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Abstract. Organisms often respond to environmental change phenotypically, through learning strategies 

that enhance fitness in variable and changing conditions. But which strategies should we expect in 

population exposed to those conditions? We address this question by developing a mathematical model 

that specifies the consequences of different mixtures of individual and social learning strategies on the 

frequencies of different cultural variants in temporally and spatially changing environments. Assuming that 

alternative cultural variants are differently well-adapted to diverse environmental conditions, we are able 

to evaluate which mixture of learning strategies maximizes the mean fitness of the population. We find 

that, even in rapidly changing environments, a high proportion of the population will always engage in 

social learning. In those environments, the highest adaptation levels are achieved through relatively high 

fractions of individual learning and a strong conformist bias. We establish a negative relationship between 

the proportion of the population learning socially and the strength of conformity operating in a population: 

strong conformity requires fewer conformists (i.e. larger proportion of individual learning), while many 

conformists can only be found when conformist transmission is weak. Investigations of cultural diversity 

show that in frequently changing environments high levels of adaptation require high level of cultural 

diversity. Finally, we demonstrate how the developed mathematical framework can be applied to time 

series of usage or occurrence data of cultural traits. Using Approximate Bayesian Computation we are able 

to infer information about the underlying learning processes that could have produced observed patterns 

of variation in the dataset.  

 

Keywords: Social learning, conformity, environmental heterogeneity, diffusion-reaction systems, cultural 

diversity, Approximate Bayesian Computation 

 
 

1 Introduction 
 

A given cultural trait (for instance, a subsistence strategy) might exhibit a number of different functionally 

equivalent variant forms (for example hunting, farming, fishing) that differ in the degree of benefit that 

they confer depending on the environmental setting. Accordingly, individuals experiencing changing 
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environmental conditions frequently face the task of choosing between cultural variants according to their 

apparent utility. That they are able to do so effectively is illustrated by the observation that human 

behavioural ecologists can predict human behaviour by assuming individuals to be well-adapted to their 

environment [6,7].  

 Broadly speaking, an individual’s choice between alternative cultural variants can be guided by 

different individual and social learning strategies. While social learning refers to learning that is influenced 

by observation of or interaction with other individuals or its products individual learning refers to learning 

(e.g. trial and error) that does not involve social interactions or any information provided by others [15]. 

Given the fact that social human learning is rule governed, with many possible rules [4,20,24], we can ask 

which learning strategy, or strategies, should be expected in populations living in temporally and spatially 

changing environments (where ‘environments’ encompass social, ecological and physical variables).  

Formal population-genetic and game-theory analyses have explored this question by determining 

the evolutionary stable strategies, and thereby identifying the strategies that would evolve under natural 

selection. It has been suggested that individual and social learning are favoured by natural selection when 

temporal environmental changes occur at relatively short and long intervals, respectively (e.g. 

[1,4,5,11,31]). Boyd and Richerson [4,5] developed a series of mathematical models to understand the 

conditions under which individual and social learning are adaptive. In their models, individual learning 

allows an individual to acquire behaviour that is adaptive to the local environments by evaluating 

environmental cues. This process may, depending on the quality of these cues, lead to errors. However, if 

environmental cues are ambiguous, individuals may benefit from copying the behaviour of another 

individual from the previous generation. The challenge the individuals face is to match the correct 

behaviour to the current environmental conditions. Boyd and Richerson [5] concluded that heavy reliance 

on social learning is most adaptive if individual learning is inaccurate (or costly to make accurate). Further, 

when the environment does not change too quickly, and there is not too much migration among habitats, 

the “occasional use of independently acquired compelling evidence coupled with faithful copying in the 

absence of such evidence is sufficient to keep the locally adaptive behaviour common” [5, page 43]. Rogers 

[31] developed a somewhat similar model, but assumed that an individual either learns individually or 

socially, with individual learning occurring without error. He concluded that the population is expected to 

reach an equilibrium at which individual and social learners will be equal in their fitness. Rendell et al. [28] 

however showed that by adding a spatial structure to this problem the mixed equilibrium may not occur.  

Feldman et al. [11] generalised those models by allowing for genetic evolution through the use of a 

gene-culture coevolutionary model, where the decision to learn individually or socially is determined by a 

fixed genotype-dependent probability. They found that both fixation of individual learning and the stable 

coexistence of individual and social learning are possible in changing environments. Like Boyd and 

Richerson [5], they concluded that the greater the probability of environmental change the more difficult is 

it for social learning to evolve (see also [1,36]). Aoki and Nakahashi [2] analysed the evolution of social 

learning in spatial heterogeneous environments under different migration rates. They found that increased 

migration hinders social learning and pointed to the importance of population structure on the evolution of 

social learning. In contrast, the simulation approach of the ‘social learning strategies tournament’ 

suggested that social learning could be more effective than asocial learning even when environments 

change rapidly [29,30]. These differences relate, in part, to whether multiple traits are considered (as in the 
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tournament), which allows social learners to adjust their behaviour flexibly following environmental 

change, switching between the variants in their repertoire to maintain adaptive behaviour.  

There is further ambiguity over the most effective means of social learning - that is, which ‘social 

learning strategy’ (or ‘transmission bias’) to deploy - under variable environmental conditions. Henrich and 

Boyd [14] studied the evolution of conformity, a frequency-dependent transmission bias promoting the 

disproportional adoption of common behaviour. They developed a two-locus haploid asexual model where 

one locus determines the reliance on social learning as opposed to individual learning and the second locus 

determine the strength of the conformist effect. Their model suggested that selection favours conformist 

transmission as long as the environment does not change too rapidly and the evolution of social learning is 

more strongly influenced by environmental heterogeneity than the evolution of conformity. They also 

found that increased migration impeded social learning but has little effect on the evolution of conformity.  

