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SYNOPSIS 

The research described in this dissertation is concerned with coupled 
loading and consolidation in triaxial tests and with selection of rates 
of loading in routine tests to avoid errors due to incomplete drainage 
or non-uniform pore pressures in fine grained soils. The work 
consisted of a combination of laboratory tests in which pore pressures 
were measured within triaxial samples, numerical analysis using the 
CRISP geotechnical finite element program and theoretical analysis. 
Both constant strain rate and constant stress rate loading were 
considered. 

The work demonstrates the applicability of CRISP to coupled loading and 
consolidation analyses and its limitations are discussed. The influence 
of loading rates on pore pressures in triaxial tests and upon the soil 
parameters obtained from them is investigated and deficiencies in the 
current procedure for choosing rates of loading are revealed. A new 
method is proposed which permits a rational choice of loading rate 
based on the drainage characteristics of the sample and on the 
magnitude of the errors which can be accepted. 

Non-uniformities of stress, strain and specific volume in triaxial 
samples and the influence of loading rate on these non-uniformities is 
also investigated. 
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GLOSSARY OF SYMBOLS 

Cross-sectional area of a triaxial sample 
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Coeficient of consolidation 
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Young's modulus for effective stresses 

Young's modulus for undrained loading 

Flow parameter 

Shear modulus for effective stress 

Shear modulus for undrained loading 

Specific gravity of soil grains 

Hardening parameters 

Half height of a triaxial sample 

Slope of constant volume section of Hvorslev surface 

Bulk modulus for effective stresses 

Bulk modulus for undrained loading 

Coefficient of earth pressure at rest 

Plastic (superscript) 

Axial stiffness 

Time factor 

Degree of consolidation 

Degree of equalisation of excess pore pressure 

Degree of dissipation of excess 

Volume of a triaxial sample 

Volume of solids 

Pore pressure parameter 

Small increment of 

Strain 

Rate of change of axial strain 

Volumetric strain 

Shear Strain 

Slope of swelling line 

pore pressure 

Slope of normal consolidation line 

Pore pressure constant 

Pore pressure constant 

Poisson's ratio for effective stresses 

Poisson's ratio for undrained loading 

Stress 
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Angle of friction 
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(subscript) Axial 

(subscript) Average 

(subscript) End 
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Drainage path length 

Coefficient of permeability 

Coefficient of compressibility 
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for one-dimensional 
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(subscript) middle 
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Pore pressure 
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Um/p'o for drained tests 

or 

udm/p'o for undrained tests on normally consolidated soil 

or 

Udm/p'c for undrained tests on overconsolidated soil 

Effective stress (e.g. a') 

Specific volume of soil at the critical state with 

p' = 1.0 kN/m 2 

Large increment of 

Slope of the critical state line in q' - p' space 

Specific volume of soil compressed isotropically to 

p' = 1.0 kN/m 2 
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1.0 INTRODUCTION 

1.1 Introduction 

The triaxial test is the most widely used test for the determination of 

the shear strength parameters of fine grained soils. It is accepted 

that the values of parameters derived from these tests are affected by 

the loading rate used in the test. These effects are partly due to 

changing distribution of excess pore pressures and errors in pore 

pressure measurement and partly due to differencies in soil behaviour 

under different loading rates. 

The purpose of the research described in this disseration is to develop 

an understanding of the way in which excess pore pressures are 

influenced by loading rates and the way in which these excess pore 

pressures influence the soil parameters being measured. In this way a 

rational approach to the selection of loading rates in the triaxial 

test can be developed. 

1.2 Excess Pore Pressures in the Triaxial Test 

There are two basic types of triaxial test, the drained test and the 

undrained test. In the drained test excess pore pressures generated in 

the triaxial sample are allowed to dissipate by drainage to or from a 

back pressure. There are three main drainage configurations. These are 

drainage to one end only via a porous disc, drainage to both ends via 

porous discs and all round drainage provided by filter paper side 

drains touching porous stones at each end. 

In order for excess pore pressures generated in a drained triaxial test 

to dissipate fully a very slow loading rate is necessary. This is 

impractical and consequently nominally drained triaxial tests are in 

fact only partially drained and undissipated excess pore pressures 

remain in the sample. These undissipated excess pore pressures cause 

two main problems, firstly the soil behaviour deviates from the fully 

drained behaviour and secondly errors may occur in the measurement of 

pore pressure which subsequently lead to errors in the calculation of 

effective stresses and soil parameters. 

The errors in pore pressure measurement occur because pore pressure is 

conventionally measured at the end of a suplee In a partially drained 
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test, this measurement of pore pressure is not representative of the 

sample as a whole and specifically it is not representative of the pore 

pressure in the middle third of the sample where deformation is 

concentrated and subsequent failure occurs. Only for the case of 

drainage from one end of the sample and pore pressure measurement at 

the other is it possible to measure the excess pore pressures in a 

triaxial sample without the use of pore pressure probes. For the cases 

of all round drainage and drainage to both ends of the sample the pore 

pressure measured is simply equal to the back pressure in the drainage 

lines and no information on excess pore pressures is available. 

Consequently in conventional triaxial tests the magnitude of excess 

pore pressures in the middle of a sample are not available and the 

errors in the parameters derived using the measured pore pressure are 

not known. 

In the undrained test the excess pore pressures 

allowed to dissipate and no drainage is allowed 

generated are not 

to or f rom the 

sample. Excess pore pressures are not generated uniformly throughout 

a triaxial sample due to non-uniformity of stresses caused by end 

restraint. End restraint is the prevention of radial strains at the 

sample ends caused by frictional shear stresses between the ends of the 

sample and the platen and top cap. The excess pore pressures in the 

sample equalise by internal drainage from areas of high pore pressure 

to areas of low pore pressure. In order for full equalisation to 

occur, a test must be run at a very slow rate. In practice tests are 

run at a faster rate and there exists a difference in the excess pore 

pressure at the middle and ends of the sample. This difference will be 

referred to throughout this dissertation as the differential excess 

pore pressure, and will be expressed as the pore pressure in the middle 

of the sample less the pore pressure at the ends. Consequently a 

positive differential excess pore pressure implies a higher value of 

excess pore pressure at the middle of the sample than at the ends. 

As wi th drained loading the non-uniformi ty of excess pore pressure 

resul ts in errors in pore pressure measurement. The pore pressure 

measured at the end of a sample is not representative of that at the 

centre of the sample and no indication of the magni tude of the 

differential excess pore pressure is obtained. The error in parameters 

derived using the measured pore pressure is therefore unknown. 
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1.3 Determination of Loading Rates in the Triaxial Compression Test 

There are two types of loading used in the triaxial test. In the 

conventional triaxial test (Bishop and Henkel,· 1962) the sample is 

subjected to a constant rate of axial strain. With hydraulic stress 

path cells (Bishop and Wesley, 1975) loading may be applied to the 

sample at a constant rate of increase of axial stress. The advantages 

and disadvantages of these two procedures will be considered in this 

dissertation. 

It follows from the previous description of excess pore pressures in 

the triaxial test that the main requirement of a loading rate is that 

it should be slow enough to allow adequate dissipation or equalisation 

of excess pore pressures in drained and undrained tests respectively 

such that the errors in pore pressure measurements are acceptable. 

Several methods for determining a suitable loading rate are available 

and the advantages and disadvantages of these are discussed in section 

3.5. The most commonly used method is that described by Bishop and 

Henkel (1962). This method gives a test duration to ensure a required 

degree of excess pore pressure dissipation or equalisation (normally 

95%). There are several problems with this method. Firstly it was 

developed for constant strain rate tests. Secondly it does not give an 

actual value of undissipated or unequalised excess pore pressure and 

consequently the actual error in pore pressure measurement is not 

known. Thirdly, it is formulated to give the desired degree of 

dissipation or equalisation at a given strain, normally the failure 

strain, (which must be estimated before the test is begun). The degree 

of dissipation or equalisation before this strain is reached is less 

than the required value and after it is reached it is greater. If a 

test is to be carried out at a high degree of dissipation or 

equalisation throughout the whole stress path a very slow strain rate 

is required to give the high degree of dissipation or equalisation 

early in the test. 

A method for determination of loading rate based upon 1 imi ting the 

deviation of the stress path in a test from the fully drained or fully 

equalised stress path would be a better approach. This would give an 

actual value to this error and allow loading rates to be chosen to 

result in a required accuracy of measurement of soil parameters. This 

is the approach taken in this dissertation. 
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1.4 Structure of the Dissertation 

The work carried out in this research may be divided into three main 

categories. The first of these is a theoretical analysis of the 

triaxial test using consolidation and critical state soil mechanics 

theory and the Cam-clay soil model. The second is laboratory testing 

to obtain data on the behaviour of various real soils principally to 

validate the finite element analyses. The third main part is numerical 

analysis of the triaxial test modelling tests on a range of 

characteristic soils representing the typical range of soils found in 

nature using the modified Cam-clay soil model. Each of these topics 

is covered in separate chapters. The results of the different 

approaches to the problem are compared and discussed together and 

conclusions drawn from them. 
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2 BASIC THEORY 

2.1 Introduction 

The ideas and theories of critical state soil mechanics as presented by 

Schofield and Wroth (1968) and Atkinson and Bransby (1978) are used 

throughout this dissertation. This chapter briefly considers the 

elasticity and plasticity theory on which these theories are based and 

outlines the basic concepts of critical state soil mechanics. The way 

in which these theories and concepts are brought together into the 

mathematical models of Cam-clay and modified Cam-clay is presented. 

The Cam-clay model is used in Chapter 4 to examine the undrained stress 

paths of soils and the modified Cam-clay model is used in the numerical 

analyses described in Chapter 7. Compression and consolidation theory 

is also considered including coupled consolidation and loading which is 

used in the numerical analyses described in Chapter 7. 

The pore pressures in triaxial samples are described throughout this 

dissertation in terms of excess and differential excess pore pressures. 

These terms are defined in this chapter. 

2.2 Stress, Strain, Elasticity and Plasticity 

2.2.1 Introduction 

This section will consider the principles of elasticity and plasticity. 

These lead to the development of a set of constitutive equations to 

describe the behaviour of a soil before and after yielding in loading 

and unloading. 

2.2.2 stress and Strain Invariants 

Soil behaviour is governed by effective stresses and its state may be 

fully described by the effective stresses and the specific volume, v . 

Specific volume is defined as the volume of soil containing unit volume 

of soil grains. The stress state may be described in terms of the 

effective stress invariants p' and q'. These are defined below for the 

case of the triaxial test in terms of the effective axial stress 0a' and 

the effective radial stress or'· 

2. , 
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0;. 2.2 

The corresponding expressions for volumetric strain £ and shear strain 
v 

£. in terms of axial strain £ and radial strain £ are as defined • r 

below. 

2.3 

2.4 

2.2.3 Elastic and Plastic Deformations 

Figure 2.1a shows a stress strain curve for an ideal soil like material 

subjected to principal effective stresses 0', 0b' and 0' and which • c 

suffers principal strains £. ' £b and £c. The loading is uniaxial, as 

in the triaxial test 0b' = 0c' and £b = £c and the axial stress 0.' is 

plotted against the axial strain £. • 

For the range OY the soil behaviour is linearly elastic and strains 

produced by increasing stress are fully recoverable if the stress is 

reduced. If the axial stress is increased beyond Y irrecoverable 

plastic strains occur. However, if the stress is reduced from G the 

soil behaviour is again linearly elastic and reversible in the range 

BG. The elastic and plastic strains caused in moving from Y to G are 

shown as £P and £8 respectively. Points such as Y and G mark the point 

where plastic strains start and are known as yield points. It can be 

seen that plastic straining has the effect of increasing the yield 

stress from Oy' to Og'. This process is known as strain hardening. 

Figure 2. 1 b shows a stress strain curve for which the yield stress 

decreases with plastic straining. This process is known as strain 

softening. The behaviour of a strain softening material after yielding 

at Y is determined by changes in axial strain. An increase in strain 

moves the soil to G undergoing elastic and plastic strains -e· and cP 

respectively. If the strain is further increased the soil moves 

towards F, undergoing further plastic strains. If the strain is 

reduced it moves towards B undergoing purely elastic strains with the 

axial stress decreasing in both cases. 

If straining is continued for the case of either a strain hardening or 
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strain softening soil it will fail at F with no further change of 

stress. Whether a soil is strain hardening or strain softening is 

dependent upon it's state and loading conditions. The relationship 

between the change of yield stress and the· plastic strain from Y to G 

is known as a hardening law. 

2.2.4 The Yield Surface and Plastic Flow 

If all the combinations of 0a', 0c' and £P at yield and failure for a 

strain hardening material are plotted together as shown in Figure 2.2a 

a surface is produced. This surface consists of an infinite series of 

curves between the curve representing states for first yeild Y.Yc' 

corresponding to yield at point Y in Figure 2. 1 a and a curve F F on 
• c 

which lie all possible failure states such as point F in Figure 2.1a. 

CUrve F.Fc is known as the failure envelope and the other curves 

corresponding to yield points as yield curves. The surface formed by 

these curves is known as the yield surface. The expansion of the yield 

curve in Figure 2.2a as a material moves from Y to G in Figure 2.1a is 

governed by a hardening law. 

The yield surface provides a boundary to possible states. A material 

may lie within or on it but it cannot lie outside it. For a material 

whose state lies at G in Figures 2.1a and 2.2a further loading causes 

an increase in plastic strains and the material moves across the yield 

surface towards the failure envelope following a path such as GA or GB 

on Figure 2.2.a. However, if the material is unloaded its' behaviour 

is elastic and no plastic strains occur. The soil therefore must move 

within the yield surface and is constrained to move on a vertical plane 

beneath the yield curve on which G lies following paths such as GC or 

GO in Figure 2.2a. This plane is known as an elastic wall and is shown 

shaded. There are in infinite number of these elastic walls lying 

beneath their corresponding yield curves. It can be seen therefore 

that all strains within the yield surface are purely elastic and that 

plastic strains may only take place on the yield surface by moving froa 

one yield curve to another. Figure 2. 2b shows a similar yield surface 

for a strain softening soil; the only difference being that the yield 

curves become smaller and the yield surface contracts with increasing 

plastic strain. 

The theory of plasticity relates the ratio of increments of plastic 

strain in an increment of plastic deformation to the state of stress 

- 32 -



causing the plastic deformation. Figure 2. 3a shows a plot which 

combines stress state as defined by a stress vector 0' made up of 

components 0.' and 0c' and a corresponding plastic strain increment 6£P 

made up of 6£aP and 6£cp • Thus in the theory of plasticity the gradient 

d£aP/d£cP of the vector of plastic strain is related to the vector of 

stress 0' and is independent of the increment of stress causing the 

plastic strain. This contrasts to elastic behaviour where the gradient 

of the vector of elastic strain is wholly dependent upon the change of 

stress. 

The precise relationship between the vector of plastic strain increment 

and the vector of stress is known as a f low rule. A 'plastic 

potential' may be defined such that vectors of strain increment are 

orthogonal to the plastic potential. The plastic potential is a curve 

similar to the yield curve and the flow rule may be specified as a 

relationship between these two curves. If the plastic potential and 

yield curve coincide the material is said to have an associated flow 

rule and the normality condition applies in the sense that vectors of 

plastic strain are normal to the yield curve as shown in Figure 2.3b. 

2.2.5 Ideal Elastic Behaviour 

The three dimensional behaviour of an isotropic elastic material may be 

given by the generalised form of Hooke's law in terms of Young's 

Modulus E' and Poisson's ratio Vi appropriate for effective stresses. 

For linear elastic materials EI and v' are constant. This corresponds 

to material behaviour such as that below yield in the ranges OY and BG 

in Figure 2.1. 

For the triaxial test the increments of elastic shear and volumetric 

strain O£ e and 6£ e respectively resulting from increments of effective 
s v 

stress Oq' and 6p' may be written; 

ref: = ;2. ( I ... 'i') 'CJ' 
'3 E' 

3 ( I - 2. vt) & pi 
E' 

, 
3'" 

S pi 
K' 

2.5 

2.6 

Where J(' is known as the bulk modulus, G I is known as the shear 

modulus, and these are related to Poissons ratio by; 
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K':::: e' 
3(1 -2..v') 

2.7 

c.' :: £' 2.8 
2(' ... V') 

Equations 2.5 and 2.6 show that increments of shear strain £5 are 

dependent only upon corresponding increments of shear stress Oq' and 

increments of volumetric strain £v are dependent only upon increments 

of normal stress opt. 

For the case of the triaxial test in which the intermediate stresses 

are equal; 

2.9 

and 

2.10 

E' and v' can therefore be found directly from the results of a drained 

triaxial test. 

Similar equations may also be written for the special case of undrained 

loading where the subscript u denotes that parameters are appropriate 

to undrained conditions. 

kl4 = 

Sp 
K\A 

For undrained loading of saturated soil o£v = 0 and hence; 
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Therefore; 

2.16 

and 

Also because 6q' = 6q and because 6£5 is independent of 6p' and 6p for 

elastic soils; 

I c.y = G 2.18 

A value for Eu may be obtained directly from the gradient of the stress 

strain curve of an undrained triaxial test as; 

2. 19 

2.2.6 Elasto-plastic Behaviour 

Combining the theories of elasticity, yielding, hardening and plastic 

flow; general stress-strain equations can be derived to describe 

materials which undergo simultaneous elastic and plastic components of 

strain. Such equations take the form; 

6 ' 'l 
2.20 

Where C'qp is a matrix of material properties. 

For any increment of load and displacement the total strains are made 

up of their elastic and plastic components. 

Cc. = SEQ + Sf' O~S S I 

6E =- 5 E· + 'f' v v v 

where the elastic components are given by equations 2.5 and 2.6. 
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If it is assumed that the flow rule is associated and the vector of 

plastic strain increment is normal to the yield curve and in general; 

F 2.23 

F is the flow parameter and depends upon the shape of the yield curve 

and the stress state. 

A hardening law can be defined to describe the plastic volumetric 

strain increment OEvP as soil moves from one yield curve to another as 

below; 

6e.: = HS~+ G ~p' 2.24 

Where Hand G are hardening parameters again dependent on the shape of 

the yield curve and stress state. 

From equations 2.23 and 2.24; 

2.25 

Adding the elastic and plastic strain components; 

S E.s = (F... + -L ) 6 Q' + F G & p' 
3 c.' -.., 

2.26 

S 6., ::: H SC(,'... (G .... -t,) 6 p' 2.27 

which is the expanded form of equation 2.20. 

If the principal planes of stress and principal planes of strain and 

strain increment coincide (known as the coaxiality condition) and the 

flow rule is associated, the matrix in equation 2.20 becomes symmetric 

and hence from equations 2.26 and 2.27; 

G = H/F 2.28 

and equations 2.26 and 2.27 may be rewritten in matrix form as; 

S£S FH +-L ~ b'l-' 
3C/ -

6£,. H H + I 
F K' 

bpi 
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These are the basic equations for a soil-like aaterial under conditions 

of axial symmetry such as prevail in the triaxial test. For states 

inside the yield surface, behaviour is elastic and H = o. In order to 

describe the soil behaviour G' and K' must be determined and the shape 

of the yield surface specified in order to determine H and F. 

2.3 Critical state Soil Mechanics 

2.3.1 Introduction 

This section will present the basic concepts of critical state soil 

mechanics theory. The original theory was developed from the 

principals of thermodynamics together with the simple theories of 

elasticity and plasticity (Schofield and Wroth 1968). The theory 

assumes that the soil is an isotropic continuum and its behaviour is 

governed by effective stresses. A full description of the critical 

state soil model is given by Atkinson and Bransby (1978). 

2.3.2 The state boundary surface 

The state boundary surface represents a limit to all possible states 

that can be attained for a soil. It's shape in q', pi and v space is 

shown in Figure 2.4. The state boundary surface also determines the 

type of behaviour a soil will have. For states beneath the state 

boundary surface the soil is assumed to behave elastically. For states 

lying on the surface the behaviour is predominantly plastic with large 

irrecoverable strains taking place. 

The state boundary surface is composed of a number of surfaces 

and lines. The line AB is the critical state line which represents all 

possible states of ultimate failure. The line GH is the nOr1lal 

consolidation line which represents soils during isotropic (q' =0) 

normal consolidation. These two lines are joined by a curved surface 

which represents the states of yielding normally consolidated soil. 

The plane ABCD is known as the Hvorslev surface and represents the 

state of yielding overconsolidated soils. This plane is truncated by 

the plane CDEF which represents the conditions of tensile failure as 

the no-tension cut off. 

Ultimate failure occurs when a 80il reaches the critical state line. 
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At critical state deformation takes place without further change of 

state (i.e. constant stress and specific volume). In a drained test on 

overconsolidated soil the ultimate critical state strength will not 

correspond with the peak strength because of strain softening caused by 

dilation during shear. 

It is assumed that plastic deformation can occur only on the state 

boundary surface. Beneath the surface deformations are purely elastic 

and, for isotropic soil, volumetric strains are independent of changes 

in shear stress. The sample state is therefore restricted to positions 

on or vertically above an isotropic swelling line. These points form 

a surface known as an elastic wall and soil cannot move from one 

elastic wall to another without traversing the state boundary surface. 

An elastic wall is shown diagrammtically in Figure 2.5 as plane JLMK. 

Figures 2.6a and b show projections of the state boundary surface onto 

the V-pI plane and q_pl plane respectively. Figure 2.6b shows the 

normal consolidation line GH, and critical state line AB. The 

isotropic swelling line JLMK is also shown. Figure 2.6b shows constant 

volume sections through the state boundary surface ACEG and BDFH. 

As stated previously, soil can only undergo plastic strains on the 

state boundary surface and hence the state boundary surface serves also 

as a yield surface marking the beginning of plastic straining. 

2.3.3 Critical state soil parameters 

The basic soil parameters for the critical state soil model can be 

def ined by a few simple equations. Figure 2. 7a shows the normal 

consolidation line, a swelling line and the critical state line plotted 

in v - Ln pI space. The normal consolidation line and critical state 

lines are straight and parallel and have a slope of A. They can 

therefore be represented by the following equations. 

Normal consolidation line 

v = N - A Ln p' 2.30 

Critical state line 

v = r - A L t\ p' 
2.31 
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Where Nand r are the values of specific volume at p' = 1. The normal 

consolidation lines are unique for a particular soil and hence A, Nand 

r are constants. 

Similarly the equation of a swelling line may be written as; 

2.32 

Where -x is the gradient of the swelling line and v
E 

is the value of 

specific volume at p' =1. There are an infinite number of possible 

swelling lines parallel to the one shown, x is therefore a constant 

whilst Vx may vary. 

Figure 2.7b shows the locus of critical state points in q' - p' space. 

This is a straight line with gradient M which is a constant for a given 

soil. The projection of the critical state line in q'- p' space is 

therefore; 

~ = Mp' 2.33 

The gradient of the Hvorslev surface in q' - p' space is given by the 

symbol H. 

2.3.4 Elastic stress strain relationships 

The elastic stress strain relationships described in section 2.2.5 can 

be written in terms of critical state soil parameters. 

An element of soil beneath the state boundary surface remains on an 

elastic wall, hence from equation 2.32 the change of specific volume is 

given by; 

and 

Sv - 1C 5Lnp' = 

6 €.v::. X. S pi 
"pi 

-1C~' 
p' 

2.34 

2.35 

The behaviour of an element of soil within the state boundary surface 

is purely elastic and is described by equations 2.5-2.8. Hence from 

these equations the elastic moduli are given by; 
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I , 

K =.te 
~ 

G'=vp' 3(1-4"') 
~1C~'-;2;"";(~I-:"+-V .... ,-r-) 

I I ) E = 3vp (I -2.~' 
1C 

2.36 

2.37 

2.38 

For undrained loading the undrained elastic parameters may be related 

to the drained parameters by the equations presented in section 2.2.5. 

2.3.5 Compression 

For one-dimensional compression the compressibility of a soil can be 

expressed as the coefficient of volume compressibility, m which is 
\I 

defined as; 

h 2.39 
v 

The one-dimensional compression or Ko line is parallel to the normal 

consolidation line and lies between it and the critical state line in 

v - Lnp' space. This line is given by; 

v 

Where No is the specific volume for p' = 1. 

Differentiating equation 2.40 with respect to p' gives; 

_~ = pi Sv 
6p' 

2.40 

2.41 

The ratio between radial and vertical effective stress Ko is constant 

during one-dimensional compression and therefore; 

~' 
p' 2.42 

Substituting 2.42 into 2.41 gives; 

2.43 

Substituting 2.43 into 2.39 gives; 
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2.44 

.v is therefore not a constant and depends upon the soil state. 

For isotropic normal compression a similar paramter, a, may be defined 
as; 

Sv = - m Sp' 
V 

From 2.24; 

Similarly for isotropically overconsolidated soil; 

M =.&. 
Vp' 

2.45 

2.46 

2.47 

Note m for overconsolidated soils is equal to the inverse of the bulk 

modulus K'. 

2.4 Critical State Soil Models 

2.4.1 Introduction 

The behaviour of soils during loading and unloading, both before and 

after yielding may be modelled mathematically. Cam-clay and modified 

Cam-clay are elasto-plastic soil models based upon the critical state 

soil model and were developed by the Cambridge soil mechanics group 

(Roscoe et al 1958, Roscoe et al 1963, and Schofield and Wroth 1968 for 

Cam-clay and Roscoe and Burland 1968 for modified Cam-clay). 

Modified Cam-clay was developed to address some of the deficencies of 

Cam-clay particularly with respect to the shape of the yield curve 

which leads to Cam-clay over predicting shear strains at low stress 

ratios. Modified cam-clay also predicts the value of Ko for normally 

consolidated soils better than Cam-clay which predicts Ko = 1. 

Both modified Cam-clay and Cam-clay were developed frOli a consideration 

of the work dissipated during shear. It is differences in assumptions 

relating to the work dissipated that result in the different shapes of 

the state boundary surface of the two aodels. The follOWing sections 
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give the basic equations for each of these soil models to illustrate 

the differences between them. 

The Cam-clay model, which is mathematically simpler, will be used in 

Chapter 4 to investigate factors affecting the shape of the undrained 

stress path of normally consolidated soils and the generation of excess 

pore pressures. The modified Cam-clay model which fits experimental 

data better was used in the finite element analyses used to model the 

triaxial test and described in Chapter 7. 

2.4.2 Cam-clay theory 

The Cam-clay equation for the Roscoe surface is; 

...i-. .. (~) L.~ p' - (r-V) 
M p' "-'Ie ,,-~ 

2.48 

The intersection of the Roscoe surface with the v - pi plane along the 

normal consolidation line gives; 

N-f= A-\: 2.49 

The equation of a yield curve is given by; 

2.50 

which is a log spiral and P'f is the value of pi at failure on the 

critical state line. 

The full stress - strain constitutive equations for Cam-clay in the 

matrix form of equation 2.29 are; 

SEs 'A- 'k:. + _I A-1C S~ , 
vMp' - (M- 't)v Mp' 3G 2.51 -

Se., A-'k: ~-"k (M-,\) + , 
vMp' vMp' K' 

where., = q'/p' 

The equation of the undrained stress path for a normally consolidated 

soil may be obtained from the equation for the Roscoe surface as; 
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..!k .... ~ l" (L) = 0 
Mp' 'X-~ ,,:. 2.52 

where Po' is the value of p' on the normal consolidation line 

corresponding to the specific volume Vo of the test. 

2.4.3 Modified Cam-clay theory 

The modified Cam-clay equation for the Roscoe surface is; 

2.53 

where Pc' is the maximum previous value of p'. 

The intersection of the Roscoe surface with the v - p' plane along the 

normal consolidation line gives; 

N-r = ().-1C)Lnl 2.54 

The equation of a yield curve is given by; 

L - +Jf. -
p~ Ml 2.55 

which is an ellipse. 

The full stress - strain constitutive equations for modified Cam-clay 

in the matrix form of equation 2.29 are; 

6€s 4!1' (A-l") ... I 2.1' (l-1C} 6 ' 
vp'(M~-1) ?>G' vp'(M' +~l) 

~ 

- 2.56 -
(~_~)(Ml_~I) ~ ~ S£y 1,\ (~-1C) bP' 

vp' (MI+'I,'1) Vp'(M--+tl1 
) K' 

2.5 Consolidation 

2.5.1 Introduction 

This sect ion wi 11 consider the basic relationships governing the 

consolidation of a soil element. Terzaghi's (1943) theory of one-
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dimensional consolidation is described, as is isotropiC consolidation 

and Biot's (1944) theory of three dimensional consolidation. The 

solutions to Terzaghi's equation of consolidation that are generally 

available are for incremental loading. Solutions for incremental, 

constant stress rate and constant strain rate loading are given in 

Appendix A. The concept of coupled loading and consolidation is 

described. 

2.5.2 One-dimensional consolidation 

Terzaghi (1943) derived the fundamental equation governing the one-

dimensional consolidation of a soil column. 

simplest form can be written as; 

The equation in its 

--

where k = coefficient of permeability 

u = excess pore pressure 

z = distance from the drainage boundary 

£y= vertical strain = volumetric strain 

2.57 

The equation therefore relates changes in excess pore pressure to 

changes in strain. Substituting equation 2.39 into equation 2.57 and 

rewriting in terms of total stresses gives; 

&(1 - 2.58 
Gt 

where Cy is the coefficient of consolidation defined as; 

2.59 

Equation 2.57 may be solved for the case of incremental loading when 

the total vertical stress Oy is constant (see Appendix A) to obtain an 

equation giving the average degree of consolidation Ut (defined as the 

ratio of the current volumetric strain to the final volumetric strain). 

For values of U
t 

not greater than 0.6 this may be approximated to; 

where Ty 

length. 

= C t/h 3 is known as the time factor and h = 
y 
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Figure 2.8a shows a graph of Ut versus JTv for a typical incremental 

consolidation test and Figure 2.8b shows a graph of Ut versus Jt for the 

same test which gives an intercept of the extension of the straight 

line part of the graph with the Ut = 1.0 line of Jt,. t, is the 

characteristic time. 

The coefficient of consolidation Cv can be obtained from; 

2.61 

Similar equations for Cv have been obtained for drainage conditions 

other than one-dimensional. For the triaxial test it is convenient to 

express these in terms of the sample dimensions. For a cylindrical 

triaxial sample with a height to diameter ratio of 2 and a height of 2H 

the value of Cv can be obtained using the equations in Table 2.1. 

2.5.3 Isotropic consolidation 

In the triaxial test it is normal to consolidate samples isotropically 

rather than one-dimensionally. 

If the change in area of the sample is ignored a coefficient of 

isotropic consolidation may be obtained as; 

c=k 2.62 

where m is the isotropic coefficient of compressibility equal to the 

inverse of the bulk modulus K'. 

Again a graph of U
t 

versus Jt gives an initially linear plot with an 

intercept with the ut = 1 line of Jt, and the coefficient of isotropic 

consolidation may be found from the same equations as those for one­

dimensional consolidation. 

2.5.4 Three dimensional consolidation 

siot (1941) extended the theory of consolidation to the three 

dimensional case. Siot's equation for the simplified case is siailar 

to Terzaghi's equation for one dimensional consolidation. 

K Ikx ,'\ + ku '-a. ... k. ,.00J= ~ -!! ::. - i.e' 
'I.., L 'x · T? ,.' {;{ &t ~t 2.63 
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Where K' = bulk aodulus = 11m 

where m = coefficient of isotropic compressibility. 

The equation may be rewritten as; 

2.64 

where 6v/6t is equal to the rate of change of volume of a soil element. 

2.5.5 Coupled consolidation 

Coupled consolidation involves simultaneous loading and drainage. If 

loading is very slow compared to drainage the conditions approach the 

drained state with zero excess pore pressures. If loading is very fast 

compared to drainage the conditions approach the undrained state with 

zero drainage. However, if loading and drainage take place at 

comparable rates the soil state falls between the drained and undrained 

cases with drainage occuring whilst excess pore pressures are not zero. 

This is the case in the majority of nominally drained triaxial tests. 

In order to investigate these cases of partial drainage Terzaghi's and 

Biot's consolidation equations may be used with the total stress 

component not constant. Solutions for the cases of constant rate of 

stress and strain are presented later in Appendix A for Terzaghi' s 

equation. The three dimensional case is generally too complex to 

permit a closed form solution to be obtained and finite element 

analysis is used to investigate this case. 

Finite element analyses are carried out by considering a region of soil 

to consist of a number of discrete elements linked in a mesh. Each 

element has material properties defined by a set of stress - strain 

equations such as those given by equatiOns 2.51 (Cam-clay) or 2.56 

(modified Cam-clay). When a load or displacement is applied to the 

boundary of the mesh the fundamental principles of compatibility, 

material behaviour and equilibrium are applied to each element and the 

mesh as a whole to obtain a solution giving stresses and strains 

throughout the mesh. 

Finite element analyses of fully drained or fully undrained tests aay 

be carried out relatively siaply by specifying that excess pore 

pressures are coapletely diSSipated (drained) or not dissipated 

- 46 -



(undrained). In coupled consolidation analyses Biot' s equation is used 

to determine the degree of dissipation of excess pore pressure that 

takes place during a test. Increments of load are applied over 

increments of time to give the required loading rate and the stress -

strain equations and Biot' s equation are applied to determine the 

sample state after each load/time increment. Wi thin each increment the 

soil properties are assumed to be constant and appropriate to the state 

of the soil at the start of the increment. It is therefore important 

to choose increments that are small enough to prevent 'drift' from the 

true solution. The choice of increment size is discussed in Chapter 7 

where the finite element method is used in the manner described above 

to obtain solutions for coupled consolidation events. 

2.6 Excess and Differential Excess Pore Pressures 

Unless triaxial compression tests are carried out very slowly the 

distribution of pore pressure throughout the sample is not uniform. 

The causes of this non-uniformity are discussed in Chapter 4. This 

section defines the terms, excess pore pressure and differential excess 

pore pressure that are used to describe this non-uniformity throughout 

this dissertation. 

Excess pore pressure can be defined as the difference between the 

current pore pressure and the intitial pore pressure at the start of a 

test. Excess pore pressure may be positive or negative. In a drained 

test excess pore pressure is allowed to dissipate by drainage to or 

from a reservoir of water held at a constant pressure. A typical 

distribution of pore pressure in a drained triaxial compression test 

with drainage at the base only is shown in Figure 2.9a. The excess 

pore pressure 0" at a particular height H, above the base of the sample 

is the difference between the initial pore pressure Uo which is equal 

to the drainage backpressure, and the total pore pressure u" at that 

height as given by equation 2.65. 

-"". = U, - v.. 
2.65 

In an undrained test their is no drainage to or from the sample and 

excess pore pressures generated during a test do not dissipate. 

Furthermore they are not generated uniformly within the sample. If a 

test ia run alowly the pore pressure in a sample l18y equalise by 

internal drainage. If however, full equalisation does not occur the 
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pore pressure distribution will be non-uniform. The term differential 

excess pore pressure will be used to describe this non-uniformity. A 

typical distribution of pore pressure in an undrained test is shown in 

Figure 2.9b. The excess pore pressure at the mid height and ends of 

the sample are um and ue these values being the total pore pressures at 

these points less the initial pore pressure u. The differential excess o 

pore pressure between the mid height and ends of the sample a~ is 

defined as the excess pore pressure at the mid height of the sample 

less that at the ends as given by equation 2.66. 

2.66 

For the case shown in Figure 2.9b the differential excess pore pressure 

is positive but this is not always the case. The differential excess 

pore pressure could be defined between any two points in the sample 

however, it is generally greatest between the middle and ends and this 

measurement is used throughout this dissertation. 

2.7 Summary 

The work described in this Thesis investigates the behaviour of soil 

samples tested with different rates of loading and different degrees of 

drainage. In order to do this the theories of elasticity, plasticity, 

compression and consolidation are used. 

The Cam-clay and modified Cam-clay models bring these theories together 

wi thin the framework of critical state soil mechanics to provide 

constitutive equations for elasto-plastic soils which relate stresses 

and strains. When used in conjunction wi th Biot' s theory of three 

dimensional consolidation these equations allow the behaviour of 

triaxial samples under different loading rates and resultant different 

degrees of drainage to be investigated. The solution of these 

equations is generally very complex and the finite element method is 

used (see Chapter 7) to solve them. 

The pore pressures within triaxial samples will be investigated in 

later chapters in terms of excess and differential excess pore 

pressures as defined in this chapter. 
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3. LITERATURE SURVEY 

3.1 Introduction 

This chapter presents a review of some of the research work carried out 

in fields relevant to this Thesis. The subjects dealt with here are 

those large enough to warrant separate presentation. Other subjects 

are discussed throughout the dissertation as they arise. 

3.2 Numerical Analysis of the Triaxial Test and Coupled Consolidation 

There is very little reported work on numerical analyses for coupled 

loading and consolidation problems either generally or for the 

triaxial test in particular. Britto and Gunn (1987) used the CRISP 

finite element program with coupled loading and consolidation to model 

consolidation analyses for which theoretical solutions are available. 

They compared the numerical and theoretical results for these 

situations and showed good agreement thus demonstrating the validity of 

the approach. 

Carter (1982) carried out finite element analyses of the triaxial test 

using the modified Cam-clay elasto-plastic soil model (Roscoe and 

Burland (1968» based on the critical state soil mechanics concepts 

and Biot (1941) type coupled consolidation (see Chapters 2 and 7). He 

modelled a series of drained triaxial tests at different constant 

rates of axial strain. 

Some predictions of non-homogenei ty caused by partial drainage in 

drained tests were made but the effects of end restraint were not 

considered. The analyses showed good agreement with experimental 

results and showed that the modified Cam-clay model used with coupled 

consolidation could successfully model the behaviour of triaxial test 

samples. 

Woods (1986) used a similar finite element mesh to that used by carter 

(1982) to investigate the coupled consolidation of triaxial saaples. 

He used the CRISP finite element program (Britto and Gunn 1987) with 

the modified Cam-clay soil model. He showed that using this program 

with coupled consolidation it vas possible to .odel the Mandel Cryer 

effect (Mandel (195?) and Cryer (1963» and he also predicted radial 

non-uniformity of water content in samples consolidated rapidly with 
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radial drainage. These non-uniformities have been aeasured 

experimentally by Atkinson, Evans and Ho (1985) in triaxial saaples. 

Houlsby and Nageswaran (1982) used finite element analyses to predict 

similar non-uniformities of water content in radially consolidated 

oedometer samples. 

A number of other researchers have modelled the triaxial test using the 

finite element method without coupled loading and consolidation. 

Linear elastic analyses were carried out by Girijavallabhan (1970). 

Non-linear analyses have been carried out by Perloff and Pombo (1969), 

Girijavallabhan and Mehta (1969), Radhakrishnan (1972) and Costa Filho 

( 1980) . These have been used to investigate stress and strain 

distributions in triaxial tests with end restraint. The result of some 

of this work is discussed in section 3.4. 

3.3 Strain rate effects 

There has been considerable research into the effect of strain rate on 

the shear strength of soils. Two effects may be identified. The first 

is that samples subjected to fast strain rates develop non-uniform pore 

pressures and effective stresses due to incomplete drainage. 

Consequently the shear strength is affected. 

rate effects is investigated in Chapter 4. 

This aspect of strain 

The second effect is a 

true strain rate effect that is not dependent on excess poor pressures 

and is therefore strictly outside the scope of this dissertation. 

However as rates of loading are to be discussed it will be mentioned 

briefly and the main conclusions presented. This effect may be further 

broken down into main components. These will be discussed here under 

the headings of ageing and viscous effects. 

3.3.1 Ageing effects 

Ageing of a sample either at constant pore pressure, i.e. allowing 

drainage and secondary consolidation to take place (Taylor (1955) 

Richardson (1988) Oikawa (1987» or undrained at constant water 

content (Seed, Mitchell and Chan (1960» appears to increase its 

stiffness and shear strength. There is evidence (Seed, Mitchell and 

Chan (1960» that the strength at very slow strain rates may increase 

through this ageing effect during a test with tests at very slow strain 

rates having higher strengths. This effect is however of lesser 

importance during the shear stage of a test than in the consolidation 
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stage. If strength and stiffness of saaples are to be coapared they 

should be allowed to consolidate for the same length of tiae before 

testing (Richardson (1988), Oikawa (1987». 

3.3.2 Viscous effects 

The more important strain rate effect is the viscous strength component 

which is dependent on strain rate. Casagrande and Wilson (1953) 

suggested that soils loaded quickly have a greater resistance to 

breakdown of the soil skeleton, an effect called structural viscosity. 

This effect can be seen in the results of undrained triaxial 

compression tests run at different strain rates. Whitman (1960) 

reviewed a large number of such tests on normally and overconsolidated 

soils. He found that for a range of strain rates approximately 

100,000 times that of the slowest rate the undrained shear strength 

increased approximately 50' for normally consolidated soils and 100' 

for overconsolidated soils with increaSing strain rate. The fact that 

the effect is greatest for overconsolidated soils can probably be 

explained by internal drainage away from the sample ends and the 

formation of slip planes in the slower tests as discussed by Atkinson 

and Richardson (1987). Atkinson and Richardson (1987) measured an 

approximate 20' increase in undrained strength for each tenfold 

increase in strain rate for samples with an overconsolidation ratio of 

20. 

O'Reilly, Brown and Overy (1989) carried out a series of undrained 

triaxial compression tests on Ko normally consolidated silty clay. 

They observed an increase in the maximum stress ratio q'/p' of 0.125 

for each tenfold increase in axial strain rate, (equivalent to an 

approximate increase in shear strength of 15' compared to that at the 

slowest rate). They attributed this increase in strength to an 

expansion of the yield locus at high strain rates caused by increased 

viscous resistance to shear. This effect appears to occur for .ost 

soils. Graham, Crooks and Bell (1983) and Brand (1984) showed that the 

undrained strength of lightly overconsolidated soils increased by an 

amount between 10 - 20' for each tenfold increase in axial strain rate. 

These papers used the results from many other research workers and 

included data on twelve soils. 

In drained tests the viscous effect is aasked by drainage effects. 

Por nomally consolidated soils high undissipated excess pore pressures 
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at fast strain rates result in lower shear strength as reported by 

Schmertmann (1984), Gibson and Henkel (1954) and Hvorslev (1960). 

Hvorslev also carried out tests on overconsolidated saaples and 

measured increased shear strength at faster rates due to the larger 

negative excess pore pressures which increased the effective stresses 
in these tests. 

From these results it may be concluded that strain rate effects are 

significant. The magnitude of these effects is difficult to assess as 

the effects of unequalised excess pore pressures tend to mask thea 
particularly in drained tests. 

3.4 End Restraint 

The cap and base platens in a conventional triaxial test restrain the 

radial straining of the sample at its ends because of shear stress 

between the platens and the sample. This effect is known as end 

restraint. End restraint has a significant effect on the stress 

distribution in a triaxial sample and affects the overall behaviour of 

the sample and hence the measured properties. A great deal of work has 

been carried out to determine the effects on measured soil properties 

and to reduce end restraint. This work, particularly with reference to 

excess pore pressure, is discussed in this section. 

3.4.1 Effect on strains, stresses and pore pressure 

The most obvious sign of the effect of end restraint and non-unifora 

stresses is in the deformed shape of triaxial samples. Samples 

undergoing triaxial compression tend to bulge at mid height or barrel 

as described by Bishop and Henkel ( 1962 ) . Rowe and Barden (1964 ) 

reported mid height sample areas 50' greater than those at the sample 

ends at axial strains of 20'. The effect is less pronounced in drained 

tests but is significant and reduces the axial stress at the mid height 

of the sample in relation to the ends. It also causes problems in the 

calculation of axial stress. Bishop and Green (1965) calculated the 

effective stress friction angle t' for a sand in a drained test using 

the average sample area, average area of the middle half of the saaple 

and area at mid height. The three values of t' were 37.6°, 37.1° and 

36.9° respectively. 

Bod restraint causes a non-unifora stress distribution within the 
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triaxial saaple. This distribution was investigated experi.entally by 

Barden and Berry (1965) who carried out an unconf ined compression test 

on a large cylindrical sample of overconsolidated clay. They .easured 

the axial stress at the base of the sample on the central axis and at 

the edge of the sample. They found that at low stresses the edge stress 

was higher than the centre stress and at higher stresses the opposite 

was true. These two cases were compared to the work of Coker and Pi Ion 

(1957) and Van Royen and Backhofen (1960) and found to correspond to 

elastic and plastic deformation respectively. A similar experiment by 

Schockley and Ahlvin (1960) on a very large sand sample showed a 

similar pattern of stresses with strains following the same pattern. 

The effect of end restraint on stress distribution in elastic saaples 

has also been investigated mathematically by Pickett (1944), 

O'Appolonia and Newmark (1951) and Balla (1960). These analyses all 

gave similar stress distributions at the sample ends to those discussed 

above. Finite element work using a linear elastic .odel by 

Girijavallabhan (1970) and by Perloff and Pombo (1960) using an elasto­

plastiC model also confirmed this pattern of stresses for small 

(elastic) strains. These mathematical and numerical analyses show that 

axial stresses at the extreme perimeter of the samples may be more than 

one and a half times the average axial stress. 

However, the greatest effect of end restraint on the stress 

distribution is its effect on the distribution of shear stress. The 

frictional stresses at the ends of the sample tend to considerably 

reduce the deviator stress at the ends of the sample compared to that 

at mid height (Bishop, Blight and Donald, 1960). The mean effective 

stress at the ends is increased. The analyses by pickett (1944), 

O'Appolonia and Newmark (1951), Balla (1960) and Girijavallabhan (1970) 

also show an overall reduction in deviator stress at the sample ends 

compared to that at the mid height of the sample. However, the very 

high axial stresses at the extreme perimeter of the sample at the ends 

as previously noted above result in a higher deviator stress in these 

locations than at the mid height of the sample. Elasto-plastic finite 

element analyses by Perloff and Pombo (1960) also show this 

concentration of shear stress and indicate that the soil in these 

locations is the first to undergo plastiC straining. 

The results of linear finite element analyses by Girijavallabhan (1970) 

and non-linear analyses by Perloff and Pombo (1960), Girijavallabhan 

and Mehta (1969), Rahakrishnan (1972) and Costa Pilbo (1980) on 

- 53 -



triaxial suples with a height to diameter ratio of 2 indicate that the 

stresses over the middle third of the sample are quite uniform. They 

also show that the stresses do not vary froll those computed on the 

assumption of the sample deforming as a right cylinder by more than 

*5'. 

The non-uniform stress distribution results in the generation of non­

uniform excess pore pressures. Whether the excess pore pressures 

generated are greatest in the middle of the sample or at the ends is 

dependent upon the relationships between changes in stress and the 

generation of excess pore pressure. This relationship may be described 

by a pore pressure parameter such as Skempton's (1954) A parameter. 

Bishop and Henkel (1962) used Skempton's pore pressure parameter to 

show that the excess pore pressure will be higher at the ends of the 

sample unless A exceeds unity or unless the value of A increases fairly 

rapidly as the deviator stress increases. These latter conditions are 

likely to occur in normally consolidated samples and in sensitive 

soils. 

These trends have been conf irmed by observations of excess pore 

pressures made at the ends and middle of samples in undrained tests by 

Taylor and Clough (1951) Bishop, Alpan, Blight and Donald (1960), 

Bishop, Blight and Donald (1960), Blight (1963), Barden and McDermott 

(1965) and Blight (1965). The generation of excess pore pressures is 

discussed further in Chapter 4. 

The non-uniform excess pore pressures cause migration of pore water 

from areas of high pore pressure to areas of lower pore pressure. 

Consequently overconsolidated soils and sands have higher water 

contents after shear at the middle of the sample whilst in normally 

consolidated samples water migrates to the ends of the samples. This 

behaviour is confirmed by measurements of water content made by 

Shockley and Ahlvin (1960), Whitman, Ladd and Da Cruz (1960), Olson 

(1960), Bishop, Blight and Donald (1960), Taylor and Clough (1951), 

Casagrande and Poulos ( 1964) and Barden and McDermott ( 1965) in 

undrained tests. Whitman, Ladd and Da Cruz (1960) and Olson (1960) in 

particular carried out series of undrained tests on samples with 

different overconsolidation ratios. In the first of these series of 

tests water contents were found to be higher at the ends for noraally 

consolidated suples and lightly overconsolidated suples up to an 

overconsolidation ratio of 4.6. Crawford (1960) measured the water 
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content of samples of sensitive clay after drained compression and 

found the water contents to be greatest at the ends of the sample. 

These results confirm the excess pore pressure distributions previously 

described. 

Non-uniform stress conditions cause localised straining of samples and 

the formation of slip planes. This has been studied by Lade and Tsai 

(1985) and Atkinson and Richardson (1987). This occurs particularly 

with overconsolidated samples. Work by Atkinson and Richardson (1987) 

indicated that the formation of slip planes in overconsolidated samples 

is associated with non-uniform excess pore pressures and pore water 

migration. Lower excess pore pressures generated in areas of high 

shear stress draw in water which softens and weakens the soil locally 

resulting in the formation of slip planes. Tests carried out at fast 

strain rates showed no formation of slip planes because little 

migration of pore water took place. 

The non-uniform straining of triaxial samples means that axial strains 

measured as relative movement of the two platens are average strain 

values for the whole sample. Because the shear stress at the sample 

ends is reduced by end restraint as previously discussed this strain is 

an underestimate of the strain at the mid height of the sample. 

Girijavallabhan (1970) carried out linear elastic finite element 

analyses and showed that the degree of overestimate of Young's modulus 

varied with poisson's ratio v up to about 9' for v = 0.49. The 

overestimate for smaller values of poisson's ratio were less being 

approximately 0.9' for v = 0.2, 2.6' for v = 0.3 and 4.6' for v = 0.4. 

Maguire (1975) collected the results of linear elastic analyses by 

other workers. These agreed quite closely with Girijavallabhan (1970). 

Costa Filho (1980) carried out non-linear finite element analyses of 

the triaxial test which indicated a similar overestimate of Young's 

modulus of about 10' in the initial stages of shearing. 

In practice other errors are involved in the measurement of axial 

strains including bedding between the sample ends and platens which is 

discussed in Chapter 8. 

Clearly end restraint may cause errors in triaxial test results. As 

previously discussed non-unifora deforaation of suples ukes the 

calculation of axial stress difficult and inaccurate. Measurement of 

excess pore pressure at the base of a s .. ple in an undrained test aay 
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be unrepresentative of that at the aiddle of a sample. Indeed the tests 

already mentioned by Barden and McDeraott (1965) showed excess pore 

pressure at the ends of a sample as auch as 300 kPa higher than those 

in the middle for very fast strain rates. Errors of this nature lead 

to errors in calculation of the interaediate effective stress or mean 

effective stress pi, which in turn lead to errors in calculation of 

effective stress strength parameters of the soil. Additionally an 

undrained sample is not truly undrained because of migration of water 

or internal drainage that can affect the strength of a sample and non­

uniform stresses can cause slip planes to fora. The problem of non­

uniform excess pore pressures in undrained tests may be solved by 

running tests at a slow enough rate that excess pore pressures equalise 

and effective stresses may be measured accurately. The other problems 

which also occur in drained tests remain but are not as severe. From 

this discussion it is clearly desirable to remove end restraint. 

3.4.2 Methods of reducing end restraint 

Many attempts have been made to reduce or eliminate the effects of end 

restraint. Taylor (1941) showed that the peak strength of samples was 

unaffected by end restraint if samples had a height to diameter ratio 

of 2:1 or more. This was later confirmed by Lee and Seed (1964) and 

Bishop and Green (1965). 

Numerous attempts have been made to design apparatus to remove end 

restraint. Kjellman (1936), Taylor (1941) and Tschebotarioff et al 

(1956) produced apparatus with segmented end platens. However, these 

allowed lateral expansion only at the joints between segments. Cooling 

and Golder ( 1940) used conical platens and Larew (1960) paraboic1al 

platens to try to induce uniform stress conditions. Blight (1965) used 

a segmented sample which consisted of discs of soil at each end sealed 

in latex rubber to deform with the sample in the middle and induce 

reasonably uniform stresses. 

The method generally accepted as being the most effective is the use of 

lubricated or "free" ends. End restraint is reduced by introducing a 

piece of rubber membrane at the end of the sample with a sandwich of 

grease between it and the polished platens. This method has been used 

by Rowe and Barden (1964), Lee and Seed (1964), casagrande and Poulos 

(1964), Barden and McDermott (1965), Bishop and Green (1965), Chandler 

( 1966), Narain and Singh (1966) Duncan and Dunlop (1968), and Lade and 
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Tsai ( 1985) • Lubricated ends have been found to be effective in 

reducing non-unifonaities of stress, strain and excess pore pressure in 

triaxial samples. They have therefore been useful in deteraining the 

effects of end restraint on the measured properties of soils. 

