

C, x IogjOE NS NS NS 
CD x Iogj()E *** I I NS NS NS 

Table 5-9. Results of the ANOVAs performed for each individual light level, for all main 
effects and two-way interactions between the explanatory variables. The dependent variable 
was log, (mean Cn). Significance levels are labelled as ***: P<0-001, **: P<0.01, *: P<0.05, 

NS: not significant. 
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Figure 5-11. Mean pupil diameter as a ffinction of log luminance for six subjects. 
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5.3.7 Pupil measurements 

The measurements of pupil diameter made during collection of each data point in 

the conspicuity matching data set, have been averaged for each subject to provide 

an empirical function of pupil size versus background lurn- inance. The function aims 

to predict steady state pupil diameter throughout the mesopic range, for a uniform, 

neutral background field of approximately 25' in diameter. Pupil diameters 

measured at each of the background luminances used in the matching experiments 

plus three additional light levels, are shown in Figure 5-11 for the five observers A- 

E and a sixth subject, JO. 'Ille LIO values of the additional light levels are shown in 

Table 5-10. The values of pupil diameter plotted for each subject represent the 

mean value of a large number of measurements (typically over 200) carried out over 

a number of days. 

light level averan back ound gr 
luminance &,. I. ) 

al 45 
a2 20 
a3 0.79 

Table 5-10.1he background luminance (Lio) for the three additional light levels at which 
pupil measurements were made (al-O). 

mean of 6 observers 
fitted curve 

8 

7 =_4 

6 
E 
m 5 
CL 

4 CL error bars: +1- 2 sd 
3 11 

.10 
logloLlo 

1 

Figure 5-12. Mean pupil diameter as a function of log luminance. Closed symbols represent 
the mean results of six subjects. The solid line represents a curve of the form given in Eq. 

5-6 fitted to the data. 

d=6.121 [1 +o0.7(Ll 0-1.35) 1 +1 
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A function of the form given in Eq 5-6 was fit to the mean data for the six 
observers, with the restraint that the minimum pupil size could not be less than 

mm and the maximum size could not be greater than 9 mm. 

d= 
D-dO_ 

+d Eq. 5-6 
1+ e'lloglo 

(LO-21 0 

where d: pupil diameter, D: maximum pupil diameter, d,,: minimum pupil diameter 

4: background luminance, a and k: adjustable parameters. Figure 5-12 shows the 

mean data and the fitted function, where 4 was calculated for the 100 observer, 

resulting in D=7.12, do = 1, k=0.7 and a=1.35. 

5.3.8 Development of an empirical model from the conspicuity 

matching data set 

Predictor variables based on the variables Cp, C, CD and logIOE and their 
interactions were entered into a multiple regression procedure to develop a 
parametric model relating the conspicuity of an achromatic target to a target defined 

by colour and luminance contrast. Candidate predictor variables reflected the need 
to separate contrast polarity and to represent important two-way interactions 

between the experimental variables. The fitting procedure was repeated several 
times, and the choice and form of predictor variables refined with each iteration on 
the basis of increasing the multiple coefficient of determination, Rý. 

The best fit to the complete data set of 2365 matches, explained 67% of the 

variance (R2= 0.67). It was thought that much of the relatively large proportion of 

unexplained variance was likely to be due to the large between-subject variability of 
the data. The finding that the effect of CD on match contrast diminished with fall in 

light level, see section 5.3.6, plus the observed decrease of between-subject 

variability with reduction in light level, see section 5.3.5, suggested that differences 

between the observer's responses might be primarily attributable to differences in 

response to stimulus CD. To investigate this further, a fit was obtained in which the 

predictor CD was subdivided into five variables: CDj, i=1,... 5, which were 

nonzero for one observer's responses only, see Eq. 5-7. 
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CDi 
CD, if C. = C., j 

0, otherwise 
Eq. 5-7 

where C 
..: match contrast (response variable), C, j: match contrast for observer i. 

Separate regression coefficients were then calculated for each CD parameter. 

Partitioning the CD parameter in this way greatly improved the fit: the new model 

yielding an W equal to 0.83. Thus, a substantial portion of the unexplained variance 
for the fit to the complete data set could be attributed to subject differences in 

response to stimulus CD. 

In order to obtain a single conspicuity-matching model from which an achromatic 

contrast could be predicted for different photopic contrast/ scotopic 

contrast/chromatic difference combinations, differences in response to CD were 

overcome by averaging. The five observer's matches were averaged across all 

conditions, and a new fit acquired. This again improved the percentage of variance 

explained by the model V=0.89), but did not alter the parameters in the model, or 

greatly alter their coefficients, indicating that none of the significant features of & 

data were lost through averaging. The form of the model is given in Eq. 5-8; and the 

full model is given in appendix B. 

Cm =e 
jk+f (niain effects)+f (intemctions)) 

Eq. 5-8 

where C.: match contrast (achromatic), k: constant, f(main effects): function of the 

main predictor variables, f(interactions): function of pairwise multiples of the 

predictor variables. Figure 5-13 shows the achromatic contrasts predicted by the 

model vs. the mean measured values for each test target specification, for all six 

light levels. 

Considering that in many situations values of retinal illuminance are not available, a 

second version of the model was developed with retinal illuminance replaced by 

background luminance. To distinguish the form of the model that included retinal 

illuminance from the form that included background luminance, they will be 

referred to as version-a and version-b, respectively. Version-b was also of the form 

given in Eq. 5-8, and is given in fall in appendix B. It was found that replacing 

retinal illuminance with background luminance, not only did not degrade the fit V 

= 0.89), but also did not alter the form of the terms in the model, or greatly alter the 
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parameter coefficients. This is not unexpected considering that the retinal 
illuminance was not found to have a significant effect on match contrast within a 

single light level, see section 5.3.6. It should be noted, however, that one interaction 

term for the variable retinal illuminance, found to be significant in version-a, was 

not significant when replaced with background luminance in version-b. 

1.6 

1.2 

0.8 

CL 

0.4 

0 
0 0.4 0.8 1.2 1.6 

observed Cm 

Figure 5-13. Predictions of match contrast (C,,, ) for version-a of the conspicuity matching 
model, plotted against the measured values for all 473 test conditions by each of the five 

observers. The solid line indicates a relationship of unity. 

The two forms of the model described above (yersion-a and version-b) consisted of 
19 and 18 significant terms, respectively. To obtain a simpler model, both versions 

were reduced to a set of 10 terms, these will be referred to as version-a. and version- 
b.. In the regression analysis, a t-test was performed for each regression coefficient 

to determine whether the coefficient was significantly different from zero. Predictor 

variables were excluded in a step-wise fashion on the basis of having a regression 

coefficient with the smallest absolute t-value. Main effect variables were retained 

regardless of the t-values of their regression coefficients, until an interaction terms 

for the particular variable had been excluded. This procedure resulted in retention 

of interaction terms with retinal illuminance/background luminance only. Both 

reduced models explained 84% of the variance of the data set = 0.84), hence, 

the fit was not greatly compromised by reducing the number of model terms. Full 
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descriptions of version-a, and version-b, of the model are given in appendix B. 

Figure 5-14 shows the achromatic contrasts predicted by the reduced model-a, vs. 

the mean measured values for each test target specification, for all six light levels. 
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1.2 

0.8 
CL 

0.4 
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0 0.4 0.8 1.2 1.6 

observed Cm 

Figure 5-14. Predictions of match contrast (Cn) for version-a, (reduced version) of the 
conspicuity matching model, plotted against the measured values for all 473 test conditions 

by each of the five observers. The solid line indicates a relationship of unity. 

5.3.9 Model prediction errors as a function of light level 

Prediction errors were calculated for two versions of the model and errors 

compared at each of the six light levels investigated. Prediction errors were taken as 

the root mean squared (rms) error, for the total number of pairs of measured and 

predicted match contrast values at each background luminance, calculated according 

to Eq. 5-9, 

Effns Eq. 5-9 

where Enns: root mean squared error, xmý.: measured C.. values, Xpred: predicted C. 

values, n: number of C. pairs. Ihe measured match contrast values were taken as 

the mean of the responses of the five observers. The predictions of match contrast 

were obtained firstly from version-a, and secondly from version-a, (the full and 

reduced versions of the model containing retinal illurninance as a predictor variable, 
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rcspcctIvcly). Figure 5-15 shows the rms errors for version-a and version-ar of the 

model, plotted against log background luminance. The rms error in predicting 

match contrast for the full version of the model varied with light level, but exhibited 

no trend with background luminance; the largest error occurring for the highest 

background luminance (light level 1), and the smallest for light level 2. For the 

reduced version of the model a similar pattern of errors was seen, with the largest 

error occurring for light level 1, but in this case the lowest error occurred for light 

level 5. Comparison of prediction errors for the two versions of the model at each 
light level, revealed an interesting finding: errors for the reduced version of the 

model were higher than those of the full version across light levels 2-5, but, 

remarkably, were lower at the highest and lowest light level. This suggests that 

although inclusion of all significant terms in the model improved the fit across all 
light levels, the reduced model performed better at the extremes of illuminance level 

investigated. 

0.2 

0.1 

0 

Model 

--V- version-a 
version-ar 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 

log 1-10 

Figure 5-15. Errors in predicting measured match contrast computed for two versions of 
the conspiculty matching model, as a function of log background luminance. Frrors are 

plotted for -,, -ersion-a and version-a,: the full and reduced versions of the model with retinal 
illuminance as a variable. prediction errors were calculated according to F, q- 5-9. 

5.3.10 Comparison of conspicuity with photopic contrast, scotopic 

contrast and mesopic brightness contrast 

To assess how the measure of conspicuity developed in this study relates to 

measures of luminance contrast in the mesopic range, predictions from a selection 
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of models proposed as systems of mesopic photometry were compared to the set of 

acquired conspicuity matches. Several mcsopic vision models have been proposed 

as sN-stems of mesopic photometry. The models considered in the current swdN,, 

were six systems designed to predict heterochromatic brightness matches for fields 

of 10'' in diameter, which corresponds to the region of the visual field investigated 

in this study. The systems will be referred to collectively as the 10" systclils and 

individuafly as the following: Palmer Ist (Palmer 1968), Palmer 2nd (CIF, 1989), 

Sagawa-Takeichi (Sagawa and Takeichi 1987; Sagawa and Takelchi 1992), Nakano- 

Ikeda (Nakano ct al. 1988; CIF, 22001), Kokoschka-Bodmann (CIF 1989), and 

Trczona (CIF 1989; Trezona 1991). For these systems, the perceived brightness of a 

test stimulus is defined in terms of the lunUnance of an equally bright reference 

Stimulus. The CIL defined the term "equivalent luminance" to describe lurrunancc 

equated to a 540 THz (-555 nm) reference stimulus, but the use of different 

reference stimuh led to the additional definition of "system equivalent lun-iinance" 

to describe the luminance of a test stimulus matched in brightness with a 

reference other than a 540 THz stimulus. The six 10" systems listed above will 

predict for a test stimulus, given certain photometric and colorimetric input 

data. The input requirements and a description of each model is given in appendix 
C. To compare predi I LX of these s' 10" systems to the measure of conspicultv 

developed licrein, L, was computed from each system, for both the test and rnatch 

target and the background of the stimulus, and a "system equivalent contrast" 

calculated for cacti test and match target, see I -, q. 5-10. 

('1' �j, t arget 
1 

'�q, bkg, 1 
Eq. 5-10 

where (AtgLt: system equivalent luminance for the target, UgLI: sVStCn-I s 

equivalent luminance for the background. Values of could then be compared to 

those of conspicuity determined from the matching procedure. For each of the six 
10" systems, L, ,,. -as kindly computed for each paircd data point in the conspicuity 

matching data set by Dr. Ken Sagawa. 

fhe conspiculty matching data set consisted of pairs of test and match targets that 

were )udgcd to be equally conspicuous, i. e. have the same measure of conspicum. 

To assess how this measure relates to measures of mesopic luminance contrast, ('ICL, 
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values were predicted for test-match pairs in the data set, for each of the six 10" 

sNIstems, according to F, q. 5-10. Of the combinations of test target parameters 

comprising the conspiculty matching data set, some appeared darker than the 

background, because the C, and Q values could be negative as well as positive. The 

match target, on the other hand, was always defined by positive achromatic contrast 

and, therefore, always appeared lighter than the background. Hence, the conspiculty 

matching data set contained many test-match pairs that differed in contrast polarity. 
Due to the lack of eqwvalence between the conspicuity of stitnuh with negative and 

positive contrast found in this study, it was not possible to compare values of I C, 
cII 

I 

for test-match pairs that differed in contrast polarity. For all test-match pairs the 

match target -, vas defined by hromatic contrast, so all test targets with positive ac 

negative effcctive contrast had to be eliminated from the analysis. It is not possible 

to determine theoretically which test target combinations of ±C,, ±C, and CD had a 

positive effective contrast, but it is possible to assume that all test targets with 

positive CP and C, values will appear lighter than the background. Therefore, C,,, 
q 

values were only obtained for the subset of test-match conditions for which the test 

target specification consisted of CP ý! 0 and C, ý! 0. An advantage of the conspicuitý, 

model is that it can be used to compare stimuh of either contrast polarity, because it 

predicts a positive achromatic contrast for any test stimulus specification. 

L'sing the subset of test-match conditions with positive contrast polarity, differences 

in for the test target and C,, 
q 

for the match target were calculated at each light 

level, for each 10" system. The prediction error for each light level was taken as the 

root mean squared (rms) error, computed according to Eq. 5-11. 

n2 

q, tcst, i- 
Cý%cq, 

match, i Eq. 5-11 

where root mean squared error, n: number of test-match pairs per light level, 

(,, 
,,,: system equivalent contrast for the test target, C%vq, 

mat, h: system equivalent 

contrast for the match target. In this way, E,,,, rcflects the extent to which two 

stimuli matched in terms of conspicuity, also match in terms of the measure of 

mcsopic luminance contrast obtained from one of the 10" systems. 'I'lle root mean 

squared error was also calculated for differences bevvccn the test and match 

contrast, computed using either the function or the function, i. e. 
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differences between test and match target luminance contrast obtained from either 

L, or L. Lastly, prediction errors were calculated for the conspiculty model. 

Version-b of the model was used to predict values of consplcuitýý for both the test 

and match targets, and these values were treated as and in the 

calculation of 1ý . 
..... according to Eq. 5-11. 

0.4 

0.3 

0.2 

0.1 

0 

log Lb (1-10) 

Palmer, first 
Palmer. second 
Sagawa-Takeichi 

E3 Nakano-Ikeda 
0 Kokoschka-Bodmann 

Trezona 
CIE Y10 
CIE L' 
Conspicuity model 

Figure 5-16. A comparlson of the ability of nine different models to predict matches in 
coiispicuity throughout the mesopic range. Prediction errors, were computed for , six 

proposed systems of mesopic photometry, the conspicuity matching model (version-b), the 
function and the V'(X) function. Prediction errors were calculated according to Vq. 

5-11. 

Figure 5-16 , Iio\x, s the prediction errors (E 
.. 

) for the data set of pairs of stimuli 

matched for conspicuity, computed for each of the six 10') systen-is, the conspicuity 

model, the v, (ý, ) function and the V' (ý, ) function. The errors are plotted as a 

function of log background luminance. Of the 10" systems, prediction error curves 

for Palmer Ist, Palmer 2nd and the Kokoschka-Bodmann st , )tems were vety similar 'ys 

at all light levels. These cuives approximately followed the error curve for the 

V1() (; ý) function at the highest two light levels (light levels 1-2) and the error curve 

for the V(k) function at the lowest two light levels (light levels 5-6). All three 

svstcms produced smaller prediction errors than those for either Vy, (k) or V (k) at 

the fivc highest light levcls, and at the lowest light level, Palmer 2nd and 

Kokoschka-Bodmann wcre the only systems to perform better than both y, (k) 
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and V'(X). Error curves for the remaining three models followed the two Palmer 

curves and the Kokoschka-Bodmann curve either at the higher or lower luminances 

and produced different prediction errors at other light levels. 'Me Sagawa-Takeichi 

and Trezona models produced significantly larger errors at the lower four light 

levels, whereas the Nakano-Ikeda model produced larger errors for light levels 3-4, 

but markedly smaller errors for light levels 1-2. The Nakano-Ikeda system 

performed better than either (, %) or V'(X) at the highest three luminances, and 

also at light level 5, but produced larger errors than V'(X) at the lowest luminance. 