Nakahashi [26], Wakano and Aoki [35] and Kendal et al. [19] all challenged aspects of Henrich and 

Boyd’s findings, by reporting a negative relationship between the stability of the environment and the 

reliance on conformist bias. The reliance on conformity tends to be larger when the cycle of environmental 

change is shorter (i.e. for rapid change). The Henrich and Boyd model differs from these other models 

[19,26,35] in a number of respects, including the manner in which individuals use asocial and social 

information. While Henrich and Boyd [14] assume mixed strategies, Nakahashi [26], Wakano and Aoki [35] 

and Kendal et al. [19] all assume pure strategies where individuals use either social or individual learning to 

update their behaviour. Eriksson et al. [10] criticised Henrich and Boyd’s assumptions, arguing that it is 

unrealistic to assume that individuals know all variants at any time or that only two cultural variants exist in 

the population. On the base of their model, Eriksson et al [10] concluded that a relaxation of either of these 

assumptions is disadvantageous to the evolution of a conformist strategy. Efferson et al. [9] found that the 

evolutionary advantage of conformity depends on the accuracy of individual learning.  

However, McElreath et al. [24] claim that neglecting spatial heterogeneity, as occurs in the models 

of Nakahashi [26], Wakano and Aoki [35], Kendal et al. [19] and Eriksson et al. [10], may diminish the 

effectiveness of conformity. This suggestion is plausible, since spatial variation promotes reliance on 

conformity [4]. Similarly, Nakahashi et al. [27] argue that focusing on situations with (i) only two cultural 

variants present, (ii) temporally varying environments and (iii) error-free cultural transmission has obscured 

conditions favouring the evolution of conformity.  

In summary, efforts to explore the relationship between environmental uncertainty and learning 

strategies have mainly focused on analyzing evolutionary stable equilibria and it is understood that 

populations exposed to changing environments are expected frequently to show a mixture of individual and 

social learning strategies. However, it remains unclear to what extent, and in what conditions, reliance on 

social learning is adaptive, and how effective conformist transmission is in those environments. The focus 

on evolutionary stable strategies allows for an elegant investigation of the long-term outcomes of evolution 

through natural selection. In many real-world situations however, learning strategies cannot be observed 

directly and therefore predictions of the models reviewed above are difficult to verify with available data. 

In this paper we want to contribute to the debate by developing a framework that potentially can 

link data and theoretical hypotheses about the importance of different learning strategies in different 

environmental settings. Alternative learning strategies differentially impact the usage, or occurrence, 

frequencies of the present variants of a cultural trait, and these frequencies can be observed relatively 



4 
 

easily. Therefore the analysis of temporal and spatial patterning of those usage and occurrence frequencies 

might provide an alternative way of investigating which learning strategies are employed by a population.  

We explore this approach by developing a mathematical model, which tracks the spatial and 

temporal frequency distributions of different cultural variants in different environmental and cultural 

conditions. We base our model on the assumption that frequency changes of cultural variants are mainly 

attributed to individual and social learning strategies and therefore establish a causal relationship between 

changes in frequency and learning strategies employed by the population. Further, we assume that the 

considered cultural variants confer different levels of benefit in different environmental settings (as 

expressed by the variant’s ‘adaptation functions’) and that the strength with which learning strategies 

favour one variant over another is dependent on the conferred benefit. This framework enables us to 

explore the effects of different learning strategies on the frequency distribution of cultural variants over 

time and space in changing environments and consequently to quantify the adaptation level of the 

population with respect to the considered cultural trait. In this way we can infer which learning strategies 

should be expected in populations showing low and high levels of adaptation, respectively and can explore 

which learning strategy leads to the highest adaptation level of the population, hence fitness, given a 

certain level of environmental uncertainty. Our interpretations assume that sufficient time has passed for 

the optimum to be reached and that selection will typically favour traits that maximize average fitness [23]. 

Additionally the framework allows us to investigate the effects of individual and social learning on cultural 

diversity. Here, we build on our earlier analyses [17], which explored the relationship between the rate of 

innovation and level of cultural diversity in homogeneous environments.  

In contrast to previous research, our approach assumes temporally fixed learning strategies and 

consequently we cannot draw any conclusion about the evolutionary stability of strategies leading to high 

levels of adaptation as natural selection does not always favour strategies maximizing average adaptation 

levels (e.g. [12,16]). In constant environments it has been shown (e.g. [8,21]) that, subject to consistent 

selection, evolutionary stable strategies maximize the adaptation level of well-mixed populations, but 

under frequency-dependent selection stable equilibria usually result in adaptation levels lower than the 

maximum. Therefore subsequent analyses to those presented here will be required to establish whether 

the identified strategies leading to the highest average adaptation level are evolutionary stable. However, 

the strategies which maximize average fitness often provide a good first indication what is likely to develop 

especially when the considered system exhibits some stochasticity. Further, using the strategies identified 

by previous research as model input will allows us to analyse the expected frequency changes of different 

cultural variants under those strategies and consequently to compare these change pattern to available 

data. 

So far most modelling efforts focused on understanding the properties of populations which are 

optimal in some sense (either maximized individual or average fitness) and therefore assumed that 

sufficient time has passed so that the optimum could be reached and that individual or average fitness 

(with respect to the considered trait) are the quantities maximized by evolution [23]. Here we suggest that 

our approach might enable researchers to ‘reverse engineer’ conclusions about the learning rules deployed 

in current or past populations, given knowledge of how cultural variation and diversity has changed over 

space and time, independent of any optimality assumption. In section 4 we demonstrate how statistical 

techniques, such as Approximate Bayesian Computation, can be used to infer information about learning 

strategies from usage or occurrence frequencies of different variants of a cultural trait. 



