

City, University of London Institutional Repository

Citation: Holland, J. D. H. (1995). The requirements analysis & design for a clinical

information system: a formal approach. (Unpublished Doctoral thesis, City University
London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/7705/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

The Requirements Analysis & Design
for a Clinical Information System: A

Formal Approach

by
Jeremy David Hasse Holland

A PhD Thesis

submitted to

City University,

The Department of Systems Science

January 1995

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

To Emma,

to my parents,
and to my surprise.

d: Ajes\dis\wipAphd\phdtext2. dce

.
11

_`

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Contents

CONTENTS .. iii

TABLE OF FIGURES .. viii

ACKNOWLEDGEMENTS .. ix

DECLARATION ...:.. x

ABSTRACT ... xi

CHAPTER 1: INTRODUCTION .. 2

1.1 BACKGROUND & MOTIVATION ...
2

1.1.1 The Initial Requirement ..
2

1.1.2 Observed Problems and an Experimental Solution ..
2

1.1.3 A Methodological Framework ...
3

1.1.4 Problems with Existing Methods ...
4

2 OBJECTIVES OF PROJECT 1 4
.. .

3 STRUCTURE OF THESIS 1 5
... .

1.3.1 Introduction, Background and Motivation ...
5

2 Review of Methods and M 1 3 th dU d 5
.. . e o se .

sults: The Theories 3R Th i E 1 3 l ti d Th i U 5 se ... e , e r vo . . u on, an e r
.............................. 4 Review of Method and Conclusion 1 3 ' 6

.
CHAPTER 2: HISTORICAL BACKGROUND TO THE NHS AND ST THOMAS' HOSPITAL 7
2.1 INTRODUCTION

...
7

2.2 1948 AND THE BEVERIDGE REPORT, THE GENESIS OF BRITAIN'S NATIONAL HEALTH SERVICE
..........:.....

7

2.3 Loss OF INNOCENCE: THE GRIFFITHS REPORTS
..

8

2.4 RAPPROCHEMENT AND RECONCILIATION: THE RESOURCE MANAGEMENT INITIATIVE AND THE CLINICAL

DIRECTORATE
... '.. 9

2.5 RECENT CHANGES: THE WHITE PAPER AND THE TOMLINSON REPORT
...:

12

2.6 CONCLUSION: COMPLEXITY AND CONFUSION
...

14

CHAPTER 3: ST THOMAS' HOSPITAL AND THE DIRECTORATE INFORMATION SYSTEM
PROJECT ...

15

3.1 INTRODUCTION
...

15
3.2 ST THOMAS' HOSPITALAND THE INTRODUCTION OF THE CLINICAL DIRECTORATES:.....

15
3.2.1 St Thomas' Hospital: An Ancient Institution

...............:......:..
15

3.2.2 The Directorate Structure at St Thomas'
...

15
3.3 LOCAL AND OPERATIONAL INFORMATION SYSTEMS: THE WEAK LINK IN NHS INFORMATION
TECHNOLOGY

...
16

.. 16 3.3.1 The Case-mix Management System and its Feeders...
3.3.2 IT Strategy Document Practice management systems ..

17
3.3.3 Desire for Directorate Autonomy

...::.....
18 '

3.4 THE CONCEPT OF A CLINICAL DIRECTORATE INFORMATION SYSTEM
..................................... ". '...... '. '... '... 19

3.4.1 The Original Idea:..:....:
19

3.4.2 The Directorate Information System Project ..:.:
20

'3.4.3 Information Systems in Directorates or Directorate Information Systems:..:.:.::. 20
3.4.4 Some Functions of a Directorate Information System ... 20

3.5 CONCLUSION ...
21

CHAPTER 4: PROBLEMS WITH DEVELOPING CLINICAL COMPUTER SYSTEMS. *

4.1 INTRODUCTION
...::........:.....:..............:.:....:........:..............

22
4.2 THE DIFFICULTY OF INFORMATION SYSTEM DESIGN ..:.::...:.:.:...............:

23

- 4.2.1 Clinical Computing: A History of Failure., ..:........:....... 23
4.2.2 Organisational Information Systems: A Tough Nut to Crack

.................................. `......:.........:. 24
4.2.3 The Essential Problem - Requirements Analysis

................ ..:.:.......
25

4.3 SYSTEMS ANALYSIS: A POSSIBLE APPROACH
..:.................

27

d: \jes dis\wip\phd\phdtext2. doe
111

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

4.3.1 Introduction .. 27
4.3.2 Information Systems: What Are They? .. . 27
4.3.3 A Methodological Framework .. . 29
4.3.4 Clinical Systems Analysis: A Breakdown in Communication 30
4.3.5 The Scientific Method 32
4.3.6 Why The Scientific Method Will Help 33
4.3.7 How Might The Scientific Method Be Used Here? .. . 34

4.4 CONCLUSION
.. .

36

'CHAPTER 5: REVIEW OF EXISTING ANALYSIS METHODS .. . 40
5.1 INTRODUCTION

... .
40

5.2 WHAT IS ANALYSIS: PROCESS AND PRESENTATION
40

5.3 SOME POPULAR METHODS
... .

42
5.3.1 Criteria For Judgement ... 42
5.3.2 Data Modelling

... 43
5.3.3 Soft Systems Analysis Methods .. 46
5.3.4 Rapid Prototyping ... 48
5.3.5 Others ... 50

5.4 CONCLUSION
...

51

CHAPTER 6: THE METHOD CHOSEN - AN INTRODUCTION ... 53
6.1 INTRODUCTION

..
53

6.2 THE CHOSEN METHOD: PRESENTATION .. 53
6.2.1 Introduction

..
53

6.2.2 Notations and Calculi: The Choice of Discrete Mathematics
... 54

6.2.3 Theories and Models ... 55
6.2.4 Model Based Notations I: Structural Invariants ... 55
6.2.5 Model Based Notations II: Events ... 57
6.2.6 Model Based Notations Ill: Consistency .. 57
6.2.7 Set Theory in Use .. 58
6.2.8 The Schuman Pitt Notation 1: Why Was it Chosen?