In general, compared to the other systems, the Sagawa-Takeichi and Trezona 

systems were not good at predicting conspicuity matches at any light level. Although 

five of the 10' systems produced smaller prediction errors that V'(X) at light level 5, 

differences in prediction errors for V'(), ), Palmer 1 st, Palmer 2nd, the Nakano-Ikeda 

and Kokoschka-Bodmann systems were relatively small. This was also the case at 
the lowest background luminance (light level 6). 

Figure 5-16 also shows that prediction errors for the conspicuity model were smaller 
than those based on either 'flo (k) or V'(X) for light levels 1-5, but larger than the 

errors for V'(, %) at the lowest light level. The conspicuity model performed better 

than all six 10' systems for a large part of the mesopic range: light levels 2-4, 

although a marked difference in prediction error was only seen at light level 2. The 

conspicuity model produced larger errors than the Palmer 1st, Palmer 2nd and the 
Kokoschka-Bodmann systems at light level 5, but only by a relatively small factor, 

but much larger errors than the Nakano-Ikeda system at the low photopic light level 

(light level 1). 

These results suggest that conspicuity can successfully be computed using the V'(X) 

function below a photopic L10 luminance of about 0.01, but that at higher light 

levels an alternative function to either V'(X) or 710 (k) should be used. Over the mdd 

to high mesopic range the conspicuity model exhibited some advantage ovet the six 
10' systems of mesopic photometry investigated. At the low photopic level, the 
Nakano-Ikeda system was the best candidate for predicting conspicuity. 
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5.4 Discussion 

The results of this chapter have shown that it is possible to measure the conspicuity 

of a target defined by colour and luminance contrast in terms of an achromatic 

luminance contrast reference scale, by equating its perceived conspicuity with a 

similar target defined by achromatic luminance contrast. For the matching 

procedure employed to measure stimulus conspicuity, measurement variability was, 

in general, close to the measurement precision. Under the definition given above, 

conspicuity depended strongly upon sign-dependent photopic contrast (C), sign- 

dependent scotopic contrast (Cý, chromatic difference (CD) and retinal illuminance 

(E)/background luminance Qý) of the stimulus, plus interactions between these 

four parameters. An empirical model of this relationship was successfully 

developed, which produced a good fit to the data. Analysis performed on the data 

set of conspicuity matches acquired in this study, and the model derived from these 

matches, revealed features of visual processing in the mesopic range that are 

discussed below. 

5.4.1 Luminance contrast and conspicuity 

The results for test targets of achromatic contrast and the high statistical 

significance found for the effects of the sign as well as the magnitude of photopic 

and scotopic contrast in the data set, suggest that negative luminance contrast is 

more effective than positive luminance contrast in the mesopic range. Higher 

suprathreshold discrimination thresholds have been found for luminance 

increments compared to decrements under photopic conditions (Vingrys and 

Mahon 1998), and the perceived contrast of negative contrast gratings was found to 

be greater than that of positive contrast gratings, when investigated under photopic 

conditions (Barbur and Forsyth 1990). In the mesopic range shorter search times 

have been reported for negative compared to positive contrast stimuli (Batbur et al. 

1998a), and Blackwell (1946) reported 20% lower detection thresholds for negative 

compared to positive contrast stimuli at low adaptation levels. Results of the present 

study also showed a large variation in the magnitude of this lum inance contrast 

asymmetry between observers, but the reason for this variability is unclear. Ile 
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differences between observers were similar over the two light levels investigated, 

and may have been due to differences in criterion, or could be explained as 
between-observer differences in the gain control of the mechanisms that signal 
luminance increments and luminance decrements. 

The relative contribution of stimulus photopic contrast and scotopic contrast to 

conspicuity was found to vary with light level as expected. Analysis of the 

conspicuity matching data set revealed that CP had a highly significant effect on 

match contrast (CJ at all but the lowest light level investigated, whereas C, was 

found to have a significant effect on C.. at all but the highest light level. These 

results indicate that over the majority of the mesopic range, conspicuity depends 

strongly, on both CP and C.. These findings are similar to those of Barbur et al. 

(1998a), who reported that the main determinant of visual search in the high 

mesopic range was photopic contrast and in the low mesopic range was scotopic 

contrast. Examination of the relationship between Cn and CP across all test 

conditions at a high background luminance (light level 1), revealed an approximately 

bilinear function (see Figure 5-6). Likewise, an approximately bilinear relationship 

was seen between C.. and C, (see Figure 5-6) across all test conditions at a low 

background luminance (light level 5). 

5.4.2 Colour and conspicuity 

Analysis of the conspicuity matching data set confirmed that the contribution of 

colour to conspicuity, measured in terms of chromatic difference (CD), diminished 

with reduction in light level. Chromatic difference was found to be a highly 

significant determinant of achromatic match contrast (Cj at the low photopic and 
high mesopic light levels investigated (light levels 1-3), but less significant, or not 

significant at the mid to low mesopic levels (light levels 4-6). Results obtained at the 
higher light levels revealed an approximately linear relationship of conspicuity with 
CD, not only for the conditions with zero luminance contrast (Figures 1-3,1-4 and 
1-7), but across all conditions investigated (Figure 5-6). Considering the relationship 

observed between conspicuity and photopic contrast at the highest light level 

investigated, this suggests that conspicuity is predominantly dependent on a 

222 



Ch 5. A model of conspicuity in the mesopic range 5.4. Discussion 

combination of photopic contrast and chromatic difference in the high mesopic 

range. The statistical analysis indicated that the contribution of CD to conspicuity 

was, in general, dependent on the value of photopic contrast (C) across an light 

levels, and dependent on the value of scotopic contrast (C) at the lower light levels. 

The fitting procedure, however, showed that a good fit could be obtained to the 

data (model version-a, and version-b) even when these interactions were ignored. 

The metric CD was chosen to represent an approximate measure of chromatic 

saturation. CD was defined as the distance in a chromaticity space derived from 

colour matches carried out under photopic conditions. Although colour matches 

carried out under mesopic conditions differ from those at photopic levels, the only 

standard spaces in which colour stimuli may be specified relate to the photopic 

range. If a chromaticity space were to be derived from mesopic colour matches, it is 

expected that a mesopic CD metric would also have a diminishing contribution to 

conspicuity with reduction in light level. The reason that CD become less effective 

in the mesopic range is that when the cones move towards the lower end of their 

operating range the signal to noise ratio falls. A larger colour signal i. e. a larger CD 

is required, therefore, to obtain a stimulus of equivalent perceived chromatic 

saturation. In order to obtain a colour metric whose contribution to conspicuity 

would not diminish with reduction in light level, one would have to scale CD in 

relation to the operating characteristics of the cones. It is not possible merely to 

scale the CD metric in relation to the increase in chromatic threshold observed with 

reduction in stimulus luminance (see the results of chapter 4). One reason being that 

the extension of threshold to suprathreshold behaviour cannot be generalised across 

all colour directions. As far as the conspicuity model is concerned, it is sufficient to 

include the parameter CD, unmodified, and reduce its weighting with the fall in 

background luminance. 

Analysis of the data also revealed a number of findings indicative of inter-observer 

differences in the weighting of the contribution of colour to conspicuity. Firstly, 

inter-subject differences were observed in the slope of the C. vs. CD relationship 

for zero contrast conditions. Secondly, between-subject variability decreased with 

fight level as stimulus colour became less effective. Thirdly, the fit of the model to 
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the data was much improved when the predictor variable CD was subdivided into 

five variables, relating to the responses of each observer. The following discussion 

compares inter-observer differences in response to colour in the case of conspicuity 

matching, to reports in the literature of inter-observer differences in response to 

colour in relation to brightness matching. The measure of conspicuity adopted in 

this study, as stated in the introduction, is essentially a measure of effective contrast. 
Du Buf (1992) observed that brightness matching relationships differed from, but 

were closely related to effective contrast matching relationships for achromatic 

stimuli, and modelled effective contrast with some success as a function of 
brightness difference at target edges. This evidence for a dose relationship between 

brightness and effective contrast or conspicuity provides justification for extending 
known effects of brightness matching to the conspicuity matching data. - 

It is well known that under photopic conditions the perception of brightness does 

not correspond to luminance, i. e. that heterochromatic brightness matches differ 

from flicker photometric matches (from which V(, %) was derived) (Wagner and 
Boynton 1972; Comerford and Kaiser 1975). The basis for this difference is thought 

to be that flicker photometry reflects processing of the achromatic magnocellular 

pathway, and that heterochromatic brightness matching also involves the 

parvocellular pathway (Ingling and Martinez-Uriegas 1983). Heterochromatic 

brightness matches must, therefore, include contributions from the postulated 

achromatic mechanism and two colour opponent mechanisms. The difference 

between heterochromatic brightness matches and flicker photometric matches is 

often expressed as a brightness to luminance ratio (B/L). Studies have reported 
large inter-observer variations in the photopic B/L ratio (Bums et al. 1982; Yaguchi 

et al. 1993; Ayama and Ikeda 1998). Yaguchi et al. (1993) suggested that the origins 

of individual differences in B/L ratio, are inter-observer differences in the 

contribution of chromatic mechanisms to brightness. Nakano et al (1988) 

successfully modelled individual differences in photopic heterochromatic brightness 

matches by varying the contribution of opponent colour mechanisms. Individual 

differences are also found in the upper mesopic range, between the perceived 

lightness of coloured objects when matched with a grey scale (Ikeda et al. 1989; 

Ikeda and Ashizawa 1991). Similar to findings of the present study, these differences 
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diminish with light lcveL i. e. inter-observer differences diminish as chromatic 

sensitivity is reduced. This combined evidence from photopic and mesopic 
brightness matching investigations, suggests that inter-observer differences in the 

weighting of CD to conspicuity observed at mesopic: levels in this study, could be a 

consequence of individual differences in the contribution of chromatic mechanisms 

to conspicuity. 

5.4.3 The conspicuity model 

For the two versions of the conspicuity model that include all significant predictor 

variables (vcrsion-a and version-b), achromatic match contrast is a nonlinear 

function of CP, C. and CD, with luminance contrast terms weighted by sign, and 

includes contributions weighted by retinal illuminance (version-a) or luminance 

(version-b). For the reduced designs of the model, which consist of 10 parameters 

(vcrsion-a. and version-b), achromatic match contrast is a linear function of I CP 1, 

positive C,, negative C, and CD, with contributions weighted by retinal illuminance 

(yersion-a) or luminance (version-b). 

Results from the pilot study and measurements performed during collection of the 

conspicuity matching data set showed that the conspicuity of coloured stimuli with 

zero photopic and scotopic luminance contrast, was found to increase linearly with 

chromatic difference from the background. For these conditions it was only 

possible to investigate two directions of chromaticity space using a CRT display, for 

which stimuli appeared either red or green. In general, equal achromatic contrast 

was required to match a given CD of either hue. This finding of a linear response, 

which is independent of hue, supports the use of CD as a variable in the conspicuity 

model. Reports that search time for stimuli with equal luminance contrast measured 

under photopic conditions, is dependent on stimulus hue (Batbut and Forsyth 1990; 

Nagy and Sanchez 1990; D'Zmura 1991) suggest, however, that equal-luminance 

chromatic stimuli in other areas of chromaticity space would not exhibit the same 

relationship between conspicuity and CD. The implications are, that by averaging 

out the contribution of colour contrast to conspicuity across all directions of 

chromaticity space, the model may fail to sufficiently explain the variability in 
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response to colour. This rnay account for a proportion of the 11 % of unexplained 

variance in the model.. 

5.4.4 Photopic contrast, scotopic contrast and mesopic brightness 

contrast as predictors of conspicuity 
The comparison of conspicuity with predictions of mesopic luminance contrast 

obtained from proposed systems of mesopic photometry, revealed some interesting 

similarities and differences between these two measures. The six proposed systems, 

of mesopic photometry were all based on heterochromatic brightness matching, but 

the ability of each system to predict the data set of acquired conspicuity matches 
differed, with differences depending on light level. 

At the highest two light levels investigated (L10 = 10 and LIO = 1), five of the 

systems (Palmer 1st, Palmer 2nd, Sagawa-Takeichi, Kokoschka-Bodmann and 

Trezona) produced large prediction errors, which suggests that none of these 

systems adequately accounts for the chromatic contribution to conspicuity. 

Furthermore, prediction errors for the five systems at these two light levels were 

similar to those computed for the Y10 (%) function. Although the 710 (%) function 

was derived from colour matches and with flicker measurements carried out at only 

three wavelengths, it is generally accepted that it is representative of a spectral 

luminous efficiency function measured for a 10' field (Wyszecki and Stiles 1982), 

and as such is likely to reflect predominantly magnocellular processing. 

Heterochromatic brightness matching on the other hand, as mentioned above, 

includes a chromatic contribution. It is surprising then, that the five of the mesopic: 

systems do not perform significantly better that the -flo (, %) function at the highest 

light levels. It must be considered, however, that the Palmer 1st system and the 

Palmer 2nd system, are functions of LI, and U, only and do not consider the 

chromatic contribution to brightness, therefore they would not be expected to 

perform better than y1o (, %) at light levels for which the scotopic contribution is 

minimal (low photopic/high mesopic). 
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The Nakano-Ikeda system outperformed -all other systems including the conspicuity 

model at the low photopic light level &0 = 10). This system converts photopic 

luminance to a photopic brightness using chromatic input, and combines it with a 

scotopic factor. The relatively low error obtained at L10=10 is evidence that the 

computation of photopic brightness for this system, produces a superior prediction 

of conspicuity in the low photopic range. The relatively poor performance of the 

conspicuity model at this light level may be attributed to the inadequacy of the 

variable CD to represent the contribution of colour to conspicuity for different 

stimulus hues. The Nakano-Ikeda system also outperformed the remaining five 

mesopic systems at fight level 2 &0 = 1), but produced a larger prediction error that 

the conspicuity model for this background luminance. It is suggested that the 

dependence of conspicuity on stimulus hue is markedly reduced at this light level, 

leading to an improved fit for the conspicuity model. 

Over the mid-mesopic range (light levels 3-4, IýO = 0.2-0.04), the conspicuity model 

produced the smallest prediction errors, but was closely followed by three of the 

mcsopic systems. Two of these systems were the Palmer 1st and Palmer 2nd 

systems, which contain no chromatic component. '11-ds suggests that consideration 

of the contribution of colour to conspicuity is unnecessary in the n-iid-mesopic 

range, because it can be adequately predicted from a suitable combination of 

y,,, (%) and V'(X). 

At the lowest two light levels (I, (, = 0.01-0.002), the majority of the mesopic 

systems did not predict conspicuity matches significantly better than the V(k) 

function. Some systems produced much larger prediction errors than V'(X), 

including the conspicuity model at the lowest light level. These findings indicate that 

conspicuity can be adequately predicted using V'(X), below a luminance of LIO 

0.01. 