5 
 

2 The model 
 

The central element of our model is a cultural trait, which is represented by different variants serving a 

similar function but differing in the benefit conferred in different environmental conditions. The variants 

are adopted by individuals of a single population, distributed across a two-dimensional domain 

D=[0,1]x[0,1]. Individuals choose between alternative variants according to the adoption mechanisms 

specified below. The population experiences temporally and spatially changing environment conditions, 

expressed by the function e(t,x),           ,     with  (   )        . Changing environmental 

conditions affect the adaptation levels of the different cultural variants and we characterize each variant i 

by its ‘adaptation function’, or ai(e(t,x)). The adaptation function quantifies the fitness level that variant i 

conveys to its adopter in environmental state e(t,x). Fitness levels vary in the interval [0,1] with 0 indicating 

no fitness and 1 describing the situation of optimal adaptation. Figure 1a gives an example of such an 

adaptation function; ai(e) is zero if the use of variant i provides no advantage to the adopter in environment 

e and has a positive value otherwise. We assume ai to be a bell-shaped function, which possesses its 

maximum value amax,i, where in our analyses 0.2≤amax,i ≤1, at the environmental state µi to which the variant 

is best adapted. The width of the function ai is determined by the parameter σi, where in our simulations 

0<σi≤0.06, which can be interpreted as a measure of the generality of the specific variant (The larger σi the 

larger is the environmental range over which the variant provides a benefit to its adopters)1. Hence each 

cultural variant is determined by the parameter set (µi, σi, amax,i). We begin each simulation run by 

generating a pool of 15 variants, choosing their parameters µi, σi and amax,i randomly within the assumed 

ranges. We restrict ourselves to 15 variants in order to make the computational effort manageable, 

however test runs with more than 15 variants showed that the results do not change qualitatively.  

(a) (b)  
Figure 1. (a) Example of an adaptation function ai, (b) Our spatial heterogeneous environment. 

 

The randomly chosen variants are introduced into the population at random locations (although variants 

are only introduced into areas where they provide some sort of benefit at the time of invention, meaning 

where ai(e(0,x))>0.05 holds). Given our assumption that all cultural variants fulfil a similar function, they can 

be considered as competing with each other for use. This competition is manifested in the manner in which 

                                                           
1
 We assume the parameters amax,i and σi  are correlated in order to account for the fact that more general applicable 

variants may not provide such high maximum adaptation levels than more specialized variants.   
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the population adopts the different variants. We distinguish between two main adoption mechanisms, (i) 

social learning, in the form of both directly biased transmission and frequency-dependent transmission and 

(ii) individual (or asocial) learning. We note, that in reality, human social learning strategies are likely to be 

more complex than those considered here (e.g. [25, 38]).  

Individual and social learning differ in the kind of information used to form the adoption decision. 

Here individual learning is based on judgments about the utility of specific variants in observed 

environmental conditions. This process has two main error sources: misjudgement of the current 

environmental condition e and misjudgement of the adaptation level conferred by the different variants. 

Although these error sources are conceptually different, they lead to the same outcome in our modelling 

framework: a variant k is chosen for which µk≠e. Therefore we model the inaccuracy of individual learning 

by assuming that individual learning is based on an environment  ̅(   )   (   )    with , 

where the variance       
 

 models the reliability of individual learning. Unless otherwise indicated, we 

assume       
      . Despite being error-prone, individual learning can introduce new variants in a 

specific area of the domain.  

In contrast, social learning can act only on variants that already exist in a specific area, leaving social 

transmission frequency-dependent. In the following we explore the dynamics of two specific social learning 

mechanisms, directly biased transmission and frequency-dependent transmission, deploying the 

formulation of Henrich [13]. Further, we assume that the transmission processes occur accurately. Directly 

biased transmission is defined as the selective copying of pre-existing variants found to be efficacious by 

individual assessment [4] and is characterised by a positive correlation between the adaptation level of the 

variant and the strength of social learning. (This rule is sometimes referred to as ‘payoff-based copying’ 

[19,20,25,38]). Using this strategy, the naive members of the population (individuals who have not yet 

adopted a cultural variant) would adopt variant i at a rate ri=ri(ai) with ai=ai(e(t,x)), where in our simulations 

0≤ri≤0.15. This rate ri can be interpreted as the mean judgment, across the population, of the benefit this 

variant might convey, and we assume that the higher the adaptation level ai(e(t,x)), the higher the adoption 

rate ri. Further, individuals who already possess a variant might consider switching to another variant if it 

provides a greater benefit. We define the rate at which individuals who have adopted variant i switch to 

variant j as cij=cij(ai(t,x),aj(t,x)), where in our analyses 0≤cij≤0.08. We assume that the rate cij depends on the 

difference in the adaptation levels of the variants: the higher the difference aj(e(t,x))-ai(e(t,x)) the more 

likely individuals are to switch.  

Frequency-dependent transmission neglects fitness information and leads to a disproportional 

adoption of variants whose frequencies fall above or below a commonness threshold cB [4]. Here, this 

frequency-dependent bias is modelled by (1-b)ri+b(ui-cbK(t)) and [(1-b)cij+b(uj-cbK(t))]+ where ui and uj 

describe the frequencies of variants i and j, K stands for the population size at time t and the coefficient b 

determines the strength of the frequency-dependent bias by quantifying the respective importance of 

fitness and frequency information on the adoption decision. For b>0 we obtain a conformist transmission 

bias: the more a variant’s frequency exceeds the threshold cb the stronger the variant is supported by the 

bias.   

All cultural adoption rules specified above act locally in location x. However, spatial interactions are 

ensured by the dispersal behaviour of the population, with individuals carrying variants into new locations. 

Spatial dispersal is defined by the diffusion components diΔui which describes the spread of the variants 



 ~ N(0,error
2 )
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based on a random walk assumption. The scale of spatial interactions within the population is given by the 

diffusivity2 di. Unless otherwise specified, in our analyses d=10-4. The diffusion approach implies that the 

direction of dispersal is uncorrelated with the locations of the environmental conditions in which the 

variants, carried by the individuals, are beneficial. 

In order to model temporal and spatial environmental changes we define a parameter ε (denoted 

as environmental instability), which describes the fraction of the environment that is changed in every time 

step. We discretize the two-dimensional domain D into a lattice {lrs}r,s=1,…,m where 1/m describes the 

discretization length in both spatial directions and add to ε percent of the lattice points a random variable

. Unless otherwise indicated we set . In order to avoid changes that occur 

suddenly in time and space, we smooth the environment in temporal and spatial direction and obtain a 

continuous differentiable two-dimensional surface e(t,x),        . Our model of environmental change 

allows for the recurrence of conditions especially as we restrict the range of possible environmental 

conditions to E=[-1,1].  