.. 61
6.2.9 The Schuman Pitt Notation II: How Does it Work? .. 64

6.3 THE METHOD: PROCESS
... 69

6.3.1 Introduction .. 69
6.3.2 The Need for Three Theories .. 70 6.3.3 The Domain Theory .. 72 6.3.4 The Information System Specification

.. 75
6.3.5 The Interaction Theory - What Is It? .. 76
6.3.6 Engineering the Information System 1: Arguments for Interpretational Weakness 76
6.3.7 Engineering the Information System 11: Arguments for Domain Conformance - The
Developmental Motives .. 77
6.3.8 Engineering the Information System III: How To Do It .. 78

6.4 CONCLUSION
... 78

CHAPTER 7: IDENTIFICATION OF THE PROBLEM BOUNDARIES
... 80

7.1 INTRODUCTION
.. 80

7.2 OTHER PEOPLE'S THEORIES
..

80

7.2.1 An Abstract Model of Care .. 80
7.2.2 A Customer-Supplier Model .. 81
7.2.3 A Soft Model ... 82
7.2.4 Clinical Data Models .. 83
7.2.5 The Common Basic Specification

..
84

7.3 THE PROBLEM BOUNDARY
...

85

7.3.1 Introduction ..:....
85

7.3.2 Operational Concerns, Not Managerial. ..
85

7.3.3 Avoid Medical Details ...
85

7.3.4 Be General and Accommodate Change
..

86
7.4 CONCLUSION

.. ..
87

INTRODUCTION: STRUCTURE OF PART 3 ..:..........................
90

d: \jes\dis\wip\phd\phdtext2. doc
iv

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

CHAPTER 8: INTRODUCTION TO THE DOMAIN THEORY .. 92
8.1 INTRODUCTION

...
92

8.1. I Presentation of the Domain Theo .. . 92
8.1.2 Introduction to This Chapter .. . 92

8.2 THE DIABETES AND ENDOCRINE DIRECTORATE
... . 93

8.2.1 The Endocrine Disorders and Diabetes .. . 93
8.2.2 The DEDC: Collaborative Out-Patient Care for People with Diabetes 93
8.2.3 In-Patient Care .. . 95
8.2.4 Other Directorates 95

8.3 THE DOMAIN THEORY: AN INFORMAL OVERVIEW
...

96

8.3.1 Introduction .. 96
8.3.2 Activities ...

97
8.3.3 An Aside: "Graphical Graphs"; a Helpful Notation Introduced ... 98
8.3.4 Types .. 98
8.3.5 Structure and Value: Different Levels of Refutation ..

101
8.3.6 An Example of Types and its Graphs: The Diabetes and Endocrine Day Centre 102
8.3.7 Patients ...

103
8.3.8 Clinicians ..

103
8.3.9 Time & Information

...
104

8.3.10 Realism ...
104

8.4 CONCLUSION ...
105

CHAPTER 9: THE DOMAIN THEORY I ...
106

9.1 INTRODUCTION
106

2 ACTIVITIES AND ITS SUBSETS 9 106
.. .

... 1 Introduction 9 2 106
. 2 2 Activities 9 107

... . .
.. Proceed and Com lete 3 Re uest . 9 2 107 p q ,

e Declarations 4A Word on T 2 9 108 yp
.............................. 5 Invariants over Activities and its Subsets 9 2 108

. . ..
9.2.6 The First Class Schema ... 109

... 7 The Operations: First Version 9 2 .
110

. 9.2.8 The Operations: Second Version ...
115

9.2.9 Limiting the Scope: Introducing Boundaries ...
117

9.2.10 Conclusion ..
117

9.3 GRAPHS OVER ACTIVIES .. 118
9.3.1 Introduction ...::.....:.:..

118
9.3.2 Before and After: Medical Ordering Introduced ... 118
9.3.3 The Problem of the Blood Test ..:...

119
9.3.4 Includes and During ...

120
9.3.5 The Graph as 'a Family: a Useful Metaphor:..::....

122

.. 9.3.6 Operations on ActClass3::.
123

9.3.7 Conclusion
..

126
9.4 TYPES

..:..........................:.. 127
4 9 1Intr d . i . 127 o uct on . 9.4.2 Types ...:.. 127

9.4.3 The Class Structure so far ...
128

9.4.5 Interactions Between Types and Activities: The Class ATClassl ... 129
9.4.6 A Model of the Theory So Far 130
9.4.7 Conclusion

..
133

9.5 STRUCTURES OVER TYPES
...:...

133

9.5.1 Introduction
..

133
9.5.2 The Graph Can-include ..

133 1,,
9.5.3 How Important is the Visit? ... 135
9.5.4 Comp ulsö Activities: ry the Brief Appearance of Comprises and Requires... #"°.:. 140
9.5.5 TypeGuide: A Replacement for Can_include ..

142 :
9.5.6 Other Subsets of Types ..:.......... : 143
9.5.7 Conclusion ...:....:........:. : 144

9.6: CONCLUSION 144;

d: \jes\dis\wip\phd\phdtext2. d0c

V.,

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

CHAPTER 10: THE DOMAIN THEORY 11 .. 147

10.1 INTRODUCTION
..

147

10.2 PATIENTS ... 147
10.2.1 The Introduction of Patients .. 147
10.2.2 ActSubject -a Definitional State Component

...
148

10.2.3 The Creation of Patient Specific Activity Structures ..
149

10.2.4 Patient Presence: its Necessity and Cardinlity ... 149
10.2.5 Conclusion .. 151

10.3 CAUSE AND EFFECT
.. 151

10.3.1 Introduction ... 151
10.3.2 InLoco as a Two-Place Relation .. 152
10.3.3 InLoco as a Three Place Relation .. 153
10.3.4 A 'Paradigm Shift' ... 154
10.3.5 The New Theory and EmbedType ... 154
10.3.6 RunType .. 157
10.3.7 Conclusion .. 158

10.5 FURTHER ENRICHMENTS AND ENHANCEMENTS OF THE DOMAIN THEORY
...

159

10.5.1 Introduction ... 159
10.5.2 Time and Booking .. 159
10.5.3 Information and communication .. 160
10.5.4 Final Operation Refinements and Followups ... 162
10.5.5 Boundaries .. 164
10.5.6 Conclusion .. 165

10.9: CONCLUSION TO CHAPTER 10
..

165

CONCLUSION TO CHAPTERS 8,9, AND 10 ... 170

CHAPTER 11: INFORMATION SYSTEMS AND INTERACTION THEORIES 172
11.1 INTRODUCTION

..
172

11.2 THE CLINICAL RECORD SYSTEM
...

174

11.2.1 Introduction
... 174

11.2.2 Explanation of existing components ... 174
11.2.3 Description of existing components in Schuman-Pitt Notation ... 175

11.3 AN INTERACTION THEORY FOR THE CLINICAL RECORD SYSTEM
... 181

11.3.1 Introduction ...
181

11.3.2 How To Build an Interaction Theory .. 183
11.3.3 The Interaction Theory 1: CRSlnteraction .. 184
11.3.4 The Interaction Theory II: CRSlnteraction2 .. 186

11.4 THE INTERACTION THEORY: CONCLUSION
..

189

CHAPTER 12: DIS1- AN INTEGRATED APPOINTMENT AND CLINICAL RECORD
SYSTEM ... 191

12.1 INTRODUCTION
..

191
12.2 A SPECIFICATION OF THE OUTPATIENT APPOINTMENT SYSTEM (OPAS)