The measure of conspicuity mvcstigatcd in this study appears to be related to a 

measure of mesopic luminance based on a suitable combination of -flo (, %) and 

vl(X), over the mid to low mcsopic range. In the high mesopic range, the chromatic 
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contribution to conspicuity becomes more important, and conspicuity bears a good 
relationship to mesopic luminance based on brightness matches, but only if the 

chromatic contribution to brightness is successfiffly modelled. 
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6 Conspicuity and visual search performance 

in the mesopic range 

6.1 Introduction 

Visual search describes the process whereby a subject locates and identifies a target 

stimulus presented amongst a scene of distracter stimuli. Stimulus conspicuity has 

been proposed as an essential determinant of visual search performance (Verghese 

and Nakayama 1994; Itti and Koch 2000; Palmer et al. 2000). Engel (1977) showed 

that visual search time is strongly related to a measure of stimulus conspicuity based 

on the maximum eccentricity at which a briefly presented target object can be 

detected with a given probability (conspicuity area). Engel restricted his 

investigations to achromatic stimuli under conditions that fall in the high mesopic 

range. A strong correlation was also found between visual search time and the 

conspicuity distance measure (related to Engel's definition of conspicuity) used by 

Kooi and Toet (1999). They investigated complex greyscale images in dim lighting 

conditions. Barbur and Forsyth (1990) showed at photopic levels that stimuli 

defined by both colour and luminance contrast and those defined purely by colour 

(isoluminant stimuh), matched for conspicuity with similar stimuli defined by 

achromatic luminance contrast, had highly correlated search times. These studies 

suggest that conspicuity is closely related to visual search performance, but the 

investigations focused either on achromatic stimuli or coloured stimuli under 

photopic viewing conditions. In many real life situations, visual search is performed 

under mesopic conditions in a coloured scene. One of the aims of this study, 

therefore, was to investigate the relationship between an appropriate measure of 

conspicuity and visual search performance for targets defined by a combination of 

colour and luminance contrast, throughout the mesopic range. 
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A recent study of visual search performance in the mesopic range (Flurden et al. 
1997; Barbur et al. 1998a; Hurden et al. 1999) reported that visual search times were 
strongly related to the level of illumination, the photopic contrast, scotopic contrast 
and colour difference of the stimulus to the background. They showed, however, 

that low photopic/mesopic search performance could be successfully modelled as a 
function of background luminance and luminance contrast of the target, only, 
ignoring any effects of colour. Other investigations have stressed the relevance of 
stimulus colour in determining visual search performance. Nothdurft (1993), and 
Turatto and Galfano (Turatto and Galfano 2000) reported that among other 
stimulus features, colour can facilitate visual search by attracting attention, whether 
colour is task-relevant or task-irrelevant. During active visual search, Motter and 
Belky (1998) hypothesised that as a guide for saccades, colour is more effective than 

orientation. D'Zmura (1991) found that pop-out of chromatic targets during search 
was not restricted to colour directions associated with the cardinal colour 
mechanisms, suggesting that chromatic detection mechanisms also exist for 
intermediate hues. Monnier and Nagy (2001) also provided evidence in support of 
individual detection mechanisms for intermediate hues. Carter and Carter (1981) 

showed that visual search performance for chromatic stimuli was strongly related to 
both CIELAB and CIELUV colour difference. Barbur and Forsyth (1990) also 
investigated the relationship between CIELUV colour difference and search 
performance, but found it correlated less well with search performance than their 

measure of conspicuity. These studies focussed on visual search under photopic 

conditions. It is evident that colour plays an important role in photopic visual 
search, but the model produced by Hurden et al. (Hurden et al. 1997; Barbur et al. 
1998a; Hurden et al. 1999) indicates that colour may have minimal effect under 
mesopic conditions. 

The measure of conspicuity developed in chapter 5 relates the conspicuity of a 
target defined by colour and luminance contrast to that of a similar target defined by 

achromatic contrast. In chapter 5, measurements of conspicuity were obtained 
throughout the mesopic range from which an empirical model was derived. 

According to this model, conspicuity is strongly dependent on the level of 
illumination, and stimulus photopic contrast (Cý, scotopic contrast (Cj and colour 
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difference to the background (CD), plus interactions between these parameters. The 

significance of colour difference in determining stimulus conspicuity, was found to 

diminish with the reduction in light level, but remained a significant variable in the 

model throughout the mesopic range. The secondary aim of the current study, 

therefore, was to assess whether colour difference remains an important parameter 

in mesopic visual search. 

Visual search performance is often dependent on the number of stimuli presented 

to the subject; a phenomenon known as the set-size effect. Set-size effects are in 

turn dependent on the discriminability or conspicuity of the target, along with other 

stimulus features (Bergen and Julesz 1983; Palmer 1994; Verghese and Nakayama 

1994). For example, search for a highly conspicuous target will show little 

dependence on set-size, whereas search performance for a less conspicuous target 

will deteriorate with an increase in the number of distracters. Search performance 

may also be affected by the heterogeneity of disttacters. Again, these effects depend 

on the discriminability or conspicuity of the target Puncan and Humphreys 1989; 

Duncan 1989). If a target is sufficiently conspicuous, search performance will be 

independent of distracter variability, whereas for a target that is similar to the 

disttacters, search will be degraded by increases in distracter heterogeneity. 

The relationship between conspicuity and visual search performance in the mesopic 

range was investigated using the measure of conspicuity developed in chapter 5. As 

conspicuity was obtained in reference to an achromatic contrast scale, search 

performance for targets with a combination of colout and lurn-inance contrast was 

compared to performance for achromatic targets. Visual search was characterised 

for targets defined by achromatic luminance contrast and measured for a selection 

of targets defined by colour and luminance contrast (CD, CP and Q at different 

light levels in the mesopic range. Search performance for the colour/luminance 

targets were then compared with search times for the achromatic targets predicted 

by the model to be equally conspicuous as the colour/luminance stimuli. 
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6.2 Subjects and methods 
The visual search procedure used in this investigation was described in section 2.6. 

Search performance was measured using an orientation task, with targets based on 
Landolt rings. An intermediate difference between orientation of the target and 
distracter rings was employed, to ensure that search performance was dependent on 

target colour and luminance contrast rather than orientation pop-out. Distracter 

number was kept constant for all experiments to maintain constant set-size effects. 
Although the task (orientation discrimination) was not related to the dimension in 

which the distracters varied, i. e. colour and luminance contrast, possible effects of 

across dimension distracter heterogeneity were minimised by presenting every 

achromatic and colour/luminance target specification as a distracter in the search 

stimulus for each light level and restricting the variability of additional distracters. 

Search time was measured for achromatic targets as a function of achromatic 
luminance contrast at four light levels spanning the low photopic and mesopic 

range. Search times were also measured for targets with different combinations of 
colour and luminance contrast at these light levels. These data were then used to 

examine changes in achromatic visual search with reduction in light level, to 
investigate the relationship between conspicuity and visual search performance 

under mesopic conditions, and assess the role of colour in mesopic visual search. 

6.2.1 Subjects 

Four observers participated in the experiments. Observer D, who also took part in 

the conspicuity matching experiments in chapter 5, and observers F, G and H. All 

observers were female with mean age 25.3, range 22-30. All observers were normal 

trichromats according to the Ishihara plates, and had a high contrast visual acuity of 
0.0 log minimum angle of resolution (logMAR) or better and low contrast acuity of 
0.2 logMAR or better. 

234 



Ch 6. Conspicuity and visual search performance... 6.2. Subjects and methods 

6.2.2 Methods 

Visual search times were measured for four of the six light levels used in the 

conspicuity matching experiments (light levels 1,2,4 and 5). Table 6-1, shows the 

background luminances for these light levels. The measurement of search time for 

targets defined by achromatic contrast and those defined by a combination of 

colour and luminance contrast at each light level were obtained simultaneously. At 

each light level, 12 target specifications were investigated. Six of the target 

specifications consisted of positive achromatic contrast. The other six specifications 

were a subset of the conditions used in the conspicuity matching experiments, and 

consisted of combinations of the parameters CP, C. and CD. All 12 specifications 

were present in every stimulus, one as the target and the remainder as distracters. 

The target specification varied randomly between the 12 conditions. Nineteen 

distracters were present in every stimulus. Of the remaining eight distracters, four 

were randon-dy given values of positive or negative achromatic contrast widiin a 
fixed range, and four were randomly given values of CP, C, and CD from the set of 

all possible combinations that could be reproduced on the stimulus display. 

Idght Nominal Mean optical Background Dark 
level filter density at 45' luminance adaptation 

density incidence L10 time (min) 
1 NONE 0 10 5 
2 0.8 0.95 1.1 10 
4 2.0 2.34 0.046 20 
5 2.5 2.93 0.012 25 

Table 6-1. Filter densities, background luminances and dark adaptation times, for system-1, 
at each of the four light levels investigated in the visual search experiments. Dark adaptation 

times were identical to those used in Chapter 5. 

The six target specifications consisting of achromatic contrast were selected on the 

basis of preliminary measurements, to give approximately linearly increasing search 

times. The preliminary measurements revealed changes in visual search performance 

for achromatic contrast targets as stimulus luminance was reduced. For this reason, 

CI'M ent sets of target conditions were used at each light level. The values of iffer 

achromatic contrast investigated at each light level are given in Table 6-2. The six 

target specifications with chromatic content defined in terms of CP3, C. and CD 

(colour/luminance targets) were chosen to have ranked match contrast values as 
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predicted from the empirical model developed in chapter 5, which relates 

achromatic contrast to Cp, C, and CID in terms of conspicuity. For the samereason 

that different sets of achromatic target conditions were used at each light level, 

different sets of colour/lun-ýinance targets were investigated at each background 

luminance. The six colour/luminance target specifications for each light level are 

given in Table 6-3, and the achromatic contrast values predicted for these 

conditions according to the conspicuity model (Cj, are shown in Table 6-4. 

Light Target Cach Light Target Cach 

level no. level no. 
1 0.04 2 1 0.05 
2 0.06 2 0.06 
3 0.085 3 0.08 
4 0.12 4 0.12 
5 0.18 5 0.20 
6 0.75 6 0.75 

Light Target Cach Light Target Cach 

level no. level no. 
4 1 0.15 5 1 0.25 

2 0.21 2 0.30 
3 0.29 3 0.36 
4 0.40 4 0.44 
5 0.59 5 0.58 
6 2.00 6 1.60 

Table 6-2. Values of positive achromatic contrast for six of the 12 targets in the visual 
search experiments, given for each of the four light levels investigated. 

AU four observers (D, F-H) performed search time experiments for the four Eght 

levels in the low photopic/mesopic range. The stimuli were viewed binocularly to 

duplicate the viewing conditions used in the conspicuity matching experiments. 

Observers were adapted to the luminance of the background prior to beginning 

measurements. The calculation of dark adaptation times is described in section 

2.4.1. The percentage that each test target stimulus went undetected during a single 

presentation (time-out rate), and the percentage that each target was incorrectly 

identified (response error rate) were monitored throughout to assess target 

detectabihty and observer response accuracy. 
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light Target CP cs CD light Target CP cs CID 
level no. level no. 

1 7 0 0.020 0.019 2 7 0 -0.036 0.033 
8 0 -0.035 0.032 8 0 0.155 0.032 
9 0 0.155 0.032 9 0 0.069 0.070 
10 0 0.208 0.058 10 0 -0-099 0.085 
11 0 -0.098 0.084 11 0 -0.282 0.088 
12 -0.2 1 -0.487 0.147 12 -0.4 -0.306 0.094 

light Target cp cs CD I light Target cp C. CD 
level no. level no. 

4 7 0.0 -0.103 1 
0.088 5 7 0.4 0.155 0.141 

8 0.2 0.144 0.098 8 0.2 -0.283 0.102 
9 -0.4 0.138 0.170 9 -0.5 -0-177 0.148 
10 0.2 0.419 0.057 10 0.2 0.487 0.057 
11 0 -0.415 0.122 11 0.5 0.600 0.068 
12 -0.2 

1 -0.492 1 0.152 12 0.0 1-0.497 1 0.140 

Table 6-3. Values of Cp, C. and CID for the six colour/lun-dnance combination targets 
investigated in the visual search experiments, given for each of the four light levels. 

Ught Target C. Ught Target c.. 
level no. level no. 

1 7 0.15 2 7 0.14 
8 0.17 8 0.17 
9 0.19 9 0.19 
10 0.24 10 0.23 
11 0.28 11 0.30 
12 0.74 1 12 0.74 

Ught Target C.. Idght Target c.. 
no. level no. 

4 7 0.17 5 7 0.28 
8 0.24 8 0.33 
9 0.30 9 0.38 
10 0.40 10 0.47 
11 0.55 11 0.62 
12 0.90 12 1.29 

Table 6-4. Values of positive achromatic contrast predicted by the conspicuity model for 
the colour/luminance combinations shown in Table 6-3. 
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Figure 6-1 (A)-(D). Visual search times for achromatic contrast targets, over four light 
levels. Symbols represent the mean search time for four observers averaged over a circular 
field 22- in diameter. Solid lines indicate curves fit to the data at each light level, according 

to Eq. 6-1. Note that (A) and (B) have a different scale on the abscissa to (C) and P). 

6.3.1 Achromatic visual search 

Figure 6-1 shows plots of search time vs. contrast for the achromatic targets, over 
the four light levels investigated. The data points represent the mean results for the 
four observers, where 48 search times were recorded per target for each observer, 
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with the target presented randomly within the central 22' diameter field. The 

standard deviation from the mean search time, indicated by the error bars in Figure 

6-1, was large because the results were averaged over the whole 22' field. The 

number of incorrect responses recorded for each observer was :! ý 3 per target 

condition, but on average was 0.15 incorrect responses per target condition; 

therefore, correct detection was assumed. No target was missed for five consecutive 

presentations, but the time-out rate recorded for subject H was high for the low 

contrast conditions, suggesting that this subject had higher contrast detection 

thresholds than the other three observers. 

The curves shown in Figure 6-1, are fitted functions of the form shown in Eq. 

ST =T+ (to - T)e -kC Eq. 6-1 

where ST: search time, T: minimum search time, to: limiting search time, k: decay 

constant, C: contrast. The parameters for the fitted curves are shown in Table 6-5. 

The results revealed that the relationship between search time and achromatic 

contrast changes with light level. It can be seen from Figure 6-1 that the minimurn 

contrast for which search times could be measured, increased as background 

luminance was lowered. The other noticeable feature of these data was that the 

curves in Figure 6-1 became less steep with the fall in background luminance. 

Hence, there was a reduction in the rate of decay of the search time vs. contrast 

relationship as the light level was decreased. This can be seen from the decrease in 

value of the decay constant of the fitted curves with fall in light level, shown in 

Table 6-5. When in the asymptotic region the minimum search time T, showed little 

variation with light level, and is, therefore, likely to reflect the minitnum time for 

visual processing plus a motor response. 

Ught level T to k 
1 1250 4250 17.79 
2 1100 3500 9.02 
4 1300 6250 5.40 
5 1100 5750 3.59 

Table 6-5. Parameters for the fitted curves shown in Figure 1-1, which are of the form 
shown in Eq. 6-1. 
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6.3.2 Visual search performance for targets with colour and 

lurninancc contrast, and the conspicuity model 

Scal-Cil times recorded for tal-gos defined bN, a combination of colour and luminance 

coll1r: ISI are silown ill Figure 6-2. The data points again show the rnean result,, for 

dic four obscrvcrs, \vhcrc 48 scarch times were recorded per target for each 

(6server, \vill) tile target presented randomly within a 22'' diameter field. The 

conspicuity model dc\-clopcd in chapter 5 was used to predict the conspicultN, of 

cacli test target consisting of a combination of C,,, C, and CD, with respect to a 

reference scale of achromatic contrast. Search time for each colour/luminaticc 

target \vas 1)1()ttc(. 1 agallist tile predicted achromatic contrast value, as shown in 

Figure 6-2. The nunibcr of incorrect responses rccordcd for each obseiver was 0.2 

per target condition oil average (:! ý 2 for each target condition), indicafing that 

correct detection could be assurned. No target was m-issed for five consccutive 

pi-cscf-itations, but the time-out rate recorded for sub)ect H was again high for some 

targo specifications, Suggesting that thesc targets were closer to threshold for this 

observer. 