Tests have been carried out to compare the strengths of samples with 

fixed and lubricated ends by Rowe and Barden (1964), Lee and Seed 

(1964), Bishop and Green (1965), Narain and Singh (1966), Duncan and 

Dunlop (1968) and Lade and Tsai (1985). The results of these tests 

showed that the value of the friction angle +' obtained from tests with 

fixed ends was generally 10 or 20 higher than those with "free ends" 

especially for samples with a height to diameter ratio of less than 

2:1. For samples with a height to diameter ratio greater than 2:1 the 

difference was generally small to zero. These results indicate that 

end restraint tends to increase the measured strength of a sample. 

Tests by Bishop and Green (1965), Duncan and Dunlop (1968) and Lade and 

Tsai (1985) indicate that the stress-strain behaviour of samples with 

end restraint is slightly stiffer than those with lubricated ends and 

that failure occurs at a smaller axial strain. This is because of non­

uniform stresses and strains. The sample stresses are slightly less at 

mid height due to barrelling than at the ends and strains are larger. 

The stiffness calculated from overall strains and average axial stress 

is therefore misleading and results in an overestimate of stiffness. 

The results of the tests using lubricated ends indicate that 

deformations are more uniform with a tendency for multiple slip planes 

rather than a single slip plane (eg. Lade and Tsai (1985» and that 

non-uniformities of excess pore pressure and water content are reduced. 

Despite the benefits of lubricated ends they are not widely used 

because of the disadvantages associated with them. The aain 

disadvantages are the difficulty in providing drainage because of the 

rubber discs and the compressibility of the discs and grease which can 

lead to erroneous strain measurement. Additionally Duncan and Dunlop 

(1968) showed that for long tests (longer than 5000 minutes) the 

effectiveness of lubricated ends was severely impaired because the 

grease was squeezed out fro. beneath the rubber disc. They also found 

that the suple sometimes bulged severely at the top or bottOli. 

Casagrande and Poulos (1964) conducted triaxial tests on clay. with 

lubricated ends and reported a eignificant reduction in end restraint 
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only for very short test times. Olson and caapbell (1964) also showed 

that lubricated ends were not fully effective with soft clay saaples. 

~ubricated ends appear to be reasonably effective only for relatively 

stiff samples and sands. These results therefore cast some doubt on 

the confidence with which lubricated ends may be used. 

The approach generally used is to use samples of a minimum height to 

diameter ratio of 2: 1 and carry out tests slowly enough to allow 

accurate measurement of effective stresses. 

3.5 Loading Rate Determination Methods 

The most commonly used methods for determining the axial strain rate to 

be used in drained and undrained triaxial tests are those described by 

Bishop and Henkel (1962). The method for drained tests is based upon 

a theoretical relationship between degree of dissipation of excess pore 

pressure and the time factor, Tv. In deriving this relationship it was 

assumed that the rate of generation of excess pore pressure during a 

drained test is constant. This was shown to be approximately the case 

for normally consolidated samples but is clearly not so for 

overconsolidated samples for which the pore pressure response is quite 

different. Terzaghi's (1943) equation of one-dimensional consolidation 

was solved for the case of constant increase in excess pore pressure 

and expressed in terms of the degree of consolidation where the degree 

of consolidation is defined as: 

3.1 

where 0 is the average excess pore pressure in the sample and 00 is the 

excess pore pressure that would have resulted at the given rate of 

increase without any dissipation. This was done for various drainage 

conditions. The method used for determination of the loading rate in 

undrained tests is based upon a relationship between degree of 

equalisation of excess pore pressure and the time factor Tv. This 

relationship was derived by Gibson and presented in papers by Bishop, 

Alpan, Blight and Donald (1960) and Bishop, Blight and Donald (1960). 

Despite some simplifying assumptions including a constant rate of 

increase of excess pore pressure of parabolic distribution Gibson's 

relationship was shown in the second of these papers to agree well with 

experimental results for the case of no filter paper sidedrains. The 

degree of equalisation U in this relationship was defined as: 
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3.2 

where Odin is the difference in excess pore pressure between the end and 

middle of the sample and Q~ is the value of this difference in a test 

with no equalisation. 

These relationships for drained and undrained loading contain 

assumptions, particularly to do with the rate of generation of excess 

pore pressure, that may be erroneous in some cases and particularly for 

overconsolidated soils. They also include the assumptions of one­

dimensional consolidation theory and further assume that the solutions 

of this case apply in the different loading case of the triaxial test. 

Davies (1988) showed that a solution to Terzaghi's equation of one­

dimensional consolidation with constant rate of increase of excess pore 

pressure derived by Schiffman (1958) which is very similar to Gibson 

and Henkel's (1954) solution agreed well with experimental data for the 

case of isotropic loading. However the solutions may not hold for 

triaxial loading. Consequently they are not strictly applicable in all 

cases and may contain considerable errors. 

These relationships are used to calculate a time to failure, from which 

the strain rate may be calculated, to give the required degree of 

dissipation of excess pore pressures in drained tests or degree of 

equalisation in undrained tests. This method has certain limitations. 

1. The calculation gives only the degree of dissipation or equalisation 

of excess pore pressure not the actual value of excess pore pressure or 

differential excess pore pressure in drained or undrained tests 

respectively. However, it is the magnitude of the excess or 

differential excess pore pressure that is the error in a test. It is 

unknown and will vary for different soils even for the same degree of 

dissipation or equalisation. 

2. The required degree of dissipation or equalisation (usually 95') is 

attained only at the strain used to calculate the strain rate. This 

strain is normally chosen to be the failure strain. The calculations 

give no indication of the deviation from the desired stress path at 

times before the chosen strain. 

3. If the required degree of dissipation or equalisation is required 

throughout the test the strain chosen to calculate the strain rate 
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should correspond to the first reading to be taken and will be a saall 

strain. This can lead to excessively slow strain rates being used and 

degrees of dissipation or equalisation at large strains that are far 

greater than necessary. 

4. The calculations make no distinction between noraally and 

overconsolidated soils despite the fact that they behave quite 

differently. 

5. The calculations are formulated to calculate a strain rate and are 

not applicable to a constant stress rate loading test. It is however 

possible to calculate a stress rate rather than a strain rate from the 

time to failure obtained from the relationships. 

Blight (1963) carried out a series of drained and undrained triaxial 

tests to compare experimental results with the theoretical 

relationships of Gibson and Henkel ( 1954) for drained loading and 

Gibson (reported by Bishop, Alpan, Blight and Donald (1960» for 

undrained loading. For the case of drained loading of normally 

consolidated samples his tests showed that drainage took place faster 

than was indicated by the relationship derived by Gibson and Henkel 

(1954) for both drainage from the ends only and all round drainage. 

Undrained loading tests on compacted clays by Bishop, Blight and Donald 

(1960) showed good agreement with Gibson's relationship for the case of 

no filter paper sidedrains. Tests on normally consolidated clays with 

sidedrains showed less good agreement with drainage taking longer than 

predicted by Gibson's relationship due to inefficiency of the filter 

paper drains. 

Blight (1963) showed that experimental relationships between 

dissipation and equalisation of excess pore pressure and time factor Tv 

was the same for both drained and undrained loading for each drainage 

case. He was therefore able to simplify the method for selection of 

loading rate using the same expressions for both drained and undrained 

loading. The loading rate selection method is however in other 

respects the same as that of Bishop and Henkel (1962) and has the saae 

li.i tations. The strain rates obtained are slightly faster for drained 

loading and very similar for undrained loading. 

Thurairajah and Balasubramaniaa (1977) used a different approach to the 
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problem although they also used Terzaghi's theory of one-diaensional 

consolidation. They showed that the excess pore pressure generated and 

dissipated in a drained test on normally consolidated kaolin taken to 

critical state was about 41 times the excess pore pressure generated in 

an undrained test starting at the saae isotropic mean effective stress. 

They also showed that this excess pore pressure was generated at a 

constant rate in a test with a constant axial strain rate (this vas 

assumed by Gibson and Henkel (1954». 

In order to determine a suitable loading rate for a drained test using 

the method of Thurairajah and Balasubraaaniaa (1977) an undrained 

stress path is required which is integrated numerically or graphically 

along the drained stress path assuming that the drained stress path is 

made up of a large number of small undrained loading steps after vhich 

dissipation of excess pore pressure takes place. In this way the value 

of the total excess pore pressure generated (and diSSipated) is 

calculated and its rate of generation can be calculated for any strain 

rate. Knowing the rate of generation a solution to Terzaghi's theory 

of one-dimensional consolidation for constantly increasing pore 

pressure is used to calculate the value of excess pore pressure in the 

test. 

This method has the advantage over those described by Bishop and Henkel 

(1962) that it gives an actual value for the excess pore pressure in a 

drained test rather than a degree of dissipation which allows the 

accuracy of the test to be better assessed. However it requires that 

an undrained test be undertaken, involves complicated integration 

procedures and contains the same assumptions regarding the use of 

Terzaghi' s theory of one-dimensional consolidation as the methods 

described by Bishop and Henkel ( 1962) . Furthermore the method is 

restricted to drained tests on normally consolidated clays. 

Atkinson (1984) proposed another method for deteraining loading rates 

in drained tests that would give an actual value of excess pore 

pressure in a test. Again Terzaghi' s theory of one-dimensional 

consolidation solved for a constant rate of generation of excess pore 

pressure (Gibson and Henkel(1954» is used to define the rate of 

dissipation of excess pore pressure. The rate of generation of excess 

pore pressure is def ined by the rate of increase of the Han and 

deviator stresses through the use of a pore pressure par ... ter. The 

value of this pore pressure parameter is generally not constant and 18 
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difficult to estiaaate. The aethod is therefore difficult to use. 

Despite the assumptions regarding the use of one-dimensional 

consolidation theory it was shown to give reasonable agree.ent with 

experimental results for isotropic loading (for which the value of the 
pore pressure parameter is not required). These tests, similar to those 

tests carried out by Davies ( 1988) , show that Gibson and Henkel' 8 

( 1954) solution of Terzaghi' s equation which was used in the derivation 

of this method is reasonably valid for isotropic loading. 

This method is based upon constant stress rate loading, rather than 

constant strain rate loading, which is a more logical approach to the 

problem as the rate of generation of excess pore pressure is clearly 

related to stress changes rather than strain changes (eg. Skempton 

(1954». The other methods for constant strain rate make assumptions 

about the rate of generation of excess pore pressure. 

3.6 Use of Pore Pressure Probes 

Pore pressure probes have been used by a number of research workers to 

measure pore pressures within a sample. Hamilton (1939) used a copper 

tube to measure excess pore pressure in a consolidometer in the middle 

of a one-dimensionally consolidating sample with drainage to both ends. 

Probes have been used in the triaxial test to measure pore pressure in 

the middle of the sample either extending from the base on the sample 

axis (Hilf (1956), Marsal & Resines (1960» or inserted into the side 

of the sample. 

Taylor (1944, 1948) used a probe inserted diagonally into the middle of 

a triaxial sample to measure pore pressures in the failure zone during 

triaxial tes ts . Tay lor and Clough (1951) used a simi lar probe in 

undrained triaxial tests in which pore pressures were also measured at 

the base of the sample to determine the difference between excess pore 

pressure at these two points. This is the reason for the use of a 

probe in the work described in this dissertation. These probes 

consisted of a porous element connected to a tube which led to a pore 

pressure measuring device. Two siailar devices utilising a .. tal 

needle and teflon tubing respectively with a porous stone inserted 

horizontally into the middle of a triaxial s .. ple were described by 

Whitman a Richardson (1960). Bishop, Alpan, Blight and Donald (1960), 

Bishop, Blight and Donald (1960) and Blight (1961 and 1965) Mde 

extensive usa of a aiailar probe consisting of a ceraaic tip inserted 
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at the aid height of a triaxial sample and connected to a pore pressure 

measuring device by a small nylon tube. The aethod of sealing the 

membrane used in this case was a screw down collar. The probe was used 

in 4" diameter by 8" samples and in a few 3" by 11" diameter saaples. 

This work was carried out to measure the difference between aid height 

and base pore pressures. A similar probe is used commercially and is 

described by Head (1986) for use in 4" diameter by 8" samples. 

Barden & McDermott (1965) used a probe inserted in 4" and 11" diameter 

samples to measure pore pressures in the middle of a sample. This 

consisted of a ceramic tipped probe itt in diameter connected to a 

measuring system by a plastic tube. 

Recent advances in electronics have meant that small pressure 

transducers may be mounted on or inside a sample to measure excess pore 

pressure. O'Reilly, Brown and Overy (1989) used such a transducer 

inserted in the centre of a 76mm x 38mm diameter sample during 

consolidation from a slurry. Hight (1982) used a small pressure 

transducer (6. 3mm diameter) mounted on the side of a 76mm x 38ma 

diameter sample. 

The system used to seal the membrane where the probe passed through in 

most of the cases described was a screw fitting that would tighten onto 

the membrane or sealing with latex rubber. Often a combination of both 

methods was used. 

3.7 Filter Paper Sidedrain EfficiencY 

Filter paper sidedrains are used to speed the dissipation or 

equalisation of excess pore pressures in drained and undrained triaxial 

tests respectively. It is normally assumed that these drains represent 

a fully efficient drainage surface over the curved surface of the 

sample. However because they do not cover the whole surface but are 

made of strips alternating with equally sized gaps and because they are 

of finite permeability they are not fully efficient. Consequently 

filter paper sidedrains do not speed dissipation or equalisation of 

excess pore pressures as much as the assumption of a fully efficient 

drainage surface implies. 

Martins (1962) showed that for filter paper drains consisting of strips 

alternating with equal gaps consolidation takes twice as long as for a 
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fully efficient drainage surface over the whole saaple. Bishop and 

Gibson ( 1963) presented a theory that related the ef f iciency of 

sidedrains to their permeability relative to that of the soil being 

tested. The efficiency of the sidedrains is greatest for soils that 

are relatively impermeable compared to the filter paper drains. 

Clinton (1984) used Bishop and Gibson's (1963) equation to calculate 

some typical efficiencies for soils of different permeabilities. His 

results show that for a soil that is less than four orders of magnitude 

less permeable than the filter paper drains the value of the 

characteristic time t, obtained from a "one step" consolidation test 

will be quite different (higher) to that obtained from a test with 

fully efficient drainage. Values of C
y 

calculated using such a value 

of t, assuming fully efficient drainage will therefore be seriously in 

error (too low). Blight (1963) presented experimental results that 

showed that the efficiency of filter paper drains could fall as low as 

15' for some soils. 

This inefficiency has similar implications for triaxial test loading 

rate determination methods for the case of all round filter papers. 

Clearly the undissipated or unequalised excess pore pressures in a 

drained test will be greater than assumed on the basis of fully 

efficient sidedrains. However if a loading rate determination method 

uses consolidation characteristics derived for the same soil and 

drainage conditions Bishop and Gibson (1963) found the errors caused by 

ignoring the inefficiency of the sidedrains in the consolidation test 

and triaxial compression test to be self compensating. For a method 

such as Bishop and Henkel's (1962), inefficient sidedrains mean that 

the value of the charcteristic time t, is increased compared to the case 

of fully efficient drainage and the calculated Cy is reduced. These 

values when used to calculate a loading rate result in a slower rate 

than would have been the case for fully efficient drains thus 

compensating for the inefficient drainage or equalisation provided in 

the compression test. 

3.8 Summary 

Pinite element analyses of the triaxial test have proved very useful in 

understanding the behaviour of triaxial soil samples. Analyses with 

coupled loading and consolidation have been shown to agree well with 

theoretical analyses indicating the validity of this approach. 
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The effect of strain rate on soil strength and stiffness is not well 

understood. There appear to be two separate effects due to ageing and 

viscous behaviour but these are difficult to separate froll the effects 

of partial drainage of samples at fast strain rates. 

End restraint causes non-uniform stresses, strains and pore pressures 

in triaxial samples. These can lead to errors in the measurement of 

sample behaviour and hence errors in the calculation of soil 

parameters. Techniques to eliminate end restraint have not been 

totally successful and are not generally used. Errors are minimised by 

the use of appropriate testing procedures. 

Errors in the measurement of stresses result from non-uniform pore 

pressure distributions in samples tested at fast rates. These errors 

may be minimised by using testing rates slow enough to allow a high 

degree of equalisation of pore pressure. The method for determining 

sui table loading rates generally used is that of Bishop and Henkel 

(1962). This method is limited in application to constant strain rate 

loading tests and does not allow the error in measured soil parameters 

to be calculated. 

Pore pressures at points in a triaxial sample other than at the ends 

may be successfully measured with the use of pore pressure probes on 

the surface of the sample or inserted into it. 

Drainage from a triaxial sample may be speeded up with the use of 

fil ter paper sidedrains. However they are not fully efficient and 

significant errors in the calculation of consolidation parameters may 

occur if this is assumed. 
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4. Theoretical AnalYsis Of The Triaxial Test 

4.1 Introduction 

Excess pore pressures in a triaxial test are generated in response to 

changes in total stress. In a drained test these excess pore pressures 

are allowed to dissipate by drainage to a back pressure. The magnitude 

of the undissipated excess pore pressure in drained tests is a 

function of the rate of generation of excess pore pressure (which is 

related to the material properties and the rate of loading) and the 

rate of drainage. 

In an undrained test the excess pore pressures are not allowed to 

dissipate. The magnitude of excess pore is not uniform throughout the 

sample due to stress non-uniformity caused by end restraint. The 

excess pore pressures equalise by internal drainage. The difference 

between excess pore pressures at different points is a function of the 

rate of generation of differential excess pore pressures (which is 

related to the loading rate and material properties) and the rate of 

equalisation of excess pore pressure. 

This chapter investigates the generation and dissipation/equalisation 

of excess pore pressures and determines equations through which their 

magnitudes and the errors in derived soil parameters that they cause 

may be estimated. 

4.2 The Drained Triaxial Test 

In a drained triaxial test the sample is allowed to drain to a back 

pressure via a porous stone at the base and/or the top of the sample 

and often to filter paper drains around the perimeter of the sample. 

As axial load is applied to the sample and excess pore pressures are 

generated drainage takes place and allows these excess pore pressures 

to be dissipated. This section will consider a conventional fully 

drained test:- a test in which the loading rate is slow enough that all 

excess pore pressures are dissipated. The stress paths of normally and 

overconsolidated triaxial samples undergoing drained shear testing will 

be explored in v-p'-q' space within the framework of critical state 

80il mechanics. 

pigures 4.1 a and b show graphs of q' versus p' and specific voluae, v 
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versus p' respectively. On these graphs are shown the stress paths for 

two samples, the first noraally consolidated to p' (line AS) the second 
a 

consolidated to p' a and swelled back to p' c before testing (line COB). 

In each case the stress path is constrained to move within a drained 

plane with a gradient of 3:1 in the q'-p' plane as shown in Figure 

4.1a. The normally consolidated sample reaches a peak deviator stress 

at point B which corresponds with the critical state line. The 

overconsolidated sample reaches a peak deviator stress at point D on 

the Hvorslev surface, up to which point its behaviour has been elastic, 

before moving back down the drained plane to reach critical state at 
point E. 

The normally consolidated sample undergoes positive volumetric strains 

throughout the test. The overconsolidated sample undergoes initially 

positive volumetric strains whilst its behaviour is elastic but then 

undergoes negative volumetric strains after reaching peak deviator 

stress when the strains become predominantly plastic. The paths 

followed in these tests in V_pi space are shown in Figure 4.1b. 

4.3 The Undrained Triaxial Test 

In the undrained triaxial test no drainage is allowed from the sample 

and shearing therefore takes place at constant volume with excess pore 

pressures not allowed to dissipate. This section will consider a 

conventional undrained test in which the excess pore pressures 

generated are everywhere the same and in which no internal drainage 

takes place. The stress paths in v-p'-q' space will be explored for 

normally and overconsolidated samples within the framework of critical 

state soil mechanics. 

Figures 4.2 a and b show graphs of q' versus p' and specific volume, v 

versus p' respectively. On these graphs are shown the stress paths for 

two samples the first normally consolidated (line AS), the second 

overconsolidated (line CDE). Both the samples have the same water 

content. 

During a triaxial test the normally consolidated sample's stress path 

moves across the Roscoe surface and a peak deviator stress is reached 

at point B at critical state as shown in Pigure 4. 2a. The stress path 

of the overconsolidated sample moves vertically from C to D during 
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which time the behaviour is elastic. At D the strains becoIIe 

predollinantly plastic and the stress path aoves along the Hvorslev 

surface fro. D to E where the peak deviator stress is reached at 

critical state. Points B and E are the same. 

Because no drainage is allowed from the samples the specific volume of 

both samples does not change during the test and they follow the paths 
shown in Figure 4.2b. 

4.4 Limitations of the Critical State Soil Model 

4.4.1 Deformations within the state boundary surface 

In the critical state soil model deformations within the state boundary 

surface are purely elastic. An undrained test on an overconsolidated 

soil (see Figure 4.2a) has a stress path which rises vertically to the 

Hvorslev surface where plastic strains begin and the stress path moves 

along the Hvorslev surface to critical state. 

Real soils do not conform exactly to this behaviour. The strains 

wi thin the state boundary surface are not purely elastic with some 

plastic strains occuring as the Hvorslev surface is approached. The 

stress path for the example considered is therefore not vertical but 

follows a path such as that shown by line OF in Figure 4.3a. 

Anisotropy of the sample may also cause the stress path not to be 

vertical but this effect is generally small and of lesser importance 

than the deviation from purely elastic behaviour discussed above. 

4.4.2 Local Deformations and Local Drainage 

The critical state soil model was developed to model very small 

homogeneous soil elements each one behaving in accordance with critical 

state soil mechanics theory. However,in practice soil is not 

cOlDpletely homogeneous and this leads to localised deforaations and the 

formation of slip planes particularly in overconsolidated suples. The 

critical state soil model does not predict these deforaations and is 

therefore unable to model the overall behaviour of a soil sample when 

.lip planes are formed which is dominated by the behaviour of the soil 

ele.ents in the slip planes. The aodel is however still valid for 

elements within and outside a slip plane. 

- 68 -



In an undrained test on an overconsolidated sample slip planes normally 

form when the sample reaches the Hvorslev surface. Elements of soil 

near the middle of the sample generate negative excess pore pressures 

generating local drainage (Atkinson & Richardson, 1987) towards this 

zone of elements. This increases the water content and weakens the soil 

in this zone. The stress path of elements of soil within the slip 

planes in the v - p' plane are shown in Figure 4 . 3b. Further 

deformations are concentrated in these elements and slip planes fora. 

This results in a peak deviator stress being recorded at point F in 

Figure 4.3a rather than at S which would have been the case had there 

been no local drainage and non-uniformity of water content. 

A similar problem occurs in drained tests on overconsolidated soils 

when elements of soil in the middle of the sample where stresses are 

greatest pass their peak strength after reaching the Hvorslev surface 

and then weaken causing slip planes to form in these elements. The 

consequence of this behaviour is that the critical state soil model 

does not model the overall behaviour of overconsolidated samples very 

accurately once the Hvorslev surface is reached and slip planes have 

formed as the effects of slip planes are not accounted for. 

4.5 The Generation of Excess Pore Pressures In The Triaxial Test 

4.5.1 Pore Pressure Parameters 

Excess pore pressures are generated in response to a change in total 

stress. The relationship between the change in pore pressure and 

changes in total stress loading was expressed by Skempton (1954), using 

two parameters, A and S, in the following expression: 

4.1 

Where Ao, and A0
3 

are the changes in the major and minor principal 

stresses respectively relative to the beginning of the test. For a 

fully saturated soil B is very nearly equal to one. A varies with 

overconsolidation ratio, the proportion of the failure stress applied 

and the soil properties. Skempton's equation does not take into account 

the intermediate stress 02. Henkel (1960) proposed a more fundamental 

form of this equation using a stress invariant for the shear stress 

term. 
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AU = B UAO; +~Oi +Aa;)/a 

+ Cl J (4 "i -4a;)t. ... C 60'& -AfJi)· + (AOj-4o:)j 

where a is a pore pressure parameter. 

In the triaxial test A02 = A03 and the expression reduces to; 

4.2 

4.3 

These equations may be rewritten in terms of the stress invariants p 

and q defined in section 2.2.2 (Atkinson and Bransby, 1978) as; 

4.4 

where a and b are pore pressure parameters similar to A and B. It is 

assumed that the soil under consideration is saturated and consequently 

b = 1 and will be omitted from the following equations. 

It is useful to be able to consider the rate of generation of excess 

pore pressures at any time during a test as it is this coupled with the 

consolidation process that determines the value of undissipated or 

unequalised excess pore pressures. In order to do this tangential 

rather than secant pore pressure parameters are required. Equation 4.2 

can be rewritten in terms of very small increments of stress (Atkinson, 

1984) and becomes; 

4.5 

where a is equal to the gradient of a plot of u versus q for the point 

in a test considered. Figure 4.4 shows an undrained test on a normally 

consolidated soil. At point X on the stress path the pore pressure Ux 

consists of the original pore pressure at the start of the test uo ' the 

excess pore pressure component (lp equal to the change in p and the 

component of excess pore pressure (lq due to the change in q. The value 

of a is equal to the rate of change of pore pressure with q and is 

therefore given by; 

0( :: c!!\ = 
d~ 

4.6 

From inspection of Figure 4.4 it can be seen that a is equal to the 

negative inverse of the gradient of the undrained stress path. Like A, 

Q varies with overconsolidation ratio. For noraally consolidated clay. 
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A and a increase towards failure and reach large values near critical 

state. Because the shape of the Roscoe surface is the same on any 

constant volume section the value of A, a and Q at any value of q'/p' 

is a constant for a given normally consolidated soil. Ideally for an 

overconsolidated soil within the state boundary surface A=i and a=O 

because the stress path is vertical in q'- p' space. Por 

overconsolidated soils whose state reaches the Hvorslev surface a 

becomes negative immediately whilst A becomes negative when the total 

excess pore pressure generated becomes negative. The excess pore 

pressure generated in a triaxial test will depend upon the properties 

(and state) of the soil which determine the value of Q. Figure 4.5 

shows the undrained stress paths of two soils both normally 

consolidated to the same isotropic effective stress. The excess pore 

pressure generated by soil A is much greater than that generated by 

soil B and this results in a different undrained stress path for the 

two soils. In order to investigate the factors controlling the 

magnitude of excess pore pressures generated, Cam-clay theory can by 

used to examine the shape of the undrained stress path. The Cam-clay 

equation for the normally consolidated undrained stress path may be 

written as; 

4.7 

where P'o is the value of p' on the normal consolidation line for vo' 

the specific volume at the beginning of the test. 

Prom inspection of equation 4.7 for a given value of q' soils with 

larger values of MAl (A-X) will have a larger value of corresponding p' 

and hence a lower excess pore pressure ie. the stress path will be more 

like soil B than soil A. The separate influence of M and A/(A-x) on 

the shape of the stress path can be illustrated by considering sets of 

samples with constant M or constant A/(A-x). 

Por critical state q'/p' = M 

Therefore 
-(~) 

p 'cs = p' 0 exp ,-~ 4.8 

and 
-(~) 

q' cs • Mp'o exp ~ 4.9 

From the above equations saaples with the same value of 1/(1-x) will 

fail at the same p'. Two such samples with different values of Mare 
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shown in Figure 4.6a. Siailarly two samples with the same value of M 

but different values of A/(A-x) are shown in Figure 4.6b. 

From Figure 4.6 it can be seen that higher values of both M and A/(A-x) 

resul t in higher failure deviator stress and mean total stress. 

Therefore in both cases up the component of excess pore pressure 

generated during the test in response to the increase in p, is greater. 

However it is interesting to note that in the case of increasing M 

there is no increase in uq the excess pore pressure genera ted in 

response to the deviator stress q' applied and in the case of 

increasing AI (A-x) this excess pore pressure component is reduced. 

This has the effect that increasing M leads to an increase in the total 

excess pore pressure generated during a test and increasing A/(A-x) 

leads to a decrease. However both increasing M and A/(A-x) leads to a 

decrease in the rate of generation of excess pore pressure with q', 

i.e. the value of the pore pressure parameter is less. 

If equation 4.7 is differentiated to obtain the gradient of the 

undrained stress path, a may be obtained as; 

- I -dt(/dp' 
=- C).-t) 4.10 

As expected a is inversely proportional to MAl (A-x) . In order to 

investigate the variation of the value of Ml/(A-x) in natural soils a 

survey of the literature was undertaken to determine this parameter for 

a range of soils. The results of this survey are given in Table 4.1. 

The value of MA/(A-x) varies from 1.18 to 1.77 with an average value 

of 1.41 which is a relatively small range. It might therefore be 

expected that the undrained stress paths for most normally consolidated 

soils will be of a similar shape and that the excess pore pressure 

generated in response to loading might also be similar. Evidence that 

this is the case is available from results of some of the undrained 

triaxial tests carried out on normally consolidated soil described in 

section 6.13. Figure 6.70 shows the undrained stress paths obtained 

from these tests which show a remarkable similarity with the exception 

of Kaolin. 

An indication of the variation in the value of Ml/(A-x) with different 

values of a may be obtained from Figure 4.7. This figure also shows 

how a varies throughout a test as the ratio p'/p'o decreases for the 

cam-clay aodel. 
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4.5.2 End restraint effects 

In the triaxial test the platen and top cap restrain the saaple 

radially at the top and bottom. The effects of restraint are aost 

important in undrained tests because it is end restraint that leads to 

non-uniformi ty of excess pore pressures in an undrained triaxial 

sample. The non-uniformity of pore pressures is caused by a non­

uniformity of applied total stress due to the frictional shear forces 

that act between the platens and the sample giving a different stress 

state at the sample ends and in the middle of the sample. As triaxial 

compression of the sample takes place a secondary effect becomes 

important as the sample "barrels" i.e. the sample diameter increases 

more at the middle than at the ends. The opposite effect occurs during 

isotropiC compression or in an extension test. This results in a 

difference in total axial stress at the sample middle compared to the 

ends. These two effects will be studied in this section by considering 

the pore pressure response of an undrained triaxial specimen in which 

it is assumed that no equalisation of excess pore pressure takes place. 

Throughout this analysis the subscripts a and r refer to axial and 

radial and the subscripts e and m refer to the end and middle of the 

sample. 

If a small increment of total axial stress 60. is applied to the sample 

the resultant changes in the total stress invariants p and q, 6p and 6q 

respectively, at the middle of the sample assuming that there are no 

end restraint effects in this region arei 

4.11 

4.12 

At the ends of the sample the end restraint is great. Observation of 

samples made after testing show that radial strain at the sample ends 

is very small (these observations are very difficult to make due to 

disturbance of the sample at the end of a test e.g. when the membrane 

is removed). In this analysis it will be assumed that the end 

restraint is complete i.e. there is no radial strain at the ends, £N' 

during loading. 

For undrained loading assuming no equalisation of excess pore pres.urea 

and full saturation, the volUlaatric strain, £y' for any al_ant of soil 
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wst be zero. Ere has been assumed to be zero and therefore for the 

soil elements touching the platens the axial strain, E aust also be -zero. 

For these zero strain conditions to be possible the applied total 

stresses on such a soil element must be isotropic and hence for an 

applied increment of axial total stress, 60., there must be equal radial 

and circumferential total stress increments, 6or ' applied to the soil 

element. This radial stress increment is the frictional shear force 

between the sample and end platen. Therefore for an increment of axial 

stress, 60., the changes in p and q at the ends of the sample are; 

SP .. = SOi 
4.13 

4.14 

Substituting equations 4.11 and 4.12 into equation 4.5 gives the change 

in excess pore pressure in the middle of the sample, 66~ 

60.", = b [s:- +0{ sera] 
4.15 

Substituting equations 4.13 and 4.14 into equation 4.5 gives the change 

in excess pore pressure at the sample ends, 66. 

4.16 

Comparing equations 4. 15 and 4.16 gives the change in differential 

excess pore pressure at the middle of the sample, 6udm, due to an 

increment of axial stress 50 •• 

4.11 

The analysis can now be taken a stage further to include the effects of 

barrelling of the sample. Again assuming no radial strain at the sample 

ends, the sample diameter at the ends will reaain equal to the original 

undeforaed diameter, D. The diameter at the aiddle of the sample D. 

will however increase, (for a coapression test). If the radial strain 
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at the middle of the sample is, £,., then the diaaeter will be given by; 

4.18 

where £nn is expressed as a fraction (negative strains indicate an 

increase in area). The cross sectional area of the sample is 

proportional to the square of the sample diameter and hence it follows 

from equation 4.18 that; 

4.19 

where A is the original sample area equal to the area at the end of the 

sample and Am is the area at the middle. Total axial stress is 

inversely proportional to the sample area and hence for a small 

increment of total axial stress applied to the sample, the increment of 

total axial stress at the ends of the sample, 60 , may be related to a. 
the increment of total axial stress at the middle of the sample, 60., 

by the following equation. 

4.20 

Equation 4.20 may be simplified using the following approximation. 

4.21 

which is not greatly in error for the small values of radial strain 

encountered in the triaxial test. Substi tuting equation 4.21 into 

equation 4.20 gives; 

4.22 

Hence the increment of total axial stress at the ends of the sample 

will, in a compression test, be greater than at the sample middle by an 

amount equal to-2£ 60 . If this additional total axial stress at the nn am 

sample ends is substituted into equation 4.16 the additional change in 

differential excess pore pressure at the sample middle 6QdII can be 

calculated as; 

4.23 

For the general case of a sample for which the radial strain at the 
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aiddle is £N' an equation for the change in differential excess pore 

pressure at the middle of the sample compared to that at the ends due 

to an increment of total axial stress 6a. (at the sample middle), may 

be obtained by combining equations 4.17 and 4.23. 

4.24 

Equation 4.24 now includes the effects of end restraint and barrelling. 

Examining equation 4.24 shows that; 

4.25 

4.26 

4.6 Excess pore pressures in drained tests 

This section investigates the magnitude of undissipated excess pore 

pressures in the triaxial test under constant stress rate and constant 

strain rate loading. 

4.6.1 Constant stress rate loading 

Terzaghi's equation of one-dimensional consolidation for a constant 

rate of stress loading is solved in Appendix A giving the following 

solution for the excess pore pressure in a soil sample undergoing one­

dimensional compression with a constant rate of stress loading. 

00 

ii (II! I! ) = '\ rae.. hS (COS,," -1)1 si" (R1fj~) e;r.p (-ri" JTsTy) 
LL~t\Sn3 J llh 4-

4.27 
1':1 

.. Yt 00. i! (2h-2' -C.V 

where h • drainage path length. 

The first part of this expression is a transient tera that describes 

the gradual build-up of excess pore pressure to a constant equilibrium 

value. When equilibrium is reached this tera is zero and the excess 

pore pressure is a constant value equal to the second part of the 

expression. This equilibrium value will be determined for different 

drainage cases. 
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For the case of drainage from one end of a sample; 

4.28 

where h = 28 = height of the sample and t, is the characteristic tiae 

as defined in section 2.5.2. therefore; 

4.29 

For the top of the sample, z = 28 

il :::: 1~, 
top TT 

= 0·637 t, eTa 4.30 

For the middle of the sample, z = 8 

U ld = $~. Oa. = 0·477 r, 00. 
1ft 2..tT 

4.31 

The distribution of excess pore pressure is parabolic the pore pressure 

at the mid height being 3/4 of that at the top. The average excess 

pore pressure is 2/3 of the maximum and is given by the expression 

ClQ.V = 0·42.4 t. 00. 4.32 

For the case of drainage to both ends of the sample: 

4.33 

where h = 8 = 1/2 height of the sample and therefore 

4.34 

For the middle of the sample, z = 8 

= 0·6a7~. b; 4.35 

and 

ii = O. -424 r.. ~ 
"-'ov -

4.36 

which is the same as for one end drainage. 
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The values of Q for drainage from both ends will however be 0.25 of 

those for one end drainage because tl is 0.25 of the value for one end 
drainage. 

These equations are of the form; 

4.37 

where ~ is a constant related to the drainage conditions and position 

in the sample that the pore pressures are measured. Similar 

expressions may be derived for all round drainage. Such an expression 

was derived by Thurairajah and Balasubramaniam (1977) for the maximum 

undissipated excess pore pressure in a sample of height 2H and diameter 

H with all round drainage and constant rate of generation of pore 

pressure. The value of ~ derived from this expression is 1.95. Bishop 

and Henkel (1962) derived an expression for a similar sample for the 

average value of the undissipated excess pore pressure. The value of 

~ derived from his expression is 0.79. 

The following equations can therefore be written for all round 

drainage. 

4.38 

4.39 

These formulae relate the excess pore pressure to the rate of axial 

stress loading for conditions of no lateral strain for which the rate 

of generation of excess pore pressure is equal to the axial stress 

loading rate. In a triaxial test there are significant lateral strains 

and the rate of generation of excess pore pressure is unlikely to be 

equal to the axial stress loading rate. However these formulae 

indicate that in constant stress rate loading tests the magnitude of 

the excess pore pressure generated is likely to be proportional to the 

axial stress loading rate and the value of t,. Values of ~ for 

different drainage conditions are summarised in Table 4.2. 

The rate of generation of excess pore pressure in a triaxial test .. y 

be obtained from equation 4.5 by differentiating with respect to tiae. 

4.40 
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and assuming full saturation of the sample where p and q are the rate 

of change of the total stress invariants p and q respectively, a is a 

pore pressure parameter and dD/dt is the rate of generation of excess 

pore pressure. If this value is assumed to be constant it replaces the 

axial stress loading rate, 0a in the foregoing equations. The excess 

pore pressure can therefore be expressed as 

4.41 

This equation was derived by Atkinson (1985) as a method of determining 

a suitable loading rate for constant stress rate drained triaxial 

tests. For the standard triaxial compression test the radial stress is 

held constant. Equation 4.41 can therefore be rewritten as; 

4.42 

where q = 0a = axial stress loading rate 

The major errors involved in the application of this equation to the 

triaxial test are likely to be attributable to the assumptions that the 

theory of one-dimensional consolidation is still applicable and that 

the rate of generation of excess pore pressure is constant (this 

implies that a must be constant). However although the magnitude of 

excess pore pressure indicated by this equation is likely to be in 

error the factors that it indicates the excess pore pressure to depend 

upon are still likely to be applicable in the triaxial test. 

4.6.2 Constant strain rate loading 

Solving Terzaghi' s equation of one-dimensional consolidation for a 

constant rate of strain loading (see appendix A) gives the following 

equation. 

- 2) · U = ¥ w {hi - i! £. 
ik 

4.43 

Por a sample of height 2H with drainage to the base only, h=2H. At the 

top of the sample z=O and 

4.44 

At the mid height of the sample zaH 
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4.45 

For a sample of height 2H with drainage to both ends, h=H. At the aid 

height of the sample z=O 

Ulilid = I • 
"1.- H £. 

2.k 4.46 

For the purpose of this investigation it is useful to have these 

equations in terms of characteristic properties measured in the 

consolidation stage. 

Using k = myCyYW and Cy = nH 2 /t, for one end drainage and for drainage 

from both ends, gives the following equations; 

For drainage from the base only 

Utop = 0·697 r. E.. 
my 

u.,..&cl = o· 477.t. E-. 
mv 

For drainage to both ends 

4.47 

4.48 

4.49 

The distribution of the undissipated excess pore pressure is parabolic 

with the value at mid height in the case of one end drainage being 3/4 

of the value at the top. The average value is 2/3 of the maximum. 

Therefore, for drainage from one end or both ends; 

Ua.v = o· 414 1. Eo. 4.50 
My 

where t, is for the appropriate drainage conditions. 

These equations take the form; 

4.51 

where ~ is a constant dependant on drainage conditions as in the case 

of constant stress rate loading. rurtheraore the values of ~ are the 

same. Therefore the following equations aay be written for all round 

drainage; 
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• 
U",tcl = 1·95 ~ E .. 

m, 

ii." = O.;!>.t Ea. 
My 

As already noted the general form of these equations is; 

4.52 

4.53 

4.54 

This form of equation relates to one-dimensional compression. For the 

case of one-dimensional compression the axial strain, E. is equal to the 

volumetric strain, Ev. The coefficient of compressibility mv is defined 
as; 

m ::: y 
4.55 

where 60 I v is the change of vertical effective stress causing the 

volumetric strain. This can therefore be rewritten as; 

= S' 4.56 

where S I is an axial stiffness (it is not equal to Young's Modulus 

because it refers to the stiffness under zero lateral strain whilst 

Young's Modulus refers to conditions of no lateral restraint). The 

equations for pore pressure may now be rewritten in the form; 

, . 
U = P S~, £a. 4.57 

This is simply stating that in fact the cases of constant stress and 

strain rate loading are the same, the equilibrium excess pore pressure 

being dependant on the rate of stress loading. For the case of the 

triaxial test the loading is uniaxial (radial stress is constant) and 

S' is equal to Young's modulus E'. Equation 4.42 for the excess pore 

pressure in a drained triaxial test may therefore be written; 

4.58 

Again this equation siaply states that the equilibriua excess pore 

pressure is dependant upon the axial stress loading rate and is exactly 

the same as equation 4.42 for constant stress rate loading. Equation 

4.58 i8 however of little practical use unless Young's Modulus i8 a 

constant (it can be taken as such for an overconsolidated soil but not 
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for a normally consolidated soil) and it is known. Use may be made of 

the relationship between Young's Modulus and the Bulk Modulus K' given 
by equation 2.7. 

4.59 

where v' is the drained Poisson's ratio. The bulk modulus is equal to 

the inverse of the isotropic coefficient of compressibilty, m defined 

in Chapter 2 and hence; 

m=~ 
E 

where c is a constant equal to 3(1-2v'). 

Substituting this into equation 4.58 gives; 

4.60 

il = p E.Q .L. ('/3 +0(.) 4.61 
In 

where the constant c has been incorporated into the constant~. This 

equation is now much more practical as the coefficient of 

compressibility, m, may be found in the consolidation stage of a test 

at the same time as t, is found. However it should be noted that the 

equations for elastic behaviour used in its derivation are only 

applicable for overconsolidated soils. It is therefore to be expected 

that the "constant" value ~ will only be constant for overconsolidated 

soils. 

4.7 Excess Pore Pressures in Undrained Tests 

This section investigates the magnitude of differential excess pore 

pressures in the undrained triaxial test under constant stress rate and 

constant strain rate loading. 

4.7.1 Constant stress rate loading 

In an undrained test it is not the total aagni tude of excess pore 

pressure that is important, as no dissipation is allowecl, but the 

differential excess pore pressures due to end restraint. If a constant 

.tress rate loading undrainecl test is considered in which there is no 

equalisation of excess pore pressures the differential excess pore 

pressures between the aiddle of the ... ple and the ends is found from 
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equation 4.24 as; 

4.62 

where 0. is the rate of application of axial stress and t is the tille 

after the start of the test. If the sample is saturated b=1 and will be 

ollitted in the follOWing expressions. The rate of application of axial 

stress will considered at the middle of the sample so that b. becomes 

q for constant radial stress and equation 4.62 becomes; 

4.63 

For a test in which the degree of equalisation of differential excess 

pore pressures is Ue , the differential excess pore pressure is; 

4.64 

The degree of equalisation of excess pore pressure Ue was defined by 

Bishop and Henkel (1962) as; 

4.65 

where Qdmo is the differential excess pore pressure with no equalisation 

and Qdm is the differential excess pore pressure with a degree of 

equalisation U.. An equation is required describing the rate of 

equalisation of differential excess pore pressures. Gibson and Henkel 

(1954) solved Terzaghi's equation of one-dimensional consolidation for 

a constant rate of generation of excess pore pressure and derived the 

equation below which gives the time required to reach an average degree 

of dissipation Ud • 

4.66 

where H • i height of sample, n = constant dependent on drainage 

conditions, Cy • coefficient of consolidation and Ud = 1 - Oav/Oo where 

o is the average excess pore pressure in a partially drained test and .y 
o is the average excess pore pressure in an undrained test. This 

o 
equation lIay be rewritten; 

4.67 
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where t1 is the characteristic tiae defined in section 2.5.2 and ~ is 

a factor dependent upon drainage conditions with values equal to those 

derived in section 4.6 for average excess pore pressures. 

Work by Gibson described in a paper by Bishop, Alpan, Blight and Donald 

(1960) showed that there is a similar relationship between the degree 

of equalisation of excess pore pressure and time as for dissipation of 

excess pore pressure in drained tests. Equation 4.67 aay therefore be 

rewritten for undrained loading as; 

4.68 

where the constant ).I. now relates to equalisation of pore pressures 

rather than dissipation and has different values to those for drained 

loading. 

Eliminating t(1-U.) from equations 4.64 and 4.68 gives; 

4.69 

Equation 4.69 relates the magnitude of differential excess pore 

pressures to the rate of application of. deviator stress, q, the 

drainage conditions, (as defined by the value of ).I.), and to the soil 

properties defining the rate of generation, (a), and equalisation, (t,), 

of excess pore pressure. The geometry of the sample is also 

considered with the inclusion of the radial strain at the suple 

middle, Enn. 

For the conventional triaxial compression test the radial stress is 

held constant and equation 4.69 may also be written as; 

4.70 

where b is the axial stress loading rate. The fora of this equation 
• 

is similar to those for drained loading in that the unequalised excess 

pore pressure is proportional to the axial stress loading rate and the 

value of t,. 

4.7.2 Constant strain rate loading 

As in the case of drained loading the sa.e fundaaental equation applies 

- 84 -



regarding the differential excess pore pressure in constant strain rate 

loading as it does in constant stress rate loading. Equation 4.70 for 

constant stress rate loading may therefore be rewritten for constant 

strain rate loading on saturated soil (b=1) llaking use of the undrained 
Young's, modulus, E • 

u 

Making use of the relationships given in Chapter 2; 

E", = 9 ( 1- 2. ,,' ) 
l. M (I + v') 

4.71 

4.72 

where v' is the drained Poisson • s ratio and m is the isotropic 

coefficient of compressibility. This can be rewritten; 

E", = : 
1ft 

where C = ., (I-l..V') 

2..(1 + ,,' 
Equation 4.71 may therefore be rewritten; 

II dlft =)A t Ea. (01.. - 1/& + 2.. f.,.,.) 
M 

where c is incorporated into ~. 

4.73 

4.74 

This equation is similar in form to that for constant strain rate 

drained loading. In both cases the differential excess pore pressure is 

proportional to the axial strain loading rate and the ratio of the 

characteristic time t, and the coefficient of compressibility. As with 

the equation for drained loading the value of ~ is likely to be a 

constant only for overconsolidated soils when the equations for 

elastic behaviour used in its derivation are reasonably accurate. 

4.8 Brrors in Drained Triaxial Tests 

This section examines the errors in measured soil parameters caused by 

undissipated excess pore pressures in drained tests. 

4.8.1 Loading rate requirements 

A drained test aust be run with a slow rate of loading, (stress or 
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strain controlled), if it is to be fully drained. A fully drained test 

is def ined as one in which all excess pore pressures are dissipated and 

the pore pressure everywhere is equal to the back pressure. This is 

the ideal condition such that the pore pressure measured at one end of 

the sample is equal to the pore pressure throughout the sample. The 

very slow loading rates required to achieve this condition are often 

impracticable and faster rates are used resulting in partially drained 

conditions and undissipated excess pore pressures exist in the sample. 

The pore pressure measured at one end of the sample no longer 

represents the pore pressure at other points and most particularly in 

the centre of the sample where shear stresses are the greatest and 

failure will occur. The requirement to be considered in choosing a 

loading rate is that the undissipated excess pore pressures should be 

of a small enough magnitude that the results of the test are not 

significantly affected. The degree to which measured soil properties 

can be in error is discussed in the following sections. 

4.8.2 Errors caused by undissipated excess pore pressures in 

drained tests on normally consolidated soils 

The excess pore pressures generated in a test on a normally 

consolidated soil are positive. In a triaxial test in which there is 

not full drainage the pore pressure at the middle of the sample is 

therefore greater than the back pressure which is normally assumed to 

be equal to the pore pressure in the sample. The effect that this has 

on the measured strength characteristics of the soil are illustrated 

in Figure 4.8. The actual stress path followed by an element of soil 

some distance from a drainage boundary is shown. The assumed stress 

path based upon the back pressure is shown as a hatched line offset 

form the actual stress path horizontally by an amount equal to the 

undissipated excess pore pressure. The asssumed critical state point 

on this line is therefore incorrectly positioned as is the critical 

state line passing through it. The gradient of the critical state line 

is shallower than the true line and hence M is underestimated. Another 

important affect is that on the value of the critical state deviator 

stress. In a fully drained test the failure deviator stress attained 

would have been q' d in Figure 4.8 rather than the value of q' 1ft measured. 

The magnitude of these errors may be examined by reference to Figure 

4.8. The excess pore pressure at the aiddle of the saaple when 

critical state is reached is a fraction x of the original consolidation 
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pressure p' ie. (l = xp' o • o· 

Prom the geometry it can be seen that the reduction in deviator stress 
at failure is given by; 

4.75 

The ratio of measured deviator stress q'm to that in a fully drained 

test, qed can be expressed as below; 

I 

~,.. = I - X --,-
'lei 

Similarly the measured value of M, Mm in this test is given by; 

M ... ?> M (I-X) 
3-M~ 

The ratio of Mm to the true value of M is given by; 

~ - ~ (I-X) -
M 3-M,c 

4.76 

4.77 

4.78 

For example for a test in which p'= 300 kpa, M=1.0 and x = 0.05 the 

reduction in failure deviator stress is 22.5kpa, q'm/q'd = 0.95, ~ = 

0.956 and Mm/M = 0.966. 

Bishop and Henkel ( 1962) showed the variation of the peak deviator 

stress with time to failure attained on normally consolidated samples 

of Weald Clay, London Clay and Kaolin. The results for Weald Clay are 

reproduced in Figure 4.9. The small decrease in strength observed at 

very slow strain rates is probably due to a decrease in the viscous 

component of strength however the general trend is in agreement with 

the theoretical analysis which has not taken into account this effect. 

4.8.3 Errors caused by undissipated excess pore pressures in 

drained tests on overconsolidated soils 

During a test on an overconsolidated soil the excess pore pressures 

generated are initially positive but become negative as the stress 

path approaches the Hvorslev surface. Consequently the pore pressure 

in the sample away from the drainage boundaries is initially higher but 

subsequently lower than the back pressure. The consequences that this 

has for the .easured strength characteristics of a soil if the pore 
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pressure is assumed to be equal to the back pressure are illustrated in 

Figure 4.10. The actual stress path followed by a soil eleaent away 

from a drainage boundary is shown. The measured stress path using the 

back pressure as the pore pressure is shown as a hatched line offset 

from the actual stress path by an amount equal to the undissipated 

excess pore pressure. The peak deviator stress is reached when the 

stress path joins the Hvorslev surface. Theoretically the stress path 

then moves down the Hvorslev surface to the critical state line. In 

practice due to stress non-uniformities only a small amount of soil in 

narrow slip planes follows this path. Further negative excess pore 

pressures generated from this point onward are small these occurring 

mainly in the slip planes towards which internal drainage occurs 

thereby further reducing the deviator stress that the sample as a whole 

can support. Because of these localised deformations stresses and 

strains measured are no longer representative of the whole sample the 

majority of which is simply being unloaded. Any attempt at 

determination of the critical state point is invalid because of this 

premature failure of the sample. 

The peak deviator stress however is often of importance. It can be 

seen in Figure 4.10 that the negative undissipated excess pore 

pressures at the middle of the sample Om have the result that the peak 

deviator stress attained q'm is greater than the value qed that would 

have been the case had full drainage been allowed. The amount by which 

the deviator stress is increased is dependent upon the slope of the 

Hvorslev surface and the magnitude of the excess pore pressure. Data 

from tests by Parry (1960) analysed by Atkinson and Bransby (1978) 

indicate a slope of the Hvorslev surface for Weald Clay of about 0.75. 

Using this value the error in the value of the peak deviator stress can 

be estimated by using the equation below. 

4.79 

An excess pore pressure of -1SkPa will result in a peak deviator stress 

approximately 11 kPa greater than that attained in a fully drained test. 