...
191

12.3 A COMPOSITION OF OPAS WITH CRS -A DIRECTORATE INFORMATION SYSTEM (DIS 1)
.................. 195

12.4 USING AN INTERACTION THEORY TO DEVELOP AN INFORMATION SYSTEM
..

201

12.4.1 Introduction ... 201
12.4.2 Four motives to guide development

... 203
12.4.3 Expansion of scope .. 205
12.4.4 Functionality of interpretation ... 208
12.4.5 Restriction of non-sensical IS operations ... 214
12.4.6 Minimisation of prohibition ... 225

12.5 CONCLUSION
...

230

CHAPTER 13: REVIEW OF RESULTS ... 234

13.1 SYNOPSIS OF METHOD AND RATIONALE ...
234

13.1.1 An Assumption Underlying the Method
..

234

............................. 2 Method 13 1 235
. 236 13.2 ISSUES CONCERNING UNDERLYING ASSUMPTION

...

d: \jes\dis\wip\phd\phdtext2. doc

vi

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

13.2.1 Justification .. 236
13.2.2 Criticism ... 237
13.2.3 Synthesis ... 239

13.3 ISSUES CONCERNING CONSTRUCTION OF DOMAIN THEORY
..

240

13.3.1 Justification .. 240
13.3.2 Criticism ... 248
13.3.3 Synthesis ... 259

13.4 ISSUES CONCERNING CONSTRUCTION AND ANALYSIS OF THE INFORMATION SYSTEM SPECIFICATION. 262

13.4.1 Introduction .. 262
13.4.2 Justification .. 263
13.4.3 Criticism ... 276
13.4.4 Synthesis ... 279

13.5 ISSUES CONCERNING CONSTRUCTION OF IS
...

281

13.5.1 Justification ..
281

13.5.2 Criticism ...
282

13.5.3 Synthesis ... 283
13.6 ISSUES CONCERNING THE USE OF FORMALISM ..

283

13.7 CONCLUSION
...

284

CHAPTER 14: CONCLUSION »..
285

14.1 INTRODUCTION
... ..

285

14.2 THE OB)ECnvES REVISITED
...

285

14.3 SATISFACTION OF THE OBJECTIVES
...

287

14.3.1 Objective 1: A Method Developed ...
287

14.3.2 Objective 2: A Description Derived ..
288

14.3.3 Objective 3: A Specification Engineered ...
288

14.4 VALIDATION OF THE HYPOTHESIS
...

288

14.5 SALIENT FEATURES OF THE PROJECT
..

289

14.6 PRELIMINARY BENEFITS
...

290

n influence 1 CRS desi 14 6 290 g
14.6.2 The Out Patient Contract Management Support System ..

291
14.6.3 IMC interest ..

292
14.7 FURTHER WORK ..

292
14.7.1 Towards a More Generic Domain Theory ...

293
14.7.2 Towards a More Elegant Theory 293
14.7.3 Changing the Rules During the Game ...

294
14.7.4 Other developments ..

295
14.7.5 Further Investigation into Hypothetical or Imaginary Domains ..

296
14.7.6 Developmental motives and Information System Representation ...

297
14.7.7 Possible development as general service model ..

297,
14.8 CONCLUSION

...
298

REFERENCES
...

300

d: \jes\dis\wip\phd\phdtext2. doc , ;, -'r
vii

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Table of Figures
Figure 1-1: Traditional Model of Service Providers' Participation in Hospital Management 10
Figure 1-2: Clinical Directorate Model of Service Providers' Participation in Management 11
Figure 2-1: Detail of Feasibility Phase (One of Five) of SSADM Method .. 44
Figure 2-2: LDM (or ER) diagram for the relation '<' .. 45
Figure 2-3: LDM of the entity Woman and relations over that entity ... 59
Figure 2-4: Tabular format of state and operation schemata .. 64
Figure 2-5: Illustration of the method used ..

70
Figure 2-6: Feedback Loop representing the Clinical Process .. 80
Figure 2-7: Customer - Supplier model of a procedure in the obstetrics ward 81
Figure 2-8: (part of) Rich picture for study of East Berkshire Health Authority 82
Figure 2-9: Cardiology System ER diagram .. 83
Figure 2-10: Early Version of Diabeta III System .. 84
Figure 3-1: Organisation of the chapters in Part III of the thesis .. 91
Figure 3-2: Model of the Can-include relation .. 100
Figure 3-3: Permitted Model of the Includes graph ... 100
Figure 3-4: Forbidden Model of the Includes graph ... 101
Figure 3-5: Model of the graph Can-include specialised for the DEDC ... 103
Figure 3-6: State transition diagram showing the possible operations in the class ActClassOld........... 114
Figure 3-7: State transition diagram showing the possible operations in the class ActClassI

............... 116
Figure 3-8: A representation of the Directed Acyclic Graph is_parent_of

.. 123
Figure 3-9: An Illustration of the class structure described so far .. 129
Figure 3-10: Graph of initial Can-include relation over the set Types ... 135
Figure 3-11: A Model of Can-include ... 140
Figure 3-12: Refinement and composition diagram for the seven classes described so far

146
Figure 3-13: Fragment of a model of the theory, specialised to the DEDC ... 156
Figure 3-14: Fragment of same model after invocation of the operation AT4. Embed 157
Figure 3-15: Refinement and composition diagram for all classes in the domain theory 167
Figure 3-16: (partial) States before and after invocation of the operation CRSC1ass2. EmbInOld......... 178
Figure 3-17: Class inheritance / composition structure for class CRSlnteraction2

................................ 186
Figure 3-18: The class structure used in the theory of the Outpatient Appointment System 195
Figure 3-19: Illustration of class structure of interaction theory ... 203
Figure 3-20: An information system model and its interpretation .. 222
Figure 3-21: A new information system model and its interpretation

... 222
Figure 3-22: Non-sensical information system models and a permitted interpretation

......................... 223
Figure 4-1: The systems design process ... 235
Figure 4-2: Concrete and abstract state spaces ... 266
Figure 4-3: Simplified diagram illustrating an argument about state space mappings 267
Figure 4-4: The more states of the domain an information system can represent the better 268
Figure 4-5: Illustration of the motive encouraging us to look for functionality of interpretation........... 270
Figure 4-6: A good information system where entropy of information system is minimised 272
Figure 4-7: Poor information systems judged by the motive described here .. 272
Figure 4-8: Information system that allows operations that are illegal in the 'full' domain state space.. 273
Figure 4-8: Two poor information systems that restrict domain behaviour when used as intended....... 275

d: \jes\dis\wip\phd\phdtext2. doc

viii

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Acknowledgements

This work would not have been completed were it not for the help and support of many friends and
colleagues. I extend my gratitude to all of these: there are a number which I would like to thank
particularly, however. Peter Sönksen for being a tolerant and supportive employer for three and a half

years of the work's germination. Ewart Carson and Bernie Cohen for providing valuable guidance and
supervision during the course of the project, and for reviewing the thesis. David Russell-Jones and Jake
Powrie for being 'tame clinicians' willing to give much time to help me understand the rudiments of
medical care and practice. Stella Harding for interesting and useful sociological discussions during my
time as her 'guinea-pig analyst'. My father for painstakingly reviewing the thesis and suggesting many
useful modifications. My brother and Jerry Barnes for illuminating me in the subject of analytical

methods used by civil engineers. Logica, my current employers, for letting me use their facilities during

the latter stages of the'write-up'. Finally, I would like to thank Steve Schuman for giving me so much of
his time, wisdom, energy, and inspiration without which this thesis would almost certainly never have

been written.

