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ERRATA

Page 80, Line 10:	 equation (3-53) should read equation (3-55)

Page 84, equation (3-64):	 C should read Cr

Page 131, Line 17:	 when should read where

Page 137, Equation (5-39) should read

& + E() (0. - t)	 E

Page 137, Equation (5-42) should read

= 2	 C (c' - C t)
C	 Cd	 c

Page 142, Line 23: equation (5-9) should read equation (5-11)

Page 149, Line 5: radical should read radial

Page 166, Equation (5-14) should read

&+E	 (o-t5) -CE=0

Page 172, Table 5-2: Values of coefficient B should read

0.915, 0.904, 0.943, 0.863

Page 182, Figure 5.9: c should read
vp

Page 183, Figure 5.10: c should read c'
VP	 VP

Page 201, Equation (6-21) should read

d =---(d	 -2d +d )
n	 At2	 n+1	 n	 n-i

Page 201, Line 2:	 d should read d
n+1	 n+i

Page 255, Line 7: overpressure should read load

Page 270, Table 8-2: Steel Young's niodulus should read

205940.7 MN/ni2
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SUMMARY

This thesis is concerned with the development of finite
element techniques for nonlinear dynamic analysis of planar
and axisymmetric reinforced concrete structures subjected to
blast loading. The main aspects of numerical modelling
process to simulate blast loads, structural geometries and
material behaviour are addressed. Major attention has been
focused on the development of appropriate history and rate
dependent constitutive models for concrete and steel where
several material nonlinearities are considered in tension
and compression as well as the strain rate effects.
Computational algorithms and modified solution procedures
have been also developed and coded, which are applied to
various structural problems under severe dynamic loading
conditions.

The basic characteristics of the explosion and blast wave
phenomena are presented along with a discussion of the
modelling of blast pressures in the free-field due to
unconfined and confined explosions. Predictions methods are
considered which allow an estimation to be made of the
associated internal or external airbiast loads on
above-ground structures.

The dynamic equilibrium equations for a blast-loaded
structure are derived using the principle of virtual work in
total Lagrangian approach. The finite element
discretization of the equations of motion in space is
adopted in accordance with isoparametric formulations. The
steel reinforcement is modelled by bar or membrane elements
embedded within the basic 8-node isoparametric concrete
element.	 Perfect bond is assumed between steel and
surrounding concrete. The integrals, which define the
element matrices and vectors are obtained numerically by use
of Gaussian quadrature. Hinton's lumping scheme has been
employed to generate the lumped mass matrix from the
consistent mass matrix for both concrete and steel.

The compressive behaviour of concrete is modelled as a
strain rate sensitive elasto-viscoplastic material. The
onset of viscoplastic behaviour and the softening regime are
defined by rate dependent yield and failure surfaces. Based
on Kupfer's results, four different functions are developed
for the representation of these surfaces in the principal
stress space. In the pre-peak range, a history and rate
dependent hardening rule is developed to control the
expansion of the loading surfaces with the increase of
viscoplastic strain. Strain hardening function is derived
to fit quasi-static experimental results and is extended for
dynamic problems by including the strain rate effects upon
the concrete compressive strength and the corresponding
strain. In the post-fracture range, the contraction of the
loading surface is controlled by a rate dependent softening
rule which is described as a function of the post-failure
viscoplastic dissipated energy and strain rate until
crushing occurs, according to proposed strain controlled
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crushing conditions. The viscoplastic strain rate is
calculated by a rate dependent associated flow rule in which
the fluidity parameter is derived as a function of the
effective strain rate. In tension, concrete is modelled as
a linear elastic strain softening material where crack
initiation is controlled by a rate dependent strain
criterion. The smeared crack approach is employed to
simulate cracks, post-cracking behaviour is governed by an
objective nonlinear softening rule based on concrete
fracture energy and crack characteristic length. 	 Shear
transfer across the cracks is considered by a suitable
simple model.	 The strain rate-induced anisotropy is
introduced by employing different rate sensitivity functions
for tension and compression. Steel is modelled as a
uniaxial strain rate dependent elasto-viscoplastic material
in tension and compression in which the yield stress and the
fluidity parameter are strain rate sensitive. The
identification of model parameters of concrete and steel are
performed using some standard experimental results.

A modified explicit central difference scheme based on the
Newmark- method is proposed to advance the nodal
displacements, velocities and accelerations in time.
Numerical stability has been controlled using appropriate
time increments and energy balance check. The details of an
explicit Euler scheme for time integration of time rate
constitutive equations of concrete and steel are described
in which a semi-empirical a priori stability criterion for
the definition of time step length is proposed.'

To implement the proposed models and schemes, a versatile
and comprehensive computer program, FEABRS, has been
developed for the finite element linear and nonlinear
dynamic analysis of two-dimensional reinforced concrete
structures. Using the program, several reinforced concrete
structures are analysed and reported in detail, with the
results obtained being compared with those from other
numerical and experimental sources. A good agreement is
obtained and it is shown that many aspects of the structural
behaviour can be well presented by the proposed analysis.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL BACKGROUND

The assessment of the effects of explosives on structural

systems was apparently not studied systematically until

World War I. Prior to that the information which did exist

was through some field observations and little seems to have

been published. With the increased need to design

structures to resist damage to explosive attack during the

1914-1918 War, the information was initially, treated as

highly sensitive and many researchers were obliged to keep

their results classified. The first published work was that

of Hopkinson [1) in which he outlined his theory for using

scale models with the statement:

"If two structural systems, identically similar except in

size, be subjected to blast loading from two explosive

charges whose weights are in proportion to the cube of the

ratio of the linear dimensions of the two structures then

the behaviour of the two structural systems will be

identically similar with distortions scaling as the ratio of

the linear dimensions".

Little further information became readily available until

that released after World War II. The few published papers

[2, 3] were based on research which had been undertaken

during the war, on the behaviour of shelter systems under

bombing attacks and the development of the first

non-spherical charges for attacking hardened structural

systems. The explosions were highly localized because of

the difficulties related to the delivery of large quantities

of explosive.

The advent of nuclear weapons changed the situation

completely. Single aeroplanes, each with one nuclear

bonib, devastated two major Japanese cities (1945) in just
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two raids.	 As a result, the criteria on which simple

shelter structures could be designed, underwent major

changes [4, 5]. Since 1945, the number of reported

experimental and analytical studies of the effects of blast

loading on the behaviour of structures has markedly

increased. The objective has been, first, to study the

nature of the blast wave and the factors affecting its

behaviour in free air and as it encounters a structure.

Secondly, the aim has been to examine and develop means of

predicting the response of a structure to blast

overpressures. Other problems, associated with blast, have

also been the focus of concern because of the perceived

hazards.

Blast loading is a type of extraordinary dynamic load to

which reinforced concrete structures may be subjected in

addition to normal loads. Inspite of the fact that the most

common blast loading used by most investigators is that

resulting from a nuclear weapon, the general term 'blast'

refers to both fluctuations of air pressure due to man-made

explosions and to vibrations induced in the ground. The

former, obviously, includes conventional explosions, which

yield blast waves comparable to the atomic burst in the

nature of explosion, but not in magnitude. A sonic boom may

also be considered as a type of blast load. The airblast

loads may act internally or externally depending on the

position of the explosion source, relative to the structure.

Internally, blast loading may result from the detonation of

high explosives, usually placed deliberately, or from

detonation of chemical ammunitions, or from the deflagration

of low explosives, usually accumulations of flammable

gas/air mixtures. Externally, blast excitations may result

from one or other of these causes but there is the added

possibility of loads acting over the entire structure as a

result of distant atomic explosions.
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1.2 STATEMENT OF THE PROBLEM

The uncertainty involved in the design of reinforced

concrete structures, as a direct result of the nature of the

expected blast force system, may require that the structure

be designed to provide its full resistance if necessary.

Also in some cases, the low probability of incidence of

blast loads requires design of the structural elements such

that some level of irreversible structural deformation and

material damage is acceptable. Any structural member

failing to perform as expected under the given loading

conditions may reduce the probability of survival of the

entire structure. However, the major studies in

investigating the behaviour of blast loaded structures in

the past have been focused on simplified methods of analysis

in which many assumptions were made. The blast forces have

been traditionally represented by equivalent static forces,

so that the design and analysis of such structures are based

on simple equilibrium conditions and empirical formulae

according to design codes. Stress analysis of the structure

is based on linear elastic theory and the design of

reinforced concrete components according to the limit state

theory. In most studies, dynamic analysis of the structural

component is represented by equivalent single degree of

freedom systems with elastic or elasto-plastic material

properties. Although this approach has generally resulted

in safe designs, it contains inherent inconsistencies and
does not reflect the complete structural behaviour. The

stresses and deformations resulting from simplified approach

are often significantly different from those which may occur

under blast loading. Furthermore, the damage mechanisms

caused by intense dynamic stresses such as crushing,

cracking, shear failure, tensile fracture and yield of

steel, as well as the strain rate effect on the behaviour of

concrete and steel, are either ignored or treated in an

approximate manner. In conclusion, this approach may be

only appropriate for preliminary analysis of reinforced

concrete structure under blast loading conditions.
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The emergence of numerical methods has made possible the

solution of complex engineering problems. One of these

numerical techniques now widely used is the finite element

method. Originally, this method was developed as an

extension of earlier established analysis procedures, and

was intended for application to the design of advanced

aircraft structures. Since early 1960's the method has been

developed as a very efficient and powerful tool for the

analysis of a wide range of structural and field problems.

The first attempt to apply the finite element method to a

reinforced concrete structure was reported (6] in 1967.

Since then, reinforced concrete structures have been

successively analysed as plane stress, plane strain, plate

bending,	 shell,	 axisymmetric	 solid,	 beam,	 or

three-dimensional solid finite element models. The

geometric nonlinearities can be modelled with the well-known

kinematic formulations of large displacement analyses. The

various material nonlinearities of reinforced concrete

structures namely, progressive cracking of concrete in

tension, inelastic response in compression, crushing,

tension stiffening, bond slip, yield of reinforcing steel,

dowel action, aggregate interlock and unloading and

reloading, can all now be incorporated more realistically

into the analysis. However, much of the research work

reported to date has been limited to nonlinear static

problems and relatively few studies have addressed the

nonlinear dynamic transient situations. Furthermore, the
limitations of the existing dynamic material models for

concrete and steel indicate the need for the development of

more comprehensive and reliable models for the nonlinear

response of these materials under blast loading environment.

This is largely due to the complex behaviour of reinforced

concrete under dynamic loading, since strain rate effects in

tension and compression, effects of crack opening and
closure, postcracking behaviour and history dependence in

the pre-failure and post-failure regimes play an important

role in the prediction of inelastic response of concrete
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structures. It has been recognised that the incompleteness

of material models for reinforced concrete is the biggest

limiting factor to the capability of a finite element

analysis. Additionally, considering the available nonlinear

dynamic analysis procedures, the accurate analysis of a

nonlinear finite element model can present some major

difficulties. First, the cost of analysis is usually high,

but a more serious factor is that considerable experience

and judgement by the analyst may be required to assure a

stable and accurate solution. Therefore, further progress

in the understanding and prediction of structural behaviour

necessitates the development of a numerical material model

in conjunction with solution algorithms with increased

accuracy and efficiency, for the nonlinear dynamic analysis

of reinforced concrete structures under severe dynamic

loading such as blasts.

1.3 SCOPE AND OBJECTIVES OF THE PRESENT RESEARCH

The aim of this thesis is to develop a numerical , technique

for the nonlinear analysis of plane and axisyminetric

reinforced concrete structures subjected to blast loading.

To describe the behaviour of the physical structural system,

in the numerical model, there are a number of idealizations

to be made; the geometry and environment of structure, the

material properties and applied loading. Various

characteristics of each idealized component are identified

according to their physical properties using the laws of

mechanics. As far as the idealization of geometry is

concerned, the finite element is clearly the most versatile

and powerful method available at the present time. The

determination of the loading usually receives only marginal

attention and in most cases it is assumed that the loading

is given. Also, most of the material models adopted at

present in engineering analyses still have a very limited

range of applicability, especially under severe dynamic

loading conditions.
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In the present research, attention was mainly paid to the

development of appropriate history and rate dependent

constitutive models for concrete and steel under high strain

rates.	 However, many problems were encountered in the

transient dynamic analysis. In the search for a better

understanding of blast-loaded reinforced concrete structures

and as a result of the limitations of existing finite

element software, a new, efficient computer program has been

developed for the nonlinear dynamic analysis, which

incorporates the proposed material models and computational

algorithms for the concrete cracking process and loading

conditions. In developing the computer program,

consideration has been given to the discretization in time

and solution techniques of the dynamic equilibrium equations

and to the time rate dependent inelastic straining

equations of concrete and steel, together with aspects of

numerical stability.

Thus, the principal aims of the thesis were extensive and

can be summarized as follows:

1. To review the several material modelling approaches

found in the literature for simulating the behaviour of

concrete and steel with discussion of the limitations of the

existing models under high rates of loading. This

literature review also highlights the characteristics of

the observed experimental behaviour that must be considered

in the development of sound constitutive equations for

concrete and steel.

2. To describe the airbiast phenomena and to summarize

factual information on blast loads so that structures can be

designed to resist the effects of confined or unconfined

explosions due to conventional or nuclear sources. The

dynamic loads, incident and reflected overpressure, dynamic

pressure and ground shock, are presented in simple form

suitable for computer implementation.

3. To present the finite element formulations for the

spatial discretization of the nonlinear dynamic equilibrium
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equations in the search for the most effective procedure.

The equations of motion of a body subjected to airbiast

loading and ground excitation are derived in line with the

total Lagrangian approach. The kinetic equations of

concrete and steel are taken in accordance with

isoparametric formulation and Gaussian quadrature rules.

4. To develop rational and consistent material

constitutive models for the nonlinear analysis of

two-dimensional reinforced concrete structures under blast

loading conditions. For concrete, the model should consider

strain rate effects, stress and strain history dependency,

cracking, crushing, biaxial compressive failure of concrete

and the post-failure residual strength.

5. To establish a sound computational strategy for

concrete cracking process under dynamic loads which can take

into account the effect of strain rate on the crack

initiation limit as well as strain softening and shear

transfer effects on the post-cracking behaviour.

6. To examine the time discretization procedures and

integration schemes of the equations of motion as well as

the time rate dependent constitutive equations of concrete

and steel. Particular attention is given to a refined

explicit central difference time integrator technique for

the semi-discretized dynamic equilibrium equations. A

simple a priori stability criterion based on theoretical and

experimental considerations is derived for the definition of

time increment for the Euler explicit scheme of the

viscoplastic strain rate governing equation.

7. To develop a versatile and comprehensive computer

program for the finite element dynamic analysis which

embodies the proposed numerical model and the solution

schemes above and possesses sufficient flexibility to add

new options to promote further research. The program is

restricted to plane and axisymmnetric problems at present.

8. To use the computer program developed to study the

response characteristics of reinforced concrete structures
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under short duration dynamic loads, with special emphasis on

blast loads. The validation of the numerical model and

program are established by comparing results with those of

other numerical or experimental studies.

9. To perform a parametric study in order to examine the

effects of strain rate sensitivity and pre and post-fracture

concrete modelling parameters on the overall dynamic

response of reinforced concrete structures.

1.4 LAYOUT OF THE THESIS

In Chapter 2 the constitutive material modelling approaches

for concrete and steel are reviewed. A brief of the

observed experimental behaviour of these materials under

static and dynamic loading conditions is given. Several

modelling techniques are found in the literature for

simulating the nonlinear behaviour of uncracked concrete,

concrete cracking and reinforcing steel are investigated.

The suitability of such approaches to model the material

response under high rates of loading is described.

Conclusions are drawn for material modelling of blast-loaded

reinforced concrete.

Chapter 3 is concerned with the numerical modelling of blast

loads on structures as the first component of the

mathematical model. The basic characteristics of the

explosion and blast wave phenomena are presented in this

chapter along with a discussion of the modelling of blast

pressures in the free-field due to unconfined and confined

explosions. The blast effects considered are those

generated as a result of nuclear weapons, conventional high

explosives, unconfined vapour cloud explosions and gas and

dust deflagrations. Prediction methods are considered which

allow an analyst to estimate the associated internal or

external airbiast on the structure. In addition, the basis

of numerical modelling of explosion-induced ground shocks is

given.	 In the final part of this chapter, the main

considerations in the modelling of blast loads for
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nonlinear dynamic analysis of aboveground reinforced

concrete structures are described.

Chapter 4 is devoted to another aspect of mathematical

modelling, the spatial discretization. First, the basic

dynamic equilibrium equations for a blast-loaded structure

are derived using the principle of virtual work in total

Langrangian approach. The finite element discretization of

the equations of motion in space is adopted in accordance

with isoparametric formulations. The chapter also discusses

the formulation and Gaussian quadrature rules of the plane

8-noded isoparametric element, the modelling of mass and

damping matrices, and the numerical simulation of steel

reinforcement as embedded members within the basic concrete

elements. The significance of some finite element

procedural factors in the calculation of the response of

concrete structures is briefly discussed.

Chapter 5 is concerned with the development of material

constitutive models of reinforced concrete behaviour under

blast loading conditions. A new rate and history dependent

elasto-viscoplastic model is proposed for the compressive

behaviour of concrete. The onset of viscoplastic response

and failure are defined by two rate sensitive limiting

surfaces where four different functions are developed on the

basis of standard biaxial experimental results for the

representation of those surfaces in the principal stress

space. Rate and history dependent rules for conrete

hardening and softening are developed to control the

viscoplastic response in the pre-peak and post-fracture

ranges. The viscoplastic strain rate is calculated by

associative flow rule in which the fluidity parameter is

strain rate dependent. In tension, concrete is modelled as

a linear elastic, strain softening material where crack

initiation is controlled by a proposed rate dependent

cracking criterion. The chapter also discusses the smeared

crack approach to simulate concrete cracking, nonlinear
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fracture energy-based softening rule as well as simple shear

transfer model to account for the post-cracking behaviour.

Steel is modelled as a uniaxial rate dependent

elasto-viscoplastic material in which the yield and the

fluidity parameter are rate sensitive. The material

parameters for concrete and steel are identified using

appropriate testing data.

Chapter 6 focuses on the time discretization and the

solution techniques of the dynamic equilibrium equations as

well as governing equations for inelastic straining. After

reviewing the existing methods of time integration of

equations of motion, a modified explicit central difference

integration technique is presented. Then, the details of

explicit Euler scheme for time integration of viscoplastic

strain rate equations, is described in which a

semi-empirical a priori stability criterion for the

definition of time step length is adopted. The numerical

stability regarding the selection of time increment for the

time integration of equations of motion is also considered.

Some practical considerations relating to explicit

integration techniques are given at the end of the chapter.

Chapter 7 deals with the basic structure and analysis

capabilities of the computer program, FEABRS, developed

within this work. A brief description of the computational

algorithms is given, concentrating mainly on the

implementation of the material models and solution

techniques proposed in the previous chapters.

In Chapter 8, a set of numerical analyses of impulsively and

blast-loaded reinforced concrete structures is performed

using the numerical models developed in Chapter 5. Three

examples are reported in detail and the results obtained are

compared with those from other numerical and experimental

sources. In order to investigate the influence of the basic

material modelling factors, a parametric study is also
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presented followed by a discussion of the results and

concluding remarks about the model performance.

In chapter 9, conclusions to be drawn from the studies in

this thesis are discussed with some suggestions for future

research in this area.
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CHAPTER 2

REVIEW OF CONSTITUTIVE THEORIES FOR CONCRETE AND REINFORCING

STEEL

2.1 INTRODUCTION

Reinforced concrete is a composite material consisting of

steel reinforcement and concrete, these two materials having

vastly different properties. The mechanical properties of

reinforcing steel are generally known within good limits.

However, the mechanical properties of concrete are more

difficult to define depending upon the particular conditions

of mixing, curing, rate of loading and environmental

influences. The knowledge of its uniaxial as well as

biaxial or triaxial stress-strain behaviour is frequently

required. Extensive studies have been undertaken to

characterize the response and ultimate strength of plain

concrete under multiaxial stress states. A large variety of

constitutive models have been proposed to reproduce

numerically the observed behaviour. All these models have

certain inherent advantages and disadvantages which depend

to a large extent on their particular applications.

In modelling reinforced concrete structures not only the

constitutive relationships of steel and concrete must be

defined, but also the bond slip relation between concrete

and steel has to be known. However, perfect bond is usually

assumed in global analysis in order to reduce the number of

degrees of freedom and to avoid the difficulties in

assigning appropriate bond properties which are not yet

comprehensively available. Following this approach, the

complex bond slip mechanism is not reviewed here and is

circumvented by assuming perfect bond.

The purpose of the present chapter is to present mechanical

properties of concrete and steel under static and dynamic

loading conditions, and to review the previous constitutive

theories to model numerically the material behaviour of
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concrete and steel.

The basic mechanical properties of concrete on the

microscopic and macroscopic levels are given in section 2.2.

Then, the previous constitutive models of uncracked concrete

are summarized in section 2.3, followed by review of

modelling of concrete cracking in section 2.4. In section

2.5, the mechanical characteristics and the previous

uniaxial constitutive models of steel are briefly described.

The basic considerations to develop material models for

concrete and steel under blast loading are included in the

final section.

2.2 OBSERVED EXPERIMENTAL CONCRETE BEHAVIOUR

Despite the widespread use of concrete as a structural

material and despite the large number of experimental

studies that have been carried out over a considerable

period of time, our knowledge about its physical and

mechanical properties is still rather deficient, especially

under dynamic loading. This is not surprising in view of

the heterogeneous structure of concrete as well as the

difficulties of experimental testing. Most of the

experimental investigations are restricted to short term

monotonic quasi-static loading conditions with strain rate

of 106 sec . Although dynamic loading conditions have a

significant effect on the response of concrete to stress and

strain, the influence of strain rate or loading rate upon

the uniaxial compressive and tensile behaviour of concrete

has been studied by a few researchers [7-20].

Extensive reviews about the current knowledge of the

phenomenological behaviour of concrete are given in [21-24].

The following discussion is confined mainly to the

mechanical properties of concrete under uniaxial, biaxial

and triaxial states of stress associated with static and

dynamic loading in order to provide the necessary background

for later description of the constitutive models. However,
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before describing these macroscopic aspects of observed

concrete behaviour, the microstructure of concrete is

briefly summarized to highlight the role of concrete

inicrocracking.

2.2.1 STRUCTURE OF CONCRETE AND MICROCRACKING

Reviews on the inicrostructure of concrete have been given in

[24-28]. The following is a brief summary. Concrete is a

composite material mainly consisting of different sized

aggregate particles which are embedded in a cement paste

matrix. This heterogeneous structure can be considered as a

two phase system composed of coarse aggregate and mortar.

On a second dimensional level, the mortar matrix can be

considered as a two phase system consisting of fine

aggregates and cement paste. On a third dimensional level,

the cement paste can be seen as a two phase system which is

made up of unhydrated cement particles embedded in a matrix

of hydrated cement products known as cement gel. It has

long been recognized that a large number of micro-cracks

exist in concrete at all the dimensional levels. Several

techniques such as x-ray and ultrasonic pulse have been

employed to study the formation and propagation of

micro-cracks. An extensive qualitative review can be found

in [24, 28]. According to the experimental observations

(25], two types of micro-cracks exist in the concrete

system:

1. Bond or interfacial cracks observed at the

aggregate-paste interface, and

2. Mortar or paste cracks observed within the mortar or

paste matrix.

Interfacial cracks exist in concrete even before any load is

applied, and are caused by the settlement of aggregate and

due to shrinkage [29].

Relatively recent works (24-26] have indicated how the

micro-cracks influence the mechanical behaviour of concrete
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subjected to short term loads. It has been demonstrated

that under loading the deviation from the elastic behaviour

is caused by micro-cracking at the aggregate-paste

interface, and also that the disintegration and ultimate

failure of plain concrete are caused by the propagation of

cracks through the mortar which are mainly associated with

deviatoric stress components. Some micro-cracks may be also

developed during loading because of the differences in

stiffness between aggregates and mortar. These differences

can result in the strains in the interface zone several

times larger than the average strain (21]. Experimental

studies by Hsu et al (30] show that the measured

aggregate-mortar tensile bond strength is about 30% to 70%

of the tensile strength of mortar. Thus, the primary reason

for the low tension strength of concrete is the low strength

of the mortar-aggregate interface.

The existing micro-cracks grow under rapidly increasing

stress; between some of them a process of bridging takes

place and continuous fracture planes are formed. However,

it was observed that under impulsive loading conditions

[12, 28, 31), much energy is introduced into the specimen in

a short time and fracture planes are forced to develop along

shorter paths of higher resistance through stronger matrix

zones and some aggregate particles. Also, crack branching

can occur due to interactions between the rapidly moving

crack front and the aggregate particles or other

inhoinogenieties. These two mechanisms of fracture are

considered (31] to be the explanation for higher strength

and larger corresponding strains under dynamic loading

conditions.

Thus it is possible to explain the macroscopic behaviour of

concrete, observed at an engineering level, by the

progressive process of microscopic initiation,

multiplication and propagation of cracks from before loading

up to failure.	 However, as yet, the theory of

micro-cracking can only describe the behaviour in
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qualitative terms and give general guidelines towards the

type of laws that are applicable.

2.2.2 MECHANICAL PROPERTIES UNDER SHORT TERM STATIC LOADING

CONDITIONS

(1)	 Uniaxial loading

A typical stress-strain curve for plain concrete subjected

to uniaxial compression is presented in Figure 2-1. From

the origin to a discontinuity point A at about 30% of

ultimate compressive stress o , concrete can be idealized

as a linear elastic material (21] and the increase in the

number of or size of existing cracks is negligible. Above

point A, the nonlinearity commences as a result of the

propagation of micro-cracks at interfaces of mortar and

aggregate. Up to 75% of the ultimate stress, the crack

propagation is stable, because the available internal energy

is approximately balanced by the required crack release

energy. Unloading exhibits a permanent deformation, even

though most of the deformation is still recoverable. Since

a finite time is required for the cracks to propagate, the

stress-strain curve is dependent on the strain rate (Figure

2-1).

For compressive stress above 0.75 o, i.e. point B on the

curve, cracks are initiated in the mortar, mostly bridging

between existing interfacial cracks, causing the

stress-strain curve to bend sharply towards the horizontal

until it approaches the peak point at C. Since the

available internal energy is now larger than the required

crack release energy, the crack propagation becomes

unstable. In some references (32] point B is called the

onset of unstable fracture. Meanwhile, the concrete

Poisson's ratio increases, resulting in a volumetric

expansion (32, 33]. Since a finite time is required for the

bridging cracks to be formed, the magnitude of the ultimate

stress and the shape of post-failure stress-strain curve

will be strongly affected by the strain rate.

- 16 -



A softening post-failure range follows the ultimate stress

point C and finally ends with a complete crushing at point

D. The use of continuum mechanics during the softening

stage can only be an approximation (34).

The typical stress-strain curve in uniaxial tension is

illustrated in Figure 2-2 which shows some similarities with

the compression curve. The curve is now linear almost up to

the peak stress.	 Concrete also exhibits considerable

post-failure residual strength. The ratio of tensile

strength o" to compressive strength is usually about 0.1

[35, 36] although the Young's modulus is almost the same in

both loading conditions.

The initial modulus of elasticity i generally taken as a

function of the compressive strength [21]. Poisson's ratio

ranges from 0.15 to 0.22 with 0.18 being a representative

value.

(ii) Biaxial loading

Extensive experimental investigations have been undertaken

regarding the strength, deformation and cracking behaviour

of concrete under biaxial stress state [37-39]. However,

considerable scatter of results has been observed and

collaborative studies have been undertaken to identify the

principal factors influencing this variation (40]. For

example, reported strength values for the equal biaxial

compression (ob) are found to vary from 80% to 350% of
uniaxial compressive strength (27]. This can be explained

by many factors such as shapes of specimen, loading

conditions, types of concrete etc. Apart from the inherent

variability of concrete, most of these differences are

attributed to the difficulties in producing stress fields

that are independent of machine and testing effects [27).

Figure 2-3 illustrates typical stress-strain curves of

concrete under biaxial compression and tension respectively

(37]. Qualitatively, the mechanical behaviour of concrete
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in biaxial states is similar to the uniaxial behaviour. As

a consequence of micro-crack confinement, the ultimate

strength of concrete under biaxial compression is larger

than that under unixial compression. A maximum strength of

approximately 125% is achieved at a stress ratio of O1/O2
0.5 and is reduced to 116% at an equal biaxial compression

state (37-39]. Under biaxial compression-tension, the

compressive strength decreases almost linearly as the

applied tensile stress is increased (Figure 2-4).	 The

strength under biaxial tension is almost the same as under

uniaxial tension (37]. For all stress combinations the

failure of concrete occurs by tensile splitting with the

fractured surface orthogonal to the direction of the maximum

stress or strain.

The ductility of concrete under biaxial stresses also

differs depending on whether the stress states are

compressive or tensile as shown in Figure 2-3. The maximum

compressive strain under uniaxial and biaxial compression is

about 2-3x10 3 rn/rn. The maximum tensile strains for biaxial

compression range between 2x10 3 rn/rn to 4x10 3 rn/rn, which is

greater than under uniaxial compression. In biaxial tension

the maximum principal tensile strain is lower than 10 rn/rn

and in the confined states of stress both the maximum

principal compressive and tensile strains decrease as the

tensile stress increases.

The state of stress in many practical structures is a

biaxial one. Therefore, biaxial strength envelope, directly

based on experimental results, have been frequently used.

Figure 2-4 represents a biaxial envelope proposed by Kupfer

et al (37] as well as the corresponding experimental

results. These results have been used by many researchers

as a basis for developing new failure criteria for concrete

under multiaxial state of stress. The various failure

criteria for biaxial compression available in literature

have been compared with selected experimental data in

(41, 42]. The conclusions drawn from these studies are as
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follows:

1. Classical failure theories such as von Mises,

Mohr-Coulomb and Drucker-Prager, are crude approximations of

the concrete failure envelope and they can represent only

limited regions of total stress space.

2. The biaxial degenerations of some criteria proposed

for triaxial compression yield unexpected biaxial failure

envelopes which deviate from the experimental observations.

To simulate the biaxial failure envelope of concrete, some

criteria have been proposed in [42, 43] as functions of the

first two stress invariants (Ii, J2). The correlation

between these criteria and experimental data were found to

be quite good.

(iii) Triaxial loading

Several studies on the behaviour of concrete under triaxial

stress state have been reported [32, 44-47]. However, test

results are less complete and less reliable than uniaxial or

even biaxial data. A large dispersion of experimental

results has also been observed. Two principal factors are

responsible for this scatter (40]. Variation of the

materials tested, and variation in the test methods.

Figure 2-5(a) shows typical stress-strain curves from

tests by Richard et al [40] which were conducted at a low or

moderate confining stress state. Some main conclusions are:

1. The axial strength increases with increasing confining

pressure.

2. The high strength is always accompanied by a large

deformation. Axial strains over 0.06 were registered

at ultimate load (the uniaxial values are usually around

0.002).

3. Inelastic compaction is prominent at high volumetric

compression as shown in Figure 2-5(b) (46].
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4. The unloading at the beginning is parallel to the

initial tangent, later declining from the tangent as a

result of the stiffness degradation of concrete under high

hydrostatic compression.

Experimental studies [45) have indicated that the

three-dimensional strength envelope for concrete can be

defined in terms of the three stress invariants. The

characteristics of concrete failure surface under triaxial

stress have been studied in [21, 24, 28, 45). Several

failure theories have been proposed to capture these

features. The most commonly used failure criteria are the

five parameter model of William-Warnke [48] and the four

parameter criterion proposed in [49].

2.2.3 MECHANICAL PROPERTIES UNDER DYNAMIC LOADING CONDITIONS

It has been mentioned in Section 2.2.1 that the material

behaviour of concrete under dynamic loading conditions can

be significantly different from that under static

conditions. Although numerous experimental works for plain

concrete under dynamic loading have been reported, most

available data are obtained from uniaxial tests. Extensive

reviews of such tests have been given in [7, 8].

The results of some tensile and compressive tests carried

out at higher strain rates than the conventional static

tests, are summarized in Table 2-1. These experimental

studies have covered a wide range of strength, moisture

content, age at test and testing techniques. It can be

observed from the results in Table 2-1 that increasing the

stress or strain rate in tension or compression results in

higher concrete strength. The tensile response of concrete

is more strain rate sensitive than its compressive strength.

The inequality of rate effects in tension and compression

has been termed as strain rate induced anisotropy [50].

Some studies [16] have reported that concrete with a lower

static strength exhibits a higher strain rate sensitivity
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than concrete with a higher static strength. Another

conclusion from these tests is that the strain rate has

little or no effect (12, 50] on the initial tangent modulus,

but results in an increase in the secant modulus.

Generally, it has been also observed that the nonlinearity

of the stress strain curves decrease with the increase of

strain rate. In tension [12, 31] these curves are almost

linear and show only curvature in the final phase of

loading. As the nonlinearity of the constitutive diagrams

has been associated with micro-cracking, it can be surmised

that increase in the strain rate results in a decrease in

the amount of micro-cracking. In some tests (19] when the

strain rate was increased, the value of the concrete strain

at maximum compressive stress increased while in some other

tests (18) it decreased. On the basis of the least squares

curve fitting to the experimental data, it has been found

[20] that increasing the strain rate from the static value

of 10 sec to values as high as 10_i sec results in

reduced values of strain at maximum compressive stress. At

strain rates higher than 10 seci, however, the

compressive peak strain becomes larger than the static

value. As contrasted with dynamic compressive tests, the

influence of the strain rate upon the tensile cracking

strain of concrete has been a lesser subject of research.

However, recent experimental studies [12, 31) have indicated

that increasing the strain rate results in increased values

of the cracking strain in a similar fashion to the observed

rate sensitivity of concrete tensile strength.

Biaxial or triaxial testing under dynamic loading is

extremely difficult and only Nelissen (51] has conducted

biaxial tests at different states of straining. The tests

were performed at strain rates of 3.3x10 3 to 1.7x10'

sec. The influence of strain rate has been found to be

different for different stress ratios.

2.3 A REVIEW OF CONSTITUTIVE MODELS OF UNCRACKED CONCRETE
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Research test specimens often have dimensions which require

microscopic modelling to idealize concrete components as

separate units. However, concrete structures have such

dimensions that a constitutive modelling on the macroscopic

level is necessary. The present research is concerned with

macroscopic numerical models. During the last two decades,

several approaches, based on experimental data have been

developed for simulating the complicated behaviour of

concrete under various stress states and loading conditions.

A brief review of these models, which are only based on

continuum-mechanics approach, is given below. An extensive

review on this topic can be found elsewhere (21, 28].

2.3.1 ELASTICITY BASED MODELS

Early constitutive models were based on linear elasticity to

represent concrete behaviour where cracking is the most

important factor of nonlinearity [6, 52]. The

stress-strain relationship is linear almost up to peak load.

However, the linear elasticity based model proved , to be a

good approximation of the concrete behaviour only in the

tensile loading environment.

According to the Hookean formulation, the nonlinear

elasticity based models can be grouped into two types:

finite material characterization in the form of secant

formulation (termed as hyperelastic model) and incremental

model in the form of tangential stress-strain relation (or

hypoelastic model).

(i)	 Hyperelastic model

This is based on the assumption of the existence of a strain

energy density function, W (c), such that (28)

ow £	 (2-1)
Oc

The term S is the stiffness tensor, which is dependent on

the current strain. Based on a curve fitting of the
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experimental data, the shape of the function W can be

determined. However, this class of formulation is not

popular for concrete modelling since the material model

constants do not usually have physical interpretations.

From the results of an extensive biaxial stress testing

series, Kupfer et al [53] developed a unique relationship

between octahedral stress and strain, and the secant bulk

and shear moduli.

The behaviour of the hyperelastic model is reversible and

path independent. It can model many of the concrete

characteristics such as nonlinearity, dilatation and strain

or stress induced anisotropy, but is incapable of describing

history dependence, strain softening and rate effects.

(ii) Hvoe1astic model

The material behaviour is described in terms of the stress

and strain increments as

= S(a) dc	 (2-2)

where the variable tangent stiffness, S, is a function of

the current state of stress (or strain). This constitutive

model is history dependent and satisfies the reversibility

condition only in the infinitesimal sense. In the form of

(2-2) the model exhibits stress-induced anisotropy and the

tangent stiffnesses are identical in loading and unloading.

For concrete, Coon et al [54] obtained reasonable agreement

with uniaxial and biaxial test results by using S as a

linear function of a.

Through the decomposition of the stress and strain into

hydrostatic and a deviatoric components, nonlinear elastic

models for biaxial [55] and triaxial stress states [56] have

been simulated. Based on experimental data, consistent

octahedral stress-strain relationships have been established

for all states of stress. From these relationships, secant

and tangent bulk (K, K) and shear (G, G) moduli can be
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derived. Following a similar concept, Ottosen [57] proposed

a more general form of triaxial coristitutive relation based

on variable secant moduli where a sophisticated failure

surface [49] is used as a limiting surface. Generally, the

variable moduli models provide a good fit to the available

test data but the accuracy is increasingly lost as failure

or softening regime approaches. Another approach to

constructing hypoelastic models is based on an orthotropic

assumption [58]. These models are based on the equivalent

uniaxial stress-strain relation so the elasticity moduli E1

and E are taken as functions of the state of stress and

strain in each of the principal stress directions. These

models were extended by Darwin [54] and Elwi [60] to

represent concrete under cyclic load. An objection has been

made (61] to orthotropic models since the requirement that

the principal stress axes coincide with principal strain

axes does not hold for concrete under general loading.

The effects of strain rate have been incorporated by Pal

[62] in an isotropic hypoelastic model which assumed that

the expansion of the failure surfaces depends on the strain

rate effect. In general, nonlinear elasticity models are

simple to use. However, their applicability is restricted

to stress conditions which lie inside the range covered by

the material testing data used to determine the material

functions.

2.3.2 VISCOELASTICITY BASED MODELS

In the classical form of linear viscoelasticity, the stress

at a given instant depends not only on the current strain

but also on the previous strain history. Such a

constitutive law can be expressed using the hereditary

integral as [28]

a (t) =	
+ 

JR (t, 1 ) -	 c (t ) dt'	 (23)

where R denotes the relaxation tensor and a° is the initial
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stress. As the evaluation of this integral requires the

record of the previous strain history, it is customary to

approximate the relaxation tensor by an exponential series

(Dirichiet Series) (50) of the form

R (t, t") = V R (t') e_(t_t'ti	 (2-4)L
1=1

where are discrete relaxation times and N is the nwnber

of elements in series, Combining equations (2-3) and (2-4)

one can obtain

u (t) = 0 +
	 (t)	 (2-5)

where can be obtained from

1 (2-6)(t) = R 1 (t)	 (t) - --

These equations correspond to a generalized Maxwell chain

model with age dependent stiffness R 1 and viscosities t1 R1.

In contrast to the heredity integral, only current strain

rates and stresses are needed if a forward Euler difference

formula is utilized to obtain the stresses [28].

Pozzo (63] has reported the results on a study conducted on

the applicability of this theory for predicting the dynamic

behaviour of concrete using a 3-parameter model (2 elastic

element and a viscous Newtonian damper). However, he

pointed out that the dissipative mechanism of concrete is

not solely of a viscoelastic nature but was prevalently

solid-friction type.

Bazant et al (64] developed a generalization of the

nonlinear triaxial relations proposed for concrete

compressive behaviour (65] to include strain rate effects.

Recently, similar concept has been adopted by Oh (66] for

concrete tensile behaviour. In these models, the strain

rate effect upon the peak stress and the sharpness of the
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peak stress were accounted for by introducing functions for
their strain rate dependence. Considering concrete to be

linearly viscoelastic they also obtained an expression for

the variation of the initial modulus with strain rate.

However, most of the results presented in the literature

indicate that the initial tangent modulus is strain rate

insensitive (12, 50].

The main drawback of linear viscoelasticity is that a

rheology based model with a broad relaxation spectrum

demands excessive programming, computer storage and material

parameters [28, 50].

2.3.3 PLASTICITY BASED MODELS

The classical theory of plasticity is well founded on a

physical and mathematical basis with a long history of

successful applications involving metals. For compressive

loading, concrete initially exhibits almost linear behaviour

up to the elastic limit, after which the material is

progressively weakened by internal microcracking up to

failure. The nonlinear deformations are basically plastic

since, upon unloading, only the elastic strain portion can

be recovered from the total deformation. This has resulted

in using extensively, in recent years, the plasticity

approach to describe the nonlinear behaviour of concrete

(67). One criticism of the application of this concept to

concrete is that the inelastic behaviour predicted by a

plasticity theory is not accompanied by the degradation of

elastic moduli, i.e. the decrease of the unloading

stiffness. However, this is not significant in the

prefailure regime. Besides, the theoretical background of

work-hardening plasticity has been quite consolidated.

There are three basic assumptions in the incremental theory

of plasticity (21]: an initial yield surface, a hardening

rule and a flow rule. An initial yield surface in stress

space defines the stress level at which plastic deformation
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begins. A hardening rule regulates the evolution of the

subsequent loading surfaces during the course of plastic

flow. A flow rule defines an incremental plastic

stress-strain relationship using a plastic potential

function. The application of the theory to concrete

requires considerable modifications of the shape of the

yield surface, the hardening rule and the flow rule. Most

of the research has in the past been made towards defining a

suitable failure surface. The initial yield surface is

usually assumed to have the same shape as the failure

surface but with a reduced size.

The loading surface which is dependent upon the current

state of stress a and a number of hardening parameters H1

can be expressed [28] as

F (a, H 1) = 0	 i = 1, 2, ...	 (2-7)

Equation (2-7) represents an envelope of stress state in the

material which causes the onset of plastic behaviour. Each

stress point inside the surface represents an elastic state

of stress and each point on it a plastic state. Due to the

hardening parameters, H 1 , the loading surface can translate

and change its shape until the failure surface is reached.

The failure surfaces which are widely used in the numerical

analyses of concrete structures include classical failure

criteria and failure theories based on a biaxial or triaxial

testing data. Detailed reviews of the failure theories

proposed in the last two decades are given in (21, 28).