This effect has been noted by Bishop and Henkel (1962) for 

overconsolidated Weald Clay. Pigure 4.11 shows the variation of peak 

strength with time to failure for strain controlled tests for this clay 

which are in agreement with the preceding analysis. 
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4.8.4 Errors caused by undissipated excess pore pressure in slow 

rate compression tests 

Drained tests in which a triaxial sample is compressed under isotropic 

or Ko conditions (or other conditions), may used to determine a value 

for A or K. The consolidation stresses are applied at a 'slow' rate 

to allow drainage to occur from the sample. A plot of specific volume 

against the natural logarithm of mean stress, p', then gives a straight 

line with a gradient equal to A or K depending on whether the sample is 

normally or overconsolidated. Such a plot is shown in Figure 4.12a, 

for an isotropically normally consolidated soil. The true normal 

consolidation line is shown as a full line. The hatched line 

represents the line plotted from the results of a test carried out too 

quickly for full drainage to occur. Consequently, for any particular 

value of specific volume, p' has been overestimated by an amount equal 

to the average undissipated excess pore pressure moving the calculated 

normal consolidation line to the right of its true position. Due to 

the logarithmic plot a constant error in pore pressure measurement 

throughout the test results in this line being steeper than the true 

line and also curved, being steeper at low stresses. Consequently the 

value of A obtained as the gradient of this line at any p' is 

overestimated as is the value of N obtained by prOjecting a tangent 

from the line at any p' to Lnp' = O. It can be seen that these errors 

are larger at lower stresses where the assumed and true normal 

consolidation lines diverge the most. 

Figure 4.12b shows typical test results for an isotropic consolidation 

test on a lightly overconsolidated clay. The values of A and N are 

measured by assuming that the portion of the measured stress path 

between two values of p', p', and P'2 is linear. The gradient of this 

line is the measured value of A, Am and the intercept with the Lnp': 0 

axis is the measured value of N, Nm• As stated previously the degree 

by which these measured values are in error depends upon the stress 

range over which they are measured (p', and P'2) and the magnitude of 

the average undissipated excess pore pressure G.v ' The error in N. also 

depends upon A, higher A values leading to higher errors in N. for a 

given excess pore pressure. 

Table 4.3 gives the errors in the measured values of A and N for two 

.tress ranges (p', • 150, P'2 • 300 and p', • 300, P'2 • 450) that aight 

typically be used. As expected the errors in A and N are greater for 
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the lower stress range, being about twice the errors for the higher 

stress range. The error in N for soils with higher 1 values are also 

seen to be greater as expected. The errors involved can be quite 

significant especially in the measured value of 1 and it is clearly 

important to keep undissipated excess pore pressure as low as possible. 

For the range of undissipated average excess pore pressures considered 

in Table 4.3 and for 1 and N measured over relatively small stress 

ranges the equations below may be used to calculate the approxiaate 

errors in the measured values of 1 and N. 

~fW' -I + /'·7 o.~ -
" p;., In P' .. v 

4.80 

~ - 1+ '·7 u,ov,{). - I + ,Ii (~_I) - -
N p;" Ln p~ 

4.81 

where p'ay is the average mean effective stress over the stress range 

for which 1 and N have been measured. 

4.9 Errors in Undrained Triaxial Tests 

4.9.1 Loading rate requirements 

As previously discussed the excess pore pressures generated in an 

undrained triaxial sample are not uniform because of the non-uniform 

stress distribution caused by end restraint. Pore pressures measured 

at the sample ends are therefore not representative of the whole of the 

sample, particularly the middle where the shear stresses are highest 

and failure occurs, unless the test is run slowly enough to ensure full 

equalisation of excess pore pressures. The requirement for loading 

rate is that it be slow enough that the error in pore pressure 

measurement (the difference between the ends and the middle of the 

sample) be small enough not to significantly affect the measured values 

of the soil properties being sought. The degree to which soil 

parameters are affected by this error is discussed in the following 

sections. 

4.9.2 Brrors caused by unequalised excess pore pressures in 

undrained tests on noraally consolidated soils 

As previously discussed the excess pore pressures generated in a 

normally consolidated soil s&aple are initially greater at the ends 
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than in the middle of the sample with this situation becoaing reversed 

towards the end of the test. This can lead to pore pressures measured 

at one end of the sample being initially too high and subsequently at 

failure too low. 

The ways in which this can affect the measured strength characteristics 

of a sample are illustrated in Figure 4.13. The stress path followed by 

an element of soil in the centre of the soil sample is shown. The 

stress path follows the Roscoe surface to the critical state point on 

the critical state line. The stress path calculated from test data 

with the pore pressure measured at the top or bottom of the sample is 

shown as a hatched line. The horizontal distance between this line and 

the true stress path is the difference in pore pressure between the 

middle and end of the sample. The critical state point on the assumed 

stress path is also offset to the right by an amount equal to the pore 

pressure difference. Consequently the critical state line drawn 

through the assumed critical state point is incorrectly located and has 

a smaller gradient than the true critical state line. M is therefore 

underestimated. 

The magnitude of this error can be illustrated by some simple geometry 

and by making some assumptions. Figure 4.13 shows a similar test to 

that discussed. It is assumed that the value of p' at critical state 

is equal to half of the value of p' at the start of the test (Figure 

6.70). It is also assumed that the rate of loading has no effect on 

the value of the peak/critical state deviator stress q'cs. It is 

possible that the small degree of internal drainage taking place during 

shear might result in slightly lower values of specific volume in the 

centre of the sample at failure and hence higher values of q'cs being 

measured in slower tests. However this affect is masked by viscous 

effects that result in slightly higher values of q'cs being measured in 

faster tests, Bishop and Henkel (1962). For an unequalised excess 

pore pressure equal to xp' 0 at the middle of the sample it can be seen 

from the geometry that the measured value of M, Mm is equal to; 

-- M 
I+~~ 

4.82 

where M is the true value. Consequently the ratio "-/M is given simply 

by; 

-- I 
1+2.~ 4.83 
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For example for a test in which M=1.0 and x = 0.05, ",=0.91 and 

M.lH=O.91 an error of 9'. 

4.9.3 Errors caused by unequalised excess pore pressures in 

undrained triaxial tests on over-consolidated soils. 

In a triaxial test on an overconsolidated soil the excess pore 

pressures generated are greater at the ends of the sample than they are 

in the middle. Pore pressures measured at the ends are therefore too 

high with respect to the middle of the sample. 

The effect that this has on the calculated stress path from a triaxial 

test is illustrated in Figure 4.14. The true stress path followed by 

the soil at the centre of the sample is shown rising almost vertically 

to the Hvorslev surface, continuing to the critical state point, by the 

solid line. The stress path calculated using the pore pressure 

measured at the end of the samples is shown with a hatched line. This 

line is offset to the left by an amount equal to the difference in pore 

pressure between the ends and middle. The critical state line is also 

offset. The critical state line drawn through this point is 

incorrectly positioned and has a larger gradient than the true critical 

state line and a higher value of M than the true value. 

If a series of tests are carried out with different values of P'o as 

shown in Figure 4.15, a line drawn through the apparent critical state 

points produces an apparent cohesion intercept on the q' axis while a 

line drawn through the true critical state point passes through the 

origin. This error was shown experimentally by Atkinson and Richardson 

( 1987) • It was pointed out by Bishop and Henkel ( 1962) that such 

errors result in high values of the cohesion intercept c'. 

The magnitude of the errors involved can be estimated by considering an 

example. Figure 4. 14 shows a similar test to that discussed above. As 

in the case of normally consolidated soils it is assumed that the value 

of q' reached at critical state is unaffected by the loading rate. 

The value of p' and q' at critical state is dependent not only upon p' 0 

but also on the over consolidation ratio with soils with higher OCR's 

failing at higher values of p' for a given p'o· 

Por this reason the value of unequalised excess pore pressure in this 

analysis will be related to the preconsolidation pressure P'c and it 
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will be assumed that the value of p' at critical state is p'el2 as 
shown in Figure 4.16. 

If a test is considered in which the difference in ~xcess pore pressure 

between the middle and ends of the sample is xp' c (x is negative because 

pore pressure in the middle is less than at the ends) the aaagnitude of 

errors in the calculation of M can be found. From the geometry of 

Figure 4.14 it can be seen that the measured value of M, M. is given by 

MM = M 4.84 
I +2.x. 

where M is the true value of M. The ratio ~/M is therefore given by 

4.85 

For example for a soil with M=1.0 and a test in which x = -0.05, then 

Mm=1.11 and Mm/M=,.1,. 

These equations are of little practical use as overconsolidated samples 

tend to fail on the Hvorslev surface before reaching critical state. 

This was discussed in greater detail in section 4.4. However they will 

give the error in the maximum stress ratio that is measured in a test 

compared to that measured in a fully equalised test. As in the case of 

normally consolidated soil internal drainage might be expected to have 

an effect on the strength of the sample. For the case of 

overconsolidated soils this drainage will always be towards the middle 

of the sample resulting in higher specific volumes and consequently 

lower strengths. It is therefore to be expected that slower tests 

would have lower peak strengths. This is in fact the trend that is 

seen in experimental tests however it is likely to be partly due to 

viscous effects. 

4.10 Summary 

In this chapter the stress paths of drained and undrained triaxial 

tests on normally and overconsolidated soils have been described in the 

context of critical state soil mechanics and the deviation of real soil 

from the theoretical stress paths, particularly with regard to 

overconsolidated soils, has been discussed. 

The generation of excess pore pressures in triaxial tests has been 
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investigated and the undrained stress path for normally consolidated 

soil has been investigated using ca.-clay theory. The pore pressure 

parameter a and shape of the undrained stress path have been found to 

depend upon the factor MA./ (A-x) • A survey of the literature has shown 

that the factor MA./(A-x) varies little for different soils and it is 

therefore expected that most soils will have reasonably similar 

undrained stress paths. Experimental results confirm this for the 

soils tested with the exception of Kaolin which has a Significantly 

different undrained stress path compared to the other soils tested. 

The effect of end restraint on the generation of excess pore pressures 

in the triaxial test has also been investigated and equations derived 

for the excess pore pressures generated at the ends and the middle of 

a sample. Solutions to Terzaghi's (1943) theory of one-dimensional 

consolidation under constant stress rate and constant strain rate 

loading have been used to derive equations relating excess pore 

pressure in drained tests to the axial stress loading rate. Similar 

equations have been derived for undrained triaxial compression tests 

relating differential excess pore pressure to loading rate. These 

equations show that for constant stress rate loading tests excess and 

differential excess pore pressures in drained and undrained tests 

respectively are related to the product of axial stress loading rate, 

b., and the characteristic time t,. For constant strain rate loading 

tests the equations show excess and differential excess pore pressure 

to be related to the product of axial strain loading rate, t., the 

inverse of the coefficient of compressibility, m, and the 

characteristic time t,. Both these products have the units of stress. 

For any test the appropriate one of these products may be calculated to 

give a stress which will be defined as the characteristic stress, 0c' 

for a test as below. 

For constant stress rate loading tests 

Por constant strain rate loading tests 

oc = e,,~, 
fW\ 

4.86 

4.87 

Using the definition of characteristic stress the equations for excess 

and differential excess pore pressure may be siaplified as below. 
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For one-diaensional constant stress rate loading cOlipression tests 

equation 4.37 aay be rewritten; 

4.88 

Note: this equation will also apply for isotropic loading for which q 
in equation 4.41 is zero and b. = p. 

For constant stress rate and constant strain rate loading triaxial 

tests equations 4.42 and 4.61 may be rewritten; 

4.89 

For constant stress rate and constant strain rate loading undrained 

triaxial compression tests equations 4.70 and 4.74 may be rewritten; 

4.90 

The errors in measured soil parameters due to excess and differential 

excess pore pressures in drained and undrained tests respectively have 

been investigated. Relationships between these errors and excess or 

differential excess pore pressure have been developed for different 

tests as below. 

For drained triaxial tests on normally consolidated soil in which the 

excess pore pressure at the middle of the sample is um = xp'o. 

-- 4.78 

For a drained triaxial compreSSion test on an overconsolidated soil the 

error in the peak deviator stress may be estimated as; 

4.79 

Note: This relationship is based upon the properties of Weald Clay and 

may be different for other clays. 

For drained one-dimensional or isotropiC cOlipression tests; 

~ = I + '·7 il .. v 4.80 
). p~ L"p~ 
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and 

I + &·7 a., ,[" 
p',. L" p~ 

-- 4.81 

For undrained triaxial compression tests on normally or 

overconsolidated soils for which the differential excess pore pressure 

Q~ is equal to xp'o for normally consolidated soils and equal to xp'c 

for overconsolidated soils 

M", = -M ,+2..x. 4.83/4.85 

The equations for excess and differential excess pore pressure and for 

errors in measured soil parameters are used in Chapter 8 to develop a 

method for selection of loading rates for tests to limit errors to 

acceptable values. 
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5. APPARATUS AND TEST PROCEDURE 

5.1 Introduction 

This chapter describes the equipment and procedures used to prepare 

samples and carry out triaxial tests. The apparatus used for the 

triaxial tests was a Bishop and Wesley stress path cell with some 

modification to allow additional measurements of pore pressure at the 

top of the sample and centre of the sample via a probe. Details of the 

instrumentation used and the calibration procedures for these 

instruments are also included in this section. 

Most of the testing procedures, used are "standard" procedures used at 

the City University Geotechnical Engineering Research Centre. 

Procedures relating to the use of the pore pressure probe and pore 

pressure measurement top cap were developed especially for this 

research. Additional details of the "standard" procedures and 

apparatus are described by Clinton (1987) and by Cherrill (1988). 

5.2 Sample Preparation Apparatus 

5.2.1 Floating Ring Consolidometer 

Reconstituted samples were made in floating ring consolidometers as 

illustrated in Figure 5.1. These long consolidometers consisted of a 

200mm long perspex tube with an internal diameter of 38mm. Clay slurry 

was consolidated in this tube between two pistons of a diameter 

slightly less than 38mm such that they moved freely inside the tube. 

Load was applied to the top piston via a ball bearing on which rested 

a hanger with the appropriate weight to apply the required 

consolidation pressure. 

5.2.2 Probe Hole Borer 

Before setting a sample up in the triaxial cell a hole was drilled into 

the suple to racei ve the pore pressure probe. In order to do this a 

special cradle was designed and built as shown in Figure 5.2. This 

consisted of a 38_ diameter semicircular cradle section into which the 

sample could be laid. Above the cradle could be fitted two horizontal 

plates 25mm apart. Through each was a hole. These holes were above 

the longitudinal axis of the cradle and at a right angle to it 
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vertically above each other. The diameter of the holes was slightly 

greater then 3 .. such that a 3 .. diaaeter drill bit could be lowered 

through them to the cradle beneath. This apparatus enabled a 3_ 

diameter hole to be drilled into a aa.ple placed in the cradle, on its 

longi tudinal axis and at right angles to it to racei ve the pore 

pressure probe. 

5.3 Triaxial Testing Apparatus 

5.3.1 General Description 

All the triaxial testing was carried out in a Bishop and Wesley 

triaxial cell. Loads in this cell were applied hydraulically and could 

be controlled through input to a microcomputer control system via 

feedback from electrical instrumentation on the cell. The stresses and 

strains on the sample were recorded automatically at selected time 

intervals and the data was dumped at the end of the test onto a floppy 

disc for analysis later. The general arrangement of the triaxial cell 

and its control and recording system is illustrated in Figure 5.3. The 

system used was a development of that described by Atkinson, Evans and 

Scott (1985) and Atkinson (1985). 

5.3.2 The Bishop and Wesley Triaxial Stress Path Cell 

The Bishop and Wesley triaxial cell is a development of the 

conventional triaxial cell described by Bishop and Henkel ( 1962) . 

Unlike the conventional triaxial cell it is hydraulically operated and 

is therefore much more versatile. This hydraulically operated cell is 

fully described by Bishop and Wesley (1975). The version used for this 

work was for 38mm diameter samples. 

5.3.3 Instrumentation 

Measurements of stresses and deformation were made as close to the 

sample as possible to reduce errors in measured values. The cell 

pressure was measured by a Druck pressure transducer fitted directly 

into the base of the cell. The pore pressure at the base of the suple 

was measured using another Druck transducer fitted into an aluminium 

block attached to the base of the cell and connected by a short length 

of non-expanding tubing through the base of the cell to the pedestal. 

A return line was provided froa the pedestal to the transducer block to 
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allow the transducer to be flushed to remove trapped air. A siailar 

arrangement was used to measure pore pressures at the top of the saaple 

with another transducer IIOWlted in an aluainiUII block and two leads 

into the cell which could be connected to the top platen. 

Drainage from the sample could be allowed from the top or bottom of the 

sample, (or both) by opening valves on these transducer blocks. Leads 

from the valves were connected to separate volume gauges with which the 

volume of water draining from the top and bottom of the sample could be 

measured separately. A fourth Druck pressure transducer mounted in a 

smaller block was used to monitor pore pressures in the pore pressure 

probe. There was no return line on this block for flushing or 

drainage. The pressure range of the four Druck transducers was 

0-1000kPa. 

The volume gauges used to measure the drainage from the top and bottom 

of the sample were Imperial College 50cc capacity gauges. These 

devices consisted of a freely moving piston wi thin an accurately 

machined cylindrical steel vessel. The piston was sealed at both ends 

with rolling belloframs. A compressed air supply was used to apply a 

back pressure at the bottom of the cylinder, the piston applying an 

equal pressure on the pore water system at the top of the cylinder. As 

water flowed into or out of the volume gauge the piston moved up or 

down. This movement was monitored by a linear displacement transducer 

mounted on the side of the cylinder and measuring the movement of a 

metal peg attached to the piston and extending through a slot in the 

cylinder. The displacement transducer was a type 85-258 manufactured by 

MPE Transducers Limited. 

The deviator load on the sample was measured using ~b Imperial 

College or Surrey University (Wykeham Farrance) type load cells mounted 

inside the triaxial cell. During a test the load cell was connected 

directly to the top cap of the sample using a suction cap system 

developed at Imperial College and illustrated in Figure 5.4. This 

system consisted of a rubber sleeve fitted to the top cap of the sample 

into which a tapered aluminium cylinder attached to the underside of 

the load cell could be fitted. A lead from the underside of this 

cylinder to the outside of the cell allowed the pressure at the 

interface of the cylinder and top cap to be reduced to atllOspharic 

pressure by opening the valve on the and of the lead. The difference 

between the cell pressure and at.oapharic pressure then ensured that 
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the top cap was securely attached to the load cell. The load cell was 

unaffected by changes in cell pressure and aeasured only the deviator 

stress applied to the sample. Since the load cell was placed inside 

the pressure vessel and attached directly to the sample top cap it 

recorded the load imposed on the sample without frictional loss through 

a piston seal in the top of the cell. 

Axial deformation of the sample was measured by a type HS-258 linear 

displacement transducer manufactured by MPE Transducers Limited and by 

a dial gauge fixed to the top of the cell. These instruments measured 

the relative movement between the top of the cell and the cross head on 

the ram. Each transducer was supplied with 8v DC from a transformer 

connected to the 240v AC mains supply and output from the transducers 

was taken to the computer control system. All the measuring 

instruments used on the Bishop and Wesley cell were of the resistive 

type, changes in the variable being measured causing a change in 

resistance of the device and hence a change in voltage. The 

arrangement of instrumentation is shown diagrammatically in Figure 5.3. 

5.3.4 Pressure and Loading Supply 

The cell pressure, volume gauge back pressure and axial ram pressures 

were provided from a central air compressor operating at about 800kPa. 

This common air supply was cleaned and dried before being stepped down 

to the required pressure for each of the three individual pressures by 

electromanostat valves manufactured by John watson and Smith Limited. 

The air supply for the back pressure system was connected to the base 

of the volume gauges, this pressure then being applied to the pore 

water through the piston inside the volume gauge. Air water interfaces 

were used between the manostats and the cell and base of the axial 

loading ram to apply pressure to these loading systems. This system is 

shown diagrammatically in Figure 5.3. 

5.3.5 The Control System 

The following functions could be controlled on the hydraulic triaxial 

cell: 

1. Cell water pressure 

2. Pressure on the lower bellofrall of the axial rail 
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3. Back pressure to the base and top of the sample 

4. Volume flow of water into the lower bellofram of the axial 

ram, (displacement of the axial ram). 

Each of these functions could be controlled independently of the other 

except for the pressure on the lower bellofram of the axial ram and 

volume flow into the axial ram bellofram only one of which could be 

controlled at any time. 

Control of the pressures was achieved through operation of the 

electromanostat valves by electric stepper motors acting through a gear 

box. Rotation of the motors was controlled simply by opening and 

closing switches. Opening and closing a switch once turned the motor 

through one "step" of a fixed value corresponding to a pressure change 

of about O. 4kPa. A second switch controlled the direction of the step. 

There was some slackness in the gearbox which became evident when the 

motor changed direction. This was eliminated by the addition of a weak 

spring or elastic band on the manostat side of the gearbox. 

The volume flow of water into the lower bellofram chamber of the axial 

ram was controlled by using a Bishop ram. The Bishop ram was linked 

into the hydraulic system such that the line to the air water interface 

could be closed off and the Bishop ram used to force water into or out 

of the lower bellofram chamber by screwing the ram in or out. This 

action directly raised or lowered the axial ram and was used to control 

axial displacement and hence axial strain. The Bishop ram was operated 

by another stepper motor acting through a gearbox. 

Control of the radial strain of the sample, ( for example in Ko 

compression), was achieved indirectly by raising or lowering the cell 

pressure. Each of the stepper motors was controlled by commands from 

the computer system. The control system is shown diagrammatically in 

Figure 5.3. 

5.3.6 The Microcomputer and Interface System 

The main components of the microcomputer and interface syst_ consisted 

of an Acorn BBC Model B microcomputer and a Spectra Micro MS interface 

unit manufactured by Intercole Systeas Limited. The microcoaputer 

controlled taking inatrullent readings, converting th_ to engineering 
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units, recording thea at selected tiae intervals, calculating the 

corrections or control increments to sample stress and/or strains and 

operating the relevant switches to carry out these controls. The 

microcomputer's internal clock was used for elapsed time readings. 

Test data and manual instructions were entered through the keyboard. 

The computer peripherals included a monochrome screen, an Epson RX 80 -

FT dot-matrix printer and a Cumana 80 track disc drive. 

The microcomputer communicated with the interface unit through an RS 

423 serial bus. The interface unit provided analogue to digital and 

digital to analogue conversion. Details of the interface units are 

given in the Spectra Micro MS handbook. (Intercole Systems Limited 

1985). 

Each electrical measurement instrument was connected to an input 

channel of the interface unit. The interface unit automatically 

selected the gain of the channel to match the signal as closely as 

possible and give maximum resolution. Conversion of the analogue 

signal to a digital signal was carried out with 11 bit accuracy, giving 

a resolution of approximately one two-thousandth of full scale and 

passed to the microcomputer. On command from the microcomputer the 

interface unit operated relay switches in a separate relay box (CM 62 

made by Intercole Systems Limited), which controlled the stepper 

motors. The arrangement of these components is shown diagrammatically 

in Figure 5.3. 

5.3.7 The Control Program 

A variation of a control program developed at the City University was 

used to control the apparatus. The main function of the program was to 

control the test and to record instrument readings at selected time 

intervals during the test. At a predetermined time interval (typically 

every ten seconds) the output from each instrument was read together 

with the supply voltage. It was necessary to read the supply voltage 

because the instruments consisted of full resistance bridges and 

variations in supply voltage affected the instrument output. In order 

to correct for any fluctuation in the supply voltage the instrument 

output voltages were divided by the supply voltage and multiplied by 

the nominal supply voltage (8 volts) to obtain corrected outputs from 

which the corrected zero vol tage was deducted. This voltage was then 

multiplied by the calibration constant to convert it into engineering 
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units. If a record was required these values were stored in the 
microcomputer RAM. 

For functions being controlled the required value was calculated and 

compared with the value read fra. the instruaent and the difference 

between required and actual values calculated. The nUJDber of motor 

steps to correct this difference was then calculated and the interface 

unit commanded to apply this nUJDber of steps to the appropriate stepper 

motor. In the case of axial strain this control method was found to 

cause irregular loading with significant intervals between strain 

increments and large variations in axial stress. The program was 

modified to calculate the stepper motor step rate to achieve the 

required axial strain rate. The computer then commanded the motor to 

make the appropriate number of steps at 10 second intervals ensuring a 

smooth application of load. The actual and required strains were 

compared and corrections made to the step rate if the actual strain 

drifted from the required value. Both the required and actual values 

of the sample stresses and strains were displayed on the screen so that 

the state of the sample could be seen at all times. The quality of 

control was such that the required and actual values agreed to within 

1kPa for stresses and 0.01% for strains. 

The control loop of the program could be interrupted by pressing the 

return key which brought up a menu of options allowing certain 

functions such as starting and stopping test stages, zeroing of 

transducers, manual loading control and alteration of file names and 

record interval to be carried out. When instrument readings were 

recorded and stored in the microcomputer RAM they were also printed out 

and at the end of a test or when a file became full the test data was 

dumped to a floppy disc for later analysis. The program was structured 

in a series of small sub-routines each performing a specific function 

so that it was easy to adapt the program to suit a particular test 

requirement. In this case modifications were made to read the 

additional transducers, calculate the appropriate values, display them 

on the screen and print and save the additional data. 
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5.4 Pore Pressure Measurement and Drainage 

5.4.1 Introduction 

The conventional triaxial cell described by Bishop and Henkel (1962) 

and used in most commercial laboratories had provision for pore 

pressure measurement or drainage from the base and top of the sample. 

The Bishop and Wesley triaxial cell used at The City University was 

normally used with only one drainage connection to the sample this 

being at the base of the sample. With this arrangement drainage was 

allowed from the sample base in drained tests with the pressure 

transducer in this line measuring the back pressure. In an undrained 

test this connection was used to measure the pore pressure. In order 

to measure the distribution of pore pressures in a sample it was 

necessary to be able to measure pore pressures at the top and middle, 

(internally), of a sample. For this reason a top cap was made for the 

purpose of pore pressure measurement and drainage at the top of the 

sample and a probe which could be inserted in the sample was made to 

measure pore pressures in the middle of sample. These are described in 

the following sections. 

5.4.2 Pore Pressure Measurement and Drainage from the Top of the 

Sample 

Pore pressure measurement and drainage was provided at the top of the 

sample by a top cap in which was seated a porous disc (see Figure 5.5). 

Two holes in the top cap connected with the porous disc. Into these 

holes were pushed two saran tubes with greased rubber sleeves to make 

a tight fit seal. The two tubes passed through the bottom of the cell 

to a transducer block. The top cap could be flushed to remove trapped 

air. 

5.4.3 Internal Pore Pressure Measurement 

There were two options for pore pressure measurement at the centre of 

the sample as described in section 3.6. These were to use a saall 

pressure transducer such as the Druck PDCR81 used by Hight (1982) or to 

use a probe with an external pressure transducer. It was required that 

the pore pressure be measured in the centre of the sample. It was 

considered that a transducer inserted into the centre would cause too 

much disturbance to the s.aple and be too large an inclusion for a 76 

- 104 -



X 38II1II diameter saaple being 6.3_ in diaaeter and 11. 4mm long. 

Backfilling around the cable behind the transducer would also have been 

difficult and resulted in a badly disturbed sample. 

Internal pore pressure measurement was therefore provided using a probe 

with an external pressure transducer similar in design to that 

described by Whitman and Richardson (1960). The probe was made of a 

length of 3mmOD saran tubing into the end of which was fitted a 5mm 

long porous stone also of 3mm diameter (see Figure 5. 6). During a test 

the probe was connected to another saran tube which passed through the 

base of the cell to a block into which was fitted a pressure 

transducer. The connection to the tube was provided by a perspex block 

into which the tube was pushed with a greased rubber sleeve to provide 

a tight fit seal. The diameter of the probe ( 3mm) was kept to a 

minimum in order to reduce sample disturbance. This meant that it was 

not possible to have two leads to the probe tip and it was therefore 

not possible to flush the probe to remove trapped air. This is a 

problem common to the majority of probes described in section 3.6 with 

the exception of that described by Head (1986). This probe however is 

too large for use in 38mm diameter samples. The size of the probe used 

in this work is comparable to many of those used previously and 

considerably smaller than many (e.g. Barden and McDermott (1965) used 

a probe with a diameter of 0.25"). The size of porous element used is 

generally smaller than those used previously, however it was shown to 

give adequately fast response to changes in pore pressure (see section 

5.6.4). A small porous element was necessary in order to be able to 

measure the pore pressure at the centre of a sample reasonably 

accurately. A longer porous element such as that used by Barden and 

McDermott (1965) which was 0.6" long would measure an average value of 

pore pressure over the length of the probe rather than that at the 

middle of the sample. 

5.5 Instrumentation Calibration Procedure 

5.5.1 Transducer calibration 

Bach instrument was calibrated by applying a series of known 

diaplac_ent, loads or pressures to the instruaent as appropriate. The 

readings from the instruaents as displayed by the coaputer were then 

compared with the true values. The calibration factor used in the 

calculation prograa was adjusted such that the calculated values agreed 
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wi th the true values over the range required. 

5.5.2 Axial Compliance 

The compliance factor was calibrated directly by setting up an 

aluminium dummy sample in the cell. The calibration factor was found 

by applying an axial load and measuring the axial strain as recorded by 

the axial strain transducer. The majority of the compliance is due to 

deflection of the load cell. A typical compliance factor was 0.06mm 

axial deflection per 100kPa increment of deviator stress on a 38mm 

diameter sample. The compliance factors could be used to correct 

strain readings if the errors were considered to be significant. 

5.5.3 Volume Gauge Expansion 

The compliance factor for expansion of the volume gauge was found by 

closing the drainage valve, varying the backpressure and noting the 

change in volumetric strain reading from the volume gauge transducer. 

Thus volumetric strains could be corrected for changes in backpresure. 

This correction is not required for tests with a constant backpressure. 

A properly adjusted volume gauge showed 0.02' indicated volumetric 

strain per 100kPa change in backpressure for a 76 x 38mm sample. 

5.6 Preparation of Reconstituted Samples 

Reconsti tuted samples were made of dry powdered clay which was 

sprinkled slowly into distilled, de-aired water such that it was 

allowed to sink below the surface before more was added. In this way 

a smooth uniform slurry was made with a water content of approximately 

twice the liquid limit (150' for kaolin) and a minimum of air. To 

ensure there was as little air as possible in the slurry it was placed 

in a vacuum for approximately ten minutes or until all bubbles were 

removed. The slurry was then poured carefully into the floating ring 

consolidometer described in section 5.2.1 and consolidated to the 

desired stress level. 

Initially the tube of the consolidometer was supported at the base by 

a ring of the same diameter around the bottom piston. After 1kg had 

been applied to the suple and consolidation allowed this ring was 

removed to allow the bot tOIl piston to .ove into the tube (initially the 

... ple was too soft for this to be practical). The load was applied 
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over the course of a day in incra.ents allowing consolidation between 

each addition of load. If any clay was squeezed up the sides of the 

pistons they were cleaned to prevent jaaaing. 

5.7 Preparation of the Triaxial eell 

Before a sample was placed in the triaxial cell and a test carried out 

the pore pressure and volumetric strain measurement system was de-aired 

by flushing the system through with de-aired water. The volume gauges 

were filled with sufficient de-aired water to allow the lines to be 

flushed again after installation of the sample by drawing water from 

the volume gauges through the system. The cell was filled with de­

aired water such that the load cell was covered completely with water 

under atmospheric pressure and the pressures as read by the computer 

from the pressure transducers were set to zero. The back pressure to 

be used during the consolidation stage of the test was also set at this 

stage. The porous stone for the sample base, the top cap with porous 

stone and pore pressure probe were placed in de-aired water under a 

vacuum for at least one hour before use. De-airing of the probe was 

particularly important as it was not possible to flush water through 

this part of the system to remove any air once the sample had been set 

up. 

5.8 Preparation of the Sample for Mounting in the Triaxial Cell 

After removal of the loading platens from the floating ring 

consolidometer the sample was extruded from the tube using a perspex 

cylinder onto the special cradle described in section 5.2.2. Samples 

did not normally need trimming as a calculated weight of slurry was 

used sufficient to produce a sample of approximately 80mm length. 

The sample was aligned in the centre of the cradle and the top plates 

placed in poSition over it. The drill bit was then lowered through the 

plates to the sample and rotated carefully and slowly into the saaple 

by just one or two millimetres. It was then withdrawn and cleaned 

before the action was repeated until a hole of 21.5mm depth had been 

drilled. The top plates were then removed and the sample and cradle 

weighed, (the cradle having been weighed previously). A piece of 

"cling fil." approximately 25_ in diameter was then placed over the 

hole in the a .. ple and saturated filter paper discs were placed on the 

suple enda. 
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5.9 Mounting the Sample in the Triaxial Cell 

The saturated de-aired porous stone was placed on the pedestal of the 

triaxial cell and the sample was set up on the porous stone. The 

saturated de-aired top cap was placed on top of the sample. If filter 

paper side drains were to be used they were soaked and wrapped around 

the sample to overlap the bottom porous stone and top cap filter paper. 

Standard vertical strip drains were used. 

The rubber membrane and o-rings were then fitted, the top cap and 

pedestal having previously been smeared with silicone grease to provide 

a good seal. A soldering iron was used to burn a hole through the 

membrane and cling film at the point where the hole had been drilled 

into the sample. A specially adapted pair of tongs was then used to 

stretch apart the membrane at the hole. This was done by inserting the 

ends of the tongs into the hole between the membrane and the cling film 

and opening them about 15mm. With the membrane held apart the flange 

of a specially formed silicone rubber sealer was inserted between the 

membrane and cling film. The flange of the sealer had been smeared with 

silicon grease to form a good seal with the membrane which was allowed 

to close over it. The purpose of the cling film was to reduce 

disturbance of the sample in the area of the hole whilst this operation 

was conducted. The de-aired pore pressure probe was connected to the 

lead to the transducer block very carefully ensuring that no air was 

trapped inside the lead. This was done by pushing de-aired water 

through the lead from the transducer block with a Bishop ram as the 

connection was made. The probe was then pushed through the sealer to 

the end of the hole in the sample. When the probe was in place an 0-

ring was pushed onto the sealer. The inserted probe is illustrated in 

Figure 5.7. 

This method of sealing the probe where it went through the membrane is 

different from any used for the probes described in section 3.6 and is 

very much simpler. It does not rely on any mechanical seal or applying 

latex solution but is sealed by the action of the cell pressure 

pressing the membrane against the sealer flange and pressing the 

tubular part of the sealer onto the shaft of the probe. The '0' ring 

i8 an additional precaution. This method proved very successful. 

In order to connect the leads to the top cap it was necessary to exert 

qui te a lot of force to push the leads and rubber sealing sleeves into 
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the connection holes. This was difficult to do without disturbing the 

sample. For this reason a "top cap holder" was used to hold the top 

cap in position. The top cap holder consisted of two steel legs which 

were fitted to the base of the triaxial cell and a light aluainiUll 

adjustable cross arm. The cross arm had a locating socket at its 

middle which was placed over the top cap to hold it steady whilst the 

leads were connected. The top cap holder was then removed and the 

rubber suction cap fitted. A diagram of the top cap holder is shown in 

Figure 5.8. The cell top was then fitted and the cell filled with 

water. 

5.10 saturation of the Sample 

Before proceeding with a test it was important that the sample and pore 

pressure measurement system were saturated in order to obtain reliable 

pore pressure measurements. Saturation was achieved by flushing any 

air from the system by allowing water to be drawn from the volume 

gauges through the porous stones and out through a valve into a Bishop 

ram. It was important during this procedure that the pore pressure in 

the sample and the back pressure to the volume gauge were the same to 

avoid any drainage to or from the sample After the lines had been 

flushed of air the sample was allowed to stand undrained overnight with 

a pore pressure of 100 - 150kPa in order that any air bubbles were 

dissolved in the pore water. This also allowed any non-uniformities of 

pore pressure due to disturbance during setting up to equalise. 

The degree of saturation was then checked before proceeding with the 

test by measuring Skempton's (1954) pore pressure parameter B. The 

cell pressure was increased by about 50kPa and the increase in pore 

pressure in the undrained sample was measured. The B value is the 

ratio of pore pressure increase to cell pressure increase. Values for 

B of at least 0.96 where required with values for softer samples being 

typically 0.98 or 0.99. 

5. 11 Connection of tbe Load Cell to the Top cap 

Connection of the load cell to the sample top cap was achieved by use 

of a rubber "suction cap" developed at I.perial College. This suction 

cap was fitted to the top platen of the saaple and connected to the 

load cell as shown in Figure 5.4. To uke the connection, the pressure 

in the lower bellofru was adjusted until it just balanced the cell 
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pressure and the axial rail "floated". The load cell was screwed down 

into a suitable position and the rail gently aoved up to it by very 

slightly increasing the pressure in the lower bellofraa until they ade 

contact. The water between the suction cap and load cell was then 

drawn out by a Bishop ram bringing the top platen and load cell into 

firm contact and forming a seal between thea. The cell water pressure 

acting on the rubber suction cap maintained this seal and prevented any 

leakage when the Bishop ram was disconnected and the lead left vented 

to the atmosphere. This procedure needed to be carried out with great 

care in order to avoid disturbance to the sample. The stresses were 

monitored continually during connection and adjusted if required. 

5.12 Conduct of a Test 

Having installed the sample in the triaxial cell the sample dimensions 

were entered into the computer and the strain readings zeroed. The 

test data was also entered for the particular test stage and the test 

started. Control of the test and logging of the data at the desired 

intervals was then carried out automatically. Tests could be carried 

out under stress or strain controlled loading at stress rates of up to 

several hundred kPa per hour and strain rates of up to 0.6% strain per 

hour. 

At the end of the test computer control was cancelled and the top cap 

was disconnected from the load cell by pushing water into the rubber 

suction cap and reducing the ram pressure. The cell was then drained 

of water as quickly as possible. The sample was removed and 

immediately weighed for moisture content determination before being 

dried in the oven. The cell was refilled with water and the transducer 

zero values checked to detect any creep that had taken place during the 

test. 

5.13 Types of Tests 

5.13.1 One-Dimensional Compression Tests 

In these tests the computer was instructed to hold the radial strains 

to zero. There was no direct control over radial strain but the 

condition of no radial strain was approxiaated by adjusting the cell 

pressure (radial stress) in order to keep the axial strains equal to 

the volumetric strains. In this way the average radial strain waa 
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zero. 

Por constant stress rate loading tests the axial stress was increased 

at a constant rate whilst drainage was allowed. Por incr_ental 

loading tests the radial and axial stresses were increased together, 

with the drainage tap closed, to the required stress level. To begin 

the test the drainage tap was opened and the sample allowed to drain. 

The axial stress was held constant and the radial stress allowed to 

vary to control the radial strain. 

5.13.2 Isotropic Compression Tests 

In constant stress rate loading tests the axial and radial stresses 

were increased together at the same constant rate. In incremental 

loading tests the stresses were increased together to the required 

value with the drainage tap closed. To start the test the drainage tap 

was opened to allowed drainage. The axial and radial stresses were 

held constant. 

5.13.3 Triaxial Compression Tests 

In these tests the radial stress was held constant throughout the test 

whilst axial loading was applied. This was applied either as a 

constant rate of increase of axial stress or as a constant rate of 

axial strain. Drainage was allowed to a back pressure in drained tests 

whilst in undrained tests the drainage tap was closed. 

5.14 Performance of the Instrumentation 

5.14.1 Drift, Noise and Creep 

Drift, noise and creep affect the accuracy of readings derived from the 

output of transducers. Drift and creep refer to variation in the 

output with time under no load and loaded conditions respectively. 

Noise refers to any signal from a transducer other than instrument 

output. This additional signal may be due to resistance changes in 

connections, temperature effects or induced voltages frOil magnetiC 

fields associated with other equi~t. Drift and noise were assessed 

under no load or constant displacement conditions as appropriate by 

recording the output at intervals over a period of a few days. The 

variation of readings over a ahort time period gave an indication of 
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the noise. The value of the readings after a longer tiae period 

cOllPared with the original reading gave an indication of drift. Both 

drift and noise were found to be very saall. 

Creep was evident from changes in the transducer calibration constants 

over a period of time. For this reason calibration constants were 

checked regularly and corrected if necessary. Corrections to 

calibration constants were very small. Creep during individual tests 

was detected at the end of each test by checking the transducer output 

under zero load, (water pressure transducers and load cell only). Any 

variation in the readings from zero was due to creep. The load cell 

was found to be subject to the most creep but errors in the zero 

reading at the end of a test were normally no more than ~3kPa. Errors 

in the zeros of water pressure transducers were normally less than 

O.5kPa. 

5.14.2 Resolution of Readings 

The interface unit automatically selected the gain of each channel to 

match as closely as possible the output of the instrument. The 

analogue output of the instruments was converted to digital form with 

11 bit accuracy (one of the interfaces 12 bits being used to designate 

the sign of the output signal). This gave a resolution of 

approximately one two thousandth of full range. The resolution in 

engineering uni ts for each instrument is given in Table 5. 1 This table 

gives the resolution for readings at the upper end of the output signal 

range which is the worst case. For smaller output signals a more 

sensitive gain was automatically selected by the interface unit 

improving resolution by at least a factor of two. The resolution 

obtained from this system was thought to be satisfactory for the work 

undertaken and was as good as or better than the overall accuracy of 

readings. 

5.14.3 Accuracy of Measurements 

The accuracy of the measurements was very good. All the instruments 

gave a reasonably linear output which could be represented by a single 

calibration constant. Errors in the assUllption of linearity were very 

small. Table 5.2 shows the worst error in readings due to non-

linearity, resolution and noise estimated based on observations aade 

during calibration of the instruments. These values are for measured 
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values at the extrelieS of the range of values norully encountered 

where the resolution is the least good and departure fro. output 

linearity is the greatest. The accuracy of readings over the greater 

range of values normally encountered are better than the 'worst' values 

quoted in Table 5.2. 

Calibration of the three pore pressure transducers was made such that 

over the range of pore pressures normally encountered they gave 

readings within 0.5kPa or less of each other. Pore pressure 

differences at different points within the sample could therefore be 

measured to this degree of accuracy. 

5.14.4 Response Time of the Probe Pressure Transducer 

In order for a pressure transducer to respond to a change in pressure 

a small amount of water must flow into or out of the soil to move the 

diaphragm. The time required for this to happen is the response time. 

The response time of the pore pressure transducers connected to the top 

and base of the sample was very quick, (less than 5 seconds), because 

of the large area of porous stone in contact with the sample. The 

response time of the pore pressure probe transducer was considerably 

longer because of the small size of the porous stone. The response 

time was found by instantaneously increasing the all round pressure on 

an undrained sample and recording readings of pore pressure at small 

time intervals in order to observe the time required for the full pore 

pressure response to be recorded by the probe transducer. Ninety five 

percent of the full response was achieved for samples of Kaolin, 

Bothkennar and Gault clays in approximately 40, 100 and 170 seconds 

respecti vely . Figure 5. 9a gives details of the response times for 

these clays. A second series of tests was carried out to determine the 

affect of this response time on readings obtained during a test. The 

all round pressure on an undrained sample was increased at different 

rates and the difference or lag in the reading of the probe transducer 

compared with that of the bottom transducer was noted. The lag was 

found to be very small for the rates of change of pore pressure 

associated with triaxial tests being at worst 1kPa for Gault clay with 

a loading rate of 60kPa per hour. The lag in measurement for various 

rates of pore pressure change for the three clays is shown in Figure 

5.9b. These results indicate that the error in pore pressure 

measurement using the probe is negligible for the loading rates to be 

considered. 
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The different response tilles and lags for each soil indicate that it is 

the permeability of the soil rather than that of the probe tip that is 

controlling the rate of response of the probe pressure transducer. 

Gaul t, the least permeable of the soils, has the longest response times 

and largest lags. Kaolin and Bothkennar clays have siailar 

permeabilities and their responses are similar. The fact that Figures 

5.9a and b indicate the response time for Kaolin to be faster than that 

for Bothkennar clay but the lag in probe measurement to be greater were 

probably caused by changes of permeability due to changing degree of 

saturation of the samples during the tests. 

5.14.5 Effect of the Probe on Sample Strength and Stiffness 

Insertion of the probe into a sample forms a stiff inclusion within the 

sample and it was thought that this might affect the overall measured 

strength and stiffness characteristics of the sample producing 

erroneous results. In order to investigate the effect of the probe two 

undrained compression tests were carried out on samples of Kaolin. One 

of these tests had a probe inserted into the sample, the other did not. 

These samples were normally consolidated isotropically to 150kPa and so 

were relatively soft. The results of the two tests were compared to 

detect any difference. The q' vs. p' plots of these tests are shown in 

Figure 5.10a. It can be seen that the curves are almost identical. 

Considering experimental errors and the accuracy of measurements it was 

concluded that the probe had no significant affect on the measured 

strength of the sample. 

Figure 5.10b shows a plot of the secant Young's modulus versus axial 

strain. The plots for the two tests are identical. It was therefore 

concluded that the stiffness of the sample was also unaffected by the 

inclusion of a probe. 

In order to show that the seal where the probe went through the 

membrane did not leak causing water content changes of the saaple, a 

sample with a probe was allowed to consolidate isotropically under a 

constant pressure and the volumetric change observed over a period of 

two weeks. Any leakage around the probe would have been evident as 

continued volumetric strain at a steady rate. No such voluaetric 

strain was observed and it was therefore concluded that the aethod of 

sealing the probe was satisfactory. 
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5.14.6 Teaperature Effects 

Variations in teaperature can cause expansion and contraction of the 

apparatus and change the resistance of the electrical aeasureJlent 

devices causing errors in the tests aeasurements. For this reason all 

work was carried out in a temperature controlled laboratory. water 

used in the triaxial cells was allowed to come to room temperature 

before use as it was found that the water temperature affected the 

output of the load cell. 

5.15 Data Processing 

The specific volume v was calculated from the moisture content 

measurement at the end of the test, w as 

v = 1 + Gs w 

using a measured value of specific gravity, Gs . The volume of solids 

Vs was then calculated as 

Vs = V/v 

where V is the sample volume at the end of the test. 

The specific volume v could then be calculated at any point during the 

test from the sample volume V as 

Values of specific volume calculated using the initial and final 

moisture content measurements were generally in good agreement. 

Differences in the two values were probably due to the sensitivity of 

v to volume change measurements, sample loss on filter paper and 

membrane (if the whole sample was weighed initially), unrepresentative 

trimmings (if the initial water content determination was on 

trimmings), and take up of water into the sample during installation 

and at the end of a test. The final water content was used in all 

cases for consistency. Initial water content deterainations were used 

as a check on the final values to detect any gross errors. Data 

processing was done using aicro cOilputers and prograas developed at The 
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City University specially for this purpose or on a spreadsheet program 

which also had a graphic capability. 

It was not necessary to apply an area correction to the axial stress as 

the axial stress calculated by the ca.puter was already corrected for 

the changing area of the sample during the test. This correction was 

based upon the assumption that the sample deforDlS as a right cylinder 

and used the measured values of axial and volumetric strains. 

The data was not normally corrected for the compliance of the apparatus 

for the tests described in this dissertation because the errors are 

generally very small and were not of great significance for the 

properties being measured. The exception to this was when the 

stiffness of the sample was to be determined when it was essential to 

apply a correction for the axial compliance of the apparatus to obtain 

true axial strains and hence stiffness. Filter paper side drains were 

not used in these tests and hence no correction was necessary for their 

additiional strength. No correction was made for the strength of the 

membrane as this was not considered to be of a significant magnitude. 

A correction of 10kPa was made to the axial stress in tests in which 

filter paper side drains were used before calculating the deviator and 

mean effective stresses when undrained stress paths were plotted. 
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6.0 LABORATORY TESTING AND RESULTS 

6.1 Introduction 

A series of triaxial compression tests under constant stress rate and 

constant strain rate loading were carried out on three different soils 

under drained and undrained conditions using the apparatus and 

procedures described in Chapter 5. Tests were carried out on normally 

and overconsolidated soils. One end only and all round drainage was 

investigated. A pore pressure probe was used to measure pore pressure 

in the middle of samples to give information on the variation of pore 

pressure. Isotropic or one dimensional compression tests were carried 

out as preliminary stages to triaxial compression tests. A series of 

one-dimensional compression tests was carried out on Kaolin for 

comparison with the results of numerical analyses and with theoretical 

solutions. A number of the triaxial compression tests were also 

modelled numerically. The main presentation of the results of 

numerical analyses is given in Chapter 7, however some of these results 

are reproduced in this chapter to show comparison with the experimental 

data. 

An additional series of undrained triaxial compression tests was 

carried out on a range of common clays to investigate the shape of the 

undrained stress path in q' _pi space. 

A full listing of the triaxial compression tests undertaken is given in 

Table 6.1. The following sections deal with each category of test 

presenting the results for each. The results are generally given in 

the form of tables of parameters derived from the tests. A full set of 

test results for each of the three soils used and each type of test in 

the form of figures is also presented. The critical state soil 

parameters derived from the tests have been determined following the 

procedures described by Atkinson (1985). 

6.2 Soils tested 

Three soils with differing properties were used in the experimental 

test program. 
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Speswhite Kaolin 

Commercial Speswhite Kaolin was used because it is widely available and 

because its critical state parameters have been well defined by other 

workers. Kaolin is a relatively permeable plastic clay. 

Gault Clay 

This clay was obtained from a motorway cutting and tested as part of 

work carried out at the City University for the Transport and Road 

Research Laboratory. Its critical state soil parameters were derived 

partly during the course of this work and partly during the testing for 

this thesis. Gault Clay is a highly plastic clay of low permeability. 

Bothkennar Clay 

This clay was obtained from the SERC test bed site at Bothkennar, 

Grangemouth, Scotland. Its critical state parameters have been derived 

through testing carried out for the Building Research Establishment and 

for this thesis. Bothkennar Clay is a very silty clay of high 

plastiCity and relatively high permeability. 

Table 6.2 contains the index properties for each soil with their 

sources. The critical state soil parameters determined in this 

dissertation are given in later sections. 

6.3 One-dimensional compression incremental load test 

One one-dimensional compression test with incremental loading was 

carried out on Kaolin. (Test 11, stage 2). The test details are given 

in Table 6. 3 • The results of this test are compared with numerical and 

theoretical analysis of the same situation in Section 8.2 of this 

dissertation where the results are presented in greater detail. Figure 

6.1 shows a graph of specific volume, v against the square root of time 

from which the soil parameters given in Table 6.3 were derived. 

6.4 one-dimensional compression constant stress rate loading tests 

Seven one-di.ensional constant stress rate loading compression tests 

were carriecl out on !Caolin and two on Gault Clay. The details of these 

tests and results are given in Table 6.4. The results for tests 12, 
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stage 2 and 13, Stage 2 on Kaolin are considered in more detail in 

Section 8.2 where they are coapared with nUllerical and theoretical 

analysis of the same situation. 

Figure 6.2 shows a plot of specific volume versus the natural logarithm 

of the mean effective stress (calculated from base pore pressures) for 

tests 12, Stage 2 and 13, Stage 2 on Kaolin and Figure 6.3 shows a 

similar graph for tests 72 and 111 on Gault Clay from which the 

compression parameters in Table 6.4 were derived. It was not possible 

to derive the compression parameters from test 72 as the plot shown in 

Figure 6.3 had not become linear. This was also true of the first 

stages of tests 11, 12 and 13. Data on the excess pore pressures in 

these tests is given in Section 6.9.1. 

6.5 Isotropic compression incremental load tests 

These tests were carried out on each of the soils tested to determine 

the consolidation characteristics and the soil permeability. Some 

typical results for Kaolin are presented in the form of graphs of 

specific volume versus the square root of time, from which the 

consolidation parameters were derived. The results for the other soils 

are similar in form and the results are presented in the form of tables 

only. 

6.5.1 Kaolin 

The tests carried out on Kaolin are detailed in Table 6.5a. The soil 

parameters derived from each test are also given. Figure 6.4 shows a 

graph of specific volume, v against the square root of time for stage 

2 of test 22 a compression stage with one end drainage. Figure 6.5 

shows a similar graph for test 51, stage 3, a swelling stage with one 

end drainage. These figures are presented as examples and to 

illustrate the quality of results. The results of the other tests are 

similar to these. 

The soil properties given in Table 6.5a are relevant to the triaxial 

compression tests because they were derived from the compression stage 

immediately prior to these tests. Another series of isotropic 

incremental load tests were carried out at lower stresses usually prior 

to those listed in Table 6.5a. The soil properties derived froa these 

tests are relevant to the constant stress rate compression tests 
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carried out in the lower stress ranges. The value of the 

characteristic time, t, for this stress range is required for these 

tests in later analyses. The values of this paraaeter derived frOil the 

low stress level incremental load tests are presented in Table 6.5b. 