d: \jes\dis\wip\phd\phdtext2. doe,
lx

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Declaration

I grant powers of discretion to the University Librarian to allow this thesis to be copied in whole or in part

without further reference to me. This permission covers only single copies made for study purposes,

subject to normal conditions of acknowledgement.

d: \jes\dis\wip\phd\phdtext2. doc

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Abstract

Following a number of recent far-reaching reforms to the UK NHS, St Thomas' Hospital (where this work
was based) introduced a management structure based on the 'Clinical Directorate'. In order to lessen the
increased workload commensurate with this measure, it was decided at St Thomas' that a new type of
information system - the Directorate Information System or DIS - would introduced. This system was to
'support the business of the clinical directorate'. As part of the DIS project, a small study was set up to
investigate the problems associated with the introduction of such an information system, and to suggest a
design. This thesis reports on the study.

The design of information systems in general, and clinical information systems in particular, seems to be

an extremely difficult endeavour: many systems development projects end in failure. It is widely
considered that the problems lie in inadequate requirements analysis and specification: consequently it

was here that the project concentrated most of its efforts.

It was recognised that when in use, the terms, quantities, and entities stored and displayed by an
information system are interpreted by its users as terms, quantities, and entities in the organisation that is

being supported (also called the domain in the thesis). This is perhaps the fundamental requirement of an
information system: that it represents the organisation and processes it is to support.

To assess the degree to which a design satisfies this requirement entails the development and use of three

descriptions, or theories. The first is the theory of the domain; the second is a theory, or specification, of

the proposed information system; the third is a theory of the way in which the information system is

interpreted into the domain - this is called the interaction theory and is a composition of the first two

theories. By inspecting the interaction theory inadequacies in the representation of the domain by the

information system can be identified and, if necessary, rectified. There are four ways in which we are

encouraged to modify information system designs so that they more accurately reflect the behaviour of the

domain. These are called the four developmental motives. Through the use of a well constructed
interaction theory, and guided by the desire for system simplicity on one hand and the four developmental

motives on the other, an improved information system design can be engineered.

For an interaction theory to be constructed and provide useful insight, both the domain theory and the
information system specification must be semantically rich. Conventional analysis notations are
inadequate for the task: mathematics (in this case set theory) is needed to represent and explore the
domain, the information system, and the interpretation of the latter into the former.

The construction of a good domain theory is the hardest part of the process. Representing the organisation
as it is perceived by workers (in this case clinicians) as a set theoretic construction is fraught with
difficulties. However, the judicious use of an adaptation of the scientific method means that we can have
increased confidence that the resulting description of the organisation is a reasonable one and is not
merely a statement of the analyst's preconceptions and prejudices.

The thesis describes in more detail the background to the project, the use of the scientific method to
derive a domain theory, the construction of interaction theories, and the engineering of information

systems through the use of the four developmental motives. This is done through the use of a large case
study which presents, documents, and discusses the theories used in the Directorate Information System

project, and describes their evolution.

d: \jes\dis\wip\phd\phdtezt2. doc
x1

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

d: Ajes\dis\wip\phd\phdtext2. doc
xii

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Part One:

Introduction, Background and
Motivation

d: \jes\dis\wip\phd\phdtext2. doc

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Chapter 1: Introduction

1.1 Background & motivation

1.1.1 The Initial Requirement

As a result of recent reforms of the UK National Health Service (NHS) [NHS89], [NHS90], many
hospitals in the UK are adopting the clinical directorate system of organisational structure [Disken90].

The clinical directorate has a similar staff content to the old hospital department, but an additional set of

more 'business' oriented roles and responsibilities. So that these are fulfilled by existing personnel a new
type of information system that would support them in their activities has been proposed -a Directorate

Information System [KPMG89]. Each clinical directorate would have its own system, the purpose of

which would be to "support the business of the clinical directorate" [Holland92].

It was recognised that the problems associated with the creation of a generic Directorate Information
System would be vast, and that similar projects had failed spectacularly (see below). However, the benefits

to be gained from such a system, integrated and implemented at the level of the mair managerial unit of
the hospital would be correspondingly great. To minimise the risk, and yet still get useful benefits from

work that could address some of the problems outlined, a small experimental project was set up in the
Diabetes and Endocrine Directorate. This project took the form of doctoral research meaning that many of
the issues that have so often led to system failure could be considered in detail. Any findings of the project
would be of use to the department and hospital, but by virtue of its small scale and experimental nature
were the project to turn out to be useless the hospital would not suffer adverse consequences, and would
not have wasted much money.

This then was the background to the study which is reported in this thesis.

1.1.2 Observed Problems and an Experimental Solution

Historically, clinical computing is an area which is characterised by expensive failures, especially when
the domain to be served is an organisation (such as a department or hospital) rather than a particular
function within that organisation (as would be the case with a payroll system in a personnel department or
a medical record system in a cardiology department). Recent high profile problems have concerned the
London Ambulance Service, West Midland Regional Health Authority's Healthtrac system, and Wessex

Regional Health Authority's controversial RISP project. These systems have generally been late,

expensive and have not fulfilled the needs of the users. Disasters such as these are not exclusive to the
health sector - many computer projects, especially those attempting to support complex organisations,

seem to suffer from similar problems. It is widely considered in the computing community that perhaps
the greatest outstanding problems in the development of information systems lie in the area of

requirements engineering - indeed, Fred Brooks tells us that 'no other part of the work so cripples the

result if done wrong'. It is this shortfall more than any other which consistently leads to the expensive

mistakes that can be seen in the health sector.

It was considered at St Thomas' Hospital,
_at

least in the department where the project was based, that the

critical breakdown in the requirements elicitation process was the communication between the users and

the systems analyst responsible for the design of the 'solution'. All too often, the analyst got the 'wrong

end of the stick', or misunderstood- the isgues being discussed. Additionally there was a feeling that the

suppliers were more interested in educating the potential purchasers of their systems how the application

in question was going to solve their, problems than in understanding those problems in the first place.

d: \jes\dis\wip\phd\phdtext2. doc
2

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

One of the significant tasks of the project was to address these flaws in the conventional requirements
elicitation process: flaws that had to be (at least partially) overcome if any progress was to be made into

understanding the requirements for a Directorate Information System.

1.1.3 A Methodological Framework

The subject of the project was thus the design of an information system. One of the earliest observations
made was that an information system stores, processes and transmits information about some part of 'the

world'. It does this through the manipulation of symbols that are to be understood by the user as
representing aspects of the world, variously referred to as the 'domain of discourse', 'domain of interest',

or simply 'domain'. In other words, in use, the information system is to be interpreted into the domain.