With ξ and η=1-ξ describing the fractions of the population relying on individual and social learning, 

respectively we formulate the described dynamics in a spatial and temporal explicit n-variant diffusion-

reaction competition framework that models the changes of the variant’s frequencies ui over time and 

space. We solve the system of differential equation using the Finite-Element Method (FEM) (e.g. [37]). This 

method is a numerical technique for finding approximate solutions to systems of partial differential 

equations where the geometrical domain of the considered problem is discretized using sub-domain 

elements, called the finite elements, and the differential equations are applied to a single element after 

they are transformed to an integro-differential formulation. Based on such FEM solutions ui(t,x), which 

describe the spatial frequency distribution of variant i at time t, and the level of adaptation ai(e(t,x)) of the 

different variants, we are able to determine the level of adaptation of the population to the experienced 

environmental conditions at every time t and location x  

  ̅   (   )  ∑   ( (   ))  (   ) 
    

and the overall level of adaptation  

    ( )  
 

  
∑ ∑   ( (     ))  (     )

 
   

 
     , 

where n describes the number of variants present in the population. For convenience we average over the 

adaptation level at the grid points of the lattice {lrs}r,s=1,…,m, which discretizes the considered domain D. 

Based on these variables we quantify the effects of different fractions of the population relying on 

individual and social learning on the adaptation situation under different levels of environmental instability. 

All results described below are obtained by averaging over 10,000 solutions of the diffusion-reaction 

framework. We stress that our approach does not deal with the consequences of the adoption decisions of 

a single individual, but rather with the cumulative consequences of the decisions of all individuals in the 

population on the frequencies of the different cultural variants. A full description of the mathematical 

model can be found in Appendix A.  

 
 

                                                           
2
 Diffusivity is measured in the dimension [length]

2
/[time] and is indicative of the speed of diffusion. For example the 

expression √    can be interpreted as the average distance covered in the time interval [0,t]. The value d=10
-4

 is 
chosen so that spatial interactions contribute to but not dominate the cultural dynamic. 



 ~ N(0,change
2 )



change
2  0.075
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3 Results 
In this section we use the model to explore the relationship between environmental uncertainty, different 

learning strategies and the population’s level of adaptation and cultural diversity. We start by analysing the 

adoption dynamics of a population in a spatially heterogeneous but temporally constant environment as 

shown in Figure 1b. (Here we do not include individual learning but note that this does not change the 

adaptation dynamic qualitatively). We then go on to analyse the adoption dynamic in spatially and 

temporally heterogeneous environments. 

3.1 Spatial heterogeneous environments  
 

As described above, the 15 randomly chosen variants are introduced into the population at random 

locations (although variants are only introduced into areas where they provide some sort of benefit, where 

ai(e(0,x))>0.05 holds); the dispersal behaviour of the population is responsible for their subsequent 

diffusion over the considered domain D. Naturally, we find that the areas where variants prove to be well-

adapted are larger in regions with relatively little spatial variability, causing those variants to be present at 

high frequencies over larger regions. In contrast in more spatially variable environments, beneficial variants 

only raise the adaptation level of a smaller region. Furthermore, we find that the presence of a conformist 

bias typically leads to higher level of adaptation over time, with a sharper spatial distinction between the 

variants. In temporally constant environments, highly beneficial variants are likely to show high 

frequencies, which then are reinforced by the frequency-dependent bias.  

Dispersal facilitates the spatial spread of the different variants and therefore enhances the fitness 

of the population in the short term. However, as soon as variants became present in areas where they are 

well-adapted, dispersal can have the opposite effect: it can bring variants into areas where they might not 

be the best response to the environmental conditions while, depending on the difference between the 

levels of adaptation of variants, the switching process might not happen immediately. Table 1 gives the 

overall adaptation level apop of the population after 500 time steps, for different dispersal rates and 

different levels of conformity.  

 

Level of 
conformity 

Population adaptation level Population diversity level 

Low 
dispersal 
(d=10-5) 

Medium 
dispersal  
(d=10-4) 

High 
dispersal 
(d=10-3) 

Low 
dispersal 
(d=10-5) 

Medium 
dispersal 
(d=10-4) 

High 
dispersal 
(d=10-3) 

b=0 0.4908 0.4808 0.4194   0.6685 0.7027 0.7668 

b=0.1 0.5276 0.5068 0.4436   0.6250 0.6416 0.7243 

b=0.2 0.5526 0.5284 0.4760   0.5953 0.6171 0.6808 

b=0.3 0.5708 0.5414 0.5052   0.5720 0.5983 0.6515 
Table 1. Population adaptation levels, population diversity indices for different levels of conformity and dispersal rates.  

 

We also observe a positive relationship between the level of conformity necessary to maximize adaptation 

levels and the rate of dispersal: the higher the dispersal rates the higher the level of conformity needs to be 

in order to reach the higher adaptation level apop (cf. [4]). Conformity counteracts the effects of dispersal by 

accelerating the switching process. However, we stress that for conformity to increase fitness, the strength 

of conformity (i.e. magnitude of b) cannot increase unboundedly, because it may inhibit the spatial 
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diffusion of the variants. Further, we note that the utility of conformity is time-dependent. The longer we 

allow the system to evolve the higher is the benefit of the conformist strategy.  

Next we quantify the level of cultural diversity by calculating the average Shannon diversity index of 

the population defined by  

 ( )   
 

  
∑ ∑   (     )    

 
   (     )

 
     ,                                         

where n describes the number of variants present. For convenience we average over diversity levels at the 

grid points of the lattice {lrs}r,s=1,…,m which discretizes the considered domain D. Table 1 shows the level of 

cultural diversity, for the situations with and without conformity. The diversity-reducing property of 

conformist bias is apparent. The higher the value of b (the strength of the conformist bias) the lower is 

cultural diversity. As expected, dispersal increases diversity. 

 

3.2 Spatially and temporally heterogeneous environments 
We now allow for both spatial and temporal changes in environmental conditions. As described above, it 

is a widely held view that, in temporally changing environments, social learning alone is not able to 

ensure an efficient and successful adaptation process to changed environmental conditions, since 

effective adaptation often requires a source of new variants (unless copy error introduces variation 

[29]). We find that a small amount of individual learning can fulfil this role and start our analysis by 

exploring the relationship between environmental instability ε (with ε describing the fraction of the 

environment that is changed in every time step), the population’s reliance on individual learning ξ and 

conformity b. Figure 2a-c show the overall adaptation level apop of the population after 500 time steps, 

for different values of ε, ξ and b ((a): ξ=0.05, (b): ξ=0.1, (c): ξ=0.3).  