The values of t, have been corrected to the value relevant for 76_ long 
samples. 

6.5.2 Gault Clay 

The tests carried out on Gault Clay are detailed in Table 6.6a with the 

soil parameters derived from each test. These tests were used to 

calculate soil properties relevant to the subsequent triaxial 

compression tests. For the constant stress rate compression tests at 

stresses less than p' = 150kPa only the t, value was required. Table 

6.6b lists the incremental loading compression tests for the stress 

range p' = 15-150kPa. The t, values listed have been corrected to those 

for a 76mm sample. 

6.5.3 Bothkennar Clay 

The tests carried out on Bothkennar Clay are listed in Table 6.7a which 

also contains the soil parameters derived from the tests. These tests 

were used to calculate soil properties relevant to the triaxial 

compression tests. For the constant stress rate compression tests at 

stresses less than p' = 150kPa only the value of the characteristic 

time t, was required. Table 6. 7b lists the incremental loading 

compression tests for the stress range p' = 15-150kPa. The values of 

t, listed have been corrected to those for a 76mm sample. 

6.6 Isotropic compression constant stress rate loading tests 

These tests were carried out on each soil to establish the compression 

characteristics of the soil and the magnitude of excess pore pressures 

generated. This section concentrates on the cOllpression 

characteristics. The values of the compression parameters have been 

calculated using pore pressure aeasured at the sample base. The excess 

pore pressures are considered in Section 6.9. 

For the tests started at low effective stress i.e., p' = 15kPa, values 

for the coefficient of compressibility have been measurecl over the last 

part of the test for which the v versus lnp' curve was 1 inear to ensure 

- 120 -



that the value obtained was for the normally consolidated soil (the 

samples were initially consolidated to a vertical effective stress of 

about 80kPa in the oedoIIeter in which they were fonaed). 

6.6.1 Kaolin 

The isotropic constant stress rate tests carried out on Kaolin are 

detailed in Table 6.8 which includes the derived compression 

parameters. Figure 6.6 shows a graph of specific volume versus the 

natural logarithm of p' for the test KPROBE 1. 

6.6.2 Gault Clay 

Several tests were carried out on Gault Clay. These tests and the 

results are given in Table 6.9. Figure 6.7 shows a graph of specific 

volume, v versus the natural logarithm of p' for tests Gault 1 and 101 

which show a compression and swelling stage respectively. It was not 

possible to derive compression parameters from the majority of tests 

because the tests were not continued long enough or carried out slowly 

enough to allow excess pore pressures to come to an equilibrium value 

so that a linear plot was obtained. 

6.6.3 Bothkennar Clay 

The tests carried out on Bothkennar Clay are detailed in Table 6.10 and 

the results of the tests given. Figure 6.8 shows a graph of specific 

volume versus the natural logarithm of p' for test 22 stage 1, test 31 

stage 1, and test 34 stage 3; two compression stages and a swelling 

stage respectively. 

6.7 Drained triaxial compression tests 

These tests were carried out primarily to investigate the excess pore 

pressures generated but also to investigate the effects of loading rate 

on strength characteristics. This section considers the strength 

characteristics whilst Section 6.10 considers the excess pore pressures 

generated. The pore pressure used to calculate stresses and soil 

parameters in this section is that measured at the base. Data relating 

to pore pressures at other points may be found in Section 6.10. 
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6.7.1 Kaolin 

The drained triaxial tests carried out on Kaolin are detailed in Table 

6. 11 where the results are also gi ven. Figure 6.9 shows a graph of 

deviator stress q' versus axial strain for tests 32 and 61. Figure 

6.10 shows a graph of stress ratio q' /p' versus axial strain, and 

Figure 6.11 shows a graph of volumetric strain versus axial strain for 

the same tests. 

6.7.2 Gault Clay 

The drained triaxial tests carried out on Gault Clay are detailed in 

Table 6. 12 where the results are also given. Figure 6. 12 shows a graph 

of deviator stress q' versus axial strain for tests 91 and 10. Figures 

6.13 and 6.14 show graphs of stress ratio and volumetric strain versus 

axial strain respectively. 

6.7.3 Bothkennar Clay 

The drained triaxial tests carried out on Bothkennar Clay are detailed 

in Table 6.13 where the results are also given. Figure 6.15 shows a 

graph of deviator stress versus axial strain for tests Both 32 and Both 

34. Graphs of stress ratio and volumetric strain plotted against axial 

strain are shown in Figures 6.16 and 6.17 respectively for the same 

tests. 

6.8 Undrained triaxial compression tests 

These tests were carried out on each soil to establish the shear 

strength characteristics of the soils and to investigate the magnitude 

of excess pore pressures generated. This section concentrates on the 

shear strength characteristics. The excess pore pressures are 

considered in Section 6.11. The pore pressure measured at the base of 

the sample was used to calculate the stresses for the results in this 

section. Data relating to pore pressures measured at other points may 

be found in Section 6.11. 

6.8.1 Kaolin 

The undrained triaxial compression tests carried out on bolin are 

detailed in Table 6.14 in which the results are given. Figure 6.18 i8 
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a graph of deviator stress q' versus the aean effective stress p' 

showing the stress paths of tests 41 and 51. Data for the saae tests 

are shown in Pigures 6.19 and 6.20 which show graphs of deviator stress 

q' and stress ratio respectively plotted against axial strain. Pigure 

6.21 shows the pore pressures measured at the base of the samples in 

these tests plotted against axial strains. 

6.8.2 Gault Clay 

The undrained triaxial compression tests carried out on Gault Clay are 

detailed in Table 6.15 where the results of the tests are also given. 

The results for tests Gault 1 and Gault 2 are shown in Figures 6.22 -

6.25. Figure 6.22 shows a graph of deviator stress q' versus mean 

effective stress p'. Figure 6.23 and 6.24 show graphs of deviator 

stress and stress ratio respectively both plotted against axial strain. 

Figure 6.25 shows a graph of pore pressure versus axial strain for 

these two tests. Figure 6.26 shows a graph of deviator stress versus 

axial strain for tests 73 and 81. Additional data for these tests may 

be found in Section 6.11. 

6.8.3 Bothkennar Clay 

The undrained triaxial compression tests carried out on Bothkennar Clay 

are detailed in Table 6.16 where the test results are given. Figure 

6.27 shows a graph of deviator stress q' versus mean effective stress 

p' for tests Both 22 and 24. Figure 6.28 shows a graph of deviator 

stress q' versus axial strain, Figure 6.29 shows a graph of stress 

ratio versus axial strain and Figure 6.30 shows a graph of pore 

pressure versus axial strain for the same tests. The results of the 

other tests are similar in nature to these. 

6.9 Excess pore pressures in constant stress rate loading compression 

tests 

This section deals with the magnitude and build-up of excess pore 

pressures in constant stress rate loading compression tests. 

6.9.1 One-dimensional compression tests 

The one-dimensiona1 constant stress rate loading coapression testa are 

detailed in Table 6.17 where the results are a1ao given. rigure 6.31 
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shows a graph of pore pressure versus axial strain for stage 1 of tests 

12 and 13. Figure 6.32 shows a si.ilar graph for stage two of these 

tests. Similarly the results of tests 72 Stage 1 and 111 Stage 1 on 

Gault Clay are shown in Figure 6.33. The equilibrium values of excess 

pore pressure for tests 12 Stage 2, 13 Stage 1 and 72 quoted in Table 

6. 17 have been estimated by extrapolating the data. It was not 

possible to define a clear equilibrium excess pore pressure in test 11 

Stage 1 because of large fluctuations resulting from changes in radial 

stress made by the computer in order to maintain one-dimensional 

conditions. 

Figure 6.53 shows a graph of peak excess pore pressures versus 

characteristic stress for all the tests in Table 6.17 except Test 11 

stage 1. The values of t, used in calculation of these results were the 

values presented in Section 6. 14 for the appropriate stress range 

corrected for the sample length of each test. The results of numerical 

analyses of this problem which are presented in greater detail in 

Chapter 7 are shown as a hatched line for comparison. 

6.9.2 Isotropic compression tests 

The isotropic constant stress rate loading compression tests carried 

out are detailed in Table 6.18 where the results are also given. 

Figure 6.34 shows a graph of pore pressure versus axial strain for test 

91 (Gault Clay) measured at the top, middle and base of the sample. 

Figures 6.35 and 6.36 show similar graphs for tests 61 (Kaolin) and 

both 31, stages 1 & 2, (Bothkennar) respectively. 

Figures 6.54a and b show graphs of peak excess pore pressure versus 

characteristic stress for the tests in Table 6. 18 for normally and 

overconsolidated soil respectively. Values of t, used were those 

calculated in Section 6.5 for the appropriate stress range corrected 

for the sample length for each test. The results of the numerical 

analysis on this situation are shown hatched for comparison (see 

Chapter 7 for more details). 

6.9.3 Errors in compression parameters due to excess pore pressures 

Figure 6.58a shows the relationship developed in Section 4.8.4 relating 

the error in aeasurecl 1 values to excess pore pressure as given by 

Equation 4.80. The experiaental results of the constant stress rate 
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loading compression tests listed in Table 6.17 and 6.18 are shown on 

this graph for coaparison. Figure 6.58b shows a si.ilar graph 

comparing experimentally measured values of N with those predicted by 

equation 4.81. The true values of A and N used to calculate the ratio 

of measured to actual values are those presented in Section 6.14. 

6.10 Excess pore pressures in drained triaxial compression tests 

This section gives details of excess pore pressures measured in the 

drained triaxial compression tests carried out. The resul ts for 

constant stress rate loading tests and constant strain rate loading 

tests are reported separately. The errors in measured shear strength 

parameters are also presented. 

6.10.1 Constant stress rate loading tests 

The drained triaxial compression tests carried out with an initial 

constant rate of increase of axial stress are given in Table 6.19. The 

maximum (equilibrium) excess pore pressure measured at the top and 

middle of the sample in these tests are also given in this table. 

Figure 6.37 shows a graph of excess pore pressure versus axial strain 

for Tests 21 and 22. Figure 6.38 shows a similar graph for Tests 23 

and 24. The results of Tests 32, 91, 92 and 101 are shown in Figures 

6.39, 6.40, 6.41 and 6.42 respectively. Figure 6.43 shows the results 

of Tests Both 32 and Both 34. 

For the tests on normally consolidated soil with drainage from one end 

only Figure 6. 55a shows a graph of maximum excess pore pressure 

measured at the top and middle of the sample versus characteristic 

stress. The results of the finite element analyses described in 

Chapter 7 are shown as a hatched line. Figure 6.55b shows a similar 

graph for tests on normally consolidated samples with all round 

drainage whilst Figure 6.55c shows the results for tests on 

overconsolidated soil with drainage to the base only. 

6.10.2 Constant strain rate loading tests 

The drained triaxial compression tests carried out under a constant 

rate of axial strain loading are given in Table 6.20. The maximum 

(equilibrium) excess pore pressure .. asured at the top and aiddle of 

the .ample in these tests which were conducted with base only drainage 
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are also given in Table 6.20. Figure 6.44 shows a graph of excess pore 

pressure versus axial strain for Test 61. Figures 6.45 and 6.46 show 

similar graphs for Tests Both 31 and Both 33 respectively. 

Figure 6. 56a shows a graph of maximum excess pore pressure measured at 

the top and middle of normally consolidated samples versus the 

characteristic stress. The results of Test 13 are not inclucled as this 

test was carried out at a faster strain rate than the others and it was 

not considered that equilibrium excess pore pressure was reached in 

this test. The values of t, used were those calculated in Sections 6.3 

and 6.5 for the appropriate stress range and corrected for the sample 

length in each test. Figure 6.56b shows a similar graph for tests on 

overconsolidated soils. The results from the finite element analyses 

described in Chapter 7 are shown as hatched lines on these graphs for 

comparison. 

6.10.3 Errors in shear strength parameters caused by undissipated 

excess pore pressures 

This section considers the errors in derivation of shear strength 

parameters caused by undissipated excess pore pressures. Figure 6.47a 

shows a graph of deviator stress q' versus mean effective stress p' on 

which are shown the stress paths of soil at the top, middle and base of 

the sample in Test 91. Figure 6.47b shows the stress ratio q'/p' for 

this test for soil at these positions plotted against axial strain. 

Figure 6.59a shows the theoretical relationship developed in Section 

4.8.2 given by Equation 4.78. This relates errors in the measurement 

of M, the gradient of the critical state line in q' - p' space to 

excess pore pressure in the middle of the sample for normally 

consolidated samples. The results of the tests on normally 

consolidated samples listed in Tables 6.19 and 6.20 in terms of the 

ratio of M measured at the ends of the sample to that in the middle are 

shown on this figure for comparison with the theoretical relationship. 

The errors in tests on overconso1idated suples are illustrated by 

Figures 6. 48a and b. Figure 6. 48a shows the stress path of soil at the 

top of the saaple in Test 32 on overconsolidated Kaolin. The fully 

drained stress path is shown for comparison. Figure 6.48b shows a 

graph of stress ratio at the top and base of the spple plotted against 

axial strain. Figure 6. 59b shows the theoretical relationship between 
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maximum deviator stress and excess pore pressure developed in Section 

4.8.3 and given by Equation 4.79. Tests 31 and 32 were similar tests 

on overconsolidated Kaolin at different rates. The excess pore 

pressure in Test 31 was about -1kPa and this test can be considered to 

be almost drained. Test 32 was carried out at a faster rate with 

higher excess pore pressure. The increase in deviator stress aeasured 

as a result is plotted on Figure 6.59b for comparison with the 

theoretical relationship. 

6.11 Excess pore pressures in constant stress rate loading undrained 

triaxial compression tests 

This section gives details of the excess pore pressures generated in 

undrained triaxial compression tests with particular reference to the 

difference between the pore pressures at the ends and middle, the 

differential excess pore pressure. 

6.11.1 Differential Excess Pore Pressures 

The undrained triaxial tests with measurement of pore pressure at the 

middle of the sample are detailed in Table 6.21a where the pore 

pressure measurements are given. In Tests 41, 51 and 81 the maximum 

differential excess pore pressure occurred in the constant stress rate 

loading stage. In Tests 71 and 73 there were also peaks of 

differential excess pore pressure in the constant strain rate stage. 

Furthermore in tests 71 and 73 there was a discrepancy between the pore 

pressures measured at the top and base of the sample. These results 

are therefore presented separately in Table 6.21b. 

The difference between pore pressure at the middle and ends of Tests 41 

and 51 on Kaolin was very small as can be seen from Table 6.21a. These 

results are not plotted, however the tests on Gault Clay gave larger 

differences in pore pressures and these results are plotted. Figures 

6.49a and 6.50a show graphs of pore pressure versus axial strain for 

Tests 71 and 73 respectively. Figures 6.49b and 6.50b show graphs of 

differential excess pore pressure between the base and middle of the 

sample plot ted against axial strain for Tests 71 and 73. Figures 6.51 a 

and b show similar graphs for Test 81 which was on an overconsolidated 

suple. Figure 6. 57a shows a graph of aaxiaum differential excess pore 

pressure versus characteristic stress (for the appropriate stress ranqe 

and sample length of each test) for the tests on normally consolidated 
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soils. Figure 6.57b shows a siailar graph for the tests on 

overconsolidated soils. Marked as hatched lines on these graphs are 

the results of the finite eleaent analyses described in Chapter 7 for 
comparison. 

6.11.2 Errors in shear strength paraaeters caused by unequalised 

excess pore pressures. 

The errors in undrained tests are illustrated by Tests 73 and 81 for 

normally and overconsolidated soils respectively. Figure 6.52a shows a 

graph of deviator stress q' versus mean effective stress p' on which 

are shown the stress paths of soil at the middle and base of the sample 

in Tests 73 and 81 based on measured pore pressure. Figure 6.52b shows 

the stress ratio q'/p' for these positions in the samples. 

Figure 6.60a shows the theoretical relationship between error in M, the 

gradient of the critical state line in q' - p' space, and differential 

excess pore pressure developed in Section 4.9.2 and given by Equation 

4.83 for normally consolidated soil. The results for Tests 71 and 73 

in terms of the ratio of M measured at the ends to that in the middle 

is shown for comparison. Figure 6.60b shows a similar graph of the 

relationship developed in Section 4.9.3 given by Equation 4.85 for 

overconsolidated soil with the result of Test 81 shown for comparison. 

6.12 Constant stress rate versus constant strain rate loading 

6.12.1 Introduction 

In order to investigate the effects of using a constant stress rate or 

constant strain rate loading on the results of triaxial tests a series 

of tests was undertaken on Bothkennar Clay. Seven undrained triaxial 

compression tests (Both 21 - 27) and four drained triaxial compression 

tests (Both 31 - 34) were carried out. The details of these tests are 

given in Tables 6.13 and 6.16. 

6.12.2 Loading rates 

The axial stress and axial strain loading rates are clearly very 

different in constant stress and strain rate loading tests. Figure 

6.61a shows a graph of axial strain loading rate versus ti .. for Test 

Both 24, an undrained test on overconsolidated soil carried out at a 
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constant stress rate of 4kPa/hour. Figure 6.61 b shows a graph of axial 

stress loading rate versus ti.a for Test Both 23 an undrained test on 

overconsolidated soil carried out at a constant strain loading rate of 
O.3%/hour. 

The same procedure was followed for all samples with the same stress 

history with regard to the amount of time allowed for consolidation 

before being tested. This was to avoid the samples attaining different 

properties (particularly different stiffnesses) due to the aging 

effects discussed in Chapter 3. 

6.12.3 Undrained test results 

The results of tests Both 22, 25, 26 and 27 are presented for undrained 

loading of normally consolidated soil. Both 25 and 27 were constant 

strain rate tests run at rates of O.3%/hour and O.6%/hour respectively. 

Both 22 and 26 were constant stress rate tests run at 4kPa/hour and 

8kPa/hour respectively with the latter stages of the tests run at a 

constant strain rate of 0.3%. hour. Figure 6. 62 shows a graph of 

deviator stress q' versus mean effective stress p' for these four 

tests. Figure 6.64 shows a graph of tangent stiffness versus natural 

shear strain for tests Both 22 and 25. Figures 6.66 and 6.67 show 

similar graphs for Tests Both 22 and 26 and for Both 25 and 27 

respectively. 

For undrained loading of overconsolidated soil the results of Tests 

Both 23 and Both 24 are presented. Test Both 23 was run at a constant 

rate of strain of O.3%/hour. Test 24 was run at a constant stress rate 

of 4kPa/hour initially with the latter stages of the test run at a 

constant strain rate of 0.3% . hour . Figure 6.63 shows a graph of 

deviator stress q' versus mean effective stress, p' which shows the 

stress paths of these two tests and Figure 6.65 shows a graph of the 

tangent stiffness versus natural shear strain for the two tests. 

6.12.4 Drained test results 

The effects of constant stress rate and constant strain rate loading 

were considered in Tests Both 31 - 34. Tests Both 31 and 32 were 

carried out on noraally consolidated soil at a constant strain rate of 

O.3'/hour and a constant stress rate of 8kPa/hour respectively. Figure 

6.68 shows a graph of tangent stiffness versus natural shear strain for 
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these tests. 

Test Both 33 and 34 were carried out on overconsolidated soil under 

constant strain rate and constant stress rate loading at the same rates 

as for the normally consolidated samples. Figure 6.69 shows a graph of 

tangent stiffness versus natural shear strain for these tests. 

6.13 Undrained triaxial compression tests on various soils 

These tests were carried out to investigate the undrained stress paths 

of a number of soils. The compression parameters N & A, and shear 

parameters M & r were determined in these tests and are included in 

Table 4.1. The soils tested in this program were Gault, London, 

Reading Beds, Weald, Kimmeridge, Oxford and Bentonite Clays. The 

undrained stress paths for these clays as well as those for Bothkennar 

and Kaolin are shown in Figure 6.70. 

6.14 Summary of soil parameters determined 

The soil parameters listed below were used in the calculation of 

characteristic stress values for analysis of experimental tests and for 

numerical analyses. 

Note t, and C
y 

values are for a 76mm sample. 

6.14.1 Kaolin 

t, (1 end) for 15-150kPa isotropic stress increment = 160 mins 

t, (all round) for 150-300kPa isotropic stress increment = 15 mins 

t, (1 end) for 150-300kPa isotropic stress increment = 200mins 

C
y 

for 150-300kPa isotropiC stress increment = 4.8 x10-7m3/s 

~ for 150-300kPa isotropiC stress increment = 3.2 x 10~3/kN 
k for 150-300kPa isotropiC stress increment = 1.5 x 10-9./s 

t, (1 end) for 150-100kPa isotropic stress increaent = 80mins 

C
y 

for 150-100kPa isotropiC stress increment = 9.1 x 10-7.·/s 

i t i t i t = 8.2 x 10-~·/kN ~ for 150-100kPa so rop c s ress ncreaen -m 

k for 150-100kPa isotropic stress increaent = 7.4 x 10-'0./s 
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1 = 0.18 1 = 0.19 
N = 3.18 CoJIpare to values derived by Robinson N = 3.25 
M = 0.9 reported by Atkinson M = 1.00 
r = 3.03 and To (1988) r = 3.14 

It = 0.05 

The critical state soil parameters obtained by Robinson were used in 

the finite element analyses. 

6.14.2 Gault Clay 

t (1 end) for 15-150kPa isotropic stress increment = 33 hours 

t, (all round) for 150-300kPa isotropic stress increment = 16 hours 

t, (1 end) for 150-300kPa isotropic stress increment = 36 hours 

Cy for 150-300kPa isotropic stress increment = 3.5 x 10~a/s 

my for 150-300kPa isotropic stress increment = 3.9 x 10~ma/kN 

k for 150-300kPa isotropic stress increment = 1.3 x 10-'Om/s 

t, (1 end) for 300-100kPa isotropic stress increment = 20 hours 

Cy for 300-100kPa isotropic stress increment = 6.2 x 10~a/s 

my for 300-100kPa isotropic stress increment = 1.2 x 10~ma/kN 

k for 300-100kPa isotropic stress increment = 7.1 x 10-"m/s 

1 = 0.17 

N = 2.9 

M = 0.94 

r = 2.81 

1C = 0.035 

6.14.3 Bothkennar Clay 

t, (1 end) for 15-150kPa isotropic stress increment = 80 mins 

t, (1 end) for 150-300kPa isotropic stress increment = 160 .ins 

Cy for 150-300kPa isotropic stress increment = 4.75 x 10-7•
a/s 

~ for 150-300kPa isotropic stress increment = 3.7 x 10~.a/kN 

k for 150-300kPa isotropic stress increment = 1.7 x 10-~I/S 
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t, (1 end) for 525-175kPa isotropic stress increaent = 55 ains 

Cv for 525-175kPa isotropic stress incra.ent = 1.4 x 10~a/s 

.v for 525-175kPa isotropic stress increment = 3.5 x 10-Saa/kN 

k for 525-175kPa isotropic stress increaent = 4.8 x 10-'0./s 

mv for 525-175kPa isotropic stress increment = 1.1 x 10~a/kN 

A = 0.17 

N = 3.00 

M = 1.45 

~ = 2.90 

K = 0.019 
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7.0 NUMERICAL ANALYSIS OF THE TRIAXIAL TEST 

7.1 Introduction 

This chapter describes the nuaerical analyses carried out to model the 

triaxial test using the CRISP finite element program with the coupled 

consolidation facility. Using this program it was possible to generate 

a large amount of data in a relatively short time. The program was 

used to extend the results obtained from experimental tests by 

modelling a range of loading types and rates, different drainage 

conditions and different soil states. Validation of the CRISP 

numerical analyses is discussed in Chapter 8. The main series of 

analyses were run on a range of "characteristic" soils. The results of 

these analyses are presented in this chapter and discussed in Chapter 

8. Correlations between soil parameters are investigated to ensure 

that the characteristic soils used are representative of real soils. 

7.2 The CRISP finite element program 

7.2.1 General 

The f ini te element program used to model triaxial tests in this 

investigation was the CRISP program developed by Cambridge Soil 

Mechanics group and fully described by Britto and Gunn (1987). The 

1984 version of this program was run on the Gould computer at the City 

University. This version of the program includes a number of different 

soil models and can accommodate 2-D plane strain, 2-D axisymetric and 

3-D analyses. Drained, undrained and consolidation analyses may be 

performed, the latter making use of the Biot theory of consolidation. 

7.2.2 Limitations of the CRISP program 

The main limitation of the CRISP program (apart from those of the soil 

model used discussed in Section 4.4) is that permeability remains 

constant throughout an analysis. This is not the case for a real soil 

for which drainage leads to changes in specific volume and 

permeabili ty . This is not a problem in undrained tests when the 

specific volume is constant. In drained tests however, changes in 

specific volume do occur. In the analyses carried out the changes in 

specific volume are generally very saall being of the order of 5' in 

elements immediately adjacent to drainage boundaries in the tests in 
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which most drainage occurred. In the aajority of analyses and in 

elements away from drainage boundaries the change in specific voluae 

was much less. Additionally excess pore pressures often peaked early 

in the analysis after very little drainage had occurred. The errors 

involved in assWling a constant permeability are therefore not 

considered to be great although this must be borne in lIind when 

analysing results. The main consequence of assWling a constant 

permeability is that CRISP is likely to underestimate the magnitude of 

excess pore pressures after a reduction in specific volWle due to 
drainage. 

7.2.3 Soil models 

There are five soil models available in the CRISP 1984 program. The 

modified Cam-clay model was used for the analyses reported in this 

dissertation since this models the behaviour of soils better than the 

other simpler models. It fits experimental data better than the 

original Cam-clay model and has been used successfully to model 

triaxial compression tests (Carter 1982). 

7.2.4 Elements 

The CRISP 1984 program has a choice of six element types for two 

dimensional analyses. Gunn and Britto (1987) recommend the use of 

linear strain triangles (with excess pore pressure unknown) in 

consolidation analyses. This element has been successfully used in 

consolidation analyses of the triaxial test by Woods (1986). The use 

of a higher order element such as a cubic strain triangle would have 

allowed the use of a smaller number of elements. However 

Pickles (1989) showed that the computer time required for a mesh of 

cubic strain triangles compared to a similar one of linear strain 

triangles was six times as long. Linear strain triangles were 

therefore used to keep computer times to a minimWl in view of the large 

number of analyses performed. 

7.3 Meshes and boundary conditions 

7.3.1 General 

The main requir_ent of the .esh was that it should lIOdel the triaxial 

test as accurately as possible. The end platens were given very stiff 
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elastic para.eters in order that strains in the platens were very saall 

compared to those in the soil and they remained level and retained the 

lateral movement of the soil suple. The .. shes used were two 

dimensional and axisyaetric about the vertical axis. For this reason 

it was only necessary to model i of a diametral section through the 

sample for one end drainage and t of a diametral section for all round 

drainage and undrained conditions as shown in Figure 7.1. The meshes 

were graded in both the vertical and horizontal directions being finer 

at the ends and perimeter of the sample where drainage boundaries were 

located and where the largest variations in stresses, strain and pore 

pressures were expected. The t sample mesh is simply the lower half of 

the i sample mesh. Britto and Gunn (1987) recommend the use of meshes 

with 50-100 linear strain triangles. The t sample mesh had 54 elements 

and the i sample mesh had 108 elements. A mesh similar to the t sample 

mesh was used by Woods (1986) with only 42 linear strain triangle 

elements. 

7.3.2 One-dimensional compression tests 

Drainage was allowed from the base of the sample only in these tests. 

The i sample mesh shown in Figure 7.1a was therefore used. Element 

nodes on side AB were fixed vertically and element nodes on sides AI 

and BJ were fixed radially but allowed to move vertically. To provide 

drainage excess pore pressures on element sides on the line CD were set 

to zero. Loads were applied to the top cap on side IJ. 

7.3.3 Isotropic compression tests 

Drainage was allowed from the base of the sample only in these tests 

and the hal f sample mesh shown in Figure 7. 1 a was used. Element nodes 

on side AI were fixed radially but allowed to move vertically and 

element nodes on side AB were fixed vertically. Excess pore pressures 

on the line CD were set to zero throughout the tests to provide 

drainage. Loads were applied to the top cap along side IJ and along 

side BJ of the sample. 

7.3.4 Drained triaxial compression tests 

Por drainage from the base of the sa.ple only, the i saaple 88sh was 

used, with el..ant nodes on side AI fixed radially but allowed to IIOve 

vertically. Excess pore pressures on the line CD were set to zero to 
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provide drainage. Loads were applied to the top cap on side IJ. 

For all round drainage the 1 saaple aesh shown in Figure 7. 1 b was used 

because of symmetry between the two halves of the sample. EleJDent 

nodes on side EF were fixed in the vertical direction but allowed to 

move radially while those on side AE were fixed radially but allowed to 

move vertically. To provide all round drainage excess pore pressures 

on side OF and line CD were set to zero throughout the analyses. 

Loading was applied to the base platen on side AB. 

7.3.5 Undrained triaxial compression tests 

For undrained tests the stresses, strains and excess pore pressures in 

each half of the sample are symmetrical. The 1 sample mesh was 

therefore used (Figure 7. 1 b) . Element nodes on side EF were fixed 

vertically but allowed to move radially whilst those on side AE were 

fixed radially but allowed to move vertically. Load increments were 

applied on side AB. No drainage was allowed so that the total volume 

of the sample remained constant throughout the analyses. 

The undrained triaxial test is normally carried out with filter papers 

on the top and bottom faces of the sample and often also on the sides. 

These filter papers provide a means by which excess pore pressures 

along the surfaces of the sample may equalise thereby reducing the non­

uniformity of excess pore pressure in the sample. Equalisation of 

excess pore pressures at the sample ends was attempted by modelling the 

platen with elements with excess pore pressure nodes and a high 

permeability. It was found that even using extremely stiff elastic 

parameters for the end platen the excess pore pressures at the base of 

the sample were significantly increased compared with an analysis with 

an impermeable platen. In order to model side filter papers additional 

elements along the sample sides would have been required. The desired 

properties of these elements however are mutually incompatible as they 

must be rigid in order that no volume change take place to affect the 

pore pressures in the sample (as with the end platen), while they 

should have no strength in order that they do not effect the stresses, 

strains and pore pressures in the saaple. 

In view of these difficulties and the fact that the differences in 

excess pore pressures between the aiddle and ends of the saaple were 

sull, it was decided to carry out the undrained analyses with no 
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equalisation of excess pore pressures along the sample surfaces. In 

fact, the excess pore pressures along the ends of the saaples vary very 

little (see Section 7.9) and these analyses therefore approxiaate to 

the case with filter papers at the ends of the suple but no side 
filter papers. 

7.4 Loading 

Loads were applied to the triaxial sample as changes or steps in stress 

or displacement. The total load step was divided into a number of 

equal load increments of stress or displacement. The time interval 

over which each load increment or block of increments was applied was 

specified to give the required loading rate. The method of selection 

of load increment size and total load step are discussed in the 

following sections. 

7.4.1 Load increment size 

Selection of the correct load increment size is extremely important 

because it is assumed that soil properties are constant within each 

load increment and the behaviour is linear. New soil properties are 

calculated after each load increment has been applied. If the load 

increments are too large the assumption of linearity of soil properties 

within each increment will cause the solution to 'drift' from the true 

solution. The increment size may be selected by reference to the yield 

ratio, defined as the ratio of the size of the yield locus at the end 

of the increment compared to its size at the beginning. The size of 

the yield locus is defined by the current value of pi c the mean 

effective stress p' on the deviator stress, q'=O axis. The accuracy of 

the results obtained from a finite element analysis using CRISP is 

dependent upon the size of the yield ratio. Britto and Gunn (1987) 

found that changes in yield ratios of less than 5' gave reasonable 

results with changes less than 2' giving further improved results. In 

the triaxial compression test analyses described in this dissertation 

the growth in yield ratio for any increment was kept to less than 2' 
and in the majority of cases less than 1'. For the modelling of the 

incremental one-dimensional compression test this requirement was 

relaxed slightly and increases in yield ratio of up to 2.9' were 

allowed in order to keep the nuaber of increments and length of the 

analysiS within reasonable limits. 
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7.4.2 Load application 

Por the constant stress rate and constant strain rate loading test 

analyses the total stress or strain steps were applied. in 50 load 

increments. This was found to keep the value of yield ratio for each 

of the increments within the required. limits for all the loading rates 
used. 

Por the incremental or 'one step' loading test analysis on kaolin a 

different procedure was adopted. This was necessary because of the 

very fast rate of change of yield ratio in the elements adjacent to the 

drainage boundary and the requirement to monitor the consolidation 

process after application of the load. The total load step of 150kPa 

axial stress was applied in 50 increments over a time interval of 10 

seconds. In this way the yield ratio of elements close to the drainage 

boundary for all increments was kept within the limits described in the 

previous section. The increase of axial stress simulated the opening 

of the drainage tap in the experimental tests to start consolidation. 

A further four blocks of 50 increments were then used to monitor the 

consolidation of the sample. The time interval for each subsequent 

block was increased as the rate of change of yield ratio reduced. 

7.4.3 stress paths modelled 

The objectives of the numerical analyses described in this dissertation 

were to simulate drained and undrained triaxial compression tests in 

order that the magnitude of undissipated and unequalised excess pore 

pressures could be investigated. It was therefore necessary to 

identify the portions of the stress paths for each type of test in 

which the maximum value of undissipated or unequalised excess pore 

pressure was likely to occur and choose the total load step required to 

model this stress path. In order to do this it was necessary to take 

into account the limitations of the critical state soil model 

particularly with respect to deviations from the true soil behaviour 

for overconsolidated soils as discussed in Section 4.7. In particular 

the stress path of overconsolidated suples beyond yield were not 

investigated in detail as this part of the soil behaviour is not 

modelled well by the CRISP finite element program. Experi.antal test 

procedures were also considered to ensure that load increments applied 

were relevant to experi.antal procedures. The results of experimental 

tests and preliainary finite .l~t runs were used to confina the 
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choice of stress path to be IIOdelled. The total stress and strain 

steps used in the numerical analyses to lIOdel the desired stress paths 

are given in Table 7.1. These steps were applied in increaents as 

described in the previous section. 

7.5 Selection of soil parameters for numerical analyses 

7.5.1 Modelling experimental tests 

The soil parameters used in the analyses modelling the experimental 

tests that were undertaken on Kaolin, Weald and Bothkennar clays were 

those determined experimentally for these soils. The critical state 

soil parameters and permeabili ties used are given in Section 6. 14. 

Poisson's ratio for drained analyses was assumed to be equal to 0.3 as 

recommended by Britto and Gunn (1987). 

7.5.2 Characteristic soil parameters 

To carry out an analysis using the CRISP finite element program the 

critical state soil parameters, A, K, M, and r are required as defined 

in Section 2.3.3. Additionally values for permeability and Poisson's 

ratio are required. In order to carry out meaningful analyses the 

values of the parameters used must be characteristic of real soils. 

The majority of combinations of values of critical state soil 

parameters are unrealistic and are not characteristic of real soils. 

Great care was therefore taken in this work to choose realistic 

characteristic soil parameters for the analyses. Use was made of soil 

parameters determined in high quality laboratory tests at the City 

University and parameters taken from the literature. The parameters 

considered are listed in Table 4.1. Correlations between parameters 

were used to ensure that combinations of the values of parameters used 

were realistic. The combinations of parameters used were chosen to 

cover the majority of soil types whilst keeping the number of 

characteristic soils to a minimum. 

The parameters chosen are listed in Table 7.2. The selection methods 

for each parameter are given below: 

With reference to Table 4.1 the range of A values normally encountered 

ranges from a little less than 0.1 to a little more than 0.3. The A 

values chosen for use in the n~rical analyses were 0.1, 0.2 and 0.3. 
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The values of x used in the analyses were related to the A values used 

through the ratio x/A.. Wi th reference to Table 4. 1 the range of this 

ratio normally encountered is fro. about O. 1 to 0.5 (carbonate sand has 

a very low value of 0.022) with the aajority of soils having values for 

this ratio between 0.1 and 0.4. The values of the x/A ratio used in 

the numerical analyses were 0.15, 0.25 and 0.4. 

In the selection of the r values used in the analyses, use was made of 

the Omega Point (Schof ield and Wroth 1968). Schof ield and wroth 

plotted the critical state lines of five soils on a graph of specific 

volume v versus the natural logarithll of mean effective stress p'. 

Projecting the lines to very high stresses they found that each of the 

lines passed through or near a point lying at v = 1.25 and p' = 

10,350kPa. Figure 7.2 shows a similar plot for 14 different soils the 

properties of which have been obtained from high quality triaxial tests 

performed by researchers at the City University (see Table 4.1 for 

these results). These results indicate that the Omega Point lies near 

v = 1.17 and p' = 9900kPa. These values for the coordinates of the 

Omega Point were used to relate the parameter r to the value of the A 

parameter through the equation below for the critical state line. 

r = A Ln (9900) + 1.17 7. 1 

This equation was used to calculate a value for r based upon the value 

of A used in each analysis. 

Schofield and Wroth (1968) derived a relationship between M, x and A. 
7.2 

M - (0.22 + 1.2671) exp (1 - ~) 

This correlation was developed from other empirical relationships and 

is not based upon direct correlation with experimental results. In 

order to check its validity the soil parameters in Table 4.1 were used. 

Figure 7.3 shows the experimentally measured values of M plotted 

against the value calculated from equation 7.2 for these soils. From 

Figure 7.3 it can be seen that Schofield and Wroth's correlation is not 

very accurate and seems to badly underestimate M for many soils. 

Figure 7.4 shows data for the same soils with M plotted against x/A and 

it can be seen that the data points fall within a relatively saall 

band. This relationship is similar to that presented by Mitchell 

(1976) and Bjerrum and Simons (1960) between the angle of friction .' 

and plasticity index. These relationships relate the frictional shear 

- 140 -



strength parameters M and.' to plasticity. Schofield and Wroth (1968) 

showed plasticity index to be proportional to the parameter A. However 

the correlation between parameters M and A is poor (see Table 4. 1 ). As 

a measure of plasticity the ratio x/A is therefore a better choice and 

the correlation shown in Figure 7.4 is generally better than those 

between the friction angle .' and the plasticity index. The 

relationship in Figure 7.4 also appears to be valid for granular 

materials for which plasticity index is equal or close to zero. This 

is shown by the inclusion of a carbonate sand in this correlation. 

Marked on Figure 7.4 are the characteristic soil types 1-7 used in the 

numerical analyses. The solid line represents the mean value of M for 

any given value of (K/A) and the hatched lines are the likely range of 

values of M for any value of K/A. The characteristic soil parameters 

used in the analyses have been chosen to cover this range. Soils 1 to 

5 cover the range of K/A values normally encountered and have values of 

M corresponding to the mean value for soils with the chosen K/A values. 

Soils 6 and 7 have a K/A in the middle of the normal range (0.25) and 

have M values that are the lowest and highest respectively that are 

encountered for a value of K/A of 0.25. In this way the soils chosen 

can be used to investigate the effect of different values of K/A and 

different values of M for a given value of K/A. 

Various relationships were tried in order to obtain a simple 

relationship between M and K/A. Figure 7.5 shows a graph of LnM versus 

the square root of K/A which yields a reasonable straight line. From 

the best line through the points a relationship between M and K/A may 

be written as below: 

LnM =0.71 - 1.39J ~ 

7.3 

Bishop and Henkel (1962) quote values of permeability for clays ranging 

from 5.6 x 10-9m/s for normally consolidated undisturbed Boston Blue 

Clay to as low as 2.5 x 10-12m/s for overconsolidated undisturbed London 

Clay. The consolidation tests carried out for this dissertation (see 

Chapter 6) yielded values of permeability ranging from approximately 2 

x 10-9m/s to 7 x 10-'1m/ s for the clays tested. Permeability values of 

1 x 10-9, 1 x 10-10 and 1 x 10-1'./s were used in the numerical analyses. 

It has been found (Britto and Gunn (1987» that Poisson's ratio for 
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effective stresses for uny soils is close to 0.3. This value was used 

in all the numerical analyses. 

The parameter N locating the isotropic noraal consolidation line in 

specific voluae/mean effective stress space is not required for the 

CRISP f ini te element program but is included here for completeness. 

The value of N may be estimated using the modified cam-clay theory 

described in Section 2.4.3. Equation 2.54 is reproduced below. 

N - r = (A -x) Ln2 7.4 

The soil parameters used in the analyses as selected in this section 

are representative of real soils. They have been chosen to cover the 

majority of the range of possible soil types. Soil type 2 in Table 7.2 

may be considered to be an average soil. Soil types 1, 3, 4, 5, 6 and 

7 represent other characteristic soils with a number of critical state 

parameters towards the extremes of the range of values normally 

encountered. 

7.5.3 Comments 

Using the correlations presented in the previous section, if any two of 

the critical state soil parameters (A, x, H, N, r) are known it is 

possible to estimate the remaining three parameters. (Note, the 

exception to this case is when r and A are known. In this case a third 

parameter is required to estimate the remaining two parameters). This 

has interesting and potentially useful implications. For instance from 

the results of an oedometer test with consolidation and swelling stages 

all five critical state soil parameters could be estimated. Clearly 

the estimated values would not be completely accurate but they would be 

of sufficient accuracy for some purposes or when no other information 

were available. 

7.6 Numerical analyses performed 

7.6.1 Introduction 

Two sets of numerical analyses were performed. The first was a series 

of analyses modelling soae of the experiaaental tests undertaken in 

order that the CRISP finite el_ent prograa using coupled consolidation 

could be validated by comparison of numerical results with experimental 
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and theoretical results. A schedule of the analyses used to validate 

the CRISP finite element analyses is given in Table 7.3. The results 

of these tests and their discussion are presented in Chapter 8. 

Having validated the CRISP finite element program approxiaately 260 

numerical analyses were perforaed on the range of characteristic soils 

described in the previous section. A schedule of these analyses is 

given in Table 7.4. The purpose of these analyses was to generate 

information on the excess pore pressure in triaxial tests and to 

examine how these are affected by different factors. The factors 

considered are discussed in the follOWing section. 

7.6.2 Factors considered in analyses 

The variables considered in the numerical analyses were sample drainage 

conditions, the type and rate of loading, the stress history and the 

fundamental soil parameters. 

The drainage conditions have a great influence on the excess pore 

pressures. Drained and undrained triaxial tests were modelled. In 

drained tests drainage from one end only and all round drainage was 

modelled, these being the most commonly used configurations. Drained 

tests with drainage from both ends are also commonly carried out but 

this case was not modelled as it is mathematically similar to the one 

end only case <one-dimensional drainage). 

Undrained tests were also modelled. The perimeter of the sample was 

considered to be impermeable and therefore these tests represent the 

worst case with no equalisation of excess pore pressures via filter 

papers at the base, top or sides of the sample. 

The type and rate of loading was investigated. Constant stress rate 

loading and constant strain rate loading was modelled. The rate of 

loading of each loading type was varied in each test series to 

investigate the relationship between excess pore pressure and loading 

rate. 

The stress history of a soil influences the excess pore pressures 

generated. Normally consolidated soils with initial isotropic .ean 

effective stresses, pi 0 of 300 and 600kPa were .odelled. 

OVerconsolidated soils vi th overconsolidation ratios of 4 and 16 were 
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modelled both with initial isotropic mean effective stresses, plo of 

300kPa. 

The influence of the different soil parameters was investigated by 

carrying out the analyses on the range of characteristic soils 

described in Section 7.6. The majority of analyses were carried out on 

soil type 2. A smaller number of analyses on soil types 1 and 3 to 7 

were carried out to investigate the effect of the different soil 

properties. 

7.6.3 Notation of numerical analyses 

The numerical analyses have been named in a systematic fashion in order 

that the details of the test modelled by a particular analysis may be 

read from the analysis name. Each letter or number in the name of an 

analysis has a particular meaning as set out below. 

1st character: 

2nd character: 

3rd and 4th 

characters: 

5th character 

(Drained tests 

only) 

Characters before 

first dash: 

Normally 

consolidated 

soils 

OVerconsolidated 

soils 

s = constant stress rate loading test 

e = constant strain rate loading test 

d = drained test 

u = undrained test 

k = one-dimensional compression test 

i = isotropic compression test 

nc = normally consolidated soil 

oc = overconsolidated 

1 = drainage from one end (base) only 

a = all round drainage 

300 = plo = 300kPa 

600 = pto = 600kPa 

4=OCR= 4 

16 • OCR = 16 
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Nullbers after 

1st dash: 

Nullbers after 

2nd dash: 

Examples: 

sdnc1300-2b-3: 

euoc16-2b-0.1: 

Soil type 

Constant stress rate loading tests: axial stress 

rate loading, kPa/hour 

Constant strain rate loading tests: axial strain 

loading rate, '/hour. 

Constant stress rate loading, drained test with 

drainage from the base only. p'o = 300kPa. 

Normally consolidated soil type 2b. Axial stress 

loading rate = 3kPa/hour. 

Constant strain rate loading undrained test. 

Overconsolidated soil type 2b (OCR = 16). Axial 

strain loading rate = 0.1 '/hour. 

7.7 Results - Excess pore pressures 

7.7.1 Introduction 

The primary objective of the numerical analyses was to provide 

information on the excess pore pressures in triaxial compression tests. 

This section presents the results obtained from the second series of 

analyses on the range of characteristic soils. The results of the 

first series of analyses modelling the experimental tests undertaken on 

Kaolin, Weald and Bothkennar clays are presented and discussed in 

Chapter 8 where they are compared with experimental and theoretical 

results. 

7.7.2 General 

The results for each type of triaxial compression test are presented 

separately however a common foraat is used throughout. 

The results of a typical analysis are presented in the form of excess 

or differential excess pore pressure versus the square root of tiae to 
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illustrate the main features of the analyses. Plotting against the 

square root of time allows the rapid changes in pore pressure early in 

the tests to be illustrated clearly. The results of all the analyses 

are then gi ven in terms of the _ximWl excess pore pressure (or 

differential excess pore pressure) recorded in the analyses. These 

values are plotted against characteristic stress as defined in Chapter 

4. The values of the characteristic time and coefficient of 

compressibili ty used to calculate characteristic stress are those 

relating to the state of the sample at the start of the triaxial 

compression test. They therefore approximate to values that would be 

obtained from an incremental loading compression test stage prior to 

the triaxial compression test. 

The majority of the analyses were carried out on soil type 2 (see Table 

7.3). Other analyses on the other soil types (1-7) were carried out at 

a particular value of the characteristic stress in order to investigate 

the spread of excess pore pressures developed for the full range of 

soils. These results are indicated on the graphs as a vertical line 

covering the range of excess pore pressures. 

7.7.3 constant stress rate loading one-dimensional compression 

tests 

A short series of analyses was carried out on normally consolidated 

soils (series sknc 1300) with drainage from the base of the sample 

only. A typical set of results has the form shown in Figure 7.6. This 

shows the excess pore pressure increasing to a peak value before 

decreasing slowly. 

Figure 7. 12 shows the peak excess pore pressure at the top of the 

sample plotted against the characteristic stress for tests with 

different stress loading rates. The excess pore pressure distribution 

in these analyses was parabolic. 

7.7.4 constant stress rate loading isotropic coapression tests 

A short series of analyses was carried out on normally consolidated and 

overconsolidated soils (series sine 1300 and sioe 1300 respectively) 

wi th drainage froa the base of the saaple only. A typical set of 

result has the fora shown in Figure 7.7. The fora of the results is 

the saae for both noraally consolidated and overconsolidated soils. 
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The excess pore pressure increases to a peak value before decreasing 

slowly. Figures 7.13a and b show the peak excess pore pressure at the 

top of the sample (node 64) versus the characteristic stress for tests 

on normally and overconsolidated soils respectively. The excess pore 

pressure distribution in these analyses was parabolic. 

7.7.5 Constant stress rate loading drained triaxial compression 
tests 

The results of a typical analysis of this type is shown in Figure 7.8. 

The form of the results for normally consolidated soils and 

overconsolidated soils (inside the state boundary surface) is similar. 

Figure 7.8 shows that the excess pore pressure increases to a peak 

value before decreasing. 

Figure 7.14 shows the peak excess pore pressure at the top of the 

sample (node 64) plotted against the char,cteristic stress for analyses 

on normally consolidated soil with drainage to the base only. Figure 

7.14b shows a similar graph for the case of all round drainage for 

which the excess pore pressure in the centre of the sample (node 64) is 

plotted against the characteristic stress. Figures 7.15a and 7.15b 

show similar graphs for analyses on overconsolidated soil. 

The distribution of excess pore pressures in the analyses with drainage 

to the base only was parabolic. In analyses with all round drainage 

the distribution of excess pore pressures from the centre of the sample 

towards the drainage boundaries was also approximately parabolic as 

shown in Figure 7.25c for analysis ednca 300-2b-50. 

7.7.6 Constant strain rate loading drained triaxial tests 

A typical set of results has the form shown in Figures 7.9a and 7.9b 

for normally and overconsolidated soils respectively. 

The results for normally consolidated soil show that the excess pore 

pressure increases to a peak and then reduces towards zero at higher 

strains. The results for overconsolidated soil show that the excess 

pore pressure increases to a peak value whilst the state lies inside 

the state boundary surface and then decreases to a negative peak as the 

state .oves along the Hvorslev surface before increasing towards zero 

at large strains. 
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Figure 7. 16a shows the peak excess pore pressure at the top of the 

sample (node 64) versus the characteristic stress for the case of 

normally consolidated soil with drainage to the base only. Figure 

7 . 16b shows a similar graph for the case of all round drainage in which 

the peak excess pore pressure in the centre of the sample (node 30) is 

plotted. Figures 7.17a and b show similar graphs for overconsolidated 

soil. 

The distribution of excess pore pressures in the tests with drainage to 

the base was parabolic. For all round drainage the distribution from 

the centre to the drainage boundaries was also approximately parabolic. 

7.7.7 constant stress rate loading undrained triaxial compression 

tests 

The results of a typical analysis have the form shown in Figure 7.10a 

for normally consolidated soils. Figure 7.1 Ob shows the form of a 

typical set of results for an analysis on an overconsolidated soil. 

For the case of normally consolidated soils a negative "peak" was 

reached early in the test after which the differential excess pore 

pressure became positive and continued to increase. The value of 

positive differential excess pore pressure at the end of the test stage 

was still increasing and its magnitude was dependent upon the length of 

the stage. For the stress range considered (which corresponds to that 

used in an experimental test) the magnitude of the positive value of 

differential excess pore pressure at the end of the test was less than 

the magnitude of the negative "peak" in all but a very few cases when 

it was exceeded by a very small amount. Figure 7. 18a shows the maximum 

negative differential excess pore pressure for normally consolidated 

soils versus characteristic stress. The differential excess pore 

pressure was calculated as the difference in pore pressure between 

nodes 36 and 8. 

For the case of overconsolidated soils the differential excess pore 

pressure reached a constant negative value as shown in Figure 7.10b. 

This value is plotted against characteristic stress in Figure 7.18b. 

The distribution of pore pressure in various analyses are presented in 

Section 7.8. 
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7.7.8 Constant strain rate loading undrained triaxial co.pression 
tests 

The results of a typical analysis on normally consolidated soil have 

the form shown in Figure 7. 11 a. Figure 7. 11 b shows the fora of a 

typical set of results for overconsolidated soil. 

For the case of normally consolidated soil, two "peaks" in differential 

excess pore pressure, one negative and one positive are indicated by 

the results of the numerical analyses. These two "peak" values of 

differential excess pore pressure are plotted against characteristic 

stress in Figure 7.19a. 

For the case of overconsolidated soil a constant negative value of 

differential excess pore pressure is reached as indicated by Figure 

7.11b. This value is plotted against characteristic stress in Figure 

7.19b. 

The distribution of pore pressures is considered in section 7.8. 

7.8 Results - Non-uniformities of triaxial samples 

7.8.1 Introduction 

This section presents results relating to non-uniformities of stress, 

strain, excess pore pressure and specific volume in triaxial test 

samples. Each of these non-uniformities is investigated in 'slow' 

triaxial tests approximating to the fully drained and fully equalised 

cases for drained and undrained tests respectively. The same non­

uniformities are then investigated in "fast" tests in which excess pore 

pressures in drained tests and differential excess pore pressures in 

undrained tests are significant. For undrained loading the case of no 

equalisation of excess pore pressures is also considered. 