Furthermore, an information system that does not support ready interpretation will be considered

unsatisfactory by its users. This is hardly controversial (although some would claim it to be over

simplistic), but the identification of a problem is not the same as its solution. How can we assess an
information system to see how well it can be interpreted into the domain it is intended to support? We

cannot do this directly, but we can compare the properties of a computer system with properties of the

user's perception of the domain in order to judge the potential for ready interpretation. In order to do this

we need to have an understanding of the computer system, the domain, and the interpretation of the one
into the other. The representation of the properties of a computer system is relatively straightforward, but

a representation of those of the domain as it is perceived by its users is more problematic. As discussed

above, there seems to be a breakdown in communications between analysts and users (clinicians): we need

to address this if we are to construct a valid description of the domain.

In order to overcome the problem of a lack of understanding of the user's world view, and to avoid the

necessity of long winded education of the user as to the understanding of their world gained by the

analyst, the author turned to the method of empirical science as described by Sir Karl Popper [Popper80].

The scientific method allows us to test conceptual structures, known as theories, against the observed

world to see if they are valid. This is done through the derivation of theorems that are purported to hold in

the world, and the attempted observation of phenomena in the world that refute those theories (in which

case the theory is refuted and must be re-constructed). In this way, erroneous theories can quickly be

shown to be faulty and thus abandoned. That this approach is extremely powerful can be seen when the

dramatic advances that have been made in our knowledge of the physical world during the last two

centuries are considered. In addition, by attempting to
, elicit counter-examples from workers in the

domain, the educative process would be of the analyst by the user rather than the other way round.

Once a good description of the domain has been elicited from the workers and other stakeholders in the

system we can see to what extent a given information system might be a reasonable representation, and

can strive'. to make improvements accordingly. This stage of the -analysis is characterised by the ;
identification of potential problems and their possible solution. The analysis process thus has two,

philosophically distinct phases. The first is where the nature of the domain is elicited: this (it is claimed)
is based on the methods and notions associated with science. The second is where that description is used

as the yardstick against which to measure the representational adequacy of an information system's
design, and to change the design as a result of this measurement: this is based on the methods and notions

associated with engineering. 0

d: \jes\dis\wip\phd\phdtext2. doc

3

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

1.1.4 Problems with Existing Methods

Early on in the project a number of techniques were investigated that might be used to conduct an

analysis of the clinical directorate within a framework such as that described. It was decided that

conventional data modelling techniques (see e. g. [Hu1187] and [Coad9l] for a summary of these) tend to
focus on information rather than domain behaviour explicitly - they are good for describing the solution,
but less so for understanding the problem. Soft systems analysis [Check90] appealed to us more as it

seemed to concentrate on the (perceived) behaviour of the domain rather the information that would be

needed to support that domain. However, the formal semantics of both conventional data modelling and
the soft systems analysis notations are poor which means that any models or theories resulting from the

analysis are very difficult to validate.

Not only were the formal semantics of the notations associated with methods investigated extremely poor,
but the methods themselves could not be considered to support refutation in the Popperian sense. Instead

of attempting to elicit counter-examples to theorems derived from the conceptual theory, validation

consisted of showing the theories themselves, expressed in the method's notation, to the users and asking
for their comments. This is precisely the 'user education' that it had been decided to try and avoid.

Having decided that none of the conventional systems analysis methods we had considered could be easily

adapted to the philosophical stance adopted, the task of the project became more defined. Not only should
the requirements for an appropriate information system be specified, but the method by which those

requirements were to be found needed to be developed if the all too common mistakes of clinical systems
development were to be avoided.

1.2 Objectives of Project

We can now consider the hypothesis that this project set out to test. Firstly we must again state the

postulate on which the work is based.

Postulate: That an information system in use is interpreted into a domain of activity by its users.

The hypothesis can be summarised as follows.

Hypothesis: That the rigorous use of a method where a semantically rich description of an information

system is compared with a similarly rich scientifically derived description of the domain to
be supported is possible and can prevent interpretational problems in the resulting
information systems.

This is not to say that the method alone resulted in the direct and straightforward implementation of

perfect information systems - rather, when used in association with other approaches, the quality of the

resulting system could be improved.

From this hypothesis, three working objectives can be derived as follows.

Objective 1: A method such as that described in the hypothesis was to be developed.

Objective 2: The method should be used to derive a 'scientific' description of the clinical directorate.

Objective 3: From the resulting description, specifications for components of the Directorate

Information System were to be engineered.

d: \jes\dis\wip\phd\phdtext2. doc
4

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The thesis should be read with the postulate, hypothesis and three working objectives in mind.

1.3 Structure of Thesis

The thesis is presented in four parts:

0 Introduction, Background and Motivation

" Review of Methods, Method Used, and Identification of Problem Boundary

" Results: The Theories, Their Evolution, ana Their Use

" Review of Method and Conclusion

13.1 Introduction, Background and Motivation

This part provides the organisational background to the project in a number of ways. The structural
changes to the NHS which have resulted in the introduction of the Clinical Directorate into St Thomas'
Hospital are explained and discussed. A brief review of the chequered history of clinical computing is
then presented. Finally, some of the problems associated with requirements elicitation for information

systems in general and clinical information systems in particular are described and discussed. The
importance of interpretation of the information system into the domain by its users is considered. The use
of the scientific method to guide elicitation of a theory of the domain is described.

.
1.3.2 Review of Methods and Method Used

This part of the thesis discusses a number of existing methods, introduces the hypothesis to be tested and
the working objectives of the project, and describes the method used. Several domain analysis and systems
analysis methods are briefly described and discussed, with particular attention paid to their shortcomings
in the light of the decision to develop information systems by comparing possible designs with a
scientifically derived theory of the domain. The hypothesis presented above and the working objectives
are reiterated and expanded. The method that was used to create the required theories and to engineer the
specifications is presented and justified by referring to the scientific method and the underlying
assumption of the project - namely that successful information systems must be capable of being
interpreted into the world by their users. This explanation is fairly brief - the method evolved over the
course of the project, and a full discussion of the rationale, implications and limitations of the method is
kept until after the results it produced are described. A brief review of a number of different models and
theories of health care is presented. It is explained here that none of these was used in its entirety, but
several influenced the initial design and suggested ideas for the subsequent development of the theory.
Finally, the 'boundaries' of the problem are considered in the light of theories constructed by others to
describe similar domains.