A perfectly plastic body is defined by the yield criterion

which depends only on the stress tensor, F (a) = 0. During

plastic deformation this criterion remains unaltered. The

simplest hardening rule is isotropic hardening where the

yield surface expands uniformly as

F (a, A) = 0	 (2-8)

In this case, the yield surface depends on a scalar
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parameter A that monotonically increases with plastic

deformation. To describe anisotropy of hardening, the yield

function is expressed [34] as

F fr-u, A) =0	 (2-9)

The initial yield surface undergoes rigid body translation

with varying u representing the centre of the yield surface.

Any plastic strain is accompanied by variation of u and A.

In order to define u, different translation rules have been

proposed by Prager (68], Ziegler (69], and Dafalias et al

[70]. For concrete material, combined isotropic and

kinematic hardening has been proposed by Chen [43] and

Argyris [71]. Non-uniform hardening rule rather than the

usual isotropic hardening rule is developed in (72] to

employ a closed initial yield surface.

The flow rule defines [21, 67] that the plastic strain

increments are proportional to the stress gradient of the

plastic potential Q (a, H 1 . If the yield function

coincides with the plastic potential F = Q, the associated

flow rule is obtained. A stable material, according to

Drucker, requires the associated plastic flow to be normal

to the yield surface. For concrete, the associative flow

rule is often incorporated into the development of a

plasticity based model and reasonably good results are

obtained (42, 43, 67, 73]. The deviation, however, is

observed in the estimation of volumetric strain. Volume

expansion near failure tends to be overestimated.

Therefore, the application of a non-associative flow rule

has been introduced [72, 74]. It has been successful in

controlling the volumetric strains and in describing the
stress-strain relationship, but much computational effort

involving several material constants is usually required.

The extension of the classical plasticity theory has

recently been made in the strain space formulation to

provide consistent modelling over the entire range of

concrete behaviour [75]. The flow theory of plasticity can
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exhibit both stress and strain history dependence and stress

induced anisotropy. However, this theory is not well

adapted to model material softening observed in concrete,

and it is difficult to incorporate rate dependence.

2.3.4 VISCOPLASTICITY BASED MODELS

Nonlinear behaviour of real material originates both from

plastic and viscous internal dissipation of energy. In the

theory proposed for rate dependent behaviour of plastic

materials, Perzyna [76] assumed that the viscous properties

of the material become manifest only after the passage into

the plastic state. In this approach, the strain rate £ was

decomposed into a linear elastic strain rate and

viscoplastic strain rate c. In analogy with the theory of

plasticity, a static loading function is assumed which is

expressed as

F (o, Hk) = 0	 k = 1, 2, ...	 (2-10)

The shape of the surface in the stress space depends on a

set of hardening (or internal) variables Hk. In contrast to

the plasticity theory, stresses outside the loading surface

can exist and the magnitude of the viscoplastic strain rate

is considered to be a function of the excess stress above

the static loading surface. The flow rule is defined such

that the viscoplastic strain rate is directed along the

gradient to the viscoplastic potential, G ( o , Hk). Thus,

the constitutive relation may be written as

8G 1=D	 j (2-11)

where D is the linear elastic stiffness tensor, T denotes

the fluidity parameter, and

1	 0	 if	 F0=	
(F)	 if	 F > 0	 (2-12)

From the constitutive relation, it can be observed that the
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flow theory of plasticity can be obtained as a subclass of

viscop].asticity (28]. Thus, many of the modelling

techniques familiar in plasticity such as yield criteria and

hardening rules can be adopted in the theory of

viscoplasticity.

Instead of using a solely elasto-viscoplastic model, Nilsson

(28] used a combined elasto-viscoplastic-plastic-brittle

theory to model the dynamic behaviour of concrete. The rate

effects upon the ductile yield and brittle failure surfaces

were introduced in the form of single hardening parameter

which was expressed as a function of the effective strain

rate and determined by fitting the experimental data of

rate effects upon the ultimate compressive strength. To

satisfy the ultimate stress constraints with increasing

strain rate, the fluidity parameter was assumed to be

dependent on the effective strain rate. The introduction of

a single rate hardening parameter into the loading surfaces

yields isotropic strain rate sensitivity while the

experimental results indicate a greater rate dependency in

tension as compared to compression. Attempting to modify

the rate hardening parameter to accommodate this effect

would result in complicating an already very much

intractable model. Furthermore, the rate dependent function

employed to define the fluidity parameter was based more on

heurostic discussions than on experimental results. The

ideal elastic brittle response in tension is also a severe

drawback of this model.

A rate dependent model for plain concrete under seismic

loading condition has been proposed by Bicanic (77]. The

model is a modification of the classic viscoplasticity

theory, using a rate sensitive fluidity parameter and a

damage monitoring failure surface to initiate the

degradation of the loading surface once failure has

occurred.	 The original Bicanic model was extended to

include tensile cracking in (78, 34). 	 However, the rate

effects upon the yield and failure surfaces were not
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included and consequently the strain rate induced anisotropy

effect was ignored. The model also did not account for

strain hardening observed experimentally in the pre-failure

range of concrete behaviour. The strain rate independent

crack initiation in tension does not match the recently

published test results (15, 31].

The elasto-viscoplastic model is capable of describing age,

rate and stress and strain history dependence. Thus, it

holds much promise in developing a constitutive theory for

the dynamic behaviour of concrete. In contrast to the flow

theory of plasticity, no special difficulties arise in the

modelling of material softening behaviour. However, the

application of classic theory to concrete under dynamic

loading conditions is not conceptually straightforward.

Introducing the necessary modification to fulfil the

constraints observed in the pre-failure and post-failure

ranges of dynamic behaviour of concrete, must be performed.

2.3.5 ENDOCHRONIC MODELS

The endochronic theory, originally proposed for metals by

Valanis (79], was first applied to concrete by Bazant et al

(80]. In this model, inelastic strains are not obtained

from a loading surface, but directly from the evaluation of

a measure of irreversible damage, referred to as intrinsic
time, which is a non-decreasing scalar variable, depending

on strain increments. The intrinsic time measure is

comparable to that of the effective plastic strain in the

plasticity theory. The inelastic strains are related to the

intrinsic time through a series of mapping functions which

depend on the current state of stress and strain, and are

determined from the experimental data. Consequently, the

model is incrementally nonlinear. Bazant has shown that

many characteristics of concrete such as strain-hardening

and softening, hydrostatic pressure sensitivity of inelastic

strain, inelastic volume dilatancy, hysteretic behaviour,

and rate dependency may be predicted by this theory.
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However, the increase of scope is achieved at the expense of

greater complexity and increasing number of material

parameters. It involves many functions which are computed

by a complicated optimal fitting procedure. The

incremental nonlinearity is another disadvantage which

requires iterations for each increment of loading and may

cause some difficulties in the finite element analysis

procedure. As a result, the practical application of the

model is still limited.

2.3.6 RECENT MODELLING APPROACHES

Apart from the endochronic theory, the other constitutive

models described earlier are incapable of exhibiting the

progressive loss of unloading stiffness observed in

concrete. To model such behaviour, the progressive

fracturing and the damage mechanics theories have been

recently adopted to develop numerical concrete models which

are briefly described here for completeness. It should be

mentioned that these models have not yet been fully explored

in their applications to concrete structures.

The theory of progressively fracturing solids, developed by

Dougill (81), is well suited for modelling the stiffness

degredation during loading. During loading and unloading,

the stress is obtained from

=Dc	 (2-13)

Time differentation yields

= D £ + D £ =	 -	 (2-14)
e	 F

where J is the nonlinear elastic stress rate and d denotes
0	 F

the rate of fracturing stress. To distinguish between

loading and unloading, Dougill employed a fracturing surface

which enclosed all possible elastic deformations

F (c, H 1) = 0	 1 = 1, 2 ...	 (2-15)
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Due to the hardening parameters H1 which are dependent on

the dissipated energy due to fracturing, the surface was

allowed to translate and change its shape by exhibiting

history dependence. Similar to the flow theory of

plasticity, it was assumed that the fracturing stress can be

obtained from the gradient of the fracturing potential,

G(c, H 1) = 0. Plastic fracturing theory proposed by Bazant

et al (65] combines the conventional plasticity and the

elastic fracturing theory to account for non-reversible

strains. The basic idea is that inelastic strains consist

of one part due to plastic deformations connected to the

micro-mechanism of slip; and a strain softening part due to

micro-cracking in concrete. Good modelling of concrete

behaviour has been obtained [65]. However, the matrix of

tangential moduli is non-symmetric which is an inconvenience

in finite element analysis. It must also be emphasized that

very few experiments have been conducted to determine the

shape of initial and subsequent fracturing surfaces.

A continuous damage theory was first suggested by Kachanov

(82] in an attempt to describe the degradation of materials

under creep conditions. Damage was defined as the density

of voids in a given cross section. The damage was treated

as a kinematic variable, the growth of which resulted in the

gradual degradation of the material. Loland (83] and Z4azars

[84] have adopted a similar scalar damage variable to

predict the quasi-static stress-strain relation of concrete

as

= E (1 - w) c	 (2-16)

where w is the damage parameter. By treating the damage as

an internal state variable which influences the free energy

of the material, a generalization of the damage theory has

been achieved by Surais [50]. The existence of a free

energy function dependent on the damage was postulated and

the constitutive equations as well as the damage evolution

equations were developed consistently, subject 	 to
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therino-dynamic restrictions. The model has been employed to

predict successfully the dynamic behaviour of concrete under

uniaxial state of stress (50].

2.4 REVIEW OF CRACKED CONCRETE MODELLING

Cracking is one of the major sources of nonlinearity

observed while analysing reinforced concrete structures.

During monotonic loading of a structure continued up to

failure, cracking occurs at an early stage of loading and

introduces distinct geometrical discontinuity within the

structure. Previous investigations have shown that

treatment of post-cracking behaviour, in terms of strain

softening [85] can greatly influence the ultimate load

predictions and even paths to failure.

In order to model crack initiation and post-cracking

behaviour, four basic areas are usually incorporated in the

analytical model: a criterion for crack initiation, a method

for crack description, a rule for tension stiffening (or

tension softening) and finally a model for crack interface

shear transfer.

2.4.1 CRACK INITIATION CRITERIA

The maximum stress and strain theories are frequently used

to determine whether tensile cracking has occurred in the

concrete (21]. If the maximum principal stress or strain in

a point of the structure reaches the uniaxial tensile

strength or tensile strain limit, cracking is assumed to

form in planes perpendicular to the direction of the maximum

tensile stress or strain and in that direction the stress is

subsequently reduced to zero.

The uniaxial tensile strength can be obtained from different

experimental tests. Direct tension tests conducted by

Kupfer et al (37] provide the best available definition of

concrete strength. Other test have been used to obtain the

tensile strength such as the split cylinder test and the
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bending test. From the bending test of plain concrete

beams, the modulus of rupture which characterizes the

tensile strength in bending seems to give a better

prediction of structural behaviour than either the splitting

tensile strength or the direct tensile strength (37). The

rupture strength, o can be related to the uniaxial

compressive strength (86] by

1/2
= 0.62	 (2-17)

where o and 0 are expressed in MPa. For concrete

structures subjected to dynamic loading, the maximum tensile

strain criterion has been successfully employed to represent

the tensile cracking of concrete (34, 78]. This criterion

has also been adopted for static loading [87).

The main drawback of the existing crack initiation criterion
is the strain rate insensitivity whereas recent dynamic

tensile tests [15, 31] indicate that both uniaxial tensile

strength and the cracking strain are highly strain rate

dependent.

2.4.2 CRACK DESCRIPTION METHODS

In the finite element context, two main approaches have been

used for crack representation (21]: the discrete crack model

and the smeared crack model. The choice between one or

the other model depends on the purpose of the finite element

analysis. If local behaviour is of main interest, the

discrete approach is convenient, since it can account better

for bond slip, dowel shear effects and aggregate

interlocking across cracks, giving realistic crack patterns.

However, in cases where the overall behaviour of a structure

is desired or where many cracks have formed, the smeared

crack concept is preferable.

(1)	 Discrete crack iiod].

The discrete cracking technique was first introduced by Ngo
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and Scordelis (6] to analyse experimental reinforced

concrete beanie. In their study, the finite element mesh

contained a few predefined crack directions. Elements along

each direction were double-noded and upon crack initiation

those nodes were separated to simulate a physical crack.

This model was later improved by Nilson [523 and by Ngo et

al (88] to include flexibility in specifying crack

directions and linkage elements along the separated nodes to

simulate aggregate interlock and dowel action. When the

average stress in two adjacent elements exceeded the

concrete tensile strength, corresponding elements were

disconnected at their common nodes. As Nilson pointed out,

this procedure overestimated the crack length since the

crack must be initiated throughout the element boundary.

The discrete crack approach was further improved and

partially automated by Al Mahaidi (89] who used a predefined

crack utilizing two nodes at one point connected by a

linkage element. When the stress in the elements exceeded

the concrete cracking strength, the linkage was set to have

a reduced stiffness to allow the crack to open.

Despite all these improvements the cracks are still forced

to follow the mesh lines and hence, lack total generality in

propagation direction. This model is suitable for cases in

which only a few cracks dominate the behaviour of the

structure. As far as the ultimate capacity of most

structures is concerned, there is little need to model each

crack in great detail. The discrete representation has

received limited acceptance as it requires detailed

knowledge of kinematic quantities in advance such as

location of crack tip, crack length and crack opening

displacement for each individual crack. Further numerical

complications due to redefinitions of the original finite

element mesh and consequently destruction of the bandwidth

of the structural stiffness matrix discards this method as

being practically unusable.
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(ii) Smeared crack model

The smeared crack approach which was proposed by Rashid

(90], offers a more practical alternative for crack

representation while using the finite element method. Upon

crack initiation at a sampling point, representing average

behaviour of some tributary area around that point, the

constitutive matrix is modified to take into account the

damage due to cracking which induces anisotropy. After

cracking, concrete is assumed to become orthotropic. The

elastic modulus is reduced in the direction perpendicular to

the crack plane, and Poisson's effect is usually neglected

(21). This has the effect of smearing the crack over a

certain area and imposes discontinuities in the stress field

without making the displacement field discontinuous. Using

the smeared approach, cracks in different directions can be

generated automatically without the need for redefining the

initial finite element mesh.

Due to its generality and simplicity, this approach is

frequently employed for crack representation. Recently, it

has been used by Nilsson et al [91], Bazant et al [92),

Olemberg (93) and Rots et al (94] among others. However,

some concern has been expressed regarding the ability of the
model to represent failure mechanisms with dominant discrete

cracks [95]. Although for these cases, the discrete crack

model seems more adequate, the smeared approach using fine

meshes of low order elements should be able to represent

narrow mechanism bands leading to failure. Although Rots et

al (94) favour the opinion that the smeared model can

successfully represent discrete cracks, their numerical

results show that no objectivity is found regarding the

orientation of the finite element mesh. The crack is found

to prefer to propagate parallel to the element boundaries.

This behaviour may be caused by the integration rule
employed (78). It has been suggested t96) that it could be

meaningful to test the smeared model with a mesh updating

procedure to overcome this undesired effect.
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According to the smeared crack treatment, an infinite number

of parallel fissures distribute over the element at the

instant of cracking. If the element size is sufficiently

small, the tensile strains and stresses in the adjacent

element just ahead of the crack tip could become

sufficiently large, and the crack could propagate under a

sufficiently small load. Consequently, the smaller the

element size, the lower the predicted structural capacity

would be. Such unobjective results known as size effect

which was first recognised by Bazant (97] and later also

reported by Nilsson et al (91). In order to solve the

subjective treatment of post-cracking behaviour, fracture

energy based strain softening curves are substituted for the

strength (or no softening) criterion.

2.4.3 TENSION STIFFENING OF CRACKED CONCRETE

Cracking results in the permanent loss of both tensile

stiffness and tensile strength, and once it has occurred,

the internal stress pattern of concrete changes to

accommodate the associated geometric discontinuities. It

has been a usual assumption in the early numerical analysis

studies that concrete is an inelastic brittle material in

tension (6]. When cracking occurs, the stress normal to the

crack direction is immediately released and reduced to zero.

It was soon discovered that this procedure leads to

convergence difficulties, and more importantly, to results

that are dependent on the size of the finite elements used

in the analysis. Moreover, the experimental evidence (25]

on unreinforced concrete shows that cracks in large

specimens tend to grow in a stable manner. When

reinforcement bars bridge concrete cracks, the strength

mechanism becomes much more complex as a result of their

highly different behaviour. This lack of material

compatibility results in stress redistribution in cracked

reinforced concrete as well as bond slip between concrete

and steel reinforcement (98]. It has been argued [99) that

due to bond forces, the concrete between cracks possesses a
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tensile load carrying capacity normal to the direction of

the crack which decreases with the increase of crack width.

This effect is often known as the tension stiffening effect

of cracked concrete.

Tension stiffening, in a number of studies (99-101],

is considered by assuming that the loss of tensile strength

in concrete after cracking occurs gradually according to a

specified descending stress-strain curve. Many different

shaped curves, with different limiting tensile strains, have

been proposed. Scanlon [99] used a stepped piecewise linear

unloading. A similar approach was used by Lin et al [100],

but with a smooth unloading curve. Crisfield (101] applied

a constant unloading scheme. Another approach to modelling

tension stiffening effects based on a modified stress-strain

diagram for the tensile steel is suggested in [102]. The

concrete is assumed to carry no stress normal to a crack,

but an additional stress is added to the reinforcing steel.

The relative effects of different tension stiffening

representation have been studied in [102].

The inclusion of tension stiffening effects does not only

simulate the real behaviour of concrete, but it also

improves the stability of the numerical analysis. However,

two main problems remain unsolved (78]. The first one is

that there is no objective way of measuring how much tension

stiffening should be included in the model. It is easy to

choose a tension stiffening curve based on experimental

results but very difficult to make any a priori prediction.

Secondly, the effect, if explained in terms of bond

interaction with the reinforcing steel, cannot be applied to

plain concrete structures, or to concrete located at a

certain distance from the reinforcement.

Considerable experimental research has recently been

directed towards the study of the post-peak behaviour of

cementitious materials [103]. These studies have shown the

efficiency of using some fracture energy concepts in
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modelling the observed tension softening of concrete (103].

The implementation of the fracture energy release rate as a

material property leads to a local strain-softening law

which depends on a characteristic length relating to the

size of the finite element mesh. In defining a curve to

model the strain softening effect, two aspects have to be

considered: the shape of the descending curve and the value

of the parameters needed to define it. In most of the

cases, either a simple line shape (85], or a bi-linear shape

(104] have been used. In [78, 91, 93], nonlinear curves

have been proposed which fit adequately the experimental

results. These models include several fracture parameters

such as the tensile strength a, the fracture energy,
softening constant, and the limiting tensile strain.

2.4.4 CRACK INTERFACE SMEAR TRANSFER

Experimental results (105-108] show that a considerable

amount of shear stress can be transferred across the

surfaces of cracked concrete. Two mechanisms are present in

that transference: the aggregate interlock and the dowel

action of reinforcing bars.

A considerable amount of shear stress can be transferred

across the rough and irregular surfaces of a cracked

concrete by aggregate interlock and frictional forces

(105-106]. When the crack is subjected to shear forces

rising from the redistribution of internal forces, the crack

interfaces tend to override each other as a result of the

shear slip. This tendency may be constrained either by

surrounding a portion of concrete or by the reinforcing bars

crossing the cracks. The interface shear capacity depends

on the effectiveness of concrete in developing this

constraining force normal to the crack plane. It has been

shown experimentally that the crack width is the main

variable in the aggregate interlock action. Smaller crack

widths correspond to greater shear stiffness.
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The dowel action mechanism is activated when reinforcing

bars, particularly those of larger diameter, cross a crack

subjected to shear slip (107, 108]. However, despite

experimental analytical studies on dowel action, a

comprehensive analytical expression for the dowel effect is

not yet available. This is mainly due to the fact that the

dowel stiffness depends on many factors such as the bar

diameter, dowel embedment length, the presence of stirrups,

concrete cover and the state of concrete surrounding the

reinforcement.

Shear transmission can be simply accounted for in the

smeared crack model by the introduction of a reduced value

of concrete shear modulus, G. Many researchers have used a

constant value of throughout the analysis [21, 34].

However, in an analysis of structures failing in shear, it

is necessary that the cracked shear modulus is assumed to be

a function of the fictitious tensile strain normal to the
crack plane or the current crack width. Several

formulations [21, 42, 78, 89] based on experimental results

have been proposed for the cracked shear stiffness which are

have been compared elsewhere [34].

2.5 REVIEW OF MATERIAL MODELLING OF REINFORCING STEEL

In this study steel reinforcement consists of

one-dimensional elements in the form of bars. As a result,

it is not necessary to introduce the complexities of

multiaxial constitutive relationships for steel. A uniaxial

linear or nonlinear stress-strain relation is fully adequate

for inonotonic as well as cyclic loading. Only a brief

review of the uniaxial mechanical properties and the

previously proposed constitutive models for steel is given

here. More details can be found in reviews published in

[7, 28, 109].
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2.5.1 MECHANICAL PROPERTIES OF STEEL IN STATIC AND DYNAMIC

LOADING CONDITIONS

Typical stress-strain curves for steel reinforcing bars

under monotonic static tensile loading are plotted in Figure

2-6. These curves are normally characterized by the

following features [109]:

1. An initial elastic region up to the yield strain c9

with mean modulus of elasticity of 200000.0 N/mm2.

2. A yield plateau followed by a strain hardening region

from c to the ultimate strain c , to the fracture strain
y	 U

Cf.

3. The ultimate strength is approximately 1.55 times the

yield strength.

4. As the strength of the reinforcement is increased, its

capacity to undergo inelastic deformation, or its ductility,

is decreased.

Ductility of reinforcement is necessary to ensure

ductile behaviour of concrete structures and, hence to

prevent brittle failure, especially under severe dynamic

loading such as blast. In general, strength may be

increased by changing the chemical composition of the steel,

cold working, heat treating, or some combination of such

techniques. Under monotonic loading, it is generally

assumed that the steel behaviour is identical in tension and

compression. Unloading and reloading result in a response

path approximately parallel to the original elastic shape.

When subjected to stress reversal after initial yielding,

reinforcing steel exhibits curvilinear response known as the

Bauschinger effect [110).

Steel is classified as a crystalline material whose material

properties depend mainly on the properties of the crystal

grains. The elastic deformation of steel takes place within

the crystal lattice, while the non-recoverable deformations

are principally associated with slip along crystallographic
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planes (28]. The mechanism of the slip can be described as

a propagation of dislocations which takes place once the

magnitude of stress exceeds the yield stress. The slip also

causes a break up of the grain boundaries and thereby

decreases the cohesion between the grains resulting in a

propagation of microcracks along the direction of the slip

bands [ill]. This mechanism appears as a decrease in the

elastic stiffness. It is generally observed that the

propagation of dislocations and microcracks is time-related

(ill]. Thus, the yield stress and the non-recoverable

deformations of steel are strongly affected by the strain

rates.

A vast amount of literature is available on the dynamic

properties of steel. Mainstone (7), Sauris et al (8) and

Nilsson (28] have presented a review of some of the

published data. The effect of strain rate upon steel can be

illustrated by the uniaxial tension stress-strain curves of
Figure 2-7. From the survey of the available experimental

results, some principal features of the steel behaviour

under dynamic loading conditions on the macroscopic level
can be summarized as:

1. The initial modulus of elasticity is unaffected by

strain rate.

2. The yield stress and the ultimate strength of steel

increase with increased strain rate. The steel with higher

static yield strength shows less enhancement of strength

under dynamic conditions than steel with lower static

strength.

3. The ductility is observed to decrease with increasing

strain rate as the ultimate strain is almost constant.

4. In contrast to concrete, the strain rate effects are

isotropic, i.e. equal in tension and compression (8, 28].

5. There is no simple consistent effect on the effective

stress in the strain hardening range.
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2.5.2 CONSTITUTIVE RELATIONSHIPS FOR REINFORCING STEEL

Several constitutive theories have been proposed for steel.

Indeed, most of the reviewed constitutive theories of

concrete described in section 2.3 were primarily developed

for steel or other metals. However, the most common

approach found in the literature for the material modelling

of reinforcing steel is the elasto-plastic constitutive

model. Under transient (27) and dynamic loading conditions

(28, 34], the viscoplasticity has been adopted.

For simplicity in the analysis which requires consideration

of plastic deformation, it is often necessary to idealize

the steel stress-strain curve. Bilinear or trilinear

idealization has been commonly used depending on the

accuracy required (109). For each idealization, it is

essential to determine experimentally the values of the

stress and strain at the onset of yield, strain hardening

and the ultimate tensile strength. Bilinear curves are used

with simple kinematic and isotropic strain hardening rules.

However, the trilinear relation is suitable only for use

with isotropic hardening rule (109]. 	 In general, these
rules do not fit experimental data accurately. 	 The

isotropic hardening is incapable of modelling the

Bauschinger effect. On the other hand, the kinematic

hardening normally does overestimate the Bauschinger effect.

In the investigation of the performance of different
hardening rules, Nilsson (28] suggested a general nonlinear

hardening function. However, due to the simplicity and the

numerical convenience of the isotropic hardening, it is

usually found sufficiently accurate for the behaviour of

reinforcing steel. In this case, the onset of plastic (or

viscoplastic) hardening is governed by (112]

t=o-• +Hc	 (2-18)
p

in which r is the effective stress level controlling the

yield condition, H is the strain hardening parameter of

steel, and o is the static yield stress of steel.
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The total strain, c, is decomposed into elastic and

inelastic components (whether produced by plastic

deformation-creep or temperature) and the stress o is

expressed (109) as

= E Ic - c - c	 (2-19)
•	 •	 p	 t)

in which c represents the plastic (or viscoplastic) strain

which may be positive or negative, c is the thermal and/or

creep strain, and E is the modulus of elasticity of steel.

For problems where the response is purely elastic, C is set

to zero in equation 2-18. Most applications involving

calculation of inelastic strain based on the plasticity

theory, require step-by-step iterative solution techniques

and it is necessary to retain the plastic strain from the

previously converged step in order to determine the stress

associated with current strain as well as to check the

violation of the yield conditions.	 The details of such

computations can be found elsewhere (109, 112). For

viscoplasticity based models, the associative flow rule in

conjunction with incremental time stepping procedure has

been often employed (27, 112] to determine the incremental

viscoplastic strain such that

Ac	 - r] At	 (2-19)

in which y is the steel fluidity parameter and At is the

arbitrary time step.

Under dynamic loading conditions, a few models have been

proposed which consider the strain rate effect by

introducing modifications to the existing constitutive

models. Methods employing the dynamic yield stress of steel

(28] as a function of the static yield stress and the strain.

rate, or deriving the fluidity parameter as a function of

the strain rate (34) to account for the rate dependence in

the viscoplastic range have been reported.

- 45 -



2.6 CONCLUDING CONSIDERATIONS FOR MATERIAL MODELLING OF

BLAST RESISTANT REINFORCED CONCRETE

In view of the mechanical properties presented in section

2.2 and from experience that has been gained from the

quasi-static and dynamic behaviour of concrete, a

comprehensive model for nonlinear analysis of concrete

structures subjected to blast loading conditions should

embrace essentially the following features of concrete

behaviour:

1. Nearly reversible behaviour until combined state of

stress reaches initial yielding in compression (30-50% of

compressive strength) or tensile cracking in tension.

2. Irreversible behaviour due to micro-cracking process,

which is stress and strain history and rate dependent, in

the range between initial compressive yield and compressive

failure.

3. History and rate dependent strain softening regime to

simulate the post-failure behaviour in compression .until

crushing.

4. Development of tensile macrocracks, the main source of

material nonlinearity, according to a rate dependent crack

initiation criterion.

5. Strain rate-induced anisotropy resulting from the

greater rate sensitivity of concrete in tension than in

compression.

6. Strain-induced anisotropy exhibited by loaded concrete

due to cracking.

7. Tension softening in the post-cracking behaviour based

on concrete fracture energy and the characteristic length of

the crack.

8. Crack interface shear transfer to account for

aggregate interlock and dowel action mechanisms.

Based on the mechanical properties of steel reviewed in

section 2.5.1, some desired characteristics to be exhibited
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by the concrete material during a blast can be concluded as

follows:

1. Linear elastic rate independent behaviour until

initial yielding is reached which is strain rate sensitive.

2. Above yielding, inelastic response in tension and

compression which is history and rate dependent.

From the previously mentioned experimental studies of

concrete and reinforcing steel and considering the drawbacks

of the existing material models found in the literature, it

becomes necessary to develop new constitutive models to

achieve reasonable simulation of the material behaviour

under blast loading. The principal features of appropriate

constitutive models would be as described below:

1. The models should be comprehensive enough to capture

the above mentioned nonlinear features of materials as well

as the rate and history dependence required under blast

loading.

2. The models are expected to be based on a solid

foundation of constitutive theory for the macroscopic

analysis of structures.

3. Total number of parameters used in the models should

not be more numerous as compared with existing models.

4. The models should not present numerical difficulty in

finite element analysis and should be easy for computer

implementation.

5. The characterization of the models by experiments

should be relatively easy.

Chapter 5 describes the material models developed in this

thesis, for use in finite element analysis of concrete

structures subjected to blast loading.
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Reference

Takeda et al (9]

Cowel (10]

Birkimer (11]

Kormeling (12)
Hughes et al (13)

Sparks et al (14]

Atchley et al (15]

Watstein (16]

Type

T

C

T

T

T

T

C

C

C

C

T

T

C

C

C

C

C

C

C

C

C

C

C

d

	5x106	5x102
10	 1

	

5x10 6	2x101
ft	 U

ft	 I,

,,	 I,

iO	 5x101
'I

I

	2.5x10 7	20.0

	

2.5x10 6	0.75
-	 30
-
-	 I,

2.5x10 5 2.5x101
I

ft	 I,

	5x106	2
ft	 II

'I

	

iO_6	 10
ft	 II

0'
I

3.55
3.96
4.89
5.55
31.5
38.0
57.3
62.3
3.21
2.62

22
53
63
30
30
20

17.2
25.5
34.5
17.2
44.8

\ \
0 d "s

1.7
1.4
1.75
1.72
1.70
1.50
1.43
1.35
1.40
1.24
6.0
2 • 11
2.13
1.94
1.78
1.32
1.12
1.33
1.58
1.55
1.62
1.85
1.85

T : Tension

: Static strain rate

or' : Static strength

C : Compression

: Dynamic strain rate

: Dynamic strength

Table (2-1) Summary of concrete test data
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CHAPTER 3

MODELLING OF BLAST LOADING ON CONCRETE STRUCTURES

3.1 INTRODUCTION

A dynamic disturbance that commands much attention in the

design or analysis of structures of military and civilian

nature is the airbiast caused by explosions outside or

inside the structures. This requires evaluation of the

magnitude of the blast loads which act on the various

structural elements. In dynamic analyses, the excitation

load is usually defined in one of two forms - either in a

spectral form 'or as a given loading-time history. The

former is adopted to characterise the periodic and random

types of transient loading. Impact or blast loading is

generally idealized through a load pattern, multiplied by

some time varying function. For some explosions, the

modelling of another excitation, namely blast-induced ground

motion, also has to be considered.

It is not intended that this chapter serves as a complete

source of information on airbiast phenomonology and the

induced loads. In view of the wide scope of the field and

the fact that much literature in this field is classified

for security reasons, only a limited discussion of the

subject is made.

The objective of this chapter is to present information on

modelling of airblast loading histories on structures due to

confined or unconfined explosions in a mathematical form

readily adaptable to structural response computations, to

include subjects such as the evaluation of explosion-induced

ground shock in a simplified form, and to bring together

sources of additional information from the unclassified

literature. The explosion sources considered are nuclear

and conventional weapons as well as accidental explosions

due to the ignition of gas and dust clouds.
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The basic characteristics of the explosion and blast wave

are briefly discussed in section 3.2. Then, the numerical

modelling of airbiast loading due to external explosions in

the free-field as well as on structures are described in

section 3.3, followed by the methods of prediction of

internal airblast loading caused by confined explosions and

contact blast in section 3.4. In section 3.5, the

evaluation of explosion-induced ground shocks is given. The

main considerations in modelling blast loads in order to

perform nonlinear dynamic analysis of above-ground

reinforced concrete structures are summarised in the final

section.

3.2 EXPLOSION AND BLAST WAVE PHENOMENA

3.2.1 THE EXPLOSION PROCESS

In general, explosion is a phenomenan resulting from a rapid

and sudden release of a large amount of energy (113-127].

Conventional explosives, such as trinitrotolune, known as

TNT, depend on a rearrangement of their atoms for the

energy, whereas nuclear explosions result from the release

of energy binding protons and neutrons within the atomic

nuclei. For flammable materials, the energy is mainly

derived from the chemical reaction. Explosive materials may

be classified according to their physical state: solids,

liquids and gases. Solid explosives are primarily high

explosives for which the blast effects are best known.

Other materials, named low explosives, exhibit a variation

of their blast pressure output depending on the molecular

structure. In many cases, an explosion of these materials

is incomplete and only a portion of the total mass of

explosive is involved in the detonation process. The

remainder of the mass is usually consumed by deflagration

resulting in a large amount of the material's chemical

energy being dissipated as thermal energy which, in turn,

may cause fires.

The shock or blast wave is generated when the atmosphere
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surrounding the explosion is forcibly pushed back by the hot

gases produced from the explosion source. This wave moves

outward from the central part only a fraction of a second

after the explosion occurs. The front of the wave, called

the shock front, is like a wall of highly compressed air and

has an overpressure much greater than that in the region

behind it. This peak overpressure decreases rapidly as the

shock is propagated outward. After a short time, the

pressure behind the front may drop below the ambient

pressure, as shown in Figure 3-1. During such a negative

phase, a partial vacuum is created and air is sucked in.

High winds are also associated with the movement of the

pressure wave being directed away from the explosion in the

positive phase and towards the explosion in the negative

phase.

When the shock wave of an air burst leaves the point of

explosion, it travels as an incident wave until it strikes

some object of density greater than that of the normal

atmosphere. Upon striking such an object, a reflected wave

travels back toward the point of explosion. The

overpressure in the reflected wave may be much greater than

the pressure due to the incident shock alone. Since the

velocity of the reflected wave is greater than that of the

incident wave, it follows that, at a point some distance

from the explosion centre, the reflected wave will catch up

with the incident wave, producing a single vertical wave

front called a Mach stem (113-122] which moves horizontally

along the surface of the ground. The junction point is

known as the triple point (113-122]. As the pressure wave

advances along the ground, the triple point describes a path

as shown in Figure 3-2. Structures below this path will

experience a single shock, whereas objects above this path

will be subjected to two shocks; the incident and reflected

waves. Below the path, as in the case of a surface burst,

the shock front moves on the ground surface with an

essentially vertical front near the ground.
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3.2.2 BLAST WAVE CONFIGURATION

Although the physical properties of the explosion source

affect the observed characteristics of airblast waves in

many respects, evidence indicates that at a reasonable

distance from the centre of the explosion, all blast waves,

regardless of the source, share a common configuration. The

pressure-time of a typical blast wave as observed at a

location removed from the centre of explosion [121-127] is

shown in FIgure 3-3. At an arrival time of t after the

explosion, the pressure at this location suddenly jumps to a

peak value of overpressure, P over the local ambient

pressure, P. The pressure then decays to ambient in time

t, to a partical vacuum of very small amplitude, and

eventually returns to P. The quantity P is usually termed

the peak side-on overpressure, or merely the peak

overpressure (121-127]. The portion of the pressure time

history above initial ambient pressure is called the

positive phase of the duration t. The portion of the

overpressure below zero is called the negative or suction

phase. In most blast studies, the negative phase of the

blast wave is ignored and only blast parameters associated

with the positive phase are reported. In order to study the

blast effects on a given structure, the characteristics of

the blast wave must be known. Such properties include

density, wind velocity, shock front velocity, peak

overpressure and dynamic pressure.

The decay of the overpressure illustrated in Figure 3-3 is

usually described as quasi-exponential in character.

Attempts to define the form of the wave decay in

mathematical terms have not been easy. Expressions of

varying complexity have been suggested to describe the

positive phase as reported by Baker (113] The following
expression to describe the positive phase is the most

commonly used. In terms of a dimensionless wave form
parameter a and time t measured from the instant the shock
front arrives, the relation is established as
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P(t) =P (1	 ' -at/t* I..	 cJ e	 (3-1)

For a blast wave, the impulse per unit of projected area is

obtained by integration of equation 3-1 such that

t

	

j	 = I	 P (t) dt	 (3-2a)

	

I	 J	 I
0

r 1	 1 (P t [
	 - - ( 1 - e) ]	

(3-2b)
I I

It has been suggested (117-127) that the overpressure-time

curves can be represented by triangular equivalents as shown

in Figure 3-3. These equivalent triangles have the same

initial peak overpressure but have different durations

depending on the expected time of maximum structural

response. The durations are determined as follows:

a - If maximum response occurs after the overpressure has

decayed to zero, a duration t 1 , is selected so that the

total impulse of the equivalent triangular curve is equal to

that of the actual curve

t = 2i/P
I	 I I	 (3-3)

b - If maximum response occurs early in the pressure-time

history, the slope of the equivalent traingular pulse is

assumed to be tangent to the actual curve, resulting in the

duration t

3.2.3 TNT EQUIVALENCY

The majority of data on blast effects in practice relates to

the blast pressures output of a spherical charge of TNT

explosive. This data can be extended to include other

mass-detonating materials, even nuclear weapons, by relating

the explosive energy of the effective charge weight of those

materials to that of an equivalent weight of TNT. The
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equivalency of material compared to TNT may be affected by

other factors such as the material shape (flat, square), the

number of explosive items, explosive confinement, nature of

source and the pressure range being considered [115, 128).

The effects of the energy output of explosive material,

relative to that of TNT, can be expressed [128] as a

function of the heat of detonation as follows:

H-	 exp W	 (3-4)
TNT	 H	 exp

where W, is the equivalent TNT charge weight, W is the

weight of the explosive in question, HTNT is heat of

detonation of TNT, and H	 is the heat of detonation of
exp

explosive in question. The heat of detonation of the more

commonly used explosives and chemicals are given in [115,

116, 128]. The heat ratio is described in some references

as the TNT equivalent factor.

3.2.4 THE BLAST SCALING LAW

Characteristics of the blast wave generated in an explosion

depend both on the explosive energy release and on the

nature of the medium through which the blast propagates.

These properties are measured for controlled explosions in

experiments. Such test explosions are termed reference

explosions. To find data for other explosions, scaling laws

can be employed. A comprehensive description dealing with

the blast scaling methods can be found in [113, 115]. The

most common form of blast scaling is Hopkinson [1) or 'cube

root' scaling law. This law states that when two charges of

the same explosive and geometry but of different size are

detonated in the same atmosphere, the shock waves produced

are similar in nature at the same scaled distances. The

scaled distance or the proximity factor Z, is defined as

11'3
Z = R/W	 (3-5)
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R= AR
F (3-8)

where R is the distance from the centre of explosion to a

given location and W is the weight of explosive. Another

parameter which is useful in blast scaling is the explosives

yield factor A, which is defined as

1/3

A	 ( w=	 i-_ I	 (3-6)

where W is the weight of reference explosion, it is easy to

deduce from equation 3-6 that similar shock effects occur at

the same scaled distance.

Rr	 R
z = ____ =	 (3-7)

w 
1/3	 wi'3

F

where R is the distance of reference explosion which

is related to R as

Scaling can also be applied to time parameters. The scaled

time r is defined for a time t (1] as

tt	 =	 (3-9)
w113

Thus, the values of the arrival time and duration time for a

shock wave are related to the corresponding time reference

values (t , t ) as
ar	 sr

t = At	 (3-10)
a	 ar

t = At	 (3-11)
S	 SF

The decay parameter a and the overpressure P are not

scaled, but the values used are those which correspond to

the scaled distance. It is worth mentioning that the

scaling law of the height of burst is similar to that of the
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scaled distances. Reference data on blast effects due to

standard explosives such as TNT are available in tabular and

graphical form. For other charges and different distances,

the blast parameters are obtained from the reference data

using the scaling laws.

3,3 MODELLING OF AIRBLAST LOADING DUE TO EXTERNAL

EXPLOS IONS

External blast loads may arise from the detonation of high

explosives including atomic warheads, or from low explosives

like flammable gases and vapours. The airblast loading on

an exposed surface is a function of the airblast pressure,

and the orientation, geometry and size of the surface which

the shock wave encounters. Three components of loading are

normally considered; overpressure, reflected pressure and

dynamic pressure. The overpressure is simply the airblast

pressure-time history that occurs in the free field outsii3e

the structure. Reflected overpressures occur due to

momentum change when the propagating shock waves strike a

surface in the path of propagation. Dynamic pressures,

associated with the airflow behind the shock, cause drag and

lift on objects that interfere with the flow of such air.

In the literature, semi-empirical relations have been

proposed for the prediction of airblast wave characteristics

as well as the resulting transient pressure loads applied to

the structures.

3.3.1 OVERPRESSURE LOADING PARAMETERS DUE TO ATOMIC WEAPONS

Analytical approximations to the nuclear burst overpressures

as a function of time and range have been developed and used

extensively for decades (123-125]. A detailed description

of nuclear airbiast phenomena is available in (113, 1143.

In the last thirty years or so, considerable experimental

and theoretical studies have been made to obtain the

characteristics of blast waves from atomic sources. The

detailed experiments conducted in the 1970's (129] have

provided a better definition of peak overpressures. At a
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given location where the shock wave passes over, the peak
overpressure is a function of the energy yield of explosion,
the ground range from the point of burst, the height of
burst, and the medium in which the weapon is detonated [120,
121]. The peak value which occurs at a given range from a
given yield can be predicted with confidence within a factor

of 2. The range at which a given overpressure will occur
can be predicted with an accuracy of 20%.