The non-uniformity of strains in the triaxial sample and the effect of 

excess pore pressures is considered by comparing the axial strain over 

the middle section of the sample to the overall strain. 
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7.8.2 Non-uniforaityof stress and specific V01UM in drained tests 

The fully drained case for noraally consolidated soil is approxiaated 

by analysis ednca300-2b-0.01 (0 .. = 0.3kPa). Figure 7.20a shows the 

distribution of specific volume for one quadrant of the sample after 5' 

axial strain. Figure 7.20b shows the distribution of stress ratio, 

q'/p' for the same case. 

The fully drained case for overconsolidated soils is approximated by 

analysis edoca4-2b-0.01 (u~ =0.1kPa). Figures 7.21a and b show the 

distributions of specific volume and stress ratio for this case at 3' 

axial strain (before the Hvorslev surface was reached). 

For the case of a partially drained test on normally consolidated soil 

with constant stress rate loading and drainage from the base only 

analYSis sdnc1300-2b-3 was selected. Figures 7. 22a and b show the 

distribution of the specific volume and stress ratio respectively for 

the condition of peak excess pore pressure in the sample 

(u~ = 64.3kPa). Figures 7.23a and b show the corresponding results 

for strain controlled loading for analysis ednc1300-2b-0. 4 at the 

maximum value of excess pore pressure (u~ = 126kPa). 

The partially drained case for overconsolidated soil is represented by 

analysis edoc14-2b-0. 40. Figures 7.24a and b show the distributions of 

specific volume and stress ratio for this case at the condition of peak 

excess pore pressure during this analysis (~ = 112.2kPa). 

Analysis sdnca300-2b-50 was selected to represent the case of partially 

drained normally consolidated soil with all round drainage. Figures 

7.25a, b and c show the distribution of specific volume, stress ratio 

and excess pore pressure in this test at the condition of maximum 

excess pore pressure (o...x = 32. 4kPa) . Figures 7. 26a, b and c show the 

corresponding result for the case of an overconsolidated suple 

represented by analysis edoca 16-2a-0 • 4 at the point in the analysis 

when the excess pore pressure was a maximum (o...x = 41. 1 kPa) • 

7.8.3 Non-uniformity of stress and specific volume in undrained 

tests 

The two extreme cases in an undrained test are the cases of full 

equalisation of excess pore pressures and no equalisation of excess 
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pore pressures. The first of these two cases for normally consolidated 

soil is approximated by analysis eunc300-2b-01 (iidm max = -1. 4kPa) . 

Figures 7.27a and b show the distribution of specific voluae and stress 

ratio respectively for this analysis after 5' axial strain. The 

corresponding case for overconsolidated soil is represented by analysis 

euoc4-2b-0.1 (iidm max = -5. 7kPa) . Figures 7. 28a and b show the 

distribution of specific volume and stress ratio respectively for this 

case. 

The case of no equalisation and normally consolidated soil is 

represented by analysis suncne. In this case specific volume is 

constant and the excess pore pressure varies through the sample. 

Figures 7.29a and b show the distribution of stress ratio and excess 

pore pressure respectively for this case after " axial strain. The 

case of no equalisation and an overconsolidated sample is represented 

by analysis suocne. Figures 7. 30a and b show the distributions of 

stress ratio and excess pore pressure for this analysis after 0.8' 

axial strain (before Hvorslev surface was reached). 

For the case of partially equalised normally consolidated soil analysis 

eunc300-2a-0.4 was selected. During this analysis there were two 

"peaks" of differential excess pore pressure, the first at 0.4' axial 

strain was negative (Odmmax = -10.2kPa) the second at 3.3' axial strain 

was positive (iidm max = 13.5kPa). Figures 7.31a, b and c show the 

distributions of specific volume, stress ratio and excess pore pressure 

for the first of these peaks and Figures 7.32a, b and c show the same 

distributions for the second "peak". 

The partially equalised case for an overconsolidated soil is 

represented by analysis suoc16-2a-80 at the condition of peak 

differential excess pore pressure (0dmmax = -21.9kPa). Figures 7.33a, 

b and c show the distributions of specific volume, stress ratio and 

excess pore pressure respectively for this analysis. 

7.8.4 Non-uniformity of axial strain 

The non-uniformities of strains in the triaxial saaple may be 

considered by comparing the local axial strain over the middle portion 

(32 .. ) of the a .. ple compared to the overall axial strain calculated 

over the whole a .. ple. Theae strains have been calculated for the 

fully drained and partially drained cases for drained tests and the 
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fully equalised and partially equalised cases for undrained tests. The 

first case considered is that of drained loading of noraally 

consolidated soil. Figure 7. 34a shows the overall axial strain plotted 

against the local axial strain over the aiddle of the saple for 

analysis ednca300-2b-0.01 which approximates to the fully drained case 

(u~ = 0.3kPa) and for analysis ednc1300-2b-0.4 which corresponds to 

the partially drained case (iimax = 126kPa). Figure 7.34b shows the 

corresponding results for drained tests on overconsolidated soils. In 

this graph the fully drained case is represented by analysis edoca4-2b-

0.01 (ii~ = 0.1kPa) and the partially drained case by edoc14-2b-0.4 

(n~ = 112.2kPa). 

The case of undrained loading of normally consolidated soil is 

represented by analysis eunc300-2b-0.1 (u~max = -1.4kPa) and eunc300-

2a-0.4 (udmm~ = 13.5kPa) representing the fully equalised and partially 

equalised cases respectively. Figure 7.35 shows the overall axial 

strain plotted against the local strain over the middle 32mm for these 

analyses. The corresponding results for overconsolidated soil are 

given in Figure 7. 35b. In this graph the fully equalised case is 

represented by analysis euoc14-2b-0. 1 (udm ~ = -5. 7kPa) and the 

partially equalised case by euoc14-2-0.4 (u~max = -20kPa). 

7.9 Results - stiffness 

In order to gain some knowledge about the effect of loading rate and 

excess pore pressure in the triaxial test on the values of stiffness 

measured the secant Young's modulus was calculated for selected 

constant strain rate analyses. The stiffness was calculated at l' 
overall axial strain for each test in the series. Each test was 

carried out at a different axial strain loading rate and consequently 

had a different distribution of excess pore pressure. Normally and 

overconsolidated samples were considered. 

The stiffnesses were calculated from the deviator stress recorded in 

element 46 or 54 for drained and undrained analyses respectively. The 

calculated stiffnesses are presented in Figure 7.36 and 7.37 plotted 

against axial strain loading rate. Figure 7.36a and b show the results 

for normally and overconsolidated soil respectively in drained tests. 

Figures 7.37a and b show the results for normally and overconsolidated 

soils respectively in undrained tests. 
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8.0 DISCUSSION 

8. 1 Introduction 

This chapter assesses the perforaance of the CRISP f ini te element 

program in modelling coupled consolidation events including triaxial 

tests. The theoretical relationships developed in Chapter 4 are 

discussed in the light of experimental and numerical results. These 

relationships and results are compared and conclusions drawn. 

Based upon the foregoing discussion a new method of choosing loading 

rates for triaxial tests is proposed. This method allows the loading 

rate to be chosen to give a selected accuracy of measured soil 

parameters. 

Advantage has been taken of the large amount of data available from the 

numerical analyses to investigate the non-uniformities in triaxial 

samples and the results presented in Chapter 7 are discussed. 

The effect of loading rate on sample stiffness is also discussed and 

the behaviour of samples loaded under constant stress rate and constant 

strain rate loading is compared. Finally the testing procedures and 

apparatus used for the laboratory tests are discussed. 

8.2 Validation of the CRISP finite element program 

8.2.1 Introduction 

Before embarking on a major series of numerical analyses it was 

necessary to ensure that the CRISP finite element program to be used 

would give realistic results and that the mesh and load increments to 

be used were adequate. In order to do this the program was checked 

against theoretical and experimental data for particular situations. 

The results and comparison of these analyses are presented in the 

following sections. The finite element analyses discussed are those 

listed in Table 7.3. 

8.2.2 Incremental loading one-dimensional compression tests 

A theoretical solution to Terzaghi' s equation for one-di.ensional 

consolidation is available for the case of "one step" or incremental 

loading. Three laboratory one-diaensional consolidation tests were 
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carried out on Kaolin (tests 11 , 12 and 13). Test 11 was an 

incremental loading test. Figure 8. 1 shows a graph of the average 

degree of consolidation against the square root of Tv' the time factor. 

Also shown on this graph are the theoretical solution of Terzaghi's 

equation (Appendix A) and the results of CRISP analysiS kk01. All 

three sets of results are similar in fora with an initially linear 

section as expected (see section 2.5.2). 

There are however slight differences in the rate of consolidation 

indicated by the different curves. These differences can be explained 

by the different assumptions made in the theoretical and numerical 

analyses compared to the real soil behaviour. The rate of 

consolidation is dependent upon the coefficient of consolidation, C 
v 

which is proportional to the soil peraeabili ty , k and inversely 

proportional to the soil compressibility, ~ (or proportional to the 

soil stiffness, S). As a soil consolidates the peraeability decreases 

and the stiffness increases. The effect of increasing stiffness is the 

greatest and the coefficient of consolidation, Cv increases during 

consolidation. 

In the case of Terzaghi's theoretical solution the assumption is made 

that all the soil properties remain constant throughout the analyses. 

For the numerical analyses only the permeability is assumed to be 

constant. Consequently the numerical analysis gi ves the fastest 

overall rate of consolidation. The rate of consolidation of real soil 

in the initial stages of the test is however, equally as fast but the 

rate falls off beyond about Tv = 0.4 as the decreasing peraeability 

reduces the coefficient of consolidation in comparison to the numerical 

analysis. Terzaghi's theoretical relationship shows a slower initial 

rate of consolidation due to the assumption of constant soil stiffness, 

however in the latter stages of consolidation it predicts a similar 

degree of consolidation to that observed for real soil as consolidation 

is slowed by decreasing peraeability in the case of the real soil. In 

general however the three sets of results show good agreement 

particularly between the experimental results and numerical analysiS. 

Figure 8.2 shows a graph of excess pore pressure at the top of the 

suple plotted against the square root of Tv for the numerical analYSiS, 

theoretical solution and for the experiaental data for test 11. This 

shows slightly different relationships between the three sets of data. 

The relationship between the theoretical and finite e18ll8llt analys .. is 
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siailar to that for the case of the average degree of consolidation 

discussed above and can be explained by the same arguments. However 

the excess pore pressure in the experimental test decreases much more 

quickly than is predicted by either the theoretical or numerical 

analyses. This can be explained by considering the experiaental 

conditions under which the test took place. One-dimensional 

compression tests in the triaxial apparatus are an approximation to the 

true one-dimensional case. It is only possible to maintain the average 

radial strain at zero rather than keeping the radial strain zero at all 

points as is the case in an oedometer test. This is because the sides 

of the triaxial sample are not rigidly contained as in an oedometer and 

the average radial strain is maintained at zero by controlling the 

radial stress on the sample such that the axial strain is controlled to 

be equal to the volumetric strain (hence average radial strain is 

zero). The consequence of this procedure is that radial strains near 

the drainage boundary will be positive and those farthest from the 

sample negative. The triaxial test therefore has an average radial 

strain equal to zero and a constant radial stress whilst the true one­

dimensional test has a constant radial strain equal to zero and a 

radial stress that varies over the height of the sample. The 

adjustments to radial stress to control radial strain in the triaxial 

apparatus result in a uniform change in pore pressure within the 

sample. These adjustments take the form of a reduction in radial 

stress, (to prevent positive radial strain), resulting in a reduction 

in pore pressures. The reduction in radial stresses in the triaxial 

apparatus compared to that in a true one-dimensional test is less at 

the bottom of the sample and greater at the top. This results in a 

reduction in the excess pore pressure at the top of the sample that 

would not be seen in a true one-dimensional test. Consequently the 

excess pore pressure at the top of the sample in the experimental test 

decreases more quickly than predicted by either the numerical or 

theoretical analyses which model the true one-dimensional case. 

Pigure 8. 3 compares the distribution of the excess pore pressures 

through the height of the triaxial sample for the three data sets at 

different times. The ratio of excess pore pressure at a distance z 

from the drainage boundary to the excess pore pressure at the top of 

the sample a distance h from the drainage boundary is plotted against 

the ratio z/h. This shows excellent agreeaent between the theoretical 

and numerical analyses at all tiaes and at all points in the saaple. 

Data for the experimental test are only available at z/h • 0.5 (the 
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posi tion of the pore pressure probe) • This shows ratios of excess pore 

pressures at the middle ca.pared to the top which are slightly lower 

than predicted by the numerical and theoretical analyses. This is a 

result of the experimental test procedure as previously discussed. The 

final excess pore pressure distribution reached at Tv values of 0.36 and 

greater is parabolic in form. 

8.2.3 Constant stress rate loading one-dimensional compression 

tests 

Tests 12 and 13 were constant stress rate loading one-dimensional 

compression tests. Figures 8.4 and 8.5 show the excess pore pressures 

generated in these tests plotted against the square root of the time 

factor Tv. The results of numerical analyses kk050 and kko5 

respectively are also shown as is the theoretical relationship 

predicted by equation 4.27. These results follow a similar pattern to 

those for the incremental loading case with excess pore pressures in 

the experimental tests being significantly lower than for either the 

theoretical of numerical analyses. Again this can be explained by the 

deviation of the triaxial one-dimensional compression tests from the 

true one-dimensional case. 

The theoretical relationship predicts that a constant equilibrium value 

of excess pore pressure will be reached at a Tv value of around 1.5 as 

shown in Figure 8.4. This state is not reached in Figure 8.5. The 

experimental results and numerical analysis shown in Figure 8.4 however 

show a peak value of excess pore pressure reached at a Tv value of about 

1.3 with a subsequent reduction after which the excess pore pressure 

predicted by the numerical analysis agrees quite well with the 

experimental results and these both diverge from the theoretical 

relationship. The constant equilibrium state reached in the 

theoretical relationship is explained by the assumption of constant 

soil parameters. In the case of the numerical analysis and the 

experimental test C
y 

increases during the tests resulting in a reduction 

in the "equilibrium" excess pore pressure value. In the numerical 

analyses permeability is assumed to be constant whilst in the real 

tests it decreases as the test progresses. The rate of reduction of 

excess pore pressure after the peak in the numerical analysis is 

therefore greater than in the case of the real soil and the peak occurs 

slightly earlier. 
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Figure 8.6 shows a graph siailar to Figure 8.3 depicting the 

distribution of excess pore pressure in the aa.ple for the constant 

stress rate loading tests. Again there is good agreement between the 

numerical and theoretical analyses. Experiaental data was only 

available for z/h = 0.5 and for Tv = 3.6. This point agreed well with 

the predictions. Again the final excess pore pressure distribution is 

parabolic. 

8.2.4 Drained triaxial compression tests on normally consolidated 

soil 

The next step in the validation process was to compare the results of 

experimental triaxial tests with numerical analyses of the same tests. 

Figures 8.7 to 8.22 show graphs of the experimentally measured excess 

pore pressures in some of the triaxial tests plotted against the square 

root of time. The excess pore pressures predicted by numerical 

analyses of the same tests are also plotted. These graphs are similar 

to those of excess pore pressure against square root of time factor for 

the constant stress rate one-dimensional compression tests. Plotting 

the excess pore pressures against the square root of time also allows 

the rapid changes in excess pore pressure early in the tests to be 

illustrated clearly. This method has also been adopted in the 

following sections. These comparisons cover the full range of soils, 

drainage condi tions and loading types used in order to check the 

validity of the finite element model in all these cases. 

Figures 8.7 and 8.8 show the data from the constant stress rate loading 

stages of tests 21 and 22 respectively, tests on normally consolidated 

Kaolin clay with drainage from the base only. Figures 8.9 and 8. 10 

shows similar results for the constant stress rate loading stages of 

tests 91 and Both 32 on normally consolidated Gault Clay and Bothkennar 

Clay respectively. The results of numerical analyses of these tests 

are shown on the same graphs. The overall form of the results is very 

similar to that for the constant stress rate one-dimensional tests 

previously considered except that the magnitude of the excess pore 

pressures tend towards an equilibrium value rather than peaking and 

then reducing. The finite element analyses for tests 21 and 22 and 

Both 32 (Figures 8.7, 8.8 and 8.10) however do indicate a peak in the 

excess pore pressure. This can be explained by the assumption of 

constant peraeability in the nU88rical analyses as previously 

discussed. This deviation frOil the experiaental data however i8 sull 
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compared to the overall differences in aagnitude of the predicted and 

experimental excess pore pressures. These differences should not be 

over emphasised as the predicted values are dependent upon the soil 

parameters used in the analyses. This is particularly true of the 

value of permeability to which the aagnitude of excess pore pressure is 

very sensitive. The values of penaeability used in the finite el_ent 

analyses were determined experimentally (see Chapter 6) and clearly 

there is a degree of error involved in these values. The degree of 

variation in measured and predicted excess pore pressure is of a 

similar magnitude to the variation in values of per1Deability determined 

experimentally. Additionally because the permeabilities were 

determined over a lower stress range than that over which the 

compression tests are carried out it might be expected that the 

permeabili ties used are slightly high. This could account for the fact 

that in general the predicted values of excess pore pressure are lower 

than the experimentally measured values. 

Figure 8. 11 shows the results for the constant stress rate loading 

stage of test 24 which unlike the tests previously considered had all 

round drainage. A clear departure can be seen in this figure between 

the numerical prediction and the experimental results. Measured excess 

pore pressures are much larger than those predicted by the numerical 

analysis. Indeed experimentally, larger excess pore pressures at the 

top of the sample (where the excess pore pressure should have been 

zero) were measured than in the middle. This discrepancy is due to the 

assumption of fully efficient all round drainage in the numerical 

analysis which is obviously not valid. This problem is discussed in 

more detail in sections 3.7 and 8.4.4. 

Figures 8. 12 and 8. 1 3 show the results of tests 61 and Both 31, 

constant strain rate tests with drainage from the base only on normally 

consolidated Kaolin and Bothkennar clays respectively. The agreement 

for this case between the numerical analyses and experimental data is 

reasonable especially for test 61 for which the two sets of data match 

almost perfectly both in form and magnitude. 

For the cases of constant stress rate and strain rate loading triaxial 

compression tests on noraally consolidated soils with one- di.ansional 

drainage the coaaparisons presented indicate that the numerical analyses 

predict the real behaviour in the tests quite well. For the case of 

all round. drainage there are significant discrepancies due to the 
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inefficiencies of the filter paper drains in the real tests. 

8.2.5 Drained triaxial compression tests on overconsolidated soil 

Figures 8. 14 and 8. 15 show the results of the constant stress rate 

loading stages of tests 31 and 32 on Kaolin with an over consolidation 

ratio of 3. The results of the finite element analyses of these tests 

are also shown on the graphs. The stress ranges in these loading 

stages were inside the theoretical state boundary surface and therefore 

behaviour, according to the critical state model on which the finite 

element analyses are based, should be elastic. These figures 

illustrate the deviation of real soils from this behaviour as discussed 

in section 4.4.1. 

Figure 8.15 showing the data for test 32 shows this particularly well. 

The excess pore pressure generated in the experimental test becomes 

negative whilst that predicted by the critical state soil model via the 

CRISP finite element program remains positive. A similar trend can be 

seen in Figure 8. 16 which shows the results for test 101. The 

experimental results for Both 34 (Figure 8.17) do not seem to fit this 

pattern as well as those in the other figures, however the excess pore 

pressures measured in this test were small and subject to considerable 

scatter. 

Figures 8.14 and 8.17 show peaks in the excess pore pressure predicted 

by the numerical analyses. This peak is due to the increasing 

stiffness of the sample as the test goes on and the assumption of 

constant permeability. This peak is also seen for normally 

consolidated soils as previously discussed. 

Figure 8.18 shows the results for test Both 33 a constant strain rate 

test with one end drainage on Bothkennar Clay with an over 

consolidation ratio of 3. The results of the corresponding finite 

element analysis are also shown. The form of the two sets of results 

is very similar although the aagnitudes of excess pore pressure are 

different. The peraeability value used in this analysis (and for Both 

34) was determined over a higher stress range than that over which the 

test was undertaken and is therefore likely to be too low. This 

contributes to the large discrepancy in excess pore pressures. The 

deviation of real soil froa the critical state theory will also reduce 

excess pore pressures as previously discussed. 
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These results indicate that for constant stress and strain rate drained 

triaxial compression tests on overconsolidated soils the excess pore 

pressures predicted by the finite element analyses will be an 

overestimate because of the deviation of real soil behaviour from 

purely elastic behaviour. 

8.2.6 Undrained triaxial compression tests on normally consolidated 

soils 

Figure 8.19 shows a plot of pore pressure versus the square root of 

time for the constant stress rate loading stage of test 71 with those 

predicted by finite element analysis gsuncl-30 also shown. The two 

sets of results show good agreement. However in undrained tests the 

measurement of real interest is that of the differential excess pore 

pressure. Figure 8.20 shows a graph of differential excess pore 

pressure versus the square root of time for Test 71 with values from 

analYSis gsuncl-30 also shown. The graphs for the experimental tests 

and numerical analyses are very similar in form. A negative 'peak' in 

differential excess pore pressure is reached quite quickly after which 

the differential excess pore pressure increases continually. At the 

end of the test stage a positive value comparable in magnitude to the 

previously negative value is reached. The differential excess pore 

pressure is still increasing at the end of the test stage. This 

behaviour is in accordance with equation 4.70 developed in Chapter 4 

and is due to the increasing value of the pore pressure parameter a 

through the test. 

The numerical analysis underestimates the differential excess pore 

pressure (both negative and positive) although this might be due to the 

permeability used in the analyses being too large. The similarity of 

form of the finite element and experimental data indicate that the 

finite element model is correctly modelling the end restraint 

behaviour. The form of the resul ts is also in agreement wi th the 

theoretical analysiS described in section 4.7 and experimental 

observations by other workers described in section 3.4. 

8.2.7 Undrained triaxial coapression tests on overconsolidated 

soils 

pigure 8.21 shows a plot of excess pore pressures measured in test 81 

plotted against the square root of tiae. Also shown is the data from 
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finite element analysis gsuocl-30 for co.parison. The early part of 

the two sets of data agree very well however they subsequently diverge 

due to the divergence of the real soil behaviour from the purely 

elastic behaviour assumed in the nwaerical analYSis. In the real soil 

generation of negative excess pore pressures as the Hvorslev surface is 

approached results in the observed decrease in the overall excess pore 
pressure. 

Figure 8.22 shows a graph of the differential excess pore pressure 

versus the square root of time for Test 81 and analysis gsuocl-30. 

These graphs are of similar form although the magnitude of differential 

excess pore pressure predicted by the finite element analysis is less 

than that actually observed. This is as would be expected due to the 

deviation of the real soil from purely elastic behaviour inside the 

state boundary surface. Referring to equation 4.70 it may be seen that 

the gradual increase in the magnitude of the negative differential 

excess pore pressure may be explained by the pore pressure parameter a 

becoming negative instead of remaining equal to zero as it would if the 

soil behaviour was purely elastic. 

8.2.8 Summary 

Data from numerical analyses using the CRISP finite element program 

utilising Biot coupled consolidation has been compared to experimental 

resu1 ts and theoretical solutions for one-dimensional compression tests 

wi th incremental and constant stress rate loading. The agreement 

between the sets of data obtained from these three approaches is 

generally good. Differences may be explained by the different 

assumptions made in the theoretical and numerical analyses compared to 

the real soil and in the departure of the triaxial one- dimensional 

compression test from true one-dimensional compression. In general the 

CRISP finite element program models the one-dimensional consolidation 

process better than Terzaghi's solution however it tends to 

overestimate the degree of consolidation in the latter stages of a 

test. The good agreement of the three sets of data shows that the 

CRISP finite element program utilising the Biot type coupled 

consolidation procedure can aode1 coupled loading events quite 

adequately. It has also shown that the soil model, mesh and load 

increments used in the analyses were adequate to give acceptable 

results. 
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Comparison of experiaental results of triaxial compression tests on 

normally consolidated soil (both undrained and drained) with CRISP 

analyses of the same tests showed generally good agreeaent. Some 

discrepancies were noted between the two sets of data which can be 

explained by the assumptions made in the numerical analyses and by the 

sensitivity of the numerical analyses to the value of perIIeability 

chosen. 

The results of CRISP analyses of triaxial compression tests on 

overconsolidated soils showed considerable differences compared to 

experimental results. These were due to the deviation of real soil 

behaviour from the purely elastic behaviour assumed in the soil model 

used in CRISP inside the state boundary surface. Consequently, the 

numerical analyses overestimated the positive value of excess pore 

pressure reached in a drained triaxial compression test on 

overconsolidated soil inside the state boundary surface and 

underestimated the magnitude of the negative differential excess pore 

pressures in an undrained test on the same soil. 

8.3 Results of numerical analyses 

8.3.1 Introduction 

In this section the results of the numerical analyses are discussed in 

relation to the theoretical relationships covering excess and 

differential excess pore pressures derived in Chapter 4. 

The numerical results are considered first because they are free from 

experimental scatter of results and the way in which they are generated 

by the CRISP finite element program is understood. The results of the 

numerical analyses are compared with the experimental results in 

section 8.5. 

8.3.2 Comparison of 

relationships 

numerical results with theoretical 

In Chapter 4 theoretical equations were derived relating the magnitude 

of excess pore pressures (drained tests) or differential excess pore 

pressures (undrained tests) to the loading rate. It was shown that for 

the case of constant rate of stress loading the excess pore pressure in 

a constant stress rate drained test or differential excess pore 
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pressure in a constant stress rate undrained test are proportional to 

the product of the axial stress loading rate and the characteristic 

time t,. Por the case of constant strain rate tests it was shown that 

the excess or differential excess pore pressure in a test is 

proportional to the product of the axial strain loading rate, the 

characteristic time t" and the inverse of the coefficient of 

coapressibility. These products were defined in Chapter 4 as 

characteristic stresses as they have the units of stress. 

Figures 7.6 to 7.19 show the results of the numerical analyses. The 

results are presented in two forms. The excess or differential excess 

pore pressure is plotted against the square root of time for a typical 

test. Also for each type of test the peak excess or differential 

excess pore pressure attained is plotted against the characteristic 

stress calculated using the soil properties at the start of the test. 

The results in Figures 7.12 to 7.19 clearly show that the peak excess 

pore pressures or differential excess pore pressures developed in the 

tests are related to the soil properties suggested by the theoretical 

relationships (equations 4.88 - 4.90). The exact relationships for 

normally consolidated and overconsolidated soils and for different 

loading and drainage conditions are different. There is often a small 

spread of excess or differential excess pore pressures for a given 

value of characteristic stress for different soils and stress states 

and the relationships are not always linear. However it can be seen 

that for a given value of characteristic stress in a particular test 

type the excess or differential excess pore pressures generated fall 

within a relatively narrow band for the range of soil types and stress 

states considered. The reasons for the small spread of results and 

non-linearity of some relationships is discussed in the following 

section. 

8.3.3 Discussion of the results of numerical analyses 

The results shown in Figures 7.12 to 7.19 show a small spread of excess 

or differential excess pore pressures for a given value of 

characteristic stress and a deviation from a linear relationship in 

many cases. 

For drained te.ts the state of a ..-ple varies during the course of a 

test as the stresses change and drainage takes place, and the 
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characteristic stress therefore changes. Further.ore the stress state 

at which the peak excess pore pressure is reached varies with the 

loading rate used. Examination of the results shows that the deviator 

stress and stress ratio (aean effective stress for isotropic 

compression tests) when the maxiaum excess pore pressure is reached 

increases with increasing loading rate. Consequently the saaple 

properties when the maximum excess pore pressure is reached are 

different for different loading rates, and the characteristic stress is 

also different. The relationships shown in Figures 7.12 to 7.19 are 

based on the initial characteristic stress at the start of the test and 

consequently the points deviate from a linear relationship. 

In drained tests the major influence is drainage during the test 

leading to a reduction in t, and the characteristic stress when the 

maximum excess pore pressure is reached. This leads to a reduction in 

the rate of increase of peak excess pore pressure with increasing 

loading rate and initial characteristic stress. This effect is seen in 

the cases of isotropic and one-dimensional compression (Figures 7.12 

and 7.13), constant stress rate loading triaxial compression tests on 

overconsolidated soil (Figure 7.15) and constant strain rate loading 

tests on overconsolidated soil (Figure 7.17). However for the case of 

drained triaxial tests on normally consolidated soil this effect is 

overcome by the effect of the increasing value of the pore pressure 

parameter a with increasing stress ratio during a test. This leads to 

a slight increase in the rate of increase of peak excess pore pressure 

with increasing loading rate and initial characteristic stress (Figure 

7.14) as peak excess pore pressure is reached at higher stress ratio 

for faster loading rates. 

For the case of constant strain rate tests on normally consolidated 

soil both of the above effects are secondary to the effect of 

decreasing stiffness of the sample with increasing stress ratio during 

the test. This results in decreasing stress loading rate and 

characteristic stress during a test. Consequently for tests with 

faster loading rates, which attain peak excess pore pressure later in 

the test at higher stress ratios, the stress loading rate when the peak 

excess pore pressure is attained is reduced by a greater degree 

compared to tests with slower loading rates. This causes a reduction 

in the rate of increase of peak excess pore pressure with increasing 

loading rate and initial characteristic stress (Figure 7.16). This 

effect is greater for the less heavily consolidated soil and the 
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relationships for soils consolidated to 300 and 600kPa shown in Figure 

7.16 diverge at high characteristic stresses, the stiffer saaple having 

the higher peak excess pore pressure for a given initial characteristic 

stress. A similar divergence is seen for some other loading cases but 

is not as pronounced as for this case. 

For undrained tests on overconsolidated soil there is no drainage and 

inside the yield surface the pore pressure parameter a = 0 and the 

stiffness is sensibly constant. The arquments discussed above for 

drained tests do not therefore apply. Non-linearity is however still 

found in the relationships shown in Figures 7.18 and 7.19 for constant 

stress rate and constant strain rate undrained tests on 

overconsolidated soil respectively. This can be explained by the fact 

that at faster loading rates the pore pressure gradients in the sample 

associated with the larger peak differential excess pore pressures 

cause faster equalisation of the pore pressure. This results in a 

reduction in the rate of increase of differential excess pore pressure 

with increasing loading rate and initial characteristic stress. 

For undrained tests on normally consolidated soil although there is no 

drainage from the sample some sample properties (a and stiffness) 

change during the test. Similarly to drained tests the deviator stress 

and stress ratio when the peak differential excess pore pressure is 

reached are greater for faster loading rates. Consequently the 

relationships shown in Figures 7.18a and 7.19a are not linear. 

The dominant effect in the case of undrained constant stress rate 

loading tests on normally consolidated soils is that of the increasing 

value of the pore pressure parameter a, when the peak differential 

excess pore pressure is reached with increasing loading rate. The peak 

differential excess pore pressure in this case is negative and the 

increasing value of a tends to decrease the value of this peak. The 

rate of increase of differential excess pore pressure with increasing 

loading rate and initial characteristic stress (Figure 7.18) therefore 

reduces. 

The dominant effect in the case of constant strain rate undrained tests 

on normally consolidated soil is the reduction in stiffness during the 

tests. This results in the saaple stiffness and stress loading rate at 

the point in a test when the peak differential excess pore pressure is 

reached reducing with increasing loading rate. Consequently there is 
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a reduction in the rate of increase of differential excess pore 

pressure with increasing loading rate and initial characteristic stress 

(Figure 7.19). 

The spread of excess or differential excess pore pressures for 

different soil types for a given value of initial characteristic stress 

and initial stress state is caused by differences in fundamental soil 

parameters. These parameters control the soil properties such as 

characteristic time, coefficient of compressibility and pore pressure 

parameter Q. Consequently the peak excess or differential excess pore 

pressure for different soils varies for a given characteristic stress. 

This variation is greatest for normally consolidated soils for which 

the pore pressure parameter Q is not equal to zero and is different for 

different soils as described in section 4.5.1. The value of Q and 

shape of the undrained stress path is dependent upon the factor MAl (A -

K) and it is the variation in this factor that results in the majority 

of the spread of data seen in the analyses on normally consolidated 

soils. 

8.4 Discussion of Experimental Results and Comparison with Numerical 

Analyses 

8.4.1 Introduction 

This section will discuss the magnitude of excess pore pressures 

measured in the laboratory tests and compare these results with the 

results of numerical analyses of similar tests. Certain experimental 

tests have already been compared in some detail to finite element 

anlayses modelling those tests in previous sections in order to 

validate the CRISP finite element program. This section will make a 

more general comparison whilst refering to this earlier discussion. 

8.4.2 constant stress rate loading one-dimensional coapression 

tests 

This discussion refers to the tests listed in Table 6. 17. The excess 

pore pressures ..asurad at the top of the s.-ple and at the aiddle via 

the pore pressure probe in the experiaental one-diaensional cOlipression 

tests on noraally consolidated 80i18 are shown in Figure 6.53 plotted 

again8t the characteri8tic stress. The results of the finite el..ant 
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analyses are also shown in this figure for coaparison. The results 

show an initially approxiaately linear relationship with the gradient 

of a line through the points becoming less steep at higher 

characteristic stresses. This is similar to the prediction of the 

numerical analyses discussed in section 8.3.3 and can be explained in 

the same way. The agreement between the experimental data and the 

results of the numerical analyses is good and the discrepancies are 

within the range that might be expected due to experimental errors and 

uncertainties. The excess pore pressures at equilibrium measured in 

the experimental tests have a parabolic distribution as do those 

predicted by the numerical analyses. The excess pore pressure at mid 

height of the sample is therefore three quarters of that at the top of 

the sample. This also agrees with the theoretical analyses developed 

in Chapter 4. 

8.4.3 Constant stress rate loading isotropic compression tests 

This discussion refers to the isotropic compression tests with drainage 

from the base of the sample only, listed in Table 6.18. The excess 

pore pressures measured at the top and middle of the sample in tests on 

normally consolidated soils are shown in Figure 6.54 plotted against 

the characteristic stress. These results show an approximately linear 

relationship for the range of tests carried out. The results of the 

numerical analyses carried out are also shown in Figure 6.54 for 

comparison. The agreement between the experimental results and the 

numerical analyses is reasonably good, the discrepancies being within 

the range that can be explained by experimental errors. 

The excess pore pressure distribution in the case of both the 

experimental and numerical results is parabolic and the excess pore 

pressure at the middle of the sample is therefore three quarters of the 

value at the top of the sample. 

8.4.4 constant stress rate loading drained triaxial compression 

tests 

This part of the discussion refers to the constant stress rate triaxial 

compression tests listed in Table 6.19. The discussion in sections 

8.2.4 and 8.2.5 compares the results of some of these tests with 

numerical analyses of the same tests. These compariSons deal wi th the 

constant stress rate stage of the test, the final stage carried out 
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under constant strain rate to failure not having been lIOdelled. This 

is the case with all the numerical analyses Wldertaken. It was asstmed 

in section 7.4.3 that the maxiaua value of excess pore pressures would 

be reached during the constant stress rate loading stage of the test, 

the stress loading rate falling off quickly once the change to constant 

strain rate loading has been made. This is certainly the case for 

normally consolidated soils as is illustrated with reference to Figures 

6.37 and 6.38 which show the results of tests 21 and 22, and 23 and 

24, respectively. The abrupt drop in the excess pore pressure in 

these graphs corresponds to the change from constant stress rate to 

constant strain rate loading. The equilibrium excess pore pressure 

reached in the constant stress rate loading stage is therefore the peak 

excess pore pressure in the test. 

Figure 6.55a shows the experimentally measured values of the excess 

pore pressure in tests on normally consolidated soil with one end only 

drainage plotted against the characteristic stress. This shows an 

almost linear relationship over the range considered. The results of 

the numerical analyses of the same type of test are shown for 

comparison. The agreement between the two sets of data is good. The 

distribution of excess pore pressure in the sample is parabolic in both 

cases. 

Figures 6.38 and 6.41 show the results for tests 23 and 24, and 92 

respectively which are tests on normally consolidated soil with all 

round drainage. The effect of the inefficiency of the filter paper 

side drains may be seen in the results of tests 23 and 24 on Kaolin. 

In these tests the measured excess pore pressure at the top of the 

sample was greater than in the middle when it would have been expected 

to be zero as it was directly linked to the drainage system via the 

filter papers. In these tests the maximum value of excess pore 

pressure has probably not been measured the peak lying between mid 

height and the top of the sample where drainage is least efficient. 

In test 92 on Gault on the other hand, the excess pore pressure at the 

top of the sample was very nearly equal to zero throughout the test. 

This because of the difference in permeability values of the two clays, 

Gaul t being very much more impermeable. As discussed in section 8. 11 .3 

when the consolidation stages of these tests are considered, the 

inefficiency of filter paper side drains is much greater when the 

difference between the permeability of the filter paper and soil is 

least. 
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Figure 6. 55b shows a graph of equilibrium excess pore pressures 

measured in these tests at the top and bottoa of the aa.ples plotted 

against the characteristic stress. The numerical analyses prediction 

of the excess pore pressure at the aiddle of the sample is shown for 

comparison. It is interesting to note that the correlation between the 

two sets of data is quite good. For the two tests on Kaolin (the two 

lower sets of points) the excess pore pressures measured at the top and 

middle are a little less than those predicted for the middle of the 

sample by the numerical anlyasis. It is likely that the maximum excess 

pore pressure in the sample between mid height and the top of the 

sample is very close to the value predicted by the numerical analyses 

for the middle of the sample. The reason that the experimental and 

numerical analyses agree reasonably well despite the different 

drainage conditions can be explained by considering the effects of the 

inefficiency of the filter paper side drains in the experimental tests. 

The inefficient drainage leads to higher excess pore pressures than 

would be the case for fully efficient drainage. It also leads to 

higher values of the characteristic time t, being measured and 

consequently higher values of characteristic stress for a given loading 

rate. The increase in both the excess pore pressures and the 

characteristic stress are of the same order of magnitude and the 

relationship between the two thus remains similar to the case for 

fully efficient drainage despite the different distribution of excess 

pore pressure. Bishop and Henkel (1962), showed that the increase in 

the magnitude of excess pore pressure would be slightly less than the 

increase in characteristic time t,. Consequently it might be expected 

that the relationship between excess pore pressure and characteristic 

stress predicted by the numerical analyses, which assume fully 

efficient drainage, will slightly over predict the value of excess pore 

pressures. 

The distribution of excess pore pressures in these tests will depend on 

the inefficiency of the drains. For very inefficient drains the 

distribution will tend to that of one end only drainage. For efficient 

drains the distribution indicated by the finite element results will be 

approximated. 

The case for overconsolidated soil is a little different to that for 

normally consolidated soils. As discussed in section 4.4 the behaviour 

of overconsolidated soils inside the state boundary surface is not 

purely elastic as assuraed in critical state 8011 aechanica theory. 
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Consequently excess pore pressures generated within the state boundary 

surface are not as great as predicted by theory and l18y even be 

negative. Figures 6.39, 6.42 and 6.43 show the results of tests 32, 

101 and Both 34 respectively. These are tests on overconsolidated 

soils with one end only drainage. They show a positive peak in excess 

pore pressure before a reduction. In the case of Test 32 the reduction 

leads to a negative excess pore pressure during the constant stress 

rate loading stage of the test which continued to about 4' axial strain 

in this test. In more heavily overconsolidated samples this effect is 

likely to be more pronounced. An additional complication is that 

unlike normally consolidated soil the magnitude of excess pore 

pressures generated in the constant strain rate stage of the test may 

be greater than those generated in the constant stress rate loading 

stage. This is again illustrated by the results of test 32. The 

reason that the excess pore pressure continues to become increasingly 

negative after the change to constant strain rate (which was commenced 

at the same rate as that at the end of the constant stress rate stage) 

is that the decreasing stiffness and hence stress loading rate is more 

than offset by the increasingly negative value of the pore pressure 

parameter Q. 

The maximum excess pore pressures measured in the constant stress rate 

loading stage of the tests in Table 6. 19 are plotted against the 

characteristic stress in Figure 6.55c. The effect of the Qeviation of 

the real soil behaviour from the purely elastic case can be seen in the 

large overestimate of the results of the numerical analyses which are 

also shown. The experimental results deviate further from the 

numerical results at higher values of characteristic stress. This can 

be explained by the fact that the numerical analyses predict that for 

faster loading rates equilibrium is reached at higher deviator stresses 

by which time the behaviour of the real soil has deviated frOID the 

purely elastic case more than at lower deviator stresses. 

The distribution of excess pore pressure in both the experiaental tests 

and numerical analyses is parabolic in form. 

8.4.5 constant strain rate loading drained triaxial compression 

tests 

This part of the discussion refers to the constant strain rate tests 

listed in Table 6.20. The discussion in section 8.2.4 and 8.2.5 
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coapares some of the experiaental results of these tests with nUllerical 

analyses of the same tests and sa.e of the reasons for differences in 

the two sets of results are discussed there. 

Figures 6.44 and 6. 45 show the results of tests 61 and Both 31 

respectively, on normally consolidated soils with drainage fro. the 

base only. These show that a peak excess pore pressure is reached 

quickly after which it falls steadily. The peak value of excess pore 

pressure measured in tests 61 and Both 31 is plotted against the 

characteristic stress in Figure 6.56a. This shows an almost linear 

relationship with good agreement between the experimental results and 

the numerical analyses. The distribution of excess pore pressures in 

the samples in both cases is parabolic. 

As with constant stress rate loading tests on overconsolidated soil the 

soil behaviour within the state boundary surface is not purely elastic. 

Figure 6.46 shows the results for Both 33. The results of this test 

are compared to a numerical analysis of the same situation in section 

8.2.5 where some of the differences are discussed. These differences 

are essentially the same as those for constant stress rate loading 

discussed in section 8.4.4. As with constant stress rate loading it is 

possible that negative excess pore pressures might be generated inside 

the state boundary surface. Although this is not indicated in test 

Both 33 it is likely to occur in more heavily overconsolidated clays. 

Figure 6. 56b shows a graph of peak excess pore pressures versus 

characteristic stress. The data for the top and middle of the sample 

for test Both 33 is shown on this graph as are the results of the 

numerical analyses. As with constant stress rate loading the numerical 

analyses overestimate the excess pore pressures. The overestimate is 

probably increased in this case because the values of t, and m used to 

calculate the characteristic stress for test Both 33 are not for the 

correct stress range, the correct values having not been determined. 

The distribution of excess pore pressures is the sue in both the 

numerical analyses and experi.ental tests, being parabolic. 

8.4.6 constant stress rate loading undrained triaxial co.pression 

tests 

This part of the discussion refers to the undrained constant stress 

rate loading tests listed in Table 6.21. Some of these tests were 
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lIOdelled in nuaerical analyses and coaparisons with the experillelltal 

results are aade in sections 8.2.6 and 8.2.7. 

Pigures 6.49a and 6.50a show the excess pore pressures generated in 

undrained tests on normally consolidated Gault Clay (tests 71 and 73) 

in terms of the total pore pressure. Pigures 6. 49b and 6. SOb show the 

differential excess pore pressures between the base and middle of the 

sample to be negative initially, becoming positive and increasing 

though the constant stress rate loading stage of the test as the pore 

pressure parameter a becomes larger. This is the expected pattern and 

agrees well with the theoretical analyses and numerical analyses as 

discussed in section 8.2.6. Pigure 6. 57a shows a graph of peak 

negative differential excess pore pressure between the base and middle 

of the sample plotted against characteristic stress. The experimental 

results for tests 71 and 73 are shown on this graph with the results of 

the numerical analyses for comparison. Tests 71 and 73 were the same, 

however the differential excess pore pressures generated were 

significantly different which illustrates the magnitude of experimental 

errors and inconsistencies involved in these tests. Both the data 

points however fall well away from the line of the numerical results 

which indicates that the numerical analyses tend to underestimate the 

differential excess pore pressures generated by a factor of about 2 or 

3. The reasons for this are not obvious. It may simply be due to 

errors in the experimental values or perhaps an affect not modelled 

such as the rubber membrane around the sample. Furthermore the 

differential excess pore pressure between the top and the middle of the 

sample in tests 71 and 73 does not show the expected pattern. Pigures 

6.49b and 6.50b show that the differential excess pore pressure 

calculated as the difference in excess pore pressure between the middle 

and top of the sample becomes increasingly negative during the constant 

stress rate part of the test. This difference in behaviour between the 

top and base of the sample is difficult to explain but might be due to 

the formation of shear planes near (or through) one of the ends of the 

sample. Additional tests would be required to investigate this utter 

further. The consequences of this behaviour is that the negative 

differential excess pore pressure between the middle and top of the 

sample is up to three times greater than that between the middle and 

base. The numerical analyses underestiaate the value of differential 

excess pore pressure between the aiddle and top of the sample in these 

tests by a factor of almost ten. 
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Por the case of overconsolidated soils Figures 6.51a and b show the 

results of test 81 in terms of the total and differential excess pore 

pressures plotted against axial strain. This test is co-pared to a 

numerical analYSis of the same situation in section 8.2.7 where the 

differences between the experi.anta1 and numerical results are 

discussed. The difference in differential excess pore pressures in 

the two sets of data is due to the deviation of the real soil from 

purely elastic behaviour inside the state boundary surface which leads 

to the differential excess pore pressures in the numerical analyses 

being underestimated. This is illustrated in Figure 6.57b which shows 

differential excess pore pressure plotted against characteristic stress 

for tests 51 and 81 and the numerical analyses. From the small number 

of experimental results available it appears that the experimentally 

measured differential excess pore pressures are of the order of twice 

those predicted by the numerical analyses. 

8.5 Errors caused by excess pore pressures 

In Chapter 4 theoretical expressions were developed relating errors in 

the values of parameters derived from triaxial tests to the magnitude 

of undissipated or unequalised excess pore pressures in drained and 

undrained tests respectively. 

Figures 6.58 to 6.60 compare these relationships to data derived from 

experimental tests with measurement of excess pore pressures. Al though 

the data are limited there is generally good agreement between the 

theoretical and experimental results available. 

These relationships may therefore be used to determine the acceptable 

excess pore pressure in a drained test or differential excess pore 

pressure in an undrained test based upon an acceptable degree of 

accuracy in the measurement of the parameters to be determined. The 

required degree of accuracy would depend upon the purpose for which the 

results of a series of tests are to be used. This is the first step in 

selecting a loading rate for a triaxial test. Once an acceptable value 

of either excess of differential excess pore pressure has been 

determined the loading rate selected must be such that this value is 

not exceeded. If this is done the results of a test can be used with 

confidence. 
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8.6 Loading Rate Selection Method 

8.6.1 Introduction 

The purpose of this section is to develop a method for the selection of 

loading rates in triaxial tests that will result in an acceptable 

excess or differential excess pore pressure in drained and undrained 

tests respectively. The method presented is based upon the theoretical 

relationships developed in Chapter 4 of this thesis and upon the 

numerical and experimental results discussed earlier. Each type of 

test and soil state is considered separately. 

8.6.2 Basic method 

The method of selecting loading rates to give an acceptable excess or 

differential excess pore pressure in triaxial tests described in this 

section in based upon the theoretical relationships developed in 

Chapter 4. Equations 4.88 -4.90 relate excess or differential excess 

pore pressure to the characteristic stress for a test. The equations 

may be used to select a characteristic stress and hence loading rate to 

give a chosen acceptable excess or differential excess error pore 

pressure resulting in an acceptable error in the parameter to be 

measured (see section 8.5). However, equation 4.89 and 4.90 contain 

the pore pressure parameter a the value of which is not constant and is 

difficult to determine. These equations are therefore of limited 

practical use. For this reason equations 4.88 - 4.90 will be 

rewritten into two basic forms of equation for drained and undrained 

tests. 

For drained tests 

Q 8.4 

For undrained tests 

8.5 

In these equatiOns the excess or differential excess pore pressure is 

related directly to the characteristic stress by a 'constant' )1' which 

incorportes the constant )1 and other constants and variables in 

equations, 4.88 -4.90. In some cases )1' therefore contains components 
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which are not constant during a test and therefore ~' may not be a 
constant. 

However, these equations may be used with an appropriate value of ~. to 

estimate a stress or strain loading rate to give a predeterained 

maximum value of excess or differential excess pore pressure in a test. 

Values of p' that may be used in different tests are given in section 

8.6.3. 

8.6.3 Selection of values of constant ~. 

8.6.3.1 General 

The constant ~. in equations 8.4 and 8.5 is the ratio between the 

maximum excess or differential excess pore pressure in a test and the 

characteristic stress for that test . ~ , can be obtained as the 

gradient of a graph of maximum excess or differential excess pore 

pressure against characteristic stress such as those shown in Figures 

7.12-7.19. This is the basic method used in determining ~'. In some 

cases this relationship is not linear but it has been possible to adopt 

a value of ~' that is reasonably accurate for characteristic stresses 

and excess pore pressures in the range normally encountered in triaxial 

tests. These values of ~' generally become conservative at high values 

of characteristic stress overestimating the value of excess or 

differential excess pore pressure. 

In choosing the values of ~' the finite element and experimental 

results have been considered based upon the discussions in sections 

8.3.3 and 8.4 in order to obtain a practical value that can be used to 

select loading rates. The values of ~' chosen differ from the 

theoretical values of the constant ~ given in Chapter 4 for one­

dimensional loading because of inaccuracies in assumptions made in the 

one-dimensional consolidation theory, particularly when applied to 

triaxial compression tests and because ~' includes other constants and 

variables such as the pore pressure parameter in some cases. The 

values of the constant ~' selected are given in Table 8.1 and shown 

graphicall y in Figures 7. 12-7 . 19. Some of the assumptions and 

uncertainties in the selection of these values are discussed in the 

following sections. 
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8.6.3.2 Spread of l1' values 

As previously discussed the l1' value for different soils may be 

slightly different due to soils baving different fundaJaental soil 

parameters and behaviours. A representative range of soils has been 

investigated and the spread of l1' values is generally saall. The l1' 

values presented in Table 8.1 are for an 'average' soil in the middle 

of the range. The l1' values for some soils may therefore be slightly 

higher or lower. 

Where the l1' value varies for soil initially consolidated to different 

states a conservative (large) 111 value has been used. There was a 

significant variation in only one case, constant strain rate tests on 

normally consolidated soils. The 111 value corresponding to an initial 

consolidation pressure Po' = 600 kPa was used which is normally the 

maximum used in the triaxial test apparatus. For larger values of Po I , 

111 may be greater. 

8.6.3.3 One-dimensional compression tests on overconsolidated soils 

No finite element analysis or experimental tests were carried out on 

overconsolidated soils. It was assumed that the values of 111 are the 

same for overconsolidated soils as for normally consolidated as is the 

case for isotropic consolidation. 

8.6.3.4 One-dimensional and isotropic compression tests with all 

round drainage 

No finite element analyses or experimental tests of these cases were 

carried out. The l1' value obtained for tests with one-dimensional 

drainage from the results of experimental tests and finite element 

analyses were found to be less than the 111 value derived from one­

dimensional consolidation theory (see Chapter 4). It was assumed that 

those for all round drainage would also be less and by the same degree. 

The l1' values obtained from one-dimensional consolidation theory were 

therefore factored by the ratio of lleasured to theoretical value of 11 I 

for the one-dimensional drainage case to obtain the 11 I values in Table 

8. 1 for one-dimensional and isotropiC coapression with all round 

drainage. 
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8.6.3.5 Distribution of excess pore pressure in drained tests with 

all round drainage 

The distribution of excess pore pressure in this case was assuaed to be 

the same as that derived by Gibson and Henkel (1954) from consolidation 

theory (see Chapter 4) in order to calculate the average excess pore 

pressure in the sample. This shows that the average excess pore 

pressure is 0 • 4 times that in the middle of the sample. This 

distribution may in fact not be attained because of the inefficiency 

of filter paper side drains as previously discussed in section 8.4.4 

but the estimated value of excess pore pressure should not be 

seriously in error. 

8.6.3.6 Undrained tests with all round filter papers 

It was not possible to carry out finite element analyses of this case 

and no experimental tests were carried out. The p' values for this 

case were therefore calculated on the assumption that the ratio of p' 

values for one-dimensional and all round drainage are the same for 

undrained loading as for drained loading. This indicates that p' for 

the case with all round filter papers in 3 times that for the case 

without them. The p' values obtained from finite element analyses and 

experimental tests without side drains were therefore increased by a 

factor of 3 to obtain values for tests with filter paper side drains. 