At the ]()wci* two light levels, the mean search times for the colou r/ lurnina lice 

target,, cI()scly fo11()wc(i the achromatic search time curve, but at the higher two hght 

ICN'C]S, Several data P()lnts for the coloUr/lurninaricc targets did not fall close to the 

achn)III"Itic (-Lll-\, C. ']'he mean search time data for light level 1, appeared to fofl()ýv a 

slinliar curve to that of the achromatic data, but shifted along the abscissa towards 

higher contrast and , il()ng the ()rdinatc in the direction of reduced search time. The 

results for light level 2 exhibited a relationship that was qualitatively similar to the 

"Ichn)II-i"Itic Curve, but shifted along the abscissa in the direction of higher contrast. 

'\ ILI,, II it Ia I WC analysis of differences in search performance fo r tile 

Coh)LII'/ILIIIIIII, InCC targets and achromatic contrast predicted by the model N-vas aIso 

C"11-1-icd out. inspection of the data in Figure 6-2 showed that the search 

performance curves for the colour/luminance targets and the achromatic targets 

xvcre similar M shape, suggesting that a close relationship existed between the two 

curves. The similarity of the relationship at each light level was quantified býý 

calculating the correlation coefficient between measured and predicted search times 
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according to Fq 5-3- The correlation coefficients sho\,., n in Table 6-6, indicated that 

a good relationship cxl, -, tcd bet-, )-cen search times for the colour/lunlinance targets 

and search times for achromatic targets of equivalent conspicuity, at all four light 

levels. 
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Figure 6-2 (A)-(D). Visual scarch times for targets defined by colour and luminance 

contrast, plotted against achrornatic contrast predicted by the conspicuity matching model. 
Results are shmm for tile four light levels investigated Symbols represent th, mean 

search time for four observers averaged over a circular field 22(ý in diameter. Solid lines 
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indicate curves fit to the achromatic visual search data obtained at each fight level, shown in 
Fig 6-1. Note that (A) and (B) have a different scale on the abscissa to (C) and (D). 

The finding of a strong relationship between search performance for 

colour/luminance targets and achromatic targets of equal conspicuity, led to an 
assessment of the ability of the measure of conspicuity to directly predict search 
times for the colour/luminance targets given the search time curves for the 

achromatic targets. 

Target no. Differences 
LL1 LL2 LL4 LL5 

Percentage differences Clo) 
LL1 LL2 I LL4 LL5 

7 1062 575 -22 -31 42 24 -1 -1 
8 676 810 277 602 33 33 9 19 
9 749 468 208 307 36 23 8 12 
10 100 82 359 286 7 6 16 13 
11 63 509 190 71 5 29 11 4 
12 -203 54 207 1 494 -19 5 13 30 

rms error 1 28 23 11 16 

Table 6-7. Differences between measured search times for the colour/luminance targets 
and search times calculated from the model predictions of match contrast, in ms. 

Difference values are STmeasured - STmodel, percentage difference values are 100. (STmeasured 

ST.,, d,! i)/ST. c. u. d. 

The fitted curves describing the relationship between search time and achromatic 

target contrast at each light level (the parameters for which ate shown in Table 6-5, 

were used to convert C.. values for the colour/luminance targets to search times 

(ST.. d,, ). These predicted search times were then compared to the search times 

measured for each of the colout/luminance targets (ST,.,,,.. j. The differences 

between STneasured and ST 
.... d., are shown in Table 6-7, the differences are also shown 

expressed as a percentage of STneasured* In general, the measured search times were 
longer than those predicted using the conspicuity model and achromatic calibration 

curves. Differences in search times tended to be larger for the higher light levels 

(light level 1-2), but differences of several hundred milliseconds were seen for some 

conditions across all four light levels. The percentage differences also tended to be 

larger for the higher light levels. To assess the overall error in predicting search 

times for the colour/luminancc conditions using the conspicuity model and the 

achromatic search curves (combined model), the root mean squared (rms) error was 

calculated for the percentage differences, according to Eq. 6-2. 
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2 
6, Xmcm, i- Xpred, i 

Eq. 6-2 Enm = 100- - 
21 

6 j., Xnxu, i 

where E,.: root mean squared error, xmý.: ST. 
ýasured, andXpred: STmodel. Root mean 

squared errors are shown in Table 6-7. The rms error was largest for light level 1 

and lowest for light level 4, and rms errors for the highest two light levels were 
larger than those calculated for the lowest two light levels. 

4000 

Juuu 

2000 

"o 

1000 

2 

0 

0.69 

ST,,,, = 1.16 STP,, 

00000 

% 

A 

Ole 

0 1000 2000 3000 4000 
Predicted search times (ms) 

Figure 6-3. Search times measured for the targets with a combination of colour and 
luminance contrast, plotted against search times predicted using the combined model. 

Symbols represent points for all targets investigated over four light levels. The dotted line 
represents the best fit to the data, passing through the origin. 

investigation of the differences in milliseconds between measured search times and 

those predicted using the combined model (conspicuity model plus achromatic 

search performance curves), revealed small to large discrepancies in search time, 

with larger percentage differences occurring at the higher two light levels compared 

to the lower levels. 'Mese results suggest that the measure of conspicuity developed 

in chapter 5, could be used to directly predict a measure of visual performance such 

as search time for targets defined by colour and luminance contrast using an 
intermediate task-specific achromatic calibration, but with some errors. The 

relationsfýp between measured search times for the c0lour/luminance targets and 

those predicted using the combined model across all conditions investigated over A 

four light levels is illustrated in Figure 6-3. A proportional relationship was obtained 
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between measured search times and the search times predicted using the combined 

model, the equation for which is given below. 

= 1.16 ST STmeasured 
mod el Eq. 6-3 

This relationship produced a coefficient of determination of 0.69, and represented 

an improvement over the direct relationship. The proportionality constant is greater 

than 1, which results from the model underestimating search time compared to the 

measured values. 

Target no. Differences 
LL1 I LL2 LL4 LL5 

Percentage differences o 
LL1 LL2 LL4 LL5 

7 -0.065 -0.063 -0.02 0.004 -74 -83 -13 1 
8 -0.054 -0.052 -0.026 0.045 -46 -44 -12 12 
9 -0.028 -0.033 -0.072 0.034 -17 -21 -32 8 
10 0.026 -0.053 -0.052 0.010 10 -30 -15 2 
11 -0.023 -0.082 -0.088 -0-005 -9 -37 -19 -1 
12 0.068 1 -0.094 1 -0.237 1 -0-338 8 -15 -36 -36 

rms error 1 37 44 23 16 

Table 6-8. Assessment of the conspicuity model to accurately predict conspicuity at each of 
the four light levels used in the visual search experiments. Difference values for each 

colour/lun-linance target are: measured C,. - predicted C"', percentage difference values are 
100. (measured Cm - predicted Gn) /measured Cm. 

The finding of larger differences between search times for targets defined by colour 

and luminance contrast and achromatic targets with equal conspicuity at the low 

photopic/high mesopic light levels compared to the mid to low mesopic light levels, 

may depend on the ability of the model to accurately predict conspicuity at high and 
low luminances, respectively. To investigate the accuracy of the conspicuity model's 

predictions for the colour/luminance targets used in the visual search experiments, 

the average response of the five observers, on whose matches the model was based, 

were compared to the model's predictions of matching contrast. The differences in 

match contrast values (Cj are shown in Table 6-8, along with differences shown 

expressed as a percentage of the mean measured match contrast. For light levels 1,2 

and 4, the values of match contrast predicted by the model tended to be higher than 

the average match contrasts measured by the five observers for each of the 

colour/luminance targets (target numbers 7-12). For light level 5, the model tended 

to underestimate match contrast compared to the average measured value for each 

target condition. The root mean squared errors for the predicted Cm values 
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compared to the measured C. values were calculated according to Eq. 6-2, with 

x... ý measured C. values, xp,, d: predicted C,. values, and are shown in Table 6-8. 
The root mean squared errors were indeed larger for light levels 1 and 2 than for 
light levels 4 and 5. Ilese results indicate that the ability of the model to predict 

conspicuity was better for the lower background luminances than for the high light 
levels. As an extension to this avenue of investigation, the achromatic search time 
curves were used to convert the original observers mean conspicuity matches to 

equivalent search times (ST., ig J, to ascertain whether an improvement in the 

prediction of search times could be obtained using the original measured values of 

match contrast. 

Target no. Differences 
LL1 LI-2 LL4 LL5 

Percentage differences Clo) 
LL1 IT-2 LL4 LL5 

7 633 51 -238 -17 25 2 -7 -1 
8 440 491 81 826 21 20 3 26 
9 682 334 -264 459 32 17 -11 18 
10 118 -113 132 310 8 -8 6 14 
11 53 337 36 72 4 19 2 4 
12 -203 49 105 386 -19 4 7 24 

rms error 1 1 21 14 ---77---T 17 
Table 6-9. Differences between measured search times and search times calculated from 

the measured match contrasts. Difference values are ST ... asured - STo6g. -bý, percentage 
difference values are 1 004STI'd - 

STOrig- 
Obs)/ST-easured- 

Differences and percentage differences between search times measured for the 

colour/luminance targets and those predicted from the original observers 

conspicuity matches arc shown in Table 6-9 The rms error was again calculated 

according to Eq. 6-2, with in this case xp,, d: ST., ig,, b,, and these values are also shown 
in Table 6-9. For light levels 1,2 and 4, the rms errors were smaller for STOrig. 

obs than 
for ST.., w, indicating that search times calculated from the measured match 

contrasts agreed more closely with the measured search times. For light level 5, 

ST., m agreed more closely with the measured search times, although the difference 

was marginal. However, the percentage errors between measured search times and 

converted search times could still be large, whether they were calculated from Cm 

values predicted by the conspicuity model or from C.. values measured by the 

observers in chapter 5, with the measured search times again tending to be longer 

than equivalent search times computed from the measure of conspicuity. 
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These results, taken together, indicate that the larger prediction errors for the 

combined model (conspicuity model, plus achromatic calibration curves) seen at the 

higher light levels compared to the lower light levels, may not entirely be the result 

of a poorer fit of the conspicuity model for the conditions investigated at these 

higher luminances. Another factor to consider is the consequence of the more rapid 

change of search time with achromatic contrast at the higher light levels. For a 

steeper curve, any errors in the prediction of conspicuity (matching achromatic 

contrast, Q will introduce a greater error in the predictions of search time. This 

would explain the larger errors obtained at these background luminances. Further 

inspection of search times computed from the original conspicuity measurements 

suggests that there are systematic differences between visual search performance 

computed for colour/luminance targets from the conspicuity metric used, and the 

search times measured for those targets. The origins of such differences are 

discussed in section 6.4.2. 

6.3.3 Photopic contrast, scotopic contrast and chromatic 

difference as predictors of visual search performance 

In the same way that search times for the colour/luminance targets were predicted 
from C.. values produced by the conspicuity model in section 6.3.2, search times 

were also predicted from values of CP and C, for each target specification. Values of 
CP or C, were converted to search times using the achromatic calibration curves. 

This was possible because achromatic contrast is independent of the spectral 

luminous efficiency function, and so CP, C, and achromatic contrast all have the 

same value. The achromatic calibration curves were obtained for positive 

achromatic contrast targets only, therefore, negative values of CP and C. had to be 

converted to positive values to enable a comparison. Although a conversion was not 

attempted in similar circumstances in chapter 5 section 5.3.10, the small number of 

conditions investigated meant that it was not possible to consider only those 

conditions with CP>O and C, >O; hence the conversion was considered to be a 
interesting exercise in this case. 
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Target no. Differences 
LL1 LL2 LL4 I LL5 

Percentage di 
LL1 I LL2 

fferences (0/6) 
LL4 LL5 

7 -1730 -1146 -2996 564 -69 -33 -48 26 
8 -2179 -1072 -50 -244 -105 -31 -2 -7 
9 -2149 -1500 1086 1313 -102 -43 -77 102 
10 -2858 -2017 -751 -1122 -205 -58 -25 -33 
11 -2916 -1731 -4507 -199 -219 -49 -72 -11 
12 -208 53 -463 1 -4110 -20 5 -23 71 

rms error 1 139 40 49 54 

Table 6-10. Differences between measured search times for the colour/lun-Linance targets 
and search times calculated from target photopic contrast. Difference values are ST asu 'd ,mC 

STphotopic, percentage difference values are 100-(STmeasured 
- STPhOtOPO/ST-easured- 

Target no. Differences 
LL1 LL2 LL4 LL5 

Percentage di 
LL1 LL2 

fferences Clo) 
LL4 LL5 

7 -839 -79 128 -1000 -33 -3 4 -27 
8 -147 736 -642 1279 -7 44 -18 69 
9 661 -387 -1162 18 31 -16 -32 1 
10 68 -98 416 336 5 -6 23 18 
11 -46 645 356 35 -3 57 26 2 
12 -203 40 203 412 -19 4 15 34 

rms error 

1 
21 30 21 - 1- 34 

Table 6-11. Differences between measured search times for the colour/luminance targets 
and search times calculated from target scotopic contrast. Difference values arc STmc,,,,, d 

STscotopicq percentage difference values are 100. (ST .. ý.,,, red - STSCOtopic)/STmeasured. 

The results of chapter 5 highlighted differences between the conspicuity of positive 

and negative contrast targets; in order to take account of these differences, negative 

values of CP and C. were scaled by a factor of 1.8 and the absolute value taken. The 

factor 1.8 was determined from the mean ratio of conspicuity for negative 

achromatic contrast conditions compared to positive achromatic contrast 

conditions, measured in chapter 5 over the whole data set. Differences were then 

calculated between search times measured for the colour/lutninance targets 

,... 
) and those predicted from either CP (STP,,., i) Of Cý (STýc.,. 

pjj- The (ST. c 
calculated differences and percentage differences are shown in Table 6-10 and Table 

6-11 for photopic contrast predictions and scotopic: contrast predictions, 

respectively. These differences are also illustrated in Figure 6-4 and Figure 6-5, 

where search times for the colour/luminance targets have been plotted against 

either target CP (Figure 6-4) or C, (Figure 6-5). The figures also show the fitted 

I 
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achromatic search curves for comparison. The root mean squared error was also 

calculated in each case to assess the overall error in predicting search times for the 

colour/luminance targets using either target C. or C, These errors were calculated 

according to Eq. 6-2, with xmcas: STmeasured, and Xp,, d: 
ST. 

h.,. pi,, or STscotopi, and are 

shown in Table 6-10 and Table 6-11 
, respectively. 
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Figure 6-4 (A)-(D). Visual search times for targets defined by colour and luminance 
contrast, plotted against target photopic contrast. Results are shown for the four fight levels 
investigated (A)-P). Targets with different values of photopic contrast were investigated at 

each light level. Many of the targets at the higher two light levels were isoluminant, see 
section 6.2.2 for a description of how the targets were chosen. Symbols represent the mean 

search time for four observers averaged over a circular field 220 in diameter. Solid lines 
indicate curves fit to the achromatic visual search data obtained at each light level, also 

shown in Figure 6-1. 