The following expression represents a good approximation for
the variation of peak overpressure, P, with distance and
explosion yield for a surface nuclear burst [120).

r 1000P = 15 ( 
10 15 1I

3	 1/2
r oo	 ____
R] 

+ii[w15]
3/2

[ 1000 ]
	

N/cm2

(3-12)

W is the weapon yield in Joules and R denotes the ground

range at the point of interest in metres. Pertinent weapon
yield is ordinarily presented in units of one megaton (1 NT
- 4.184 x 1015 3). Surface bursts are assumed to be twice
as effective as air bursts for blast effects. Accordingly,
one half of the actual burst yield, W, in equation 3-12 can
be used to calculate free air overpresssure due to an air

burst. However, the effect of reflection of air

overpressures on the ground surface should be included. In
Reference (116], the peak overpressure generated in the

nominal meteorological standard atmosphere as computed for a
spherical charge with energy release equivalent to one
kiloton (1-KT) for nuclear air burst, is given as

P - 3.2 ( 106) Z3 [ ( 1 + (
	

)2 ]1/2[ 1 +
	

]
(3-13)

P
where	 is the ratio of explosion overpressure to ambient

pressure P, and scaled distance R is the actual distance
away from a nuclear explosion with an energy release of 1 KT
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of TNT. The overpressures may be scaled to other yields by

w	 1/3
multiplying by the ratio ( - )
	

, where Wr is the

reference yield (= 1 KT).

Since the time of arrival, t, and the positive phase
duration, t5 , for a given overpressure can be scaled

according to the cube root law, it is convenient to relate

these parameters to a reference overpressure ratio. In

(120, 121), graphical relationships for a surface burst of 1

MT are given for these parameters. For air bursts it is

suggested that the cube root of the ratio of one half the

air burst yield could be used to utilize surface burst data.

In (116], the time required for a shock front to travel to a

given location, R, is expressed as

R

1
a	 J	

- dr	 (3-14)
0	 Sr

C

in which r is the charge radius, C is the speed of sound

in the undisturbed atmosphere, and M is the Mach number for

the corresponding peak overpressure expressed as

1/2
h+1	 Si

M=11	
(V	 P

S	 [	 t 2 (3-15)

where is the ratio of specific heat of air. The

corresponding duration of the overpressure positive phase is

given [116] as

) 

3 ]1/2

tS -	 180[ 1+(j

R	 ______w113 - 
[i + I	 ii	 [i + I	

)5 ]1/6 [i 
+	

R	 ]1/6

50000

(3-16)

t
where	 is the duration in seconds for 1-KT of TNT

w113
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reference explosion and R is the distance in metres when

scaled to the reference explosion.

At a specified location, the variation of overpressure with

time is a function of peak overpressure with the initial
rate of decay being rapid at higher overpressures. As a

result, typical nuclear explosion shows a smaller blast

impulse per unit area compared with conventional explosion
of identical duration and peak overpressure (116]. From the

initial peak value, the time history of overpressure for

surface bursts can be described as the sum of exponentially

decreasing components given in the following equation (120]

P (t)	 (l_t) (ae_cxtr+be_tr+ce_3rtr)

(3-17)

where t = _ , t is the time measured from the instant of

shock wave arrival, and the empirical coefficients a, b, C,
a, and i are as given in (120]. It is worth mentioning

that the simpler exponential form for the analytical

expression of the overpressure history described earlier in

section 3.2.2 has been employed in many references (115-119,

128] as an empirical adjustment to measured

overpressure-tinie seconds. The wave form parameter, a, has

been defined as a constant value of unity in Reference (128]

and as a variable dependent on the intensity of the shock

front in (116). The time approximation ordinates t 1 , t

needed for triangular representation of overpressure-time

curves are graphically described in (120] for 1-MT surface

burst.

3 • 3 • 2 CHARACTERISTICS OF OVERPRESSURE LOADING DUE TO

CONVENTIONAL HIGH EXPLOSIVES

There are a number of data sources for scaled blast

parameters for conventional weapons. References (113] and

(130] give shock front properties for incident and normally
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[i + (o.48)2]

t---, __.

[1 + (0.32)1
[1 + 

(35) 2 	 }1/2

(3-20)

808 [1 +P
S- =

P
0

{

reflected waves for spherical pentolite charges detonated in

free air. Data are given in [131] for incident waves for

surface bursts of TNT which are generally accepted as the

standard waves for this reflection situation. Detailed

compilations for both air and surface bursts of TNT are

available in (113, 122]. A comparison of the predictions of

blast wave properties can also be found in (132].

When a high explosive detonates at the ground surface, at

distances beyond the volume occupied by the explosive

itself, the maximum blast overpressure is given, in bars,

(126] as

1/2
P = 6784 _:! +	 !_. I	 (3-18)

R3

in which R is the distance in metres on ground surface from

centre of detonation to the point of interest and W is the

total energy of detonation measured in equivalent weight of

metric tons of TNT. In Reference (133, 134], a structure in

the remote region of an explosion is considered to be

subjected to an overpressure which is related to the

proximity factor, Z, as follows

1772 - 114 + !! KN/m2	(3-19)
S	 z3	 Z

in which W is the equivalent charge weight measured in

kilograms of TNT. The overpressure-distance relation for

conventional air burst is given (116] by

in which the proximity factor, Z, is the actual distance

scaled to an energy release of 1-KT of TNT in the standard

atmosphere.
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for P < 3.4 bar
a

(3-23a)

For surface burst, the total positive phase duration of

blast overpressure, in millisec, is expressed [126] as

t = 10 W113
	

(3-21)

The corresponding value for air burst, in millisec, is

suggested [116] to be

t
a

w 1 '3 -
 

{ C' + (0.g2)3]

Z \1O
980 1' + 10.54J I

[1 + (o.) ] [ + (Z) ] 

}1/2

(3-22)

The exponential form of the overpressure-time history

expressed by equation 3-1 has been suggested in [116, 128].

As the rate of decay of overpressure with time is much

slower for conventional bursts compared with nuclear

explosions, the overpressure-time curve can be approximated

by the triangular representation in which the intercepts on

the time axis are expressed in millisec, [126] as

WI,3t = 3.20 P 1/3
a

= 6.21 Wb'3/ P?/e$ for P	 3.4 bar
a

(3-23b)

	

t	 10.23 W1'3/ p 1/2 for P < 70 bar

	

I	 a	 a

= 20.77 W113/ P	 for P	 70 bar

(3-24a)

(3-2 4b)

The relations for conventional air burst can be used to

estimate data for surface burst by using effective charge

weight which accounts for ground reflections. A conversion

factor of 1.8 has been suggested (128].

3.3.3 OVERPRESSURE PREDICTION DUE TO UNCONFINED VAPOUR CLOUD

EXPLOS ION

Another type of explosion which is particularly important in
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the context of industrial and nuclear plants is the

explosion of a cloud of flammable vapour. Such explosions

are the result of a massive spill of a combustible

hydrocarbon into the open atmosphere, followed by ignition

and sufficient acceleration of the flame propagating through

the cloud to produce a destructive shock wave. Severe

damage can be inflicted to structures located hundreds of

metres away from the cloud centre. Depending on the speed

of the flame front, there are two different mechanisms in

the explosion (135-140]. In the case of deflagration, the

combustion velocity is of the order of 10 rn/sec. Despite a

substantial literature existing on many aspects of the

unconfined vapour cloud explosions, there are gaps in the

state of knowledge on the subject. A full understanding of

such explosions must await the solution of several

experimental and theoretical problems outlined in (115,

139].

Some important features of vapour cloud explosions which

differentiate them from a TNT explosion may be summarized

(135, 136] as

1 - The explosion source can be of very large dimensions

depending on the rate of fuel release and the delay before

ignition. A vapour cloud is also not hemispherical but more

of a pancake shape which makes the spatial dimensions even

larger.

2 - The blast energy is only a fraction of the total

combustion energy of the cloud since a significant portion
remains unburnt.

3 - The overpressure at the explosion centre is much less

than that at the point source of TNT explosion. Depending

on the combustion mode, the blast effects inside the cloud

as well as the airbiast decay outside the cloud can be

drastically different. It has been suggested (135] that the

practical upper limit of overpressure is probably about 1

bar at the centre and about 0.7 bar at the boundary of the
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cloud.

4 - The shape of initial blast wave is different from that

of concentrated charge explosion, but it is assumed that at

a sufficient distance from the source, it becomes

indistinguishable in form from the wave of TNT explosion.

5 - The duration is generally considered to be longer than

that of the condensed phase explosion. For design of

structures with the assumed overpressure 1 bar at the cloud

centre, a duration time of 30 ms has been provisionally

adopted (135, 136).

Despite these known differences, the existing guidelines for

estimating the blast damages from chemical explosions are

based on the TNT equivalent yield concept (135-137, 139,

140). The other alternative models presented in [135) are

untried. If Wf kg of a certain fuel is released into the

atmosphere and is the standard heat of combustion of

this fuel in Joules/kg, then the TNT equivalent yield is

obtained by (136]

AH W
F FW	 = a	 (3-25)

TNT	 64.198 x 10

where a is some empirical factor (0 < a < 1) and 4.198 x i06

is the explosion energy of TNT in Joules/kg. The empirical

factor a is used to account for the differences between the

two types of explosions. From the reconstruction of past

accidents, it is found [136] that a can vary from an

insignificant fraction of a percent to values as high as

30%. As a guide, a value of 0.05 to 0.10 may be used. Once

W, is found, a characteristic explosion distance R can be

defined by

( W	 x 4.198 x 106
I	 TNT

) 1/3	

(3-26)
0	 PR=

0

At a given location R from the centre of explosion, the

energy scaled distance, R, is defined as
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= R/R	 (3-27)

A systematic study of the effect of normal burning velocity

on the blast wave produced by central ignition of a

spherical cloud has been performed by Strehlew et al (141].

The normal burning velocity of the fuel under consideration

divided by the local velocity of sound was considered to be

a reference Mach number M. The output of the study was

standard charts to yield the scaled overpressure P as a

function of the energy-scaled distance. Such charts are

shown in Figure 3-4 and 3-5. In Figure 3-4, curves are

given for deflagrative explosion with various normal burning

velocities. The curve labelled P is for Pentolite, D is for

detonation, and S is for open sphere burst. The minimum

value of R, 0.01, is reported as the effective wave width of

the idealized spherical cloud. The maximum wave

overpressure and impulse are then computed from the scaled

values (115] as

P =	 P	 (3-28)
C	 C 0

	

= 1 W x4198x106	
P

(	 .	 C	 (3-29)

	

)	 0

0

Employing the triangular representation for the

overpressure-time curve leads to the evaluation of the

overpres sure duration time as

	

t = 2i /P	 (3-30)
C	 C	 C

3.3.4 DYNAMIC PRESSURE PREDICTION

The most destructive effect of a blast wave is generally

characterized by the peak overpressure. However, in many

cases, depending on the structure geometries, the strong

transient winds behind the shock front can be of greater

significance. These drag forces are a function of the size

and shape of the structure, and the peak value of the

dynamic pressure resulted from the wind behind the shock
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front. To predict the peak value of dynamic pressure, the
shock front velocity, peak wind velocity and the density of
the air behind the shock front are needed. The shock front
propagates outward from the point of burst with a velocity
which is a function of the peak overpressure just behind the

shock front and the ambient conditions of the air ahead of
the shock wave. The shock front velocity, U, at the point
of interest is calculated [161] as

	

U =CM	 (3-31)
S	 0 S

In terms of shock velocity, the wind speed is given (113,

114, 116] as

U 
= l+7h

u2 - CO2

U$
(3-32)

In terms of overpressure, the peak wind velocity and the air
density, p, behind the shock front are expressed (113, 115]
as

	

___	 ___ I sio	 .	 '	 h

	

C P	 1	
[ 

7 + 1 "I	
1/2

U = _	 11+	 27 lvI•	 7h °

	

h ,	 oJ

I(Th +1) P+2ThPl
PS = P0 [
	 h - 1) P5 + 2 Th Po 

.1

(3-33)

(3-34)

The dynamic pressure is proportional to the square of the
wind velocity and the density of the air. The peak dynamic

pressure, 
d' 

is defined (113-128] as

1	 2
P = - p u	 (3-35)

d	 2 • s

From the above relations, this can be shown to be [113, 115]

P2
IP =

d	 27P+(7 —1)Pho	 h B

(3-36)

Under ideal gas conditions	 = 1.4), equation 3-36
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0.02662 P
U

I
+ 1 + 0.011 P$

(3-38)

t = 20W113
q

(3-39)

reduces to

S	
ii2	

J
=	

[7 P0 + , (3-37)

Equation 3-37 agrees reasonably well with measured data up

to an overpressure of about 689 N/rn2 [120]. In general, it

is estimated that the predicted range at which a given

dynamic overpressure due to a nuclear burst occurs, is

predicted reliably within an error of 25%.

The dynamic pressure time arrival is considered (120,

122-127] to be the same as that of the peak overpressure

discussed earlier. The dynamic pressure positive phase

duration, t, is expressed in seconds for 1-MT surface

nuclear burst [121) as

	

1	 0.077 P

	

t = I	 +
q	

1 + 0.085 P + 0.0075 P 2	1 + 0.00042 P2

in which w is the explosion yield in megaton. Values for

other nuclear weapon yields can be obtained by the cube-root

rule. For conventional explosions the drag pressure

duration is defined in millisec (126] as

in which W is the explosion yield in metric tons of

equivalent TNT.

The variation of dynamic pressure with time is much like

that of the overpressure with a sharper decay but a longer

duration. As in the case of overpressure, it is often more

convenient to use an equivalent triangular pulse to

represent the actual dynamic pressure-time curve. The peak

dynamic pressure is used as the initial value of the

- 71 -



equivalent pulse. The duration time and the drag impulse

duration are defined graphically in [120, 121] for 1-MT

nuclear surface burst.	 The corresponding value for

explosions, t is expressed in millisec (126]

wt = 9.04	 —	 for P < 2 bara'.	 a)

	t' = 14.35 W113 / P for P	 2 bar
I	 a	 a

(3-40a)

(3-40b)

3.3.5 REFLECTED OVERPRESSURE PREDICTIOM

Reflection is caused by a momentum change when the

propagating airblast strikes a surface in the path of

propagation. The ratio of reflected overpressure to

incident overpressure is called the reflection factor (121,

122] which is a function of the peak overpressure in the

incident wave and the angle at which the wave strikes the

surfaces. When the blast reaches an object at right angles,

or nearly so, the resulting reflection produces a peak

ref lected overpressure, P, given (135] by

	

P = 2 P + (1 + ) p	 (3-41)
r	 a	 h	 d

Considering ideal gas conditions 	 1.4) and substituting

for	 from equation 3-41, the peak reflected overpressure

is expressed as

	

P	 6P

2+ P +;	 (3-42)

	

a	 S	 o

Equation 3-42 is valid for ideal gas when the overpressure,

is less than 10 bars. The peak reflected overpressure

given by equation 3-41, can approach a value of twice the

peak incident overpressure for weak shocks in which the peak

dynamic pressure is negligible, but to approach a value of

eight times the peak overpressure for strong shocks in which

the peak dynamic pressure is dominant [113, 135]. 	 This
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t	 = 2i /P
Ir	 r	 r

(3-45)

upper limit is probably considerably in error [113, 135],

for it is based on the assumption that the air behaves as a

perfect gas even at the high pressures and temperatures

existing under strong shock conditions. It has been shown

(142) that this ratio can be much greater, perhaps 20, if

real gas effects such as dissociation and ionization of the

molecules are accounted for. Brode [143] has calculated

this ratio for normal reflection of shocks assuming air

dissociation ionization. Thus, for P greater than 10 bars,

he suggested an empirical modification given as

P
4 log10 P + 1.5
	

(3-43)

In this relation, P/P should not be taken greater than 14,

(126].

Equation 3-42 or equation 3-43 give only peak pressures and,

hence, little indication of time histories of reflected

pressure. Lacking more accurate prediction methods, it is

suggested (115] that one can roughly estimate the reflected

impulse, i, if the side-on impulse is known, by assuming

similarity between the time histories of side-on

overpressure and normally reflected overpressure. This

assumption gives

	

i	 P

	

r	 r= -	 (3-44)

	

1	 P

	

S	 S

The actual reflected overpressure time history is idealized

by an equivalent triangular pulse. The actual positive

duration is replaced by a ficticious duration expressed as

3.3.6 EXTERNAL BLAST LOADS ON ABOVE-GROUND STRUCTURES

In the examination of airbiast loading on structures, it is

generally assumed [121, 122) that
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1 - The loading is considered to be associated with an

ideal shock in which the peak overpressure is reached

instantaneously.

2 - The structure is in the Mach reflection region, where

the airblast front is propagating parallel to the ground

surface. However, a structure located in the regular

reflection region can be considered by employing higher

shock loads in the Mach reflection region to account for the

incident blast wave reflections on the ground surface.

3 - The initial shock loads on solid objects can be

decoupled from the response of the objects to the loads.

4 - The structures are treated as rigid bodies which cause

processes such as shock reflection, diffraction and

alteration of air flow behind the shock front. This is

acceptable because of differences in elastic properties as

well as in density between the wave transmitting media (air)
and concrete structures.

The procedure presented here for the determination of the

external blast loads are limited to rectangular structures

positioned above the ground surface where the structures

will be subjected to a plane wave shock front. However, the

procedures can be extended to include structures of other

shapes as well as structures positioned at and below the

ground surface. Given the many uncertainties involved in

the evaluation of blast loads, as well as in the interaction

process between the blast wave and the structure, it is

recommended [115, 120-127] that the actual blast effects in

the incidental and reflected shock waves may be approximated

by equivalent triangular pulses of similar impulses. Each

pulse has a peak pressure value similar to the actual blast

effect and ficticious durations defined earlier as functions

of the impulse and the peak pressure.

On the front face of an above-ground structure, the

pressures vary with time in the manner shown in Figure 3-6.
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There is a very rapid rise time to the peak reflected
pressure P followed by a rapid decay as the high reflected
pressure causes a flow around the structure. The decay of
the reflected pressure to the side-on overpressure plus
dynamic pressure takes place in a clearing time, t, which

is a function of the shock velocity U and the shortest
distance from the point on the structure where the reduction
in pressure takes place most slowly. The clearing time is
given by the relation (122, 126]

	

t = 3S/U	 (3-46)
C	 S

where S is equal to the height of the structure or one-half

the structure width, whichever is less. After the clearing
time, the pressure decreases to zero with the decay in
side-on overpressure and dynamic pressure. During this
decay period, the maximum pressure is given (120-127] by

	

P = P +C	 (3-47)
S	 £

where C . is the drag coefficient for the front face. It
generally ranges in value from 0.8 to 1.5 and may be taken

as 1.2, (126]. The values t and t 1 shown in Figure 3-6 are
evaluated as the ficticious durations of the dynamic
pressure and the incident overpressure, respectively. The
rise time, t . to the peak pressure is small and can be
generally neglected.

The loading on the rear face of an above-ground rectangular
structure is shown in Figure 3-7. No pressure is
transmitted to the rear face until the shock front reaches
that face. Using the same time reference as for the front
face, average pressure begins to build up on the back face
at a time equal to the length of the structure (L) in the
direction of the shock propagation divided by the velocity
of shock propagation. At some time after the rear face has
become completely engulfed in the blast, the pressure
reaches a maximum value equal to the side-on overpressure
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reduced by an amount equal to the drag pressure, which acts

as a suction on the rear surface. The time needed for the

pressure build up on the rear face is expressed (126] as

t = L+5S	 (3-48)
rb	 U$

The drag coefficient for the rear surface C generally

decreases from about 0.5 for low pressures to less than 0.3

for high pressures and may be taken as 0.4 for most purposes
(126]. The net transverse loading on the structure as a

whole is the difference between the front and rear face

loadings. Care must be taken to subtract the pressure

values at the time ordinates of the loading histories.

As the blast wave passes over the structure, the roof

loading at any time is equal to the incident overpressure

reduced by a negative drag pressure or suction associated

with the flow of air around the structure. The average roof

loading is idealized as a triangular load (122, 126] with

time rise given by

Lt =t +
rr	 rf	 U	 (349)

The peak value of the pressure is expressed as (122, 126] as

	

P = P-C P	 (3-50)I	 t d

and the duration of the equivalent pulse is equal to

t	 = t +t	 (3-51)
da	 rr	 I

The drag coefficient for the roof C is assumed to be the

same as that of the rear face of the structure.

For situations where the front and rear of a structure are

separated by a length sufficiently large so that it

represents an appreciable scaled distance, the blast waves

at the front and the rear may differ with regard to their

basic characteristics. In this case, separate loading-time
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histories are computed for the front and rear faces.

3.4 AIRBLAST LOADING DUE TO THE INTERNAL EXPLOSIONS AND

CONTACT BLAST

Explosions which occur within structures normally develop a

very complex pressure-time history at any position inside

the structure. Although this complex loading cannot be

predicted exactly, approximations and model relationships

have been developed (115, 122] which can be used to define

blast loads with a degree of confidence.

3.4.1 EFFECTS OF CONFINEMENT AND VENTING

The loading from an explosive charge detonated within a

vented or unvented structure consists of two essentially

distinct phases (115, 128], Figure 3-8. The first phase is

a dynamic pressure from the initial and reflected shock

waves. This consists of an initial high pressure (free-air

pressure), short duration reflected wave, plus perhaps

several reflected pulses arriving later at times closely

approximated by twice the average time of arrival of first

pulse at the structure walls. These later pulses are

usually attenuated in amplitude because of an irreversible

thermo-dynamic process and are very complex in waveforms as

a result of the nature of the reflection process within the

structure whether vented or unvented. The second loading

phase is a quasi-static gas pressure pulse associated with

the accumulation of the gaseous products and temperature of

the chemical process involved in the explosion. The gas

pressure build up will not begin until sometime after the

onset of the shock pressures. Furthermore, it takes a

finite length of time after the onset of gas pressure to

reach its maximum value. However, these rise times are very

small and for analysis purposes, the time rise is treated as

instantaneous (115, 122, 128). The amplitude of the

quasi-static gas pressure depends on the specific energy and

the weight of the high explosive as well as the volume of

the confinement. Typically for the confined explosion, the
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gas pressure will remain after the dissipation of the

reflected shock waves. Depending on the degree of

confinement, the confined effects of these pressures may

cause severe damage to the structure unless it is designed

to sustain the effects of internal pressures. Provisions

for explosion venting will reduce the magnitude and duration

of the applied pressures. The use of structuures with one

or more surfaces either sufficiently fragile or open to the

atmosphere will provide some degree of venting depending on

the opening size. The fragile elements of structure fail

and thus reduce the confinement of the explosive gases and

hence the amplification of the shock pressures.

Internal blast can also result from the rapid combustion of

fuel dispersed within a confined volume of air. Examples

include destruction of grain elevators by grain dust

explosions and damage to buildings and plants as a result of

leakage of flammable gases and liquids. Pressures generated

in confined gas-phase explosions are not high compared with

ordinary detonation pressures. However, durations can be

comparatively long, perhaps of the order of seconds versus

milliseconds for a conventional external blast wave. The

mechanism of the propagation of the explosion reaction is

considered in most cases to be of the deflagrative type

(116, 144-147]. A pressure-time trace for a typical

internal explosion is shown in Figure 3-9. This figure

shows three distinct pressure regions [116]. First of

these, indicated by (a), is an initial pressure rise that

occurs at a rate set by the chemical kinetics of the

combustion reaction. The high pressure region, marked by

(b), occurs at the central portion of the trace where

pressures are limited by heat sinks of chemical

dissociation. The third region, part (c), is that of

pressure decay which results from the cooling effects of

confining walls, plus pressure relief effects as gases

escape through leaks or vents.
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tkT	 (3-53b)

,tT
S

(3.52b)

0tTr (3.53a)

3.4.2 HIGH EXPLOSIVE SOURCE

As a result of the close-in effects of the explosion and the

amplification of blast pressures due to reflections within

the structure, the distribution of the dynamic loads on any

surface will be non-uniform with the structural surface

closest to the explosion being subjected to the maximum

load. In the literature, semi-empirical methods for the

calculation of the previously mentioned two phases of

internal loading have been proposed.

(i)	 Shock wave loadin

The air shock loading on the interior surfaces of structure

is quite complex for all real structural geometries.

However, approximate loading predictions have been made

(122, 128) with the aid of simplifying assumptions. First,

it is assumed that the initial reflected parameters can be

taken as the ideal normally reflected parameters, even for

oblique reflections from the structure walls. This

assumption is reasonably valid for strong shock waves up to

an angle of incidence of about 40 degrees and for weak shock

waves up to about 70 degrees, provided that the slant range

is used as the distance from charge centre to the point of

interest. The second simplifying approximation is that the

incident and reflected blast pulses (P, P) are triangular

with abrupt rises, i.e.

(	 tP (t) = P
$	 S

(t) = 0

(	 tP (t) = P
F	 F

F,

r 
(t) = 0

, 0	 t T
	

(3-52 a)

The duration of these pulses (T, T), are not the same as

the actual blast wave durations, but instead are adjusted to

preserve the magnitude of impulses, i.e.
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T = 2 1 / P	 (3-54)
S	 I	 S

T = 2i /P	 (3-55)r	 r

As a third assumption, the re-reflected pressure waves after

shocks are ignored in estimating blast loading because the

pressures and impulses are then much lower than in the

initial pulse. For more exact predictions, it is suggested

[115] that the combined loads from all the successive

reflected shocks could be assumed to be 1.75 times those
from the initial pulse. Thus, the duration T calculated by

equation 3-53 is to be multiplied by 1.75.

Following the above assumptions, the maxima for the initial

phase of internal blast loads on a structure can be

estimated from the analytical relations of the parameters

relevant to normal blast wave reflection from a rigid wall

for a free air burst of spherical TNT, presented earlier in

section 3.3.2. The actual time history is idealized to the
triangle pulse (P - T) as depicted in Figure 3-8.

(ii) Quasi-static g pressure

When an explosion from a high explosive occurs within a

confined area, gaseous products will accumulate and the

temperature within the strcuture will rise, thereby forming

a blast pressure whose magnitude is generally less than that

of the shock pressure but whose duration is significantly

longer. The magnitude of the gas pressure which eventually

settles to a slowly decaying level, is a function of the

volume and vent area of the structure. The smaller the

venting area, the longer the duration of the pressure.

Concurrent with experimental work which preceded

applications to blast resistant structures, Baker et al

[128] have suggested a simplified quasi-static gas pressure
form shown in Figure 3-8 in which the gas venting pressure
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is assumed to follow a linear curve with zero time rise.

The two parameters of interest for the construction of the

quasi-static portion of the idealized loading function are,

the peak quasi-static pressure, P, and the time, tbl at

which the pressure returns to ambient. Such time is often

referred to as the blow-down time (122, 128]. The maximum

value for the overpressure, P, in the gas venting phase is
the pressure rise which would occur in an unvented enclosure

before heat transfer effects attenuate it. From data and

analyses in several references, the curve of Figure 3-10 has

been shown (115, 128] to yield good predictions of P if

the quantity of explosive W and the internal volume of the

structure V are known. To evaluate the duration tb of the

gas pressure, Baker et al (128) defined the following scaled

quantities; the scaled initial gas pressure i5 and the

scaled blow-down time, r. These quantities are given by

P +P=	 qs	 0	 (3-56)
0

A	 a-	 0 U	 0	 t	 (3-57)t 

= I	 L v113	
b

in which a is the speed of sound at standard sea level, A

is the internal surface area of the structure, a is the

vent area ratio and V is the internal volume of the

structure. The vent area ratio for a vented roof or wall of

structure is given as

	

a = A/A	 (3-58)
a	 v	 w

where A and A are the vent area and the wall area
V	 II

respectively. Figure 3-11 gives the scaled duration of gas

overpressure as function of scaled maximum pressure. Thus,

equation 3-57 leads to the corresponding dimensional

quantity as

(V	
'1

t =b	 a A a	 (3-59)
a B 0
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In Reference (122], the terms partially vented and fully

vented are defined according to values of the scaled vent

area ratio A/V2"3. If this parameter is greater than 0.60,

gas venting times should be less than initial shock load

durations, and the structure is fully vented, i.e. gas

pressure parameters can be ignored. But, if it is less than

or equal to 0.60, the structure is partially vented, and gas

pressure parameters must be considered. Figures 3-10 and

3-11 give upper limit predictions compared with the data

represented in several graphs of Reference (122].

3.4.3 COMBUSTIBLE GAS OR DUST MIXTURES WITH AIR

Accidental explosions within structures are much more likely

to occur with combustible gases or dust suspended in air.

As a result, there is a large volume of literature dealing

with internal gaseous (144-153] and dust explosions (135,

154-157] and the effects of venting on pressures generated.

Parameters assumed to be important in these studies are

geometric ones such as shape and volume of the enclosure,

the vent area, heat of combustion of the dust or gaseous

fuel and the ratio of the actual fuel supply to that of

idealized combustion.	 These parameters determine the

maximum pressure P, maximum rate of pressure rise	 and

the rate of pressure relief by venting, 
ve 

which in turn

are employed to establish the pressure-time curve according

to the explosion mechanism described earlier in section
3.4.1.

A variety of relationships have been derived (144, 148] to

predict maximum internal pressure rise P that can be

generated by the ignition of a gas-air mixture in a vented
enclosure. Rasbash [149, 150] has correlated the results of

various workers and from studies conducted on small

enclosures (149], derived the empirical equation

	

P = A P + B K	 (3-60)
gas V	 gas g
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where P is the pressure at which the vent is created, K is

the ratio of the smallest cross-sectional area of the

enclosure in which the explosion occurs to the area of vent,
2	 2A and B	 are constants given as 1.2 kN/m and 2.8 kN/mgas	 gas

for natural gas and about 3 times these values for town gas

(144]. The limitations of equation 3-60 are listed as

1 - The ratio of maximum and minimum dimensions of the

enclosure is less than 3.

2 - The vent area factor K is between 1 - 5.
g

3 - The weight of the covering on the vent does not exceed

24 kg/rn2.

4 - The pressure P does not exceed 7 kN/m2.

On the basis of tests carried out by the Dutch Institute,

TNO, Dragosavic (152) has derived the maximum internal

pressure as the greater of the following two values

B
P = A P +	 + C

S	 gas V	
V'2	

gas

P = P + Cv	 gas

where

'Ii =A/V

(3-61a)

(3-6 lb)

(3-61c)

The suggested values of the constants	 , B , C forgas	 gas	 gas

natural gas are 0.5, 0.4 kN/m2 and 3.0 kN/m2 respectively.

For dust explosions, the followirg semi-empirical

relationship has been given (154] for calculating the

maximum pressure as

CdustP = P +
5	 0

ad

I c (dP
IA	 Idt
LVI sax

(3-62)

where	 is the maximum rate of pressure rise,(dtJ p	 isad
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the theoretical limiting adiabatic pressure, and V is the

volume of enclosure. 	 The constant C	 is an empirical
duit

constant which depends on the ratio of specific heat of

dust and the density of unburnt dust suspension at ambient

condition. The maximum rate of pressure rise can be

evaluated [156] from

1/3

dt	 v	 = K	 (3-63)

	

C	 9

The flame front travels a considerable distance from the

point of ignition before most of the fuel or dust is burnt
out. The rate at which the combustible material becomes

engulfed is proportional to the internal surface area of the

confining volume. Furthermore, pressure increase is

inversely proportional to this volume. These considerations

provide the following expression for the rate of pressure

rise, P, in a confined explosion [116] as

S
=	 () (_	

) (	
-P	 (3-64)

c	 p	 md	 ad	 ab.J

where C is a coefficient, S is the total internal surface

area of confining volume V 1 and P	 is the induction

pressure ( 0.92 the initial pressure). The coefficient

of pressure rise rate has been defined (116] in terms of

flame front laminar burning velocity U (m/sec)

	

C = 30 U	 (3-65)i'	 I.

By considering the second law of thermodynamics, the rate of

pressure relief due to vents of gases retained within a

volume V, is suggested (116] as

A
P	 = -375 ( - 1 P	 for P > 1.75 bars (3-66a)ye	 V I abs

C'
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A(	 v'P	 = -875	 - I	 " -	 1 for P < 1.75 barsye .	 abs	 oJ
(3-66b)

in which nab, is the absolute pressure at a given time.

There is still a considerable amount of research to be done

to enable a reasonable prediction of the loading function

for gas and dust cloud explosions. For gaseous

deflagrations, it has been suggested [144, 145) that the
pressure-time history can be represented by a triangular

pulse of time rise of 0.1 - 0.15 seconds, a duration of 0.3
second and a peak pressure of 25 - 50 kN/m92. For design

purposes, a value of 34 kN/m2 uniformly applied pressure has
been recommended (158]. A more realistic estimate for the
maximum pressure, based on the volume of closure, vent area,

and relief pressure P, has been given in Reference (135].

3.4.4 CONTACT BLAST

A contact blast is the loading that arises from the

explosion of a conventional weapon either directly on or in

the near vicinity of a structure. In free air, the region

of contact blast corresponds to a proximity factor of less

than 0.4 m/kg 1 . The blast loading, P, on a concrete slab

is defined (134] as a function of the concrete cube strength

as

P11 = 8000 ch kN/m2
	

(3-67)

where O'hS the characteristic cube strength of concrete in

N/mm2 . This loading is assumed to apply over a circular

area of radius r given (134] in metres by

1/3

rb = 1.08 (w/cr" I	 (3-68)
chJ

in which W is the equivalent charge weight measured in

kilograms of TNT.
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In addition to considering the loading of a contact

explosion, local effects need to be considered. The

thickness of the structural member will be generally

determined by consideration of blast local effects. A

weapon striking or exploding against the external face of a

concrete slab results in compressive stresses on the

external face sufficiently large to cause plastic flow and

cratering of the surface. The resulting compressive shock

wave in concrete travels to the interior face of the slab

where it is reflected with a change of sign. This means

that the compressive stresses are converted to tensile

stresses. As the tensile strength of concrete is much less

than its compressive strength, tensile fracturing on the

interior face of the slab occurs with the result that

spalling of concrete occurs at the interior of the structure

with concrete particles being projected at considerable

velocities.

The compressive plastic deformation of the slab under blast

loading may be sufficiently large and rapid to cause lumps

of concrete to ditch from the interior slab face in a

similar way to spalling. This effect is termed [122, 134]

as scabbing. To ensure that spalling is either limited or

prevented, Reference (134] makes recommendations for the

minimum thickness of concrete slab as follows:

a) thickness to resist spalling 0.32 wi'3 metres

b) thickness at which slight spalling occurs 0.27 W113

metres

c) thickness at which heavy damage occurs 	 0.23 W1"3

metres

Frequently, metal spall plates are attached to the interior

face of a concrete slab to prevent spall being projected

into the interior. In this case the slab thickness used may

be in the range of thickness from slight spalling to heavy

damage.
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3.5 MODELLING OF GROUND SHOCK LOADS

When an explosion occurs at or near the ground surface,

ground shock results from the energy imparted to the ground

by the explosion and transmitted through the air and the

ground [120-122] to the point of interest. Air-induced

ground shock results when the airbiast shock wave compresses

the ground surface and sends a stress pulse into the

underlying media. The magnitude and duration of the stress

pulse in the ground depends on the character of the airblast

pulse and the ground media.	 Generally, the air-induced

ground motions are maximum at the ground surface and

attenuate with depth (120, 121]. Direct ground shock

results from the explosive energy being transmitted directly

through the ground. This motion includes both the true

explosion-induced motion and cratering-induced motion. The

resulting motions have a longer duration than the
air-induced ground shock and the waveform tends to be

sinusoidal.

The prediction methods found in the literature combine

nuclear and high explosive test data with relationships from

theoretical studies. The main assumption cited in these

methods is the free-field ground shock phenomenon

(120-122]. The complicated interaction of ground stress

curves with the structure is not included.

3.5.1 AIRBLAST-INDUCED GROUND SHOCK

The prediction of actual ground motion is quite complicated.

However, conservative results to estimate airbiast-induced

ground shock from nuclear explosion were presented by

Newmark (124] based on one-dimensional wave propagation

theory and experimental data. The same approach has been

adopted [122] for conventional high explosives. The peak

displacements, velocity and acceleration are found in terms

of overpressure, charge yield, rise time and the density and

seismic velocity of the soil. Since the range of seismic

velocities of soils is so large it is recommended that the
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V = 1.5 P rn/sec
V	 I

(3-70)

i
ID = pC

p p

0.5P t
-or	 D

V_
pp

(3-71a)

(3-71b)

lower bound value of the velocity be used to produce a

conservative estimate of the induced motion.

For a surface structure located on ground media having

uniform properties, the maximum vertical velocity at the

ground surface, V 1 can be expressed [122, 124] in terms of

the peak overpressure at the point of interest as

P
V =	 (3-69)

v	 pCp p

where p and C are, respectively, mass density of the soil

and the compression wave seismic velocity of the soil. The

impedance (p C) in equation 3-69 is approximately 6.67 x

10 kg/rn2 Sec. The following relationship applies for the

mean value (121]

in which P is given in MegaPascals.

The maximum airbiast-induced vertical displacement near the

earth's surface is obtained by integrating equation 3-70

with respect to time (122, 124]. The time integral of the

overpressure is simply the total positive phase impulse per

unit area so that

To consider the effect of soil layering, an empirical

relation (121) is established to calculate D in metres as

D = 0.09 wi'6 (H/50)° 6 P 2'3	 (3-72)

in which w is the explosion yield in Megaton and H is the
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A = l5OPgyr	 i (3-74)

depth of the reflecting soil layer in metres.

The peak vertical acceleration is a function of the shape

and duration of the rise curve to the peak velocity. Based

on the assumption of a linear rise of surface pressure and

particle velocity (122, 124], the maximum vertical

acceleration Avr? can be expressed as

	

A = V It	 (3-73)yr	 V	 v

where t is the rise time to the peak velocity. At the

surface this is equal to the rise time of the airbiast. It

is suggested (122] that an airbiast rise time of 0.001 sec

can be used and the results are increased by about 20% to

account for nonlinearity of the rise. In terms of peak

overpressure, the mean value of the peak vertical

acceleration induced by airblast (121] is

in which P is in MegaPascals and g is acceleration due to

gravity.

The maximum horizontal ground motins are expressed in terms

of the maximum vertical motions, the seismic velocity of

soil and the shock wave velocity (122, 124], so that

= D tan [sin-i (c I U) ]

V = V tan Is in-i IC / U
H	 v	 L	 S

A = A tan is in-i IC / U
H	 yr	 L	 s

(3-75)

(3-76)

(3-77)

For (C / U) greater than unity, it is recommended 1121,

122, 124] that the horizontal motion be set equal to the

calculated vertical motion. The mean value of the

horizontal velocity (121] is expressed in terms of the peak
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(3-79a)for rock

(3-79b)for soil

d = d forsoj].h	 v (3.80b)

150
vd	 1.5

(3-81)

V =V
h	 vd

(3-82)

- 10000
a	 -	

118 z2

(3-82)

overpressure (in MegaPascals) as

P
VH	 10
	

(3-78)

3.5.2 DIRECTLY TRANSMITTED GROUND MOTION

Present knowledge of directly transmitted earth shock is

substantially less extensive than that of induced effects.

Empirical equations have been developed to predict the

resulting ground motion (121, 122, 124). The equations

apply for TNT detonations at or near ground surface where

the ground shock parameters are expressed in terms of the

charge weight, the ground range and the scaled distance from

the explosion. The maximum vertical displacinent, d, and
the horizontal components, dh , of the ground surface are
given as

d = 0.025 R1'3 W1'3
V	

zi.3

d = 0.17 R113 w1"3
V	

z2.3

d = 0.5 d for rock (3-80a)

For all ground media, the maximum vertical velocity, Vd,

and the maximum horizontal component, V, are expressed as

Finally, the maximum acceleration components are given by
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ah = 0.5 a for dry soil	 (3-83a)

a = a for rock and wet soil	 (3-83b)
h

3 • 5 • 3 NET GROUND SHOCK LOADS ON STRUCTURES

The net ground shock associated with an explosion is a

combination of the air-induced and direct ground shock.

Since the methods of analysis described in this thesis are

applicable to rigid concrete structures located at some

distance from an explosion, the structural motions are taken

equal to ground motions in the vicinity of the structure.

Similar assumptions have been made elsewhere ( 120, 122,

124). The time at which the shock is felt at adjacent

structures and the magnitude and duration of the motion is a

function of the quantity of explosive detonating, the ground

range and the soil media. As the air-induced ground shock

is a function of the airblast, the arrival time and duration

of the ground shock may be taken equal to the arrival time

t and duration t of the airblast described in section 3.3.

The arrival time of the direct ground shock, t, is derived

as a function of the seismic velocity of soil and the

distance from the explosion (122] such that

12000 Rt	 =	 (3-84)
ag	 C

p

The actual duration of the direct shock load is not readily

available. However, it is sufficient to realise that the

duration is long, that is, many times longer than the

duration of the air-induced ground shock (122].

The net ground shock is obtained from consideration of the

arrival time and duration of each type of induced shock. If

(t + t) is less than t , the structure is subjected to
a	 a

superseismic ground shock [122, 124) where the air-induced

shock arrives at the structure first and is dissipated by

the time the direct shock arrives. If t is greater than
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tagl the structure is subjected to an overtaking ground

shock. The direct induced ground shock arrives at the

structure first, and since its duration is long, the

air-induced ground shock will arrive at the structure while

the directly transmitted shock is still acting. 	 The

structure receives the combined effects of the induced

shock.	 If t is slightly less than t and (t + t) is

greater than t, the combined induced ground shocks have to

be considered. In practice, the effect due to directly

transmitted ground motion is negligible compared to

air-induced earth motion due to the fact that soil is not

able to transmit high frequency motion [159].

3.6 MODELLING CONSIDERATIONS OF BLAST LOADS FOR NONLINEAR

DYNAMIC ANALYSIS

The procedure presented in this chapter for the numerical

modelling of blast loads caused by different sources of

explosions, is applicable to above-ground structures. The

shock loads and the resulting structural motions apply to

rigid concrete structures positioned in the near and remote

regions of the explosion source. At distances corresponding

to the pressure ranges resulting from these conditions, the

shock loads are uniform across the structure. The response

of structures located at comparatively close distances to an

explosion that is, contact blast, as well as the motion of

non-rigid structures may be determined. However, the local

effects associated with these conditions such as motions due

to cratering and fragment impact must be accounted for in

the determination of structural response. For the purpose

of this thesis, the blast effects are most conveniently

represented as a loading-time history that is applied to the

elements of a structure as transient loading. The way a

blast load affects the structure depends not only upon its

duration but upon its rise time and general shape as well.