 

(a)   (b) (c)  

(d)   (e) (f)  
Figure 2. Top row: Overall adaptation level apop of the population after 500 time steps for different fractions of the 
population relying on individual learning ((a): ξ=0.05, (b): ξ=0.1, (c): ξ=0.3), levels of environmental instability 
(ε=0.05,0.15,0.25,0.4) and strengths of conformity (b=0,0.1,0.2,0.3). Bottom row: Shannon diversity index of the population 
after 500 time steps for different fractions of the population relying on individual learning ((d): ξ=0.05, (e): ξ=0.1, (f): ξ=0.3). 
All simulations start with the same environmental state.
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Individual learning can introduce new variants into a region and therefore can lead to a more successful 

adaptation process in temporally changing environmental conditions (cf. Figure 2a-c, across the 

parameter range illustrated, an increase of the fraction of the population relying on individual learning 

leads to an increase in the overall adaptation level apop). However, this relationship does not hold 

unboundedly. Due to the assumed error-prone nature of individual learning there exist a maximal value 

of ξ that can lead to the highest adaptation level of the population, for given values of ε and b. 

Interestingly, even though social learning is often thought to be ineffective in unstable environments as 

variants present in the last time step might have no utility in the now changed environments (e.g. 

[11,14,33]) Figure 3b shows that the highest adaptation levels are reached with fractions of cultural 

social learning η never below 55%. Populations that show those high levels of adaptation in frequently 

changing environments are characterized by high levels of cultural diversity which are caused by high 

average numbers of present variants covering a broad range of possible conditions (cf. Figure 4). 

Consequently, social learning does not necessarily convey outdated information in changing 

environments if we allow for the accumulation of variants and therefore for cultural diversity in the 

population (a conclusion consistent with [30]). In this sense individual learning provides a set of variants 

from which social learning can choose. In the following we explore in detail how the adaptation process 

is affected by the different social learning strategies, cultural diversity, spatial dispersal, and the 

accuracy of individual learning.   

3.2.1 Effects of conformity 

The effect of conformity on the overall adaptation level apop depends crucially on environmental 

instability and the fraction of the population relying on individual learning. Figure 3a shows that (for 

given values of ε) there exist a pair of parameter values (bmax, ξmax=1-ηmax) leading to the highest level of 

adaptation of the population. The more variable the environment the higher the fraction of individual 

learning and the strength of conformity need to be in order to maximize adaptation levels (cf. also 

[19,26,35]). Another way of thinking about this is to suggest that in less variable environments there is 

only a certain level of conformity that can be maintained, such that we witness a negative relationship 

between the strength of conformity and the proportion of the population learning socially, and hence 

deploying the conformist bias (cf. Figure 3b). This fact results from the opposing effects of conformity 

and individual learning on low-frequent variants. While individual learning introduces new variants 

usually at low frequencies into a region, conformist bias suppresses the spread of those variants.  Now if 

the fraction of individual learning in the population is low then new variants are introduced only at very 

low frequencies and a medium or strong conformist bias can prevent those variants from spreading, 

even when they are well-adapted to the current environment. This hindrance slows down or even 

prevents the adaptation process and results in a lower overall adaptation level of the population. 

Therefore, in populations where only a small fraction of individuals rely on individual learning and which 

experience unstable environments, we expect at most very low levels of conformity (i.e. small b). 

However, if the fraction of individual learning becomes larger (and consequently variants are introduced 

at higher frequencies) the levels of conformity can be higher before the spread of new well-adapted 

variants is prevented (i.e. high b possible). The higher levels of conformity then lead to a stronger 

transmission of those variants when their frequencies exceeded the threshold cb. In this context it 

becomes clear that the advantage of a conformist strategy depends crucially on the accuracy of 



11 
 

individual learning (cf. [9]). If individual learning is more error-prone (meaning an on average higher 

misjudgement of the current environmental conditions) then adaptive variants are introduced at lower 

frequencies, which in turn undermines social learning. Furthermore, due to the error-prone nature of 

individual learning we observe that in relatively constant environments only a small fraction of individual 

learning will lead to the highest adaptation values of the population in the long term as individual 

learning will introduce both beneficial and non-beneficial variants into the population.  

(a) (b)  
Figure 3. (a) Fractions of individual learning ξ and levels of conformity b and (b) fractions of social learning η and levels of 
conformity b which lead to the maximum adaptation levels of the population after 500 time step under different 
environmental conditions (ε=0.05,0.1,0.15,0.25,0.3,0.35,0.4,0.45,0.5,0.55).   

 

In summary, in variable environments the population’s adaptation level is maximized by a balanced 

combination of individual learning and conformity. Figure 3a shows that in order to make conformity a 

beneficial strategy in temporarily changing environments either a high fraction of the population needs 

to rely on individual learning, or the conformist bias present in the population needs to be 

comparatively weak.  

3.2.2 Effects of cultural diversity  

We have already seen that cultural diversity plays a crucial role in the adaptation process and Figure 2d-f 

explores how environmental instability ε, the population’s reliance on individual learning ξ and 

conformity b affect the level of diversity (as expressed by the Shannon index). We see that greater 

environmental variability is associated with greater cultural diversity. Again we observe opposing effects 

of individual learning and conformity, with individual learning increasing diversity and conformity 

reducing it (cf. Figure 2d-f). For the parameter constellation ε=0.4 and b=0.3 we see most clearly that 

both, adaptation and diversity levels are raised with increasing fraction of individual learning. 