13.3 Results: The Theories, Their Evolution, and Their Use

This part describes the theories which are the practical result of the project. There are three classes of
theory: the domain theory, the information ' system theory or specification, and the theory of the
information system's interpretation into the domain, called the interaction theory. The first of these
theories, the domain theory is probably the most important and the most difficult to get 'right'.
Consequently the greater part of this chapter is devoted to the description of the theory, not only in its
final form, but also how it evolved through the processes of 'emboldening' and refutation. Comments on

d: \jes\dis\wip\phd\phdtext2. doe

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

the method are made within the text as they arise. The nature of information system theories and of the

interaction theories that link them to the domain theory are explained through the use of the example of

the directorate's Clinical Record System (its specification and interaction theory). The process of using the

three theories to engineer a (better) system specification, broken down into four 'developmental motives',
is explained using the first component of the integrated Directorate Information System (being the

integration of the Clinical Record System and the Outpatient Appointment System) as an example.

1.3.4 Review of Method and Conclusion

This section discusses the method in the light of the experiences gained from its use, and concludes the
thesis. A more detailed consideration and justification of the method used to construct the theories and
engineer the system specifications is contained here. The way this is presented is to discuss four aspects of
the method - the underlying assumption, the construction of the domain theory, the use of the interaction

theory, and (more briefly) the development of the information system from the specification. Each of these

aspects is explored in three parts. Firstly the rationale and benefits of the method are explained. Secondly
disadvantages are discussed in general philosophical terms and illustrated with cases taken from the

project. Thirdly a synthesis of these two is presented suggesting the way in which we should approach this

part of the method.

The conclusion reiterates the objectives and discusses the degree to which they have been met, and hence

the extent to which the hypothesis has been tested. The salient features and findings of the thesis are

summarised, some of the practical uses to which the work has been put described, and directions for

further work expanding the findings presented in the thesis suggested.

d: \jes\dis\wip\phd\phdtext2. doc
6

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Chapter 2: Historical Background to the NHS and St Thomas' Hospital

2.1 Introduction

There can be few people with any contact with our National Health Service who have not heard of the
celebrated White Paper on health service reform, subtitled 'Working for Patients', and its associated Act of
Parliament. This has been a topic of much debate and contemplation by those in authority in our hospitals

and other health care institutions, and is widely recognised as the cause of a major shake up in the way
that health care is provided in the UK. What is not often recognised is that the White Paper is just the
latest in a long history of imposed and evolved changes in the nature of control and who exerts that
control over and within the health service.

Since the NHS was originally set up in the late 1940's, its control has shifted between the patients, the

electorate, the government and the doctors. Hospitals have acted as microcosms of these power shifts,
with external bodies (Regional Health Authorities, Government in the form of planning committees, and
District Health Authorities post White Paper), financial administrators (the hospital management and
District Health Authority management pre white paper) and clinicians (mostly doctors, though recently
other professions have become more influential) all having different and not necessarily complementary
controlling roles which have changed continuously and extensively over the years.

As a result of its size (the largest employer in Europe'), diversity of stakeholder's interests, and the

continuous and incremental nature of its change, the NHS is an extremely complex organisation that

could take a lifetime to understand fully. Although it is not necessary to be informed as to the minutiae of
the NHS and its recent structural reforms, it is important to get an understanding of the environment
within which the information system to be designed will work. The complexity, confusion, dynamism and
instability of the NHS in the early 1990s was an ever present backdrop to the project, and influenced our

analytic stance. For this reason, a brief description of the structure of the service, and an overview of the

changes and reforms to which it has been subjected are presented here.

2.2 1948 and The Beveridge Report, The Genesis of Britain's National Health Service

It is not necessary here to present a detailed description of the functioning of the service: rather this

section attempts to furnish the reader with an idea of its original goals and purposes, and the managerial
control mechanisms deployed to enable such goals to be attained.

One of the contentions of the founders of the modern NHS (see, for example [Webster88]) was that there
was an essentially finite amount of ill health in the country, and that after an initial investment to clear
the backlog of disease, the costs of the service would fall to a level that would enable any residual level of
ill-health to be dealt with. It was imagined that the essence of the problem lay not in the manner in which
health care was organised, but in the way in which it was dispensed to the population. If health care could
be made available to all regardless of their wealth or social status, the existing hospitals and
organisational structures of the health industry would be able to provide the vast improvement in the
health of the nation that was envisaged. The structure of the NHS was therefore an administrative
framework, dealing with reimbursement for staff, within which the medical profession could act largely

as they had always done to administer care to the needy.

l Although following the reforms the NHS employs many of its staff indirectly through hospital trusts.
d: \jes\dis\wip\phd\phdtext2. doc

7

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The management structure in the service was very 'loose' and fairly changeable. By the late 1970s a
hierarchical management structure had been created where the Department of Health and Social Security

was reported to by a number of geographically defined Regional Health Authorities (RHAs). Each RHA
comprised several (again geographically based) District Health Authorities (DHAs), and each DHA had
direct control of all acute and community hospitals that lay within its boundaries. DHAs were governed
by a board of permanent officers which consisted of a chief administrator, a senior nurse, a community
physician and representatives of hospital doctors. Decisions at board level entailed consensus (which
effectively meant unanimous) agreement amongst members of the board. The large size of DHA boards
and the requirement for unanimous decision making meant that hospital management was ineffectual,
and funding decisions usually resulted only in small adjustments to previous budgets [Harrison92].

If the initial assumption about the nature of ill health in the country had been correct, then the original
organisational structures of the service may have sufficed to deliver the benefits promised. It would seem
however that the demand for health care, if not infinite, certainly outstrips any reasonable level of supply,
and will always do so. Eradication of common illnesses simply means that people will be well enough to
suffer from previously less common illnesses. We can see that this is the case with the most common fatal
diseases changing from what had historically been the biggest killers - tuberculosis, smallpox, polio - to
new conditions that are more expensive to treat - heart disease, and cancer [NAHAT91 J. Not only will
people always die of something, and want to be cured of that, but the healthier they are, the healthier they
expect to be. We have largely succeeded in eradicating polio in this country: the population is not satisfied
with this advance and now expects to be treated for cancer and heart disease. This increase in
expectations for health status is reinforced by the availability of many new and costly forms of treatment:
hearts can now be transplanted, cancers (in many cases) cured, brain tumours excised and so on. Not only
does the public expect better health care, but that care is potentially deliverable - at a price.

As a result of this progress the costs of health care in the developed world have risen enormously over the
past few decades. In fact, the percentage of the UK's Gross Domestic Product spent on health care has

risen from 3.9% in 1960 to 5.9% in 1984 [Schieber87]. The problem is as great if not worse in other
developed countries: the mean health spending as a percentage of GDP of all OECD (the Organisation for
Economic Co-operation and Development) countries has risen from 4.2% to 7.5% over the same period
(the United States spends 15% of its GDP on health care available to only 63% of the population). The
many reforms of the NHS since its inception have almost all been focused on the need to cut the huge

costs of health care through the improvement of its management.