The load can be classified as impulsive, dynamic or

quasi-static relative to a specific structural component.

If the period of the fundamental vibration of the component
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is very short compared with the load duration, the load may

be quasi-static. If the period of vibration is long, then

the load may be impulsive for that component. The

intermediate region between impulsive and quasi-static,

where the periods are about the same as loading time, is

considered as dynamic. For most concrete structures, blast

effects are idealized as impulsive or dynamic loading.

From reviewing the available unclassified literature, it is

concluded that precise loading information is hard to obtain

and may not be justified because of the many uncertainties

involved in the interaction process between the blast wave

and the structure, the soil-structure interaction, the ideal
gas assumption in the derivation of governing relations, and

the venting process in case of internal explosions.
Idealized representations of time history of shock loads are

based on a linear approximation.

For nonlinear dynamic analysis of blast-loaded structures,
two distinct types of shock loads, air shock and ground

shock, have to be considered. P (t) is the blast load due

to air shock which acts on the structural system. U(t),

Ug (t) and Ug (t) are the displacements, velocities and

accelerations induced by the ground shock at the base of the

corresponding values of the structure. Thus, the total

displacements, velocities and accelerations of the structure

with respect to a stationary point {U (t), U ( t), U(t)} are

expressed in terms of the structure relative to the ground

{U (t), U (t), U(t)}, and the explosion-induced ground

components as

U(t) = U(t) + U(t)

U ( t ) = U(t) + Ug (t)
	

(3-85)

J:(t)
	

U(t) + U(t)
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Also, if P(t) is the total applied load, then

P (t) = P (t) - m U (t) 	 (3-86)
tot	 a.	 g

in which m is the mass of the structure and m U(t) is the

inertial force due to the ground shock. All of these loads

may act independently or they may occur in combination,

depending upon the nature of the exploding material and the

position of the structure relative to the explosion. For

predicting the maximum structural response, the following

features have to be considered in the modelling of these

loads on above-ground reinforced concrete structures:

1 - The types of loads that can be produced on a structure

by an external explosion are

*	 Side-on overpressure produced by incident shock

wave.

*	 Reflected overpressure on surfaces located normal

to the direction of wave propagation.

*	 Dynamic pressure caused by the wind behind the

wave front.

*	 Direct and airbiast-induced ground shocks.

The procedures for the calculation and distribution of these

loads are explained in section 3.3 and section 3.5.

2 - The internal loads that can be caused by a confined

explosion are

*	 Shock wave loading (for high explosives).

*	 Quasi-static gas venting pressure.

The numerical modelling of such loads is explained in

section 3.4 which also discusses briefly the loading due to

contact blast.

3 - For external explosions caused by nuclear weapons and

high explosives, the most severe loading case is due to the

combined effects of air shock and airbiast-induced ground
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shock. Being caused by the same source, namely airblast,

these dynamic excitations are treated to be in phase.

4 - Since the vertical motion of a concrete structure is

restricted by the ground which is already compressed due to

the dead load of the structure and its contents, explosion

induced vertical ground motion must necessarily be small and

can be safely neglected.

5 - Given the expected difference in the time arrival of

the various shocks to the structures, the direct ground

shock can usually be ignored.
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CHAPTER 4

FINITE ELEMENT FORMULATION OF REINFORCED CONCRETE

STRUCTURES SUBJECTED TO BLAST LOADING

4.1 INTRODUCTION

The finite element method, FEM, which was developed during

the mid-fifties, is certainly the most widespread numerical

method and is very well established in research and

engineering applications. The method is extensively studied

and described in many textbooks [112, 160-163] and numerous

publications. Application of the method to reinforced

concrete beams was first reported in 1967 by Ngo and

Scordelis [6]. Since then, the FEM has been recognised as a

most powerful and widely used approach for linear or

nonlinear static and dynamic analysis of reinforced concrete

structures, which may possess arbitrary geometry, loading

and support conditions, irregular stiffening and many other

aspects of practical design. Comprehensive state of the art

reviews can be found in [98, 109, 164, 165].

The complexity of blast loading as a transient and impulsive

loading and its combination to the various material

nonlinearities of concrete and steel necessitate the use of

finite element in the analysis of blast resistant and

protective structures. This approach enables the response

of various reinforced concrete structures to be more

accurately modelled and the internal structural action to be

more clearly understood.

The objective of this chapter is to introduce the finite

element formulations necessary for the spatial

discretization of the transient dynamic equilibrium

equations of plane and axisymmetric reinforced concrete

structures subjected to blast loading.

The basic finite element discretization process in dynamic

analysis is summarized in Section 4.2. The formulation of
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isoparametric element characteristics and the associated

numerical integrations are discussed in Section 4.3. The

computational modelling of the mass and damping matrices are

studied in Sections 4.4 and 4.5 respectively, in Section

4.6, the modelling of steel reinforcements is described. In

the final section of this chapter, the significance of some

FE procedural factors in the prediction of concrete

structural behaviour is given.

4.2 FINITE ELEMENT DISCRETIZATION OF DYNAMIC EQUILIBRIUM

EQUATIONS

4.2.1 VIRTUAL WORK ANALYSIS

Consider the motion of a body V subjected to simultaneous

airblast loading and airbiast induced ground excitations U

for which the internal stresses o are in equilibrium with

the surface tractions t acting on the portion Ft of the

boundary F and volumetric forces Z that include body,

inertial and damping contributions.

According to the principle of virtual work, if the body in

equilibrium is subjected to any virtual consistent

displacements u, then the virtual work done by internal

forces must equal that done by the external forces

irrespective of material behaviour. Noting that

Z=b-Ccz-p(f -f-cs)	 (4-1)

where b, p (ü+ ü'), c ü are the body, inertial and damping
forces, respectively, with p the mass density, C the damping

parameter and dots denoting the time differentation, we may

therefore write

L()T dv 
= J (&u)

T (b - p(d+ i.1) - cd] dv

+	

(u)T t d	 (4-2)

where 6c is the virtual strain vector associated with u.
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4.2.2 FINITE ELEMENT SPATIAL DISCRETIZATION

In order to obtain a solution of the differential equation

(4-2), discretization has to be performed. The spatial

discretization of continuum problems by the finite element

method is employed here for representation of concrete

structures. A brief outline only is given, noting that the

discrete equations are presented in matrix and vector form

as this is the more suitable form of notation for the finite

element discretization.

Following the standard finite element procedure [160], the

spatial domain V is divided into a finite number of m

arbitrary sub-domains, V. finite elements which are

connected at n nodal points. The isoparainetric elements

[112, 160-162, 166-168] which have been applied to many

practical problems, are used throughout this work. A single

set of functions is employed to interpolate the geometry and

the field variables inside each element from the respective

set of nodal values. These shape functions are defined in a

normalized coordinate system onto which the real or

distorted element is mapped. Thus, the displacements,

velocities and accelerations u, ü, ü, z can be expressed

in terms of their nodal values d, d, d, d by

a

U 
=	

N (,i) d1 = N d	 (4-3a)

a

ü =	 N1 (,ii) d1 = N	 (4-3b)
1=1

a	 .

N1 ( , ii) d 1	 N d	 (4-3c)1=1

a

=	
N (, •) Cd) = N	 (4-4c)1
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a

d =B6d
I	 I

1=1

(4-4)

in which N 1 (,i) is the global shape functions matrix

composed of submatrices N° (, ) = N 1 I, with I being a rxr

identity matrix and r, the number of variables per node, is

2 for plane and axisymmetric problems. With the element

strain displacement matrix B, we may relate the virtual

strain vector to the nodal variables as,

4.2.3 DYNAMIC EQUILIBRIUM EQUATIONS IN SEMI-DISCRETE FORM

Substituting equations 4-3 and 4-4 into equation 4-2 and

rearranging, we obtain

dT [H d + C d + P(d)] = adT (F - H d)	 (4-5)

in which M is the global mass matrix, C denotes the global

damping matrix, P(d) is the global internal resisting force

vector and F is the externally applied airblast load

vector. The terms in equation 4-5 are separately evaluated

from each element. Summing the contributions from all

elements, the characteristic matrices and vectors of

equation 4-5 can be expressed as

M = Me =

C 
= 

Ce 

=

ei "° =

F 
= F° = Jr

(N0)T p Ne dv

(N0)T C He dv

TBdv

(N0)T t d r +

(4-6a)

(4-6b)

(4-6c)

(Ne)T b dv (4-6d)

where r and V denote the surface and volume of the elementa	 a
under consideration. By invoking the arbitrariness of the

virtual displacements d, a resulting system of governing
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equations for dynamic problems is established as

H d+ C d + P(d) = F - H d	 (4-7)

For linear elastic situations, the stresses o are related to

the strains c by

=Dc =DBd

with the stress-strain matrix D, the dynamic equilbrium

equations can be rewritten as

S.

Md+Cd+Kd=F-Md
g

where

K	 K	
JV 

BT D B dv

(4-8)

(4-9)

is the global stiffness and K is the element constribution

in this matrix. The form of equation (4-7) has been used

throughout this thesis as it is especially convenient for

temporal discretization using explicit stepping procedure

(Chapter 6), where the global stiffness matrix K need not be

assembled.

4.3 ISOPARAMETRIC ELEMENTS: FORMULATION AND NUMERICAL

INTEGRATION

Two isoparametric element families have been extensively

used - Lagrangian and Serendipidity families [160].

The difference between them is based on the choice of shape

function. In this thesis, the 8-node biquadratic

Serendipity element has been adopted for plane problems. It

is the commonly used element for static and dynamic analysis

of two dimensional concrete structures. Providing that the

blast loading and boundary conditions in an axisymmetric

solid do not vary in circumferential direction, the solution

is independent of the circumferential coordinates, e. Under

these conditions, this three dimensional configuration

reduces to a two dimensional problem justifying the use of

the biquadratic element for the spatial discretization of
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8N°

öNe

8x

J- 8x
811

(4-10)
-xi

0Ne
IWxi

a_

811

dV =t detJ d dq
0

(4-11)

axisymmetric solids. The radial and axial coordinates

designated as r and z respectively correspond to the

cartesian coordinates (x, y) of plane problems.

4.3.1 FORMULATION OF ISOPARAMETRIC ELEMENT CHARACTERISTIC

MATRICES AND VECTORS

For the evaluation of the integrals in equation 4-6, it is

necessary to know the element geometry, element strain

field, and the elemental volume. To define the geometry,

typical 8-node isoparatnetric element shape functions are

shown and listed in Figure 4-1.

To evaluate the B-matrix in equation 4-4 the relationship

between the natural coordinate system (, ) and the

cartesian coordinates system (x, y) is defined first through

the Jacobian.

The cartesian shape function derivatives used in the

B-matrix in Table (4-1) may be obtained using the chain rule

of differentation (112, 160].

The discretized elemental volume is given as

in which detJ is the determinant of the Jacobian matrix and

t is the element thickness which is problem dependent as

given in Table 4-1.

Finally, the integration of equation (4-6) is performed in

natural coordinate system where the elements of the matrices

and load vectors are evaluated numerically.
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4.3.2 NUMERICAL INTEGRATION

The evaluation of isoparametric element characteristic

matrices and vectors is carried out numerically (169] on the

element level by the use of Gauss quadrature formulae with

nxn sampling points leading to

+1 +1

L. 
F 1 (x, y) dv =1 J F 1 (, ) t DetJ

e

n	 n

=	
F1 (	 77) t Det 3 W Wq

p=1 q=1	 (4-12)

in which is the appropriate integral and, , are the

natural coordinates of the sampling points and W W are

the corresponding weighting functions.

Numerical integration provides accurate results if the

integration order is adequate to evaluate exactly the

element volume. An th order quadrature permits the exact

integration of a polynomial of degree (2n-1) or less [160,

151, 169]. The optimum choice of the integration order is

very important, not only because of the cost of analysis is

increased when a higher order integration is employed, but

also because the results can differ significantly depending

on the order of integration rule adopted (170, 171]. For

two dimensional parallelogram biquadratic elements, a 3x3

integration rule ensures exact integration.

In the literature, three commonly used integration schemes

are found namely full, selective and reduced schemes. The

name full stands for the exact integration order. The

selective integration scheme is based on a different

integration order for different strain components

(172, 173]. The reduced integration scheme (174, 175] uses

an integration order which is one order lower than that

required for full integration for all strain terms. The

corresponding reduced quadrature order for biquadratic
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elements is 2x2. As already known, there are basically two

reasons for reducing the integration order: firstly, a lower

integration order softens the element, i.e. improving its

performance, and secondly, it reduces the cost of analysis.

However, the use of reduced quadrature scheme may result in

a certain stressless deformation mode which - if excited -

can completely destroy the solution. These modes are called

Kinematic or zero energy modes (175].

The conclusion of the excellent study in [175] which is

based on the examination of the stiffness, mass and natural

frequency modelling characteristics of the isoparametric

family is that the reduced integration can safely be applied

for the evaluation of the stiffness matrix of the

biquadratic Serendipity element while the full inetgration

scheme is recommended for the mass matrix to improve the

mass modelling properties of that element. Following this

conclusion for the nonlinear dynamic analysis of concrete

structures reported in the literature, e.g. [77, 93, 176],

resulted in an excellent result and more economic analysis.

Thus, for the present analysis, the 3x3 integration rule is

adopted for the evaluation of the element mass matrix while

the load vectors are numerically integrated by 2x2

integration scheme.

4.4 MODELLING OF MASS MATRIX

In the context of finite element, the mass matrices are

either consistent or lumped matrices according to the time

integration scheme chosen for temporal discretization of the

dynamic equilibrium equations (Chapter 6).

4.4.1 CONSISTENT MASS MATRIX

The term M° in equation 4-6 represents an element consistent

mass matrix, when the shape functions Ne are chosen to be

the same as the ones used in the evaluation of element

stiffness matrix. In general, applying the full integration

to calculate the consistent mass matrix gives the correct
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system of frequency [161]. This is because the actual mass

distribution of the system with the consistent mass

formulation is preserved and maintains consistency of the

momentum energy with the strain energy in the element.

However, it is a full matrix in which the off-diagonal terms

yield a cross coupling between the element nodal inertia

forces and lead to disadvantages in computation. Noting

that the term H° uses the shape functions Nc while the

stiffness computation involves their derivatives B, it is

therefore evident that the consistent mass matrix provides a

more accurate approximation for the structural inertia

forces than is obtained for the internal resisting forces

[177).

For these reasons, the inertial properties of the mesh are

often approximated by a lumped mass matrix.

4.4.2 LUMPED MASS MATRIX

In the solution of the dynamic equilibrium equations, it is

generally beneficial to make the mass matrix a diagonal

matrix which is crucial for explicit time stepping schemes

[176]. Lumping of mass by physical reasoning is fairly

straightforward for simple elements, but it is not obvious

for higher order elements.

In the literature review, several lumping procedures can be

found which can be divided into two main categories:

(i) Employ a set of different, lower order shape functions

to form the lumped mass matrix. dough (178) has defined

physical lumping in terms of separate shape functions N,

i.e.

H° =	 Ne p Ne dv	 (4-13)
I i	 J	 I	 J

V
e

where N are piecewise constant and non-overlapping

functions, which equal to unity in the vicinity of a node

and are zero elsewhere. For linear vibration problems this
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mass representation ensures convergence (179]. Hinton et al

(180] proposed a special mass lumping scheme where the

diagonal terms of the consistent mass matrix are scaled to

preserve the total mass of the element. The method has been

successfully used in the context of plane elements (176,

181], Mindlin plate (182] and shell elements [34).

(ii) Using numerical integration to obtain lumping. The

sampling points for numerical integration are chosen to

coincide with the element nodes, thereby yielding a diagonal

matrix as all except one shape function are zero at each

node. Fried (183] claims no loss of convergence rate if the

appropriate order of integration is selected. However, some

of the mass matrix terms may be negative and this can lead

to the computation of imaginary vibration frequencies (184).

Here lumped mass matrices for the 8-node isoparametric

element are presented in accordnace with the special lumping

scheme [180]. The diagonal mass matrix for such element can

be obtained by distributing the element mass in proportion

to the diagonal terms of the consistent matrix. Thus, for a

typical node i, the diagonal term m 11 of the lumped mass

matrix can be evaluated by

N
m =	 N	 (4-14)

U	 n	 0

k= 1

where M is the total element mass and n is the number of
0

element nodes.	 Using the right substitutions, equation

4-14 can be rewritten as

m =

	 .fNpNdv

k1	
N; p N dv L

p dv	 (4-15)

where p is the mass density of concrete. This technique has
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C=bN
0

(4-17)

proved to be successful in the linear and nonlinear dynamic

analysis of concrete structures (34, 77, 93, 176].

4.5 MODELLING OF DAMPING MATRIX

In practice it is difficult, if not impossible, to determine

for general finite element assemblages the element damping

parameters in particular because the damping properties are

frequency dependent. For this reason, the damping matrix C

is usually not constructed from the element damping matrices

like the mass and stiffness of the element assemblage. In

order to approximate the overall energy dissipation during a

system response, a concept of modal damping (161) is used to

evaluate the damping matrix, since the total damping in the

structure is often assumed to be a sum of individual modal

damping, which can be estimated from the known physical

properties of the structure. However, the modal damping

concept is not considered here as it is limited to linear

dynamic analysis and the resulting damping matrix is a full

matrix which is computationally inefficient for explicit

time integration scheme.

Very limited information is available on damping properties

of concrete structures in linear problems and there is even

less data available for damping in the nonlinear situations.

As a result it is assumed here that the damping matrix is

proportional to the mass and stiffness matrices. This is

known as Rayleigh damping (112, 161] given as

C=b M+b K	 (4-16)
0	 1

where b and b1 are damping parameters. Since the global

stiffness matrix is not formed in explicit time stepping

procedure, the second damping parameter must be set to zero

so that

where,	 b = 2	 w	 (4-18)0	 F F

- 113 -



in which and w are the damping factor and the circular

frequency, respectively, for the rt mode. A disadvantage

of Rayleigh damping is that the higher modes will be less

damped than the lower ones whereas the opposite would be

more desirable. However, in the analysis of structures with

widely varying material properties such as concrete, the

assumption of Rayleigh damping is found to be adequate.

Overall energy dissipation during a system response is

governed here by the proposed rate dependent viscoplasticity

based material models of concrete and steel (Chapter 5).

4.6 FINITE ELEMENT MODELLING OF STEEL REINFORCEMENT

4.6.1 REINFORCEMENT REPRESENTATION

In developing a finite element model of reinforced concrete

member, three alternative modelling techniques have been

employed [109], namely: smeared model, embedded model and

discrete model.

In the smeared model, the reinforcement is assumed to

be distributed uniformly over the element (185]. Assuming

perfect bond between concrete and steel, a composite

concrete-reinforcement constitutive relation is used in this

case (185].

The embedded model has been usually used in connection with

higher order isoparametric elements (168]. The reinforcing

bar is considered to be an axial member embedded in the

basic concrete element such that its displacements are

consistent with those of the element. Again perfect bond

must be assumed.

In the discrete model, a one-dimensional bar element or beam

element is superimposed on the two-dimensional concrete

elements (89]. The advantage of this representation is that

it can account for bond slip. However, since the element

mesh patterns has to follow the location of the

reinforcement, the total number of nodal points becomes
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larger. Numerically it is less efficient than other models.

A major advantage of isoparainetric elements is that fewer

and larger elements are required to adequately simulate a

particular structure than lower order elements. In order to

retain this efficiency, yet incorporate reinforcement

details, the embedded model has been adopted in the present

work. Steel has been simulated by axial bars for plane

problems, Figure 4-2a. For axisymmetry, the reinforcement

in the radial direction has been idealized by a membrane

with no hoop stiffness while in the hoop direction, the

reinforcement has been modelled as a membrane of no

stiffness in radial planes Figure 4-2b.

The geometry of such a bar lying anywhere within an element

along constant local coordinate lines, Figure 4-2a is

defined by using the same shape functions as the basic

concrete element.

4 • 6 • 2 FORMULATION OF THE EMBEDDED REPRESENTATION OF STEEL

The global coordinates of any point p(x, y) on the embedded

member as indicated in Figure 4-2a are given by

I	 'I	 exp 
= { } = 8

V N° k •n) jJ=N xL I
1=1

(4-19)

where x are the basic element nodal coordinates. As full

displacement compatibility between the bar and the basic

element is assumed, the displacements of the bar are

obtained from the displacement field of the basic element by

8
d =	 N (, -ii) d 1 = N° de	 (4-20)

1=1

At point p, the strain of the bar given in the local

coordinate system is defined by only one strain component as
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where

and

8uc = -	 (4-21)
8x

where u', v' are the corresponding displacements as shown in

Figure 4-2a. Using appropriate transformation and observing

that x' and coincide and differ only in magnitude, the

local strain component can be established [168] in the

following form

=	 B d	 (4-22)

where B is the strain matrix of the bar element and d1e

represents the vector of nodal displacements in the global

coordinate system. The explicit form of the strain matrix

is

	

B' =	 (A, B]
h2

	

_____	 aN;

A={c' + 2

	

8N°	 8N0

	

B={c	
+ c ii

3

	h= C(4fl2	

(8)2)1/2

(4-23)

(4-24)

(4-25)

(4-26)

2	 (8y'2=1i	 J	 C	
(aaJ , c3

(4-27)

The strain defined by equation 4-22 is applicable in both

plane and axisymmetric (x and y are replaced by r and z)

problems. However, in the latter case there is a further

strain in the circumferential direction defined by

e e
U Nu=	

= e e	
(4-28)

p Nr

where r is the radius at point p. In this case, the
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strain matrix can be explicitly expressed [27] as

B' = I (N / '' N° r ) , 0 ]
	

(4-29)
'	 L'	 --J1

Using the stresses and the strain matrix of the bar (or

membrane) element, the internal resisting force vector of

the membrane is then derived in the standard way according

to

T
= t'	

( B' ) 
a dv,	(4-30)

Ii V

where dv, is the element volume given for plane situations

as

dv,=A, hd
	

(4-31)

and for axisymmetry

dv,=2rrrthd
	

(4-32)

where A is the bar area and t is the thickness of a
a

circumferential membrane.

The contribution of the reinforcement members to the lumped

mass matrix of the basic concrete element is taken into

consideration by employing Hinton's special lumping scheme

(180]. Thus, for a typical node i, the diagonal term m 1 of

the lumped mass matrix due to a bar or membrane is evaluated

by

JV N' p N' dv
a	 S	 1	 a	 I	 $

= 8

k1 V 
N : 

P. N; dv,

a

dv	 (4-33)

where p is the mass density of steel.

Naturally, numerical integration must be used again for
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evaluating equations 4-30 and 4-33 but the integration

orders are applied only in one direction.

Finally, the composite internal resisting force vector and

the total lumped mass matrix are obtained from adding the

reinforcement member contributions to those basic concrete

elements containing it.

47 THE SIGNIFICANCE OF SOME FE PROCEDURAL FACTORS IN THE

PREDICTION OF CONCRETE STRUCTURAL BEHAVIOUR

4.7.1 FE MESH CONFIGURATION

In finite element analysis, no mathematical rules exist

which can determine in advance the size of FE mesh required

to achieve a given level of accuracy. The only existing

criterion is that the finer the mesh, the more accurate the

numerical results. It is usually recommended to adopt a

fine mesh where localized effects take place.

In analysis of reinforced concrete structures using finite

elements, it has been found that the overall stiffness and

predicted ultimate load decrease with the size of the

element mesh. When the size of the elements decrease, the

crack initiation is accelerated and the modelling exhibits

greater softening in the postcracking range [78].

Furthermore, refining the mesh locally can induce size

dependent influences since this intensifies the local stress

field. Nonlinear effects such as corrections due to

constitutive relationship and cracking can also cause

deceptive effects [186] in the modelling of such localized

zones. For example a localized fine mesh in the vicinity of

a point load will exhibit higher compressive stresses in the

direction of the loading but also a significant tensile
stress orthogonal to that direction, with the possibility of

inducing cracks at very early loading stages. The stress

corrections due to concrete constitutive relationship in the

high compressive stress zone can also manifest this mesh

size dependency.

- 118 -



For the present analysis, the conclusions of the only

comprehensive study (187] found in the literature on the

significance of FE mesh configuration have been considered.

These conclusions can be summarized as

(1) The element size should be the largest possible size

that describes adequately the structural configuration. The

lower bound limit to the size of concrete finite elements is

the length of the strain gauge used to record deformations

on concrete specimens i.e. 2 to 3 times the maximum

aggregate size used in the concrete mix (187].

(2) The mesh-size dependency rising from the localized

fine meshes can be minimized by adopting a FE mesh

configuration, which is as regular as possible over the
whole structure.

In the postcracking range, the mesh-size dependency has been

treated by employing an objective nonlinear softening model
for concrete, to be described in Chapter 5.

4.7.2 THE INTEGRATION RULE RELATED TO CONCRETE CRACKING

PROCESS

Cracks create discoritinuities in the displacement field of

the element and that cannot be reproduced without

introducing internal boundaries in the structure. To

overcome this difficulty in the context of finite element

analysis of concrete structures, the smeared crack approach

described in Chapter 5 has been commonly used where cracked

concrete is assumed to remain a continuum and the material

properties are modified to account for the damage due to

cracking. However, the method cannot be applied to any

finite element type without considering the consequences of

the continuity in displacements imposed by the shape

functions.

The 8-node isoparametric element gives a linear continuity

in strains which will lead to a critical condition if more
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than 2x2 integration rule is used [93]. In the case of a

3x3 integration scheme, a typical situation may occur if the

stress or strain is large enough to initiate crack at one

sampling point which means that an additional increase in

strain in this cracked point results in a stress release.

However, this will also result in an increasing strain in

the uncracked neighbouring point giving stress increase at

this point. This possibility is undesirable as the stress

is locked-in (spurious stiffening). Another consequence is

that a crack in any intermediate sampling point may be

followed by a crack at another point. Thus two cracks may

open while it should be only one. This phenomenon is also

undesirable as it discourages localizations (spurious

cracking). These phenomena do not disappear on mesh

refinement, since refinement does not remove the fundamental

assumption of displacement continuity. This situation is

avoided if only the 2x2 rule is employed. Thus, employing

the 2x2 integration rule was necessary in the present work

to release partially the continuity requirements imposed by

the shape function of 8-node isoparametric element.

However, the calculated crack patterns are not to be

accepted without considering their relevance.
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Figure 4.1 Typical shape functions of 8-node isoparairetric
element [271
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CHAPTER 5

MATERIAL MODELLING OF BLAST RESISTANT REINFORCED

CONCRETE STRUCTURES

5.1 INTRODUCTION

The ability of reinforced concrete to absorb energy under

dynamic loading conditions has led to its utilization for

structures which may be subject to blast loads. The low

probability of occurence of these loads necessitates design

of such structures according to the limit state concept,

ultimate load theories or plastic methods in which

irrecoverable structural deformation and material damage are

acceptable, provided that overall structural integrity is

maintained. Therefore, the numerical simulation of such

structural response requires a realistic modelling of

material nonlinearities in reinforced concrete structures

such as the inelastic response in compression, the

progressive cracking of concrete in tension zones, and the

inelastic deformation of reinforcing steel.

Another main characteristic of material behaviour which the

structure is to expect during a blast loading is high strain

rates. For high and conventional explosives, the range of

strain rate may be of the order of iO2 to 100 sec 1 . For

gas explosions, typical values are between 1O to iO2

sec 1. In general, the mechanical response of any

structural material is dependent on the srain rate. The

rate sensitivity of concrete plays a considerable role in

its dynamic load capacity. By increasing the strain rates,

the strength of concrete is significantly increased in both

tension and compression (16, 17, 31, 50). The same

conclusion is obtained for reinforcing steel [188-190).

However, in previous analytical models for concrete material

models, these rate effects have been neglected with the

exception of Ref s. [28, 34, 76], which employ a modified

viscoplasticity theory in which only the fluidity parameter

is rate dependent.	 As a result of introducing some
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simplified assumptions to account for the complex features

of concrete behaviour, these models suffer some drawbacks

which were discussed in Chapter 2. Therefore, there is a

need to provide a more realistic constitutive model for both

concrete and steel by including rate effects as well as

material nonlinearities.

The aim of the present chapter is to develop rate and

history dependent constitutive models for concrete and steel

under blast loading conditions. Furthermore, the

progressive concrete cracking in a smeared fashion and the

concrete material nonlinearities in the pre-failure and

post-failure regimes in compression as well as in tension

are simulated using suitable proposed rate dependent rules.

A perfect bond at the interface between reinforcement and

concrete is assumed.

The basic characteristics of the proposed concrete model are

summarized in section 5.2. Then, the details of the

numerical modelling of concrete compressive behaviour as a

strain rate dependent elasto-viscoplastic material are given

in section 5.3. A strain rate sensitive linear elastic

strain softening model is proposed in section 5.4 for the

numerical modellig of concrete in tension. Based on the

proposed material modelling of concrete, the constitutive

relationships are provided in section 5.5. In section 5.6,

the identification of concrete strain rate sensitivity

functions is considered. The constitutive modelling of

reinforcing steel as a strain rate dependent uniaxial

elasto-viscoplastic material in tension and compression is

presented in section 5.7 followed by the experimental

characterisation of the material parameters for the concrete

and steel models in the final section of this chapter.

5.2 MAIN CHARACTERISTICS OF THE PROPOSED CONCRETE MODEL

It is clear from the conclusions drawn from the static and

dynamic tests of concrete, reviewed in Chapter 2, that any
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numerical model for concrete intended for blast resistance

analysis should be rate and history dependent. Within the

framework of constitutive theories, only the viscoplastic

and endochronic theories are suitable for a realistic

modelling of observed concrete behaviour. In practice, the

endochronic model is rather complex and requires much

computer effort and definition of several material

parameters.

For the compressive behaviour of concrete a strain rate

sensitive hardening-softening elasto-viscoplastic model with

two rate dependent surfaces is developed as a modification

of Perzyna's theory (76]. The proposed model has the

following main differences compared with the classical

model:

1. The initial yield surface which defines the initiation

of the viscoplastic range is strain rate dependent.

2. During inelastic deformation history, the expansion of

subsequent loading surfaces in the pre-fracture range, as

well as the shrinkage of these surfaces in the post-fracture

regime, are governed by rate and history-dependent rules.

3. A variable rate dependent failure surface is

introduced as a damage monitoring device defining the

initiation of the loading surface degradation.

4. The magnitude of the viscoplastic strain rate is not

only dependent on the position of the loading surface but

also the total strain rate. The fluidity parameter in the

flow rate is developed as a function of the effective strain

rate.

In the tensile region, concrete is modelled as a linear

elastic strain softening material in which the smeared crack

initiation is determined by a proposed strain rate

criterion. The post-cracking behaviour is accounted for

through an objective fracture energy based strain softening

rule and a simple model for the shear transfer across the
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crack.

An important consideration is the strain rate induced

anisotropy effect which is introduced by employing strain

rate sensitivity functions for tension and compression.

Figure (5-1) illustrates the two-dimensionsi representation

in the principal stress space of the proposed concrete

model.

5.3	 NUMERICAL MODELLING OF CONCRETE BEHAVIOUR IN

COMPRESSION

Experimental evidence indicates that the nonlinear

deformation of concrete is basically inelastic and therefore

the stress-strain relations may be separated into

recoverable and irrecoverable components. In the present

model, linear elasticity is used for the recoverable part of

the strain, and a strain rate sensitive strain

hardening-softening viscoplasticity approach is employed to

model the irrecoverable part of the deformation in

compression. The viscoplastic behaviour is controlled by

two strain rate dependent surfaces in the stress space, the

initial yield surface F and a bounding or failure surface
Ft.

To establish the nonlinear stress-strain relations in

compression, the proposed viscoplasticity model requires the

full description of the following items

(i)

(ii)

(iii)

(iv)

(v)

(vi)

the failure surface,

the initial yield and subsequent loading surfaces,

strain rate sensitive hardening rule,

strain rate sensitive flow rule,

strain rate sensitive strain softening rule, and

the crushing condition.

In the following sections these items are fully explained in

a form suitable for numerical computation.
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5.3.1 THE FAILURE SURFACE

It is proposed that the rate sensitive failure surface

connects the stress states of ultimate compressive strength

of concrete. Furthermore, it is a damage monitoring device

which defines the initiation of concrete degradation in

compression, i.e. strain softening range. The strain rate

dependency is included through altering the concrete

ultimate compressive strength. On the other hand, the

formulations of failure criteria are proposed to capture the

features of the experimentally predicted shape of the

failure surface in the biaxial stress space.

(i)	 proposed failure criteria

The rate dependent failure surface predicts failure if the

state of stress satisfies the following condition

Ft ( Il ,	 0cd) = f (Ii , J ) - 0 = 0	 (5-1)
2	 cd

where f (Ii, is the failure function which is assumed

to be a function of the first stress invariant I and the

second deviatoric stress invariant J2 expressed (for
(for axisyminetry, x, y, z are replaced by r, z, e) as

I =cr +cr +o	 (5-2)1	 x	 y	 z

3 =	 11cr _cr)2+ 1cr _cr)2+ ía- _ai2] +? +2	 6Lx	 yj	 z)	 x)J	 xy

+	
2	 (5-3)

d 
is the dynamic ultimate compressive strength of

concrete. To include strain rate dependency, cr'd is assumed

to be a function of the static ultimate compressive strength

	

of concrete, cr' and the effective strain rate, t 	 such
cs	 eft

that

a- =0	 (	 )	 ( 5-4)
cd	 Cs	 1	 eff

in which Ø () is the rate sensitivity function of the
compressive strength. As shown in Figure (5-2), the dynamic

failure surface changes its position in stress space,
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(5-6)

(5-7)

compared to the fixed static failure surface, in accordance

with the value of the effective strain rate.

In the present study, four different failure functions are

developed to fit the quasi-static concrete test results in

biaxial stress space at failure. 	 These functions are

proposed as

lbf(I1 ,J)=a I +	 1I+3c J2	 1	 1
1	 2

(	 3) = a I +	 + 3c 32	 2 1
2 Cd 1	 2 2

f (Ii , 3 ) = lb 12 + 3c2
3 1	 3

(5-5)

1/2f (Ii , 3) = a I + 1b i22	 4 1	 4 1 ^ 2a o I + 3c4 
2] (5-8)

in which a1 , b1 and c1 are material constants. To

simplify the determination of the material constants in

the second and fourth failure functions, it has been assumed

that b2 = a2 and a =	 a4 respectively. Each failure

criterion has been developed independent of the third

deviatoric stress invariant, 33, which may be expressed as

[21],

0.-U	 t	 t
x	 xy	 xz

3 =	 o -o	 t
3	 yx	 y	 yz

t	 t	 0 -0
zx	 zy	 z

in which o is the mean normal stress defined as

cr=!J
R	 3

(5-9)

(5-10)

The special choice of the failure criterion as a function of

and with no dependence on 331 has proved to be

adequate for most practical situations, especially under

biaxial loading conditions [21] and also resulted in simple

mathematical forms which are easier to implement.

Furthermore, every function needs only a few stress points

from experiments (2 or 3 points only) to define the material
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constants. It should be mentioned that the classic von

Nises failure criterion can be recovered from the above

proposed criteria by setting a 1 = b 1 = 0 and C1 = 1.0.

(ii) Evaluation	 material constants

The constants a 1 , b 1 are evaluated from two stress tests;
uniaxial compression test (o = 0, a 2 = -o'), and biaxial
compression test (c =	

= Cb • To define constant c1,
another biaxial test (a2 = 0.5	 = 

C2) is employed.

Using Kupfer's results (37), the values of the constants

were evaluated and listed in Table (5-1). The present

criteria are plotted in biaxial stress space in Figure (5-3)

and correlate well with Kupfer's results (37].

5.3.2 THE INITIAL YIELD AND SUBSEQUENT LOADING SURFACES

The initial yield surface defines the onset of viscoplastic

behaviour. When the stress state lies within this surface,

concrete is assumed to be linear elastic. Once concrete is

stressed beyond the elastic limit, a subsequent new yield

surface is developed. If the material is unloaded and

reloaded within this subsequent loading surface, no

additional irrecoverable deformation will occur until this

new surface is reached.

Due to strain hardening in the prefracture range, the

loading surface expands with increasing viscoplastic strain.

In the softening range, this surface shrinks with the

increase in viscoplastic strain. Here, the loading surfaces

are assumed to have the same shape in stress space as that

of the failure surface to satisfy the compatibility

conditions at failure point. Thus, the general form of

loading surface is proposed as

F(1 1 , J2 , t) = f 1 (1 1 , J2 ) - t = 0	 (5-11)

where f 1 (1 1 , J2 ) is the loading function which takes the

same forms proposed for the failure function with the same

material constants, and t is the effective stress.
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= h (c , ê )
Vp	 off

(5-12)

o =0-
yd	 YB 1	 aft (5-15)

To include strain rate dependency, t is assumed to be a

function not only of the effective viscoplastic strain,

c , but also of the effective strain rate, t
vp	 cC C

This function governs the growth and the shrinkage of the

loading surface according to the hardening and softening

rules, respectively. E is defined as

t

2 •	 .T
E =Jv-c	 c	 dt
VP 0	 3 VP VP

(5-13)

in which	 is the viscoplastic strain rate vector.
VP

The initial yield surface can be obtained from (5-11) by

setting c to zero which results in the following strain

rate dependent initial yield surface

F(11 , J , o ) = f (I ,	 - o = 0	 (5-14)
2	 yd	 1	 1	 yd

in which	 is the dynamic elastic limit stress of concrete

in compression and which is given by

when o- is the static elastic limit stress of concrete
YB

which is expressed as

CS
	 (5-16)

where a is the static elastic limit which ranges between 0.2

to 0.4. As shown in Figure (5-2), the dynamic yield surface

changes its position to the static yield surface, which is

fixed in stress space, according to the level of strain

rate.	 It should also be pointed out that if 	 was

replaced by the effective viscoplastic strain rate, E, in

(5-12), then the explicit dependency of the initial yield

surface on the strain rate would not have existed since c
VP
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= 0 at that stress level.

5.3.3 STRAIN RATE SENSITIVE HARDENING RULE

To obtain the movement of the subsequent loading, surfaces

during inelastic stress history of the prefracture range, a

strain rate sensitive isotropic nonlinear hardening rule is

developed which assumes a uniform expansion of the loading

surface. According to (5-12), the amount of expansion is

history and rate dependent. First, for static monotonic

loading, a relationship between the accumulated viscoplastic

strain and the effective stress t is developed. In this way

the concepts of effective viscoplastic strain c and

effective stress allow for extrapolation of results from

uniaxial tests to multiaxial situation. The dynamic

hardening curve is then developed as a modification to the

proposed static one.

(i)	 Strain hardenin function for static monotonic loading

To develop this function, the following assumptions are

made:

1. The stress-strain relation is linear up to the elastic

limit stress cx0' and then the relation is parabolic up to

the ultimate strength.

2. The strain c' corresponding to ultimate strength a

is given by

C" = 20 " / E
	

(5-17)

in which E is the initial Young's modulus of concrete.

From the parabolic curve a b in Figure 5-4, the excess

stress at point c, , above the initial yield point a is

expressed as

	

yo	 20 =y --.-(x -e)
p	 o	 2	

o	 p
0

(5-18)
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C = C + C
I

(5-26)

The values of x , y and c can be found from Figure 5-4 as
0	 0	 p

(5-19)x =c -c
0	 CI

ao
c = initial static yield strain =	 CI

E

y0 = ( 1 - a) u
CI

C	 CC
p

(5-20)

(5-21)

(5-22)

Substituting equations (5-17) and (5-19) to (5-22) into

equation (5-18) and rearranging, the stress o can be

rewritten as

E2(l-a)	 20 =(1-a)a -	 (c -c)
cu	 2	 cp	 o (2-a)

CI

(5-23)

The stress level at point c as a function of the effective

strain, c, may be obtained by adding the elastic limit

stress o to both sides of (5-23) taking into consideration

that o = o + a
p	 ys

0	 -	 (	 C'2li
0	 C

CI	 CI

in which ij is a constant defined as

TI 
= 4(1-a)

(2-a)2

(5-24)

(5-25)

To develop the effective stress-effective viscoplastic

strain relations, the effective strain in (5-24) is

decomposed into the elastic and viscoplastic parts

Substituting (5-26) into (5-24) and rearranging results in

the following biquadratic equation

+ b' cr +C' = 0
	 (5-27)
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ClvpJ
CS

(5-28)

	

:1.	 2 —	 1]C +— C
Vp	 2	 V

C
CS

(5-29)

2cr'

where	 b' = _____

2
C 4o	 [i_ 2

CI C
C.

solving (5-27) and rearranging gives the static hardening

rule as

2	 2i	 1/22
—	 +	 1 —

h L	 c	 VPJ	
[l_h+ic 1— = —

1 \	
VpJ

Cu	 CI	 CS

(5-30)

As can be seen in Figure (5-5), very good agreement is

obtained with Kupfer's results (37] where is taken as 0.3.

(ii) Strain hardening function for d ynamic loading

To include the strain rate effect for dynamic problems, the

governing parameters cr and c' in (5-30) are replaced by

the corresponding dynamic conjugates cT'd , Ccd

=	 (	 )	 (5-31)cd	 cu	 1	 sf1

C" = C	 (t11)	 (5-32)Cd	 cu	 2

in which Cd is the strain corresponding to the ultimate

dynamic compressive strength. The variation of the

effective stress level with the accumulated viscoplastic

strain and the strain rate is shown in Figure (5-6).

The advantages of the proposed hardening rule can be

summarized as follows

1. The effective stress z is defined as a unique

normalized parameter using one expression.

2. Only three material parameters (cr", e", a) are

needed to define the rule.
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3. It is easy to include the strain rate effect not only

for the compressive strength but also for the corresponding

strain c"
Cd

5.3.4 STRAIN RATE SENSITIVE FLOW RULE

(i)	 Viscoplastic strain rate vector

To construct the stress-strain relationship in the

viscoplastic range the flow rule is defined such that the

increments of the viscoplastic strain can be evaluated from

a given stress state. An associative flow rule is employed

here in which the viscoplastic strain rate vector is assumed

to be normal to the current loading surface. Although there

is limited supportive experimental evidence available (381w

the associative flow rule has been successfully adopted for

concrete in the context of quasi-static [21] and dynamic

problems [28, 34, 77].