 Each (b,ξ)-tupel, which maximizes the adaptation level of the population for a given ε, results in 

a characteristic range of cultural diversity, although those ranges will differ greatly with different 

assumptions about environmental instability. In stable environments much less diversity is needed for 

the population to be well adapted compared to highly variable environments. Generally, we expect that 

the higher the environmental instability the higher will be the level of cultural diversity necessary for the 

population to be well-adapted. Figure 4 shows the average number of cultural variants present in the 

population after 500 time steps for different fractions of individual learning ξ, and different levels of 

environmental instability ε, with or without conformity b ((a): b=0, (b): b=0.3). We observe a similar 
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pattern for cultural diversity, with environmental variation promoting cultural variation. While the 

presence of a conformist bias reduces the average number of variants, individual learning increases it. 

We conclude that greater rates of environmental variability can be tackled by maintaining a higher 

number of cultural variants, which ensures that the population can respond adequately to a broad range 

of environmental conditions (cf. [29]).  

(a) (b)
Figure 4. Average number of variants present in the population for different fractions of individual learning (dash-dotted 
line: ξ=0.05, solid line: ξ=0.1, dotted line: ξ=0.2, dashed line: ξ=0.3) and levels of conformity (left figure: b=0 and right figure: 
b=0.3).

 

Changes in environmental conditions may turn hitherto adaptive variants into variants with no 

functional utility (meaning ai(e(t,x))=0) (and vice-versa). Table 2 shows the average number of those 

variants without utility in the population for the parameter set ε=0.4, b=0.3, for which an increase of the 

fraction of individual learning greatly improves the level of adaptation. Interestingly, while witnessing an 

increase in the adaptation level we simultaneously observe an increase in the number of non-beneficial 

variants. In other words, we obtain higher level of adaptations with increasing individual learning even 

though the number of non-beneficial variants is higher. This suggests that in frequently changing 

environments, variants with no (or low) utility, if preserved, may play a role in the adaptation process by 

providing a reservoir of variation through which the population can adjust to new conditions (as 

reported in [30]). If the environment is very unstable, variants conveying no benefit at this particular 

moment might become adaptive soon and can therefore accelerate the adaptation process, by 

conferring adaptive plasticity [30]. 

 

 ξ=0.05 ξ=0.1 ξ=0.2 ξ=0.3 

ε=0.4, b=0.3 0.37 0.56 0.83 1.25 

Table 2. Average number of maladaptive variants in the population exposed to a changing environment. 

 

We explored the characteristics of the variants that were most frequent in different spatial locations and 

concluded that the larger the width σi of the adaptation range of variant i the more likely it is that this 

variant will be found in different locations x. Temporal instability in the environment favours the 

transmission of variants which are adapted to a broader range of environmental conditions, which can 

be seen as a generalist solution to the problem.  

In summary, our analysis reveals that the more fluctuating the environment, the more 

advantageous is the accumulation of variants with different adaptation functions ai. This also means the 
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more that the environment fluctuates, the greater the number of cultural variants is expected to be 

present at the same time. 

3.2.3 Effects of dispersal  

Dispersal of the population is modelled as a diffusion process and therefore its direction is uncorrelated 

with the locations of the regions where the specific variants are beneficial. Consequently variants are 

carried into areas where they may or may not raise the adaptation level. We have seen in section 3.1 

that in spatially variable but temporal constant environments dispersal did not lead to higher adaptation 

levels in the long run. If we add temporal variability then dispersal has a positive effect on the 

population’s level of adaptation for a very small fraction of individual learning. Even though dispersal is 

undirected, it increases cultural diversity and can introduce new and well-adapted variants into certain 

spatial locations. Therefore it is able to facilitate the adaptation process in temporally changing 

environments. However, with fractions of individual learning high enough to support the adaptation 

process, increasing dispersal rates result in reduced population levels of adaptation as variants are 

carried into areas where they might not be beneficial. Further, an increase of the dispersal rate lead to 

an increased strength of conformist bias in order to achieve the highest levels of adaptation in the 

population. In sum, the process of individual learning is far better suited than dispersal for ensuring an 

efficient adaptation process in temporally varying environments.  

3.2.4  Effects of accuracy of individual learning 

The accuracy of individual learning plays a crucial role in the evolution of conformity in temporally 

changing environments (cf. [9]). Naturally, more accurate individual learning will raise the adaptation 

level of the population. As the accuracy of individual learning increases, the adoption probability of a 

beneficial variant via individual learning increases, while the adoption probability of a less beneficial 

variant decreases. Now social learning acts on a set of variants that are better adapted to the 

experienced environmental conditions, which particularly benefits conformity. Due to the increased 

adoption probability of beneficial variants, individual learning is able to introduce those variants at 

higher frequencies. Following the line of argument developed in section 3.2, with more accurate 

individual learning the level of conformity can be higher before it acts to reduce the adaptation level by 

hindering or preventing well-adapted but low-frequency variants from spreading.  

 

 

4 Applications of the approach 
 

Our model describes the temporal and spatial variation in the frequencies of different cultural variants 

caused by the varying adoption decisions of individuals in the population. Besides revealing theoretical 

insights into the importance of different transmission mechanisms in changing environments we now 

consider whether it is possible to use this approach to obtain information about the adoption behaviour 

of populations from observed frequency data. As we outlined earlier, the frequency-based nature of our 

model was in part motivated by the causal relationship between adoption decisions and changes in 

frequency. By assuming a model of how different adoption decisions change frequencies, the analysis of 

those patterns of change might reveal some characteristics of the adoption process.  



14 
 

Frequency data can be obtained for many real world scenarios, although the temporal and/or 

spatial resolution may often be sparse. In the following, we explore how our model can be applied to 

frequency data and subsequently how it can be used to infer information about, for instance, the 

proportions of individual and social learning exhibited by the population, the level of conformity, and 

the adaptation levels of different cultural variants. To do this, we need to estimate the ranges of the 

model parameters determining the strength of those different processes, which result in frequency 

change pattern that are consistent with the observed variation. In general, this proves to be a difficult 

task especially for sparse data, where there are a large number of parameters, or where there is a 

complex likelihood surface for the model. Approximate Bayesian Computation (ABC) offers an elegant 

and efficient way around these problems. ABC has been developed to infer posterior distributions about 

unknown parameters if the likelihood function is either impossible or computationally prohibitive to 

obtain [22]. Those methods build on the computational efficiency of modern simulation techniques by 

replacing the calculation of the likelihood function with a comparison between the observed and 

calculated data. Toni et al. [34] have established the applicability of ABC methods to estimate the 

parameters of dynamical systems. In the following, we use a sequential Monte Carlo algorithm to 

estimate the parameters used in our model (see [3,34]). The idea is to find the range of parameter 

constellations that are most likely to have produced the observed frequency pattern under the assumed 

model and a given tolerance level. Based on those ranges we can draw conclusions about the adoption 

mechanisms used by the population.  