The evidence presented in both Table 6-10 and Figure 6-4 suggests that for the 

colour/luminance target specifications investigated, photopic contrast was not a 
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good predictor of visual search performance. The differences between STmeasuredand 

STphowpicwere very large in almost all cases, leading to high rms errors for predicting 

search time across all four light levels. The results of chapter 5 indicated that 

photopic contrast is a less significant factor in determining conspicuity at low 

mesopic: light levels, therefore, CP would be expected to be a poor predictor of task- 

specific visual performance at such background luminances. 
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Figure 6-5 (A)-(D). visual search times for targets defined by colour and luminance 

contrast, plotted against target scotopic contrast. Results are shown for the four light levels 
investigated (A)-P). Targets with different values of scotopic contrast were investigated at 
each light level, see section 6.2-2 for a description of how the targets were chosen. Symbols 

represent the mean search time for four observers averaged over a circular field 22o in 
diameter. Solid lines indicate curves fit to the achromatic visual search data obtained at each 

light level, also shown in Figure 6-1. 
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At the low photopic and high mesopic light level investigated CP was almost always 

zero, therefore, some other parameter had to be responsible for the observed 

changes in search performance. Note that this indicates a situation in the photopic 

range where CP cannot account for visual search performance. Nonzero photopic 

contrast values might be expected to produce predictions of search times that 

correlate better with search performance at these light levels. There is some 

evidence for this from the results for the two conditions with nonzero CP values 
(target number 12 for light levels 1-2), for which differences between measured and 

predicted search times were relatively small. 

The results shown in Table 6-11 and Figure 6-5 suggest that for the 

colour/luminance target specifications investigated, scotopic contrast was a 

moderately good predictor of visual search performance. The differences between 

measured and predicted search times were relatively low in some cases, but could be 

of the order of several hundred milliseconds to a second in others. Percentage 

differences and rms errors were of a similar order of magnitude across all light 

levels. The findings of chapter 5 indicated that scotopic contrast was the main 
determinant of conspicuity in the low mesopic range. It is feasible to expect 

scotopic contrast to also be the main determinant of visual search performance at 
low light levels. For the high mesopic range, the results of chapter 5 indicated that 

scotopic contrast was not a significant factor in determining conspicuity. It is 

reasonable, therefore, to assume that this might extend to visual search 

performance, but is at odds with the finding of similar percentage differences and 

rms errors across all light levels when C, was used as a predictor. However, the 

results of chapter 5 also showed that there was reasonable correlation between 

scotopic contrast and the chromatic difference of the target (see section 5.3.6), 

therefore, the dependence of search time on CD value must also be considered 
before conclusions can be drawn about the role of scotopic contrast the current 

visual search measurements. 

Figure 6-6 shows search time measured for the colour/lun-dnance targets plotted 

against target CD. At the lower two light levels, search time did not show a strong 

relationship with CD. 'niis ties in with the findings of chapter 5, which indicated 
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that CD was a less significant factor in determining conspicuity at low mesopic light 

levels. This suggests that scotopic contrast was in fact the main determinant of 

search performance measured in the mid to low mesopic range. Predictions of 

search times from values of scotopic contrast, however, were not as good as those 

made using values of conspicuity. This implies stimulus photopic contrast and 

chromatic difference may also contribute to search performance at these light levels. 
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Figure 6-6 (A)-(D). Visual search times for targets defined by colour and luminance 

contrast, plotted against target chromatic difference. Results are shown for the four light 
levels investigated (A)-P). Symbols represent the mean search time for four observers 

averaged over a circular field 22- in diameter. 

At the higher two light levels search time exhibited a good relationship with CD. At 

the low photopic level (LIO = 10), this relationship was qualitatively similar to the 

relationship of search time with achromatic contrast. It is likely that for this 

Is 

251 



. 
Ch 6. Conspicuity and visual search performance... 6.3. Results 

background luminance where photopic contrast was mostly zero, CD was the sole 
determinant of search performance, and that the apparently good prediction of 

performance from C,, may be an artefact arising from the correlation between CD 

and C, It is also possible, however, that C, is a more important factor in visual 

search than the conspicuity model predicts. Visual search involves large areas of the 

peripheral retina where there is a high density of rod receptors compared to cones. 
The target employed was quite large, which may also favour the spatial summation 

properties of rods. At the high mesopic: level (LIO = 1.1), the relationship between 

search time and CD appears to be approximately linear, rather than the nonlinear 
decay function characteristic of achromatic search, and seen for CD at the highest 

light level. It is likely, therefore, that at this light level where photopic contrast was 

mostly zero, search performance is determined from a combination of CD, nonzero 
CP and C, although C, may only be an important factor for minimal values of CP. 

These results emphasise the importance of colour in determining mesopic visual 

search performance, particularly in the high mesopic range and when luminance 

contrast is low. 

6.4 Discussion 

The results of this study have shown that it is possible to measure visual search 

performance throughout the mesopic range using an identical contrast acuity-based 

orientation task with detection based on target conspicuity, despite changes in visual 

acuity (Patel 1966; Van Nes and Bournan 1967). Search times recorded for 

achromatic targets revealed changes in the characteristics of search performance 

with reduction in light level. Search times measured for targets with a combination 

of colour and luminance contrast, showed that the relationships between visual 

search and colour, photopic luminance contrast and scotoPic luminance contrast are 

altered as the level of illumination is decreased. Ihe measure of stimulus conspicuity 
developed in chapter 5 was shown to be a reasonably good predictor of mesopic 

search performance for targets defined by both colour and luminance contrast. 
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6.4.1 Changes in visual search performance with light level 

The results of search time measurements for both targets defined by achromatic 

contrast and targets dcfined by a combination of colour and luminance contrast, 

revealed changes in visual search performance with light level. For the achromatic 

conditions, the minimum contrast for which search time could be measured 

increased with reduction in light level. This reflects the increase of contrast 
threshold with reduction in light level (Blackwell 1946). The investigation of 

achromatic visual search also revealed that the rate of decay of the search time 

function decreases with reduction in background luminance. This shows that not 

only do the search time curves shift towards higher values of contrast as contrast 

thresholds increase, but the curves become less steep with reduction in background 

luminance. Ibis finding implies that in addition to the increase in contrast 

threshold, the relationship between visual search performance and luminance 

contrast varies nonlinearly with background luminance, meaning that equal steps M 

contrast do not produce equal changes in visual search performance at different 

light levels in the mesopic range. 

The analysis of search time measurements for the targets defined by a combination 

of photopic contrast (Cý, scotopic contrast (C) and chromatic difference to the 
background (CD), showed that the effect of each of these parameters on Visual 

search performance changes with light level. In the mid to low mesopic range, CP 

was found to be a poor predictor of search performance, and search times did not 

appear to be related to CD. Scotopic contrast, on the other hand, was found to be a 

reasonable predictor of search time at such light levels, and is likely to be the 

predominant factor in determining search performance. Ile improved predictions 

obtained from the measure of stimulus conspicuity suggest that CP and CD also 

contribute to visual performance in the mid to low mesopic range. 

Results for the low photopic and high mesopic light level investigated, illustrate the 

importance of CD in determining search time, especially when luminance contrast is 

low. At these light levels CP was mostly zero and found to be a poor predictor of 

search time. The appearance of stimulus C, as a reasonable predictor of search time 

was unexpected. One possible explanation for this fmding is that it reflects the 
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remaining correlation between CD and C, for stimuli generated on the experimental 

system used. An alternative explanation is that C, is an important factor in 
determining visual search performance even at high mesopic light levels. The visual 

search task involved searching for a sizeable target over a large peripheral field. Such 

conditions are likely to favour rods, and may result in the observed dependence of 

search performance on scotopic contrast. Further investigation is required to assess 
the dependence of search performance on scotopic contrast in the low photopic/ 
high mesopic range. Conditions with a nonzero CP value provided some evidence 
that CP is an important determinant of search performance in the low, 

photopic/high mesopic range. In general, the results for these two light levels 

indicated that the effects of CD and possibly C, must considered along with CP, 

especially in cases where CP is low. 

The results for all four light levels are in agreement with the findings of a previous 

study of visual search performance in the mesopic range (Hurden et al. 1997; Barbur 

et al. 1998a; Hurden et al. 1999). The authors showed that the main determinant of 

search time in the mesopic range is photopic contrast at low photopic/high mesopic 
light levels and scotopic contrast at mid to low mesopic levels. Their study did not, 
however, include a systematic investigation into the effects of colour on visual 

search. 

6.4.2 Conspicuity as a predictor of visual search performance 

The measure of conspicuity used in this study, relates the conspicuity of a target 
defined by a combination of colour and luminance contrast to that of a similar 

achromatic target. The measurement of visual search performance curves for 

achromatic targets made it possible to predict search times for targets defined by 

colour and luminance contrast of known conspicuity. Conspicuity was predicted 
directly by the model described in chapter 5, based on CIE defined stimulus 

parameters. The results showed that this measure of conspicuity can be applied to 

produce a good predictor of visual search performance for targets defined by a 

combination of colour and luminance contrast in the mesopic range. The 

proportional relationship developed between measured search times for targets 
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defined by colour and luminance contrast, and those predicted from the combined 

model (conspicuity model plus achromatic search calibration), over all four light 

levels investigated, produced a coefficient of determination of 0.69. 

As defined in this study, conspicuity is a measure of the combined effectiveness of 

photopic contrast, scotopic contrast and colour. In the mesopic range where there is 

currently no internationally accepted mesopic luminous efficiency function, there is 

a need for a metric that will produce better predictions of task-specific visual 

performance than either stimulus photopic contrast or scotopic contrast. Ile 

evidence of this study indicates that, in relation to visual search, conspicuity 

provides an improved measure of stimulus effectiveness in the mesopic range than 

either photopic or scotopic contrast. 

Despite the good relationship found between predictions of search time made using 

the combined model and measured search times for the colour/luminance targets, 

predicted search times were found, in general, to be shorter than measured values. 
Ibis was also the case when the original measurements of conspicuity were 

converted to search times and compared to the measured values. Three possible 

explanations are suggested for this finding. The first and second possibilities 

consider that some factor in the conspicuity matching task, which has the effect of 
increasing the value of resulting match contrast, is less effective in the visual search 

task. Ibis could arise firstly, from the fact that the visual search task involves more 

peripheral retinal areas than used in the conspicuity matching task on which the 

model was based (i. e. 7' eccentricity). This might lead to a different dependence on 

photopic contrast, scotopic contrast and colour difference in each task, related to 
differences in eccentricity. Secondly, differences may exist in the relative weighting 

of photopic contrast, scotopic contrast and colout difference in judgements of 

conspicuity compared to measurements of search time, irrespective of differences in 

eccentricity. The third possibility considers that there was a bias towards achromatic 

targets in the visual search procedure, resulting in shorter search times for 

achromatic targets. These possibilities are discussed below. 
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If the conspicuity matching task had been carried out an eccentricity greater than T, 
it is likely that the contribution of C, to achromatic match contrast would have been 

greater and the contributions of CP and CD would have been less. This is because of 
the different spatial distributions of rods and cones in the retina (see section 1.1.2 
h). The results of chapter 5 showed that weakening the chromatic signal leads to a 
reduction in the value of achromatic match contrast. This means that the chromatic 
contribution at 7* would result in a higher value of match contrast than expected at 
a larger eccentricity. This would explain the finding of shorter search times 
predicted from the conspicuity model, than those measured for the search time task, 

which involves larger eccentricities. 

The second explanation considers that, irrespective of eccentricity, the chromatic 

signal may be less effective in the search time task compared to the conspicuity 
matching procedure. Hurden et al. (Hurden et al. 1997; Barbur et al. 1998a; Hurden 

et al. 1999) provided evidence that visual search in the mesopic: range could be 

adequately modelled as a function of luminance contrast alone (combinations of 
photopic and scotopic contrast), without consideration of the effects of colour. 
Both Lit et al. (1971) and Pollack (1968) reported that reaction time measurements 
for stimuli with combined colour and luminance at photopic levels of illumination, 

depend only on luminance contrast, showing no variation with wavelength. 
Furthermore, reaction times for isoluminant chromatic stimuli are significantly 
longer than those for luminance increments (Barbur et al. 1998c). During visual 
search, fixation duration is typically 150-350 ms (Hooge and Erkelens 1998; 
Andrews and Coppola 1999; Nasanen et al. 2001). It may be the case that during the 

relatively short fixations that observers make whilst performing visual search (150- 
350 ms), the chromatic signal is weighted differently in relation to the luminance 

contrast signal, than during the 500 ms presentation used in the conspicuity 

matching experiments. 

The third possibility stated above, considers the presence of bias in the visual search 

procedure that resulted in shorter search times for the achromatic targets. Such a 
bias may be a consequence of the effects of distracter heterogeneity and the visual 

mechanisms used to detect the target. Nagy and Winterbottom (2000) reported that 
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for white targets differing in luminance from the distracters, variability in distracter 

chromaticity had little effect on search performance, whereas for coloured targets 
differing in luminance from the distracters, search performance was poorer when 
distracter colour was varied. They suggested that detection of white targets was 

mediated by the luminance mechanism only, but mechanisms tuned to both 

chromaticity and luminance were required to search for the coloured targets. In the 

present case, the target had a unique orientation, but detection of the achromatic 
targets may have been mediated by the achromatic mechanism alone, and detection 

of the colour/luminance targets mediated by a combination of chromatic and 

achromatic mechanisms. Variability in the chromaticity of the distracters may then 
have resulted in degraded performance for the colour/luminance targets. 

For all. three possibilities considered above, one might expect to see larger 

differences between measured search times and those predicted from measures of 

conspicuity at the higher light levels where the contribution of colour to conspicuity 
is more significant (see chapter 5). This wasn't the case, however, for search times 

predicted from the original measurements of conspicuity, where comparable 

percentage differences were seen across all. light levels. It seems that a further 

explanation may be needed to account for the observed differences. Engel (1977) 

reported that for measurements of conspicuity area and visual search performance, 

estimates of conspicuity area assuming random fixations during the search 

procedure, were 30% smaller than the original conspicuity area measurements 

obtained using constant fixation. This finding of poorer search performance than 

predicted on the basis of the conspicuity measurements is similar to the present 

results. It cannot be a consequence of colour, because Engel used only achromatic 

stimuli. It is possible that temporal differences between fixations during visual 

search and the longer presentation times used for the conspicuity measurements ate 

responsible for the differences in performance even for purely achromatic search. 
At present the reason for the systematic differences between predicted and 

measured search times is unclear and requires further investigation. 

The results of this study have shown that the measure of conspicuity developed in 

chapter 5 can be applied to provide a good predictor of visual search performance 
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in the mesopic range, and produce improved predictions than either photopic 

contrast or scotopic contrast. If such a measure of conspicuity was shown to be an 
important factor in different visual performance tasks, along with other task specific 
factors, it may be possible to predict performance for a range of visual tasks from 

the same measure of conspicuity. An advantage of the measure of conspicuity 

employed in the current work is that performance need only be ascertained for 

achromatic targets of a single polarity (positive achromatic contrast) at any given 
light level, to enable prediction of performance for targets defined by both colour 

and lun-dnance contrast. Thus, for a given visual task the exercise of determining 

performance for a wide range of target conditions would be reduced to a single 

polarity of the achromatic domain. 
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7 General discussion and concluding remarks 

The investigations undertaken in this body of work encompassed aspects of 

chromatic processing at threshold levels, both in the photopic and mesopic range, 

and suprathreshold behaviour of the visual system under mesopic conditions in 

relation to stimulus conspicuity and visual search. The results have revealed a 

number of interesting findings pertaining to the processing of visual mechanisms 

and visual performance in the mesopic range. 

Chromatic sensitivity was investigated using dynamic luminance contrast noise 

techniques that isolate the use of colour signals. The independent processing of 
luminance signals and chromatic signals has previously been demonstrated at 

photopic levels (Barbur et al. 1992), and was shown here to also be applicable to 

mesopic conditions. 