Assuming that the viscoplastic strain rate depends on

current stresses only, the associated flow rule may be given

(76] as

c	 =	 < (F) > a	 (5-33)
VP

in which I is a fluidity parameter controlling the plastic

flow rate, (F) is a positive monotonically increasing flow

function governing the amount of viscoplastic straining and

a is the flow vector which defines the direction of the

viscoplastic flow as follows:

r 8fa 
= L]	

(5-34)

The expression < (F) > is equal to (F) for positive values

of F and zero otherwise.

In short-term static and dynamic loading conditions, the

primary nonlinearities of concrete are caused by micro-crack

growth and pore collapses. These nonrecoverable effects

which occur once the stress rate exceeds the initial yield
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conditions, are measured by the accumulated viscoplastic

strain. However, the results of dynamic tests emphasize the

fact that the strain rate effects observed for concrete can

be, to a large extent, attributed to the rate sensitivity of

the micro-cracking process (50]. Therefore, a relationship

must exist between the velocity of the growth of

micro-cracks and the viscoplastic strain rate in the present

model. To include this rate dependence, the rate of

viscoplastic flow computed by (5-33) is modified to be

dependent not only on the position of the loading surface

but also on the strain rate which is expressed as

=	 < (F) > a	 (5-35)
VP	 eff'

The fluidity parameter is assumed to be a function of the

effective strain rate, in order to fit stress and strain

terms at failure to specified values. By assuming a

constant strain rate it is possible to obtain the

relationship between the fluidity parameter and the

effective strain rate based on the uniaxial

elasto-viscoplastic stress-strain relation of the present

model and the results of the dynamic tests.

(ii) Uniaxial elastp-viscoplastjc stress-strain relation

The total strain rate t is decomposed into a linear elastic

strain rate, t, and a viscoplastic strain rate, t

+	 (5-36)
e	 VP

Using the uniaxial form of Hooke's law, the elastic strain

rate is expressed as

=& 1 E	 (5-37)
0

The viscoplastic strain rate can be obtained from the

uniaxial expression equivalent to (5-35) which may be

written as:

= 7( e ) (a - t)	 (5-38)
VP
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Using (5-37) and (5-38), equation (5-36) can be rearranged

and rewritten as

& + E v() (a -	 = 0	 (5-39)

Considering a loading history for which the strain rate is

constant specified as = C, (also i() ) and taking the

time derivative of (5-39) leads to the following second

order differential equation

&. + E i (& - t) = 0	 (5-40)

From the proposed hardening rule, the effective stress, r,

is described as

cr	 -	 (c' - c) 2	(5-41)cd

in which , =	 and	 is as defined in equation

(5-25). Differentiating (5-41) with time and using c = C

t in which t is the time, the effective stress rate t is

expressed as

t = - 2 r C (CS - C t)	 (5-42)c	 cd	 c

Using (5-42) and rearranging, equation (5-40) can be

rewritten as

&. +ET& = 2C ET (c'dCt)	 (5-43)

Adopting the standard procedure, the general solution of the

second order differential equation (5-43) is obtained as

a=C +C e7Et_c2,t2+Kt	 (5-44)
1	 2	 c

in which C1 and C2 denote inetgration constants, and K is a

constant given by

K=2C (C +Evcd) /Ei	 (5-45)
C	 C

With the initial conditions
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a' (t ) = o• , & (t) = C E	 (5-46)
0	 yd

and the time-strain definitions

	

t = c / C , t = c / C	 (5-47)
o	 yd	 C	 C

in which c is the dynamic elastic limit strain and t 15
yd	 0

the corresponding time, equation (5-44) is rewritten

(c - £
yd

	

yd7E 2Cyd E 	 [1-e	 I

-	 ( £2 - C2 ) +	 ( c - c)	 (5-48)
yd

The above equation (5-48) represents the general uniaxial

form of the proposed elasto-vicoplastic model. At failure

(a' = a'd c = C'd ), equation (5-48) can be written as

-	 (c'— c )
Cd	 yd

I
a' = a' --(K-2tc -E) [1-e	 )Cd	 yd	 )E	 yd

2	 K
- 71 ( c	 - c ) +	 ( c	 c )	 (5-49)

Cd	 yd	 Cd	 yd

(iii) Identification g	 strain rate dependent fluidity
parameter

As already mentioned only uniaxial test data are available

for plain concrete under dynamic loading conditions similar

to those which occur during a blast loading. From published

results, Watstein's [16] and Hatano's [17] experiments may

be considered as the most complete tests for dynamic

compression behaviour of concrete which cover the whole

range of concrete properties and strain rates that may be

used in the blast resistant construction. 	 Typical test

results are shown in Figure (5-7).	 The following

assumptions were made:

a - All tests were conducted under constant strain rate

conditions.

b - The stress and strain values at elastic limit and
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failure are strain rate dependent.

The following procedure was adopted for evaluating the

fluidity parameter:

1. Based on the average concrete compressive strength,

the tests have been classified into 4 grades: 18.27 N/mm2

(Watstein), 27.02 N/nun2 (Hatano), 44.2 N/mm2 (Hatano &

Watstein), 59.4 N/mm2 (Hatano).

2. The stress and strain values at failure and initial

yield, the Young's modulus and the average strain rate are

evaluated from the given stress-strain curve and other

results for every test in each grade.

3. For these specified concrete parameters at failure,

the value of the fluidity parameter valid for a particular

constant strain rate test can be evaluated from (5-49). A

computer program was written where gradually increasing

values of fluidity parameter were assumed and the

corresponding failure stress was calculated using

equation (5-49). This analysis was repeated until the final

calculated failure stress o was close to the target failure

stress	 of the experiment

a t - o	 / o	 0.01	 (5-50)
I	 I

4. Since different strain rate tests give different

failure stress, different values of fluidity parameter have

been found appropriate. For each concrete grade, the least

squares curve fitting has been used to obtain the

relationship between the fluidity parameter and the strain

rate. A linear regression between log and log ë seemed

reasonable and resulted in the following relation

log i = B1 + B2 log	 (5-51)

B	 B

= 101	 2	 (5-52)

where the parameters B1 and B2 depend on the concrete

cylinder compressive strength Figure 5-8 and can be obtained
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by interpolation from Table (5-2).	 Expression (5-52) is

assumed to be valid for strain rate range 1O 	 10. To

extend the expression (5-52) to multiaxial state of stress,

the strain rate	 can be replaced by the effective strain

rate,	 which is computed as

=	 2 +	
2 ]1/2	

(5-53)cIT	 oct	 4	 oct

in which t	 and 5	 are the octahedral normal strain andoct	 oct
octahedral shear strain rate respectively.

(iv) Th flow vector

For numerical computation, it is convenient to rewrite the

four different loading functions proposed earlier in section

5.3.2 in a unique general form as

	

f 1 (Ii , J ) = A I + i/B I 2 + 3 C	 (5-54)2	 1	 1	 1	 1	 1	 2

in which A1 , B 1 , C1 are new material constants dependent on

the loading function i and to be computed from the original

material constants previously defined. These new sets of

material constants are listed in Table 5-3 for each loading

function.

The main advantage of this formulation is that it permits

the computer coding of the loading function and the flow

vector in a general form and necessitates specification of

only three constants for any individual criterion.

In terms of stresses, the general form (5-54) can be written

for biaxial applications as

2	 2	 2	f (o-)=A	 +o' +o )+[ 1B +C	 o +	 +cr)1) (	 y	 zJI	 I	 x	 y	 z

1/2
+ (2 B1 - C 1 icr a' + a' a' + a' cr 1 + 3 C	 2 1 (5-55)

iJ ( x y	 x z	 y zJ	 I xyJ

The loading functions derivatives which define the flow

vector a take the following explicit expressions
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1	 1	 1	 1a = 
[ of	 Of	 of	 of ]T	

(5-56)I	 Ix	 y	 z	 xy

Of
8 '=A 1 + * [2 (B +C)O+(2B —) 1+1

I	 iJ iy	 zJJ
x

(5-57)

Of	 r (	 (	 (
+r 121B +CQ +12B -ci io +

L	 '	 I)	 Y	 1	 1)

(5-58)

Of

o	 = A1 +	
[ (

B1 + cJ	 + (2 B 1 - C1) (- +
z

(5-59)

- ! [6 C1 t]	 (5-60)__ - A
xy

where

A = 2 [(B 1 + C) (72 +
	 2 + 2) + (2 B1 - C1)

(	 ,1/2
Io o + o o + o 0 I + 3 C t 1	 (5-61)
Ix y	 y z	 x zJ	 I	 xyJ

(v) Th flow function

Several proposals of the flow function have been given by

Perzyna (76), which are derived from curve fitting of

experimental data. The following function has been adopted

here

(F1K	 f-t
(F) =
	

: 
j = (	

jK	
(5-62)

The excess stress above the current loading surface is

normalized against the current effective stress in order to

give non-dimensional values of the flow function. The

parameter c of equation (5-62) determines the rate of growth

of . It has been taken as 1.0 in this study.
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5.3.5 STRAIN SOFTENING IN COMPRESSION

In order to perform a progressive failure analysis of a

concrete structure, i.e. to trace the overall response up to

the ultimate state, complete constitutive relations must be

known not only including the pre-peak viscoplastic behaviour

but also the post-failure response. The reasons are that

the local failure of some components of a concrete structure

subjected to blast loading does not imply the collapse of

the whole structure. Also the blast resistant design based

on neglecting the strength degradation can be very

uneconomical. The importance of dealing with the

post-failure response has been increasingly recognised in

recent years which has mainly focused more on the

post-cracking modelling, 	 than strain softening in

compress ion.

For the present analysis, once the stress point reaches the

failure surface, the softening regime is initiated and the

subsequent loading surfaces degrade according to a strain

rate sensitive softening rule based on the post

failure viscoplastic dissipated energy. This means that the

concept of a failure surface is no longer meaningful.

Following Bicanic's work [77], the loading surface defined

by equation (5-9) is modified in the post-failure range to

the following form

F [ I, J2 , t ) = f (i i , J2 ) - t ( W , K )
	

(5-63)
VP	 B

in which the effective stress, r, is a function of

viscoplastic work, W. This function is defined as the

strain softening rule

-K
t 1 W,K	 =o	 e	 (5-64)

VP

where ó is a concrete softening property in compression.

The viscoplastic work, W is defined as
VP
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w	 dt	 (5-65)
VP	 J	 VP

0

In equation (5-64), K is the postfailure viscoplastic

energy which is defined as

	

K = W - W	 (5-66)
S	 V	 vp

rt

K = i	 dt	 (5-67)
'	 VP

C

where t and W ' are the time and the viscoplastic work wttt
C	 VP

the failure surface has been reached. As can be seen in

Figure (5-9), good agreement is obtained with the

experimental results given in (37) by taking 	 = 0.004 and

the post failure viscoplastic strain, as

1c =c -c	 (5-68)
VP VP VP

in which c is the viscoplastic strain when the ultimate
VP

strength has been reached.

For dynamic applications, the above function is modified to

include the strain rate effect by replacing o in (5-64)

and using crd instead which resulted in

(w. K) 
= 0cd 

e	 K	 (5-69)

The strain rate effect on c , is included indirectly through

W which varies with the change of c ' and	 .	 The
VP	 Cd	 Cd

variation of the postfailure effective stress with the

strain rate and the postfailure viscoplastic strain or the

postfailure viscoplastic energy is shown in Figure (5-10).

5.3.6 CRUSHING OF CONCRETE

The rate dependent hardening-softening viscoplastic model

described previously governs the increase of the inelastic
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deformations of concrete in compression. Inelastic

deformation continues until crushing occurs. The crushing

type of fracture is generally accepted as a strain

controlled phenomenon. The lack of available experimental

data on concrete ultimate deformation under biaxial and

multiaxial stress states has resulted in the need to develop

the following appropriate strain criterion by converting the

failure functions described in terms of stresses to that in

terms of strains. The size of the resulting crushing

surface is related to a maximum equivalent strain

extrapolated from uniaxial tests. Thus, the general form of

the crushing surface is developed as

G (i, J' , c	 = g (i, J) - c = 0	 (5-70)2	 cuj

where	 (I, J) is the concrete crushing function which is

assumed to be a function of the first strain invariant I

and the second deviatoric strain invariant which are

expressed (for axisynunetry x, y, z are replaced by r, z, e)

as

I' = C + C + C1	 x	 y	 z

re	 2
=	 I Ic - C I + Ic - c I +

2	 6 L x 	 y)	 z)

(5-71)

(	 2-	 1	 2
IC — CII +— 7

	

x)j	 4	 xy

(5-72)

c is concrete ultimate total strain obtained from uniaxial
Cu

test results (0.003 - 0.005). From the previously developed

failure functions, the strain invariants based crushing

functions have been proposed as

g1 (i, j ) = a1 i: + lb i\2 + c1	 1	 1	 2

g2 (i J) = a2 I + Ia c I + C2 cu 1	 2 2

(5-73)

(5-74)

g3 (i.	 = %1b i2 + 3 C3	 (5-75)
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1/2

g4 (i'	a4 i + [b4 I2 + 2a4 c f ^ 3 c j1cu 1	 4 2j

(5-76)

in which a 1 , b1 , C 1 are the material constants defined

before in Table (5-1). When concrete reaches the crushing

surface it is assumed to release all stresses and lose its

stiffness.

5,4 NUMERICAL MODELLING OF CONCRETE TENSILE BEHAVIOUR

The main characteristics of plain concrete behaviour is its

low tensile strength. As a result tensile cracking is

considered as the major factor contributing to the nonlinear

behaviour of reinforced concrete structures, influencing the

collapse load and the structure response history.

In the present analysis, concrete in tension is modelled as

a strain rate sensitive linear elastic softening material,

i.e. concrete behaves elastically until cracks initiate

according to a strain rate dependent cracking criterion and

then the crack forming process is governed by a fracture

energy based softening rule in which concrete tensile

strength in the direction normal to the crack is gradually

released in uniformity with the crack width.

To fully describe the proposed model requires the following

information

(i) crack modelling,

(ii) cracking criterion,

(iii) strain softening rule, and

(iv) shear transfer model.

Finally for completion, the possible configuration of cracks

as well as compressive behaviour of cracked concrete are

discussed.
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5.4.1 FINITE ELEMENT REPRESENTATION OF CRACKS

Ever since cracking has been modelled, the discrete concept

and the smeared concept have been the subject of much

controversy. The discrete concept fits our material

conception of fracture since cracking is identified as a

geometrical discontinuity. Conversely, it has been stated

that a smeared representation might be realistic considering

the bands of micro-cracks that blunt fracture in

matrix-aggregate composites like concrete. 	 The width of

such bands, which occur at the tip of the visible crack, has

even been claimed to be a material property [92]. At

present, however, it is difficult to judge these arguments

since experimental detection of crack tip related

micro-mechanical process in matrix-aggregate composites are

scarce and contradictory as the question is concerned

whether these processes occur in a discrete manner or not

(191].

Following the most common approach, a smeared crack model

has been adopted here where cracked concrete is assumed to

remain a continuum and the material properties are modified

to account for the damage due to cracking. It has been

chosen for the following reasons:

1. For blast loading conditions where the cracking

patterns are difficult to predict, and also for situations

where the scale of the representative continuum, e.g. shear

walls or beams, is large compared to the crack spacing, the

smeared concept provides a realistic approach for

distributed fracture representation compared with the

discrete model which seems adequate for simple problems

involving a few dominant cracks.

2. The isoparanietric elements employed in the present

analysis do not blend well with the edge cracking associated

with the discrete crack concept (192].

3. The proposed constitutive model is suitable for the

description of concrete behaviour at the engineering level

but not at the microscopic level which will necessitate the
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discrete approach.

4. The simplicity and the computational advantages of the

smeared crack approach such as automatic generation of

cracks without predefining or redefining the finite element

mesh, and also complete generality in allowing crack

initiation in any direction.

5.4.2 STRAIN RATE SENSITIVE CRACKING CRITERION

(i)	 The iroposed crackin criterion

Sophisticated theoretical models have been developed to

describe the cracking response of concrete [106, 1931.

However, the usefulness of these models may be questioned in

the light of uncertainties commonly associated with the

properties of reinforced concrete members [78). The value

of concrete tensile strength is difficult to measure, and

considerable scatter is obtained even in laboratory tests.

In situ, uncontrolled environmental and loading conditions

cause higher statistical scatter. In the presence of

reinforcing steel, the prediction of crack initiation and

direction is even more difficult.	 Simple criteria are

therefore commonly employed by most analysts to predict

tensile fracture. 	 The maximum tensile stress or strain

criterion is frequently adopted for this purpose.

For the present analysis, the tensile crack initiation is

based on rate sensitive strain criterion to distinguish the

elastic behaviour from tensile fracture. This assumption is

realistic as it accounts for concrete brittleness noticed in

dynamic tensile tests. The strain rate effect is included

in the limiting cracking strain as follows

= p 1	 1 c '	(5-77)
td	 3	 elf)	 te

in which is the dynamic cracking strain, c is the

static one, and ø 3 ( f( ) is the strain rate sensitivity

function for cracking strain, and which is assumed to be a

function of the effective strain rate.
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(ii) Introduction QI hg cracking process for plane
problems

For a previously uncracked sampling point, cracks are

assumed to form in planes perpendicular to the direction of

maximum tensile strain as soon as this strain reaches the

specified concrete dynamic cracking strain, c. Thus, for

cracking

	

c	 C'	 and/or	 c	 (5-78)

	

1	 td	 2	 td

where the subscripts 1 and 2 relate to the two principal

directions in the plane of a structure. Two orthogonal

cracks may form if both principal strains exceed the

limiting value at the same time. Thereafter, the behaviour

of concrete is no longer isotropic. It becomes orthotropic

and the local material axes coincide with, the principal

strain directions. Following the fixed crack approach (78],

the crack directions are assumed to be fixed in the

directions corresponding to the principal strain directions

when the primary cracks occurred (Figure 5-11) irrespective

of the possible rotation of the stresses and strains. It is

also assumed that the material parallel to the crack is

still capable of carrying stress where the state of stress

changes from biaxial to uniaxial condition by reducing the

elasticity modulus and Poisson's ratio to zero in the

direction perpendicular to the cracked plane.

Under further loading, a secondary crack may occur at a

sampling point that was originally cracked in one direction

if the strain parallel to the existing crack, c, satisfies

the cracking condition

	

C'	 (5-79)
t	 td

Thus, for plane problems, a set of two cracks are allowed at

each sampling point in mutually orthogonal directions.

(iii)Cracking process j axisymmetric analysis

In axisyinmetry, the hoop stresses and strains are always
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a
cr for 7 <0.0

xy
(5-83)

principal quantities, and therefore cracks always lie in

radial planes if the hoop strain satisfies the cracking

condition

C0	 C	 (5-80)

No angle is associated with the radical cracks since any

hoop differential displacement is, by	 definition,

impossible. The other type of cracks, called the

circumferential cracks, can occur in the radial-axial (r-z)

plane which are similar to those in planar conditions. The

state of stress changes from axisymmetric to biaxial after

the first crack and from biaxial to uniaxial after the

second crack at the same integration point. Figure

(5-12) illustrates the two distinct types of cracking.

Thus, taking into account that this third direction, e, is

always a principal direction and is out of plane, the

cracking prediction follows the same procedure of plane

problems for circumferential cracks.

(iv) Determination	 concrete crack angle

The direction of the first principal strain, c1,

perpendicular to an initiated crack, with respect to the

x-axis is given by (Figure 5-11)

a =1tan1
cr	 2

However, for c - c = 0
x	 y

a=Tr/4
cr

L
17 / ( C -e

xy	 lx	 yJJ

for 7 >0.0
xy

(5-81)

(5-82)

andfor	 =0
xy

a =0.0
cr

for C - C > 0.0
x	 y

(5-84)

a =iT/2 fore -c <0.0
CI. 	 x	 y

The crack angle is then given by the angle a* as

(5-85)
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- x +	 /2	 (5-86)
cr	 cr

For axisymmetric (r, z,e) geometry, x and y are replaced by

r and z respectively and then the above expressions become

directly applicable for the circumferential cracks.

An accurate evaluation of crack directions is essential for

a correct overall post-cracking response of concrete

structures. However, cracks are not detected in the

nonlinear analysis until strains calculated at the end of

the solution increment (time step) exceed the limiting

cracking value. Naturally the resulting angle of crack will

be different from that if sufficient incremental quantities

had been used. It is obvious that longer increments

increase this discrepancy. In order to minimize the effect

of increment size, the modified approach for the calculation

of corrected crack angles (168] may be employed.

Fortunately, the time increment size necessary for the

stability limit of explicit time scheme employed in the

present study for the numerical integration the dynamic

equations of motion are so small that the errors found in

the calculated angles by (5-81) can be ignored.

5.4.3 STRAIN SOFTENING RULE

Fracture and crack propagation in concrete depend on the

properties of material in tension and its post-cracking

behaviour. Recent experimental studies (103, 194] indicate

that the behaviour after cracking is not completely brittle

and there is some ductility in the post-cracking region.

Also due to bond effects, concrete between the cracks

carries a certain amount of tensile force normal to the

cracked plane which is known as tension softening. In

order to account for these phenomena in the present

computational model, it is assumed that the loss of tensile

strength in concrete occurs gradually after cracking. This

is equivalent to considering concrete as an elastic-strain

softening material in tension. An important consideration

in selection of crack propagation criterion for the smeared
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cracking concept is the objectivity with respect to mesh

elements size. The fracture energy release rate, Gf.
defined as a material property, is used with a local strain

softening rule and a characteristic length, L, depending on

the finite element mesh for the subjective treatment of the

post-cracking behaviour. As a result the fracture energy

concept leads to a non-local format of the equivalent

softening relation.

(1)	 Energy criterion 	 characteristic crack length

In the present study, the element size effect is treated by

an approach proposed by Nilsson et al (91], in which the

abrupt stress drop is replaced with a gradual process to

follow a fracture energy based nonlinear softening curve as

shown in Figure (5-13). Thereafter, in addition to the rate

dependent strain criterion, which defines the initiation of

the cracks, energy criterion is also used to define the

crack propagation process. The model has been previously

employed by Gleniberg (93] and Cervera et al (78] for dynamic

analysis.

In the vicinity of a crack tip, see Figure 5-13a, there is a

region where micro-cracking starts to form the crack but

stresses still can be transformed between the two crack

surfaces. The stress, a, across an opening crack is assumed

to be a function of the crack width, w, [91, 93] such that

G = :s a (w) dw	 (5-87)

G represents the energy consumed in the formation and

opening of the smeared crack per unit area of the cracked

plane of the post-cracking behaviour. Typical values of

the fracture energy for normal concretes are in the range of

50 to 200 Nm/rn2.

The smeared approach does not represent individual cracks,

so the crack width, w, must be smeared into an equivalent

crack strain, c, related to the physical crack opening by a
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characteristic length. Following Nilsson (91], the

derivation of this relation can be obtained by introducing a

control volume, v, containing a crack with surface area A

Figure (5-14). It is assumed that all inelastic

deformations inside this volume take place in the crack, so

the rest of the control volume remains elastic.

The rate of energy dissipation in the crack is

J
A 	 cdA	 (5-88)

In order to replace the discontinuous crack with an

equivalent strain, c, it is assumed that the control volume

is subjected to the same state of stress as the crack, but

strained by the equivalent strain. The rate of energy

dissipation in this continuous volume is

= L °	 dv	 (5-89)

If the stress, strain and crack width are assumed to be

constant inside the considered volume, then equating the

rate of energy dissipation in the crack, (5-88), to that in

the control volume, (5-89), gives the relationship between

the crack width and the fictitious crack strain as

dw _v
dc - X	 (5-90)

C

From Figure (5-14), the characteristic length is defined as

the ratio between the control volume and the crack surface.

Thus, equation (5-90) can be rewritten as

dw
d	 = L	 (5-91)

C

orw=L c	 (5-92)
C C

Using equation (5-92), the fracture energy in equation

(5-87) is defined aS

	G =L I odc	 (5-93)
F	 cJ	 C

0
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C- t$-
et$

(5-94)

C	 C—C
t.	 t.

	

I cdc +Lcr	 1eoJ	 C t
Ct.

0
G = L—
r	 c \

Ct,
dc

(5-96)

or G =o' L F!' +t.	 t. (5-97)

(ii) Nonlinear strain softening model

Based on various experimental evidence, an experimental

function is used to simulate strain softening effect [78,

93], so that

where	 is the tensile strength of concrete, c, is the

cracking strain, is tension softening parameter, and c is

the normal tensile strain in the cracked zone. From

Figure (5-13), the stress in the linear elastic part can be

defined as

=
C'

	 (5-95)

ti

substituting (5-94) and (5-95) into (5-93), we obtain

Rearranging (5-97) yields the tension softening parameter as

b	
(G	

'	 '=	 - - o c L / o• L > 0	 (5-98)

	

(	 2 t. t. C)	 ts c

In the context of finite element computations, the control

volume for a crack is the volume associated with a sampling

point in a given element. The characteristic crack length

is computed here for each sampling point as [78)

L = (dy ) 1"3	 (5-99)
C

where dv denotes the volume of concrete represented by the

sampling point. This definition does not account for the

directionality of the crack or distortion of the element but
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it can be used as a first order approximation of the actual

control length.

It should be mentioned that this approach does not acco'unt

for the effect of the presence of the reinforcement which

may be included by adopting a higher fracture energy for

reinforced concrete than for plain concrete. The lack of

experimental results on the effect of strain rate on the

post-cracking behaviour of concrete has resulted in using

the available static concrete properties in the softening

range.

5.4.4 SHEAR TRANSFER ACROSS THE CRACKS

At the onset of cracking, the ability of concrete to

transfer shear stresses across the crack is greatly reduced.

However, phenomena such as aggregate interlock and dowel

action due to reinforcing bars must be taken into

consideration. Both mechanisms are controlled by the width

of the crack, the shear transfer capacity being reduced as

the width increases.

To account for the shear capacity of cracked concrete in the

smeared crack approach, a simplified procedure is generally

employed which consists of assigning to the uncracked shear

modulus, G, a reduced value, G, defined as

G = G	 (5-100)

where is a reduction factor in the range of zero to one.

In the present work, the reduction factor is related, by a

monotonically decreasing function, to the tensile strain

normal to the crack plane, a smeared measure of the crack

width, by the expression

-	 C / C 1 ,	 = o if c	 c	 (5-101)
[ t	 mi	 t	 m

where c, is the current tensile strain normal to the crack

plane, c is the maximum limiting tensile strain, and i is a

- 154 -



parameter in the range 0.3 to 1.0 [195]. The value of the

maximum limiting strain is in a the range 0.004 - 0.005 for

structural analysis [195].

5.4.5 CLOSING AND OPENING OF EXISTING CRACKS

The redistribution of stresses due to cracking in other

sampling points, or further loading or unloading may force

some of the previously open cracks to close partially or

fully. Closing and opening of the existing cracks are

admissible in the present concrete model. Various possible

crack configurations for plane and axisymmetric problems are

shown in Figure (5-15).

The current strain normal to the crack direction is used to

assess the state of the cracks in already cracked concrete.

Thus, a crack is assumed to be fully closed if the strain

becomes negative, as

0 and/or c	 0
	

(5-102)

and/or additionally for axisymmetric problems

Ce	 0
	

(5-103)

The compressive stresses can then again be transmitted

across the cracks. If the current strain normal to the

crack direction decreases, but is still positive, partial

closing of the crack is assumed. This situation may occur

when the current strain, c, is smaller than the reference

strain, c , recorded as the maximum tensile strain reachedret
across the crack under consideration at the previous time

steps. In this case, the stress normal to the crack is

calculated from

ret C
	 (5-104)

ret

in which u	 isret
the strain c ret
Figure (5-13).

the interpolated stress corresponding to

This secant unloading path is shown in
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Re-opening of fully closed crack is also monitored by the

tensile strain normal to the crack direction, i.e.

c* > 0	 and/or	 c* > 0	 (5-105)

and/or for axisymmetric problems

> 0 and/or c and/or Ce > 0	 (5-106)

In this case, the crack follows the same secant path (see

Figure (5-13) until is exceeded and then the stress is

interpolated from the strain softening governing equation

(5-94).

It should be mentioned that from the moment of first

cracking, for each integration point, a record of the crack

angle, the crack state, and the cracking reference values

(Crets is kept and constantly updated at each time

step.

5.4.6 COMPRESSIVE BEHAVIOUR OF CRACKED CONCRETE

The cracking of concrete is considered to be only a partial

fracture, since the strength characteristics in the

directions parallel to the crack planes are not affected.

In such directions, a second cracking plane can be formed

according to the strain sensitive cracking criterion

described earlier, or if compressive stresses are present,

then viscoplastic yielding can occur as well as the crushing

type of fracture. The elasto-viscoplastic analysis of a

point where the concrete is cracked in one direction or two

directions (only for axisymmetry) is performed as previously

described for uncracked points.

It is worth mentioning that the discontinuity of the yield

or failure surfaces, due to the intersection of tension

cut-off planes, does not cause numerical difficulties in

defining a unique stress transfer path at the corners. This

is because in the computer implementation of the present

concrete model, the cracking fracture process in the primary
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and secondary directions is verified in advance, then with

the modified stress state, the viscoplastic behaviour and

crushing are checked and the material state variables are

updated accordingly. Thus, the discontinuous description

furnishes additional information on the type of fracture and

its direction.

The application of the crushing criteria to concrete with

one crack plane (or two planes in the case of axisymmetric

situations) at a sampling point is not very straightforward.

The fictitious strain components used in the smeared crack

approach, the strain component normal to the cracking plane

and the shear strain component on this plane, must be taken

equal to zero when any of the crushing conditions is

employed. For concrete cracked in two directions for plane

problems (or in three directions for axisyinmetry) at the

integration point, viscoplastic yielding and crushing of

concrete are assumed not to occur if the cracks are open in

these directions.

5.5 CONSTITUTIVE RELATIONSHIP FOR CONCRETE

5.5.1 UNCRACKED CONCRETE

Following conventional engineering approach, uncracked

concrete is assumed to be an isotropic material in which the

principal axes of stress and strain coincide.

In the elastic range, the stress-strain relation is linear

and given by

a = D c	 (5-107)
C

where a, £ are the stress and total strain vectors

respectively, and D is the elasticity matrix which is

dependent upon the type of problem being plane stress, plane

strain or axisyminetric (Table 4.1).

For stress points outside the loading surface in

compression, the elasto-viscoplastic response is assumed.
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The total strain is decomposed into elastic and viscoplastic

parts

c = c + £	 (5-108)
e	 vp

The elasto-viscoplastic stress-strain relation is obtained

from

= D c	 (5-109)
C	 0

= D	 Ic - £ 1	 (5-110)
I.	 VP)

The viscoplastic strain vector at time t is computed as

rt
c	 = I £ dt	 (5-111)

J	 Vp
0

in which the viscoplastic strain rate is to be equated by

the flow rule explained earlier. The temporal

discretization and the solution procedure to obtain a

numerical solution (5-111) is discussed in Chapter 6.

When the crushing condition is satisfied, concrete is

assumed to lose all its characteristics of strength and

rigidity, i.e. the constitution matrix is null

D	 =(0]	 (5-112)crush

5.5.2 CRACKED CONCRETE

The onset of cracking introduces orthotropic conditions and

new constitutive relations are then established with respect

to the local coordinate system which has axes parallel and

perpendicular to the crack. In general, the stress-strain

relationship is given as

= D £*	 (5-113)cr

where D is the elasticity matrix of cracked concrete and
cr

o* , c * are the stress and strain vectors with respect to

local system

- 158 -



T

[	 ,	
, t*,	

]

T
= I	 *, c ]

L

(5-114)

(5-115)

To eliminate the tensile stress normal to the crack, o*, the

individual terms in the corresponding row and the columns in

the D matrix are set to zero. Effectively, the stress

component normal to the crack is gradually reduced to zero

according to the assumed tension softening descending curve

shown in Figure (5-13). The shear stress r* along the crack

is a linear function of the shear strain 7* such that

= G 7*	 (5-116)
C

where the reduced shear modulus is evaluated by (5-101).

The particular forms of the constitutive relationships D

are dependent on the problem type and cracking state.

(i)	 Plane problems

At a given sampling point, there are two different possible

configurations of cracks which can be expressed as

- Case 1: crack in the y* direction

0

0
C

0

0	 0

E	 0r
0	 G

(5-117)

- Case 2: cracks in the y* and x* directions

0	 0	 0

D=	 0	 0	 0
C

0	 0	 G

where E = E for plane stress,

= Eli - v2 for plane strain cases.

(ii) Axisvmmetric problems
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0

0

G
C

0

0

yE
r

0

E r

0

E
r

0

r

0

0
D = 0

0

(5-119)

0

E

0

0

0

0

0

0

0

0

G
C

0

0

0
D = 0

0

(5-121)

Five different combinations of radial and circumferential

cracks at the same integration point are possible, each

involving a specific form of cracked D-matrix. The possible

combinations are

- Case 1: one circumferential crack

- Case 2: one radial crack

IE	 yE	 0	 a 1
I	 r	 r
l y E	 E	 0	 0	 -
I	 r	 r	 (5120)

D = I	 0	 G	 0cr

[0	 0	 0	 0 ]
C

- Case 3: one radial crack + one circumferential crack

- Case 4: two circumferential cracks

	

10	 0	 0	 0 1

	

1 0 	 0	 0	 01
	D = '0	 0	 G	 0 I	

(5-122)
cr

	[0	 0	 0	 E j

- Case 5: one radial crack + two circumferential cracks

	

r 0	 0	 0	 0 1

	

I a	0	 0
D =	 0	 G	 0	

(5-123)
cr

	

[0	 0	 0 j
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where

E = E/1-v2 	(5-124)

5.5.3 TRANSFORMATION RULE

Constitutive relations for cracked concrete are formulated

in the local coordinate system which coincides with the

crack directions as shown in Figure (5-11). Since in the

solution procedure reference is made to the global set of

coordinates, the stress vector o* is transformed into the

global coordinates as follows

0• = (T] c*	 (5-125)

in which the transformation matrix, T, is given by

cos 2 a	 sin2 a	 sin cos a	 I o

sin2 a	 cos2 a	 -sin	

cr

T =
	 Cr	 cr	 cr

-2 sin acos a	 2 sin acos a C0S2XSifl2a 1 o

0	 0	 0	 1

(5-126)

where a is the angle between the global and local

coordinate system which is evaluated by (5-81). For planar

structures, only the upper 3 x 3 partition is employed while

the complete matrix (4 x 4) is utilized for axisymmetric

problems.

5.6 STRAIN RATE SENSITIVITY FUNCTIONS OF CONCRETE

The identification of rate sensitivity functions is based on

the uniaxial experimental results reported in the

literature. To extend these functions to multiaxial states

of stress, the strain rate, t, in the uniaxial form was
replaced by the effective strain rate, which is

calculated by (5-53). These functions are valid only for

the strain rate range 10 sec'	 aff 10 sec1.
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5,6.1 RATE SENSITIVITY FUNCTIONS IN COMPRESSION

Based on the study reported in [20], the strain rate

sensitivity for concrete compressive strength, 	 (€	 ),

and the corresponding strain, 
2 (C0 ) 1 were obtained from

the least squares curve fitting to the test results reported

by different investigators as

= 1.48 + 0.160 log t	 + 0.0127 (logofT	 off

(5-127)

(	 ' = 1.08 + 0.112 log	 + 0.0193 (log	 )2	 off 1	off	 etC

(5-128)

According to the second function, increasing the strain rate

from static value of 10 sec to values as high as

10 sec results in reduced values of strain at maxiniujit

stress. At strain rate higher than 10_i sec 1 , however, the

concrete strain at maximum stress becomes larger than the

static value.

5.6.2 RATE SENSITIVITY FUNCTIONS IN TENSION

The effect of strain rate upon concrete tensile strength has

been dealt with in a small number of publications (Fig

5-16). Recently, Sauris (50] has reported well controlled

tests to study the strain rate sensitivity of fracture

strength in compression, tension and flexure. The tensile

strength rate sensitivity function, was obtained

here from the least squares curve fitting of a second order

polynominal to the test results found in the literature

(197] as (Figure 5-17)

. (	 ' = 2.23 + 0.404 log t	 + 0.0351 (log t	
)2

4	 ofT1	 off	 eff

(5-129)

Concerning the rate effect upon the cracking strain, until

recently there was a lack of agreement between the results

of the small number of studies reported. However, the
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conclusion of recent research [197, 66] is that the strain

rate effect upon the cracking strain is similar to that upon

the tensile strength and also the normalized o - c diagrams

obtained from tensile tests with different strain rates are

similar in shape. Based on these findings, the cracking

strain rate sensitivity function, 3(ff) is assumed here
to be the same as 4 4 (t), the function applicable te

tensile strength.

5.6.3 STRAIN RATE INDUCED ANISOTROPY

For the purpose of highlighting the strain rate anisotropy,

the four rate sensitivity functions are plotted in

Figure (5-18). It can be seen that the tensile response is

the most strain rate sensitive and the compressive response

the least. The difference in strain rate sensitivity for

the different response modes means that with an increase in

strain rate, the extent of internal micro-cracking decreases

and, as a result, the stress-strain curves become less

nonlinear at higher strain rates (50, 197). Based on this

evidence, any constitutive law for concrete under blast

loading conditions which assumes isotropic strain rate

sensitivity may not be sufficiently accurate.

5.7 MATERIAL MODELLING OF STEEL REINFORCEMENT

In reinforced concrete structures, the steel bars are

comparatively thin and are considered to be capable of

transmitting axial compressive or tensile forces only. A

uniaxial stress-strain relationship in the direction of the

bars is usually sufficient for general use.

5.7.1 MAIN CHARACTERISTICS OF THE PROPOSED STEEL MODEL

The mechanical properties of steel, in contrast to concrete,

are well-known, especially in terms of its uniaxial

response. Most of dynamic experimental results strongly
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indicate the influence of the strain rate upon the

stress-strain diagram. Thus, the use of the static

stress-strain curve for the description of dynamic behaviour

in blast loading environment is likely to lead to erroneous

results. The yield stress and the ultimate stress increase

with increasing strain rates while the modulus of elasticity

is relatively rate independent. In contrast to concrete,

the rate effects are approximately equal in tension and

compression. To model such behaviour, viscoplasticity

theory has been employed in this study, mainly because of

its simplicity and well documented performance.

Steel is modelled as a strain rate sensitive uniaxial

elasto-viscoplastic material to account for strain rate

sensitivity as well as stress strain history dependence. The

stress-strain curve is idealized as a bilinear curve,

representing elasto-viscoplastic behaviour with linear

isotropic hardening. The curve is assumed to be identical

in tension and compression (Figure 5-19). Unloading is

assumed to occur elastically.

In the elastic range, the material behaviour is rate

independent and linear until the yield stress, which is

strain rate dependent, is reached. Above the dynamic yield

level, the viscoplastic strain is activated which is

governed by rate sensitive flow rule in which the fluidity

parameter is developed as a function of the strain rate to

account for the rate dependence of the nonrecoverable

deformations.

5.7.2 DYNAMIC YIELD STRESS AND HARDENING RULE

The initial dynamic stress is assumed to be a function of

the static yield stress, T and the strain rate, , as

follows

S	 S
0	 =	 ()	 ( 5-130)

yd	 ys	 s

where	 () is the strain rate sensitivity function for
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steel yield stress and which is given by Symmond's equation

[196] as

1/n
i , (c)	 = 1 + I	 i	 ( 5-131)40 J

in which n is a coefficient dependent on the grade of steel.

A value of 5 for n has been adopted for the commonly used

hot-rolled reinforcing steel. The rate sensitivity function

is plotted in Figure (5-20).

An isotropic linear hardening rule was employed whereby the

current effective stress level, t, above the initial

dynamic yield stress is defined as a linear function of the

current viscoplastic strain, c
VP

=	 + H c	 (5-132)
yd	 VP

where H is the slope of the stress-viscoplastic strain

curve, known as the hardening modulus, which is expressed as

H = 0 for no hardening	 (5-133)

H = E / (1 - E / E) for linear hardening
(5-134)

in which E is the slope of the stress-strain curve in the

viscoplastic range and E is the initial modulus of

elasticity of steel.

5.7.3 STRAIN RATE SENSITIVE FLOW RULE

(i)	 Vjscoplastic strain rate

Following Perzyna's associative flow rule [76], the rate of

viscoplastic straining in the direction of reinforcement is

assumed to be

T (crtB)
VP	 I

ê =0
VP

I ° I > I t	 I

I	 °	 I	 I

(5-135)

(5-13 6)

in which u denotes the stress level in the steel. It is
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&' + E	 (& - t8 ) = 0$ (5-142)

generally observed from dynamic experiments (111, 189, 190]

that the behaviour beyond yield is strongly affected by the

strain rates.

To include this rate dependence, the associated flow rule is

modified by assuming that the fluidity parameter, a measure

of the rate of yielding, is a function of the strain rate as

for concrete.

= •i () (a - r)
VP	 $

t =0
VP

I°I	 )	 Iti
lcTI	 Iti

(5-137)

(5-138)

By assuming constant strain rate conditions similar to

concrete, the relationship between the fluidity parameter

and the strain rate is obtained using the uniaxial

elasto-viscoplastic stress-strain relation of the proposed

steel model and the results of the dynamic tests.