To demonstrate the applicability of this approach we aim to recover the parameters from noisy 

data produced by the model itself. We sample 10 data points of the frequencies of the cultural variants 

over time and add Gaussian noise N(0,σ2) (The standard deviation σ is assumed to be 20% of the data 

value). In this way we have full control over the real parameter values and can compare those to the 

estimated parameters. For sake of simplicity we assume a spatial homogeneous environment which 

experiences a shock at time t=50. Two variants are present during the first phase [0,50] and after the 

environmental change two further, better adapted, variants are introduced (cf. Figure 5 for the time 

course of the frequencies).  

 

Figure 5. Time course of the frequencies of the four considered cultural traits (solid lines), and noisy data (squares), which 
are used as the input for the SMC method. Environmental change happens at time t=50. 

We assumed that the parameter ri and cij depend explicitly on the level of adaptation of the specific 

variant i. Therefore, instead of estimating each parameter individually we only need to estimate the 
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adaptation level ai of each variant. We assume no prior knowledge about the adoption situation and 

therefore assume uniform priors for the adaptation levels ai, fraction of individual learning ξ and the 

level of conformity b. Applying the sequential Monte Carlo (SMC) method yields to the posterior 

distributions of the relevant parameter for the time periods before and after the environmental change. 

Figure 6 shows the posterior distributions of the level of adaptation ai, i=1,…,4 of the four cultural 

variants before (dark grey histograms) and after (light grey histograms) the environmental shock.  

(a) (b)   

(c)     (d)  
Figure 6. Posterior distributions of the level of adaptation ai of the four cultural variants (variant 1 (a), variant 2 (b), variant 3 
(c) variant 4 (d)). Dark grey histograms describes the situation before the environmental change t= [0,50] and light grey 
histograms after the environmental change t= (50,100]. ‘True’ parameter a1=0.3 (before), a1=0.1 (after); a2=0.45 (before), 
a2=0.15 (after); a3=0.35; a4=0.45 are indicated by black vertical lines.  

 

Similarly, Figure 7 shows the posterior distributions of (a) the fraction ξ of the population relying on 

individual learning and (b) of the level of conformity b before (dark grey histograms) and after (light grey 

histograms) the environmental shock. The narrow widths of those posterior distributions suggest that 

ABC methods offer an efficient way to find the parameter ranges which most likely have produced the 

frequency data under the assumed model. 
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(a) (b)  
Figure 7. Posterior distributions of (a) the fraction of the population relying on individual learning ξ and (b) the level of 
conformity b. Dark grey histograms describes the situation before the environmental change t= [0,50] and light grey 
histograms after the environmental change t= (50,100]. ‘True’ parameter ξ=0.1; b=0 are indicated by black horizontal lines 
and the y-axis, respectively. 

In summary, the application of ABC methods to observed data generates posterior distributions of the 

model parameters that indicate the parameter ranges which produce frequency pattern within a 

tolerance interval of the observed data. Importantly, the widths of those posterior distributions reflect 

the link between the model’s sensitivity for parameter change and the extent to which an accurate 

estimate of the parameter values can be inferred [34]. As already stated, the parameters determine the 

strength of different learning strategies in the adoption process and therefore a very broad posterior 

distribution would mean that not much information about the process can be extracted from the data 

(given the considered model). In contrast, a narrow distribution indicates that only a small range of 

parameter values is able to produce the observed frequency pattern. This correspondence between 

sensitivity and the ability to draw inferences is crucial. This is especially the case for complex models 

with a large number of parameters as ‘key’ model parameters will be quickly identified and possess 

narrow posterior distributions. Consequently the resulting posterior distributions allow us to evaluate 

the importance of the considered cultural processes in the adoption process.  

We stress that we do not try to identify an unique adoption behaviour of the population, but 

rather seek to illustrate the potential of applying ABC methods to frequency data by quantifying credible 

parameter ranges and therefore by excluding large parts of the parameter space which are not 

consistent with the observed data. This allows us, at the minimum, to infer (conditioned on the 

considered model) whether observed patterns of variations are consistent with high or low fraction of 

individual learning or whether the population shows weak or high conformist tendencies.  

Naturally the value of this inference framework depends on the adequacy of the description of 

the temporal and spatial change patterns of the variant frequencies and the quality of the observed 

frequency data. Consequently a crucial element of our suggested analysis is to establish that the 

developed model does indeed capture the major processes responsible for the frequency change of the 

different cultural variants. Given the large number of competing models for the structure of the 

underlying processes, it would be helpful to compare their performance in describing the observed data. 

To do so the SMC algorithm can be extended into a model selection framework (see [34]). This allows 

for the discrimination among a set of candidate models {m1,…,mn} in a formal Bayesian selection sense 

by calculating the probability pi with which model mi describes the data3 (holding p1+…+pn=1) and the 

                                                           
3
 The SMC model selection algorithm automatically includes a penalty for including too much model structure [18].  
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corresponding posteriori distributions of the model parameters. The subsequent calculation of the 

Bayes factors gives an indication of the support provided by the data in favour of one model over 

another [18]. We note that frequently there might not be a single best model; indeed, given the often 

sparse nature of the data and the complexity of interactions, this is to be expected. However, the 

described statistical inference framework can provide us with a greatly narrowed set of models and 

corresponding parameter ranges which are consistent with the observed data and therefore provides 

researchers with valuable information about which models and parameter ranges could not have 

produced the data. Moreover, while our analysis solely includes frequency information, other lines of 

evidence can be applied to this reduced set of models to narrow it down further. 