2.3 Loss of Innocence: The Griffiths Reports

1979 saw the election of the most radical national government for many years. Margaret Thatcher and her

ministers had a profound agenda for change that was felt in all areas of national life. The NHS was no
exception to this, and the Conservative administration ushered in a succession of sweeping structural
changes to its control and management between 1982 and 1989. The first major review and subsequent
re-organisation was instigated in 1983 by the then Secretary of State for Health and Social Security:

Norman Fowler. The review was

'to examine the way in which resources are used and controlled inside the health service, so as to secure
the best value for money and the best possible services for the patient [and] to identify what further

management issues need pursuing for these important purposes' [NHS83].

The review was headed by Mr Roy Griffiths, the managing director of the supermarket chain J Sainsbury

who published his team's findings as a letter to the Secretary of State in 1983 [IHSA83].

d: \jes\dis\wip\phd\phdtext2. doc

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Griffiths' assessment of the problems facing the health service centred on the weakness of management
control and its lack of vision. In the report the inquiry team claimed:

'... it appears that consensus management can lead to 'lowest common denominator decisions' and to long

delays in the management process ...
In short, if Florence Nightingale were carrying her lamp through the

corridors of the NHS today, she would almost certainly be searching for the people in charge' [ibid pp 17

& 221

and

'... there is no driving force seeking and accepting direct and personal responsibility for developing

management plans, securing their implementation and monitoring actual achievement' [ibid pp 12]

The proposed solution to this lack of effective management was to set up a new and more direct

management structure which became known as 'general management'. Instead of each layer of the NITS

hierarchy (Department of Health and Social Security, Regional Health Authorities, District Health

Authorities, and hospitals and other units) being managed by a committee which acted through

consensus, there would be a general manager at each level who would be responsible for achieving that

level's objectives. In order to overcome the inevitable medical resistance to this de facto shift in power

and authority to non-clinical administrators, doctors were to be encouraged to take a more active role in

the management of their hospitals. The way in which this was to be achieved was through the

introduction of 'management budgets' for consultants which would act as a guide (rather than a strict

control) within which they could plan and against which they could monitor their workload.

The recommendations of the review were implemented by the Secretary of State in June 1984. Although

the final management structure was not exactly as had been suggested by Mr Griffiths, general managers

were appointed at Regional, District and Hospital level, and management budgets were introduced with a

limited degree of success in a number of hospitals.

Much has been written about the impact of the so called Griffiths report on the health service whose detail

need not concern us here. We should note that the effects of the report are considered to have been

profound, but partial [Politt91] in so far as they have re-defined the structure of the NHS's organisation.

2.4 Rapprochement and Reconciliation: The Resource Management Initiative and the
Clinical Directorate

The introduction of management budgeting was envisaged as bringing doctors and managers closer
together, and to enable medical considerations to be fully represented in resource management decisions.

Three years after its inception, a joint statement issued by the Joint Consultants' Committee and the NHS

Management Board [NHS86 J roundly condemned the slow progress made by that part of the

recommendations of the Griffiths Report. They decided that

'... many doctors ... have still to be convinced that management budgeting is more than an accounting

exercise which simply increases overheads for no commensurate benefit. ' (ibid)

The problem was the continued perceived lack of relevance of information available to individual service

providers - the information was too crude for a clinician to use to benefit his or her practice. The remedy

to the problem was a new project that became known as the Resource Management Initiative. This was

initially an experimental project based at six English hospitals and then introduced more broadly to

hospitals throughout the country (the initial hospitals were the Royal Hampshire County Hospital,

d: \jes\dis\wip\phd\phdtext2. doc
9

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Freeman Hospital, Guy's Hospital, The Royal Infirmary Huddersfield, Arrowe Park Hospital and Pilgrim
Hospital).

The main objective of the initiative was to see

'... how doctors and nurses can be involved such that they are committed to the management process,

responsible for their use of resources and able to take better decisions regarding service quality and

service care'. (ibid)

The initiative was evolutionary in nature, and as Buxton et al assert

'... it has developed more in reaction to previous problems with national and local initiatives than in
fulfilment of a clearly specified model' [Buxton89].

However, by the end of the third year of the experiment, certain patterns had emerged. One of these was
in new structures of hospital management, notably the Clinical Directorate Model.

Although the Griffiths report changed the overall organisational structure of the NHS, the way in which
doctors and managers liaised remained fairly unchanged (for a discussion of this see [Harrison92]). Due

to the failure of Management Budgeting, the proximity of control of operating budgets remained in the
hands of the hospital managers. Doctors reported to the hospital board on medical matters via the Medical
Executive Committee -a representative body of consultants. Nurses were similarly represented, as were
other paramedics. This traditional structure is illustrated below:

Hospital
Management
Board

Chairman

Medical Executive
Committee

0000 0
Central Unit Unit General
Managers Manager

0000

Senior Nursing and
Paramedic Managers

Figure 1-1: Traditional Model of Service Providers' Participation in Hospital Management (from
[Buxton89])

The clinical directorate structure of hospital management represented a clear break from this conventional
model. In the new system, each doctor, consultant, nurse and paramedic belongs to a specific Clinical
Directorate. A Clinical Directorate's boundary would be defined such that the tasks carried out within it

were coherent in a medical sense. Thus a hospital might have an Paediatric Directorate, a Renal
Directorate, a Surgical Directorate and others. Each directorate was to be managed and led by a Clinical

Director (normally a consultant, though occasionally a nurse) who might be assisted in the day to day

aspects of management by a business manager attached to the directorate. The directorate would in turn
be represented at hospital board level by the director. The Clinical Director acts as prime budget holder

d: \jes\dis\wip\phd\phdtext2. doc
10

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

for the directorate, and often has the ability to increase the directorate's income or change the proportion

of resources allocated to different sub-divisions at least semi-independently of the hospital as a corporate

unit.

A schematic from the same source as the previous one is given below which illustrates this concept.

Hospital 00000
Management Central Hospital Hospital Gener,
Board Managers Manager

Director A Director B Director C

Directorate A Directorate B Directorate C

ý: Consultants

Nurses &
Paramedics

Figure 1-2: Clinical Directorate Model of Service Providers' Participation in Management (From

[Buxton89])

The progress of the Resource Management Initiative was to be reviewed and criticised by a team of

researchers from Brunel University. This team published their findings in 1991 [Pack91], by which time

the government had already decided that the experiment had been successful, and had encouraged take-up

of the main ideas by other hospitals. The team concluded that the new Clinical Directorate structure

constituted a fundamental change to the process of hospital management, in particular representing

'Two transformations: from an organisation based on a division of labour to one based on a division of
knowledge; and from top-down to distributed control' [ibid pp 1641

One might liken the hospital to a large holding company in which case the clinical directorates would be

operating companies within it. The clinical director could be compared to the chairman of the board of a
holding company and the business manager to the managing director.

Few hospitals have implemented the Clinical Directorate system exactly as described above [Disken90].
For example the nursing staff might be represented on the hospital board en masse as well as through the
directorate structure, or the Clinical Directorates might not be directly represented at board level, but

would be grouped together into aggregate units. This is the case at St Thomas' Hospital which can be

regarded as having a fairly typical Clinical Directorate structure for a large teaching hospital: it has

thirty-five Clinical Directorates which are aggregated into six Group Directorates, each of which is

represented on the hospital's management board.