(ii) Elasto-viscoplastic stress-strain relation

The total strain rate, , is resolved into elastic and

viscoplastic parts

ê=	 +	 (5-139)
0	 VP

where the elastic strain rate, , is expressed as

= & / E
	

(5-140)

Using (5-137) and (5-140) and considering a loading history

for which the total strain rate, , is constant specified as

C, ((*) = ), equation (5-139) can be rearranged and

rewritten in the form

&+E	 (a-t0) -c =0
$	 S

(5-141)

Taking the time derivative of (5-141) results in the

following second order differential equation
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(5-145)

With the

Differentiating (5-132) with time and using (5-139) and

(5-140), the effective stress derivative,	 is expressed as

= H I c - & "•	 .. J	 (5-143)

Substituting (5-143) into (5-142) and rearranging, can be

rewritten as

& + i (E + H) & = E	 H C	 (5-144)
*	 I	 B

The general solution of the differential equation (5-144) is

found as

-7(E+H) t	 EHC1+Ce $	 +E+H CI

in which C1 and C2 are integration constants.

initial conditions at yield point

•oiti=o	 , &iti=C E
(0)	 yd	 (0)

and the time-strain relations

(5-146)

t	 / C , t = c / C	 (5-147)

in which	 is the dynamic initial yield strain of steel,

then equation (5-145) is rewritten as

7 CE + H)

Io=o +	 E2	 [l_e	 c	 (c-c)]
yd	

•. (E+Th2
I

EH
+ E + H	 - Cd) (5-148)

For perfectly viscoplastic material, H = 0, and the equation

(5-148) reduces to

(5-149)T=O ' + L Ii...	
7 H

yd) 3yd •	 e
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(iii) Identification of the rate de pendent steel fluidity

parameter

Using servo-hydraulic testing equipment, Ammann et al [188]

and Limberger et al (189) have conducted numerous uniaxial

tests on reinforcing steel to determine the influence of

increasing strain rates on yield stress, tensile strength

and corresponding strains. Based on the results, complete

stress-strain curves for different strain rates were

established. These are shown in Figure (5-21).

For the determination of steel fluidity parameter, the

following comments are made:

a - All tests were conducted under constant strain rate

conditions.

b - Based on the experimental results, the elasticity

modulus is strain rate insensitive and its value is

200 kN/nun2.

c - Linear hardening representation was applied to fit the

experimental results in the inelastic part of the

stress-strain curve.

Similar procedure to that of concrete fluidity parameter

identification was followed to define the fluidity parameter

of steel which is valid for a particular constant strain

rate test in conjunction with expression (5-149). Different

strain rate tests give different values of the fluidity

parameter. Similar to concrete, the linear fitting between

log and log seemed reasonable and the following

relation is established

log i = K + K log	 (5-150)
8	 1	 2

	

k	 k

	

8 
= 10 1	 2	 (5-151)

where the parameter K1 and K2 are found tO be -0.909 and

0.954, respectively (Fig 5-22). Equation (5-151) is valid

for the strain rate range 10 sec	 10 SeC1.
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5.7.4 STRESS-STRAIN RELATIONSHIP OF STEEL

In the elastic range, the stress-strain relation is governed

by uniaxial Hooke's law as

0• 	 E c	 (5-152)

For stress points above the dynamic yield stress, the

constitutive relation is given as

cr = E c	 (5-153)
C

or

= E (C - c )	 (5-154)
VP

At time t, the viscoplastic strain e is computed as

c = I	 dt	 (5-155)vp	 Jvp
0

where the viscoplastic strain rate is to be determined by

the rate dependent flow rule described earlier. The time

integration of equation (5-155) is numerically performed and

explained later in Chapter 6.

5.8 EXPERIMENTAL CHARACTERISATION

A rate and history dependent constitutive model is developed

for concrete in which the compressive behaviour is modelled

as elesto-viscoplastic material and in tension as a linear
elastic strain softening material. Ideally two tests,
uniaxial compressive and uniaxial tensile loading tests, are

required to obtain all the information necessary to define

the constitutive law in the computer input data. Whereas

usually in practical situations, only the uniaxial

compressive strength is available, it is necessary to

estimate the values of remaining properties. The necessary

material parameters are listed with their approximate values

as follows:

1.	 Young's modulus, E, given (198) in N/mm2 as
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E = K + 0.2 0'
o	 ch

(5-156)

6.

7.

8.

9.

10.

11.

in which K is a constant closely related to the modulus of
elasticity of the aggregate, taken as 20 	 for normal
weight concrete	 is the characteristic cube strength of
concrete is N/nun2.

2. Poisson's ratio u = 0.15 - 0.2

3. Elastic limit factor, 0.3 - 0.4.

4. Uniaxial compressive strength,

5. Peak compressive strain, c' = 0.002 - 0.0025.

Uniaxial tensile strength, o'	 0.1 o".

Cracking strain	 = o/E

Crushing strain, C = 0.0035.

Maximum limiting tensile strain, c = 0.004 - 0.005.

Concrete fracture energy, G 1 given in Nm/rn2 [199] as

0.7
I'G = a 10

f

The coefficient a depends on the maximum aggregate
size with 6 as an average value.
Fluidity parameters, B1 and B2 , to be determined from

Table 5-2 according to the value of cr.

Steel is modelled as rate dependent uniaxial
elasto-viscoplastic material with linear hardening in which
the following material parameters are needed for
characterisation.

1. Young's modulus (= 200 kN/min2).

2. Steel yeild stress ( 250 N/mm2 for mild steel, 460
N/nun2 for high yield steel).

3. Hardening moduls, H.

4.	 Fluidity parameters, K1 and K2 ,	 (-0.909, 0.954

respectively).
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Finally, the validation of the proposed models is

established in Chapter 8 through the analysis of several

applications and a parametric study is also presented to

highlight the significance of strain rate effect and main

material nonlinearities on the response of reinforced
concrete structures.
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Table (5-1)
	

Material constants of the proposed failure

criteria

1..unctlon
i

'S
a	 /(Tcb	 ci

cT"	 /o'cb2	 ci

a

b1

C

1

1.18

1.30

0.154

0.001

1.331

2

1.16

0.104

1.323

3

1.18

-0.094

1.094

4

1.16

1.280

0.046

-0.039

1.225

Table (5-2)
	

Material constants of the concrete fluidity

parameter

'S0'ci	 18.3	 27.0	 44.2	 59.4
N/mm2 __________ __________ __________ __________

B 1	 0.437	 -0.143	 -0.384	 -1.01

B 2	 0.437	 -0.143	 -0.384	 -1.01
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Table (5-3)	 Compound material constants of the proposed

failure criteria

Function	 A	 B	 C
I	 I	 I	 I

1	 a	 b	 c

1•;:2	

3a+b
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Figure 5.18 Strair. rate sensitivity functions of concrete
in tension and carpression
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Figure 5.22 Fluidity paranter plotted against strain rate
for steel
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CHAPTER 6

DISCRETIZATION IN TIME AND THE SOLUTION TECHNIQUES

6.1 INTRODUCTION

In the last ten years, significant advances have been made

in the development and application of numerical methods to

the solutions of transient engineering problems. A primary

factor in this progress has been the parallel development of

large high speed digital computers providing the faster

execution times required to make the solution of complex

engineering problems a feasible proposition.

In previous chapters, the finite element spatial

discretization of the dynamic equilibrium equations (Chapter

4) and the strain rate dependent constitutive material

relations for concrete and steel (Chapter 5) were

considered. In both cases time dependent sets of

differential equations were obtained. The discretiation in

space transforms the original systems of hyperbolic

differential equations to a system of second order ordinary

differential equations. The equations of motion have the

general form

H d + C d + P (d) = Q	 (6-1)

The elasto-viscoplastic constitutive relationship of

concrete is given as

= c + c	 (6-2)
e	 vp

= D 1 d + y () <	 (F) > -	 (6-3)

For reinforcing steel a similar constitutive relationship is

adopted but in uniaxial form.

The coupling of these two sets of equations can be indicated

if the internal force vector, P(d) is written as
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P(d)	 = JBTodv
	

(6-4)

or	 P (d)	 B D (c - s) dv	 (6-5)

substituting (6-5) in equation (6-1) and rearranging results

in

Hd+Cd+JBTDcdv=Q +Q	 (6-6)

in which Q denotes the equivalent force vector associated

with the viscoplastic strain.

Q = I BDc dv	 (6-7)
VP	 J	 VP

V

The equations which govern viscoplastic strain run parallel

in time. The viscoplastic strain is obtained by integrating

the viscoplastic strain rate:

t

£ =
VP	 J vpdt	 (68)

0

The complexity of these governing equations excludes the

possibility of finding a general closed form solution in the

time domain. Consequently, both equations (6-6) and (6-8)

must be discretized in time to obtain a numerical solution.

The subject of this chapter is the temporal discretization

and solution techniques of the time dependent governing

differential equations. A refined explicit central

difference time integration scheme is developed for the

semi-discretized equations of motion. A simple a priori

stability criterion based on theoretical and experiemntal

considerations is derived for the definition of time

increment for Euler explicit scheme adopted for the

viscoplastic strain rate governing equations.

The dynamic equilibrium equations are considered in section
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6.2 and the time rate constitutive equations in section 6.3,

the selection of time increment for nonlinear analysis in

section 6.4 and the final section discusses some practical

considerations in explicit integration employed.

6.2 TIME DISCRETIZATION OF NONLINEAR DYNAMIC EQUILIBRIUM

EQUATIONS

6.2.1 REVIEW OF TIME INTEGRATION METHODS

A brief review of time integration methods is now given to

select the most suitable numerical scheme for blast loading

conditions. A comprehensive review can be found elsewhere

(161, 200-207]. In practical finite eLettetit	 js, t

procedures for numerical solution of the dynamic equilibrium

equations given by (6-1) can be divided into two groups:

modal superposition technique and direct integration

methods.

(1)	 Modal suerosition technjaue

The dynamic response is obtained by solving separately for

each mode of vibration of the structure. The modes are then

weighted by the respective modal amplitude and superposed.

Practical applications are usually limited to linear

problems (161, 203, 204]. The use of modal superposition in

nonlinear dynamics can be effective only if a relatively few

modes need to be considered in the analysis and if the

system is only locally nonlinear (93, 161, 203, 204].

(ii) Direct integration methods

The ease of implementation of these methods along with their

ready usability in nonlinear studies has tended to enhance

rapidly the popularity of these techniques. In these

methods, the dynamic equilibrium equations (6-1) are

integrated by a numerical step by step procedure and no

transformation of the equations is needed. The method is

based on two assumptions (161, 203, 204]:
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(1) The equations (6-1) are only satisfied for certain

discrete time stations which are assumed to be At apart

along the time axis.

(2) The variation of accelerations, velocities and

displacements within At are approximated, giving rise to

several direct integration schemes with different respective

accuracy, cost and numerical stability.

The approximations in time domain may be based either on

finite elements or finite differences. For dynamic

problems, the finite element spatial discretization is most

often complemented by a finite difference time solution.

However, consistent space-time finite elements have been

proposed [160], but this approach is not considered here.

Assuming that the nodal values at time t are known, the

requirement is to advance the solution to obtain the

corresponding nodal values at time t	 = t + At.
n+1	 n

Basically, there are two groups of time stepping schemes:

explicit and implicit methods. Each approach employs

difference equivalents to develop recurrence relations which

can be used in a step by step computation of the response.

Explicit ]nethods

In these methods, the solution at time t 1 is obtained by

considering the equilibrium conditions at time t

	

Md +Cd +Kd = Q	 (6-9)
n	 n	 n	 n

Using the difference formulas that relate the accelerations,

velocities and displacements, the displacement vector at

time t is determined which is not a function of either of
n+1

the mechanical loads or the structural stiffness of the

system at time t . This eliminates the need for iterative
n+1

calculations and thereby simplifies the computations. There

are several publications on accuracy and efficiency studies

of different explicit schemes (161, 202-206, 208-211) which
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d
n

6-10)

(6-li)

(6-12)

include the central difference, the Runge-Kutta and the

Taylor expansion methods. Among these schemes, the central

difference was found to be the most efficient due to its

simplicity and relatively large critical time step. For

practical solutions, the second order accuracy of the

central difference method is sufficient and the higher

accuracy achieved by the higher order methods such as

Runge-Kutta, does not compensate for the extra computational

effort [206, 212]. In central difference scheme, the

acceleration and velocity at time t are approximated

through

-	
(d -2d +d )

2	 n+i	 n	 n-i

=	 (d	 -d)2At	 n+i	 n-i

Substituting the equations (6-10) and (6-11) into (9), the

algorithm to define the solution at time t 1 becomes

1
d-n+i	

At2

-1

H + - j ci Q
in

where 
Q 

is the vector known at time t

.
Q Q - K----H1d _L-!_H_--_Cld

(	 At2	 J	 I At2	2At	 J	 j

(6-13)

Diagonalised matrices are usually employed for H and C so

that the global system matrices need not be assembled. Also

the computer implementation of this method is very simple

and complex material models can be easily accommodated. This

approach has been successfully applied to a large number of

nonlinear dynamic problems of concrete structures (77, 176,

213-215]. However, explicit schemes are conditionally

stable and generally require small time steps to be employed

to ensure numerical stability. The conditional stability

requires the time step size employed to be inversely
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proportional to the highest frequency of the discrete system

(202].

Dnplicit methods

For implicitly integrated equations, the solution at time

t	 is given asn+i

H d	 + C d	 + K d = Q	 (6-14)n+1	 n+1	 n+1

The most popular implicit Schemes are those due to Newmark

(216], Wilson et al (217], Houbolt [218] and Park [219].

The Wilson scheme is not suited for impulsive types of

problems as it shows erroneous over-shoot behaviour [28].

Both the Houbolt and Park schemes are multi-step schemes,

i.e. the integration of one time step requires data from

several previous steps. The Newmark method is the most

widely used in this group, and is based on the following

assumptions

d	 = d + tt ((1-6) d + 6 d 3n+1
(6-15)

d	 d + Atd+-	 -
n+1	 n	 n	 2	 n	 n1((1 2 ) d + 2	 d 3

(6-16)

where the parameters 6 and control the stability and

accuracy characteristics of the method. The Newmark family

includes as particular cases many well known methods such

as the average acceleration method ( = 0.25, 6 = 0.5)

and central difference scheme ( = 0, 6 = 0.5).

Substituting d 1 and from equations (6-15) and (6-16)

into (6-14), the solution for d 1 can be obtained. However,

as d 1 is associated with all matrices in (6-14), at every

time step a new set of equations must be solved and the

computed displacements are iteratively corrected. Therefore,

considerable computational effort is involved for every time
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step depending on the complexity of the material model and

the nonlinearity which occurs during the interval At. Most

implicit schemes are unconditionally stable and the

selection of the time step is governed by accuracy

conditions.

To combine the features of implicit and explicit schemes,

the nodal partition techniques (220] and element partition

methods (221] have been developed recently by employing

different time integrators on different parts of the system.

Explicit -explicit subcycling techniques [222] have been

used in dynamic problems when the element size varies over

the mesh by assigning different time step size to each group

of nodes or elements. The above mixed partition schemes are

not considered in this thesis.

6.2.2 SELECTING SOLUTION PROCEDURE FOR THE PRESENT ANALYSIS

Generally, linear or nonlinear dynamics problems are

classified as wave propagation problems and inertial

problems, depending on the effect of the spectral

characteristics of the excitation on the overall response

(200-202]. The former problems are those in which the

behaviour at the wave front is of engineering importance,

and in such cases it is the intermediate and high-frequency

structural modes that dominate the response throughout the

time span of interest. Problems that fall into this

category are shock response explosions or impact loading.

Other dynamic problems such as seismic response can be

considered as inertial and here the response is governed by

a relatively small number of low frequency modes. In

practice, wave propagation problems are usually best solved

by explicit integration techniques whereas implicit methods

are more effective for inertial problems. However, the

relative economy and applicability of both approaches is

also influenced by the topology of the mesh, the material

models and the type of computer to be employed. To justify

the preference for a specific problem, the pros and cons of
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both methods have to be estimated.

In the present work, the explicit central difference scheme

has been employed for the integration of equations of

motion. Although the scheme is conditionally stable and

stringent limits must be imposed on the time step size, it

was chosen for the following reasons:

1. Explicit methods are far easier to program and easier

for taking into to account the complex material models of

concrete and steel suggested in Chapter 5.

2. No iterative solution is needed, which results in

considerably less computational effort per time step

compared with implicit methods.

3. The utilization of a lumped mass matrix affords

significant computational advantages and improved accuracy

of the explicit schemes (209) as the errors introduced by

the lumped masses and the explicit operator tend to be

compensatory.

4. For some forms of the explicit schemes the

factorization of the structural matrices are not required

and the nodal internal forces and displacements are computed

directly without forming the stiffness matrix resulting in

reduced core storage requirements. In these cases, the

computational cost per time step is independent of the node

numbering, and hence the bandwidth of the mesh, enabling

much larger problems to be solved.

5. For path- and rate-dependent material models developed

here, the time step required, to follow the material's

stress history, strain rate dependent parameters and the

progressive concrete crack propagation through the

structure, is often not much larger than the stability limit

of the explicit scheme. Thus the time step limitations are

not a particular disadvantage (200, 206].

6. In shock response problems, the high frequency

components of the solution contribute significantly to the

response so the time steps of the order necessary for
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stability of explicit methods are required simply to capture

high frequencies with sufficient accuracy [206, 28].

7. The time step size required for sufficient accuracy

with rapidly varying blast excitations, and for accurately

monitoring the behaviour of the shock wave front, is already

very small (176, 202].

8. The amount of user interaction and the level of user

experience needed is much less compared with other schemes.

Default and experience dependent values for necessary input

quantities of implicit methods such as convergence

criterion, amplification factors and iterative technique are

not required to be specified.

6.2.3 FORMULATION OF A MODIFIED FORM OF EXPLICIT CENTRAL

DIFFERENCE SCHEME

The existing explicit central difference schemes are based

on two approaches: the explicit form of the Newmark-fi

method (216] and central difference scheme which involves

the displacements at two previous time stations [200-206].

The drawback of the former one is that to calculate the

velocity and acceleration at time t 1 , the damping forces

can only be implicitly included through the internal

resisting forces. The disadvantage of the other scheme is

that at time t ' only the velocity d and the

acceleration d can be computed. For the present analysis a

modified form of explicit central difference scheme based on

the Newinark- method is developed to advance the nodal

displacements, velocities and accelerations in time

including damping forces defined in general explicit terms.

Setting =0 in the Newmark - method [216], the displacement

and velocity at time t 1 are given, respectively by

d = d + t +	 ti	 (6-17)i+1	 n	 n 2
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'fl +	 At	 + d 1 )	 ( 6-18)

To calculate the acceleration d 1 , the equilibrium equation

(6-1) is rewritten for time t asn+1

Nd	 +Cd +P	 Q	 (6-19)
n+t	 +I	 n+1 = n4l

Substituting equations (6-17) and (6-18) into (6-19) and

rearranging, we obtain

d	 = 2 (2H + AtC) 1 (Q	 Pn+1	 - n+1

- 2C (2M + AtC)' (d +	 d) (6-20)

The acceleration and velocity at time t can be expressed in

terms of displacements through central difference

approximations as

1d	 - (d -2d+d )
At2	 n+I	 n	 n+1

d=	 (d -d
n.j	 n-I

(6-21)

(6-22)

Substituting equations (6-21) and (6-22) into (6-20) and

rearranging, we obtain

= 2 (214 + AtC)	 (Q	 _P1)

-	 (214 + AtC)	 (d1 - d)	 (6-23)

For explicit schemes the Rayleigh damping is customarily

approximated as

C = b 14	 (6-24)
0

If this approximation is used in 6-23, then we can write the

expression as

ci	 = a 1(1 (Q	 - P ) - a (d	 - d) (6-25)n+j	 0 n+j	 n+I	 1	 n+1	 n
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in which a and a are integration constants expressed as
o	 1

2a = 2 + bt	 (6-26)
0

b
a1 =	 a	 (6-27)

For blast loading conditions, the externally applied load

vector is the resultant of the externally applied air

blast load on the structure, F , and the external seismic
n+1

load on the supports of the structure, H d'

Q = F - H	 (6-28)
n+1	 n.j	 9

Using equation (6-28), equation (6-25) is rewritten as

d	 = a t(1 (F - P ) - a d'	 a (d - d
n+1	 0	 n+1	 n+1	 0 9	 1 n+1	 n

(6-29)

As the mass matrix H, is diagonal, the factorization in the

system (6-28) becomes trivial. In that case, the solution

for the displacement, acceleration and velocity can be

obtained for every degree of freedom in the structure, i,

separately leading to

dt1 =	 + At d' ^	 At2 dt	(6-30)

= a M (Ft1 - 
pt1) - a (d 1)_ a1 (dt - d')

(6-31)

dt1 = & + At (d! + d)	 (6-32)

To start the solution procedure, the value of initial

displacements d and velocities d are given as initial

conditions. Initial acceleration can be obtained by solving

equation (6-29) at time t = 0
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d = a	 (Q - P ] - b d + a	 (6-33)o	 o	 o	 o	 o o	 o g

where p is the restoring force vector caused by initial

stress in the structure.

6.2.4 COMPUTATIONAL STRATEGY ASPECTS

The architecture of a program for the explicit integration

of a finite element system differs markedly from that of

static programs and implicit integration programs. Although

many analysts have used the traditional finite element

approach, with nodal forces computed by multiplication of

the tangential stiffness matrix and incremental

displacements, that approach is computationally inefficient.

In fact, it appears that the use of stiffness matrices in

explicit nonlinear transient problems looks to be

principally of historical motivation. As described by

Heifitz et al (223), such an approach corresponds to first

finding the derivatives of the nodal forces with respect to

the nodal displacements, and then multiplying these two to

compute the nodal forces. This method obviously involves

unnecessary computations, and is moreover quite expensive

when the response is highly nonlinear. In addition, it

implies the use of additional core to store stiffness

matrix, and consequently the size of the problem is

significantly reduced.

As it can be seen from the formulations of the modified

explicit central difference scheme developed in section

6.2.3, the nodal internal forces are computed directly

without recourse to a stiffness matrix.

This approach was first used in finite element programming

by Belytsch]co et al [224]. The computational algorithm of

the modified explicit scheme is given in Table (6-1). In

this table, for purposes of clarity, only the equations for

a structural system are presented. The implementation
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procedure for the finite element equations and constitutive

relationships of concrete and steel are given in detail in

Chapter 7. As can be seen from Table (6-1), at any time in

the procedure, the displacements are known, and the element

relations in conjunction with the constitutive relationships

are used to compute the nodal internal forces for that time.

Then, these forces are employed in the equation of motion to

compute the accelerations which are integrated subsequently

to find the new displacements.

In estimating the computational costs of the procedure shown

in Table (6-1) it is found that most of the cost lies in the

evaluation of nodal internal forces which involves material

laws and the element relations, such as the numerical

quadrature for the element nodal forces. Thus, the cost of

any computation per time step depends on the number of

elements, the complexity of elements, and the intricacy of

the material laws. In any case, the number of computations

varies linearly with the number of elements regardless of

node numbering. The only disadvantage of the scheme is that

the time step must be small enough to be consistent with the

numerical stability limits of both dynamic analysis and

viscoplastic Btrain solution. Finally, the energy balance

check mentioned in the table is used to monitor solution

stability, and is fully explained in subsection 6.5.1.

6.3 TIME DISCRETIZATION OF THE VISCOPLASTIC STRAIN GOVERNING

EQUATION

As described before, time dependent deformations of

viscoplastic solids are governed by the flow rule given as

vp =	 (F) >	 (6-34)

The above rule holds for every time t. To obtain complete

solution to a viscoplastic problem, equation (6-34) must be

integrated in time throughout the period of interest

starting from known conditions at time 0. The viscoplastic

strain change in the time interval dt is defined by

- 204 -



• n+i
c	 iAt

VP	 n (6-36)

t + dt
n

dc	 =	 1L	 dt
VP	 J	 VP

t
n

(6-35)

6.3.1 THE VISCOPLASTIC STRAIN INCREMENTS

is known only for

the relation (6-35)

manner of initial

Assuming that the expression (6-34)

	

discrete time stations, At 	 t - t ,

	

n	 n+1	 fl

can be approximated in the traditional

value problems (160) as

n
Ac	 =

VP
[ i-e	 +

VP

in which Ac's represents the vector of viscoplastic strain

increments and the parameter e (0 e 1) defines the time

integration scheme. For example, 6 = 0 gives the Euler or

fully explicit scheme, 6 = 0.5 defines the implicit

trapezoidal rule and 8 = 1 results in a fully implicit

scheme.

In the present work, the Euler explicit integration scheme

has been chosen. Thus, the viscoplastic strain vector at

the time step t 1 is given as

n	 •n
c	 = c	 + c At	 (6-37)
VP	 "P	 VP

This scheme has been found to be coniputationally efficient

in the context of quasi-static analysis (225] and dynamic

problems (34, 77, 176) despite the numerical stability

limitations on the time step length which is discussed in

the following subsection.

6.3.2 TIME INCREMENT DEFINITION

The time integration scheme represented by (6-3 6) is

conditionally stable for 6 < 0.5 (160]. 	 To date several
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stability analyses relating to viscoplastic solution

procedures have been undertaken to establish rules for

choosing the time step length. According to the form of the

viscoplastic potential used in the flow rule and referring

to the fully explicit integration scheme, Corineau (226]

derived theoretical stability limits for some classic yield

criteria such as von Mises and Mohr-Coulomb. It should be

mentioned that these stability limits were obtained for

quasi-static elasto-viscoplacity with the flow rule a linear

function of stress only. As the flow rule adopted in this

work involves both stresses and strain rates, these limits

are not strictly applicable. Semi-emperical relationships

have been proposed in (112] to control the time step length

as

(, :

	

At	 c	 (6-38)

	

fl	 VP)

in which " is the total effective strain, E is the
VP

effective viscoplastic strain rate and ' is a control

parameter which varies between 0.01-0.015 for explicit

schemes (112]. Recently Damjanic (27] has developed a

method to calculate the critical time step length on the

basis of an eigenvalue analysis of one of the matrices

involved in the viscoplastic behaviour. This procedure is

coinputationally expensive since the value of At changes

throughout the transient process, i.e. the eigenvalue

analysis should be recalculated at every integration point

in which viscoplastic flow occurs, for every time step.

In the present work, an estimate of the allowable time step

for concrete viscoplastic behaviour, has been obtained by

substituting some representative values from Watstein, [16)

and Hatario's (17] tests into one of the criteria given in

[226). The stability limit for the von Mises yield

criterion (a particular case of the compression loading

functions proposed for concrete) is employed in the form
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(1 + v) t	 (6-39)3 yE

Taking t, the effective stress, as the initial dynamic yield

stress (t = 0.4 ad) and the strain rates varying from i6

to 10 sec 1 (the range in which the present material model

is assumed to be valid) to calculate the concrete fluidity

parameters, the critical time steps At, obtained for

different concrete grades are shown in Figure (6-1). Using

the linear curve fitting, a unique relation between At and

the strain rate for concrete is established as

	

Log (At ) = c + c	 Log ()	 (6-40)
cr	 1	 2

C	 C

or	 At	 = 10 1	 2	 (6-41)
cr

where the parameters c1 and c2 depend on the concrete

cylinder compressive strength and can be obtained by

interpolation from Table (6-2). As can be seen, the

smallest critical time increment for the same grade of

concrete is the one corresponding to the strain rate 10

sec 1. Taking these allowable time steps and the

corresponding concrete cylinder compressive strength and

employing the linear curve fitting, it is possible to

establish a unique relation between At 	 (in sec) and

a' (in N/mm2) as

At	 = 10 t1 (q\)t2	 (6-42)

where the parameters t and t 2 are found to be - 8.49 and

3.12 respectively. Typical values of critical time steps

for some concrete grades are given in Table (6-3).

For steel, the stability limit for viscoplastic solution of

the uniaxial case using the Euler time marching scheme [112]

has been adopted.
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S

At S 
E	 (6-43)

in which cT;d is the steel dynamic yield stress.

substituting the representative values from the

experimental results for different strain rates given in

(188, 189] and applying the linear curve fitting in a

similar fashion to that of conrete, the critical time

increment for steel is found as a function of the strain

rate in the form (Figure 6-2)

*	 S
IAt	 1	 2	 (6-44)
cr

in which s and 
2 

were found to be - 1.55 and - 0.92

respectively. Noticing that the strain rate 10 sec 1 gives

the smallest allowable time increment and computing the

corresponding fluidity parameter and the dynamic

magnification factor of steel yield stress, the following

relation to define the critical time increment as a function

of steel static properties is established as

$0
At1 = 2.781	 (6-45)cr

S

The semi-empirical a priori stability limits of Euler

explicit scheme proposed in equations (6-42) and (6-45)

represent an upper bound limit for time step size and have

great	 merit	 for	 monitoring	 the	 process	 of

elasto-viscoplastic	 response	 of	 dynamically	 loaded

reinforced concrete structures in a simple and stable

manner. In dynamic analysis, however, if an explicit

integration scheme is used, the stability limit for the step

by step integration of the equations of motion will normally

govern the choice of the time step length (176, 202]. In

particular, when cracking is involved, the time step must be

selected so that cracks spread progressively throughout the
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structure. If a large number of cracks are formed in the

same interval, considerable error and numerical difficulties

may be encountered.

6.4 SELECTION OF THE TIME INCREMENT FOR NONLINEAR DYNAMIC

ANALYSIS

From the previous discussion, it can be stated that the

selection of time increment for numerical integration of the

coupled equations (6-6) and (6-8) is usually governed by the

stability limit of the central difference scheme (202], i.e.

2At	 At ; At =	 ((1 + )12_ ]
	 ( 6-46)

cr	 Cr	 U• ax

where is the damping ratio for the highest mesh frequency.

The maximum frequency, w, , is given as

w = IA	 (6-47)
ax	 V nax

where A is the maximum eigenvalue of the system. For

undamped system ( = 0), the stability limit of time

increment can be written as

2	 -	 2At	 - / A
max	 V max

(6-48)

It is generally quite inconvenient to determine a stable

time step by finding the maximum system eigenvalue. This is

particularly true for nonlinear problems, where the

eigenvalues change as the solution evolves. Various

estimates for the highest mesh eigenvalue have been

suggested (202, 224). The basis for these estimates is

provided by the bounding theorem for extreme eigenvalues

derived from Rayleigh's principle [230]

elemant	 mesh	 mesh	 element 
(6-49)

mm	 mm	 max	 max

Hence, the highest mesh frequency is less than the highest

frequency of its smallest element. Thus, the stability
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T e
=	 K t

ax
(6-51)

condition (6-48) can be rewritten as

At	 2	 =
eent

2

e1eent
	 (6-50)

.ax

From Rayleigh's quotient, the maximum element eigenvalue is

defined (202) as

in which K° is the element stiffness matrix, Me denotes the

element mass matrix and defines the eigenvalue associated

with the highest frequency which is often referred to as the

noisiest eigenvector [230].

In fact it is not practical to compute even the maximum

eigenvalue of the smallest element of the mesh. The reasons

for this can be summarized as

1. The considerable increase of computation cost to

determine the highest element eigenvalue and then the time

increment at every time step.

2. This method is generally valid for regular meshes (77,

202].

3. In nonlinear problems, an accurate maximum eigenvalue

to define time step limit does not guarantee stability of

solution (224].

Instead, formulas which give the maximum element eigenvalue

are used for simple elements [202, 227, 228]. Based on

(6-51), the maximum element eigenvalue was found for one

dimensional element [202) as

4 C2e1eent =	 =	 p	 ( 6-52)max	
pL2	 L2
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in which C	 is the acoustic wave speed and L is the

element length. substituting this estimate into (6-50), the

stability condition for 1D elements is rewritten as

At	 (6-53)

Due to the convenience of the expression (6-53), it is

customary to express also in a similar manner the stability

limits for higher order elements. The typicalorms used is

then

LAt	 (6-54)
p

where g.L is a reduction factor for which different values are

suggested (77, 224]

For the 8-node isoparametric elements used here, the length,

L, is defined as the smallest length between any two nodes

in the mesh. From many computations carried out in the

present work a reduction factor varying between 0.2 and 0.4

was found to be necessary to account for the discretizing

effects of round off errors and rapidly varying concrete and

steel properties. Finally, for 2D applications, the

acoustic wave speed is related (214] to the elastic material

constants in the form

I	 EC 
=	 /	 2 

for plane stress elements;
p	 v p(l-v) (6-55)

c = 
/E (1-L')

p / p(1+v)(1-2L')' 
for plane strain and axisymmetric
elements (6-56)

6.5 SOME PRACTICAL CONSIDERATIONS IN EXPLICIT INTEGRATIONS

The numerical solution of the discretized system deviates

from the exact solution of the continuous system as a result

of spatial and temporal discretization effects. Some of the
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temporal discretization errors of explicitly integrated

equations are discussed and the methods to limit their

effects are given.

6.5.1 ENERGY BALANCE CHECK

It is widely accepted that for linear explicit computations,

numerical instabilities may easily be detected after a

solution is completed by exponential oscillatory growth in

nodal displacements. However, in nonlinear calculations,

the numerical instability is not always as dramatic and in

fact may avoid detection even if the eigenvalues are

computed within the time integration loop to determine the

stable time increment. The reason for this is that

nonlinear processes such as inelastic deformations are

capable of dissipating a large amount of energy and hence a

decrease in the stiffness and the maximum eigenvalues of the

system, so the calculation may regain stability. This

process is known as an arrested instability (224].

According to the proposed nonlinear material models in this

thesis, concrete and steel are dissipative materials. The

spurious energy generated by an instability may rapidly be

absorbed as an excessive plastic work as a

consequence of viscoplastic response of concrete or steel,

or concrete cracking. In these situations simply checking

for large unrealistic results may not always provide

assurance that no instability has occurred, since an

instability may be confined to a small region of the mesh

and the problem may even recover stability at a later time.

If this happens, the results obtained for the problem may

seem quite reasonable, but the earlier instability will

render the final results totally inaccurate.

In order to guard against these errors, energy balance check

as an alternative method for checking the stability of

explicit finite element calculations, is employed. 	 If
kin	 mt	 extW , W , W	 denote the kinetic, internal andn+1	 fl+1	 n+1

- 212 -



external energies of the system at time step ni-i,

respectively, the energy balance check is given as (202]

w kin 
+	

mt -
	

ext	
i i	 ( 6-57)I	 n+1	 n+1	 n+1

where is a specified tolerance and 	 W	 is some measure

of the total energy of the system. The use of any one of

the terms of the left hand side of equation (6-57) alone

would not provide a useful measure of this energy. For

impulsively loaded problems when an initial velocity is

prescribed, there would be no external work. For vibration

problems, the value of the kinetic and internal energies

would oscillate and become very small at some point in the

problem. Therefore, a measure of the total energy of the

system should include all three terms.

11W11=1W1+1W11+1Wkn1	 (6-58)I	 n+1n+1n+1

The use of absolute value sign in the left hand side of

equation (6-57) is not really necessary since an instability
is usually characterized by growth in kinetic and internal

energies which are non-negative. Therefore, this left hand

side would always be positive in case of an instability.

In time integration, equation (6-57) is checked at each time
step to ensure that the work done on the system and the

energy of the system are nearly equal (usually 6 0.02).

Using the trapezoidal integration, the internal and external

energies are calculated as

nd
w

mt	
W 

mt + I	 (d' - d') (P	 + P ) (6-59)=	 -n+i	 n	 2	 n+l	 n
1=1

nd
w

ext	 w ext +	 (dt - d') (Q	 + Q ) (6-60)=	 -n+1	 n	 2	 n+l	 n	 n+1	 n
1=1

where nd is the total number of degrees of freedom in the

structure. The kinetic energy is given by
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nd	 .	 T
w	 - 1	 Id 1 U d1	(6-61)

n+1	 2..

	

1=1	
n+1)	 n+1

6.5.2 CONTROL OF SPURIOUS OSCILLATIONS

The phenomenon of spurious numerical oscillations is the

second troubling consequence of applying explicit temporal

integration to spatially discretized equation of motion.

The response of a discrete system to excitation with

frequency components above the maximuju frequency of the

system (the cut-off frequency) produces spurious

oscillations which dominate the true solution in such a way

that the interpretation of results is difficult. Their

presence is a result of several possible factors, discussed

in (28, 227-229).

It has been indicated (28, 227] that pronounced spurious

oscillation is obtained when the excitation consists of a

discontinuity such as step type loading. In this case, the

spurious oscillation is caused by the fact that the

numerical solution describes the discontinuity with a finite

slope as a result of the reduced number of eigerunodes of

discretized system. Subsequent oscillations about the

analytic solution occur with a decreasing amplitude at a

constant frequency. The predominant frequency of these

oscillations is the cut-off frequency of the system. This

is generally referred to as Gibb's phenomenon (227].

While the mesh refinement in regions of interest has few

drawbacks in static elasticity problems, the situation is

not as simple in transient dynamic problems. From the study

of wave propagation in one-dimensional mesh, it was

concluded (227] that the refinement of the mesh in the

regions of interest results in the following spurious

effects: the coarse part eliminates any frequency content

beyond its resolution in waves which propagate through it to

the area of interest, and the coarse mesh reflects back a
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significant part of the high frequency waves generated in

the fine mesh which leads to over-estimation of higher

frequency characteristics of the mesh. The frequency at a

point depends not only on the element size where the

response is recorded, but also on the reflected wave

frequencies associated with larger elements through which

the wave will pass. These spurious reflections result from

the fact that the finite element behaves like filters having

definite passing bands and cut-off frequencies [28).

Several methods are available to eliminate these

oscillations: the use of integration operators with damping

such as the Newinark- operator (216); the use of artificial

viscosities in the elements (2293; the post-processing of

solution by digital filters (227, 229]. Generally these
techniques have a tendency to increase the dispersion

property elements as well as artificial viscosities diminish

the amplitude of the solution.

In the present work, when this phenomenon appears, a

post-processing of solution by a five point non-recursive
filter is applied. This filter consists of the

transformation (227]

dmttr (t)	
k2 

d (t +
	

(6-62)

where w is the frequency to be filtered which is usually

the cut-off frequency of the system.
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Table (6-1)	 Step-by-step solution procedure of explicit

central difference

a. Initial calculations

1. Initialize d and d
0	 0

2. Select time increment tat, t

3. Select damping coefficient b and then calculate the

integration constants, a and a 1 , using equations (6-26)

and (6-27)

4. Form structure lumped mass matrix H

5. Calculate the initial load vectors Q and P

6. Evaluate initial acceleration vector, d, using (6-33)

be For each time step

7. Calculate the displacement at time t 1 using equation

(6-17)

8. Update the strains using the element relations and the

stresses using the material laws

9. Find internal nodal forces, P 1 , using equation (6-5)

10. Calculate the external applied load vector, Q1

11. Solve for acceleration and velocity vectors at time t
n+1

using equations (6-25) and (6-18) respectively

12. Calculate the external work done and the internal and

kinetic energies of the system and then check the energy

balance.

13. For next time step, set n - n+1 and go to 7
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Table (6-2)	 Critical time step parameters identif led

from Watstein's (16] and Hatano's (17] tests

cr' N/mm2	18.3	 27.0	 421.2	 59.11

C 1	- 3.69	 - 3.02	 - 2.67	 - 1.98

C2	- 0.878	 - 0.867	 - 0.906	 - 0.825

Table (6-3) Critical time step of some concrete
grades (Assuming von Mises yield criterion

t = 10sec)

cT ' N/mm2	18.3	 27.0	 44.2	 59.21

At sec	 2.7 e-05 1.28 e-04 2.60 e-04 1.54 e-03
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Figure 6.1 Critical time versus strain rate for different
grades of concrete
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Figure 6.2 Critical tine incrint versus strain rate for steel

- 219 -



CHAPTER 7

COMPUTER IMPLEMENTATIONS AND BRIEF PROGRAMS DESCRIPTION

7.1 INTRODUCTION

The success of the Finite Element method as a practical

design aid depends on the availability of an efficient means

of solving the resulting system of linear or non-linear

simultaneous equations. The aim of this chapter is to

describe briefly the main features of the computer programs

developed during the course of this work for the finite

element analysis of two-dimensional structures subjected to

blast loading or any other impulsive or transient dynamic

load, discussed in the previous chapters. Section 7.2

sununerizes the software features, the structural analysis

capabilities and the structure of the 2D finite element

dynamic analysis program, the main computer program

developed. The computer implementation of the solution

technique (Chapter 6) and the material models (Chapter 5)

proposed in this thesis are presented in section 7.3.

Finally, section 7.4 discusses briefly the other relevant

programs developed for the pre- and post-processing of data

to support the main program.

7.2 2D FINITE ELEMENT DYNAMIC ANALYSIS PROGRAM

A versatile and comprehensive computer program for the

finite element analysis of blast resistant structures, named

FEABRS, has been developed. This program can perform the

linear and non-linear explicit step-by-step dynamic analysis

for two-dimensional structures under a wide range of dynamic

loads. The program embodies the rate dependent constitutive

material models proposed for reinforced concrete in Chapter

5. However, the facilities to handle other structural

materials such as metals and geomaterials (rock and soils)

are available. The basic features, capabilities and the

structure of the program are described in the following

subsections.
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7.2.1 CHARACTERISTIC FEATURES OF FEABRS

In keeping with contemporary programming practice and

considering the software design aspects of the finite

element method, FEABRS has been written with the following

software engineering features:

1. Prorammin .anquage

The standardization, availability and persistent use of

FORTRAN in engineering, despite some technical drawbacks,

makes it the only logical choice for currently developed

finite element software. FEABRS has been written in

FORTRAN-77.

2. Modularity

The clearly defined steps of finite element analysis and the

corresponding distinct entities reveal a modularity that

should be fully used in software design [231]. A modular

approach has been adopted in FEABRS which comprises seven

modules, each with a distinct operational function. Each

module in turn, as shown in Figure 7-1, is composed of one

or more primary subroutines relevant only to its own needs

to perform the basic finite element analysis steps. The 15

primary subroutines rely on 43 auxiliary subroutines to

carry out secondary operations. An auxiliary subroutine may

be required by more than one primary subroutine. Control of

the modules is held by the master segment, denoted MAIN,

which organises the calling of the primary routines as well

as controls the termination of the solutions according to

the number of time steps specified in input data.

3. Dynamic dimensioning

Dimensions are fixed in the master routine and all necessary

information is transmitted between the routines by the use

of arguments. This approach has the advantages that maximum

dimensions can be updated in a very simple and

straightforward manner. Only the dimensions statement in

the main segment and some statements in a control

subroutine, called DIMENS which sets the maximum dimensions
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sizes, need modification. More sophisticated versions of

this approach can be implemented as illustrated by Irons and

Ahmed (232]. Such approaches undoubtedly save core storage

but they do require careful housekeeping and checking

procedures.