8.6.3.7 Undrained tests 

The p' values adopted for undrained tests in Table 8. 1 are those 

obtained from the results of the finite element analyses multiplied by 

a factor of 10. This factor was adopted for the following reasons: 

1 ) In constant stress rate loading tests on normally consolidated 

soil the finite element analysis underestimated the differential 

excess pore pressure at the middle of the sample calculated with 

respect to the pore pressure at the base of the sample by a factor 

of approximately two or three. Furthermore the pore pressure 

measured at the top of the s&aple did not behave as expected and 

the differential excess pore pressure calculated with respect to 

this value was a factor of approximately 10 greater than that 

predicted by the finite element analyses. This has been discussed 

in section 8.4.6 and might have been due to the formation of a 
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slip plane. 

2) The spread of differential excess pore pressures for a given 

characteristic stress for normally consolidated soils is quite 

large (up to t 40' for constant strain rate loading) introducing 

a degree of uncertainty into predictions. 

3) For overconsolidated soils the deviation of the real soil 

behaviour from purely elastic behaviour inside the state boundary 

surface leads to the finite element analyses underestimating the 

excess pore pressures by a factor of about two. Only a small 

number of analyses were taken to yield as the behaviour indicated 

by the finite element program beyond yield was not considered to 

be realistic and the negative differential excess pore pressures 

indicated too high. However as real soil approaches yield the 

negative differential excess pore pressures generated will tend 

toward those indicated by the finite element analyses taken beyond 

yield. The differential excess pore pressures indicated by these 

analyses therefore represent an upper bound. The magnitude of 

differential excess pore pressure indicated by these analyses is 

a factor of about 10 times greater than those indicated before 

yield is reached. 

The factor of 10 therefore allows for differential excess pore 

pressures generated by such factors as slip planes, variation in 

the differential excess pore pressures generated by different 

soils and the departure of real overconsolidated soils from 

elastic behaviour and the onset of plastic straining. 

8.6.3.8 Drained triaxial tests on overconsolidated soils 

For drained loading on overconsolidated soils the ~' values in Table 

8.1 have been calculated for the positive peak in excess pore pressure 

early in the test. For the tests carried out the magnitude of the 

negative excess pore pressure generated later in the test is of similar 

magnitude to the positive peak and the value of ~' given in Table 8.1 

is given as a plus or minus figure to indicate this. However, for 

more heavily overconsolidated 80ils the negative excess pore pressure 

may be larger and underestiaated by the ~' value in Table 8.1. 
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Por constant stress rate loading tests on noraally consolidated soils 

the excess or differential excess pore pressure generated in the test 

will decline if the test is changed to a constant rate of strain 

loading at the current strain rate, as the stress loading rate 

decreases. This is however, not always the case with overconsolidated 

soils for which the pore pressure parameter becomes very large and 

negative late in the test as the soil yields. For these tests the 

strain loading rate in the latter part of the test should therefore be 

considered separately with regard to excess pore pressure whilst for 

normally consolidated soils it is not necessary. 

8.6.4 Tests on one-dimensionally consolidated samples 

The tests considered so far have been those carried out on 

isotropically consolidated samples. However, it is often the case that 

tests are carried out on one-dimensionally consolidated samples. Three 

tests on one-dimensionally consolidated Kaolin were carried out under 

a constant rate of strain loading; tests 11, 12 and 13. The excess 

pore pressures generated in these test are given in Table 6.20 and the 

results of tests 11 and 12 are included in Figure 6.56a which shows 

maximum excess pore pressure plotted against characteristic stress. 

This figure shows that the excess pore pressures generated in drained 

tests on one-dimensionally normally consolidated samples are related 

to characteristic stress by the same relationship as for tests on 

isotropically normally consolidated samples. It therefore seems 

reasonable to conclude that the relationships that have been developed 

for isotropically consolidated samples may also be applied to one­

dimensionally consolidated samples. 

8.6.5 Comparison of calculated excess pore pressure with those 

reported in the literature 

It was not possible to find any tests reported in the literature 

conducted under a constant rate of stress loading with excess pore 

pressure measurement. Several researchers have measured excess pore 

pressures in drained tests conducted under a constant rate of strain 

loading. However the relevant values of the coefficient of 

compressibility are not reported to enable the calculations to be aade 

for comparison with their results. 
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A cOllparison was still possible with the results of 'l'hurairajah, 

Balasubramaniaa, and Ponseka (1975) who carried out constant strain 

rate drained triaxial tests on noraally consolidated Kaolin clay. 'l'he 

samples were isotropically consolidated to 415 kPa before testing and 

had base only drainage. Excess pore pressures were measured at the top 

of the sample. From the Cy value quoted and the sample dimensions (76 

x 38mm) the value of the characteristic time, tl was 4 hours. The value 

of the coefficient of compressibility, m was not given in the paper, 

however adopting values of A. = O. 19 and N = 3.36 (Atkinson and Tam 

( 1988» for the equation of the isotropic normal consolidation line for 

Kaolin a value for m of 2.2 x 104 m2 /kN was calculated. 

Table 8.2 shows the maximum values of excess pore pressure measured by 

Thurairajah, Bal subramani am , and Fonseka and the corresponding values 

calculated using equation 8.4 with a ~' value of 0.65. Also shown in 

the table are the values of excess pore pressure taken from Figure 

7.16a for samples consolidated to 300 and 600 kPa. 

For this loading case the value of ~' of 0.65 is only accurate for low 

values of characteristic stress as the relationship shown in Figure 

7.16a is not linear. For the tests with the slowest strain rates 

(those used in practice) the use of ~ , = 0.65 gi ves reasonable 

agreement with the measured values of excess pore pressure. Comparing 

the measured excess pore pressures for larger characteristic stresses 

with those predicted by the finite element program shows very good 

agreement, with the measured values (for Po' = 415 kPa) falling between 

the finite element predictions for Po' = 300 and 600 kPa. 

8.6.6 Comparison with loading rates calculated using the BiShop and 

Henkel (1962) Method 

As previously discussed the Bishop and Henkel (1962) calculations can 

only be used to detenine constant strain loading rates. For the cases 

of drained and undrained loading of normally and overconsolidated soils 

the loading rates determined by these calculations will be compared 

to those calculated using the method outlined in this thesis. The soil 

properties used will be those of Gault Clay, isotropically noraally 

consolidated to 300kPa, or with an OCR of 3 and initial isotropiC 

effective stress of 100kPa, that were derived in Chapter 6. 
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The strain rates calculated using the Bishop and Henkel calculations 

have been determined on the basis of a 95' average degree of 

dissipation or equalisation of excess pore pressure. Two different 

types of tests have been considered. The first test considered is one 

in which only the failure soil parameters are required, a 'failure 

test'. The second type of test is one in which the entire stress path 

is to be determined, a 'stress path test'. It has been assumed 

that failure occurs at 20' and 10' axial strain for normally and 

overconsolidated soil respectively and these strains are used to 

calculate the strain rates in the failure tests. Por the stress path 

tests it has been assumed that readings will be taken at twenty equal 

time intervals during the tests. Strains of l' and 0.5' have therefore 

been used for normally and overconsolidated soils respectively ensuring 

that 95% dissipation or equalisation of excess pore pressure has 

occurred at the first reading made at these axial strains. 

The method for calculating strain rates described in this thesis has 

been used to calculate loading rates that will give a maximum average 

value of excess pore pressure or maximum differential excess pore 

pressure of t 1 OkPa during a test. The errors in measured soil 

parameters in tests at the calculated rates could be estimated using 

the equations derived in Chapter 4. In order to compare the calculated 

rates with those calculated using the Bishop and Henkel calculations as 

described above the maximum average excess or differential excess pore 

pressure in the tests at the Bishop and Henkel rates has been 

calculated. 

The rates and excess pore pressures calculated using the two methods 

are given in Table 8.3 for four different tests. Por the case of 

'failure tests' it can be seen that the Bishop and Henkel rates are 

faster than those calculated using the method in this dissertation. 

However, the excess and differential excess pore pressures using the 

Bishop and Henkel rates are larger and consequently the potential 

errors are greater. Por instance for the drained test on 

overconsolidated soils in Table 8.3 a maximum average excess pore 

pressure of 18kPa is predicted (27 kPa at the top and 20 kPa at the 

middle of the sample). These values of excess pore pressure are likely 

to occur near failure in this type of test (see results of Test 32) and 

may result in unacceptable errors. 

Por the case of the • stress path teats' it can be seen that the Bishop 
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and Henkel calculations give slower loading rates than those using the 

methods in this dissertation. This is the case particularly for 

drained tests for which the Bishop and Henkel calculations give very 

slow rates resulting in very small excess pore pressures i.plying very 

small errors in the measureaent of soil parameters. It is likely 

however, that it would not be necessary to li.it errors to such saall 

values. Under these conditions use of the Bishop and Henkel 

calculations can therefore lead to excessively slow loading rates. 

8.7 End Restraint and Non-uniform stress and Specific Volume in 

Triaxial Tests 

8.7.1 Introduction 

This section identifies significant non-uniformities in stress ratio, 

specific volume and excess pore pressure in triaxial tests. The 

discussion refers to Figures 7.20-7.33 which show the distribution of 

these variables in selected finite element analyses. The distributions 

shown in these figures are based on data at a relatively small number 

of points in the sample and are therefore approximate. They may 

however be used to illustrate the main non-uniformities and to 

investigate the effect on these non-uniformities of undissipated or 

unequalised excess pore pressures. 

8.7.2 Drained tests 

The distribution of specific volume, stress ratio and excess pore 

pressure for drained analyses are shown in Figures 7.20-7.26. The 

distribution of shear stress through the sample indicated by the stress 

ratio, q' /p' is clearly affected by end restraint. The stress ratio is 

markedly reduced near the ends of the sample generally being only about 

60' of its value at mid height. The distribution of stress ratio over 

the middle 1/3 to 1/2 of the sample is generally quite uniform and its 

value agrees well with the nominal value calculated from the applied 

total axial and radial stresses and excess pore pressure at the mid 

height. This indicates that the effects of end restraint are generally 

restricted to the sample ends for a sample with a height to diaaeter 

ratio of 2. The exception to this is the case of fully drained tests 

on normally consolidated soil which shows aarked non-uniforai ty of 

shear stress at the aid height of the sample as shown by the stress 

ratio distribution in Figure 7. 20b. This effect is not seen in 
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partially drained tests (Figures 7.22b, 7.23b and 7.25b). 

The effect of excess pore pressures in partially drained tests is to 

reduce the mean effective stress and thereby increase the stress ratio. 

The stress ratio in partially drained tests therefore tends to be 

greater farthest frOil drainage boundaries (the top half of the saaple 

in Figures 7.22b and 7.23b and the middle of the sample for the case 

of all round drainage shown by Figures 7.25b and 7.26b). 

The distribution of excess pore pressure in tests with drainage to one 

end only is parabolic and has not been illustrated. The distribution 

for all round drainage is shown in Figures 7. 25c and 7. 26c. The 

distribution is approximately parabolic from the drainage boundaries 

towards the centre of the sample where the highest excess pore 

pressures occur. 

The variation of specific volume in fully drained tests is less than l' 
for the analyses considered although this is likely to increase as 

failure is approached, slip planes form and local drainage occurs. The 

variation of specific volume in tests with faster loading and only 

partial drainage is much greater (up to 3'). The less well drained 

parts of the sample with high excess pore pressure have the largest 

specific volumes as shown in Figure 7.22a, 7.23a, and 7.24a for one end 

drainage and Figures 7. 25a and 7. 26a for all round drainage. The 

variation of specific volume in overconsolidated samples is less than 

in normally consolidated samples which would be expected due to the 

lower volume compressibility of overconsolidated soil 

The distribution of specific volume and stress ratio does not appear to 

be affected significantly by the type of loading used. This is 

illustrated by comparison of Figures 7.22 and 7.23 for constant rate of 

stress and constant rate of strain loading partially drained tests on 

normally consolidated soil respectively. 

8.7.3 Undrained tests 

The distribution of specific volume, stress ratio and excess pore 

pressure for undrained tests are shown in Figures 7.27-7.33. The 

distribution of shear stress through the suple indicated by the stress 

ratio q'/P' is aore non-unifora than for drained tests. The stress 

ratio is reduced to alllOst zero at the saaple ends. However, the 
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stress ratio over the aiddle 1/3-1/2 of the saaples is quite unifora in 

all cases although saaples with full equalisation of excess pore 

pressures (see Figure 7.27b) tend to have a more unifora distribution 

than those with only partial equalisation (see Figure 7. 32b) . The 

value of stress ratio at the mid height of the sample agrees very 

stresses and the pore 

drained loading this 

is largely unaffected 

well with that calculated from the applied total 

pressure at mid height. As with the case of 

indicates that the middle portion of the sample 

by end restraint. 

Variation in the specific volume in tests with full equalisation of 

excess pore pressures is quite large for the analyses considered. 

Figure 7. 27a shows the variation in specific volume for a normally 

consolidated sample which indicates variations of up to about 3' with 

variations of this order between the centre and perimeter of the sample 

at mid height. This non-uniformity of specific volume is caused by the 

internal drainage necessary to equalise the highly non-uniform excess 

pore pressures shown in Figures 7.29b and 7.30b which show tests with 

no equalisation of excess pore pressure for normally and 

overconsolidated soil respectively. Both these distributions of pore 

pressure show concentrations on the sample perimeter at the ends which 

may be due to a concentration of axial stress in these areas. stress 

concentrations of this nature have been reported by Coker and Filon 

(1957) for elastic behaviour and by Perloff and Pombo (1969) who showed 

that this concentration of axial stress persisted even after the onset 

of plastic straining. The results of the analyses conducted for this 

study also show the axial stress at the perimeter to be higher than 

towards the central axis of the sample. This causes an increase in 

deviator stress towards the perimeter at the ends of the sample which 

in turn leads to increased stress ratio. This trend may be seen in all 

the tests including the drained tests. The stress concentration can be 

seen particularly clearly as a concentration of high stress ratio in 

Pigure 7.30a and in Figure 7.31b which are both undrained tests. 

Por samples with partial equalisation of excess pore pressures the 

variation in specific volume is much less (see Figures 7.31a, 7.32a and 

7. 33a). The dependence of the excess pore pressure distribution on the 

pore pressure parameter a aay be examined with reference to Pigures 

7.31c and 7.32c. These show the pore pressure distribution in a test 

on a normally consolidated 80il at two stages in a test corresponding 

to the negative and positive peaks respectively in differential excess 
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pore pressure that are seen for nOnlally consolidated soils. The 

negative peak occurs early in the test (in this case at 0.4' axial 

strain) when the pore pressure parameter a < 2/3. The positive peak 

occurs later in the test (3.3' axial strain) when a ) 2/3. For the 

case of overconsolidated soils the differential excess pore pressure is 

always negative (a ~ 0) with a distribution siailar to that in Pigure 

7.33c. 

8.8 Non-uniformity of Axial Strain in the Triaxial Test 

In the conventional triaxial test axial strain is measured by the 

relative movement of the base platen and top cap of the sample. This 

gives an average or overall value of axial strain for the sample. The 

resul ts of the numerical analyses presented in section 7.8.4 and 

Figures 7.34 and 7.35 compare the overall axial strain to the local 

axial strain measured over the middle 32mm of the samples. The 

comparisons are made for tests on normally and overconsolidated soils 

and for drained and undrained loading conditions. Furthermore each 

graph presents the results for a test with full dissipation (or 

equalisation) of excess pore pressure and one with partial dissipation 

(or equalisation) of excess pore pressure in order that the effect of 

non-uniform excess pore pressure may be evaluated. 

These results show that even for the relatively small strains 

considered in the analyses (up to 5' overall axial strain) the local 

axial strain over the middle part of the sample can be greater than the 

conventionally measured overall axial strain by up to 50' if axial 

strain is measured between the platens. This non-uniformity is 

relatively small for drained tests on normally consolidated soil (see 

Pigure 7. 34a) and for drained and undrained tests on overconsolidated 

soil before yield (overall axial strains up to 3' in Pigures 7.34b and 

7.35b). For the case of overconsolidated soil before yield, for which 

behaviour is assumed to be elastic, the analyses indicate that the 

error in measured strain reaches a maximum of about 5' • This is 

comparable to the errors estimated in linear elastic finite element 

analyses by Girijavallabhan ( 1970) . After the onset of plastiC 

straining the errors increase rapidly as straining is concentrated in 

the middle part of the s.-ple. The nu.erical analyses are likely to 

have underestiaated the error before yield because the behaviour of 

real soil is not purely elastic within the state boundary surface as 

assumed and soae plastiC straining occurs inside the state boundary 
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surface. 

The greatest non-uniformity of axial strain occurs in overconsolidated 

soil after yield (see Pigure 7. 34b and 7. 35b at overall axial strains 

greater than 3') when the analyses indicate local axial strains up to 

50' greater than the overall value at 5' overall axial stra~n and for 

undrained tests on normally consolidated soil (Pigure 7.35a) for which 

the same comparison shows local axial strain approximately 40' greater 

than overall axial strain. 

Axial strains measured locally over the middle of the sample are 

greater than the overall strains due to the non-uniform stress 

distribution caused by end restraint discussed in section 8.7. The 

greater shear stresses in the middle part of the sample compared to the 

ends result in greater strains in this area. This is indicated by the 

characteristic bulging of triaxial samples. A number of workers have 

carried out linear and non-linear analyses of the triaxial test as 

described in section 3.4.1 e.g. Girijavallabhan (1970), Costa Pilho 

( 1980) and Perloff and Pombo (1969). These analyses all showed greater 

axial strains over the middle part of the sample than near the ends in 

agreement with the results of analyses described in this section. 

The degree of dissipation or equalisation of excess pore pressure in 

drained and undrained tests respectively appears to have little affect 

on the non-uniformity of axial strain. The exception to this is 

drained tests on normally consolidated soil (Figure 7.34a) which the 

analyses indicate exhibit greater non-uniformity for the partially 

drained case. This is because the excess pore pressures in the 

middle part of the sample reduce the mean effective stress compared to 

the fully drained case resulting in greater shear stress and 

consequently larger strains in this region. 

A number of workers have developed experimental techniques and 

apparatus for measuring the axial strain of triaxial samples directly 

over the middle part of the sample. Some of the more recent apparatus 

developed includes an axial displacement gauge using eletrolytic levels 

mounted on the sample, Burland and S)'IIes (1982) a syst_ of LVDT 

transducers measuring IIOveaents of pins inserted into the sa.ple 

presented by Costa Filho (1985) and a displac..ant gauge using Hall 

Bffect transducers 80unted on the saaple presented by Clayton (1986). 
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Measurements of axial strain over the central part of triaxial saaples 

made with equipaent such as that described above have been compared to 

the conventionally measured axial strains measured between the platens. 

Burland and Symes ( 1982), Costa Filho and Vaughan (1980) and Costa 

Filho (1985) have all shown that for small strains the strains measured 

over the middle part of the sample are smaller than the overall strains 

measured between the platens. This apparent contradiction of the 

resul ts of the numerical analyses described earlier is caused by 

bedding errors which include non-uniformity or roughness of the sample 

ends, non-parallelism of the sample ends and tilting of the top cap all 

of which result in poor contact between the sample ends and platens. 

This results in relatively large movements of the end platens relative 

to the sample ends as proper contact is made. These errors have been 

investigated by various workers including Sarsby, Kal teziotis and 

Haddad (1980), Daramola and Vaughan (1982) and Costa Filho (1985) and 

have been shown to lead to significant underestimation of sample 

stiffness in the small strain range if overall axial strain 

measurements are used. From the foregoing discussion it is clear that 

there are two causes of error in axial strain measurement made between 

the platens; non-uniform straining of the sample and bedding between 

the platens and soil. The errors caused by these factors are opposing. 

Non-uniform straining of the sample leads to overall strain measurement 

underestimating the strain in the middle of the sample whilst bedding 

errors lead to an overestimate. At small strains the errors associated 

with bedding are the greater of the two errors and measured overall 

strains are greater than those at the middle of the sample. For larger 

strains when bedding has occurred and non-uniformi ty of strain is 

greater it is likely that measured overall strains will be an 

underestimate of straining in the middle of the sample. If axial 

strain is to be measured accurately it is therefore essential to use a 

form of local strain measurement over the middle of the sample. 

8.9 The Effect of Loading Rate and Excess Pore Pressure on Stiffness 

8.9.' Introduction 

This section discusses the results of selected constant strain rate 

loading analyses presented in section 7.9. Figures 7.36 and 7.37 show 

these results in the form of secant Young's modulus at " axial strain 

plotted against axial strain loading rate. Any variation in stiffness 

with loading rate is a result of the different distribution of pore 
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pressure which results from the different loading rates. The CRISP 

finite element program used for these analyses aakes no allowance for 

the strain rate effects discussed in section 3.3. 

S.9.2 Drained tests 

Figure 7. 36a shows the results of analyses of drained tests with 

drainage to the base of the sample only. The graph shows that the 

stiffness of the sample increases with increasing loading rate. For 

the faster loading rates the excess pore pressures are greater and the 

sample is less well drained than for the slower rates. The stiffness 

measured in these tests is therefore not the drained stiffness but a 

partially drained stiffness intermediate between the drained and 

undrained stiffness. It can be seen from these results that in order 

to measure the drained stiffness very slow loading rates are required. 

The slowest loading rate in the ednc 1300-2b analysis series shown in 

Figure 7.36a is 0.01'/hour axial strain rate. Even for this loading 

rate it can be seen that the stiffness measured is not the fully 

drained stiffness. The maximum excess pore pressure in this test was 

about SkPa at the top and 6kPa at the middle of the sample. The 

increase in the value of the secant Young's modulus for the fastest 

rate of 0.4'/hour is nearly 50'. 

Figure 7. 36b shows a similar graph to 7. 36a for drained tests on 

overconsolidated soil with drainage to the base of the sample only. 

This shows a very similar trend to that for normally consolidated 

soils. The increase in measured secant Young's modulus is however, 

smaller being about 7' for the range of axial strain rates considered. 

The excess pore pressures in these analyses are also smaller. The 

maximum positive excess pore pressure corresponding to the early part 

of shearing in the analysis in the series with the slowest loading rate 

(0.01' axial strain/hour) is only 3.3 kPa at the top of the sample and 

2.4kPa in the middle). 

It is clear that if the drained stiffness of a soil is to be measured 

accurately the loading rate used must be very slow. It is apparent 

that even quite small excess pore pressures can affect the measured 

stiffness leading to an overestimate of the true drained value. 

Because the excess pore pressure generated in norully consolidated 

soils is greater than in overconaolidated soil, norully consolidated 

soils in particular require to be tested very slowly. 
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If a small strain stiffness is required it is probably best to carry 

out a test using a constant stress rate loading rather than constant 

strain rate. This will avoid the very high stress loading rates and 

rapid build up of excess pore pressure associated with the latter which 

is likely to lead to errors in drained stiffness measurement. 

8.9.3 Undrained Tests 

Figures 7.37 a and b show the results of analyses of undrained tests on 

normally and overconsolidated samples respectively. These results show 

that the sample stiffness is not affected by loading rate for the range 

of loading rates considered. It might have been expected that the 

stiffness measured with faster loading rates would have been greater. 

This is because less equalisation of excess pore pressures takes place 

and less internal drainage occurs. For overconsolidated soils (and for 

the early part of tests on normally consolidated soil )the excess pore 

pressure in the middle of the sample is less than that at the end. 

Internal drainage therefore takes place towards the middle of the 

sample. This might be expected to lead to softening and a reduction in 

stiffness. It is therefore possible that a variation in stiffness 

with strain rate might be found over a larger range of strain 

rates than those considered here. However, the loading rates modelled 

are those typically used experimentally and therefore the choice of 

loading rate to measure undrained stiffness would not appear to be as 

critical as for drained loading. 

These analyses do not account for the viscous and aging strain 

rate effects discussed in section 3.3. These two strain rate effects 

have opposing influences on the stiffness of soil However, the 

predominant one is the viscous effect which leads to increased 

stiffness with increasing strain rate. This effect is important for 

undrained tests and should be considered when selecting a test loading 

rate. 

8.10 constant stress Rate and Strain Rate Loading 

8.10.1 Introduction 

A short series of experiaental triaxial tests was undertaken to 

investigate the possible difference. between soil properties aeasured 

under condi tiona of constant stre.. rate or constant strain rate 
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loading. The results of these tests are discussed in this section. 

8.10.2 Comparison of constant stress rate and constant-strain rate 

loading 

The most commonly used form of loading is constant strain rate loading 

which is the only form of loading possible with conventional triaxial 

test equipment (Bishop and Henkel (1962». Hydraulic triaxial cells 

(Bishop and Wesley (1975» can apply either constant strain rate or 

constant stress rate loading. Towards the end of a test as the peak 

deviator stress is reached a test must be loaded under a constant rate 

of strain in order to prevent the uncontrolled failure that would 

occur in a constant stress rate loading test. This enables the post 

peak behaviour to be examined. 

At the start of a test there are advantages to be gained by using a 

constant stress rate loading especially if data is required at low 

deviator stresses. In a constant strain rate test the stress loading 

rate is initially very fast and recording data at low stresses may be 

difficult. For these reasons tests at the City University Geotechnical 

Engineering Research Centre are generally carried out initially under 

a constant stress rate loading and then changed to a constant strain 

rate loading before failure (Atkinson and Evans (1984, 1985, 1987). 

The differences between constant strain rate loading throughout a test 

and initially using a constant stress rate loading are illustrated in 

Figure 6.61a. This figure shows data from test Both 24 an undrained 

test on overconsolidated Bothkennar Clay, carried out under an initial 

constant stress loading rate of 4 kPa/hour followed by a constant rate 

of strain of 0.3'/ hour. The changeover was made when the strain rate 

under the constant stress rate loading reached 0.3' /hour . Figure 6.61 a 

shows the axial strain rate throughout the test. It is initially very 

small but as the sample becomes less stiff the strain rate increases 

until O. 3'/hour is reached after which it remains constant under 

constant strain rate loading. The stress loading rate in the constant 

strain rate stage gradually reduces. Consequently the sample is subject 

to maximum rates of loading of 4 kPa/hour and 0.3'/hour. 

Figure 6.61 b shows the stress loading rate in test Both 23 on an 

overconsolidated sample of Bothkennar Clay under a constant rate of 

strain of O. 3'/hour throughout. It can be seen that in the early stages 

of the teat the suple is subjected to very high rates of stre88 
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loading which peak in excess of 150kPa/hour. This very fast loading 

necessitates that data be read at very short ti-a intervals early in 

the test to obtain data at low stresses. More iaportantly it is 

possible that this very fast rate of loading, which is unlikely to be 

representative of loading in real situations, has an effect on the 

properties of soils measured in the triaxial test. 

8.10.3 Undrained stress paths 

The behaviour of soils tested under different loading conditions may be 

compared by comparing their undrained stress paths. undrained tests on 

Bothkennar Clay were carried out under constant stress rate and 

constant strain rate loading conditions and their stress paths are 

discussed in this section. 

Figure 6.62 shows the stress paths for tests Both 22, 25, 26 and 27 

on normally consolidated samples. Both 22 and 26 were conducted 

under constant stress rate loading (initially) of 4 and 8kPa/hour 

respecti vely . Both 25 and 27 were conducted under constant strain 

rates of 0.3' and 0.6' per hour respectively. Figure 6.63 shows 

similar data for two tests on overconsolidated soil under constant 

stress rate loading (Both 24, 4 kPa/hour) and constant strain rate 

loading (Both 23, 0.3'/hour). 

Casagrande and Wilson (1953) hypothesised that soil loaded quickly has 

a greater resistance to break down of the soil structure and therefore 

generates lower excess pore pressures than soils loaded slowly. This 

hypothesis was supported by Whitman (1960). If this hypothesiS is 

correct it should be reflected in the stress paths of the tests under 

discussion. For the tests on normally consolidated soils the excess 

pore pressure generated in the faster of the two constant strain rate 

tests is indeed smaller, however the opposite is true for the two 

tests carried out under constant stress rate loading. From the 

foregoing discussion in section 8.10.2 it might also be expected that 

the excess pore pressures generated in the constant strain rate tests 

(which have high stress loading rates) would be less than those 

generated in constant stress rate tests. The results of the tests on 

overconsolidated soil confora with this, however this is not confined 

by the tests on noraally consolidated soils. From the above discussion 

it is not possible to draw any conclusions about the ef feet of loading 

type on 80i1 behaviour. Further tests are required to confira the 
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results presented in Figures 6.62 and 6.63. 

8.10.4 Stiffness of undrained triaxial samples under different 

loading conditions 

Figure 6.64 shows tangent stiffness plotted against natural shear 

strain for tests Both 22 and Both 25, undrained tests on normally 

consolidated Bothkennar Clay conducted under constant stress rate and 

constant strain rate loading respectively. There is no significant 

difference between the two sets of results. The measured stiffness 

appears to be unaffected by the type of loading used. 

Figure 6.65 shows a similar graph for tests Both 23 and 24, undrained 

tests on overconsolidated Bothkennar Clay conducted under constant 

strain rate and stress rate loading respectively. As for normally 

consolidated soil there appears to be no significant difference between 

the two sets of results. Figure 6.66 shows the results of tests Both 

22 and Both 26, undrained tests on normally consolidated Bothkennar 

Clay conducted under constant stress rate loading of 4 and 8 kPa/hour 

respectively. The two sets of data are almost identical and show that 

the measured stiffness was not affected by the change in stress loading 

rate. 

Figure 6.67 shows a similar graph for tests Both 25 and Both 27 

conducted under constant strain rate loading at rates of 0.3 and 0.6' 

per hour respectively. Again the two sets of data are very similar. 

The measured stiffness was not affected by the change in strain rate. 

These results are in agreement with the numerical analyses discussed 

in section 8.9.3 which also show the stiffness to be unaffected by 

loading rate. 

8.10.5 Stiffness of drained triaxial samples under 

loading conditions 

different 

Figure 6.68 shows a graph of tangent stiffness plotted against natural 

shear strain for tests Both 31 and Both 32. These were drained tests 

on normally consolidated Bothltennar Clay conducted under constant 

strain rate and constant stress rate loading respectively at rates 

of O.3'/hour and 8kPa/hour. 
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The two sets of data are very si.ilar and indicate no significant 

difference in the value of stiffness measured in the two tests. The 

excess pore pressure in these tests were measured and in both cases the 

maximUDl excess pore pressure at the top of the saaple was about 1 OkPa. 

The degree of drainage was therefore very similar in these tests which 

is likely to explain the similarity between the two sets of results. 

Figure 6.69 shows a similar set of data for two drained tests on 

overconsolidated Bothkennar Clay, Both 33 and Both 34 which were 

conducted under a constant rate of strain and constant rate of stress 

loading respectively at O. 3'/hour and 8kPa/hour. The stiffness 

measured in the constant strain rate test is slightly higher than that 

measured in the constant stress rate test. The excess pore pressure in 

these tests was measured and was found to be slightly higher in the 

constant strain rate test. This test was therefore slightly less well 

drained particularly in the early stages of the test. The inferior 

degree of drainage in the constant strain rate test is likely to be the 

cause of the slightly higher stiffness measured, the soil conditions 

approximating less well to the fully drained condition. 

These results agree with the results of the numerical analyses 

discussed in section 8.9.2. They also confirm that measurements of 

small strain stiffness are best carried out under a constant rate of 

stress loading. 

8.10.6 Summary 

It has been shown that constant strain rate loading leads to very high 

stress loading rates in the early part of triaxial tests. These high 

stress loading rates may be avoided by using constant stress rate 

loading for the initial part of the test. The affects of these two 

loading types have been investigated. 

The results of the tests on Bothkennar Clay do not show conclusive 

evidence of different soil behaviour under the two different loading 

types. 

The measurements of stiffness in undrained tests show good agre .. ent 

with the results of the numerical analyses discussed in section 8.9.3. 

They confin that there is no significant difference in stiffness 

Hasurad under different loading types and rates (for the range of 
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loading rates considered). 

The measurements of stiffness aade in drained tests agree well with the 

nUDlerical analyses discussed in section 8.9.2. They confirm that for 

drained tests with similar excess pore pressures the stiffness will 

also be similar and independent of the loading type used. Faster 

loading rates and higher excess pore pressures result in higher values 

of stiffness being measured as the soil behaves in a more undrained 

manner. 

8.11 Experimental Testing Techniques. Apparatus and Quality of Results 

8.11.1 General 

In general the quality and consistency of the results of the triaxial 

tests is good. For example the calculated specific volume for five 

samples of Kaolin consolidated to an isotropic effective stress of 

300kPa varied between 2.078 and 2.108, a variation of only ~0.7S' about 

the mean corresponding to a variation in water content of to.S'. This 

indicates that the procedures and apparatus used were reasonably 

precise and that testing techniques were repeatable. 

The reliability of the apparatus was generally good although occasional 

problems were encountered with faulty load cells, transducers or other 

electrical equipment. Some problems were also experienced with leaks 

into the sample at the connections of the probe and top cap to the pore 

pressure transducer lines inside the cell at effective stresses in 

excess of 400kPa. 

8.11.2 Pore pressure probe 

The design of the pore pressure probe was similar to some of those 

described in section 3.6. These had mainly been used in samples larger 

than 38mm diameter but the tests described in this dissertation have 

shown that a probe can be used successfully in a 38mm diameter sample. 

The tests to assess the response of the probe to changes in pore 

pressure in section 5.14.4 showed that the probe could successfully 

aeasure the pore pressure in a triaxial test for the soils used. It 

was also shown that the probe did not affect the strength or stiffn ... 

of a suple. This was confinaed by the series of triaxial test. 
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undertaken with the probe. In these tests when slip planes were forlled 

they showed no preference for the plane in which the probe was 

inserted. In some tests the probe passed through a slip plane, in 

others it did not. This indicates that it neither strengthened or 

weakened the sample significantly. 

The techniques and apparatus designed for use in installing the probe 

into the sample proved to be very successful. Al though the procedures 

used were relatively complicated compared to a normal triaxial test, 

with practice a sample could be installed in the triaxial cell within 

an hour. Despite the simpliCity of the method of sealing the probe 

where it passed through the membrane and the reliance upon the cell 

pressure itself to make the seal no leaks were experienced through this 

seal during the test program. 

8.11.3 Determination of consolidation parameters 

Some variation in the consolidation parameters derived from the 

incremental loading compression tests was found. For example, for the 

case of three tests on Kaolin, with drainage to the base only for the 

isotropic effective stress range of 150-300kPa, the value of the 

characteristic time t, varied by t 15' about the mean value. This 

variation was probably due to real differences between samples 

(permeability, degree of saturation etc) and experimental errors. The 

value of the characteristic time is used in the calculation of the 

coefficients of consolidation and permeability and the variation in 

these values is therefore of a similar magnitude. The coefficient of 

compressibili ty calculated in these tests was much more constant 

varying by only t5'. 

For the case of all round drainage provided by filter paper sidedrains 

the consolidation parameters derived were found to be significantly 

different to those for drainage to the base of the sample only. This 

was due to the inefficiency of the sidedrains as discussed in section 

3.7. The formulae presented in section 2.5 for the calculation of the 

coefficient of consolidation is based on the assumption of fully 

efficient drainage over the surfaces of the sample. Inefficient 

drainage results in the value of t, being larger than would have been 

the case for fully efficient drainage and consequently the value of the 

coefficient of consolidation calculated is underesti_ted. The 

efficiency of the aide draina can be expressed as the ratio of the 
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value of the coefficient of consolidation calculated from the test 

results assuming fully efficient drainage to the true values. If this 

is done for Kaolin and Gault Clays the efficiency of the drains is 

found to be approxiaately 10' and 20' respectively. The greater 

efficiency for Gault Clay is because of the greater difference in 

permeability between the soil and filter paper than is the case for 
Kaolin. 

8.11.4 Determination of critical state soil parameters 

Determination of the critical state soil parameters for Gault and 

Bothkennar Clay was undertaken for use in finite element analyses to 

model experimental tests. The values used for Kaolin in numerical 

analyses were derived by Robinson and reported by Atkinson and Tam 

(1988). Although tests were not specifically undertaken to determine 

the critical state soil parameters for Kaolin they have been derived 

from some of the tests undertaken and compared with Robinson's values. 

The values of soil parameters derived are summarised in section 6.14. 

A relatively small number of tests was carried out from which he 

critical state soil parameters of the soils used could be determined. 

A larger number of tests on Bothkennar Clay was carried out than on the 

other clays and the parameters for this soil may be considered to be 

the most reliable. The consistency of the values of parameters 

obtained for this soil is good. The variation of values obtained for 

the parameters H, r, N and x about the mean values were t2', t2', t3' 

and t5' respectively. The range of values for the parameter A was from 

0.165 - 0.186 however 5 of the 7 values obtained lay in the range 0.165 

- 0.173 (t2'). 

The values determined for Kaolin in general agreed well with those 

determined by Robinson, although the value of the parameter M appears 

to be approximately 0.9 rather than 1.00 as found by Robinson. 

The values for the parameters M and r which refer to the critical state 

were determined from undrained tests on norally consolidated soil. 

Drained tests on normally consolidated soil had not reached critical 

state by the end of the tests (20' axial strain). Por tests on 

overconsolidated soils the critical state was found to be difficult to 

identify. Por these reasons these par ... ters should be deterained on 

undrained tests on normally consolidated soil. 
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9 CONCLUSIONS 

9.1 Introduction 

The work described in this dissertation has investigated excess pore 

pressures in the triaxial test and the way in which they are influenced 

by loading rate. The effect of excess pore pressures on measured soil 

properties and non-uniformity of stress, strain and specific volume in 

the triaxial test have also been considered. Based upon these 

investigations a method of choosing a loading rate in a triaxial test 

to give an acceptable error in measured soil parameters has been 

derived. The conclusions in each of these areas are summarised in the 

following sections. 

9.2 Coupled Consolidation Analysis Using The CRISP Finite Element 

Programme 

Comparison of the results of numerical analyses with theoretical and 

experimental results in section 8.2 of this dissertation has shown that 

the 1984 version of the CRISP finite element program utilising the 

modified Cam-clay critical state soil model and Siot type coupled 

consolidation theory is able to model coupled consolidation events very 

successfully. The results of analyses could be further improved if a 

facility for varying permeability, perhaps related to specific volume, 

was incorporated into the soil model. A second area that requires 

further work is better modelling of soils within the state boundary 

surface. 

9.3 Selection of Loading Rates in the Triaxial Test 

The resul ts of experimental tests and numerical and theoretical 

analyses show that non-uniform excess pore pressures in a triaxial 

test, as a result of incomplete drainage, can result in pore pressures 

being measured that are not representative of the middle of the saaple 

where deformation is concentrated and failure occurs. Consequently 

effective stresses are calculated incorrectly and soil par_ters 

derived are inaccurate. Using the equations presented in Chapter 4 of 

this dissertation the magnitude of the error in the measurement of 

certain soil parameters caused by non-uniform excess pore pressures may 

be estimated. 
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Relationships have been deri ved in Chapter 8 (section 8.6) between 

loading rate and the excess pore pressure in a drained test and the 

differential excess pore pressure in an undrained test. These 

relationships vary for loading type, normally or overconsolidated soil 

and drained or undrained conditions and give the maximum value of the 

excess or differential excess pore pressure during a test. Using these 

equations a loading rate may be chosen to give a required maximum value 

of excess or differential excess pore pressure. This required value 

should be related to an acceptable error in the soil parameter to be 

measured which can be calculated using the previously mentioned 

equations. 

This method is an improvement over existing methods which give little 

or no information on the likely errors in a test run under the selected 

loading rate. 

9.4 Non-uniformities of Triaxial Samples 

The results of the finite element analyses undertaken have been used to 

investigate the non-uniformity of stress, specific volume and axial 

strain in the triaxial test in section 8.7 and 8.8 of this 

dissertation. The main conclusions drawn from this work are summarised 

in the following sections. 

9.4.1 Non-uniformity of stress 

End restraint significantly reduces shear stresses at the ends of 

triaxial samples although the distribution of shear stress over the 

middle third of the sample is generally reasonably uniform and 

unaffected by end restraint. The exception to this is in fully drained 

tests on normally consolidated soils when shear stresses may vary 

considerably across the middle third of the sample. 

Excess pore pressures in drained tests and differential excess pore 

pressures in undrained tests can result in increased non-uniforai ty of 

shear stresses due to variations in mean effective stress caused by 

non-uniform pore pressure. 

9.4.2 Non-uniforaity of specific volume 

The finite element numerical analyses undertak.en indicate that the 
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non-uniforaity of specific voluae in fully drained tests is not great. 

However, excess pore pressures in partially drained tests can result in 

variations in specific volume of the order of 1-3'. A similar degree 

of non-uniformity of specific volume may develop in undrained tests 

through equalisation of differential excess pore pressures by internal 

drainage. In normally consolidated soils significant variation in 

specific volume may develop at the aid height of the sample between the 

centre of the sample and the perimeter. 

9.4.3 Non-uniformity of axial strains 

The finite element numerical analyses undertaken indicate that the 

concentration of shear stress in the middle third of a triaxial sample 

causes greater deformation in this region than in the sample as a 

whole. Axial strains measured as the relative movement of the platen 

and top cap can therefore seriously underestimate the axial strains in 

the middle third of the sample. This error is greatest for undrained 

tests on normally consolidated soils and tests on yielding 

overconsolidated soils. The analyses undertaken indicate that the 

axial strains over the middle part of the sample may be 40-50' greater 

than the overall axial strain for these cases. The degree of 

dissipation or equalisation of excess pore pressure has little effect 

on this error except for the case of drained tests on normally 

consolidated soil where large excess pore pressures increase the error 

significantly. 

The interesting consequence of these results is that, provided there 

are no other errors due to bedding of the sample onto the platens or 

compliance of the apparatus, the stiffness measured across the middle 

third of the sample will be less than the stiffness measured across the 

platens. 

9.5 Triaxial Testing Techniques 

9.5.1 Pore pressure probe 

The experimental work described in Chapters 5 and 6 has demonstrated 

that it is possible to measure pore pressure accurately at the centre 

of a 38ma diameter triaxial saaple using a probe. It was shown that 

use of a probe does not affect the 888Sured strength or stiffness of 

the suplee The probe and the equipment required for its installation 
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and modifications to the triaxial cell are relatively siaple to .ake 

and use. Whilst a probe is not noraally required in routine testing it 

could be useful in tests with significant non-uniforaity of pore 

pressure or to confirm that a loading rate is acceptable before 

embarking on a large testing programme. 

9.5.2 Determination of stiffness from the triaxial test 

The finite element and experimental work described in Chapters 6 and 7 

has demonstrated that the stiffness of a soil measured in a nominally 

drained triaxial test is increased if excess pore pressures are allowed 

to develop. Consequently drained tests must be run at a sufficiently 

slow rate to allow diSSipation of excess pore pressure and give 

accurate measurement of drained stiffness. 

For undrained triaxial tests the results of the finite element and 

experimental work indicate that for the range of loading rates 

considered, the type of loading used and magnitude of unequalised 

excess pore pressure have a negligible affect on the measured undrained 

stiffness. 

The results of the work also show that soil stiffness is most reliably 

measured using a constant rate of stress loading. This avoids the very 

fast stress loading rates early in a test associated with constant 

strain rate loading making accurate measurement easier and preventing 

a rapid build up of excess pore pressure in drained tests. 

9.5.3 Constant stress rate and constant strain rate loading 

Constant strain rate loading can cause very high rates of axial stress 

loading in the early stages of a test. This can cause problems in data 

extraction and measurement of drained stiffness as discussed in section 

9.5.2. The fast stress loading rate may be prevented by the use of 

constant axial stress rate loading for the first part of a test 

switching to a constant strain rate before failure. Under this type of 

loading the axial strain rate is initially very small. There is some 

evidence to suggest that soil behaves differently under the different 

loading types. The difference in behaviour might be explained by 

viscous strain rate effects but the evidence collected in this 

dissertation ia not conclusi va. Further research is required in this 

area. 
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9.6 The Generation of Excess Pore Pressures 

The shape of the undrained stress path for noraally consolidated soils 

under triaxial loading has been shown to be similar for aany soils (see 

section 4.5. 1 ) . It has been found that the shape of the undrained 

stress path for normally consolidated soil, and a pore pressure 

parameter a, which is related to it and the current stress level, are 

dependent upon a factor NA/(A-x). This factor does not vary greatly 

for many soils and the rate of generation of excess pore pressure of 

normally consolidated soils at a given value of stress ratio is similar 

for most soils. The exception to these findings amongst the soils 

considered is Kaolin which exhibits a different undrained stress path 

to the other soils and has a larger value of the pore pressure 

parameter a for a given stress ratio. 

9.7 The Correlation of Critical state Soil Mechanics Shear Strength 

and Compression Parameters 

The test results presented in this dissertation do not support 

the correlation between the critical state soil parameters M, A and x 

proposed by Schofield and Wroth (1968). A new correlation has been 

developed based on experimental results from high quality triaxial 

tests in section 7.5.2. Using this correlation and other existing 

correlations when any two of the parameters M, A, x, N, and I" are known 

the other three may be estimated (except when the two known parameters 

are I" and A when a third parameter is required). 

9.8 Soil Parameters for Kaolin. Bothkennar and Gault Clavs 

From the results of laboratory testing presented in Chapter 6 soil 

parameters for the clays tested have been derived. In particular a 

consistent set of critical state soil parameters has been obtained for 

Bothkennar clay. 

9.9 Further work 

The CRISP finite element programme using the aodified ca.-clay soil 

model and Biot type coupled consolidation was used extensively for the 

work described in this dissertation. Li.itations were identified in 

the modelling of overconsolidated soils and further work is required in 

this area to i.prove the results of analyses on overconsolidated soils. 
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An additional improvement to the CRISP programme which would improve 

the accuracy of coupled consolidation analyses is the incorporation of 

varying permeability perhaps related to specific volume. 

Most of the work described in this dissertation was carried out with 

respect to normally or lightly overconsolidated soils. Further work is 

required to show that the findings regarding the influence of loading 

rate on excess pore pressures may be extended to heavily 

overconsolidated soils. 

The work has demonstrated the importance of loading rate with respect 

to excess and differential excess pore pressures and the errors that 

these may cause in measured soil properties. However, further work is 

required to examine the influence of strain rate as a viscous effect, 

al though for the strain rates used in the tests described in this 

dissertation, no clear strain rate effect was detected. 

For certain types of test (e.g. one-dimensional compression tests on 

overconsolidated soils, one-dimensional and isotropic compression tests 

with all round drainage and undrained tests with all round filter 

papers) no numerical analyses or experimental tests were undertaken. 

The conclusions drawn for these cases are based upon the results for 

other similar cases. Further work is required for these types of test 

to show that the conclusions drawn are valid. 
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APPENDIX A 

A1 TERZAGHI'S THEORY Ql ONE-DIMENSIONAL CONSOLIDATION 

The theory of one-dimensional consolidation attributed to 

Terzaghi (1943) is presented in this Appendix and solutions 

derived for incremental constant stress rate and constant 
strain rate loading. 

A1 BASIC THEORl 

This section presents the basic theory of one-dimensional 
consolidation. 

A2.1 Assumptions 

The following assumptions are made in the theory: 

A2.2 

1. The soil is saturated and homogeneous 

2. The principle of effective stress is valid 

3. Darcy's law is valid 

4. The pore water and soil grains are incompressible 

5. All displacements of the soil and flow of water are 

one-dimensional 

6. The coefficients of permeability k. and 

compressibility ~, remain constant. 

Basic Equation 

Using the assumptions listed in the previous 

consolidation of a small element of height 

section the 

Sz with a 

variation of pore pressure 'U across it is considered over a 

time interval St during which time there is a change in 
c..,.1 d h iIi i c..~ effective stress 0.., an c ange n vo umetr c stra n Q~. 

This leads to the following basic equation for one-dimensional 

consolidation (see Atkinson and Bransby (1978) for an outline 

of the main steps in the derivation). 

A.I 
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or in terms of effective stresses 

A.2 

where ~ is the coefficient of volume compressibility as 

defined in Chapter 2. This assumes that there is a linear 

relationship between changes in stress and changes in strain. 

Equation A.2 may be rewritten to incorporate the coefficient 

of consolidation Cv ' defined in Chapter 2, as below, 

SOLUTION OF TERZAGHI'S THEORY OF 
CONSOLIDATION FOR INCREMENTAL LOADING 

A. ) 

ONE-DIMENSIONAL 

In this section a solution to the basic equation of one­

dimensional consolidation is obtained for the case of 

incremental loading i.e. an increment of load is applied to a 

soil element and then maintained. 

A.).l Ih!. Problem 

The problem that will be considered is that of a soil sample 

of height 2h, with drainage to the top and bottom. Pore 

pressure u, at the drainage boundaries is maintained at zero 

after time zero. The ini tial pore pressure at time zero 

throughout the sample is uo ' This situation is shown in 

Figure A.l. 

A.3.2 Assumptions 

The following assumptions are necessary to solve the 

consolidation equation in addition to those outlined in 

section A.2. 

I. The relationship is unique, i.e. it is independent of 

time and rate of strain. This implies that there is 

no 'secondary' consolidation. 
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A3.3 

2. The coefficient of consolidation, Cv is independent 

of z and t. 

3. The pore pressure, u, is a product of a function of z 

and t. 

4. The initial pore pressure, u o ' for a load stage is 

the same throughout the sample. 

Solution 

The main steps for the solution of the equation of one­

dimensional consolidation for incremental loading are outlined 

below. 

From equation A.3 expressing stresses in terms of total 

stress, 

SO'" -6l: A.4 

For the incremental loading test the total stress, cr is held 

constant, therefore, 

c '~u. = 
v &31 A.S 

Assuming Cv is constant (assumption 1) this is a second order 

parabolic partial differential equation. Using the method of 

separation of variables with u(z,t) - F(z) G(t) leads to a 

solution of the form 

eo 

Lt :: E 8n $':n (tl ~.) eXf (- Il
1..,.r:.:e,..eJ 

A.6 
A=I 

where Bn are arbitrary constants. 

condition gives, 

Applying the incremental 

.. 
IA.: (2.) :: U. = I 5" silt (ti :.:11) 

A.7 
,,=1 

where Bn is the Fourier - coefficient of ui (z) I (uo ) in the 
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half-range sine series, therefore, 

2.~ 

8" == t J u. si., (tl2.7-i! ) d.i! 
I) 

Carrying out this integral and substituting in 

leads to the solution below. 

010 

u (z:, t) L 'wu" SUt (~z) e:>c-f' (- N~;V t) 

where N - (2m + 1) TT 
::z.. 

A.S 

equation A.7 

A.9 

Defining a dimension·less number Tv' the time factor as below, 

T - C t 
V - --v-::;. 

~%. 

gives 

tJIO 

U{i!,t)=L ~ su\ (tJ:) ~xp(-NtTv) 
~:::o 

A consolidation ratio U may be defined as 

v = e -f-a 

where £1 - initial strain, (z,o) 

f2 - final strain 

~ - strain at intermediate time, E (z,t) 

/ 

Since a- - - Me and 

u / , 
cr-cr, , , 
~ -cr. 

For a load stage ul - U o and u2 - 0, thus 
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U(a,l7) = 1- Llli!:,t) 
u.. 

Substituting this expression into equation A.9 gives 

~ 

U l2/~) :: I - r ~$it\ (~) ~ (-N~Tv) 
11=0 

A.14 

A.lS 

To obtain the degree of consolidation for the whole sample 

this expression may be integrated over the sample height. 

1k 

U (~) - ..L J U (~/-r) cfi! -
2." 0 

t10 

- I -L ~ Q"'-P (_
N2 rv) -

trI=o A .16 

~ SOLUTION ~ TERZAGHI'S THEORY 2L ONE-DIMENSIONAL 
CONSOLIDATION FOR CONSTANT RATE OF STRESS LOADING 

In this section a solution to the basic equation of one­

dimensional consolidation is obtained for the case of constant 

rate of stress loading i.e. load is applied to the sample at a 

constant rate. 

A.4.l Ih!. Problem 

The problem that will be considered is that of a soil sample 

of height 2h. with drainage to the top and bottom. Pore 

pressure, u, at the drainage boundaries is maintained at zero 

throughout the analysis. The ini tial pore pressure. uo ' at 

time zero is Uo - 0 throughout the sample. This situation is 

shown in Figure A.2. 
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A4.2 Assumptions 

The following assumptions are necessary to solve the 

consolidation equation in addition to those outlined in 

section A.2. 

1. The coefficient of consolidation, Cv ' is independent 

of z and t. 

2. The pore pressure is a product of a function of z and 

a function of t. 

A.4.3 Solution 

The main steps for the solution of the equation of one­

dimensional consolidation for constant rate of stress loading 

are outlined below. 