At photopic levels of illumination, chromatic sensitivity measured at the fovea using 

a colour defined pattern, was shown to depend on the spatial content of the 

stimulus, in both normal trichromats and dichromats. These results were in 

agreement with the dependence of chromatic sensitivity on grating frequency 

reported by Mullen (1985). Similar measurements in subjects with optic neutopathy 

revealed an exaggerated loss of sensitivity with increasing spatial frequency 

compared to normals. This was thought to reflect a reduced ability in such subjects 

to sum chromatic signals over receptive fields, due to neuronal damage. Additional 

measurements of chromatic sensitivity obtained in these subjects, supported 

previous findings of differential thresholds for detection of a colour defined pattern 

and detection of pure colour changes in a pattern defined by luminance contrast, in 

a subject with optic neuritis (Batbur et al. 1997). Small, but significant differences in 

thresholds for the two stimulus paradigms were also observed in normals. These 

results are likely to reflect the dependence of chromatic sensitivity on the spatial 

characteristics of the stimulus; illustrated in the results for detection of a colour 
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dcfined pattern. An alternative possibility, however, discussed in chapter 3, section 
3.4.2, is that differences exist between the processing of form based on chromatic 

signals and the detection of colour independent of structure, early in the visual 
pathway (Lakowski 1966; Watanabe et al. 1998). The scope of the present study did 

not make it possible to discriminate between these two hypotheses; hence, further 

investigation is needed to address this question. 

Measurements of chromatic sensitivity in the mesopic range for a uniform stimulus, 

showed that sensitivity was markedly reduced with decreasing retinal illuminance 

both at the fovea, consistent with the results of Brown (1951), and in the near 

periphery. It was suggested that this loss of sensitivity might be attributed to a 
reduction in the quantal catch of the cone receptors. Loss of sensitivity was 

nonuniform, with a greater degradation occurring along the axis of S-cone 

modulation. Below about 10 cd m7' three of the four subjects tested also exhibited 

asymmetrical thresholds along the S-cone axis, consistent with either a reduced 

sensitivity for S-cone decrements and/ or an improved sensitivity for S-cone 

increments. Threshold measurements carried out under conditions that reflect 

predominantly cone processing were compared to thresholds obtained under 

conditions where both rods and cone contribute to the response. These results 

revealed that neither the observed elongation of the threshold contour along the S- 

cone axis, nor the asymmetry of S-cone thresholds, could be attributed to rod 
intrusion in chromatic processing at threshold. The greater loss of chromatic 

sensitivity seen along the S-cone axis and the finding of asymmetrical thresholds for 

S-cone increments and decrements are, therefore, likely to be a consequence of the 

response characteristics of the S-cones, which only exhibit Weber behaviour at 

relatively high levels of excitation (Boynton and Kambe 1980; Yeh et al. 1993). 

Both the study of chromatic sensitivity under photopic conditions and the 

measurements of chromatic thresholds in the mesopic range highlighted differences 

in the performance of the two postreceptoral chromatic mechanisms. Chromatic 

threshold measurements under photopic conditions for a colour defined pattern 

consisting of vertical bars, showed greater threshold changes in the blue-yellow 

direction compared to the red-green direction as the spatial frequency of the bats 
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was decreased. 'Mese results coupled with the preferential loss of sensitivity 

observed for the S-cone mediated blue-yellow postreceptoral mechanism compared 

to the red-green mechanism observed under mesopic conditions, illustrate that the 

blue-yellow mechanism is not as robust as the red-green mechanism with respect to 

changes in the spatial characteristics of a stimulus, or the level of retinal illuminance. 

The investigation of chromatic sensitivity under mesopic conditions showed that 

there was no effect of rod intrusion on chromatic thresholds at either 3.5' or 7' 

eccentricity. These results do not support reports of rod mediated impairment of 

wavelength discrimination and chromatic discrimination in the near periphery 

(Stabell and Stabell 1977; Nagy and Doyal 1993; Knight et al. 1998; Knight et al. 

2001). It is not clear whether differences in methodology can account for these 

seemingly contradictory findings, for example in this study chromatic discrimination 

thresholds were measured from a neutral stimulus as opposed to measuring 

discrimination between suprathreshold chromatic stimuli. The major difference 

between the present study and previous investigations, however, relates to the 

methods used to eliminate detection of luminance contrast signals. It is not 

sufficient to set a brightness match "by eye", which was the method employed by 

the Stabells (1977). The effectiveness of eliminating luminance contrast signals by 

setting isoluminance using flicker photometry in the mesopic range, (the method 

used by both Nagy and Doyal (1993) and Knight et al. (2001)) was also called into 

question in the discussion section of chapter 4. It is suggested that using these 

methods, residual luminance contrast signals may have been present, and that the 

I results of studies based on such methodology may not represent the behaviour of 

isolated colour mechanisms. The conclusions drawn by Knight et al. in relation to 

the FM 100-hue test relies on the computations of cone and rod excitations 

performed for each cap, from which specific axes of photoreceptor modulation 

were defined. These computations have not been replicated here and, therefore, 

cannot be commented on. In the present investigation, where dynamic luminance 

contrast noise was employed to mask detection of luminance contrast signals it is 

more likely that the measured thresholds represent the processing of colour 

mechanisms alone. Results obtained under experimental conditions of the present 
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study demonstrated that the processing of chromatic signals is independent of 
dynamic lurninance contrast noise even when rod contrast signals are involved. 

Chromatic threshold contours obtained in the near periphery, as part of the study of 
mesopic chromatic sensitivity, exhibited a tilt in orientation with increasing 

eccentricity. These changes in orientation could not be attributed to rod intrusion 
for the reasons discussed above, and neither could they be attributed to changes in 

pre-receptoral filtering, because little or no changes were expected under some of 
the conditions tested. It was suggested, therefore, in chapter 4, section 4.4-1. that 

this result may reflect changes in sensitivity of multiple colour mechanisms, and that 
the representation of post-receptoral chromatic processing by two cardinal 
directions may not be a sufficient description of threshold behaviour under the 

conditions investigated. 

An investigation of suprathreshold visual performance under mesopic conditions 

was carried out by obtaining a measure of stimulus conspicuity, and relating this 

measure to performance in a visual search procedure. Ile conspicuity of a target 
defined by colour and luminance contrast was defined in terms of the luminance 

contrast of a similar achromatic target that matched the perceived conspicuity of the 

coloured target. According to the model developed in this study, conspicuity in the 

mesopic range is dependent on stimulus photopic contrast, scotopic contrast and 

chromatic difference to the immediate background, the level of illumination, and a 
number of interactions between these parameters. Inspection of the data set of 

conspicuity measurements and the empirical conspicuity model, indicated that in the 
low mesopic range conspicuity is determined predominantly by scotopic contrast, 

and at low photopic/ high mesopic light levels conspicuity is determined 

predominantly from a combination of photopic contrast and the chromatic 
difference between the stimulus and the immediate background. 

An analysis of variance performed on the data set of conspicuity measurements 

revealed that the magnitude and sign of both photopic and ScOtOpic luminance 

contrast had significant effects on stimulus conspicuity. This finding is in agreement 

with other evidence of an asymmetry relating to luminance polarity (Batbur and 
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Forsyth 1990; Hurden et al. 1997; Vingrys and Mahon 1998). The asymmetry for 

scotopic luminance contrast was more pronounced than that for photopic contrast. 

Measurement of the conspicuity of chromatic stimuli with minimal luminance 

contrast revealed a linear relationship between conspicuity and chromatic difference 

to the background measured in a uniform chromaticity space. A similar relationship 

was observed for both the red and green stimuli investigated, and chromatic 

thresholds for these specific colour directions inferred from measured threshold 

contours were very similar. These results indicated that relative behaviour in these 

two colour directions was maintained in the transition from threshold to 

suprathreshold measurements and that suprathreshold function measured in terms 

of conspicuity was similar for the two hues. Suprathreshold behaviour, however, is 

generally also dependent on stimulus hue (Ueno et al. 1985; Batbur and Forsyth 

1990; Nagy and Sanchez 1990; D'Zmura 1991), and suprathreshold behaviour 

cannot usually be predicted from threshold measurements. In the case of chromatic 

processmg, the relationship between threshold and suprathreshold measurements is 

known to vary with colour direction (Nagy and Sanchez 1990; Vingrys and Mahon 

1998). 

For the measurements of target conspicuity, sizeable inter-observer variations were 

obtained in response to negative luminance contrast due to the difficulty of 

matching two targets with opposite contrast polarity (the match target was always 
defined by positive contrast). The largest between-ob server variations, however, 

were seen in response to colour. Inter-observer variability in response to colour has 

previously been reported for measurements of perceived brightness (Burns et al. 
1982; Nakano et al. 1988; Yagucbi et al. 1993; Ayama and Ikeda 1998). Nakano 

(1988) modelled successfully, individual differences in perceived brightness as 

variations in contributions of the chromatic postreceptoral mechanisms. Although 

psychophysical measures of red-green colour vision at low temporal frequencies 

show little variation between observers with different ratios of L- to M- cones 
(Brainard et al. 2000; lCremers et al. 2000; I,, nau et al. 2001), it is evident that the 

relative contribution of the red-green and blue-yellow mechanisms to the perception 

of suprathreshold colour stimuli exhibits considerable variation. 
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Visual search times recorded for achromatic targets in the mesopic range using an 
orientation task, revealed differences in the nonlinear variation of search 
performance with contrast as illumination is reduced. With reduction in light level, 

curves describing the search time vs. achromatic luminance contrast relationship 

were shifted along the abscissa towards higher contrast, reflecting the increase in 

contrast detection thresholds (Blackwell 1946). 'Me rate of decay of these curves 

also markedly decreased with reduction in light level, indicating that a fixed change 
in luminance contrast is worth less in terms of its effectiveness for- visual search, as 

ambient illumination is decreased. 

Visual search performance was also measured for targets with a combination of 

colour and luminance contrast, and compared to values of stimulus conspicuity 
(equivalent achromatic contrast) predicted from the empirical model, which were 

converted to search times using the search performance curves measured for 

achromatic targets. This comparison showed that the measure of conspicuity 
investigated in this study could be used to predict successfully, search performance 

throughout the mesopic range. The lack of an international standard for spectral 
luminous efficiency in the mesopic range, means that there is a real need for a 

measure of stimulus effectiveness under mesopic conditions that will correlate 
better with task-specific visual performance than either photopic contrast or 

scotopic contrast. A comparison of photopic contrast, scotopic contrast, and 

conspicuity as predictors of mesopic visual search performance, revealed that for 

the targets with a combination of colour and luminance contrast investigated, 

conspicuity produces better estimates of search time than either photopic or 

scotopic: contrast. The predominant factor determining search performance at mid 

to low mesoPic light levels was found to be scotopic contrast. This paralleled the 
finding that conspicuity was mainly determined from scotopic contrast in the mid to 
low mesopic range. At the highest two light levels examined, the coloured targets 

had minimal Photopic luminance contrast and were defined predominantly by their 

chromatic difference to the background. Results for these targets emphasised the 
importance of colour in determining visual search performance, particularly when 
luminance contrast is low, a factor not acknowledged in a recent model of visual 

266 



Ch 7. General discussion and concluding remarks 

search in the mesopic range (Barbur et al. 1998; Hurden et al. 1999), but in 

agreement with photopic studies of colour and visual search (Carter and Carter 

1981; Barbur and Forsyth 1990; Nagy and Sanchez 1990; D'Zmura 1991). 

Surprisingly, visual search times for coloured targets investigated at the low 

photopic/ high mesopic light levels, also appeared to depend on the value of 

scotopic contrast. It was suggested that this result might be a consequence of the 

correlation between stimulus scotopic contrast and chromatic difference in this 

study, but, interestingly, may reflect the importance of scotopic contrast in 

determining visual performance for a task that involves large areas of the peripheral 

visual field. 

The data set consisting of pairs of stimuli matched for conspicuity (one stimulus 
defined by a combination of colour and luminance contrast and the other by 

achromatic contrast) acquired throughout the mesopic range as part of this study, 

was used to assess how well photopic contrast, scotopic contrast and measures of 

mesopic luminance contrast, predict conspicuity matches. The measures of mesopic 
luminance contrast were obtained from six proposed systems of mesopic 

photometry (CIE 1989; CIE 2001; Palmer 1968; Sagawa and Takeichi 1987; Sagawa 

and Takeichi 1992; Nakano et al. 1988; CIE 2001; Trezona 1991), and the results 

compared to predictions of the conspicuity model derived from the conspicuity 

matching data set. The results showed that above the lowest light level investigated 

(L10 = 0.0025), both photopic contrast and scotopic contrast were poorer predictors 

of conspicuity matches than the empirical model of conspicuity, but scotopic 

contrast predicted closer matches at the lowest light level. This was similar to the 

finding that conspicuity produced improved estimates of visual search performance 

than either photopic or scotopic contrast. The comparison of conspicuity match 

prediction errors for the empirical model and the measures of mesopic luminance 

contrast, suggested that over much of the mesopic range, conspicuity could be 

adequately predicted from a suitable combination of photopic and scotopic 

contrast. For low photopic/high mesopic light levels, however, successful 

prediction of conspicuity matches also requires modelling of the chromatic 

contribution to conspicuity. In the conspicuity model the metric for speciýying 

suprathreshold colour differences was based on distances in the CIE 1976 uniform 
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colour space. The finding that one of the measures of mesopic brightness contrast 

outperformed the empirical conspicuity model at the highest light level investigated, 

suggests that modelling of the contribution of colour to conspicuity using this 

colour difference metric in the high mesopic range, may not be appropriate when 

suprathreshold colours are involved. 

7.1 Conclusions 

Chromatic sensitivity in normals is dependent on many stimulus factors, including 

size, spatial distribution, eccentricity of presentation and level of illumination. These 

factors appear to reflect variations in the- performance of cone receptors (with 

greater changes observed for the S-cone system at high spatial frequencies and low 

light levels) coupled with changes in the relative cone contributions to the chromatic 

postreceptoral mechanisms. Under the mesopic: conditions investigated in this 

study, no changes in chromatic sensitivity could be attributed to the effects of rod 
intrusion. This result suggests that at chromatic threshold, rod signals and chromatic 

signals are processed separately in the mesopic range, as it has been demonstrated in 

the photopic range (Barbur et al. 1992). Threshold differences for detection of a 

colour defined pattern and detection of pure colour changes in a pattern defined by 

luminance contrast, are likely to reflect the spatial summation characteristics of 

chromatic mechanisms, but may suggest differential processing of colour inherently 

associated with and independent of spatial structure. These results have implications 

for the comparison of results from different types of colour vision test, e. g., 

pseudoisochromatic plates vs. tests employing uniform colout stimuli, particularly in 

subjects with retinal/ optic nerve pathology. 

Stimulus conspicuity, the suprathreshold measure of Stimulus effectiveness 
developed in this study, is higher for negative than positive luminance contrast 

stimuli. There are also individual variations in response to both suprathreshold 

luminance contrast signals and chromatic signals, which are likely to reflect 
differences in individual gain control of the achromatic and chromatic 

postreceptoral mechanisms. Conspicuity in the mesopic range is dependent on 
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stimulus photopic contrast, scotopic contrast, chromatic difference to the 

background and level of illumination. Photopic contrast and chromatic difference 

account largely for measured conspicuity at low photopic/high mesopic levels, and 

scotopic contrast becomes the dominant factor in the low mesopic range. 

The characteristics of visual search are altered with changes in the level of 

illumination. Reduction of illumination produces a decrease in the decay rate of the 

nonlinear relationship between search performance and luminance contrast. At low 

photopic/high mesopic light levels, colour is an important determinant of search 

performance, particularly when luminance contrast is low, whereas luminance 

contrast is the predominant determinant of performance in the mid to low mesopic 

range. However, a novel finding that has emerged from this study is that for the 

stimulus conditions employed in the visual search task, scotopic contrast appeared 

to contribute to visual performance, even in the low photopic range. The empirical 

model of stimulus conspicuity developed in this study can be used to predict 

successfully visual search performance in the mesopic range, and represents a better 

predictor of visual performance than either photopic or scotopic contrast. 