4. Portability

The generality of the finite element method and the large

investment required to produce good software dictates that

such software 'must be transportable between different

computer models and installations. Using parametric data

structure dimensions and data transfer block sizes allows

the tuning of FEABRS software to fit different machine

configurations. The program has been successfully compiled

and run under different FORTRAN-77 compilers running under

different operating systems. This includes both UNIX and

COS.UNIX used on GOULD minicomputers (PN 9005 and PN 6040)

and SUN and WHITECHAPEL Workstations. The COS operating

system was used on a CRAY X-MP super computer.

5. Reliability

The reliability of FEABRS results from clear definition of

the modules with a minimum of interface information, and

ease of structured programming within the modules, which

allow the verification of modules independently of their use

in the overall programming system. Thus, the software

errors can be separated from the errors associated with

incorrect formulation, misapplication, or data preparation.

FEABRS relia1ility also implies that modules will detect and

report any errors in their data that make completion of

their task impossible and will return control to the

higher-level calling subroutine or controlling program.

6. Expandabilitv

The main control parameters and the modular programming

system of FEABRS allow an important facility in that

introduction of new capabilities implies only the creation

of additional subroutines and data entities without

upsetting the organisation of the entire program.
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7.	 Input data flexibility

The data input has been designed to be self-explanatory and

in free format. Free format input has the advantage that it

reduces the human effort in the preparation of data,

obviates the need for special coding forms, minimises input

error and is convenient for input from terminals. The

program is unitless and assumes that a consistent set of

input data are given.

Automatic data generation facilities are not incorporated

within FEABRS. However, at any stage during the preparation

of input data, the computer system can be instructed to

receive data from external files generated by separate data

generation programs. This minimises the effort needed to

prepare data and also reduces the possibility of making an

error. Although the elements and nodes are usually numbered

for the convenience of data generation, they may be numbered

in any arbitrary manner or gaps in the numbers.

8. Data checking and error diagnostics

The principal of including in a finite element program ample

diagnostics which tell the user what is wrong with input

data and why the machine has stopped, is now almost

universely accepted. FEABRS contains four error diagnostic

subroutines which automatically check for wrong or

improbable input data. If any errors are detected, another

subroutine called ECHO, is called to echo the remainder of

the problem data via the line printer (233] before the job

is terminated.

9. Output flexibility and presentation	 results

The output of results has been designed to be compact-clear

and self-explanatory. The user can suppress or call certain

areas of the output from an analysis.

The results include displacements of nodal points, internal

stresses within the various finite elements and material

state variables. All are expressed in the global coordinate
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system and presented in a tabular form. For time history

analysis, the displacements at selected nodal points and the

stress components at specified sampling points are

post-processed separately to facilitate interpretation of

results.

7.2.2 BASIC STRUCTURAL ANALYSIS FACILITIES

FEABRS has been developed to suit the possibility of

performing several dynamic analysis problems of transient

and impulsive nature such as blast, impact or earthquakes.

To achieve this, the program has been provided with the

following facilities:

1. Loads definition I lexibilitv

A structural analysis of a system subjected to different

forms of loads and/or time varying forced boundary

conditions can be performed. Loads applied to structure can

be defined in a number of ways:

-	 as concentrated loads applied to nodal points.

-	 as normal and tangential loads per unit length applied

to element edges.

-	 as gravity load

-	 as	 prescribed	 displacements,	 velocities	 and

accelerations applied to nodal points.

Complex loadings due to blast can be synthesized by

combination of multiple load vectors and load-time

functions. These functions can include Heavside, step,

harmonic, expontential decaying or arbitrary functions.

Airbiast-induced earth shock or earthquake excitations can

be considered by defining the acceleration history for each

constrained degree of freedom in the structure from the

accelerogram data.

2. Finite element modelling flexibility

The current version of FEABRS features a limited library of
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finite elements, which permits the modelling of plane and
axisyminetric complex geometries. Based on the isoparametric
formulation, three different element types (112] are
included:

-	 The 4-node isoparanietric quadrilateral element with
linear displacement variation.

- The 8-node Serendipity quadrilateral element with
curved sides and a quadratic variation of the
displacement field within the element.

-	 The 9-node Lagrangian quadrilateral element which
additionally has a central node.

The use of these higher order elements leads to particularly
efficient solution for large applications.

To simulate reinforcement in concrete structures, the bar
and membrane elements, as discussed in Chapter 4, have been
incorporated as embedded members in the basic isoparainetric
concrete element. All elements in FEABRS are numerically
integrated, and 3x3 or 2x2 integration rules can be
specified. Numerical integration enables the software to
include facilities such as the computation of nodal forces
equivalent to initial stresses, body forces, surface
pressures or mass and damping matrices.

3.	 Material modelling flexibility

The following material models can be selected:

-	 Isotropic and linear

- Elasto-viscoplastic with flexibility in the choice of
the yield criteria and hardening or softening
functions.

-	 User-supplied material, dependent on	 history,
temperature, time etc.

Within the frame of viscoplasticity, the yield criteria can
be specified as
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-	 Any of the four failure criteria proposed for concrete

in this thesis.

-	 Von-Mises for metals.

-	 Mohr-Couloinb and Drucker-Prager for geolnechanics.

The hardening regime can be modelled as a linear,

expotential or parabolic function of the effective

viscoplastic strain. The option to ignore material

hardening or softening has been provided. For cementitious
materials, a crack monitoring algorithm to control the

cracking process, and a crushing control routine have been

included to cover the brittle nature of these materials. It

is also optional to account for the post-cracking behaviour

which is represented by four different models to idealize

the tension softening and shear transfer across the cracks.

The facility to account for the rate sensitivity of the

cracking process as well as the viscoplastic regime is also

optional.

4.	 Analysis capability

FEABRS provides analysis capabilities for the solution of

engineering problems which include linear and nonlinear

transient dynamic analysis of plane stress, plane strain and

axisymmetric problems. The solution technique of the

governing equations is based on the explicit time

integration scheme, discussed in Chapter 6, which provides a

good tool for the solution of very large models and analysis

in an accurate, economic and efficient manner.

7.2.3 GENERAL STRUCTURE

The modules, schematically shown in Figure 7-1 are described

in relation to their functions as follows:

1.	 Control	 initialization module

This is the first module entered and is controlled by

subroutines DIMENS and ZEROAR. The purpose of subroutine

DIMENS is to set the values of variables for the dynamic
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dimensions which are used elsewhere in the program. If any

change in the DIMENSION statement in the master routine is

made, then a corresponding change in this subroutine should

also be made. The job parameters such as number of

elements, number of nodal points, number of materials, type

of elements, Gauss integration rule and number of load

history functions, are also read and a check is made on the

maximum available dimensions. The role of subroutine ZEROAR

is to set to zero all arrays required during the analysis.

2.	 Input module

This is the second module entered and is controlled by four
subroutines GMDATA, TMINTP, FTINTP and PSTATE as shown in

Figure 7-1.

Subroutine GMDATA handles the input data defining the

geometry, boundary conditions and material properties of

both isoparametric elements and the various steel embedded

elements. It also names the rate sensitivity paraweters of

the materials. Some data is processed into a form

compatible with later program requirements and other

constant data, such as Gaussian integration constants, are

set up. This routine calls three different data error

diagnostic subroutines to check the main control parameters

and input data.

Subroutine TMINTP reads input data defining time-stepping

procedure, Rayleigh damping and the selective nodal points

and integration points for displacement and stress histories

output. It also reads the initial displacement velocities.

This routine also calls an important subroutine to check the

length of time step of the analysis against the critical

time increment (Chapter 6).

Subroutine FTINTP deals with the input data which define the

type of load history function for each degree of freedom and

then the characteristic parameters and ordinates of each

function.	 It also reads the horizontal and vertical
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acceleration ordinates if they exist.

Finally, subroutine PSTATE reads the initial forces,

stresses and strains.

3. Loadinc iwdule

The flow of operations through this module is governed by

the subroutine LOADAT. The role of this module is to

evaluate the consistent nodal forces for each element due to

externally applied forces. The types of loading to be

considered are controlled by IPLOD, IGRAV and lEDGE.

Non-zero values of these respective items indicate that

discrete point loads, gravity loading or distributed edge

loading per unit element length (or per unit area for

axisymmetric problems) are to be considered. The consistent

nodal loads are evaluated from each element separately and

stored in the array RLOAD. These element force vectors are

then assembled into the global external force vector FORCE.

4. Preso].ution odu1e

This module comprises four subroutines LUHASS, FIXITY,

AENBLO and RESIDO. Generally, it organises the initial

calculations necessary to start the time stepping procedure

in the solution and post-solution modules.

Subroutine LUMASS generates the lumped mass vector by

scaling the consistent mass matrix to preserve the total

mass. Then the contributions of the reinforcement embedded

elements are evaluated, as explained in Chapter 4, and added

to the global lumped mass vector. This routine also reads

concentrated masses and assembles them into the global

diagonal mass vector.

Subroutine FIXITY deals with restrained degrees of freedom

in similar manner to that proposed in Reference [112]. The

diagonal mass vector is modified for restrained degrees of

freedom such that the corresponding components of the global

mass vector are set to a large value which artificially
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makes the displacement zero.

Subroutine RESIDO is called if the indicator of the previous

state equals 1 in order to evaluate the initial resisting

force vector due to initial stresses and strains. Finally,

subroutine AENBLO calculates the initial accelerations

necessary to start the explicit time integration scheme

described in Chapter 6. The initial values of kinetic and

internal energies as well as the external work done of the

system at time zero are also evaluated in this routine.

5. Solution module

This module consists of the subroutine EXPSOL. The general

purpose of this module is to perform the direct time

integration using the modified explicit central scheme

proposed in Chapter 6 to evaluate the nodal displacements at

every time step. In this module, the externally applied

forces are determined at the current time step by evaluating

the value of the time varying function of the airbiast load

as well as the horizontal and vertical acceleration

ordinates due to the earth shock, at this particular time

step. The seismic force is only applied for specific

degrees of freedom. For IFIXD = 1 only vertical, IFIXD = 2

only horizontal or radial and IFIXD 0 both components of

the acceleration are considered. Appropriate values of the

displacements are assigned for restrained nodes.

This module is controlled by the master MAIN because the

flow of operations is dependent on the number of time steps

of the analysis, NSTEP (See Figure 7-1).

6. Post-solution module

This module is controlled by the subroutines RESIDU and

VAENBL. Figure 7-1 shows the subroutines associated with

this module which are immediately entered in every time step

after the solution module.

Subroutine RESIDU organises first the calculation of the
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total and elastic strains as well as rate sensitivity

functions. Thus, total stresses, cracking state,

post-cracking conditions and viscoplasticity states which

include yielding, hardening, failure and softening, in each

isoparametric element are updated according to a prescribed

material law. These laws of concrete have been described in

detail in Chapter 5. This subroutine also controls the

evaluation of strain, rate effect, stress and current yield

stress in bar and membrane steel elements. A linear elastic

solution, if required, is also under the control of

subroutine RESIDU. Finally, it organises the determination

of the internal nodal forces due to the total stresses. All

values of stress, strains, cracking etc., are stored for

later use In output module and updating the material state

in the next time step.

The general purpose of subroutine VAENBL is to calculate the

nodal velocities and accelerations at every time step

according to the explicit central difference integrator

described in Chpater 6. In order to guard against the

arrested instability errors in the dynamic response of

dissipative materials, energy balance check, explained in

the previous chapter, is also implemented in routine VAENBL.

7.	 Output podule

This module is controlled by subroutine OUTPUT which is

entered in every time step after the post-solution module.

This routine writes out most of the output on the line

printer and on various tapes for plotting purposes. It

outputs the nodal displacement, stress components and

effective viscoplastic strain every NOUTP steps for

isoparametric elements. The principal stresses and their

directions are also calculated and output. 	 For steel

reinforcement, the routine also writes out the strain and

stress of each embedded element every NOUTP steps. The

displacement and stress histories of specified nodal and

integration points every NOUTD steps are written to tapes 10
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and 21 respectively. The complete state of displacements is

also written on tape 13 for use in plotting deformed

structural shape every NOUTS steps. The routine outputs the

complete state of stresses as well as the principal stresses

every NOUTS on tape 26 for stress contour plots. The full

material state variables every NOUTS are also written on

tape 27 for crack patterns. Finally, the strain and stress

histories of specified reinforcement sampling points every

NOTJTD steps are recorded on tape 30.

7.3 COMPUTER IMPLEMENTATION OF SOLUTION TECHNIQUE AND

MATERIAL MODELS

The implementation of the strain rate sensitive model of

concrete (Chapter 5) combined with a crack monitoring

algorithm as well as the strain rate dependent viscoplastic

model of steel (Chapter 5) in the computer program FEABRS

shown in Figure 7-2, in which the governing dynamic

equilibrium equations are solved using the explicit central

difference time integration scheme described in Chapter 6.

For convenience, the crack monitoring and concrete and steel

viscoplasticity algorithms are separately described in

Tables (7-1), (7-2) and (7-3) respectively.

The crack monitoring algorithm is activated after strain

evaluation in each time step and for each cracked

integration point. The function of this algorithm can be

summarized as

1. Check of initiation of new cracks for plane and

axisynunetric problems based on the strain rate dependent

cracking criterion described earlier in section 5.4.2.

2. Monitoring the state of existing cracks (closing or

opening) as explained before in section 5.4.5.

3. Evaluation of concrete stresses for cracked state

which accounts for post-cracking softening (Section 5.4.3)

and shear transfer across the cracks (Section 5.4.4).

4. Updating the concrete material state variables and the
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crack reference values.

The role of the concrete viscoplasticity controlling

algorithm is briefly explained as:

1. Check the concrete material state in the viscoplastic

range; crushing (Section 5.3.6), softening ( Section 5.3.5),
failing (Section 5.3.1), flowing (Section 5.3.4) or yielding

(Section 5.3.2).

2. Evaluation of the effective stress using the rate

sensitive hardening rule in the pre-failure range or rate

dependent softening rule in the post-failure range and then

determination of the viscoplastic rate vector by the rate

dependent flow rule.

3. Updating the viscoplastic strain vector and the

viscoplastic work.

4. Evaluation of internal resisting force vector on the

concrete element level.

The function of steel viscoplasticity controlling algorithm

is to check yielding, update steel viscoplastic strain and

finally to evaluate the steel members internal force vector

which is added to that of concrete elements.

7.4 PRE AND POST-PROCESSING AUXILIARY PROGRAMS

A number of auxiliary programs have been developed to

support the main program FEABRS and to demonstrate the

features of the material models developed within this work.

In the pre-processing stage, some programs have been created

for the determination of material parameters as well as the

input data generation. The programs FLUDCO and FLUDST have

been developed for the identification of the concrete and

steel fluidity parameters as functions of the strain rate

based on the experimental results mentioned in Chapter 5. A

program named TENRAT has been developed to define the strain

rate sensitivity function of concrete strength in tension,
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based on curve fitting of test results found in literature.

Separate programs called MESHGEN, LOADGEN and FTIMGEN have

been written for generating the input data of FEABRS. When

the geometry of a problem allows the use of regular grid,

MESHGEN can be used to generate the necessary geometry input

data. LOADGEN is an edge pressure loading generation

program which enables a direct specification of uniformly

distributed loads input data. The program FTIMGEN has been

developed to generate the type and features of the history

functions of externally applied forces.

In the post-processing stage, special attention has been

given to graphic representation of results. Programs

MESHPLOT, DEFPLOT, PATTERN have been created to plot the

undeformed finite element mesh, the deformed structural

shape at selected time steps and the crack patterns

respectively. Another program, namely HISTPLOT (history

plot) is used to plot the displacement, stress or strain

histories. All the post-processing programs use the GINO

graphic library (234].

Finally, two computer programs, CONDIAG and STEDIAG have

been written for the graphical representation of

constitutive elements featuring the concrete and steel

material models developed within this thesis. These

features have been presented in the figures shown in Chapter

5.
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A - Check is the sainpling point (GP) previously cracked

B - if not previously cracked (crack has just initiated):

1. - Compute and store crack angle

2. - Set appropriate flags for material state (MSTAT)

3. - Stress evaluation for cracked state, go to D

C - if previously cracked:

1. - Compute strains in local coordinate system.

2. - Check whether each of the old cracks is opened by

checking the dilation across each existing crack.

3. - For plane problems, if GP is previously cracked

in one direction, check whether a new crack has

just opened orthagonal to the direction of first

one by checking the strain parallel to the first

crack.

4. - For axisynunetric problems, if GP is previously

cracked in one direction or two directions check

whether another new crack (two for the first case

and one for the second) just initiated from the

following three possibilities of cracks:

i. radial crack by checking the strain in the hoop

direction.

ii. main circumferential crack by checking the strain

in the radial direction.

iii. secondary circumferential crack orthogonal to the

main one by checking the strain parallel to the

main circumferential crack.

5. - Store angle of each new crack

6. - Update appropriate flags for MSTAT

7. - Stress evaluation of cracked state

D - stress evaluation procedure for cracked state:

1. - Evaluate stresses in crack directions using

suitable D matrix.cr
2. - Update the normal stresses across the cracks

using tension softening rule.

3. - Update shear stresses across the cracks using

shear transfer model.

4. - Update the crack reference values.

5. - Transform stresses back to global directions.

Table (7-1) The crack monitoring algorithm in FEABRS
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A - Check for crushing

If g(I, J)	 c then

set stresses to zero o = 0

Go to I

	

B - Determine	 the	 value of fluidity	 parameter
n	 B	 n B
7 = lOi	 2

C - Determine the current value of the yield function

f (I i , J2)

D - Check for softening
If (we ) = 0 then go to E

else K = w" -
I	 vp	 Vp

n	 \	 -6 K
t =u e	 $

cd

Go to G

E - Check for failing

cd	
0 then

Go to G

else w = 0
'V

F - Determine the strain hardening function

0'cd =	

[i -	 +	 c]12_ [i -
	

0.5 •' CI]

where	 71;::	 2	 / C'd

G - Check for viscoplastic yielding

If F (Ii, J2 , t' )	 0 then

c'=	 "<(F) >a

else ' = 0
VP

H - Update viscoplastic strain vector and viscoplastic work

n+1	 n
C =c +c At

'P	 'P

n+1	 1%	 .flw =w +c At
VP VP	 VP

I - Calculate internal resisting force of concrete

P = I BTodvn

Table (7-2) Concrete viscoplasticity controlling algorithm
in FEABRS
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A - Calculate steel fluidity parameter

K	 K

= 10 1 (1:) 2

B - Determine the effective stress

S	 nr=o +Hc
yd	 Vp

C - Check for viscoplastic yielding
5	 5if o > t then

= )fl (a' - r')
Vp	 S

else &' = 0
VP

D - Update viscoplastic stress

= en +	 At
VP	 VP

E - Calculate internal resisting force of steel

rP=i Badv
S	 J	 S

V
S

Table (7-3) Steel viscoplasticity controlling algorithm in

FEABRS
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CHAPTER 8

NUMERICAL APPLICATIONS

8.1 INTRODUCTION

In this chapter, the finite element solution of some planar

and axisymmetric reinforced concrete structures under

impulsive loading conditions are described in detail. The

solutions have been obtained using FEABRS, described in the

previous chapter. The main objectives of these analyses are

as follows:

1 - To analyse the validity and accuracy of the proposed

material models and to justify the associated parameters

used in the models.

2 - To demonstrate the capabilities and efficiency of the

explicit central difference solution technique.

3 - To demonstrate the generality and versatility of the

associated computer code developed.

4 - To study the structural response and respective

failure mechanism in high rate of loading conditions such as

those associated with blast and impact.

5 - To conduct parametric study on the strain rate

sensitivity and the pre- and post-failure behaviour of

concrete.

Three examples of impulsively loaded concrete members were

selected. The first one which is discussed in section 8.2,

is a single span beam under impulsive concentrated loads.

In section 8.3, the analysis details of a clamped circular

reinforced concrete slab subjected to uniformly distributed

jet force are given. The third example, in section 8.4 is a

simply supported beam subjected to uniformly distributed

blast loading. Numerical solutions obtained for each sample

problem are compared either with available experimental

results or with existing analytical solutions found in the

literature. The main objective in each case is to discuss
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the deflection history, cracking patterns, deformations,

stresses and effective strain rate distribution in concrete,

and stresses in reinforcing steel. A parametric study is

given in section 8.5 on the effect of the rate sensitivity

and pre- and post-fracture concrete modelling parameters on

the behaviour of the structures. Finally, in section 8.6,

discussion of results obtained and some concluding remarks

are presented.

8.2 SIMPLY SUPPORTED REINFORCED CONCRETE BEAMS UNDER

IMPULSIVE CONCENTRATED LOADS

8 • 2 • 1 GENERAL BACKGROUND

A simply supported reinforced concrete beam, shown in Figure

8-1, subjected to two symmetrically applied concentrated

loads of impulsive nature is considered here. The solution

of the problem has also been reported in [78, 235].

8.2.2 GEOMETRY, MATERIAL PROPERTIES AND LOADING

The geometry and the loading of the reinforced concrete

beams under analysis are illustrated in Figure 8-1. The

beam is reinforced in the lower position by 1290 mm2 steel

area. The material properties of concrete and steel, as

seen in Table 8-1, are assumed to be the same as those

specified in (78, 235]. Concrete material constants

describing the strain rate dependence of the fluidity

parameter are obtained from the empirical relation developed

in chapter 5, according to the concrete compressive

strength. The concentrated loads are applied as step loads

at time zero, each with magnitude of P = 30 kN.

8.2.3 NUMERICAL MODEL

Due to symmetry conditions, only one half of the beam needs

to be considered in the study. Half span is spatially

discretized by ten 8-noded isoparametric elements with

embedded axial bars to simulate the steel reinforcement.

The plane stress finite element mesh is shown in Figure 8-1.
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The loading and boundary conditions assumed are also given

in the same figure. Reduced integration is used for the

evaluation of internal resisting forces. Structural mass is

modelled using Hinton's lumping scheme [180], with full

integration order.

The dynamic response is evaluated using the rate dependent

material models proposed in Chapter 5 in conjunction with

the explicit central difference time integration scheme.

The time step is selected to be 0.000002 sec to meet the

numerical stability considerations discussed in Chapter 6.

No viscous damping has been considered.

8.2.4 RESULTS

a)	 Mid-sean deflection history

As a check, an elastic analysis was first performed and the

results found to be in excellent agreement with those given

in [78, 235). Figures 8-2 and 8-3 illustrate the time

history of the mid-span deflection for the linear solution

case as well as four different nonlinear analyses

representing the four failure criteria proposed for the

failure and loading surfaces in Chapter 5. The central

deflection history of the nonlinear cases was found to be in

good agreement with that given in (78], and the deflection

were 8% less compared with those given in [235]. This

slight difference may be attributed to the fact that the

material models adopted for concrete and steel in [235] do

not account for the strain rate effect as well as the

post-cracking behaviour of concrete.

The following conclusions can be drawn from Figure 8-2 and

Figure 8-3 regarding the nonlinear response:

*	 An increase of the maximum deflection by almost

50% compared with the linear elastic case.

*	 An elongation of the fundamental period by nearly

25% compared with the linear solution.
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* The energy dissipative characteristics of

concrete due to cracking and viscoplastic

behaviour in the nonlinear case diminish the

amplitude of oscillations.

* All the proposed functions for loading surfaces

predict the same deflection history which

indicates that concrete cracking is the main

cause of the nonlinear action in this case.

* The influence of material nonlinearities is more

important in the vicinity of the critical

regions. The first deviation of the nonlinear

case from the linear one is due to cracking over

the central part of the beam at the tension side.

Despite the spreading of tension cracks, the structure is

found to be still capable, tharks to stress

redistribution, of further load to reach the failure stage.

Similar observation has been reported in [78, 235].

b)	 Deformation and cracking history

The beam topology is traced in Figure 8-4 which shows the

deformed shape of the member and how the cracks spread in

concrete at different time stations. The deformed beam

elevation is represented considering the horizontal and

vertical displacements magnified 20 times. In the figure,

cracks are denoted by lines representing the direction of

the cracks. As already mentioned in Chapter 5, the adopted

smeared crack modelling will simulate discrete physical

cracks by spreading their effect over that part of an

element related to an integration point. Thus, each of the

single cracks represented in Figure 8-4 stands for an

several of parallel fissures covering one quarter of each

8-node isoparametric element.

The numerical patterns of Figure 8-4 display only full

cracks, i.e. cracks for which the normal crack strain is

beyond the ultimate strain of the tensile softening branch.
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Partial cracks as well as closing ones have been ignored in

that Figure. To define the ultimate tensile strain, the

exponentially decaying softening curve adopted here is

approximated by a linear descending one. The

limiting value, c, is related to concrete fracture energy,

Gf , concrete tensile strength o and crack characteristic

length, L, by c, = 2 G I a' L. It has been found that

plotting all cracks can be misleading. Displaying only full

macro-cracks correctly reveals only fracture localization.

Similar findings have been reported in several recent

studies [94, 236, 237].

Tracing the cracking history, the beam behaviour is linear

elastic in the initial stages. At time, t = 0.00298 sec,

cracking commences near the bottom surface of the beam.

With increasing deflection, the cracks develop on the

underside of the central part of the beam. The cracking

patterns indicate that flexural deformations produce the

cracks which are all perpendicular to the tension face at

initiation. As the cracks propagate further into the beam

the compressive strain combines with the shear strain and

alters the inclination of the principal tensile strain so

that the cracks incline towards the horizontal. The

predicted crack patterns in the present analysis are found

to be in good agreement with those reported elsewhere (78].

The horizontal and vertical displacement fields of half the

beam span at different time stations are illustrated in

Figure 8-5 and Figure 8-6 respectively. The displacements

are represented by contours of constant value and all

dimensions are in mm. The mid-span transverse section keeps

its initial geometry in the horizontal direction since the

x-displacements are restrained in this direction. Figure

8-6 shows that the concrete elements in the central zone of

the beam, experience vertical deflections consistent with

the constant bending moment in this zone. The significant

increase in displacements with time reveals the fact that
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the main factor contributing to the nonlinear behaviour is

the cracking of concrete.

C)	 Distribution	 concrete stresses	 effective strain

rate

Contours through points of equal values of the stress

components as well as the principal stresses at time

intervals 2.5, 7.5, 12.5 msec are shown in Figures 8-7 to

8-li. Just prior to cracking (time = 2.5 msec) the

following observations from these figures can be made:

1 - The uniform spacing of stress contours in the

longitudinal direction (Figure 8-7) across the beam depth

indicates an approximately linear variation of the

longitudinal stress with neutral axis located at about half

the depth from the compression face.

2 - In the linear elastic stage, the tensile concrete

stresses (Figure 8-7 and Figure 8-10) are found still to

make a substantial contribution to the internal resistance

of the beam.

3 - The maximal compressive stresses (Figure 8-7, Figure

8-li) are found mainly in the region closest to the applied

concentrated load and over the top part of mid-span. The

impulsively applied force appears to yield the largest

tensile stresses (Figure 8-7, Figure 8-10) in remote face of

central part of the beam. The shear stresses are locally

higher underneath the applied force and also close to the

support.

For higher time levels, the stress patterns are explained in

respect of the crack patterns (Figure 8-4) which lead to the

following points:

1 - After formation of the cracks and the associated

destruction of concrete tensile stresses, the distributions

in all plots show large gradients of stresses which indicate

a concentration of compressive stresses at the head of

cracked zones (Figure 8-7, Figure 8-11). Such concentration

above a cracked region causes a fluctuation of the neutral

- 244 -



axis position.

2 - As a consequence of pronounced vertical flexural

cracks in the fractured region, the longitudinal stresses

drop gradually to zero (Figure 8-7) in this zone. The

transfer of tensile stresses to the reinforcement and the

shifting of the position of the neutral axis is well

predicted.

3 - From the principal stress distributions (Figure 8-10,

Figure 8-11), arching action from the support to the loaded

region is clear at later time stations.

4 - Figure 8-8 gives almost similar stress patterns before

and after cracking where the transverse stress component is

generally increasing with time increase.

5 - From Figure 8-9, the determination of the shear

stresses across the cracked zone as well as the higher shear

stress levels at the head of cracks can be clearly seen,

especially close to the support.

6 - It is noted that viscoplastic yielding of concrete

occurs mainly in the central region close to the top of the

beam (Figure 8-7). However, the compression stresses remain

well below the proposed failure surface.

The effective strain rate distribution at different time

stations is shown in Figure 8-12. In the linear elastic

stage (time = 2.5 msec), the effective strain rate field

shows higher gradients close to the applied load and over

the central part of the beam. After cracking, the

importance of rate effects on crack initiation and

propagation is noteworthy, Significant concentrations of

strain rate contours are found at the tip of the cracks and

near the support.

d)	 Steel stress and effective strain rate distribution

The history of the computed axial stress and effective

strain rate along the main reinforcing steel is shown in

Figure 8-13 and Figure 8-14 respectively. 	 It can be
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observed that both the steel stress and the associated

strain rate along the span increase for higher time

intervals. Starting from the time station 0.005 sec, the

influence of open cracks in concrete is clearly seen. In

places where the cracks develop near the reinforcing steel,

a large increase in the steel stress and strain rate occurs.

The numerical results shown in Figure 8-13 also indicate

that the calculated stress in the middle zone of the span is

the highest stress level and exhibits almost the same

distribution on the right hand side of the applied

concentrated load. This may be explained as a conseque,,ce

of the fact that the bending moment is constant and maximum

over this area and more flexural cracks have developed

there. No yielding has been observed in the reinforcing

steel. The maximum computed stress is in the middle zone
2and equals 220.0 MN/rn

From Figure 8-14, it can also be seen that the cc.te.t.

cracking allows the steel effective strain rate values to

fluctuate along the beam span as a result of the localized

fracture in concrete and the resulting stress concentration

in concrete and steel.

8.3 CLAMPED CIRCULAR REINFORCED CONCRETE SLAB UNDER

UNIFORMLY DISTRIBUTED 3ET FORCE

8.3.1 GENERAL BACKGROUND

Reinforced concrete slabs are best suited to withstand

various types of short duration severe forces as a result of

their relatively large masses and high energy absorption

capacity due to ductility. Impact by deforinable objects or

rigid missiles on target slabs can be modelled by

concentrated loads. Explosive charges detonated in contact

with the slab may also lead to concentrated forces.

Distributed loads can be used to simulate differential

pressure of air or remote detonation of explosives. The

reinforced concrete circular slab shown in Figure 8-15,

which is subjected to a uniformly distributed load, was
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selected for a study using the proposed numerical model.

This problem has been previously analysed by several

investigators (34, 78, 238] for checking their material

modelling approaches.

8.3.2 GEOMETRY, MATERIAL PROPERTIES AND LOADING

The reinforced concrete slab has a radius of 10.0 rn and a

thickness of 1.0 m. The slab is isotropically reinforced in

the upper and lower position by one percent of the

reinforcement in both the radial and tangential directions.

The plate geometry and reinforcing steel are shown in Figure

8-15. The material properties employed in the present study

are specified in Table 8-2 which are the same as those

defined in (78, 2383. The fluidity parameters of concrete

and steel are evaluated on the basis of the emperical

relations proposed in Chapter 5.

The uniformly distributed load is perpendicular to the

middle surface of the plate and of intensity 137.3 kN/m2.

The load is applied with a rise time equal to half of the

fundamental period of the plate (T 0.06 sec) (238].

8.3.3 NUMERICAL MODEL

Axisynunetric conditions were assumed in the theoretical

analysis. The finite element mesh of the reinforced

concrete plate in the R-Z plane is shown in Figure 8-15

which has 24 elements and 101 nodal points. Due to

symmetry, only a quadrant of the structure was modelled

using the 8-node isoparametric elements. The reinforcement

nets were simulated as axisymmetric membranes with Poisson's

ratio v = 0.0, which in the adopted model implies four steel

layers, two each placed near the top and bottom of the slab.

The equivalent thickness of each steel layer is 1.0 cm. The

finite element mesh and the loading and boundary conditions

assumed in the analysis are defined in Figure 8-15.

The lumped mass matrix is evaluated using the 3x3
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integration order while 2 x 2 rule is employed for the

calculation of internal resisting forces. The material

behaviour of concrete and steel are modelled using the rate

dependent material models proposed in Chapter 5. The

explicit central difference scheme is employed to solve the

dynamic equations, with a time step length of 0.000005 sec.

No viscous damping is considered.

8.3.4 RESULTS

a)	 Mid-span deflection history

As a first step, a linear elastic dynamic analysis is

carried out to check the main input data. The linear

elastic deflection curve was qualitatively and quantitively

the same as the analytical results reported in (78, 238].
The time history of the mid-span deflection for the linear

analysis as well as the nonlinear response for two different

levels of the concrete cracking strain are plotted in Figure

8-16.	 The curve obtained for c' = 0.00018 is almost
tB

identical to the response in [78).	 However, unlike the

results in (238], no decay of the subsequent peak amplitude
is observed.	 This is probably due to the fact that a

smaller time step was used in the present analysis, thus

avoiding numerical damping. A similar finding has been

reported in (78). It is clear from these results that the

resulting central deflection varies significantly with the

analysis type (linear and nonlinear) as well as with the

value of the cracking strain. The general trends observed

in the previous example are confirmed. Nonlinear effects

amplify displacements and elongate the period of vibration.

As shown in the Figure, the displacements increase with

decreasing cracking strain and the significant variation in

responses obtained indicates that tensile cracking is the

most sensitive dissipative mechanism for this concrete

structure. The influence of such material nonlinearity is

more important in the vicinity of the critical tension

regions of concrete since concrete in the compressive zones

remains within the elastic range throughout the analysis.
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Despite the spreading of cracks in the radial and hoop

directions, the slab is found to be still capable of

resisting, higher load intensity to reach the failure stage,

especially in compression zones. Similar conclusion has

been drawn elsewhere (34, 238].

b)	 Deformation	 cracking history

At different time intervals, the deformed slab profiles of

one half of the structure and the spread of the crack zones

through the thickness in the radial and hoop directions are

shown in Figure 8-17 where the deformations are enlarged 2D

times. In the initial stages çtime = 0.024 eec), the slab

behaviour is linear elastic. At time, t = 0.032 sec., the

nonlinear analysis leads to cracking in the tangential

direction in the vicinity of the built-in section at the top

of the slab. The first circumferential cracks are predicted

at the bottom of the centre of the slab at time, t = 0.0366

sec. With increasing time, the radial cracks spread to the

top of the slab at mid-span and to the bottom of the slab at

the fixed edge. On the other hand, the hoop cracks extend

from the lower face towards the centre at the top of the

slab. Cracks also propagate in the central zone. Such

propagation of cracks as indicated by the computer program

FEABRS is consistent with the fact that the flexural
stresses in tension are maximum at the upper face near the

clamped edge and also at the lower face in the central

region. Shear induced diagonal cracks have not been

observed, which is not unexpected considering that the slab

is 1 rn deep. This description compares favourably with the

observations of previous analyses (78, 238].

Figure 8-18 and Figure 8-19 illustrate the distribution of

displacement fields along the horizontal and vertical

directions respectively. The deflections are represented by

contours which are dimensioned in mm. The end-supported

section keeps its initial geometry since the vertical and

horizontal displacements are restrained in this section.
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The mid-span transverse section is free to displace only in

the vertical direction. As shown in the figures, the

displacements generally increase with increasing time,

compared with the elastic results at time = 0.016 sec. In

Figure 8-18, a similar behaviour is observed in tension and

compression before cracking, but the biaxial symmetry is

lost for the plate due to change of stiffness after tensile

cracking (time = 0.032, 0.048 sec). An interesting

phenomenon can be observed at time = 0.048 sec, when a

pronounced increase in concrete cracks is computed (Fig

8-17). At this point, it can be seen from Figure 8-19 that

the increase in deformations is mainly determined by the

increasing displacements in the cracked zones.

C)	 Distribution g concrete stresses and effective strain

rate

Before and after cracking, the variation of concrete stress

components and the corresponding principal stresses along

the discretized part of the slab are illustrated in Figures

8-20 to Figure 8-25. The distribution of stresses in these

diagrams together with the cracking patterns (Fig 8-17)

support the following concluding remarks:

1 - In the elastic domain (time = 16 msec), the plots show

similar behaviour in compression and tension zones with the

neutral plane positioned at almost half the slab thickness,

as expected. The maximal values of stresses are found close

to clamped support or at the central part of the slab

depending on the type of the stress component.

2 - After cracking, the biaxial symmetry is lost for the

isotropically reinforced concrete plate and the neutral

plane does shift due to change of concrete stiffness after

cracking which follows the progression and orientation of

cracks.

3 - At time = 32 msec, cracking was locally contained in

the region of maximum moment in the vicinity of the fixed

edge and most of the slab remained elastic. The compressive
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and tensile stress contours indicated in the diagrams of

main stress components follow uniform distribution. At time

- 0.048 sec, the compression zone contours dominate in the

bottom of support region and in the compression zone in the

mid-span (Figure 8-20, Figure 8-25).

4 - Figure 8-24 and Figure 8-25 show respectively the

maximum and minimum principal stress field history. It is

noted that very large stress gradients exist in the regions

close to the clamped edge and the central part of the slab.

However, the maximal compressive stresses are approximately

equal in these critical zones at time	 0.048 sec.

5 - Another stress component having major influence on the

load carrying capacity of the slab is the circumferential

stress which is plotted in Figure 8-23. At time = 0.048

eec, an extensive hoop cracking is developed at the lower

central part which originates a significant redistribution

of this stress component, decreasing the maximum relative

values in this fractured zone.

6 - The diagrams of the distributions of shear stress

(Figure 8-22) and transverse stress (Figure 8-21) are

self-explanatory with respect to the crack patterns shown in

Figure 8-17. Smooth distribution of such stress components

are only obtained in unfractured concrete.

7 - At any time level, no viscoplastic response is

predicted in concrete as the compressive stresses maintained

within the initial dynamic yield surface.

The fluctuation of the concrete effective strain rate values

at different time intervals is presented in Figure 8-26.

Prior to cracking time (time = 16 msec), the strain rate

distribution is uniform and well predicted. For higher time

levels, the concrete cracking results in a significant

redistribution of contours and high strain rate values in

fractured zones. It can be further observed that the peak

values alter their position following the progression and

position of concrete cracking.
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d)	 Distribution	 steel stress	 effective strain rate

At different time levels, the variation of the axial stress

is shown in Figure 8-27 and Figure 8-28 along the radial and

hoop reinforcing steel membranes, respectively. The

corresponding effective strain rate distributions are shown

in Figure 8-29 and Figure 8-30.	 In these diagrams, the

stress and strain variations in the linear elastic stage are

compared with those in the nonlinear stages. Prior to

cracking in both the radial and the hoop direction, the

distribution of the stress and the effective strain rate of

the top reinforcing membranes is almost identical to that of

the bottom ones. After cracking, the following phenomena

can be observed from the redistribution of the stress and

strain rate illustrated in the plots:

1 - The oscillating stress distribution along the

reinforcement indicates that the more flexible concrete

causes the hoop and radial reinforcement to carry more force

resulting in higher strain rates and stresses where the

concrete cracks are open.

2 - The numerical results give higher strain rate values

in the reinforcement at the middle zone as well as near the

fixed edge since more cracks have developed there. As

shown, the peak strain rate value changes its position as

the cracks propagate.

3 - Following a space truss analogy in cracked slab, the

increase In stress and strain rate of reinforcement in

tension zones leads to a similar effect in steel in

compression side.

4 - No yielding has been predicted in the reinforcing

steel. At time = 0.048 sec, the maximum computed stresses

are 180.1 MN/rn2 for radial reinforcement at the fixed edge

and 146.9 MN/rn2 for hoop reinforcement in the middle of the

slab.
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8.4 REINFORCED CONCRETE BEAM SUBJECTED TO UNIFORMLy

DISTRIBUTED BLAST LOADING

8.4.1 COMPARISON WITH EXPERIMENTS

Experimental results on beams subjected to blast loading

have been reported by Seabold (239]. In that study, eight

reinforced concrete beams were tested to study shear and

diagonal tension in beams under blast loads. These tests

constituted the second phase of a programme to determine

criteria for the minimum amount of shear reinforcement

required for developing the ultimate resistance of beams as

well as to determine the difference between these criteria

for static and dynamic loading. Each beam was simply

supported and all loads were uniformly distributed. The

beams were tested in the NCEL blast simulator, shown in

Figure 8-31 where dynamic loads were applied by generating

expanding gases in the simulator from the detonation of

Primacord explosive by means of blasting caps. The rise

time is controlled by the holes in the firing tube, the peak

pressure by the amount of Primacord, and the decay time by

opening valves which vent the gases to the atmosphere.

One of the tested specimens, namely beam WE5, has been

chosen here for the numerical simulation with FEABRS. This
beam has been selected because dominant shear cracks
characterised the behaviour of this beam. A good

correlation with experimental results would be interpreted

as validation of the numerical method proposed.

8.4.2 DESCRIPTION OF THE STRUCTURE AND MATERIAL PROPERTIES

The overall dimensions and supports of beam WE5 are shown in

Figure 8-32. The dotted lines in the diagram show the

location of the main reinforcement. The beam is doubly

reinforced by 774.2 mm2 (1.2 in2) steel area in the top

position and by 1290.3 nun2 (2.0 in2) steel area in the lower

zone. The main material properties of concrete and steel

employed in the analysis are based on those reported in

(239]. All the necessary properties are listed in Table
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8-3. The empirical relations proposed in chapter 5 have

been adopted to calculate the constants of the rate
dependent fluidity parameters of concrete and steel. The

parameter governing the compressive softening of concrete is

assumed to equal 10. For the post-cracking behaviour, the

concrete fracture energy is taken as 60.2 Nm/rn2 and the

shear transfer factor as 1.00.

8.4.3 NUMERICAL MODELLING OF THE PROBLEM

The beam is discretized using plane stress isoparametric

elements with eight nodes. Using symmetry of the geometry

and loading conditions, only one half of the complete
structure has to be modelled. The finite element mesh and

the boundary conditions are shown in Figure 8-32. The main

reinforcement in tension and compression is simulated as

perfectly bonded axial bars embedded in the surrounding

concrete elements. Based on the numerical stability

consideration discussed in Chapter 6, the time step length

is chosen to be 0.000002 sec, for the central difference

explicit time integration scheme. No viscous damping forces

have been considered. The numerical modelling of concrete

and steel is based on the history and rate dependent models

developed in Chapter 5.