From equation A.3 expressing stresses in terms of total stress 

A.17 

For a constant rate of application of stress ~ - constant -
• f $It:-t:!', there ore 

• a-
A.IS 

Let u - ul + u2 where 

o A.19 

and 

A.20 

u2 is a particular solution 

Let u2 - u2(z) 
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Then 
1. • 

~ U2. -:::: er 
d"22. Cv 
u2.(o) == U2 (2h) = 0 

Therefore 

and 

u~==I/2.. 6- i!:. (2h-~) 
c" 

u (2 ,t:) = U I (iL It) + Yz 0- z: (2 h. - z) 
Cy 

A.21 

A.22 

A.23 

This may be solved using the method of separation of 

variables. 

.-;, 

U.(c,t-) I B" ~L"(~i!) ~ (-r\':l-:~l:) 
t 

where Bn are arbitrary constants 

When t - 0, 

U, (Z,o) = -'12 0- 2 (:z.h -Z) 

~ Cy 

:::. ~ 8" 5<" (/It:) 
t\=1 

2."-

.'. B" - -..!.. r!l.2. 0- r (2h -2-) 51.(\ ((\ IT 2;) eLi! 
h J Cy 2.."-

o 

A.24 

A.25 

A.26 

Carrying out this integral and substituting into equations 

A.23 and A.24 leads to the following solution. 
110 

U (ZIt) == \" r86-h1 (c.o~ t\rr-I~ SLt\ r\rr~ exp (-f\2.n2.ry) 
L LCvt\~rr!> J 2.h. 4 / 
t 

A. 27 

Th e fir s t par t 0 f t his ex pre s s ion is a t ran s i en t t e r m w 11 i c h 
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becomes zero when the steady state condition is reached. At 

the steady state condition the pore pressure distribution is a 

function of z only and is given by the second part of the 

expression. 

~ SOLUTION OF TERZAGHI'S THEORY OF ONE-DIMENSIONAL 

CONSOLIDATION FOR CONSTANT RATE OF STRAIN LOADING 

In this section a solution to the basic equation of one­

dimensional consolidation is obtained for the case of constant 

rate of strain loading i.e. load is applied to the sample at a 

rate that results in a constant rate of axial and volumetric 

straining. 

A.5.l IWt Problem 

The problem that will be considered is that of a soil sample 

of height h, with drainage to the top of the sample only. 

Pore pressure at the drainage boundary is maintained at zero 

throughout the analysis. The initial pore pressure Uo at time 

zero is U o - 0 throughout the sample. This situation is 

shown in Figure A.3. 

A.5.2 Assumptions 

The following assumptions are necessary to solve the 

consolidation equation in addition to those outlined in 

section A.2. 

1. The rate of strain is such that consolidation is 

uniform throughout the sample and hence Sf./ {, t is 

independent of z. 

2. Permeability, k, is independent of z 

3. Pore pressure, u, is a function of z. Only the 

steady state pore pressure distribution will be 

solved. 
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A,5,3 Solution 

The main steps for the solution of the equation of one­

dimensional consolidation for constant strain rate loading are 

outlined below. 

The basic equation of consolidation is given by equation A.I. 

A.28 

Integrating with respect to z using assumptions 1 and 2 gives 

.k. bLt -
~w Sz 

• 
E.z + c., 

A.29 

At z - 0 Su - 0 , - (z - 0 is an impermeable boundary) 
Ss 

Therefore C1 - 0 

Integrating again with respect to z gives 

A.30 

At z - h, u - 0 and therefore L' · c.~ =~ e 
2-

Hence 

A.3l 

This is the pore pressure distribution when the steady state 

condition is reached. 
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u (~.t) - 0 (t>O) 

IJ.h 
IA==O u (2h,t) - 0 (t>O) 

u (z,O) - u, (z) 

- Uo 

= constant 

0 
U::.O 

Figure A.I Incremental Loading 

AI 

1h 
U=-o 

u (O,t) - 0 (all t) 

u (2h,t) - 0 (all t) 

u (z,O) - ui..(z) 

0 
0:.0 - U - 0 0 

Figure A.2 Constant Rate of Stress Loading 

Z 

" 
U::. 0 

u (h, t) ... 0 (all t) 

u (z,O) ... ui(z) 

0 
.... U o - 0 

e=-o (C:"""fU"M~If!. 
• bou~o.~) 

Figure A.3 Constant Rate of Strain Loading 
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TABLES 



Drainage Conditions Coefficient of 
Consolidation C 

y 

One End Only n HZ It, 

Both Ends n HZ/4t, 

Radial Only n HZ 164t, 

Radial and one end n HZ/81t, 

All Round n HZ/100t, 

Table 2.1 

Equations for Coefficient of Consolidation, Cy for different 
drainage conditions for triaxial samples of height 2H and 
diameter H (After Bishop and Henkel (1962» 



. 

-

Soil N r A. x M x/A. I!SL Reference 
A.-x 

Itlein Belt Ton - 4.30 0.251 0.130 0.85 0.52 1.75 Schofield & Wroth (1968) 
Weiner Tagel - 2.227 0.086 0.018 1 .01 0.21 1.28 Schofield & Wroth (1968) 
London Clay - 2.583 O. 113 0.044 0.89 0.39 1.45 Schofield & Wroth (1968) 

I Weald Clay - 1.990 0.065 0.025 0.95 0.38 1 .51 Schofield & Wroth (1968) 
Kaolin (Spestone) - 3.49 0.183 0.035 1.02 0.19 1 .26 Schofield & Wroth (1968) 
Clay Till St Albans 1.863 1.845 0.065 0.030 0.84 0.46 1 .56 Little (1985) 
(Reconstituted) 
Clay Till St Albans - 1 .68 0.037 0.019 0.86 0.51 1 .77 Little (1985) 
(Undisturbed) 
Cowden Till 1.875 1 .810 0.0845 0.013 1.26 0.15 1.49 Atkinson & Tam (1988) 
Cowden Till 1.984 - 0.09 0.0145 1.18 0.16 1 .28 Atkinson & Tam (1988) 
Gault Clay - - 0.173 0.070 0.90 0.41 1 .51 Roscoe, Schofield & Thurairajah (1963) 
London Clay 2.675 2.585 0.156 0.043 0.89 0.28 1.23 Richardson (1985) 
Slate Dust 2.086 - 0.078 0.0108 1.044 0.14 1.21 Lewin (1970) 
Kaolin (Speswhite) 3.26 3.14 0.190 0.05 1.00 0.26 1.36 Atkinson & Tam (1988) 
Ware Till 2.036 - 0.079 0.0194 1 .021 0.25 1.35 Richardson (1984) 
Gault Clay 2.90 2.810 0.17 0.035 0.94 0.21 1 • 18 This dissertation 

I 

Bothkennar Clay 3.00 2.900 0.17 0.019 1.45 O. 11 1.62 This dissertation 
Gault Clay 3.264 3.184 0.226 0.070 1.00 0.31 1.45 Clinton (1987) 
Tilbury Alluvium 3.90 3.74 0.270 0.054 1. 17 0.20 1.46 Pickles (1988) 
Carbonate Sand 4.80 4.35 0.335 0.0075 1.65 0.022 1.69 Coop (1989) 
Iti_ridge Clay 2.92 2.82 0.193 0.071* 0.87 0.37* 1.38 Atkinson & Cherrill (1988) 
London Clay 2.75 2.66 0.168 0.044* 1.00 0.26* 1.35 Atkinson & Cherrill (1988) 
Oxford Clay 2.98 2.87 O. 191 0.050* 1.00 0.26* 1.35 Atkinson & Cherrill (1988) 
Reading Beds Clay 3.25 3.14 0.230 0.118* 0.75 0.51* 1.53 Atkinson & Cherrill (1988) 
.... ld Clay 2.60 2.52 0.148 0.044* 0.95 0.30* 1.36 Atkinson & Cherrill (1988) 

Mote: * indicates that the correlation derived in section 7.5.2 (equation 7.3) was used to estiaate these values which 
were not .. asured experi.entally. 

Table 4.1 Critical State Soil Pareaeters for Various Soils 



DRAINAGE CONDITIONS lJ. 

TOP MIDDLE AVERAGE 

BOTTOM ONLY 0.64 0.48 0.42 

BOTH ENDS - 0.64 0.42 

ALL ROUND - 1. 95 0.79 

Table 4.2 lJ. values for different drainage conditions. 



stress Range p' 1 • 150kPa, p' 2 = 300kPa Stress Range p', = 300kPa, p' 2 = 450kPa 

NlDIN NlD/N 

Uav AI! A II: 0.1 A = 0.2 A = 0.3 AI! A = 0.1 A. = 0.2 A. = 0.3 
A N • 2.1 N II: 3.0 N = 3.9 A. N = 2.1 N = 3.0 N = 3.9 

10 1.05 1.015 1 .021 1.025 1 .03 1.009 1.013 1.015 

20 1 • 11 1.033 1.046 1.053 1 .06 1.019 1.027 1.031 

30 1 .17 1 .051 1.072 1.073 1.09 1 .029 1.041 1.047 

40 1.24 1.072 1 .101 1 • 116 1.12 1.040 1.056 1.065 

Table 4.3 Errors in the Measurement of ~ and N in Slow Rate Compression Tests 



Measurement Instr"Ument Working Signal Channel Calibration Wo~t 

Range Range Range Constant ResoL~ ion 
my mv 

Ce11 & pore Pressure 0-600 kPa 10-SO tao 0.08 mv/kPa 0.49kPa 
pressures transducer 

Axial 'Surrey' 400kPa %2 tlO 3mv/kN 1.5kPa 
deviator type load (h..-/MPa)* 
stress cell 

'Imperial 400kPa tl0 tlO 20mv/kN 0.25kPa 
College' ( 20mv IMPa ). 
type load 
cell 

Axial Linear 0-20% • 10-SO tao '.6mv/rrm 0.03% 
strain transducer (1. 2mv/%)* 

Volumetric Linear 0-20% * 20-40 t40 O.9mv/cc 0.02% 
strain transducer (0.8mv/%)* 

* 38mm diameter x 76mm long sample 

Table 5. 1 Worst resolution of measurements 

Measurement Accuracy 
* 

Cell and pore pressure 1kPa 

Axial stress 3kPa 

Axial strain 0.05\ 

Volumetric strain 0.04\ 

* 38mm diameter x 76mm long sample 

Table 5.2 Estimated worst accuracy of measurements 



TEST STAGES 

TEST SOIL DRAINAGE 1 2 3 4 5 6 

11 Kaolin One End Ko Coapression One Step Ko Drained shear 
I 

by = 2kPa/hr Compression a t fa = O. 1 '/hr 
to a = 150kPa to a = 300kPa 

12 Kaolin One End Ko Compression Ko Compression Drained shear 
by II: 1 5kPa/hr Oy = 50kPa/hr at f = a 
to a = 150kPa to a = 300kPa O.25'/hr 

13 Kaolin One End Ko Compression Ko Compression Drained shear 
by = 30kPa/hr by = 5kPa/hr at 
to a = 1S0kPa to a = 300kPa E. = 1.0'/hr 

21 Kaolin One End One Step isotropic One step isotropic Drained shear Drained shear 
compression to pi compression to at at £ = a 
II: 1S0kPa p'=300kPa a ... = SkPa/hr O.2S'/hr 

22 Kaolin One End One step isotropic One step isotropic Drained shear Stage Aborted Stresses held Drained 
coapression to compression to pi at constant shear at 
p' II: 1S0kPa = 300kPa b.. = 10kPa/hr t .. II: 1.0'/hr 

23 Kaolin All Round One step isotropic One step isotropic Drained shear Stage Aborted Drained shear 
coapression to pi compression to pi at at 
II: 1S0kPa II: 300kPa A.. II: 10kPa/hr f. II: 1.0'/hr 

24 Kaolin All Round One stop isotropic One step isotropic Drained shear Drained shear 
coapression to p' compression to p' at at 
II: 150kPa = 300kPa a.. = 40kPa/hr f .. = 4'/hr 

31 Kaolin One End One step isotropic One step isotropic Isotropic Drained shear Drained shear 
COIlPression to compression to swelling at at at 
p' II: 150kPa p' I: SOOkPa p = -SOkPa/hr a. I: SkPa/hr fa I: O.5'/hr 

to p' = 100kPa 

Table 6.1 



'Ta.b"l..e E. _ " 

TEST SOIL 

32 Kaolin 

41 Kaolin 

51 Kaolin 

52 Kaolin 

61 Kaolin 

DRAINAGE 

One End 

One End 

One End 

One End 

One End 

One step isotropic 
compression to 
pi = lS0kPa 

One step isotropic 
compression to 
pi = 150kPa 

One step isotropiC 
compression to 
pi = 150kPa 

Isotropic 
compression at 
p = 3kPa/hr to 
pi = 150kPa 

Isotropic 
Compression at 
p = 10kPa/hr to 

2 

One step isotropic 
compression to 
pi = SOOkPa 
(Equipment failure 
stopped stage) 

One step isotropic 
compression to pi 
= 300kPa 

One step isotropic 
compression to pi 
= 500kPa 

One step isotropic 
compression to 
pi = 500kPa 
(Aborted due to 
leak) 

Drained shear 
at 
E:a = O.5\/hr 

TEST STAGES 

3 

Stage 2 
restarted 

Undrained 
shear at 
0-'1L = 50kPa/hr 

One step 
isotropiC 
swelling to 
pi = 100kPa 

Stage 2 
restarted 

4 

Isotropic 
swelling at 
p = 100kPa/hr 
to pi = 100kPa 

Undrained 
shear at 
£-'1L = 4\/hr 

Undrained 
shear at 
0a = 30kPa/hr 

One step 
isotropic 
swelling to 
pi = 100kPa 
(Aborted due 
to load cell 
failure) 

5 

Drained shear 
at 
all. = 30kPa/hr 

Undrained 
shear at 
Ell. = 4\/hr 
(Equipment 
failure 
stopped 
stage) 

6 

Drained 
shear 
at 
til. = 4\/hr 

Stage 5 
restarted 

, p' = 300kPa =c~ 

Table 6.1 
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TEST STAGES 

TEST SOIL DRAINAGE 1 2 3 4 5 6 

KPROBE1 Kaolin All Round Isotropic Undrained shear Undrained 
* compression at at aa = 2kPa/hr shear at 

p = 4kPa/hr to E:a = O.3\/hr 
p' = 150kPa 

KPROBE2 Kaolin All Round Isotropic Undrained shear Undrained 
* compression at at 0a = 2kPa/hr shear at 

p = 4kPa/hr to Ea = O.3\/hr 
p' = 150kPa 

USP1* Kaolin One End One step undrained shear Undrained 
isotropic at 0. = kPa/hr shear at 
compression to E. = O.3\/hr 
p' = 300kPa 

71 Gault One End One step One step undrained Undrained 
Clay isotropic isotropic shear at shear at 

compression to compression to 0. = 30kPa/hr E. = 3\/hr 
p' = 150kPa p' = 300kPa 

I 

72 Gault One End Ko compression at K to isotropic IsotropiC Drained shear 
Clay ° II: 6kPa/hr to pq = 143kPa compression at at a = 

" • 
a" = 200k.Pa p = 15k.Pa/hr 3.5kPa/hr 

to p' = 300kPa (Test aborted 
due to 
pressure loss) 

73 Gault One End Isotropic Undrained shear Undrained 
Clay compression at at a. = 30kPa/hr shear at 

15kPa/hr to Ea = 3\/hr 
p' = 300kPa 

-

Table 6.1 



TEST STAGES 

TEST SOIL DRAINAGE 1 2 3 4 5 6 

81 Gault One End One step One step One step undrained Undrained 
Clay isotropic isotropic isotropic shear at shear at 

compression to compression to swelling to a. = 30kPa/hr i. = 3'/hr 
p' = 150kPa p' = 300kPa p' = 100kPa 

GAULT 1 * Gault All Round Isoptropic Undrained shear undrained Undrained shar 
Clay coaapression at at 0. = 4kPa/hr shear at at I 

p = 4kPa/hr to £. = O. 15,/hr E. = O.35'/hr 
p' = 300kPa 

GAULT2* Gault All Round Isotropic Undrained shear Undrained 
Clay coapression at at a. = 4kPa/hr shear at 

p • 4kPa/hr to £. :I: O.3'/hr 
p' = 150kPa 

91 Gault One End Isotropic Isotropic Drained shear Drained shear 
Clay cOlipression at compression at at b. = 5kPa/hr at £ •• O.5'/hr 

P • 3kPa/hr to p = 6kPa/hr to 
p' • 100kPa p' • 300kPa 

92 Gault All Round One step One step Drained shear Drained shear 
Clay isotropic isotropic at 0. • 10kPa/a., at t. • O. 5'/hr 

cOlipression to compression to 
p' • 150kPa p' = 300kPa 

101 Gault One End Isotropic Isotropic Drained shear Drained shear 
Clay cOlipression .. swelling at at b. = 5kPa/hr at i. • O. 5'/hr 

P • 10kPa/hr to p = -2kPa/hr to 
p' • 300kPa p' = 100kPa 

Table 6.1 



, 

TEST STAGES 

DST SOIL DRAIMAGE 1 2 3 4 5 6 

111 Gault Clay One End Ko compression at Ko to isotropic Isotropic 
by = 3kPa/hr to loading cOllpression at 
Oy I: 200kPa p' = 143kPa p = 15kPa/hr 

to p' = 300kPa 
(Aborted due 
to pressure 
loss) 

BOTH21* Bothkennar One End Isotropic Undrained shear 
Clay cOJlpression at at i. = O.3'/hr 

P = 4kPa/hr to 
p' = 300kPa 

8OftI22* Bothkennar One End Isotropic Undrained shear Undrained 
Clay coapression at at a. = 4kPa/hr shear at 

p - 4kPa/hr to e. = O.3'/hr 
p' • 300kPa 

8O'rII23* Bothkennar One End Isotropic One step Isotroppic Undrained 
Clay caapression to isotropic swelling at shear at 

p' • 150kPa coapression to p • -5kPa/hr f •• O.3'/hr 
p' • 525kPa to p' I: 175kPa 

8OTIl24* 80thkennar One End One step One step One step Undrained Undrained 
Clay isotropic isotropic isotropic shear at shear at 

COIIPression to COIlpression to swelling to b. • 4kPa/hr e.- O.3'/hr 
p' • 150kPa p' • 52SkPa p' • 175kPa 

8O'rII25* Bothkennar One End Isotropic undrained shear 
Clay coapression at at 

p • 4kPa/hr to i. I: O.3'/hr 
p' • 300kPa 

'lable 6.1 
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I 
TEST STAGES 

TEST SOIL DRAINAGE 1 2 3 4 5 6 

8OTH26* Bothkennar One End Isotropic Undrianed shear Undrained 
Clay compression at at shear at 

p = 4kPa/hr to 0a = 8kPa/hr fa = O.3'/hr 
p' = 300kPa 

8OTH27* 80thkennar One End Isotropic Undrained shear 
Clay compression at at 

p = 4kPa/hr to £a = O.6'/hr 
p' = 300kPa 

8OTH31 80thkennar One End Isotropic Isotropic Drained shear 
Clay compression at compression at at Ea = O.3'/hr 

P :II: 10kPa/hr to p = 4kPa/hr to 
p' • 200kPa p' = 300kPa 

BOTH32 Bothkennar One End Isotropic Isotropic Drained shear Drained shear 
Clay compression at cOllpression at at 6. :II: 8kPa/hr at t •• O.3'/hr 

P • 10kPa/hr to p • 4kPa/hr to 
p' • 200kPa p' 300kPa 

8OTH33 80thkennar One End One step One step Isotropic Drained shear 
Clay isotropic isotropic swelling at at i. • O. 3'/hr 

cOllPression to COIIpression to p :II: -5kPa/hr 
p' • 150kPa p' • 300kPa to p' = 100kPa 

8OftI34 80thkennar One End One step One step Isotropic Drained shear Drained 
Clay isotropic isotropic swelling at at 0. :II: 8kPa/hr shear at 

cOllPression to cOllPression to P = -5kPa/hr i. • O.3'/hr 
p' • 150kPa p' • 300kPa to p' = 10kPa 

8BIC2* Bentonite One End Isotropic Total stresses Undrained Undrained 
cOllpression at held constant to shear at shear at 
p :II: 2kPa/hr to allow a. :II: 5kPa/hr i. :II: O.25'/hr 
p' • 150kPa consolidation 

Table 6.1 List of traixial tests carried out 
Note: Te.t. aarked * did not have pore pressure measurment at aid height. 



- -- - -~. ------------- -~- ----------- ----------

Soil Plastic Limit' Liquid Limit" Plasticity Index' Reference 

Speswhite Kaolin 35 65 30 Work by Robinson reported 
by Atkinson & Tam (1988) 

Gault Clay 26 73 47 Clinton (1987) 

Bothkennar Clay 25 70 45 Nash and Lloyd (1988) 

Table 6.2 Index Properties of Soils Tested 



stress OCR Specific Volume 
Range At End t, m C k 

Test Stage Soil Drainage ° ' kPa of Stage Vo v f Mins m~ IkN x 10-4 m~ Isxl 0-7 m/s x 10-9 
y 

1 1 2 Kaolin One End 150 - 300 1 2.216 2.105 145 3.34 4.2 1. 37 

Table 6.3 Results of one-dimensionsal compression incremental load tests 

Stress OCR Loading Specific Volume 
Range At End Rate, ;, y m 

Test Stage Soil Drainage Oy' kPa of Stage kPa/hr Vo vf 
m~ IkN x 10-4 A 

11 1 Kaolin One End 15 - 150 1 2 2.430 2.216 - -
i 12 1 Kaolin One End 15 - 150 1 15 2.446 2.216 - -

" 

13 1 Kaolin One End 15 - 150 1 30 2.380 2. 196 - -

12 2 Kaolin One End 150 - 500 1 50 2.216 2.113 3.10 0.212 
13 2 Kaolin One End 150 - 500 1 5 2. 196 2.094 3.07 O. 154 
72 1 Gault One End 15 - 200 1 6 2.275 2.030 - -

111 1 Gault One End 15 - 200 1 3 2.328 2.091 4.32 0.257 

Table 6.4 Results of One-dimensionsal compression constant stress rate loading tests 



Stress OCR Specific Volume m C k 
Compression Range At End t, m~/kN m~/S m/s 

Test Stage ISwell Drainage p', kPa of Stage Vo v f Mins x 10-4 x 10-7 x 10-9 

H 

21 2 Compression One End 150 - 300 1 2.182 2.085 170 2.97 4.30 1 .250 
22 2 Compression One End 150 - 300 1 2. 193 2.090 145 3. 12 5.30 1 .620 
23 2 Compression All Round 150 - 300 1 2.215 2.108 18 3.21 0.42 O. 132 
24 2 Compression All Round 150 - 300 1 2.223 2.150 14 3.52 0.54 O. 186 

31 2 Compression One End 150 - 500 1 2. 188 2.005 130 2.39 6.00 1 .410 
41 2 Compression One End 150 - 300 1 2. 185 2.078 196 3.27 4.05 1.300 
51 I 2 Compression One End 340 - 500 1 1 .999 1 .973 117 1.63 6.34 1 .010 
51 1 3 Swelling One End 500 - 100 5 1 .973 2.038 83 0.82 9.10 0.740 

Table 6.5a Results of Isotropic Compression Incremental Load Tests on Kaolin for p' >150kPa 

Stress OCR 
Compression Range At End t, 

Test Stage ISwell Drainage p', kPa of Stage Mins 

21 1 Compression One End 15 - 150 1 240 
22 1 Compression One End 15 - 150 1 199 
31 1 Compression One End 15 - 150 1 206 

32 1 Compression One End 15 - 150 1 
I 41 1 Compression One End 15 - 150 1 190 

I 51 1 Compression One End 15 - 150 1 188 
-

Table 6. 5b Results of Isotropic Compression Incremental Load Tests on Kaolin for p' <150kPa 



Stress OCR Specific Volume m C k 
CoIapression Range At End t, m"/kN m"/s mls 

Test Stage ISwell Drainage p', kPa of Stage Vo v f Mins x 10-4 x 10-7 x 10-9 

71 2 Compression One End 150 - 300 1 2.073 1 .951 38.0 3.91 3.65 1.40 
81 2 COmpression One End 150 - 300 1 2.062 1.939 43.0 3.99 3.32 1.30 
81 3 Swell One End 300 - 100 3 1.939 1.984 22.0 7.17 6.22 0.71 
92 2 COalpression All Round 150 - 300 1 2.072 1.956 1 • 7 3.75 0.78 0.29 

Table 6.6a Results of Isotropic Compression Incremental Load Tests on Gault Clay for pi >150kPa 

Stress OCR 
Compression Range At End 

Test Stage ISwell Drainage pi, kPa of Stage 

71 1 Compression One End 15 - 150 1 
81 1 Compression One End 15 - 150 1 

Table 6.6b Results of Isotropic Compression Incremental Load Tests on Gault Clay for pi <150kPa 



Stress OCR Specific VolUllle m C k 
COmpression Range At End t, m"kN m"/s m/s 

Test Stage ISwell Drainage p', kPa of stage Vo v f Mins x 10-4 x 10-7 x 10-9 

BOTH 23 2 Compression One End 150 - 525 1 2.114 1.913 75 2.54 10.0 2.50 
BOTH 24 2 Compression One End 150 - 525 1 2.106 1 .911 110 2.47 7.3 1.77 
BOTH 24 3 Swell One End 525 - 175 3 1 .911 1.935 55 0.36 14.0 0.48 
BOTH 33 2 Compression One End 150 - 300 1 2.174 2.056 169 3.61 4.75 1 .68 
80TH 34 2 Compression One End 150 - 300 1 2.190 2.061 169 3.91 4.77 1 .83 

Table 6.7. Results of Isotropic Compression Incremental Load Tests on Bothkennar Clay for p' >150kPa 

Stress OCR t, 
Compression Range At End mins 

Test Stage ISwell Drainage p', kPa of stage 

BOTH 23 1 Compression One End 15 - 150 1 57 
BOTH 24 1 Compression One End 15 - 150 1 77 
80TH 33 1 Compression One End 15 - 150 1 89 
BOTH 34 1 Compression One End 15 - 150 1 82 

Table 6.7b Results of Isotropic Compression Incremental Load Tests on Bothkennar Clay for p' <150kPa 



Stress OCR Loading Specific VolWle 
~/kN Range At End Rate p 

Test Stage Drainage pi, kPa of stage kPa/hr Vo v f 
x 10-4 A N 

61 1 One End 15 - 300 1 10 - - - - -
KPROSE 1 1 All Round 15 - 150 1 4 2.551 2.252 5.97 0.184 3.18 
KPROSE 2 1 All Round 15 - 150 1 4 2.553 2.245 - - -
52 1 One End 15 - 150 1 3 - - - - -

Table 6.8 Results of Isotropic Compression Constant stress Rate Loading Tests on Kaolin 

Stress OCR Loading Specific Volume m It 

Range At End Rate p m"/kN or 
Test Stage Drainage pi, kPa of stage kPa/hr Vo vf 

x 10-4 A N 

72 3 One End 143 - 300 1 15 2.030 1.932 - - -
73 1 One End 15 - 300 1 15 2.353 1.947 - - -
91 1 One End 15 - 100 1 3 2.389 2.243 - - -
91 2 One End 100 - 300 1 6 2.243 2.023 - - -
101 1 One End 15 - 300 1 10 2.346 1 .941 - - -
101 2 One End 300 - 100 3 -2 1 .941 1.978 0.95 0.035 -
GAULT 1 1 All Round 15 - 300 1 4 2.312 1.909 3.20 0.183 2.98 
GAULT 2 1 All Round 15 - 150 1 4 2.320 2.043 4.99 0.153 2.79 I 

Table 6.9 Results of Isotropic Compression Constant Stress Rate Loading Tests on Gault Clay 



TEST STAGE DRAINAGE STRESS OCR AT LOADING SPECIFIC VOLUME Mv A 
RANGE END OF 

. 
RATE P m2 /kN or N 

pI kPa STAGE kPa/hr Vo v f 
x 10-4 )( 

BOTH 21 1 One End 15 - 300 1 4 2.420 2.012 3.52 O. 186 3.10 
I BOTH 22 1 One End 15 - 300 1 4 2.479 2.009 3.59 0.165 2.97 

BOTH 23 3 One End 525 - 175 3 -5 1 .913 1 .935 0.33 0.018 -

BOTH 25 1 One End 15 - 300 1 4 2.428 2.021 3.92 O. 169 3.00 
BOTH 26 1 One End 15 - 300 1 4 2.515 2.056 4.75 0.168 2.94 
BOTH 27 1 One End 15 - 300 1 4 2.463 2.033 4.06 0.184 I 3.05 I 

BOTH 31 1 One End 15 - 200 1 10 2.474 2.140 5.71 0.200 3.22 I 

BOTH 31 2 One End 200 - 300 1 4 2. 140 2.075 3.04 O. 167 3.05 
BOTH 32 1 One End 15 - 200 1 10 2.526 2.142 5.86 O. 192 3.19 i 

BOTH 32 2 One End 200 - 300 1 4 2.142 2.073 3.22 0.173 3.08 
BOTH 33 3 One End 300 - 100 3 -5 2.056 2.081 1.25 0.020 -
BOTH 34 3 One End 300 - 100 3 -5 2.061 2.081 1. 00 0.019 -
--

Table 6.10 Results of Isotropic Compression Constant Stress Rate Loading Tests on Bothkennar Clay 



TEST STAGE DRAINAGE pI kPa OCR LOADING SPECIFIC VOLUME PEAK PEAK STRE;~-II 
0 

RATE DEVIATOR RATIO 
kPa/hr/"/hr Vo vf STRESS q' /p' 

q'kPa 

1 1 3 One End 0' 
v = 300 1 -/0.1 2.105 2.013 205 0.75 

12 3 One End 0' = 300 v 1 -/0.25 2. 1 13 2.031 210 0.75 
13 3 One End 0' 

v = 300 1 -/1 .0 2.094 2.023 190 0.74 

21 3/4 One End 300 1 5/0.25 2.085 1 .960 305 0.76 
22 3/4/5/6 One End 300 1 10/1.0 2.090 1 .970 309 0.76 
23 3/4/5 All Round 300 1 10/1.0 2.108 1 .977 312 0.77 

24 3/4 All Round 300 1 40/4.0 2.105 1 .977 307 0.76 
31 4/5 One End 100 5 5/0.5 2.073 2.071 125 0.88 
32 5/6 One End 100 5 30/4.0 2.051 2.058 132 0.92 

61 2 One End 300 1 -/0.5 - - 300 0.75 

Table 6.11 Results of Drained Triaxial Compression Tests on Kaolin 



TEST STAGE DRAINAGE P'o kPa OCR LOADING SPECIFIC VOLUME PEAK PEAK STRESS 
RATE DEVIATOR RATIO 

kPa/hr/"/hr Vo vf STRESS q' /p' 
, 

q'kPa 

91 3/4 One End 300 1 5/0.5 2.023 1 .930 310 0.77 

92 3/4 All Round 300 1 10/0.5 1 .956 1 .845 384 0.89 

101 3/4 One End 300 3 5/0.5 1 .978 1 .968 152 1. 01 i 

I 
Table 6.12 Results of Drained Triaxial Compression Tests on Gault Clay 

II 
TEST STAGE DRAINAGE p' 0 kPa OCR LOADING SPECIFIC VOLUME PEAK PEAK STRESS 

RATE DEVIATOR RATIO 
kPa/hr/"/hr Vo v f STRESS q' /p' 

q'kPa 

BOTH31 3 One End 300 1 -/0.3 2.075 1 .872 700 1. 31 

BOTH32 3/4 One End 300 1 8/0.3 2.073 1 .860 695 1.30 

BOTH33 4 One End 100 3 -/0.3 2.081 2.036 267 1. 41 

BOTH34 4/5 One End 100 3 8/0.3 2.081 2.028 276 1. 44 

Table 6.13 Results of Drained Triaxial Compression Tests on Bothkennar Clay 



TEST STAGE EQUALISATION p' kPa OCR LOADING M r 
0 

RATE 
kPa/hr/"/hr 

KPROBE1 2/3 All round 150 1 2/0.3 0.92 3.03 

KPROBE2 2/3 All round 150 1 2/0.3 0.89 3.02 

41 3/4 Ends 300 1 50/4 0.87 3.03 

51 4/5/6 Ends 100 3 30/4 0.86 3.00 

Table 6.14 Results of Undrained Triaxial Compression Tests on Kaolin 

-- _._--- -----

i TEST STAGE EQUALISATION p' 0 kPa 
I 

OCR LOADING M r 
RATE 

kPa/hr/"/hr 

71 3/4 Ends 300 1 30/3 0.98 2.83 

73 2/3 Ends 300 1 30/3 1. 01 2.83 

81 4/5 Ends 100 3 30/3 1.04 2.82 

Gault 1 2/3/4 All round 300 1 4/0.15/0.35 0.94 2.87 

Gault 2 2/3 All round 150 1 4/0.3 0.91 2.71 

Table 6.15 Results of Undrained Triaxial Compression Tests on Gault Clay 



---- - --

TEST STAGE EQUALISATION pIC kPa OCR LOADING M r ~ 
RATE 

kPa/hr/\/hr 

BOTH 21 2 Ends 300 1 -/0.3 1. 45 2.956 

BOTH 22 2/3 Ends 300 1 4/0.3 1. 45 2.846 

BOTH 23 4 Ends 175 3 -/0.3 1.38 2.870 

BOTH 24 4/5 Ends 175 3 4/0.3 1.38 2.854 

BOTH 25 2 Ends 300 1 -/0.3 1. 45 2.873 

BOTH 26 2/3 Ends 300 1 8/0.3 1. 50 2.903 

BOTH 27 2 Ends 300 1 -/0.6 1. 44 2.967 

Table 6.16 Results of Undrained Triaxial Compression Tests on Bothkennar Clay 



TEST STAGE SOIL DRAINAGE OCR AT LOADING CHARACTERISTIC MEASURED 
END OF RATE, 0v STRESS EQUILIBRIUM EXCESS 

I STAGE kPa/hr °c' kPa PORE PRESSURES U 
I kPa 
'i U top U mid ,! 
I 

1 1 1 Kaolin One End 1 2 7 4-16 2 

12 , Kaolin One End 1 15 49 30 23 

12 2 Kaolin One End 1 50 107 67 50 

13 1 Kaolin One End 1 30 98 70 53 
I 

13 2 Kaolin One End 1 5 1 1 8 6 

72 1 Gault Clay One End 1 6 227 96 75 I 

1 1 1 1 Gault Clay One End 1 3 114 55 43 

Table 6.17 Excess Pore Pressures Measured in Constant Stress Rate Loading One-Dimensional Compression Tests 



I 

TEST STAGE SOIL DRAINAGE OCR AT LOADING CHARACTERISTIC MEASURED 
END OF RATE, a STRESS EQUILIBRIUM EXCESS 

v 
PORE PRESSURES U STAGE kPa/hr 0c , kPa 

kPa 

U top ij mid 

52 1 Kaolin One End 1 3 11 7.6 5.8 
61 1 Kaolin One End 1 10 33 21 17 
91 1 Gault Clay One End 1 3 114 53* 42* 

91 2 Gault Clay One End 1 6 237 135* 105* 
101 1 Gault Clay One End 1 10 429 206* 166* 
101 2 Gault Clay One End 3 -2 -44 -33* -17* 

73 1 Gault Clay One End 1 15 643 335* 298* 
BOTH 31 1 Bothkennar Clay One End 1 10 16 8 6 

BOTH 31 2 Bothkennar Clay One End 1 4 12 4 3 
BOTH 32 1 Bothkennar Clay One End 1 10 16 7 5.8 
BOTH 32 2 Bothkennar Clay One End 1 4 12 2 1.8 

BOTH 33 3 Bothkennar Clay One End 3 -5 -5 -2.7 -2 
BOTH 34 3 Bothkennar Clay One End 3 -5 -5 -1.7 -1.3 

Note: Excess pore pressures marked with a * sign indicate that the test had not reached equilibrium 
and it was not possible to extrapolate accurately to an equilibrium value. 

Table 6.18 Excess Pore Pressures Measured in Constant Stress Rate Loading Isotropic Compression Tests 



'l'BST STAGE SOIL DRAINAGE OCR LOADING RATE CHARACTERISTIC EQUILIBRIUM EXCESS 
£.,'/hr STRESS PORE PRESSURES a kPa 

0c' kPa 
~p o...1d 

21 3/4 Kaolin One End 1 5/0.25 12 7.5 5.5 
22 3/4/5/6 Kaolin One End 1 10/1.0 26 13.5 10.5 
23 3/4/5 Kaolin All Round 1 10/1.0 3 2.5 2.1 

24 3/4 Kaolin All Round 1 4/4.0 10 9.5 7.5 
31 4/5 Kaolin One End 5 5/0.5 7 2.5,-0.75* 1.25,1.0* 
32 5/6 Kaolin One End 5 30/4.0 39 6.3,-7.9* 4.6,-6.7* 

91 3/4 Gault Clay One End 1 5/0.5 182 93.0 72.0 
92 3/4 Gault Clay All Round 1 10/0.5 16 4.0 49.0 

101 3/4 cault Clay One End 3 5/0.5 111 9.0 6.2 

80TH 32 3/4 Bothkennar Clay One End 1 8/0.3 23 10.0 7.5 
BOTH 34 4/5 Bothkennar Clay One End 3 8/0.3 8 2.7 1 .8 

Note: Excess pore pressures aarked * were measured during the constant strain rate stage of the test 

Table 6.19 Excess Pore Pressures Measured in Constant Stress Rate Loading Drained Triaxial Tests 



.,.., STAGE SOIL DRAINAGE OCR LOADING RATE CHARACTERISTIC EQUILIBRIUM EXCESS . 
e.,'/hr STRESS PORE PRESSURES , u. 

kPa 
0c kPa .- -

~ u.n1d 

1 1 3 Kaolin One End 1 O. 1 8 4 3 
12 3 Kaolin One End 1 0.25 19 8 6 
13 3 J<aolin One End 1 1.0 78 17 13 

61 2 Kaolin One End 1 0.5 37 18 14 
80TH 31 3 Bothkennar Clay One End 1 0.3 24 11 8 
80TH 33 4 Bothkennar Clay One End 3 0.3 81 7.0, -1.0 4.0, -0.5 

Table 6.20 Excess Pore Pressures Measured in Constant Strain Rate Loading Drained Triaxial Tests 



TEST STAGE SOIL EQUALISATION OCR LOADING RATE CHARACTERISTIC EQUILIBRIUM 
kPa/hr/'/hr STRESS DIFFERENTIAL 

0c kPa EXCESS PORE 
PRESSURE kPa 
udm 

41 3/4 Kaolin Ends 1 50/4 135 0 

51 4/5/6 Kaolin Ends 3 30/4 38 -1.0 

71 3/4 Gault Clay Ends 1 30/3 1140 See table 

73 2/3 Gault Clay Ends 1 30/3 1138 6.21b 

81 4/5 Gault Clay Ends 3 30/3 665 -6.0 

Table 6.21a Differential Excess Pore Pressures Measured in Constant Stress Rate Loading Undrained Triaxial 
Compression Tests 

TEST DIFFERENTIAL EXCESS DIFFERENTIAL EXCESS 
PORE PRESSURE CALCULATED PORE PRESSURE CALCULATED 
FROM BASE PORE PRESSURE FROM TOP PORE PRESSURE 

°dll kPa Odin kPa 

CONSTANT CONSTANT CONSTANT CONSTANT 
STRESS RATE STRAIN RATE STRESS RATE STRAIN RATE 
STAGE STAGE STAGE STAGE 

71 -4.5,4 -3 -16 -16 

73 -3,4 -7 -7 -8 

Table 6.21b Differential Excess Pore Pressures Measured in Constant Stress Rate Loading Undrained Triaxial 
Coapression Stages of Tests 71 and 73 



AXIAL STRESS STEP AXIAL STRAIN STEP 
DRAINAGE SOIL STATE APPLIED IN CONSTANT APPLIED IN CONSTANT 

STRESS RATE LOADING STRAIN RATE LOADING 
TESTS.kPa TESTS.' 

Drained Normally Consolidated 0.5 p' f 5 

Drained OVer Consolidated 0.5 P'f 5 

Undrained Normally Consolidated 0.4 P'o 5 

Undrained OVer Consolidated 0.4 P'o 1 and 5 

Tabl.7.1 Stress and Strain Steps Applied in Numerical Anlyses 

SOIL 1 x x/A r M N 

1 0.1 0.025 0.25 2.10 1 .00 2.15 
2 0.2 0.050 0.25 3.00 1.00 3.10 
3 0.3 0.075 0.25 3.90 1.00 4.06 
4 0.2 0.030 0.15 3.00 1.13 3.12 
5 0.2 0.080 0.40 3.00 0.88 3.08 
6 0.2 0.050 0.25 3.00 0.90 3.10 
7 0.2 0.050 0.25 3.00 1 .10 3.10 

Each .oil type .. y be given a suffix, a, b or c denoting peraeability as below: 

a • 1 x '0-11 as -1 

b • 1 x 10-10 lIS -1 

C • 1 x 1 0-9 lIS -, 

Table 7.2 Cirtical Stat. Soil Paraaeters of Soils Used in Numerical Analyses 



SOIL EXPERIMENT AL TEST 
ANALYSIS MODELLED MODELLED 

kko1 Kaolin TEST 11 STAGE 2 

kko50 Kaolin TEST 12 STAGE 2 

kko5 Kaolin TEST 13 STAGE 2 

ksdnc1-5 Kaolin TEST 21 STAGE 3 

ksdnc1-10 Kaolin TEST 22 STAGE 3 

ksdoc1-5 Kaolin TEST 31 STAGE 4 

ksdocl-30 Kaolin TEST 32 STAGE 5 

ksdnca-40 Kaolin TEST 24 STAGE 3 

kedncl-0.5 Kaolin TEST 61 STAGE 2 

gsdnc1-5 Gault TEST 91 STAGE 3 

gsdoc1-5 Gault TEST 101 STAGE 3 

gsunc1-30 Gault TESTS 71 STAGE 3 
AND 73 

gsuoc1-30 Gault TEST 81 STAGE 2 

bsdnc1-8 Bothkennar BOTH 32 STAGE 4 

bednc1-0.3 Bothkennar BOTH 31 STAGE 3 

bsdoc1-8 Bothkennar BOTH 34 STAGE 3 

bedoc1-0.3 Bothkennar BOTH 33 STAGE 4 

Table 7.3 Schedule of Numerical Analyses Used to validate CRISP 
Analysis 



ANALYSIS TEST TYPE SOIL RATE DRAINAGE SOIL P'o 
kPa/hr TYPE STATE &.D. 

sdnc 1300-2b-1 Triaxial 2b 1 One End N.C. 300 
2 Compression 2b 2 One End N.C. 300 
3 " 2b 3 One End N.C. 300 
5 " 2b 5 One End N.C. 300 
10 " 2b 10 One End N.C. 300 

sdne 1600-2b-1 Triaxial 2b 1 One End N.C. 600 
2 Compression 2b 2 One End N.C. 600 
3 " 2b 3 One End N.C. 600 
4 " 2b 4 One End N.C . 600 
5 .. 2b 5 One End N.C. 600 
7 " 2b 7 One End N.C. 600 
10 " 2b 10 One End N.C. 600 

sdne 1300-1b-2.918 Triaxial 1b 2.918 One End N.C. 300 
2a-0.178 Compression 2a 0.178 One End N.C. 300 
2b-1.782 " 2b 1.782 One End N.C. 300 
2e-17.82 " 2e 17.82 One End N.C • 300 
3b-1.403 .. 3b 1.403 One End N.C • 300 
4b-1.782 .. 4b 1.782 One End N.C . 300 
5b-1.782 .. 5b 1.782 One End N.C • 300 
6b-1.782 .. 6b 1.782 One End N.C. 300 
7b-1.782 " 7b 1.782 One End N.C. 300 

sdnea300-2b-5 Triaxial 2b 5 All Round N.C. 300 
10 Compression 2b 10 All Round N.C. 300 
15 .. 2b 15 All Round N.C. 300 
20 .. 2b 20 All Round N.C. 300 
30 .. 2b 30 All Round N.C. 300 
50 .. 2b 50 All Round N.C. 300 

sdnea300-1b-58.37 Trixial 1b 58.37 All Round N.C. 300 
2b-35.63 Compression 2b 35.73 All Round N.C. 300 
3b-28.04 " 3b 28.04 All Round N.C. 300 
4b-35.63 .. 4b 35.63 All Round N.C. 300 
5b-35.63 .. 5b 35.63 All Round N.C. 300 
6b-35.63 .. 6b 35.63 All Round N.C. 300 
7b-35.63 " 7b 25.63 All Round N.C. 300 

sdoc14-2b-1 Triaxial 2b 1 One End OCR 4 300 
2 Compression 2b 2 One End OCR 4 300 
5 .. 2b 5 One End OCR 4 300 
10 " 2b 10 One End OCR4 300 

15 " 2b 15 One End OCR 4 300 

20 .. 2b 20 One End OCR 4 300 

30 .. 2b 30 One End OCR 4 300 

sdoc116-2b-1 Triaxial 2b 1 One End OCR16 300 

2 Compression 2b 2 One End OCR16 300 

5 .. 2b 5 One End OCR16 300 

10 .. 2b 10 One End OCR16 300 

15 .. 2b 15 One End OCR16 300 

'able 7.4. 



ANALYSIS TEST TYPE SOIL RATE DRAINAGE SOIL P'o 
kPa/hr TYPE STATE .. 0.. 

sdoc14-1b-10.92 Triaxial 1b 10.92 One End OCR 4 300 
2a-0.64 Compression 2a 0.64 One End OCR 4 300 
2b-6.37 .. 2b 6.37 One End OCR 4 300 
2c-63.6 .. 2c 63.6 One End OCR 4 300 
3b-4.85 .. 3b 4.85 One End OCR 4 300 
4b-10.45 .. 4b 10.45 One End OCR 4 300 
5b-4.08 It 5b 4.08 One End OCR 4 300 
6b-6.37 It 6b 6.37 One End OCR 4 300 
7b-6.37 It 7b 6.37 One End OCR 4 300 

sdoca 4-2b-5 Triaxial 2b 5 All Round OCR 4 300 
10 Compression 2b 10 All Round OCR 4 300 
15 .. 2b 15 All Round OCR 4 300 
20 .. 2b 20 All Round OCR 4 300 
30 " 2b 30 All Round OCR4 300 
50 .. 2b 50 All Round OCR 4 300 
100 " 2b 100 All Round OCR 4 300 

sdoca16-2b-5 Triaxial 2b 5 All Round OCR16 300 
10 Compression 2b 10 All Round OCR16 300 
15 It 2b 15 All Round OCR16 300 
20 .. 2b 20 All Round OCR16 300 
30 .. 2b 30 All Round OCR16 300 
50 .. 2b 50 All Round OCR16 300 
100 " 2b 100 All Round OCR16 300 

sdoca16-2a-l0 Trixial 2a 10 All Round OCR16 300 
20 Compression 2a 20 All Round OCR16 300 
30 " 2a 30 All Round OCR16 300 

sdoca4-1b-144.93 Triaxial lb 144.93 All Round OCR 4 300 
2b-84.75 Compression 2b 84.75 All Round OCR 4 300 
3b-64.52 " 3b 64.52 All Round OCR 4 300 
4b-139.28 " 4b 139.28 All Round OCR 4 300 
5b-54.35 " 5b 54.35 All Round OCR 4 300 
6b-84.75 " 6b 84.75 All Round OCR 4 300 
7b-84.75 " 7b 84.75 All Round OCR 4 300 

sinc1300-2b-1 Isotropic 2b 1 One End N.C. 300 
2 Compression 2b 2 One End N.C. 300 

5 It 2b 5 One End N.C. 300 

sinc1300-1b-2.918 Isotropic 1b 2.918 One End N.C. 300 

2a-0.178 Compression 2a 0.178 One End N.C. 300 

2b-0.782 " 2b 1.782 One End N.C. 300 

2c-17.82 " 2c 17.82 One End N.C. 300 

3b-l.403 It 3b 1.403 One End N.C. 300 

4b-1.782 It 4b 1.782 One End N.C. 300 

5b-1.782 It 5b 1.782 One End N.C. 300 

6b-1.782 It 6b 1.782 One End N.C. 300 

7b-1 .782 It 7b 1.782 One End N.C. 300 

Table 7.4a Cont 



ANALYSIS TEST TYPE SOIL RATE DRAINAGE SOIL p' 
kPa/hr 0 

TYPE STATE I.D .. 

sioc14-2b-5 Isotropic 2b 5 One End OCR 4 300 
10 Compression 2b 10 One End OCR 4 300 
20 II 2b 20 One End OCR 4 300 

sknc1300-1 Ko 2b 1 One End N.C. 300 
2 Compression 2b 2 One End N.C. 300 
3 II 2b 3 One End N.C. 300 

Table 7.4a Constant Stress Rate Loading Drained Analyses carried Out 



ANALYSIS TEST TYPE SOIL RATE SOIL p' 
kPa/hr 0 

STATE &.0.. 

sunc 300-2b-10 Triaxial 2b 10 N.C. 300 
20 Compression 2b 20 N.C. 300 
40 .. 2b 40 N.C. 300 
80 It 2b 80 N.C. 300 

sunc 300-2a-10 Trixial 2a 10 N.C. 300 
40 Compression 2a 40 N.C. 300 
80 It 2a 80 N.C. 300 

sunc 600-2b-10 Triaxial 2b 10 N.C. 600 
20 Compression 2b 20 N.C. 600 
40 It 2b 40 N.C. 600 

sunc 300-1b-131.00 Triaxial 2b 131.0 N.C. 300 
2b 80.00 Compression 2b 80.0 N.C. 300 
3b 62.96 It 2b 62.96 N.C. 300 
4b 80.00 It 2b 80.0 N.C. 300 
5b 80.00 It 2b 80.0 N.C. 300 
6b 80.00 It 2b 80.0 N.C. 300 
7b 80.00 It 2b 80.0 N.C. 300 

suoc 4-2b-10 Triaxial 2b 10 OCR 4 300 
, 

20 Compression 2b 20 OCR 4 300 
40 It 2b 40 OCR 4 300 
80 2b 80 OCR 4 300 

suoc 16-2b-10 Triaxial 2b 10 OCR16 300 
20 Compression 2b 20 OCR16 300 
40 It 2b 40 OCR16 300 

suoc 16-2a-20 Triaxial 2a 10 OCR16 300 
40 Compression 2a 40 OCR16 300 
80 II 2a 80 OCR16 300 

suoc 4-1b-137.2 Triaxial 1b 137.2 OCR 4 300 
2a 8.0 Compression 2a 8.0 OCR 4 300 
2b 80.0 II 2b 80.0 OCR 4 300 
2c 800.0 II 2c 800.0 OCR 4 300 
3b 61.0 .. 3b 61.0 OCR 4 300 
4b 131.3 It 4b 131.3 OCR 4 300 
5b 51.2 II 5b 51.2 OCR 4 300 
6b 80.0 It 6b 80.0 OCR 4 300 
7b 80.0 It 7b 80.0 OCR 4 300 

. Table 7.4b Constant stress rate loading undra1ned anlayse. carried out . 