The conspicuity model provides a useful alternative means of assessing the 

effectiveness of visual stimuli, which has been shown to be valid for a visual search 

task. This model may have applications in the design of lighting in situations where 

a desired level of performance for a defined visual task can be set, for example in 

nighttime driving. 
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Appendices 

Appendix A. Statistical tables 
ANOVA table for the change in minor semi-axis length with stimulus size, of an 

ellipse fitted to the mean chromatic thresholds of six normal trichromats for the 

pattern test employed in chapter 3. 
Source Sum of df Mean F Sig. 

Squares Square 

Between groups 22.704 2 11.352 11.117 0.000 
Within groups 33.699 33 1.021 
Total 56.404 35 1 1 1 
Table Al. 

Results of the ANOVA for the change in major semi-axis length with stimulus size, 

of an ellipse fitted to the mean chromatic thresholds of three normal trichromats 
for the colour test employed in chapter 3. 

Source Sum of df Mean F Sig. 

Squares Square 

Between groups 3.328 2 3.164 2.244 0.140 

Within groups 21.149 15 1.410 

Total 27.478 17 1 
Table A2. 
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ANOVA table for the change in minor semi-axis length with stimulus size, of an 
ellipse fitted to the mean chromatic thresholds of three normal trichromats for the 
colour test employed in chapter 3. 

Source Sum of df Mean F ýSig 

Squares Square 

Between groups 3.545 2 1.773 4.540 0.029 
Within groups 5.857 15 0.390 

Total 
1 

9.402 
1 

17 
1 1 

Table A3. 

Table for the ANOVA carried out to compare results obtained using experimental 

system-1 and system-2, on which the matching procedure was run in chapter 5. The 

analysis took into account differences in the results due to the 14 test target 

conditions investigated (condition) and the experimental system used (system). 

Source Sum of 
Squares 

df Mean 
Square 

IF Sig. 

Corrected Model 102.758 27 3.806 127.808 0.000 
Intercept 505.845 1 505.845 16987.206 0.000 
Condition 101.647 13 7.819 262.575 0.000 
System 7.196E-03 I 7.196E-03 0.242 0.623 
Condition * System 1.104 13 8.496E-02 2.853 0.001 
Error 14.174 476 2.978E-02 

Total 622.778 504 

Corrected Total 1 116.933 1 
503 

1 1 
K bquarea = xiu (Aajusiea m oquareu 

Condition 14 levels 

System 2 levels 

Table A4. 
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ANOVA table investigating the effect of test target photopic contrast (C), scotopic 

contrast (Cj, chromatic difference (CD), log retinal illuminance (LIOE), and all two- 

way interactions, plus the effect due to the observer (Obs) on achromatic match 

contrast measured in chapter 5, over all six light levels examined. 
Source Sum Of 

Squares 
df Mean 

Square 
F Sig. 

Corrected Model 749.422 382 1.962 30.876 0.000 
Intercept 265.936 1 265.936 4185.393 0.000 
CP 13.884 6 2.314 36.417 0.000 
CS 23.850 6 3.975 62.559 0.000 
CD 7.281 3 2.429 38.195 0.000 
LioE 32.652 5 6.530 102.779 0.000 
Obs 91.270 4 22.817 359.108 0.000 
CP * CS 9.311 32 0.291 4.579 0.000 
Cp*CD 5.001 17 0.294 4.629 0.000 
CP * LioE 4.373 22 0.199 3.128 0.000 
Cs*CD 2.431 16 0.152 2.391 0.001 
Cs LioE 14.420 28 0.515 8.105 0.000 
CID LioE 2.883 15 0.192 3.025 0.000 
CP*Cs*CD 2.464 14 0.176 2.770 0.000 
CP * Cs LioE 2.338 82 6.509E-02 1.024 0.420 
Cp * CID LioE 1.520 49 3.103E-02 0.488 0.999 
C, * CID LioE 1.575 42 3.751 E-02 0.590 0.983 
Error 125.935 1982 6.354E-02 
Total 2436.847 2365 
Corrected Total 875.357 1 2364 1 
R Squared = . 856 (Adjusted R. 5quared = . 828) 

Cp 7 levels 

CS 7 levels (raw values coded into discrete levels with a flat frequency distribution) 

CID 4 levels (raw values coded into discrete levels with a flat frequency distribution) 
log, oE 6 levels (raw values coded into discrete levels with the distribution of logiol-b) 
Obs 5 levels 

Table A5. 

Results of the ANOVA carried out to investigate the effect of test target parameters 

on achromatic match contrast measured in chapter 5, taking into account both the 

magnitude and sign of the luminance contrast terms (I Cp I, sign Cp, I C, I and sign 
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Q, over A six light levels examined. Main effects of I Cp 1, sign Cp, I C, 1, sign C,, 

CD and LIOE, and A two-way interactions were entered into the analysis. 
Source Sum of 

Squares 

df Mean 
Square 

F Sig. 

Corrected Model 715.455 155 6.221 87.503 0.000 
Intercept 448.493 1 448.493 6308.024 0.000 
CID 14.253 3 4.751 66.825 0.000 
LioE 53.218 5 10.644 149.702 0.000 
Obs 95.217 4 23.804 334.806 0.000 

1CP1 22.168 2 11.084 155.895 0.000 

IC-1 28.825 3 9.608 135.140 0.000 

sign Cp 2.578 1 2.578 36.257 0.000 

sign Cs 1.564 1 1.564 21.998 0.000 
CID * LioE 18.849 15 1.257 17.674 0.000 

CID * jCpj 1.142 6 0.190 2.676 0.014 

CID * 1C. 1 4.636 9 0.515 7.245 0.000 

CD * sign Cp 2.327 3 0.776 10.912 0.000 

CID * sign C, 0.501 3 0.167 2.351 0.071 

LjoE * jCpj 3.958 6 0.660 9.278 0.000 

LjoE * JCsj 17.638 14 1.260 17.720 0.000 

LjoE * sign Cp 2.785 5 0.557 7.833 0.000 

LioE * sign C, 9.889 5 1.978 27.817 0.000 

1CP1 * IC-1 0.282 6 1.704E-02 0.662 0.681 

jCpj * sign Cp 1.118 2 0.559 7.859 0.000 

jCpj * sign C, 1.059 2 0.529 7.446 0.001 

1C. 1 * sign Cp 1.966 3 0.655 9.219 0.000 

jCsj * sign C3 0.795 3 0.265 3.726 0.011 

sign Cp * sign Cs 1.821 1 1.821 25.614 0.000 

Error 159.901 2249 7.11 OE-02 

Total 2436.847 2365 

Corrected Total 875.357 2364 

R Squared =. 817 (Adjusted R Squared = . 808) 

CID 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

log, oE 6 levels (raw values coded into discrete levels with the distribution of log, oLb) 
Obs 5 levels 

ICPI 4 levels 

1C. 1 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

sign Cp 3 levels 

sign Cs 2 levels (no zero Cs values) 

Table A6. 
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The results of ANOVAs performed for each individual light level to investigate the 

effects of test target parameters (main effects and two-way interactions) on 

achromatic match contrast as measured in chapter 5. 

Light level I (highest). 

Source Sum of 
Squares 

df Mean 

Square 

F Sig. 

Corrected Model 157.441 90 1.749 27.584 0.000 

Intercept 35.272 1 35.272 556.188 0.000 

CP 24.218 4 6.055 95.470 0.000 

CS 0.111 4 2.775E-02 0.438 0.781 

CID 13.867 3 4.622 72.888 0.000 

LioE 6.495E-02 3 2.165E-02 0.341 0.795 

Obs 27.991 4 6.998 110.345 0.000 

CP * CS 2.448 15 0.163 2.573 0.001 

Cp * CID 4.327 12 0.361 5.686 0.000 

CP * LioE 2.216 12 0.185 2.912 0.001 

Cs * CD 0.578 11 5.2595E-02 0.829 0.611 

Cs * LioE 0.639 12 5.328E-02 0.840 0.609 

CID * LioE 2.899 9 0.322 5.079 0.000 

Error 18.645 294 6.342E-02 

Total 297.707 385 

Corrected Total 176.086 384 
1 1 

K bquarea = X94 (Acijustea R bquarea = tstjz) 
Cp 5 levels 

C, 5 levels (raw values coded into discrete levels with a flat frequency distribution) 

CID 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

log, oE 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

Obs 5 levels 

Table A7. 
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Lightlevell 

Source Sum of 
Squares 

df Mean 
Square 

F Sig. 

Corrected Model 120.193 90 1.335 28.019 0.000 
Intercept 88.675 1 88.675 1860.43 0.000 
CP 27.030 4 6.757 141.774 0.000 
CS 0.473 4 0.118 2.481 0.044 
CD 7.440 3 2.480 52.033 0.000 
LioE 0.143 3 4.751 E-02 0.997 0.395 
Obs 16.386 4 4.097 85.948 0.000 
CP * CS 2.400 15 0.160 3.357 0.000 
Cp * CD 3.806 12 0.317 60654 0.000 
CP * LioE 2.370 12 0.198 4.144 0.000 
Cs * CID 0.342 11 3.109E-02 0.652 0.783 
Cs * LioE 0.540 12 4.499E-02 0.944 0.503 
CD * LioE 1.328 9 0.148 3.095 0.001 
Error 13.775 289 4.766E-02 

Total 421.228 380 

Corrected Total 133.968 
1 

379 
1 1 

R Squared =. 897 (Adjusted R Squared =. 865) 

Cp 5 levels 

CS 5 levels (raw values coded into discrete levels with a flat frequency distribution) 
CD 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

log, oE 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

Obs 5 levels 

Table A8. 
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Lightlevell 
Source Sum of 

Squares 
df Mean 

Square 

F Sig. 

Corrected Model 76.526 90 0.850 17.290 0.000 

Intercept 90.787 1 90.787 1846.127 0.000 

CP 11.957 4 2.989 60.784 0.000 

C, 1.428 4 0.357 7.261 0.000 

CID 2.291 3 0.764 15.529 0.000 

LioE 0.131 3 4.382E-02 0.891 0.446 

Obs 22.152 4 5.529 122.613 0.000 

CP * C, 2.963 15 0.198 4.017 0.000 

Cp*CD 1.708 12 0.142 2.895 0.001 

CP * LioE 0.925 12 7.709E-02 1.568 0.101 

Cs * CID 0.831 11 7.555E-02 1.536 0.118 

Cs * LioE 1.474 12 0.123 2.498 0.004 

CD * LioE 0.640 9 7.109E-02 1.446 0.168 

Error 13.474 274 4.918E-02 

Total 447.898 365 

Corrected Total 90.000 364 

R Squared =. 850 (Adjusted R Squared =. 801) 

cp 5 levels 
C$ 5 levels (raw values coded into discrete levels with a flat frequency distribution) 

CD 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

logjOE 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

Obs 5 levels 

Table A9. 
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Light level 4. 
Source Sum of 

Squares 
df Mean 

Square 
F Sig. 

Corrected Model 55.736 87 0.641 15.636 0.000 
Intercept 79.173 1 79.273 1934.819 0.000 
CP 2.532 4 0.633 15.450 0.000 
C3 5.184 4 1.296 31.633 0.000 
CD 274 3 9.146E-02 2.232 0.085 
LioE 0.154 3 5.14E-02 1.255 0.291 
Obs 8.432 4 2.108 51.451 0.000 
CP * C3 4.288 14 0.306 7.475 0.000 
Cp*CD 0.760 10 7.602E-02 1.855 0.053 
CP * LioE 0.579 12 4.821 E-02 1.177 0.301 
Cs*CD 0.662 9 7.360E-02 1.796 0.070 
Cs LioE 0.854 12 7.115E-02 1.737 0.060 
CID LioE 0.335 9 3.719 E-02 0.908 0.519 
Error 9.301 227 4.097E-02 

Total 472.713 315 

Corrected Total 
1 

35.036 
1 

314 
1 1 1 

R Squared = . 857 (Adjusted R Squared = . 802) 

Cp 5 levels 
CS 5 levels (raw values coded into discrete levels with a flat frequency distribution) 
CID 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

logjoE 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

Obs 5 levels 

Table A10. 
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Lightleve15. 
Source Sum of 

Squares 
df Mean 

Square 
F Sig. 

Corrected Model 181.018 131 1.382 27.923 0.000 

Intercept 27.327 1 27.327 552.209 0.000 

CP 2.005 6 0.334 6.753 0.000 

CS 8.882 6 1.480 29.912 0.000 

CID 0.461 3 0.154 3.106 0.027 

LioE 0.236 3 7.878E-02 1.592 0.191 
Obs 6.883 4 1.721 34.771 0.000 

CP * C, 4.734 31 0.153 3.086 0.000 

Cp*CD 2.927 16 0.183 3.696 0.000 

CP * LioE 0.677 18 3.761 E-02 0.760 0.747 

Cs * CID 2.226 14 0.159 3.213 0.000 

Cs * LioE 2.063 18 0.115 2.316 0.002 

CID * LioE 0.233 9 2.585E-02 0.522 0.858 

Error 19.448 393 4.949E-02 

Total 544.102 252 

Corrected Total 200.466 524 

R Squared = . 903 (Adjusted R Squared =. 871) 

Cp 7 levels 
CS 7 levels (raw values coded into discrete levels with a flat frequency distribution) 
CD 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

log, oE 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

Obs 5 levels 

Table All. 
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Light level 6 (lowest). 
Source Sum of 

Squares 

df Mean 

Square 

IF Sig. 

Corrected Model 109.472 ill 0.986 29.840 0.000 

Intercept 23.908 1 23.908 723.359 0.000 

CP 0.242 6 4.037E-02 1.221 0.295 

CS 11.916 5 2.383 72.160 0.000 

CID 0.339 3 0.113 3.414 0.018 

LioE 0.134 3 4.476E-02 1.354 0.257 

Obs 5.973 4 1.493 45.177 0.000 

CP * CS 1.782 21 8.485E-02 2.567 0.000 

Cp * CD 1.009 13 7.765E-02 2.349 0.005 

CP * LioE 0.885 18 4.919E-02 1.488 0.093 

Cs * CD 2.070 9 0.230 6.959 0.000 

Cs * LioE 1.434 15 9.561 E-02 2.893 0.000 

CD * LioE 0.704 9 7.821 E-02 2.366 0.014 

Error 9.353 283 3.305E-02 

Total 253.199 395 

Corrected Total 118.826 394 
1 1 

R Squared= . 921 (Adjusted R Squared= . 890) 
CP 7 levels 

CS 6 levels (raw values coded into discrete levels with a flat frequency distribution) 

CD 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

log, oE 4 levels (raw values coded into discrete levels with a flat frequency distribution) 

Obs 5 levels 

Table A12. 
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Appendix B: Versions of the conspicuity model 
The following equations describe the relationship in terms of conspicuity, between 

achromatic match contrast (Cj and the predictor variables: photopic contrast, 

scotopic contrast, chromatic difference and either retinal illuminance or background 

lun-dnance, determined empirically in chapter 5. Four versions of the model were 
developed. Two versions included all terms that were statistically significant in the 

fit; one included retinal illuminance as a predictor variable (yersion-a) and the other 
included background luminance as a parameter (yersion-b). Two reduced versions 

of the model were also developed, which consisted of a total of 10 terms, again one 
included the parameter retinal illuminance (yersion-a) and the other included 

background luminance (yersion-b). The form of all four versions was 

C. = exp fk+f (main effects) +f (interactions)) Eq. B-1 

where C.,: achromatic match contrast, k: constant, f(main effects): function of the 

main predictor variables, f(interactions): function of pairwise multiples of the 

predictor variables. The following terms appear in two or all four versions of the 

conspicuity model. 
I Cp absolute value of photopic contrast 

scp sign of photopic contrast i if CP >0 

scp=. OifCp=O 

-1 if CP <0 

C', positive scotopic contrast CS if C. >0 
CS+ 

0, otherwise 

C. 
- negative scotopic contrast CS if C, <0 

0, otherwise 

logE base-10 logarithm of retinal illuminance, where 

retinal Aluminance is measured in milli-trolands. 
109"b base-10 logarithm of the background 

luminance, where luminance is measured in 

nliffi_Cdnf2. 
Table B1. 
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Version-a 

constant = ki 

f(main effects) = k2. I Cp +k3-sC-p +4C, - +k5. C, 
_ 

+k6. CD +k7-logE 

f(interactions) = k8. I Cp I C, 
+ +kq. I Cp I. C, +kto. I Cp I. CD +kl 1.1 Cp I 

-logE 
+kl2. SCp-Cs+ +kU-SCýCs- +k, 4. sC., CD + kis. sCp. logE 

+kl6-C, +. CD +kl7. C, +. IogioE 

+ki8. C, -. IogioE 

+ kig. CD. logE 

Table B2. 