 
 

5 Conclusion and discussions 
 

We have developed a mathematical model to trace the changes in frequencies of different variants of a 

cultural trait in the face of individual and social learning of various forms, as well as dispersal, in a 

spatially and temporally variable environment. Our approach assumes that variants are differentially 

adapted to different environmental conditions. Changes in frequencies are caused by adoption decisions 

of the population, where the adoption probability of each variant is correlated to the benefit the variant 

conveys in a particular environment.  We had two objectives. Firstly, we explored the relationship 

between individual and social learning and the population’s mean level of adaptation in changing 

environments, with a particular focus on conformity and on the role of cultural diversity in the process 

of adaptation. Secondly we investigated whether our model could be combined with statistical 

techniques such as Approximate Bayesian Computation to infer information about learning strategies 

from usage or occurrence frequencies of different variants of a cultural trait. 

Even though our model differs structurally from the gene-culture coevolutionary models (e.g. 

[5,11]), reassuringly our approach is validated by the confirmation of some basic and widely accepted 

results. For instance, we found, in accordance with the existing literature, a synergy effect between 

individual and social learning, such that in temporally changing environments, a mixture of individual 

and social learning leads to the highest level of adaptation. We can conclude that the outcomes of 

evolution maximizing individual and average fitness, respectively are similar. 

Social learning can only act on variants that already exist at a given location which, in changing 

environmental conditions, might not be sufficient to ensure well-adapted populations. Individual 

learning is able to introduce new variants into certain locations and, depending on their adaptation level 

to the current environmental conditions, social learning will then act in favour of, or against, those 

variants. We found that the more the environment varies temporally the higher the fraction of the 

population relying on individual learning needs to be in order to reach the highest adaptation level. 

However, at the highest adaptation levels the fraction of social learning in a population is typically 

greater than 50% and does not fall below a lower bound far away from zero. While on the surface these 

findings seemingly conflict with those of the social learning strategies tournament reported by Rendell 

et al. [29,30], which concluded that social learning alone could be favoured in changing environments 

[29], in fact they are broadly consistent. In Rendell et al.’s model, copy error serves the same function as 
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individual learning in our approach and we deduce that it might not be so important for the adaptation 

process which mechanism produces variation but only that variation is produced.  

Generally speaking, individual learning provides the set of variants from which social learning 

can choose. The process of individual learning considered here is based on the inference between the 

experienced environmental conditions and the judgments about the utility of specific variants in those 

conditions. As this mapping is likely to be error-prone social learning can be seen as a mechanism that, 

amongst others, straightens out the errors. It is worth pointing out that even highly error-prone 

individual learning (which can be seen as a random invention process) initiates adaptation. The strength 

of social transmission of a variant depends on judgements of its benefit (which is correlated to the 

variant’s adaptation level) and the variant’s frequency. Therefore social learning typically favours 

adaptive over non-adaptive variants, and in this way can greatly increase the population’s mean level of 

adaptation. 

In frequently changing environments, the highest adaptation level of a population is obtained by 

a relatively high fraction of individual learning combined with high strength of conformity. This is in 

agreement with results obtained from analysing the properties of evolutionary stable strategies 

([19,26,35]) and again the outcomes of evolution maximizing individual and average fitness, respectively 

are similar. More generally, we witness a tradeoff between the strength of conformist bias and the 

proportion of conformists in the population necessary to maintain high levels of adaptation. This 

relationship is caused by the opposing effects of conformity and individual learning on low-frequent 

variants. While conformity hinders or even prevents the spread of low-frequent variants individual 

learning has the capacity to introduce new variants usually at low frequency, counteracting the 

diversity-reducing tendency of conformity. A weak conformity bias requires only a small fraction of 

individual learners to counteract its negative effects, while a strong conformity bias requires a larger 

fraction if adaptive variants are not to be suppressed. These observations imply a limit on the amount of 

conformity that can be maintained within a population, as represented by an upper bound to the 

product of the proportion of conformists and the strength of the conformity bias. These theoretical 

findings are consistent with recent experimental evidence characterizing humans as ‘conformists’ or 

‘mavericks’ (i.e. individual learner) [9] and revealing considerable variation amongst individuals in their 

tendency to conform and use social information [25].  

Our study points to the crucial role cultural diversity, and consequently the mechanisms creating 

diversity, play in an effective process of adaptation to changed environmental conditions. Populations 

that show high levels of adaptation in frequently changing environments are characterized by high levels 

of cultural diversity (as, for example, expressed by a high average number of present variants covering a 

broad range of possible conditions). This finding suggest that maintaining a diverse portfolio of solutions 

that offer different benefits in different environmental settings to a problem, even to the extent of 

keeping temporally maladaptive variants in the portfolio, provides an efficient way to adapt to 

frequently changing environments (see also [30]). We also found that variants that are adapted to a 

broader range of environmental conditions are found more frequently in the portfolios of different 

spatial locations. Therefore one should expect that generalist solutions to a problem are favoured over 

specialist solutions in frequently changing conditions.  

Those findings tie in nicely with the argument brought forward by Richerson and Boyd [32] that 

culture facilitates adaptation to temporally changing environments, as, for instance, may result from 
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climatic variation. We add to this argument that not only culture, but diverse culture encompassing a set 

of variants covering a broad enough range of environmental conditions, is needed in order to ensure an 

efficient adaptation process.  

Finally, we note that often researchers (e.g. archaeologists, biological anthropologists, 

psychologists) are confronted with situations where time series data is available detailing the usage or 

occurrence of different cultural variants, and where they would benefit from being able to infer 

something about the underlying social processes that produced those frequencies. As our approach links 

frequency change patterns of cultural variants with the adoption decisions of the population it 

potentially informs such inference. We envision that our model, in combination with the described ABC 

methods, could shed some light into this problem. The model parameters determine the strength of the 

different adoption processes and therefore the resulting posterior distributions of those parameters 

allow us to draw conclusions about the adoption mechanisms manifest in the population. However, 

especially with sparse data we do not claim the existence of a unique relationship between observed 

frequency patterns and underlying processes; to the contrary, we expect that different processes will be 

consistent with the observed frequency patterns. Nonetheless, we anticipate that our approach will be 

valuable in helping to narrow down the range of possible processes that could have produced those 

patterns, and thus will still be instructive in the face of uncertainty.  
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