""""" -.--~ -
ANALYSIS TEST TYPE SOIL RATE DRAINAGE SOIL plo 

kPa/hr TYPE STATE &.0-

ednc 1300-2b-0.01 Triaxial 2b 0.01 One End N.C. 300 
0.02 Compression 2b 0.02 One End N.C. 300 
0.03 .. 2b 0.03 One End N.C. 300 
0.04 .. 2b 0.04 One End N.C. 300 
0.05 II 2b 0.05 One End N.C. 300 
0.07 .. 2b 0.07 One End N.C. 300 
0.10 II 2b 0.10 One End N.C. 300 
0.15 II 2b 0.15 One End N.C. 300 
0.20 II 2b 0.20 One End N.C. 300 
0.25 .. 2b 0.25 One End N.C. 300 
0.30 .. 2b 0.30 One End N.C. 300 
0.40 II 2b 0.40 One End N.C. 300 

ednc 1600-2b-0.01 Triaxial 2b 0.01 One End N.C. 600 
0.02 Compression 2b 0.02 One End N.C • 600 
0.03 .. 2b 0.03 One End N.C. 600 
0.04 II 2b 0.04 One End N.C • 600 
0.05 .. 2b 0.05 One End N.C . 600 
0.10 .. 2b 0.10 One End N.C. 600 
0.25 II 2b 0.25 One End N.C. 600 
0.40 II 2b 0.40 One End N.C. 600 

ednc 1300-1b-0.1 Triaxial 1b 0.1 One End N.C. 300 
2a-0.01 Compression 2a 0.01 One End N.C. 300 
2b-0.1 II 2b O. 1 One End N.C. 300 
2c-1.0 II 2c 1.0 One End N.C. 300 
3b-0.1 II 3b O. 1 One End N.C. 300 
4b-0.1 II 4b 0.1 One End N.C. 300 
5b-0.1 .. 5b O. 1 One End N.C. 300 
6b-0.1 II 6b O. 1 One End N.C. 300 
7b-0.1 II 7b 0.1 One End N.C. 300 

ednca300-2b-0.01 Triaxial 2b 0.01 All Round N.C. 300 
0.05 Compression 2b 0.05 All Round N.C. 300 
0.10 .. 2b 0.10 All Round N.C • 300 
0.20 .. 2b 0.20 All Round N.C . 300 
0.40 II 2b 0.40 All Round N.C. 300 
0.50 II 2b 0.50 All Round N.C. 300 
0.80 .. 2b 0.80 All Round N.C. 300 
1 .20 " 2b 1.20 All Round N.C. 300 

ednca 300-1b-0.5 Triaxial 1b 0.5 All Round N.C. 300 
2a-0.05 Compression 2a 0.05 All Round N.C. 300 
2b-0.5 II 2b 0.5 All Round N.C. 300 
2c-5.0 II 2c 5.0 All Round N.C. 300 

3b-0.5 II 3b 0.5 All Round N.C. 300 

4b-0.5 II 4b 0.5 All Round N.C. 300 

5b-0.5 II 5b 0.5 All Round N.C. 300 

6b-0.5 II 6b 0.5 All Round N.C. 300 

7b-0.5 .. 7b 0.5 All Round N.C. 300 

ec:loc 14-2b-0.01 Triaxial 2b 0.01 One End OCR 4 300 

0.02 compression 2b 0.02 One End OCRe 300 

0.03 II 2b 0.03 One End OCR 4 300 

0.04 II 2b 0.04 One End OCR 4 300 

0.05 .. 2b 0.05 One End OCR 4 300 

0.10 .. 2b 0.10 One End OCR 4 300 

0.20 II 2b 0.20 One End OCR 4 300 

0.30 .. 2b 0.30 One End OCR 4 300 

0.40 .. 2b 0.40 One End OCR 4 300 

table 7.tc 



ANALYSIS TEST TYPE SOIL RATE DRAINAGE SOIL P'o 
kPa/br TYPE STATE 1oD.. 

edoc 116-2b-0.01 Triaxial 2b 0.01 One End OCR16 300 
0.02 Compression 2b 0.02 One End OCR16 300 
0.05 If 2b 0.05 One End OCR16 300 
0.10 If 2b 0.10 One End OCR16 300 
0.20 If 2b 0.20 One End OCR16 300 

edoc 4-1b-0.1 Triaxial 1b 0.1 One End OCR 4 300 
2a-0.01 Compression 2a 0.01 One end OCR4 300 
2b-0.01 If 2b 0.1 One End OCR 4 300 
2c-1.0 If 2c 1.0 One End OCR4 300 
3b-0.1 If 3b 0.1 One End OCR 4 300 
4b-0.1 " 4b 0.1 One End OCR 4 300 
5b-0.1 " 5b 0.1 One end OCP4 300 
6b-0.1 " 6b 0.1 One End OCR 4 300 
7b-0 .1 " 7b 0.1 One End OCR 4 300 

edoca 4-2b-0.01 Triaxial 2b 0.01 All Round OCR 4 300 
0.05 Compression 2b 0.05 All Round OCR4 300 
0.10 " 2b 0.10 All Round OCR 4 300 
0.25 " 2b 0.25 All Round OCR 4 300 
0.40 " 2b 0.40 All Round OCR 4 300 
0.50 " 2b 0.50 All Round OCR 4 300 
0.80 " 2b 0.80 All Round OCR 4 300 

edoca 16-2a-0.1 Triaxial 2a 0.1 All Round OCR16 300 
0.2 Compression 2a 0.2 All Round OCR16 300 
0.4 " 2a 0.4 All Round OCR16 300 

edoca 16-2b-0.05 Triaxial 2b 0.05 All Round OCR16 300 
0.10 Compression 2b 0.10 All Round OCR16 300 
0.25 " 2b 0.25 All Round OCR16 300 
0.80 " 2b 0.80 All Round OCR16 300 

edoca 4-1b-0.5 Triaxial 1b 0.5 All Round OCR 4 300 
2b-0.5 Compression 2b 0.5 All Round OCR 4 300 
3b-0.5 " 3b 0.5 All Round OCR 4 300 
4b-0.5 " 4b 0.5 All Round OCR 4 300 
5b-0.5 " 5b 0.5 All Round OCR 4 300 
6b-0.5 " 6b 0.5 All Round OCR 4 300 
7b-0.5 " 7b 0.5 All Round OCR 4 300 

Table 7.4c Constant Strain Rate Loading Drained Analyses Carried out 



ANALYSIS TEST TYPE SOIL RATE SOIL p' 
kPa/hr STATE 

0 
&.ft-

eunc 300-2b-0.1 Triaxial 2b 0.1 N.C. 300 
0.2 eompression 2b 0.2 N.C. 300 
0.4 " 2b 0.4 N.C. 300 
O.S .. 2b O.S N.C. 300 

eunc 300-2a-0.1 Triaxial 2a 0.1 N.C. 300 
0.2 Compression 2a 0.2 N.C. 300 
0.4 " 2a 0.4 N.C. 300 

eunc 300-1b-0.S Triaxial 1b O.S N.C. 300 
2a-0.OS Compression 2a O.OS N.C. 300 
2b-0.S .. 2b O.S N.C. 300 
2c-S.0 .. 2c S.O N.C. 300 
3b-0.S .. 3b O.S N.C. 300 
4b-0.S .. 4b O.S N.C. 300 
Sb-O.S .. Sb O.S N.C. 300 
6b-0.S .. 6b O.S N.C. 300 
7b-0.S .. 7b O.S N.C. 300 

eunc 600-2b-0.1 Triaxial 2b 0.1 N.C. 600 
0.2 Compression 2b 0.2 N.C . 600 
0.4 .. 2b 0.4 N.C. 600 .. 

euoc 4-2b-0.1 Triaxial 2b 0.1 N.C. 300 
0.2 Compression 2b 0.2 N.C. 300 
0.4 .. 2b 0.4 N.C. 300 

euoc 4a-2b-0.1 Triaxial 2b 0.1 OCR 4 300 
0.2 Compression 2b 0.2 OCR 4 300 
0.4 " 2b 0.4 OCR 4 300 
O.S .. 2b O.S OCR 4 300 

euoc 16a-2a-0.1 Triaxial 2a 0.1 OCR16 300 
0.2 Compression 2a 0.2 OCR16 300 
0.4 " 2. 0.4 OCR16 300 

euoc 16a-2b-0.1 Triaxial 2b 0.1 OCR16 300 
0.2 Compression 2b 0.2 OCR16 300 
0.4 .. 2b 0.4 OCR16 300 

euoc 4a-1b-0.S Triaxial 1b O.S OCR 4 300 
2a-0.OS Compression 2a O.OS OCR 4 300 
2b-0.S " 2b O.S OCR 4 300 
2c-S.0 " 2c S.O OCR 4 300 
3b-0.S " 3b O.S OCR 4 300 
4b-0.S " 4b O.S OCR 4 300 
5b-0.S .. 5b O.S OCR 4 300 
6b-0.S " 6b O.S OCR4 300 
7b-0.S .. 7b O.S OCR 4 300 

Table 7.4d Constant strain rate loading undrained analyse. carried out. 

Note: euoc4 series was taken to 5' strain. All other euoc .erie. wert 
taken to l' strain and are denoted by the suffix a after the 
number indicating the overconsolidation ratio. 



TEST TYPE SOIL )l·VALUES 
STATE 

1-0 DRAINAGE ALL ROUND DRAINAGE 

l4.o., l1'.1d }lev l1'.1d }lev 

Constant Stress Rate 
One Dimensional N.C. 0.5 0.38 0.33 1.5 0.6 
Compression O.C. 0.5 0.38 0.33 1.5 0.6 

Constant Stress Rate 
Isotropic N.C. 0.5 0.38 0.33 1 .5 0.6 
Compression O.C. 0.5 0.38 0.33 1.5 0.6 

Constant Stress N.C. 0.5 0.38 0.33 1.5 0.6 
Rate Triaxial O.C. to.23 to.17 to.15 to.7 to.3 

Constant Strain N.C. 0.65 0.49 0.43 2.2 0.9 
Rate Triaxial O.C. to.27 to.21 to .18 to.81 to.33 

a) Values for the constant )l' in Drained Tests 

)l'VALUES 
TEST TYPE SOIL 

TYPE 1-0 EQUALISATION ALL ROUND EQUALISATION 
ll'. )ld. 

Constant Stress N.C. to.015 to.045 
Rate Triaxial O.C. -0.04 -0.12 

Constant Strain N.C. to .1 to.3 
Rate Triaxial O.C. -0.05 -0.15 

b) Values for the constant )l' in undrained tests 

Table 8.1 



BrRADf RATE MAXIMUM EXCESS PORE PRESSURE AT TOP OF SAMPLE, kPa 
t/HR 

MEASURED BY CALCULATED FROM TAKEN FROM FIGURE 7.16a 
BALASUBRAMANIAM , EQUATION 8. 4 
THURAIRAJAH AND )1' = 0.65 plo = 300kPa p' = 600kPa 

0 
FONSEKA 

0.16 21 19 18 19 

0.30 31 35 30 33 

0.50 45 59 45 52 

1.00 76 118 73 91 

1.20 85 142 83 102 

2.00 117 237 109 146 

Table 8.2 eo.p&rlsOft of Experlaental Test Results by Thurairajah, Balasubraaaniaa, and Ponaeka (1975) with Predicted 
Values. 

.. 
·.1, 

.. ~ 
-'id 
,f. 



Test Soil State 

Drained (1 end I Normally 
onl.I.) consolidated 

Drained (1 end I Over-
only) consolidated 

Undrained (end I Normally 
filter papers consolidated 
onl ) 

Undrained (end Over-
filter papers consolidated 
only) 

strain rate calculated using 
Bishop & Henkel _thad '/hour 

'Failure' Test 
* 

0.066 (20') 

0.060 (10') 

1.047 (20') 

0.926 (10') I 

Stress Path 
Test ** 

0.033 (1') 

0.003 (0.5') 

0.0524 (1') 

0.0463 (0.5') 

Strain rate calculated 
using the .. thad in 
this thesis for a 

maxiaua differential 
excess pore pressure 

of t10 kPa 
,/hour 

0.026 

0.033 

0.108 

0.120 

Max:1. __ average ex.C4IIUI 

pore preaure or 
aaxiaua differential 
excess pore pressure 
in tests at the rate 
calculated using the 

Bishop & Henkel .eth~ 
*** kPa 

'Failure' 
test 

27 

18 

t50 **** 

-80 

'Stress 
Path' 
Test 

1.3 

0.9 

t4 **** 

-4 

* A 'failure' test is one in which accurate measurement of pore pressures is required at failure. the axial 
strain assuaed at failure and used in the calculation is given in brackets. 

** A 'stress path' test is one in which accurate measurement of pore pressure is required throughout the te.t 
to define the stress path. The axial strain used in the calculation of strain rate is given in brackets. 

*** The.e values of excess or differential excess pore pressure were calculated using the .. thod described in 
this thesis. 

**** FrOli Fi~e 7.1!~ ault!pJied by a factor of ten. 

TABLE 8. 3 COMPARISON OF LOADING RATE DETERMINATION METHODS 
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2.4 State boundary surface (From Atkinson (1981» 
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2.5 Elastic wall (From Atkinson (1981» 
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4.9 The variation in strength with time to failure in 
drained triaxial compression tests on normally 
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5.6 Pore pressure probe 
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6.17 Volumetric strain versus axial strain for drained 
triaxial compression tests on normally 
consolidated (test Both 32) and overconsolidated 
(test Both 34) Bothkennar Clay 

200 

150 

((++ ++++ 
+ ++ 

100 
+++ 

• '4to++ 

TEST 51 TEST 41 

50 

0~----~--~~---'----~----~25~0--~3!.OO~--~3~ 
o 50 100 150 200 

pt, kPa 

6.18 Stress paths for undrained triaxial co.pre •• iond 
lid t ed (te.t 41) an tests on norllally conso a 

overconsolidated (test 51) Kaolin 



.. 
~ -.,. 
rn 
rn 

E 
~ 

~ 
-= 

180 

14-0 

120 

100 

80 

80 

4-0 

20 

0 
0 

TEST 4-1 
+ 1. + + + + + + : + +* ... + 

+ + .+ + 
+++ ++~u_. 

+ ~~ 

5 10 15 
AXIAL STRAIN. ~ 

20 

.1", •••• 'I •• iii 

25 

6.19 Stress-strain curves for undrained triaxial 
compression tests on normally consolidated (test 
41) and overconsolidated (test 51) Kaolin . 

1 

.8 

.8 

.4-

.2 

TEST 51 
++++*+++++.~~++++ 

+ ++ ++ ++ 
t+ ++ ++++ + ............... ++++++ 

+ ..... " .. " ..... 
+ 

+ 
+++ TEST 4-1 

+ 
~ 
~ 

10 15 
AXIAL STRAIN. ~ 

20 25 
o ~ ________ ~ ______ ~ __ -------T--------~-------, 

o 

6.20 

5 

Stress ratio versus axial strain for undrained 
triaxial compression tests on nor.ally 
consolidated (test 41) and overconsolidated (t.st 

51) Kaolin 



• !; . .cp 

300 

250 

200 

150 

100 

++++ + 

+ '" TEST (1 

TEST 51 
++++ ++++++ 

+++++++++++++++++++ 

+ + + + + + + + ""11111,,'111"111111 

50 ~------~--------~------~-----------------o 5 10 15 
AXIAL STRAIN. % 

20 25 

6.21 Base pore pressure versus axial strain for 
undrained triaxial compression tests on normally 
consolidated (test 41) and overconsolidated (test 
51) Kaolin 

200 

150 " f ' .. ... 
.. ++ 

++ 

100 . .. 
++ 

+ , TEST GAULT 1 .. 
++ 

""~ 
+'\. 

50 
++ 

\. ~ 

TEST GAULT 2 \ \ 
~ ~ 

+ ... 
0 250 300 

0 50 100 150 200 
p', kPa 

6.22 Stress paths for undrained triaxial co_pre •• ion 
tests on normally consolidated Caul t clay 



200 

150 

100 

50 

TEST GAULT 1 

+++++++++++++++++++++++++++ 
+++++++ +++ 

++ ++ * + ~ +++ 
, + 

+= + 
...... .t 

I 
I 

;4. , 
TEST GAULT 2 

+ + ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++ + + + 

o ~---------.----------~--------~--------~ o 

6.23 

1 

.8 

.8 

.4 

.2 

o 
o 

6.24 

5 10 15 20 
AXIAL STRAIN I ~ 

Stress-strain curves for undrained triaxial 
compression tests on normally consolidated Gault 
clay 

+ TEST GAULT 2 

5 10 
AXIAL STRAIN I ~ 

Stress ratio versus axial strain 
triaxial compression tests 
consolidated Gault clay 

15 20 

for undrained 
on nor.ally 



350 

300 

.. 250 ~ -
~ 200 

I 150 c.. 

= 100 0 c.. 

50 

0 
0 

6.25 

200 

150 

100 

50 

o 

6.26 

TEST GAULT 1 
++++++++++++++++++++++++++++++++++ •• + •••• ~ 

+++ 

TEST GAULT 2 

/++ 
++++++++++++++++++++++++++++++++++ ....... +++++ +++++ 

+++++++ 

5 10 15 20 
AXIAL STRAIN I I 

Base pore pressure versus axial strain for 
undrained triaxial compression tests on normally 
consolidated Gault Clay. 

TEST 73 
+++++++++++++ 

++++ +++ 
+++ +. 

~++ +++++ 

TEST 81 + • + + + •• + + + • + + + + + + + + + + + +:t 
++++ ++.+ 

~ + •• + 
i •• 

+~ •• 
~ 

5 10 15 
AXIAL STRAIN I I 

Stress-strain curves for undrained trla(xla1 
11 consolidated te.t 

compression tests on norma Y 
73) and overconsolldated (test 81) Gault clay 



• 
~ 
-G' 

~ 

~ 
~ 

~ 
Q 

• 
~ • 
"G' 

I 
c:a= 

~ 
Q 

350 

300 

250 

200 

150 TEST BOTH 24 TEST BOTH 22 

100 

50 

0 
0 100 200 300 400 500 

p' t kPa 

6.27 Stress paths for undrained triaxial compression 
tests on normally consolidated (test Both 22) and 
overconsolidated (test Both 24) Bothkennar Clay 

350 

300 

250 

200 

150 

100 

50 

0 
0 

6.28 

TEST BOTH 24 
+ + + ++ 

+ + ++++ + +++++++++++ + .. ++" ++ 
+ + +++ .. + ++ 

+ ++++++ ++ 
.+++ + + 

.+ + + + + 
+ +++++++ + ++++++++++ + ++ 

+ ++ +++ 
+ + + +++ + TEST BOTH 22 

10 
AXIAL STRAIN t % 

15 20 
5 

Stress-strain curves for undrained triaxial 
cOllpression tests on normally consolida~.d h(t;:~ 
Both 22) and overconsolidated (test ot 
Bothkennar Clay 



1.8 

1.4-

-a. 1.2 
....... 
-~ 1 • a ;a .8 
rn 

e .8 

.4-

.2 

0 
0 

6.29 

350 

300 

250 

200 

150 

100 
o 

6.30 

TEST BOTH 24- + + (BOTH 22) 
+ + + + ++\. + + + + + + t + + + + + + + + + + + + * + + 

++ .. +~ •• ++ ++++++ +++ +++ + + .. + + + + +\. + ... *. ++ +++++++ + .. ++++ 
+ + (BOTH 24) +" 

++ 

.f 
l' TEST BOTH 22 

5 10 15 20 
AXIAL STRAIN. ~ 

Stress ratio versus axial strain for undrained 
triaxial compression tests on normally 
consolidated (test Both 22) and overconsolidated 
(test Both 24) Bothkennar Clay 

a 
aa 

a 
a 

TEST BOTH 22 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

aaa 

TEST BOTH 24 

5 10 15 20 
AXIAL STRAIN. X 

Base pore pressure versus axial strain for 
undrained triaxial compression tests on normally 

22) d overconsolidated 
consolidated (test Both an 
(test Both 24) Bothkennar Clay 



CIS 
Q.. 
..!alI . 
~ 
~ 
rn rn 
~ c:: 
Q.. 

~ 
0 
Q.. 

CIS 
Q.. 
..!all 

~ 
~ 

~ 
~ c:: 
Q.. 

ta:I c:: 
0 
Q.. 

170 

160 •••• • TEST 13 • • • • 150 • + + + + • -• +++ • 
• + + 

140 . - + • ++ + 

- + + • 

- ++ + • • ++ • 130 • • .+ • • • • • + + • - + + • 
• + - + + + 

120 - + 
+ +.:4+ + -.. + - + • • 

+ + + TEST 12 ~ - ~ + 
110 .... 

+ + 

100 
o 1 2 3 4 567 

AXIAL STRAIN I r. 
8 9 10 

6.31 

170 

160 

150 

140 

130 

120 

110 

100 
0 

6.32 

DBASE + MIDDLE • TOP 

Pore pressure versus axial strain for one­
dimensional compression constant stress rate 
loading tests on Kaolin 

-
• 

• + 
+ 

• + 

- + 

1 

• 
• • 

• 
+ 

+ + 
+ 

2 3 
AXIAL STRAIN I 1-

DBASE + MIDDLE • 

TEST 12 

• 

• 
+ 

• 
+ 

+. 

+ • 

4 

TOP 

ial strain for 
Pore pressure versus ax 

i S t a n t s t r (. s 5 
dimensional compress on con 
loading tests on Kaolin 

5 

o nt' . 
ra'e 



GIS 
c.. 
.:.t . 
~ 

~ 
c:n c:n 
~ 
c.. 
~ 
~ 
0 
c.. 

'" c.. 
~ 

~ 

~ 
c:n c:n 
ta:I 
~ 
c.. 
ta:I 
~ 
0 
c.. 

200 

190 

180 

170 

160 

150 

140 

130 

120 

110 

100 
0 

6.33 

160 

150 

140 

130 

120 

• • • .. .... ..... .. 
TEST 72 •• + •• •• + + ... 

.... ++++ +++ ~ 
• +++ + •• • ++ ++ • 

••• + ++ + • 
• + +++ ~. '-

•• ++ • .,... .-~~ 
.. ++ .... ..,.~.r~ 

... +++ ~ • '- .,. • ++ + c ~ ... ~+ • 
..... ++++ ~.; ; ..... ~rI'4f-~~I/ ... .. 

.+++++ ~.....,;..~ +~ ... ~ 
/+ ~ ---'~ ~~ 
~++ .~ TEST 111 
~ a: __ ___ 

2 4 6 8 10 
AXIAL STRAIN, ,:; 

c BASE + MIDDLE • TOP 

Pore pressure versus axial strain for 
dimensional compression constant stress 
loading tests on Gault Clay 

• • • • • • 
TEST 91 • • • • • •• • 

+ + ++ • .. ~ • + + • 
... + + + • • ++ • + + + •• ++++ 

••• + + 
+. . ..++ + •• ++ 

•• +++ 
.. ++ 

- + .... + •• ++ 
.. -++ 

- +++ + ...... 

• 

12 

one­
rate 

•• • • • 
+ , 
+ • .++ 

+ • 

110 .' 
,.; 

• 
100 

0 

6.34 

-, 

.5 1 1.5 2 2 ~) 

AXIAL STRAIN, 7-
TOP 

c BASE + 

Pore pressure versus 
compression constant 
Gault Clay. 

WmDLE • 

axial strain for an isotroplc 
rate loadlng : est on stress 



.-
a.. 
~ . 

~ 
~ 
a.. 

= 0 
a.. 

125 

120 

115 

110 

105 

100 
o 

6.35 

110 

109 

108 

107 

106 

105 

104 

103 

102 

101 

100 
o 

6.36 

•••••••• .. . .... .. ~ 
• • ••• ++. ••• •• • •• • • •• -1\ .. ~ •• • ++ .. • +++.,. -' .. • + + -11++ _ • 

• TEST 61 
•• '~ .. .-, . 

•• 
• 

• 

+ 

1 234 
AXIAL STRAIN. % 

a BASE + )(II)DLE • TOP 

~, 
• 
+ 

• + 

5 8 

Pore pressure versus axial strain for an isotropic 
compression constant stress rate loading test on 
Kaolin 

TEST BOTH 31. STAGE 1 

• 

• 

• • • • 

• 
• • + 

• • 

+ + 

• • 
• •• •• 

• • 

+ + 

. ... .... 
• •••• •• •••••• + ••• +. 

b"· ......... '\ 

• • • • • • • • • 

• + + 

• 
+ • • + + 

TEST BOrn 31 

STAGE 2 

• 

• 

+ 

+ 
• 
• • • • • . . .. . 

I. ~ ....... .t 
"t • 

+ •• , .... ' , 
.5 1 1.5 2 

AXIAL STRAIN. % 
a BASE • MIDDlE • TOP 

Pore pressure versus axial 
compression constant stress 
Bothltennar Clay 

strain for iaotropic 
rate loading t.ata on 



as 
c.. 
~ 

~ 

~ en en 
~ 
c.. 

~ 
0 
c.. 

as 
c.. 
~ 

~ en en 
tz:3 
0:: 
c.. 

~ 
0 
c.. 

114 

112 

110 

108 

106 

104 

102 

100 

ir t 
"1--

TEST 22 

•• 
+ • 

+ 
+ + • 

+ • 
+ •• 

+ 
+ • 

+. 
+ •• 

+ 

0 5 10 15 
AXIAL STRAIN, r. 

20 25 

6.37 

110 

109 

108 

107 

106 

105 

104 

103 

102 

101 

100 

a BASE + MIDDLE • TOP 

Pore pressure versus axial strain for drained 
triaxial compression constant stress rate loading 
tests on normally consolidated Kaolin with base 
drainage. 

i:r E 

.. :T" 
• ••• • •• I· • •• • •• • 

• 
••• ... +++++t 

+++++ + + ++ 
- + + + ••• ++++ 

.. +++ 
• ;+ 

+ 

• TEST 24 

• • + • + 
+ + • • • 

+ • 
+ .+ 

+ • 
+ + 

+ 

; ~. . . • • •• • " .:;fT~'~""". • •• +++~ •• TEST 2:1· • ••• ++ + • + + + 
..... ,-..1t.t...","' + + + • •• • 

• . : 
• 
* • • • • • • • • • • 

~, ... :r-~ I ++.+ 
-~~~ • + •••••• : t ~~ . . .... 

q;, a·a a ~ aa 2 f 
25 o 5 10 15 

AXlAL STRAIS. 1-

6.38 

a BASE + MIDDLE • TOP 

for drained 
rate loading 

'.-lth all 

i 1 strain Pore pressure versUS ax a 
triaxial compression constant stress 
tests on normally consolidated K:lolin 

round drainage 



.. 
~ 

• D'I 

~ 

~ 
= 0 a.. 

.. 
~ . 

I a.. 
~ 
f 

108 

106 

10' 

II- • T 
I 
I 

102 I 
100 

98 

96 

9' 

92 
0 5 

TEST 32 

10 15 
AXIAL STRAIN. % 

DBASE • )(I])DLE • TOP 

20 

6.39 Pore. pressure versus axial strain for a drained 
triaxial compression constant stress rate loading 
test on overconsolidated Kaolin with base 
drainage 

200 

190 

180 

170 

160 

150 

1'0 

130 

120 
" 110 

100 
0 

6.40 

5 

;,. i. 

T 

TEST 91 

10 15 
AXIAL STRAIN. % 

DBASE + KIDDL! • TOP 

20 25 

Pore pressure versus axial strain for a drained 
triaxial compression constant stress rate loadinl 
test on normally consolidated Gault Clay with 

base drainage 



150 

1.0 

130 

120 

110 

100 
o 

6.41 

110 

109 

108 
• 
~ 107 . 

I 106 

105 

10. Q,. 

= 103 0 
Q,. 

102 

101 

100 
0 

6.42 

+ 
.. + 

+ 
+ 

+ 

+ + + 
TEST 92 + + 1 + + I 

+ + •• • + + ••• • iT e. 
+ • 

+ T 
• • 

5 10 15 
AXIAL STRAIN. % 

a BASE + KIDDIE • TOP 

20 

Pore pressure versus axial strain for a drained 
triaxial compression constant stress rate loading 
test on normally consolidated Gault Clay with all 
round drainage 

5 

TEST 101 

10 15 
AXIAL STRAIN. X 

a B~ + KmD~ • rop 
20 25 

Pore pressure versus axial strain for a drained 
triaxial compression constant stress rat. loading 
test on overconsolidated Gault Clay with ba •• 
drainage 



112 

110 
CIII 

c.. 
..!!If 108 . 
raJ 

~ 
rn 106 rn 
~ 
c.. 
raJ 104 a:= 
0 
c.. 

102 

100 

6.43 

120 

115 

110 

105 

100 
o 

6.44 

TEST BOTH 32 

5 

TEST BOTH 34 

10 15 
AXIAL STRAIN, 7-

DBASE + MIDDLE • TOP 

20 25 

Pore pressure versus axial strain for drained 
triaxial compression constant stress rate loading 
tests on Bothkennar Clay with base drainage 

•• ... • .. . •• 

5 

TEST 61 

10 15 20 
AXIAL STRAIN, r. 

D BASE + MIDDLE • TOP 

Pore pressure versus 
triaxial compression 

axial strain for a drained 
constant strain rate loading 

test on normally consolidated 
drainage 

Kaolin with bilse 



.. 
c:a.. 
oW 

~ 
~ 
t! 
0 
c:a.. 

.. 
~ . 

I 
8: 

= 0 
c:a.. 

114-

112 

110 

108 

106 

104 

102 

100 
0 

• • ,.#.~ ••••.. ... --... .-. -. ~ .. ....... ..... 
• + A.A.. + ++ ....... 

L r#~~_~~++~~. , ,....+ ....... . ... . 
TEST BOTH 31 

+ .. +.. ........ 
~. --- + +. .._ . .. ... ..• ..,. ....... -.. ..... 

• • + • .+ • ••• • 

5 10 15 
AXIAL STRAIN. ~ 

a BASE • KlDDLE • TOP 

20 25 

6.45 Pore pressure versus axial strain for a drained 
triaxial compression constant strain rate loading 
test on normally consolidated Bothkennar Clay 
with base drainage 

110 

108 

106 

104 

102 

100 

98 
0 

6.46 

TEST BOTH 33 

'asP rDFFF'F~.yv..Ai i~ ................ ·a·· .. ... 
5 10 15 

AXIAL STRAIN. ~ 
a BASE • MIDDLE • TOP 

20 25 

Pore pressure versus axial strain for a drained 
triaxial compression constant .tr~n rate loadlna 
test on overconsolidated Bothkennar Clay with 

base drainage 



CIII 
c.. 
~ . 
-0-

0.) 

b) 

350 

300 

250 

200 

150 

100 

50 

0 
0 

1 

.8 

.2 

o 
o 5 

TEST 91 

200 250 300 350 400 450 
p', kPa 

a BASE + MIDDLE • TOP 

'-c. ~""""""-'<>o 
.. ~ .. ", .. ~ ... ~~ 

~ --«p~~~'Lr<"""'''''''''Ul 

TEST 91 

10 15 
AXIAL STRAIN, ,; 

DBASE • MIDDLE • TOP 

I 

20 25 

6.47 Results of test 91; drained ~riaxial compression 
constant stress rate loading :t'st on norm.llly 
consolidated Gault Clay with base drainagf' a) 
Deviator stress versus me,1n effective stress b) 
stress ratio versus axial strain 



180 

1.0 

120 

100 
• 
~ 80 . 
-c::r' 

80 

(0 

20 

0 

1 

.9 

.8 

~ .7 
c::r' 

- .8 a .5 ~ 

I ., 
.3 

.2 

.1 

0 
0 

1,) 

6.48 

0 50 

5 

TEST 32 

100 
p', kPa 

TEST 32 

10 15 
AXIAL rnwN, % 
a BASE • TOP 

FULLY t>AAI "at> 
~E.s& P_-nt 

150 200 

20 

Resul ts of test 32; drained triaxial coapre •• lon 
constant stress rate loadlna te.t on 
overconsolidated Kaolin with ba.e dralna,e .) 
Deviator stress versus aean effective .tre.. b) 
stress ratio versus axial strain 

• 



300 

.. 250 
~ 

I 200 
TEST 71 

~ 
a.. 150 

100r-----~~----}r------r-----~------
o 5 10 15 20 25 

~ -5 

i -10 

-15 

AXIAL STRAIN. % 
a BASE + KIDDIE • TOP 

I 
I TEST 71 

• I 
•• j 
~ ..... 
I· .. •• .. •• ..... • 

•••• ...... ... 
•• ••• ... 

• • • • • • 

a~ ••• •• <!Lft 
•• -u-

Q -20 -t-----..,....-------------------
10 15 
AXIAL STIWN. % 
a BASI • TOP 

20 25 o 

b) 

6.49 

5 

Results of test 71; undrained triaxial coapression 
constant stress rate loading test on noraally 
consolidated Gault Clay with end filter paper. 
only a) Pore pressure versus axial .tre •• b) 
Differential excess pore pressure versus axial 



300 

250 

200 TEST 73 

10010~------~--------r--------r--------
5 10 15 

AXIAL STRAIN. % 
a BASE + KIDDLE • TOP 

20 

8 
a aa 

aa 
a a •• 

aa a •• 

~ -5 
aa aaa 

f
aa a a 

•• ..-. •••• aaaa· 
~- .. . .. .. • • ••••••• •• I -10 

•••• 

b) 

TEST 73 
-15 

-20~--------~----------~------------------~ 
20 o 5 10 

AXIAL mwN. I 
a BASI • TOP 

15 

6.50 Results of test; 73 undrained triaxial co.pre •• ion 
constant stress rate loading test on nor.ally 
consolidated Gault Clay with end filter paper. 
only a) Pore pressure versus axial strain b) 
Differential excess pore pressure versus axial 



325 

320 

315 

310 

305 

30010~-----Y5------~------r-----~-------
10 15 20 25 

.. 10 ~ . 
~ rn 5 

~ 
Do. 
DIll 0 ~ 
0 
Do. 

gj 

~ -5 

-10 

Q -15 
o 

1,) 

6.51 

ir a 
T 

5 

AXIAL STRAIN , % 
a BASE + KIDDLE • TOP 

TEST 81 

10 15 
AXIAL STRAIN, % 
DBASE • TOP 

20 

• 
8 

• .aaaa 
D ••• 

25 

Results of test 81; undrained triaxial co.pression 
constant stress rate loading test on 
overconsolidated Gault Clay with end filter 
papers only a) Pore pressure versus axial strain 
b) Differential excess pore pressure versus axial 



200 

.-
~ 150 
-D' . 

I 100 

g:: TESI' 73 

~ 
TEST 81 

50 
Q 

°10----~----~----r---_.----~--_' 
50 100 150 200 250 

1.2 

1 
. 
~ .8 D' . 
~ 
~ .8 

i •• 

. 2 

0 

~ 
6.52 

0 

p' • kPa 
300 

a BASE + MIDDLE 

TEST 81 

TEST 73 

5 10 15 20 25 
AXIAL STRAIN. % 

a BASE + KlDDLE 

Results of test 73 and 81, undrained triaxial 
compression constant stress rate loadina test on 
normally (test 73) consolidated and 
overconsolidated (test 81) Gault Clay with end 
filter papers only a) Deviator stress versus aean 

ive stress b) Stress ratio versus axial 



.. 
~ 

-S2 
~ 

S2 
0 
~ 

en en 
r&I 

= 

120 

100 
• 

80 
• 

60 

40 

20 

0 
0 50 100 150 200 250 

CHARACTERISTIC STRESS. kPa 

+ MIDDLE • TOP 

6.53 Peak excess pore pressure versus characteristic 
stress for one-dimensional co.pression constant 

stress rate loading tests 



25 

20 

15 

10 

5 
". 

".'" • 
+ 
• o / 

o 5 

3 

/ 
,/ 

1 

/ 

10 15 20 25 
CHARACTERISTIC STRESS, kPa 

+ )ffi)DIE • TOP 

,,/ 
,,/ 

/" 
,/ 

30 

/' .~ CJtI.,. U_L."., Tt)p 

/" 
./ 

/". 
+ 

• 
+ 

• 

35 

O~,,/------~------__ ------~~----~~----~ o 2 • 8 
CHARACTERISTIC SI'RESS, kPa 

+ mDII • TOP 

8 10 

6.54 Peak excess pore pressure versus charac terl.tlc 
s tress for isotropic cOllpress ion cons tant s tr ••• 
rate loading tests a) Norllally consolidated clay 
solIs b) overconsolldated clay so11s 



100 

90 
• £l.4 80 ~ . 
~ 70 
~ 60 en 
~ 
~ 50 £l.4 
~ 
~ 40 0 
£l.4 
en 30 en 
~ 
u 20 
~ 

10 

0 
0 50 100 150 200 

CHARACTERISTIC STRESS, kPa 
+ MIDDLE • TOP 

50 + 

«I 

~ 40 
~ 
~ 
:::> ,...,. en 30 en ~ 

~ ........... 
£l.4 C ~ 9>P fZ,Q.SUL. TSJ- .......... 
~ MIODLa -\ 

........... 
~ 20 ~ 
0 >--- .......... £l.4 
en ~ en "".... Cal 
u 10 ~ • ~ ~ 

~ 
+ 

", • 
........... • 0 ~ 

0 5 10 15 20 
b) CHARACTERISTIC STRESS, kPa 

+ MIDDLE • TOP 

" 55 



.. 
~ . 
~ 
~ 
~ 
g,. 

~ 
0 g,. 

rn 
rn raa 

= 

~) 

25 
,,-

// 
20 

// 

15 c.AJ&P RSSuL.TS. ~ ",. 
v 'y'/ 
/ 

10 / 
/" • 

/" • 
5 

+ 

,/' + 

~/ 

0 
~+ 

0 20 4:0 60 80 100 120 
CHARACTERISTIC STRESS, kPa 

+ MIDDLE • TOP 

6.55 Peak excess pore pressure versus characteristic 
stress for drained triaxial compression constant 
stress rate loading tests a) Normally consolidated 
clay soils with drainage to the base b) 

""""IllY con sol ida ted c 1 a y s 0 i 1 s wit hall r 0 un d 
drainage c) overconso1idated clay soils with 
drainage to the base 



b) 

25 

20 

15 

10 

5 

o 

15 

10 

5 

o 

/ 

10 

/ 
/ 

/ 
/ 

.,/ 

./ 

20 30 40 
CHARACTERISTIC STRESS. kPa 

+ MIDDLE • TOP 

/ 
/ 

~ ____ ~~!~P_~()L. T~ I ToP 

• 

+ 

50 

40 60 80 100 120 
O+/----~----~----~----~--~----~ 

o 

6.56 

20 
CHARACTERISTIC STRESS. kPa 

+ MIDDLE • TOP 

Peak excess pore pressure versus charac;eristic 
stress for drained triaxial compression constant 
strain rate loading tests with base drainage a) 
Normally consolidated clay soils b) 
overconsolidated clay soils 



.. 
~ 
r.i 
~ 
en 
en 
~ 
~ 

fa1 c:: 
0 
~ 

en 
en 
fa1 

= 
~ 
fa1 c:: 
~ 
Q 

.. 
~ 
a.i 
~ 
en 

= ~ 

fa1 c:: 
0 
~ 

en 
en 
tl 
t1 

~ 
e 
Q 

~ 

0 --------- ----2 ~ISP .... SU~-- -- -- __ -- -- ---+ 

-4 
+ 

-6 

-8 

-10 
0 500 1000 1500 2000 

CHARACTERISTIC STRESS. kPa 

0 ---+ .............. --- ----2 ........... r ---_C.1L16L~ f2.e .. u~ __ / """-- ----4 --- ........... 

----
-6 + 

-8 

-10 
0 300 400 500 600 700 800 900 1000 

CHARACTERISTIC STRESS. kPa 

6.57 Peak differential excess pore pressure versus 
characteristic stress for undrained triaxial 
compression constant stress rate loading testa 

S filter papers only. a) Normally 
lated soils b) Overconsolidated soils 



< 
Q 

~ 
""'-Q 

~ 
=::> 
~ 
~ 
::2 
< 

~ 

z 
""'-
Q 
~ 
~ 
=::> 

i 
z 

b) 

1.6 

1.5 + 

1.4 EGHJATION 4'eo 
------~--- --

1.3 

1.2 
+ 

+ 
1.1 + 

1 
.04 .05 .06 .07 .08 .09 .1 

Uav/P~1V Inp'av 

1.1 

1.09 

1.08 
+ 

1.07 
+ 

1.06 

1.05 

1.04 

1.03 EGlU"'rIO~ 4-·81 
+ 

1.02 

1.01 

1 
0 .001 .002 .003 .004 .005 .006 .007 .008 .00

1

.1 .01 
uat',J};/P3v Inpa." 

6 . 5 8 Err 0 r sin mea sur e d com pre s s ion par am t' t e r sin 
constant stress rate loading compression :ests 
compared to theoretical relationships a) Errors In 
~ b) Errors in N 



=-
" ~ 
5 • 
I 
=-

tf 
~ . 

-! 
is' 

I 
b) 

1 

.. < 
.95 

+ 

.9 
...·76 

+ 

.85 

.8~------~------~r---____ .-______ ~ 
.8 .85 

15 

10 

+ 

5 

.9 
3(I-x)/(3-)(x) 

.95 

4-'"7!» 

o ~----------~----------__ --------~----------~ o 5 10 15 20 
NEGATIVE EXCESS PORE PRESSURE. WIDDIE, kP. 

1 

6.59 Errors in measured shear strength parameters in 
drained traix ial compression tests on clay soil. 
compared to theoretical relationships a)Errora in 
M for normally consolidated soils b)Errors in peak 
deviator stress for overconsolidated soils 



1.4 

1.3 

1.2 

1.1 
~ 

.......... 1 e 
::It 

.9 

.8 

.7 

.6 
-.15 

0) 

1.4 

1.3 

1.2 

1.1 
:i 

.......... 1 e 
::It 

.9 

.8 

.7 

.6 
-.15 

b) 

6.60 

-.1 

-.1 

~_G> U AT:' 0 #IJ 4·93 

-.05 0 
I 

-- ~-- - - _. - - ~ - - ------- ---

-.05 o 
I 

.05 .1 .15 

.05 .1 .15 

Errors in measured value of M in undrained 
triaxial compression tests on clay soils compared 
tot he 0 ret i cal r e 1 a t ion s hip 5 a ) ~~ 0 r mal 1 y 
consolidated soils b)overconsolidated soils 



.4 

.35 

.3 

~ 
.25 0 = ......... 

N .2 
.J 
""=' 
~ .15 
~ 
""=' 

.1 

.05 

0 

~) 

200 

150 

~ 
0 = 100 
......... 

ftI 
c.. 
~ 

.J 50 ""=' 
~ 
""=' 

0 

-50 

b) 

6.61 

o 

BOTH24 

20 40 60 80 100 120 
TIME, HOURS 

"" 
BOTH23 

+++ ..,.. 
+ + 

10 20 30 40 
TIME, HOURS 

50 

+ 

60 70 

Loading rates in constant stress and cons:ant 
strain rate loading tests a)Axial strain rate in a 
constant stress rate loading test b)Axial strt'ss 
loading rate in a constant strain ratt' loaJing 

test 



«S 
Q.. 

300 

250 

200 

.!II 150 
-0'" 

100 

50 

+ BOTH22 

o BOTH25 

o BOTH26 

6 BOTH27 

+ 

o 1------------r----------~----------~----------~----------~----------~~-----~~-----__ 
o 

6.62 

350 

300 

250 

«I 200 
Q.. 
.!II 

-0'" 150 

100 

50 

0 
0 

6.63 

50 100 150 200 
p', kPa 

250 300 350 400 

Stress paths of undrained traxial compression 
tests on normally consolidated Bothkennar Clay 
carried out with different loading types and rates 

+ 
: 
+ 

100 200 
p', kPa 

+ BOTH23 

o BOTH24 

300 400 500 

Stress paths for undrained triaxial compression 
tests on overconsolidated Bothkennar Clay carried 
out with different loading types 



'" 0.. 
::II 

~ 
raJ 

~ 
b 
tl 
~ 
raJ 
t!J 

~ 
f-

50 

40 

30 

20 

10 

o 

100 

90 

80 

70 

60 

50 

40 

30 

20 

lO 

0 

+ 
.I' a 

a a 
a 

D 
D 

o 

6.64 

+ 
a 

+ 

8 
+ 

+ 

.5 

+ BOTH 22 

+ + + 
D + 

D 

1 

c BOTH 25 

+ + 
o 

+ + + 
o 

1.5 
NATURAL SHEAR STRAIN. r. 

+ 

2 

Tangent stiffness versus natural shear strain for 
two undrained triaxial compression tests on 
normally consolidated Bothkennar Clay carried out 
with different loading types 

+ BOTH 23 c BOTH 24 

't .. 
+ 

• D~a 
+ +Drb+rSI"~ + 

00 ao • 
+ + c c ..... o ceo 

+ ++ + o + 

0 .5 1 
NATURAL SHEAR STRAIN. r. 

1.5 2 

6.65 Tangent stiffness versus natural shear strain for 
two undrained triaxial compression tests on 
overconsolidated Bothkennar Clay carried out with 
different loading types 



• a. 
::I 

50 

30 

20 

10 

+ 
4i 

~ 
... + 

a 
-.II a 

+ .... ~ +-,. 
~ 
++++ 

a+ 
+ .. 

a a +a + 

+- BOTH 22 

~+ + r;+ + + a 

o BOTH 26 

a 
+ + + • 

+ + a 
+ 

o ~----------r---------~----------~----------o 

6.66 

50 

30 
+ 

20 

10 

o 

6.67 

.5 1 1.5 2 
NATURAL SHEAR STRAIN, % 

Tangent stiffness versus natural shear strain for 
two undrained triaxial compression constant stress 
rate loading tests on normally consolidated 
Bothkennar Clay carried out with different loading 
rates 

fa 
+a 
D+ a 

+ 
+ a 

+ 
+ 

.5 

o BOTH 25 + BOTH 27 

'b D D 
a~ + +a a +a 

1 1.5 
NATURAL SHEAR STRAIN. % 

Tangent stiffness versus natural shear strain for 
two undrained triaxial compression constant strain 
rate loading tests on normally consolidated 
Bothkennar Clay carried out with different loading 
rates 



50 

GIS 40 
::It . 
rn 
rn 

30 ~ 
tK. 
tK. 
~ rn 

~ 
20 

~ 
Co-' 

~ 10 

o 

rn 

I 30 

20 

10 

o 

+ BOTH 31 [J BOTH 32 

o 5 10 15 20 
NATURAL SHEAR STRAIN, % 

6.68 Tangent stiffness versus natural shear 

o 

+ D 

• + 

6.69 

strain for two drained triaxial compression tests 
on normally consolidated Bothkennar Clay with 
different loading types 

+ BOTH 33 [J BOTH 34 

1 2 3 4 
NATURAL SHEAR STRAIN, % 

Tangent stiffness versus natural shear 
two drained triaxial compression 
overconsolidated Bothkennar Clay with 
loading types 

5 

strain for 
tests on 
difterent 



.8 

.7 

.6 

.5 

(J 

-Co. 
.4 ............ 

-0' 

.3 

.2 

.1 

o 
o .2 

6.70 

BOTHKENNAR 

KAOUN 

.4 .6 .8 1 

p'/p'C 

Normalised stress paths of undrained triaxial 
compression tests on various clay soils 

1.2 



IVE./l.. TICAL­
A')( 15 

:tl 

E 
('3 b) 

~~~~--~~ H 
(61) 

TOP CAP 
lO mm 

f'lA.1'E.N 
IOMM 

- - ----------------.. --AI 
f • 

46 ~£LbCTE.D ~lE.MENr5 

(64) Se' ECItD NoDES 

C 
(B) 

~I 

I 

VE.J2..TI CAL 
A)(15 

I ~ r'\AfV'\ 

" 
b) 

_-is 
R..ATEN 
IOMM. 

7.1 Finite element meshes a)1/2 sample mesh b) 1/". 
sample mesh 



4 

3.5 

~ 
3 

. 
~ 

=- 2.5 
:3 
0 

~MgA PoI"-lT 

> 2 
u -b 1.5 u 
~ 
~ en 1 

.5 

0 
0 5 10 15 

Ln p' 

7.2 The Omega Point 



1.7 

1.6 

1.5 

1.4 

1.3 
+ 

1.2 

1.1 
+ 

1 + 

+ 
.9 

+ + 

.8 
.4 .6 .8 1 1.2 1.4 1.6 1.8 

M,EQUATION 7.2 

7.3 Comparison of measured M with M calculated using 
equation 7.2 

1.7 

1.6 

\ 

1.5 \ 

+ 

1.4 \ 

1.3 \ 
4-. CH ~ ~ALT'~~~rIL 

SOILS 

" 1.2 + 

" +. 
1.1 " .~ 

+ ............. 
1 " + + i+ +""--

" + 1,113~-- ___ _ 

.9 ~~ +.+---___ + 
__ 5 + 

.8 JO-------.~1------T.2------1.3--~--~~.4-------.5~----;.6 
KAPPA/LAMDA 

7.4 M versus ~/" for various soils 



.8 

.5 " + 

•• + 

.3 
::II 

.9 .2 

.1 

0 
+ 

-.1 

-.2 
0 .3 .4 .7 .8 

JIiA 

7.S LnH versus ~ for various 50118 



GIS 
~ 
~ . 
~ 
~ 
::J 
CI) 
CI) 
~ 
~ 
~ 

~ 
0 
~ 

CI) 
CI) 
~ 
u 
>< 
~ 

GIS 
~ 
~ 

~ 
::J 
CI) 
CI) 
~ 
~ 
~ 

~ 
~ 
0 
~ 

CI) 
CI) 
~ 
u 
>< 
~ 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 
0 

7.6 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 
0 

~. -. 
-............... • 

/' • 
~ __ x -. --......... /x • 

./" 
~" .~ 

/" */ 
10 20 30 40 50 60 70 80 

SQUARE ROOT OF TIME. MIN 

• TOP • MIDDLE 
ANALYSIS sknc1300-2b-2 

Typical results of a constant stress rate loading 
one-dimensional compression test analysis 

10 20 30 40 50 60 
SQUARE ROOT OF TlME. M[N 

• TOP )I( MIDDLE 
ANALYSIS sinc1300-2b-2 

70 

7.7 Typical results of a constant stress rate loading 
isotropic compression test analysis 



CIIS 

~ 

~ 
~ 
CIl 
CIl 

~ 
~ 

~ c:: 
0 
~ 

CIl 
CIl 
~ 
u 
~ 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 
0 30 40 50 60 70 

SQUARE ROOT OF TIME. MIN 
• TOP )( MIDDLE 

ANALYSIS sdnc1300-2b-2 

80 90 

7.8 Typical results of a constant stress ra:e loading 
drained triaxial compression test analysts 



Cd p... 
.!III 

raj 
~ p 
til 
til 
~ 
~ c.. 
~ 
~ 
0 
c.. 
til 
til 
~ 
t.) 

~ 

b) 

60 

50 

40 

30 

20 

10 

0 
0 

20 

15 

10 

5 

0 

-5 

10 20 30 40 
SQUARE ROOT OF TIME, MIN 

• TOP M MIDDLE 
ANALYSIS ednc1300-2b-O.l 

"..,---.-. • 
• M /M~ ./ 

P" .~ M 

50 60 

• 

"1 

-10 ~----~----~----~~----~----~----~----~----~ 
o 10 20 30 40 50 60 

SQUARE ROOT OF TIME, MI\ 
• TOP JC MIDDLE 

ANALYSIS edoc14-2b-O.05 

70 80 

7.9 Typical results of a constant strain rate loading 
drained triaxial compression test analysis 
a)Normally consolidated soil b)Overcon501Ida~~d 

soil 



• 
~ 

• 

§ 
~ 
t2 c.. 
t! 
0 c.. 
~ 
r:.Q 

t1 

i 
~ 
Q 

• 
~ 

~ 
= c.. 
t! 
0 c.. 
til 

g 

b) 

5 

0 

." x 

• 

" -5 • 

'" • . '-.. ./ 
• __ x~ 

-10 
0 5 10 15 

SQUARE ROOT OF TIME, KIN 
ANALYSIS sunc300-2a-40 

0 

"'. -1 

'" -2 • 

~ -3 
• -. "". "'-x 

-5 ". '--x --X-x-x 
-6 

0 5 10 15 20 25 30 
SQUARE ROOT OF TOlE, MIN 

suoc16-2a-l0 

7.10 Typical results of a constant stress rate loadina 
undrained triaxial compression test analysis 
a)Normal1y consolidated soil b)Overconsolidated 

soil 



• 10 
~ . 
~ rn rn 5 

= g.. 

Ci:1 
~ 
0 g.. 

0 rn rn 
Ci:1 

t1 

i -5 

~ -10 Q 
0 

~) 

• 0 
~ . 
ElIQ 

-2 ~ rn 

= -4-
g.. 

~ -8 0 g.. 

rn rn -8 ElIQ 
u 
t.1 

i 
-10 

-12 

~ -14 Q 
0 

b) 

7.11 

"" 

/x--te, 
. ." / . x 

te 

/ te 
'-. . .---. 

15 20 25 30 
SQUARE ROOT OF TIME. KIN 

eunc300-2a-O.2 

5 10 15 
SQUARE ROOT OF TIME. KIN 

euoc16a-2a-O.2 

35 40 

20 

Typical results of a constant strain rate loading 
undrained triaxial compression test analysi. 
a)Normally consolidated soil b)Overconsolidated 
soil 



III 
Co.. 
..!III 

~ 
til 
til 

~ 
Co.. 

~ 
0 
Co.. 
til 
til 
r.:J 
U 

t1 
Co.. 

fZ 

I 

80 

70 

60 
sknc1300-2b 

50 

40 a 

30 

20 

10 

0 
80 100 120 140 160 

CHARACTERISTIC STRESS, kPa 
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pressure 
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