8.4.4 EXPLOSION LOADING DATA

The applied overpressure was measured at about 508 mm (20

ins) above the top surface of the beam at three locations

along the span. From the experiment it was possible to

identify the following characteristics of a pressure-time

history due to blast loading (Fig 8-32):

3. - The arrival time of the shock front is 0.75 insec from

the instant of detonation of Primacord which means that the
shock wave travels at an average speed of about 700 rn/sec.

2 - The shock front is not vertical, i.e. the pressure

rise from the ambient to peak pressure is not instantaneous.

The pressure rise time is about 2 msec.
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3 - The width of the load was 205.74 mm (8.10 ins) and the

entire cross-section of the pressure chamber on the beam top

surface was considered to be entirley filled with

combustible gas, therefore, the overpressure which is given

in stress units, 0.4137 N/nun2 (60.0 psi) has been multiplied

by this width to obtain the load per unit length of the

beam. The measured peak overpressure was about 85.115

N/mm', (486.0 lb/in').

4 - The peak overpressure remains approximately constant

forming an overpressure plateau. The duration of the

applied load was 28 msec.

5 - No decay of the peak pressure was reported at the end

of overpressure plateau.

Based on this information, the analytical bilinear loading

function, which closely approximated the experimentally

applied blast load is shown in Figure 8-32 from the instant

of application of the load on the beam.

8.4.5 ANALYTICAL RESULTS OF THE PROBLEM

a)	 Time history response	 the beam at mid-span

The computed and experimental displacement-time histories at

mid-span are shown for comparison in Figure 8-33 which shows

a good agreement. The peak experimental response of 28.5 mm

was recorded at 19.5 msec, which agrees closely with the

analytical results, for which the computed peak displacement

of 28.0 mm is reached in 18.0 msec. The recorded permanent

deformation of this beam was 20.8 mm, and it also compared

well with the predicted deflection of 19.7 mm. The computed

mid-span velocity-time history is compared in Figure 8-34

with experimentally observed velocity. Again there is good

agreement with the peak velocity and the corresponding time,

as well as the time when the velocity returns to zero.

The experimental and computed top compressive strain

histories of concrete at beam mid-span are presented in
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Figure 8-35.	 There is good agreement as the variations

observed are within the dispersion often encountered in

experimental results. In addition, the time history of

strains of the top and bottom reinforcing steel of beam WE5

are plotted in Figure 8-36. It can be noticed that the

numerical analysis reasonably agrees with the observed

experimental behaviour up to about 9 msec for the tension

steel and 12 msec for the compression steel. For higher

time history, the measured compressive and tensile strains

oscillate resulting in a lower value than the computed ones.

The reason for this discrepancy is not clear. To

investigate a possible explanation, the strain time history

of the main reinforcement of another beam of the test

series, namely WE2 was computed. The geometry and loading

conditions as well as the material properties of beam WE2

are similar to those of beam WE5, except that the

compressive strength of concrete is slightly higher (by 4%).

As shown in Figure 8-37, very good agreement is obtained.

The computed response in the most critical zone of the beai

shows that a good numerical simulation of the experimental

observation is possible using the present nonlinear

numerical method despite the highly variable nature of the

loading conditions. It is worth mentioning that although

significant numbers of integration points show cracking up

to time 0.015 sec, yet the analysis agrees very well with

the structural response at each time step. The use of

explicit central difference scheme, together with the energy

balance tolerance of 0.001 gives satisfactory results.

b)	 Support reaction-time history

Comparison between the time history of the measured reaction

at the left support of the beam and that of the calculated

reaction is shown in Figure 8-38 which indicates a

satisfactory agreement. The peak measured dynamic support

reaction of 24.3 kN at 15.0 msec is in good agreement with

computed support reaction of 27.0 kN that occurred at 17.0
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insec. The slight discrepancy between theory and experiment

may be attributed to the following factors:

1 - From the documentation of the experiment, it was

diffcult to determine to what degree of accuracy the

measurements have been made. It is also mentioned in (239]

that the documented reaction measurements have been

corrected for the effects of the overhang of the beam to

determine the total shearing force at the supports.

2 - The monotonically applied blast loading used in the

analysis is a close approximation of the experimental

applied pressure.

3 - It may be expected that the moment and shear forces

redistribution due to cracking affects the results at

support zone in a way that was difficult to reproduce

analytically in an accurate manner, since the

representation of the boundary conditions in the adopted

explicit time integration scheme is based on employing very

large virtual nodal masses to simulate the fixed degrees of

freedom.

4 - The analytical reaction-time history has been computed

by multiplying the vertical acceleration-time history at the

support by the assumed virtual nodal mass in that direction.

C)	 Deformation	 crpckinc history

The deformed shape of beam WE5 at different time intervals

is plotted in Figure 8-39 in which the open cracks of

concrete at various stages in the loading history of the

beam are also displayed. The deformations in the vertical

and horizontal directions are magnified 10 times. In the

initial stages (time - 3 msec), the beam behaviour is linear

elastic as shown in the Figure. Then, flexural cracks

developed and continued to propagate up to time 6 msec.

After this, little further vertical crack development took

place. Diagonal cracks appeared in the web at time 6-9

msec, some as isolated cracks and some propagating from

flexural ones. For time higher than 9 msec, these inclined
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cracks spread towards the beam top surface and towards the

beam support. Similar to the experimental behaviour,

concrete crushing does not occur.

In the experiment, it was observed that at first concrete

exhibits a number of flexural cracks which are suddenly

overshadowed by the occurence of major diagonal cracks.

Particularly challenging for a numerical simulation are many

physically observed phenomena such as localisation, opening

and closing of cracks and mixed-mode effects. The results

in Figure 8-39 match the experimentally recorded crack

pattern quite well since diagonal cracks leading to failure

are correctly obtained. It may be further observed that

although there is some diffusion in the crack pattern, as in

all smeared crack analyses (94, 236], strain localisation is

clearly monitored. This becomes even more apparent when it

is observed that almost all diagonal cracks are wide open,

and open further with increasing time. This observation is

also valid, though to a lesser extent, for flexural cracks.

The difference between the plotted cracking patterns reveals

that following time increase, some Gauss points exhibit

flexural cracks. Once formed, these cracks did not fully

develop but were arrested or even closed later in the

process. This aspect is a typical feature of fracture

localisation problems as such problems always involve

simultaneous loading and unloading of adjacent elements.

The relatively smooth spread of crack zone is shown in

Figure 8-39. This appears to be a basic feature of

isoparametric elements. Even more remarkable is the ability

of one element to reproduce two different types of cracking

modes, namely flexural and diagonal cracks, during the

transient analysis. From the crack development history,

another important conclusion may be drawn is that the

longitudinal reinforcement stabilises each crack originating

at the tensile face of the reinforced concrete beam. The

term stability here means limiting the crack propagation.

However, the curved nature of cracks in a region of combined
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moment and shear leads such cracks to zones of higher

strains and instability of cracks may take place. The

curved crack that has started nearest to the point of

contraflexure is also the least stable for the same reason.

The distribution of the horizontal and vertical

displacements of the discretized mesh are shown in Figure

8-40 and Figure 8-41 respectively. The displacements are

represented by contours of constant value and all dimensions

in nun. Since the x-displacenients of the mid-span transverse

section are restrained due to symmetry, the initial geometry

of this section is maintained in the horizontal directIon.

In these figures, the displacements in the linear elastic

stage (time = 3 msec) are compared with those in the

nonlinear stages (time = 9, 18 msec). The significant

increase in the deformation locally and globally for higher

instants indicates the influence of concrete cracking in

tension as well as the viscoplastic straining of concrete in

compression.

d)	 Distribution	 concrete stresses and effective strain

rate

The distributions of the stress components and the

corresponding principal stress values along one half of the

beam span are plotted in Figure 8-42 to 8-46. The concrete

stress contours in these figures are given in MN/rn2. The

contours in the linear elastic stage (time = 3 msec) are

compared with those in the cracking stage (time = 9, 18

msec). Before cracking, the variation of stresses indicates

the previously observed phenomena in the first numerical

example which are here even more clearly seen. The

longitudinal stress varies linearly across the beam depth

(Fig 8-42). As expected at this time level, maximum tensile

and compressive stresses occured at mid-span section while

maximum shear stresses are found near the support. On the

other hand, after cracking, a significant redistribution of

stresses has been computed. From the stress patterns, the
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following main points can be stated:

1 - With increasing time, the tensile stresses (Fig 8-42,

Fig 8-45) have generally disappeared due to cracking, and a

pronounced thrust arch can be observed which equilibrates

the mid-span tensile reinforcement stresses. This action

represents a tied-arch equilbrium system.

2 - A concentration of the compressive stresses was found

at the head of the cracked zone. However, the minimum
principal stress (Fig 8-46) is approximately equal to the

longitudinal stresses (Fig 8-42).	 This indicates the

importance of cracking as a mechanism of energy dissipation.

3 - For a more quantitative understanding of the

compressive principal stress distribution (Fig 8-46), the

variation of this principal stress component can be

considered at two different locations. At the section

closest to the mid-span, a concentration of the stress

occured near the top surface of the beam. In contrast, at

the section closer to the support, the peak value of the

stresses arises at some distance from the top of the beam.

The manner in which these stresses are distributed can be

understood by referring to the pattern of cracking

(Figure 8-39).

4 - The distribution of transverse stresses shown in

Figure 8-43 indicates higher gradients in the vicinity of

the support before and after cracking. At time = 0.018 sec,

these stresses are nearly zero in lower part of the middle

zone as a result of some partially opened secondary cracks

in this area.

5 - The redistribution of shear stresses due to cracking,

shown in Figure 8-44, indicate that shear stresses vary

rapidly in the regions where diagonal cracks are developed

(Fig 8-39). Over the middle zone, the shear stresses are

nearly zero.

6 - The viscoplastic behaviour of concrete in compression

has been demonstrated (Fig 8-42 and Fig 8-46) over the

middle region close to the upper beam 	 surface
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(time = 9 msec) The viscoplastic zone grows gradually down

the depth mainly due to compressive stresses exceeding the

elastic limit. Only at time = 0.018 sec., the maximum

compress ive stress is located very close to the rate

dependent failure surface.

The variation of the concrete effective strain rate field

along the beam is shown in Figure 8-47 in the linear and

nonlinear stages. Before cracking (time = 0.003 sec), the

strain rate is increasing gradually from the neutral axis

towards the top and bottom surfaces of the beam in a uniform

distribution across the beam depth. Due to progressive

fracture, the distortion of the effective strain rate

distribution is clearly seen in the Figure where high strain

rate gradients exist in the cracked zones as well as the top

part of the compression zone. The concentration of strain

rate in the vicinity of the fractured zones highlights the

importance of including te rate effects.

e)	 Distribution	 steel stress and effective strain rate

The variation of the axial stress and the effective strain

rate with time along the top and bottom reinforcing steel is

shown in Figure 8-48 and Figure 8-49. The first observation

that may be made is that the steel stress as well as the

strain rate increase in parallel with the increase in

deformation with time. At time station 3 msec., where the

beam response is linear elastic, the variation of both the

stress and effective strain rate for the tensile and

compression reinforcement indicates almost the same

distribution, as expected, with maximum values located at

mid-span. After cracking (time > 3 msec) the steel stress

plots clearly show the position of the dominant cracks in

concrete. These plots show that the axial stress in the

bottom steel increases significantly where the cracks

intersect the reinforcing bars. It can be further observed

that the amount of the tensile force transferred from

cracked concrete to steel is higher for flexural cracks
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compared with the shear ones. Taking the strain rate effect

into consideration, the stresses in the lower reinforcement

over the middle point of the span reach the yield level at

time 0.015 sec. The maximum calculated stress level is in

the mid-span section and equals 724.0 MN/rn2 corresponding to

a gain in strength by a factor of aboout 1.50 due to dynamic

effects. On the rebound stage of the beam response (time

18.0 msec), the stress in steel gradually decreases below

the yield stress. From the difference between the strain

rate distribution plots of Figure 8-49, it can be seen that

concrete cracking allows the steel strain rate to fluctuate

along the reinforcement bars. The peak strain rate value

changes its location as the cracks spread. Between the

cracks, the decrease of steel strain may be attributed to

the perfect bond assumption in the present analysis.

8.5 PARAMETRIC STUDY OF CONCRETE NONLINEARITY

In finite element analysis of reinforced concrete

structures, a large number of different combinations of

geometric and material parameters can be considered. It is

possible that, although markedly different combinations are

considered, compensating factors may occur which result in

similar predicted structural response. For this reason, it

is desirable to perform a sensitivity analysis on at least

the parameters which may be expected to influence the

analytical response. In the present work, a special

emphasis has been placed on the parameters governing the

rate dependency of concrete, the cracking process and the

strain hardening of concrete in compression. The numerical

applications discussed in sections 8.2 and 8.4 have been

selected for the numerical experimentation. The

implications of the results of the parametric study are..

discussed with respect to modelling of reinforced concrete

structures.
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8 • 5 • 1 STRAIN RATE DEPENDENCY EFFECT

The performance of the rate independent modelling is

compared with the rate dependent response of the concrete

beam under impulsive concentrated load (235] in Figure 8-50,

and with the experimental results of the concrete beam

subjected to uniform blast loading (239] in Figure 8-51.

The central deflection time history curves are shown

together with the elastic response. Both the peak

displacement and the time corresponding to the peak

deflection vary with rate sensitivity consideration. As can

be seen from Figure 8-50, ignoring the strain rate effect

results in an over-estimate by almost 12% of the maximum

deflection obtained for the rate dependent case, and by

approximately 64% compared with the elastic case, an

elongation of the natural period can also be noticed. The

increase of central deflection by about 18% as well as the

deviation of numerically predicted response from the test

results reported in (239] at an early stage of the loading

history, can be observed in Figure 8-51.

Based on the formulation of the proposed concrete

constitutive modelling to simulate the experimentally

observed phenomena under dynamic loading, two differences

exist between the rate-dependent and rate-independent models

that may account for discrepancies observed in the

deflection history. First, the inclusion of strain rate

dependency effect results in stress-strain diagrams which

indicate higher strength and greater energy absorption

before concrete fracture, than those in the rate-independent

case. Second, the adopted rate dependent crack initiation
criterion introduces numerically crack arresting mechanisms

associated with the higher limiting cracking strain.

8.5.2 CONCRETE ELASTIC LIMIT IN COMPRESSION

The nonlinear response of the Bathe beam (235] for two

different values of the concrete elastic limit in

compression (0.3, 1.0) is illustrated In Figure 8-52. It
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can be seen from the central deflection history curves shown

in the Figure that increasing the elastic limit above the

more realistic value of 0.3 decreases the maximum deflection

by almost 13%. In the case where the elastic limit equals

1.0, i.e. strain hardening in compression is not included,

no viscoplastic behaviour is observed, and hence the

nonlinear effects are only due to the cracking of concrete.

The results of elastic limit parametric study for Seabold

beam (235) given in Figure 8-53 confirms the above

conclusions. The computed peak of the central deflection of

the beam for the case of elastic limit = 1, is lower b

nearly 10% than that of test results. The shortening of the

time corresponding to peak displacement can also be noticed.

A relatively good match between the two cases is achieved on

the ascending branch of the curve until about 80% of the

observed peak deflection level. However, the descending

branch for the numerical model is significantly ditterrit.
The deviation from the experimental results for the pre- and
post-peak displacement history can be attributed to the

absolute linear modelling of the concrete up to the failure

surface, that is, the compressive strength level. This

discrepancy can easily be eliminated by using the

elasto-viscoplastic formulation with a rate dependent

hardening function to model nonlinear behaviour of concrete

in compression as shown in Figure 8-33.

8.5.3 CONCRETE CRACKING STRAIN EFFECT

For two different values of the cracking strain (0.0000613,

0.000075), the nonlinear response is plotted in Figure 8-54

for the Bathe beam (235]. It is clear from these results

that the central deflection varies significantly with the

value of the cracking strain. The decrease in the cracking

strain by 20% results in an increase in the mid-span

deflection by 10% as well as an elongation of the period.

It is evident that the decrease in concrete cracking strain

forces the cracks to propagate more rapidly. 	 It was also
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found that both the orientation and the number of cracks

that develop in a concrete structure are highly affected by

the cracking strain values used in the analysis.

Similar conclusions can be drawn from Figure 8-55 where the

mid-span deflection history obtained from the finite element

computations with a cracking strain = 0.000100, are compared

with the test results of Seabold beam (239]. The peak value

of the deflection is higher by 12% as a result of decreasing

the crack initiation strain from 0.000129 to 0.00010. The

discrepancy between the observed and the measured responses

starts from an early stage. As expected, the cracking

patterns obtained at different time stations were different

from those shown in Figure 8-39. Incorrectly calculated

direction of cracks may cause the stiffness and ductility of

a structure to be underestimated. In turn, prediction of

the deflection history and failure mode may also be in

error.

8 • 5 • 4 CONCRETE FRACTURE ENERGY

In the analyses used to study the sensitivity of the Bathe

beam (235) response to variations in the fracture energy,

the nonlinear tension softening representation is employed

and G varied between 105.1 and 150.6 Nm/rn 2. Figure 8-56

highlights the influence of the concrete fracture energy

upon the nonlinear response of the beam deflection history.

It can be observed that the consequence of reducing this

material property is an amplification of the effect of

concrete cracking which results in an increase in deflection

and an elongation of the period. However, the increase in

the deflection is not proportional to the change in the

fracture energy. As the fracture energy is increased by

50%, the maximum deflection decreases by only 10%.

The effect of the G concept on the computational results of

Seabold beam [239] is shown in Figure 8-57. For lower value

of G (= 40.1 Nm/rn2), the peak of mid-span deflection
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increases by 12% while the time needed to reach the peak

displacement decreases by a similar percentage. The

deviation of the structural response in the pre- and

post-peak deflection zones compared with the test results

can also be observed. It is evident that the decrease in

fracture energy forces the cracks to propagate more rapidly

with significant increase in the crack widths.

The computed structural response clearly depends on the

post-peak tensile behaviour of concrete through the fracture

energy. The difference in deflection response for lower

values of G seems to be a direct consequence of the

decrease of the effective load-carrying area of concrete in

tension. As the slope of the descending branch of the

tensile stress-strain curves reduces for higher values of

G. the cracks propagate more slowly and the load capacity

of the structural member increases. The insensitivity of

the response to small changes in fracture energy may be due

to the fact that increasing the fracture energy primarily

stiffens and not strengthens the structural element.

8.5.5 CONCRETE TENSION SOFTENING

The effect of tension softening in the post-cracking

behaviour of concrete on the nonlinear response of Bathe

beam [235] is considered in Figure 8-58. It is shown that

the inclusion of tension softening reduces the deformation

and the fundamental period considerably. Upon cracking the

tension softening effect plays a major role in the

prediction of stiffness of concrete elements. The mid-span

deflection for the case with tension softening is reduced by

12% when compared with the case where it has not been

included. It can also be concluded that the simulation of

the tension softening effect by assigning a fracture energy

based softening branch to the stress-strain curve of

concrete in tension produces satisfactory results.

Figure 8-59 illustrates the sensitivity of the response of
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Seabold beam (239) to concrete tension softening. The

numerical analysis shows the same trend as Bathe beam where

the peak and the post-peak response is much more ductile

compared with the experimental results. The residual

post-peak tensile strength of the concrete beam is

considerably underestimated as a result of ignoring the

tension softening.

Two main reasons may be suggested for this discrepancy:

1 - The influence of eliminating tension softening results

in a greater flexibility on the global behaviour due to the

decrease in the loading capacity of concrete in tension.

As a consequence, the cracking is more widespread with an

abrupt development.

2 - As a consequence of excluding tension softening

effect, the neutral axis of the structural element

experiences a shift towards the compression zone more than

that would be obtained if concrete was treated s a linear

elastic softening material in tension. This may result in

an overestimate of the steel stresses, especially in

critical zones.

8.6 DISCUSSION AND CONCLUDING REMARKS

Numerical solutions of three dynamic problems obtained using

the proposed rate and history dependent material models

which are implemented in the computer program FEABRS, are

presented and compared with experimental and numerical

results from other sources. These applications represent

plane and axisynunetric structures characterised by different

impulsive loadings, boundary conditions and geometrical

factors. In addition to the specific concluding remarks

made within the presentation of each example and the

parametric study, some general conclusions from the

numerical results obtained can also be drawn.

1 - The finite element formulation in conjunction with the

proposed constitutive material models is a good tool for
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simulating the complex behaviour of reinforced concrete

structures under impulsive and blast loading. The numerical

results indicate that one of the most dominant factors in

the nonlinear response is the tensile cracking.

2 - The explicit time integration schemes outlined in

Chapter 6 and implemented in program FEABRS have proved

efficient in tackling complex material models and are also

economical in computational effort.

3 - In common with other nonlinear analyses, the avergae

computer time consumed for each problem is not small.

Depending on the computer technology, the computer time will

decrease. However, the effort needed for interpreting the

computational results will remain the same. The effort

expended in performing nonlinear analyses should be weighed

against the information needed.

4 - The assumption of perfect bond between steel and

concrete requires further validation in the vicinity of

cracked parts. The concluding chapter of this thesis

contains suggestions for further work in the material

modelling aspects.
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0.906

1.00

0.00190 MN sec2/]n4

206850.0 MN/rn2

303.4 MN/rn2

0.0

-0.909

0.954

Table 8-1 Material properties of Bathe's reinforced

concrete beam (235]

*	 Concrete

Young's modulus	 42059.5 MN/in2

Poisson's ratio	 0.2

Compressive strength	 25.8 MN/rn2

Corresponding strain	 0.00123

Crushing strain	 0.00350

Tensile strength	 3.2 MN/in2

Cracking strain	 0.000075

Elastic limit	 0.3

Fracture energy	 105.1 Nm/rn2

Fluidity parameters B1	-0.061

B2

Shear transfer parameter

Mass density

*	 Steel

Young's modulus

Yield stress

Hardening modulus

Fluidity parameters K1

K2

Ultimate strain	 0.015

Mass density	 0.00641 MN sec2/m4
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19614.0 MN/rn2

0.167

34.325 MN/rn2

0.0023

0.00350

3.531 MN/rn2

0.00018

0.4

196.14 Nm/rn2

0.568

0.920

10.0

1.00

0.0024 MN sec2/m4

Table 8-2 Material properties of reinforced concrete

circular slab [238)

*	 Concrete

Young's modulus

Poisson's ratio

Compressive strength

Corresponding strain

Crushing strain

Tensile strength

Cracking strain

Elastic limit

Fracture energy

Fluidity parameters B1

B2

Compressive softening parameter

Shear transfer parameter

Mass density

*	 Steel

Young's modulus	 20594.7 MN/rn2

Yield stress
	 451.122 MN/rn2

Hardening modulus
	 0.0

Fluidity parameters K1	 -0.909

K2	 0.954

Ultimate strain	 0.015

Mass density	 0.0
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24132.5 MN/rn2

0.2

26.959 MN/rn2

0.002234

0.004

2.7235 MN/rn2

0.0001129

0.4

60.2 Nm/rn2

-0.143

0.904

10.0

1.00

0.002 1J1 sec2/2224

199955.0 MN/rn2

483.00 MN/rn2

0.0

-0.909

0.954

Table 8-3 Material properties of Seabold's reinforced

concrete beam (239]

*	 Concrete

Young's modulus

Poisson's ratio

Compressive strength

Corresponding strain

Crushing strain

Tensile strength

Cracking strain

Elastic limit

Fracture energy

Fluidity parameters B1

B2

Compression softening parameter

Shear transfer parameter

Mass density

*	 Steel

Young's modulus

Yield stress

Hardening modulus

Fluidity parameters K1

K2

Ultimate strain	 0.015

Mass density	 0.00675 MM sec2/m4
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Figure 8.1: Bathe' s beam details and finite element idealization
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Figure 8.2: Nonlinear dynamic response of Bathe's beam
(criteria 1 and 2)
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Figure 8.3: Nonlinear dynamic response of Bathe' s beam
(criteria 3 and 4)
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Figure 8.4: Deformation and cracking history of Bathe's beam
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Figure 8.8 Transverse stress distribution along Bathe's beam at
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Figure 8.17: Deformation and cracking history for circular slab
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Figure 8.21: Radial stress distribution in z-direction of the slab at
respective tiires
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Figure 8.22: Shear stress distribution of the slab at respective times
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Figure 8.23: Hoop stress distribution of the slab at respective times
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Figure 8.24: Maximum principal stress distribution of the slab at
respective times
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Figure 8.25: Minimum principal stress distribution of the slab at
respective times
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Figure 8.26: Effective strain rate distribution of the slab at
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Figure 8.28: Stress distribution in the hoop reinforcent of the slab
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Figure 8.29: Effective strain rate distribution along the radial
reinforcent of the plate at various time stations
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Figure 8.30: Effective strain rate distribution along the hoop
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Figure 8.32: Details of Seaholds beam and finite elent idealization
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Figure 8.33: Canparison of the predicted and measured central deflection-
time history
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Figure 8.34: Canparisori of the analytical and experimental mid-span
velocity history of the beam
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Figure 8.35: Cciriparison of the predicted and measured ccinpressive strain
history of concrete at beam mid-span
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Figure 8.36: Canparison of the predicted and measured stress history
of main reinforcent at mid-span of beam WE5
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Figure 8.37: Cuparison of the predicted and measured stress history of
main reinforcnent at mid-span of beam WE2
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Figure 8.38: Ccxnparison of the nunerical and experimental reaction
history at left-hand support
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Figure 8.39: Deformation and, cracking history for Seabold's beam
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Figure 8.41: Vertical displacnent distribution along Seabold's beam
at respective times
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Figure 8.43: Transverse stress distribution along Seabold's beam at
respective times
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Figure 8.44: Shear stress distribution along Seabold's beam at
respective times
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Figure 8.47: Effective strain rate distribution along Seabold's beam
at respective times
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Figure 8.48: Stress distribution of reinforcing steel of Seabold's beam
at various time stations
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Figure 8.49: Effective strain rate distribution of reinforcing steel
of Seabold's beam at various time stations
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Figure 8.50: The effect of strain rate on the nonlinear response of
Bathe' s beam
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Figure 8.51: The effect of strain rate on the nonlinear response of
Seabold' s beam
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Figure 8.52: Influence of the elastic limit on the nonlinear response
of Bathe's beam
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Figure 8.53: Influence of concrete elastic limit on the nonlinear
response of Seabold's beam
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Figure 8.54: Nonlinear response of Bathe's beam for different cracking
strains
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Figure 8.55: Nonlinear response of Seabold's beam for different
cracking strains
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Figure 8.56: Influence of concrete fracture energy on nonlinear
response of Bathe's beam
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Figure 8.57: Influence of concrete fracture energy on nonlinear
response of Seabold's beam
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Figure 8.58: Nonlinear response of Bathe's beam as influenced by
tension softening
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Figure 8.59: Nonlinear response of Seabold's beam as influenced by
tensioning softening
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 GENERAL CONCLUSION

Finite element techniques for predicting the nonlinear

dynamic response of plane and axisynunetric reinforced

concrete structures subjected to blast and impulsive loading

have been developed in this thesis. To establish the

relationship between the physical structural system and the

numerical, model, the associated aspects of the engineering

modelling process were examined and several contributions

have been made in the areas which are less clearly

understood. The main attention was focused on the

development of appropriate history and rate dependent

constitutive material models for concrete and steel.

Methods for modelling blast loads have been extensively

reviewed. Finite element procedures for the spatial

discretization of the nonlinear dynamic equilibrium

equations are adopted in accordance with isoparametric

formulations. The explicit time integration schemes for the

solution of equations of motion and the time rate dependent

constitutive equations of concrete and steel have been

derived. Numerical stability is ensured using energy

balance check and suitable time increments throughout the

step-by-step numerical integration process.

On the basis of the structures analysed it is concluded that

the behaviour of typical planar and axisyminetric reinforced

concrete structures under blast and impulsive loads are well

simulated by the proposed computational models and solution

procedures. The computer program, FEABRS, developed during

the course of this work enables solution of various dynamic

problems with confidence. In particular the deformations,

stresses, strains, end reactions, cracking patterns,

progressive fracture in concrete and yielding of steel at

any stage of the loading-time history are determined with

sufficient accuracy, subject only to a good knowledge of
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the basic material properties. Material nonlinearities,

namely crack propagation, stress and strain history

dependency, concrete crushing, biaxial failure of concrete

and post-failure residual strength, as well as the strain

rate effects on the response of concrete and steel are

allowed for in the method of analysis, consistent with
expected modes of dynamic behaviour.

9.2 SPECIFIC CONCLUSIONS

9.2.1 MODELLING OF BLAST LOADS

1. General airb].ast phenomenon is presented along with

discussion of TNT equivalency and blast scaling laws. From

reviewing the available unclassified literature, prediction

methods for modelling blast effects are considered. Blast

due to nuclear weapons, conventional detonations, unconfined

vapour cloud explosions, and confined gas and dust cloud

deflagrations, are all reviewed.

2. The types of blast loads that can be produced on a

concrete structure by an external explosion due to nuclear

or conventional source are established as
*	 Side-on overpressure due to incident shock wave.

*	 Reflected overpressure on structure surfaces

located in the direction of wave propagations.

*	 Dynamic pressure caused by the wind behind the

wave front.

*	 Directly transmitted and airbiast-induced ground

shocks.

A number of commonly used formulae for predicting these

loading components in the free field are presented along
with their practical limitations. The distribution of the

combined airblast pressures is defined for rectangular

structures positioned above the ground surface. Given the

expected difference in the time arrival of the various

shocks to the structure, the directly transmitted ground

shock can be ignored. 	 For practical applications,
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airblast-induced ground motion must necessarily be included.

3.	 The internal blast loads that can be caused by

confined explosions are described as

*	 Short duration shock wave loading (for

high explosives).

*	 Relatively long duration gas venting pressure

(for high and low explosives).

The procedure and the necessary mathematical relationships

are summarised for the prediction of the loading time

histories. The effects of explosion containment and the

venting process are included in such relations. The loading

that arises from contact explosion on a structure and the

minimum thickness of concrete required to resist spalling

are given.

9.2.2 SPATIAL DISCRETIZATION

1. The development in this thesis has been limited to

two-dimensional reinforced concrete structures.

2. The plane 8-noded isoparametric elements with

quadratic variations of the field variables within each

element have been chosen. 	 Interpolation is based on

Serendipity shape functions.	 In particular, special

attention was paid to a correct simulation of crack

propagation. Of special note is the smooth spread of

cracking zones obtained and the ability of one element to

reproduce two independent types of cracking modes during the

analysis.

3. The use of Gaussian quadrature technique with the

reduced 2 x 2 order for the numerical integration of the

element forces proved to be a successful and computationally

economical means of handling elastic and inelastic spatial

domains within the same element. Moreover, it gives

reasonable cracking patterns formed as a result of the

partial release of the continuity requirements imposed by

the shape functions.
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4. The concept of reinforcing steel representation by

embedded bars passing through the basic concrete elements

was shown to give good results for a variety of dynamic

analyses despite the perfect bond assumption. The use of

equivalent membrane elements to simulate reinforcement under

axisymmetric conditions was similarly proved valid.

9.2.3 MODELLING OF MATERIAL NONLINEARITY

To simulate the observed experimental evidence in the

context of dynamic loading, it was found from the literature

that the feasible classical theories for a realistic

constitutive modelling of concrete or steel are the

viscoplasticity and endochronic theories. For blast

loading, rate and history dependent elasto-viscoplastic

material models for concrete and steel have been developed

in the thesis, along with a computational strategy for the

concrete cracking process in which the effects of strain

rate and post-cracking residual strength were jncluded.

Some numerical results have been presented which demonstrate

the good performance of the proposed constitutive models and

computer implementation. 	 From the presentation of the

examples, the following conclusions can be made:

1. It has been shown that detailed information about

deflections, crack patterns, viscoplastic zones, principal

stress fields, strain fields, etc, can be satisfactorily

obtained. The results obtained were in good agreement with

the results from previous numerical and experimental

studies. A reasonable numerical simulation of the flexural

and shear behaviour of planar and axisyminetric reinforced

concrete structures under blast loading proved to be

possible.	 It was concluded that compared with linear

elastic response, material nonlinearities amplify

displacements and elongate the effective period of

vibration.

2. The inclusion of strain rate effects on the

constitutive models of concrete and steel as well as the
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strain rate-induced anisotropic influence, that is the

difference in rate dependence in compression and tension for

concrete, is essential for realistic nonlinear dynamic

analysis of reinforced concrete structures under rapid

loading conditions.

3. The modified theory of viscoplasticity developed

within this thesis proved to be suitable for simulating the

dynamic compressive behaviour of concrete. Viscoplastic

response is controlled by two rate dependent bounding

loading surfaces combined with rate sensitive hardening,

softening and flow rules. The proposed loading criteria and

the different rules governing the pre-f allure and

post-failure regimes are derived in simple mathematical form

and predict stress-strain behaviour which is in good

agreement with experimental results involving uniaxial and

biaxial stress states (37]. Excluding the strain rate

effect or including the strain hardening increases the

predicted deflection and elongates the period of the

structure.

4. The numerical results indicate that the modelling of

concrete cracking process appears to be by far the most

important source of material nonlinearity in the final

model. Its representation is controlled by rate dependent

crack initiation criterion and a fracture energy based

nonlinear tension softening rule. The main advantage of

such softening function is the objectivity of results with
respect to element sizes. The parametric study showed that

the structural response is sensitive to the crack initiation

parameters (cracking strain and strain rate dependency) and

the crack propagation parameters (fracture energy and

tension softening). Decreasing the limiting cracking strain
or fracture energy or ignoring the tension softening or

strain rate effect results in higher deflections and

longer periods.

5. considering the spread of cracks through the

reinforced concrete structures analysed in this work, at
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different time stations, the algorithm developed for

predicting and monitoring cracks produces reasonable crack

patterns and operates with a relatively high degree of

robustness. The development of vertical flexural cracks and

diagonal shear cracks are in a good agreement with those

reported in other sources, (78, 239].

6.	 Examinations of the crack development history in the

numerical analyses supports the following conclusions:

a) Displaying only full cracks, i.e. cracks for

which the normal strain is beyond the ultimate strain

of the tensile softening branch, may be necessary to
reveal any fracture localisation in the structure

behaviour as well as to avoid any misunderstanding in

the interpretation of predicted numerical crack

patterns.

b) The proposed smeared crack formulation was

capable of predicting strain localisation phenomenon

which was in close agreement with the ecperimental

observations, (239]. It was noticed that at first

concrete exhibited a number of flexural cracks .thith

were suddenly overshadowed by the occurrence of major

shear cracks. Later, some integration points may

exhibit secondary flexural cracks which were arrested

or even closed further in the analysis as a result of

simultaneous loading and unloading associated with the

fracture localisation problems.

C) The presence of reinforcement in a concrete

member stabilises each tensile crack by limiting its

propagation. An example of a stable crack is the

vertical crack originating at the tensile face of a
beam in a region of pure moment. In a region of

combined moment and shear, a typical crack originates

in flexure in a stable manner, but the curved nature
of cracks in this region leads such cracks to zones of

higher stresses and strains and instability of the

crack propagation may occur.
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7. The plotted contour maps indicate that redistribution

of stress components and strain rate field was well

predicted with the process of cracking in concrete. For

beams, a pronounced thrust arch is observed in concrete and

is in equilibrium with the main tensile reinforcement. This

action represents a tied-arch equilibrium system.

8. The validity of the proposed model for steel as a

strain rate dependent uniaxial elasto-viscoplastic material

with linear strain hardening was demonstrated through the

analyses of reinforced concrete beams and a circular slab.

The history of steel stress, strain and strain rate as well

as the influence of concrete cracking on the variation of

reinforcement stress is satisfactorily simulated. As

expected, peak steel stresses and high strain rate values

were found near the critical regions of the structure and at

the cracked cross-sections.

9.2.4 TIME DISCRETIZATION AND SOLUTION TECHNIQUES

1. A modified form of explicit central difference

operator was developed for the time integration of

semi-discretized dynamic equilibrium equations in order to

advance the nodal displacements, velocities and

accelerations. Such scheme has been extensively employed in

this thesis for the linear and nonlinear dynamic analysis of

reinforced concrete structures with success. In addition to

the generality, it also results in efficient and economic

architecture for programming.

2. For path and rate-dependent materials proposed here,

reduced values of the limiting time steps, postulated by

previous researchers for the numerical stability of

explicitly integrated equations of motion, have been used.

From many computations carried out, a reduction factor

varying between 0.2 and 0.4 was found to be necessary to

account for the discretizing effects, of round-off errors,

and rapidly varying material properties as well as to limit

the speed with which the cracks spread throughout the

structure. However, the inclusion of energy balance check
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to guard against arrested instability errors induced by

dissipative mechanisms of concrete and steel behaviour was

essential.

3. The Euler explicit time integration scheme for the

first order time rate dependent constitutive equations of

concrete and steel in combination with suitable stability

conditions for the definition of time increments proves to

be efficient in tackling complex material behaviour and is

also economical in computational effort.

4. Semi-empirical a priori stability criteria relating to

the Euler explicit algorithm have been derived on the basis

of the theoretical and experimental considerations for

concrete and steel. In practice, such criteria represent an

upper limit for the critical time step length which provides

a stable and accurate solution for the elasto-.viscoplastic

response of reinforced concrete structures.

9 • 3 RECOMMENDATIONS FOR FUTURE WORK

Some recommendations for further improvement of the proposed

numerical techniques, and possible extensions of these

investigations are summarised below:

1.	 The applicability of the present numerical model for

the plane and axisymmetric analyses could be extended by

a) Introducing an initial loading procedure to

account for the effect of prestressing, thus enabling

dynamic analysis of prestressed concrete structures.

b) Generalising the representation of steel

components in axisyminetric problems by developing

point and bar elements in addition to the membrane

ones.

C)	 Implementing	 geometric	 nonlinearity	 for

thin structures sensitive to instability problems.

2. The application of the numerical model to general

3-dimensional cases, which would first require the

development of constitutive material models and numerical
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approach to cracking valid for such studies. Search for a

new loading surface of the constitutive model presented here

which fits the triaxial experimental data would also be

needed. It may become necessary, at this stage, to consider

the production of a simplified version of the computer

program FEABRS since computing costs for nonlinear dynamic

3-dimensional problems are likely to rise sharply when

compared with those relating to planar and axisynunetric

applications.

3. The material models developed here can be extended to

include some aspects of reinforced concrete behaviour not

considered in this study, e.g.

a) The assumption of isotropic hardening can be too

simple for pronounced cyclic deformation situations,

and a more sophisticated hardening model may be

necessary.

b) The significance of different hardening functions

suited for steel reinforcement can be investigated.

C) The inclusion of a realistic law describing

bond-slip behaviour between concrete and steel under

dynamic loading may also be a subject for further

work. However, this will require a reformulation of

the bar and membrane elements used in this work. Also

the relation between bond-slip effect and tension

stiffening behaviour has to be investigated.

d) The aggregate interlock and dowel bar mechanisms

used in the crack interface may be improved by

employing more sophisticated models (240).

4. Some features of the constitutive concrete model

presented in this thesis are clearly extrapolations from

uniaxial state, where validity and limitations are not easy

to define due to the complexity and insufficient knowledge

of concrete behaviour under biaxial dynamic conditions.

Investigation of the accuracy and efficiency of the present

model can only be based on extensive experimental research
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on concrete behaviour in biaxial state of stress under

dynamic loading conditions. Experimental data for the rate

and history-dependency of the material behaviour in the

pre-failure and post-peak regimes should be made available.

5. Recently it has been recommended [241] that

strain-rate dependent data can be characterised in strain

space better than using traditional stress based failure

criteria. Therefore, an experimental and analytical

dynamic investigation is needed to generate more data in

order to develop the criteria which would produce a family

of response surfaces in strain space as a function of strain

rate and strain history.

6. Since the solution procedures of reinforced concrete

structures at present are relatively expensive in terms of

computer time, alternative approaches may be used for

improving the efficiency of the dynamic analysis

computations.

a) Mixed time integration schemes such as

explicit-explicit subcycling procedure [222] can be

employed for the finite element dynamic analysis.

This is accomplished by separating the elements or

nodes into element size based-groups and assigning a

different time step to each group which is dependent

only on the frequencies of the elements in that group.

b) For large scale reinforced concrete structures,

the nonlinear dynamic analysis using substructure

technique (93] may be adopted in which the method of

analysis takes advantage of direct time integration

and modal analysis in such a way that the

computational work is focused on the important parts

of the structure.

c) One point integration technique may be used to

evaluate each element matrices and contributions in

the analysis. Such a procedure has been successfully

used with the linear quadrilateral isoparametric

element (242]. However, the principal disadvantage of
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this technique is the generation of unstable

zero-energy deformation modes. The inclusion of the

hourglass control techniques is unavoidable for

numerical stability.

7. Undoubtedly, it •is possible to refine and extend the

computer program FEABRS in several ways in order to make it

more efficient and versatile. Some useful modifications may

be mentioned here:

a) An interactive system identification module, with

graphical displays, needs to be developed to enable

proper description of model behaviour.

b) A post-processing module, with interactive

graphics, needs to be developed so that the results of

the response analysis may be visualised in a graphical

form.

c) Extension of the computer code by including the

well known material models of cracking and compressive

behaviour so that any combinations could be selected

at will.

8. There is considerable research to be done to enable a

reasonable assessment to be made of the loading function for

confined gas and dust cloud deflagrations as well as

unconfined vapour cloud explosions. Containment of

explosions and venting will necessarily depend upon the

structural system but a great deal of information is needed

for careful analysis.

9. When the blast wave due to high explosive impinges

upon a structural system, it is immediately modified by

reflection enhancement followed by vortex formation and

rarefaction wave movements as the blast wave moves over the

structure. As a result of complexity of the process,

further research is needed to make a reasoned judgment of

the variations of pressure with time and space for response

analysis.
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