Coeff Value Descnpdon 

k, -3.2084 base factor 
k2 1.1069 sign independent photopic contrast term 
k3 

-0.17486 sign of photopic contrast term 
k4 5.8407 positive scotopic contrast term 

ks -7.8774 negative scotopic contrast term 
k6 

-1-9330 chromatic difference term 
k7 0.21472 retinal illuminance term 
4 -3.3979 sign independent photopic x positive scotopic contrast interaction 

kq 2.9447 sign independent photopic x negative scotopic contrast interaction 

kio -7.239 sign independent photopic contrast x chromatic difference interaction 

ki, 1 0.48815 1 retinal illuminance dependent, sign independent photopic contrast 
term 

k12 0.4812 photopic contrast-sign dependent positive scotopic contrast term 
k13 0.27911 photopic contrast-sign dependent negative scotopic contrast term 
k14 1.9718 photopic contrast-sign dependent chromatic difference term 
k15 

-0.02205 photopic contrast-sign dependent retinal illuminance term term 
k16 

-6.280 positive scotopic contrast x chromatic difference interaction 
k17 

-0.92429 positive scotopic contrast x retinal illuminance interaction 

k, 8 1.47915 retinal illuminance dependent negative scotopic contrast term 

kig 2.1775 retinal illuminance dependent chromatic difference term 

Table B3. 
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Version-b 

constant ki' 

f(main effects) k2l. I Cp +k3'. sCp +k4o. Cs+ 

+k6'. CD +k7'. IogLb 

f(interactions) = k8'- I Cp I-C, 
+ +kg'. I Cp J. C, +klo'. I Cp I. CD +kll'. I Cp I. IogLb 

+kl2l-SCp. C. + +kl3l-SCp-Cs- +kl4'. sCp. CD 

+kis'. C, +. CD +kl6'. C, +. IogLb 

+kl7'-C, -. IogLb 

+kl8'. CD. logLb 

Table B4. 

Coeff Value Description 

kl' -2.8601 base factor 

k2' 1.9276 sign independent photopic contrast term 

k3l -0.27990 sign of photopic contrast term 

k4t 4.3897 positive scotopic contrast term 

k5' -5.3736 negative scotopic contrast term 

k6l 1.832 chromatic difference term 
k7l 0.19427 background luminance term 

k8f -3.4293 sign independent photopic x positive scotopic contrast interaction 

kq' 2.9834 sign independent photopic x negative scotopic contrast interaction 

k1o' -7.202 sign independent photopic contrast x chromatic difference interaction 

kil' 0.43425 luminance dependent, sign independent photopic: contrast term 

k121 0.5525 photopic contrast-sign dependent positive scotopic contrast term 

kl3t 0.22653 photopic: contrast-sign dependent negative scotopic contrast term 

k141 2.0687 photopic contrast-sign dependent chromatic difference term 

kis' -6.968 positive scotopic contrast x chromatic difference interaction 

k161 -0.85106 positive scotopic contrast x background luminance interaction 

kl7f 1.30554 luminance dependent negative scotopic contrast term 

k, 8' 1.9127 luminance dependent chromatic difference term 

Table B5. 

283 



Appendices Appendix B 

Version-a, 

constant = kl,, 

f(main effects) = k2,,. I Cp +k3t-Cs+ +k4r-Cs- +ks,. CD 

+k6,. IogE 

f(interactions) = k7,. I Cp I- logE +k8,,. C, +. IogE +kg,, C, -IOgE +kio,. CD. logE 

Table B6. 

Coeff Value Descnption 

ki, -2.1758 base factor 

k2r -1.1452 sign independent photopic contrast term 
k3r 4.3315 positive scotopic contrast term 
k4r 

-7.3079 negative scotopic contrast term 
k5, 

-7.7927 chromatic difference term 

k6,0.07793 retinal illuminance term 

k7c 0.69076 retinal illuminance dependent, sign independent photopic contrast 

term 

k8, -0.88485 
kg, 1.42916 

kio, 2.7880 

Table B7. 

retinal illuminance dependent positive scotopic contrast term 

retinal illuminance dependent negative scotopic contrast term 

retinal illuminance dependent chromatic difference term 
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Version-b, 

constant ki, ' 

f(main effects) k2ir'- I Cp +k3rf. Cs+ +k4r'. Cs- +k5rt. CD 

+k6, '. IogLb 

f(interactions) k7,. I Cp 1. log Lb +k8, '. Cs+. Iog Lb +kg, '. C, 
-. 
Iog Lb +kio, '. CD. log Lb 

Table B8. 

Coeff Value Description 

ki, ' -2.02544 base factor 

k2ri 0.0014 sign independent photopic contrast term 

k3r' 2.8101 positive scotopic contrast term 

k4r F 
-4.8870 negative scotopic contrast term 

ks, ' -3.2028 chromatic difference term 

k6, ' 0.06257 background luminance term 

k7r' 0.61745 luminance dependent, sign independent photopic contrast term 

k8,1 -0.77321 luminance dependent positive scotopic contrast term 

kg, ' 1.25783 luminance dependent negative scotopic contrast term 

k1o, ' 2.5077 luminance dependent chromatic difference term 

Table B 9. 
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Appendix C. 10' systems of mesopic photometry 

The six 10' systems of mesopic photometry used in the investigations in chapter 5 

are described below. The various input parameters are defined as follows 

Ex Spectral radiance 

L CIE 1924 photopic luminance 

LIO I CIE 1964 photopic luminance 

683 fEIV (1) cLX 

683 fE;, ylo (2. ) dX 

L' I CIE 1951 scotopic luminance 

X10 I CIE 1964 X-tristirnulus value 

Y10 I CIE 1964 Y-tristimulus value 

zio I CIE 1964 Z-tristimulus value 

xI CIE 1931 x-chromaticity coordinate 

yI CIE 1931 y-chromaticity coordinate 

X10 I CIE 1964 x-chromaticity coordinate 

Y10 I CIE 1964 y-chromaticity coordinate 

Table C1. 

1700 fE, V'(, 2, ) d, ý 

6 83 fE, 3ýo (1) d), 

683 fE, 710 (1) dX 

683 (1) dX 

-x1, X=683 Exi(X)dX 
X+Y+Z 

f 

Y= 683 fEly (2, ) d), 

Z= 683 fE, i (1) dA, 

y 

X+Y+Z 
xio 

xio + Ylo + z1o 
y1o 

XIO+Ylo+ZIO 

286 



Appendices Appendix C 

Pahner lst 

The Palmer 1st system is a linear combination of LIO and L'. 

Input parameters Ljo and L' 
Calculation of L, 

e 
m 

,9 a= LIO+M , where M=0.04 

.9 
L, 

e = aL'+ (1 - a) LIO 

Palmer 2nd 

The Palmer 2nd system consists of a nonlinear combination of L,,, and L'. 

Input parameters Ll,, and L' 

Calculadon of L.,, 
Lýeq = 

(ML')y2 + Lj(ý +M-M 
[(ML')y2 

+ LIO +M 
Y2 

2 411 

where M=0.06 

Sagawa-Takechi 

The Sagawa-Takeichi system is based on a weighted mean of 1! and a photopic 

component caluclated from L and the CIE 1931 (x, y)-chromatcity coordinates. 

Input parameters x, y, L and I! 

Calculation of L,, q c=0.256 - 0.184y - 2.527xy + 4.656x 3y+4.657xy 

c' =2 (c + 0.047) 

Lseg, 
p 

= L. 10c 

= 1.84L' 

Lsýq = 
(Lseq, 

s 

)I 
+ 

(L., 

I, p 

) 1-a 

On a graph of a vs. L,. 
q 

(given in the table below) draw a 
straight line through the points (Lseq, 

p) 0) an ý-,, 
q, s2 1) and from 

the intersection read off the value of a. 
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L. Oog c4po Adaptation coefficient a 
3.18 1.00 

-2.68 0.87 

-2.17 0.71 

-1.71 0.54 

-1.30 0.38 

-0.83 0.26 

-0.31 0.13 
0.28 0.05 
0.84 0.00 

le U: Z. 

Nakano-Ikeda 

In the Nakano-Ikeda system L. 9 
is computed from the combination of a scotopic 

component and a photopic component that takes into account the chromaticity of 
the stimulus; these components are weighted in relation to proportions of 100 

photopic luminance and scotopic luminance. 

Input parameters L, o and I!, xo and y1o 
Calculadon of L,, 

q Lp 
621.1 

L10 
683 

L, 
689.7 

L' 
1700 

x1o 
(0.38355 0.73268 -0-08977ý Ylo 
-0.24931 1.20294 0.03116 1 

-0.00063 0.00163 0.93097) i-x,, -y,, 
Ylo 

0.374 + 0.002 (il - 4++ý 

0.374 11 + 0.002 
4+ TI +4 

y=0.374 + 0.002 (4 - il) ý 

FL-m = (1.015 + cc) In (4 +1) + (-0.389 + 0) In (q + 
(0.000 + y) In (ý + 1) 
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(-0.537 + cc) In (ý + 1) + (1.341 + P) In (ij + 1) 
(-0.178+y)In(ý+1) 

F= max 
(FL-m 

3, 
FMJ 

S= 
L, 

Lp 

p= exp (F) -1 

C=[ 
0.026 ]logs+[ 

log p Lp + 0.026 Lp + 0.032 

Lýeq =Lp . 
10' 

Kokoschka-Bodmann 

The Kokoschka-Bodmann model is based on a linear weighted sum of four 

variables: scotopic luminance and the CIE 1964 tristimulus values X10, Y10, and Z10* 

The weighting is dependent on L,,,,, rmaking computation of L,, an interative 

procedure. 

Input parameters Xio, Yjoý Z10 and I! 

Calculation of L.,, Calculate a number of L,,, values using the F coefficients in the 
table below for tabulated L,. q values close to Y10. Interpolate 
between values in the rows of the table to obtain L,,, = L.,,. 

L, 
ýt = F. X10 + FYYjO + FZ10 + FL' 

clo = 0.256 - 0.184y, o - 2.527xjOyjO + 4.656x, o 
3 
Y10 

4 
+ 4.657x JOY10 

c* = clo + 0.067 

f" = 10C 

f=1+ (fo - 1) (0.6 + 0.2 log LIO) 

L, 
e 

= Lý, 
t. 

f 
,q 
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1�� (cdm-ý F. Fy F, F, 
0.00000204 0 0 0 1 
0.00000323 -0.0019 0.00649 0.000354 0.996 
0.00000512 -0.00685 0.0237 0.00136 0.985 
0.00000813 -0.0138 0.0483 0.00295 0.969 
0.0000129 -0.0216 0.0769 0.00504 0.95 
0.0000204 -0.0292 0.106 0.00754 0.93 
0.0000326 -0.0356 0.133 0.0104 0.911 
0.0000522 -0.041 0.158 0.0132 0.892 
0.0000835 -0.0453 0.18 0.0159 0.875 
0.000134 -0.0488 0.201 0.0181 0.858 
0.000214 -0.0516 0.221 0.0195 0.842 
0.000314 -0.0543 0.241 0.02 0.825 
0.000557 -0.0591 0.269 0.0201 0.803 
0.000899 -0.0687 0.313 0.0206 0.772 
0.00145 -0.0858 0.38 0.0219 0.726 
0.00234 -0.113 0.479 0.0249 0.661 
0.00386 -0.151 0.614 0.0299 0.573 
0.00639 -0.194 0.77 0.036 0.471 
0.0106 -0.234 0.927 0.0422 0.364 
0.0175 -0.264 1.07 0.0473 0.263 
0.0288 -0.276 1.17 0.0501 0.175 
0.0495 -0.265 1.22 0.05 0.11 
0.0854 -0.236 1.23 0.0472 0.0653 
0.147 -0.195 1.21 0.0426 0.0364 
0.254 -0.151 1.17 0.0368 0.0194 
0.437 -0.111 1.13 0.0307 0.01 
0.78 -0.0806 1.09 0.0248 0.00458 
1.4 -0.0592 1.07 0.0194 0.00173 

2.52 -0.0445 1.05 0.0145 0.000711 
4.53 -0.0343 1.04 0.0103 0.0003 
8.13 -0.0262 1.03 0.00679 0 
14.5 -0.0185 1.02 0.0041 0 
47 -0.00552 1.01 0.000906 0 

84.3 -0.00149 1 0 0 
151 0 1 0 0 
258 0 1 0 0 
444 0 1 0 0 
762 0 1 0 0 
999 1 01 11 01 0 

Table C3. 
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Trezona 

The Trezona model is also based on four variables, which are derived from V'(X), 

the CIE 1964 colout matching functions 3ý0 (, %), 710 (, %), and 1ý0 (k), and the Z, 

spectral radiometric data for the stimulus. 

Input parameters Ex 
Calculation of L,,, 

xt 
CL% 

fEx d% 

fE;, ylo (2, ) d2, 

fEx d2, 

Exi; o 
(ý. ) dX 

fE, cU, 

fExVp(%)d, % 
f E. % d, % 

xt2 
S' - 1.2834 + 0.1242 +0.12072ý'--1.3919ýL" -0.1507Xt Y, Y, Y, y, 2 

xz 2Vt f2 

-0.0190 ýýtýt +0.0156-ý-t-0-1166-K--V" +0.3301 
yt2 yt2 yt2yt2 

+0.1493-V: 
Y-, 

yt2 

S=S, - log Y, 
2 

p +0.4423 - 0.7054 0.1100 0.1099 + 0.2020 
2ý-' 

yt yt yt yt2 

+O. 0341XIZ1 -0.0188ýý' +O. 0017ýýt-V" + 0.0519 
Vt 12 

yt2yt2yt2yt2 

0.3458 V"X' 
Y" 2 

p= V- log Y, 

a=logV, '+1.1278 

3 
JOY4 V 0.325 - 0.184y, o - 2.527xjOyjO + 4.656xjOyjO + 4.657x 10 

b b'+ log Y, 
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(s + P) 

2 

0.1 

m=2 tanh-' a-b 
P-S 

L 
Convert log Y10 (log cdnf) into photopic retinal illuminance 
NP (log photpic trolands) using the table below and 
interpolating between values. 

N= NP +0.1656-logY, 

M a+b 

2 tanh [m (N - d)] 

R=M-0.4148 + 0.3172 [tanh 1.845 (M + 0.489)] - 0.1660 

Luminance Oog cdrrfý Rednal iRuminance Oog Td) 

-8 -6.30 
-7 -5.30 
-6 -4.30 
-5 -3.31 
-4 -2.32 
-3 -1.35 
-2 -0.42 
-1 0.47 
0 1.29 
1 2.07 
2 2.85 
3 3.69 
4 4.59 
5 5.54 
6 6.52 

Table C4. 
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