Although the Clinical Directorate structure of hospital management has been widely copied, it has not

always brought the benefits expected of it. In many cases the autonomy of directorates has been fairly

limited, and although the technical lines of responsibility and authority have changed, the way day to day

d: \jes\dis\wip\phd\phdtext2. doc
11

Jeremy DH Holland
The Requirements Analysis & Design fora Clinical Information System: A Formal Approach Volume I: Thesis

control is exercised has remained basically unchanged from how it was before the Resource Management

Initiative was 'rolled out' across the country. This is partly because the information systems to support this
distributed fashion of management do not for the most part yet exist, meaning that management
information for clinical directors is still 'controlled' centrally (by the hospital management, usually the
finance department), rather than 'locally' (by the clinical directorate). Clearly this point is central to the

thrust of the PhD and will be discussed at length later in the thesis. Not only has the information not

always been available in the appropriate form to support the new structures, but in many hospitals there is

such a pervasive and continuous lack of funds that there is effectively no 'room to manoeuvre' on the part

of the directorate, and all that the clinical director can do is make the extremely minor changes in

organisation and process that are affordable.

A last point is that one of the aims of the RMI was to bring the clinicians and managers in the country's
hospitals closer together, through involving clinicians more effectively with the management process, and

giving them managerial responsibilities. This has been partially successful through the use of clinical
directors as clinician advocates and having them sit on the hospital board, however there is the danger

that those clinicians that elect to do so are considered 'management stooges' by hostile fellow

professionals. Critics of the system also point outthat while it might seem that clinicians, through their

clinical directors, now have a significantly more powerful voice at hospital board level, this is not always

so; before, they spoke as one voice through the chairman of their medical executive committee: now, they
have a number of different representatives that may very well not be in agreement with each other,
especially when it is a case of different services competing for a share of the hospital's budgets - in short a
policy of 'divide and rule' is enabled which actually amounts to a diminution of the power of clinicians

when compared with central hospital management.

2.5 Recent Changes: The White Paper and the Tomlinson Report

Three years after the Resource management initiative was launched, and before a considered assessment
of its affects was ascertained, the government decided to launch the most radical and far reaching reform
of the NHS to date. The changes were heralded in the 1989 White Paper: Working for Patients [NHS89],

which was enacted as law in 1990 [NHS90].

The central thrust of the new reforms was to create an 'internal market' for health care within the NHS.
The mechanism for achieving this has been the division of the service into 'provider' and 'purchaser' units.
Providers are generally hospitals and other locations where direct care is proffered, whereas the

purchasers acted as the customers of the services provided, and could choose from available providers
which it would patronise with its custom. In this way it was hoped, a degree of competition would be
introduced into secondary care: a health-care market would emerge where money was spent and resources
committed according to the needs of the consumers (as represented by the purchasers) rather than the

whims of the providers or simply historical precedence.

To underline the separation of function between the purchaser and provider units, the government

enabled and encouraged hospitals to remove themselves from DHA control and set themselves up as semi-
independent 'trusts'. Although still part of the NHS, these trusts would be able to sell their services to the

highest bidder (subject to certain constraints issued by the Department of Health), and could re-invest any

profit they made into hospital services. The trusts could borrow money on a commercial footing, and

could negotiate local pay and conditions for their staff. At the time of writing most of the UK's NHS

hospitals are trusts, and the Secretary of State has indicated her desire to have all hospitals achieve this

status in the near future.

d: \jes\dis\wip\phd\phdtext2. doc
12

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

There are two models of the health market that exist side by side in the current NHS. The first, which is

currently the most common, is for the DHA to act as an advocate for its local population, assessing health

needs of that population and buying services from possible providers so as to satisfy those needs in the

most efficient manner possible. In this model the role of purchaser is split between the health authority

and the GPs who tend to their patients. Whereas the health authority is responsible for negotiating and

securing contracts for services from provider units, GPs are the people who use those services. The GP is

not an employee of the DHA, and in fact is not technically an employee of the NHS at all but is in fact

self-employed (this anomaly is described clearly and succinctly in Abel-Smith [Abe192]). The GP can

technically refer a patient to any hospital he or she feels would provide the best care for the patient, but

the hospital is likely to only accept those patients who are funded, either through contracts with their

DHAs or through an unwieldy mechanism known as Extra-Contractual Referring. GPs themselves are

funded through their local Family Health Service Authorities (FHSAs) which are generally different in

size and boundary from any DHAs.

The second model is simpler and has the GP as purchaser, acting on behalf of his or her patients to secure

the necessary services through 'shopping around' provider units. This model only applies to a category of

GP practices known as GP Fundholders (GPFHs). In order to be eligible as a GPFH, the practice must

have more than 9000 people registered with it: the number of people so registered is known as the 'list

size' of the practice. GPFHs are allocated their own budgets according to a formula, based on their list

size, known as 'weighted capitation'. A GP who works in a fundholding practice can refer a patient to

whichever hospital he or she chooses, but must pay for the service delivered out of the practice's budget.

The changes outlined above are sweeping and profound, and have caused turmoil within the service.

Some of the problems have been caused by the internal inconsistencies of the white paper on its own and

when combined with previous un-retracted initiatives, and others through the brutality of any market

system when allowed to operate without any centralised planning and control. An example of the internal

inconsistencies within the new NHS can be observed in the existence of two different models of the health

market that exist side by side. This has been noted elsewhere, and Abel-Smith considers that

'It is curious that the government decided to go for both approaches all over the country at the same time:

districts as buyers of services and fundholding practices as buyers of services. Presumably this was a

compromise between competing views on the best way ahead'.

Critics of the reforms have claimed that the existence of these two parallel systems has led to a 'two-tier'

health service where patients of fundholding GPs get preferential treatment over patients of GPs that are

not fundholders (Although this is generally denied by ministers there are persistent accusations that

'queue jumping' occurs in most hospitals, and is practised by many of consultants [Water93]).

The potential brutality of the health market is a worry to the Government. The place where this might be

most keenly felt is London where it is considered that there are too many hospitals very close to each

other, all providing similar services to a population that has been dwindling steadily over the past

hundred years. It was felt that if left to the market to cull this surfeit of hospitals, years of transitional

chaos might result where individual departments were gradually picked off, leaving all hospitals

diminished and capable of providing only a low quality of service. To forestall this the Secretary of State

announced a review into the provision of healthcare in London, headed by Sir Bernard Tomlinson. He

delivered his report entitled 'Making London Better' on the 23rd of October, 1992 [Tomlin92] amidst

intense media speculation. The report stated that the disintegration of the provision of health care in

London could only be prevented through planned closures and mergers of many of the most famous

d: \jes\dis\wip\phd\phdtext2. doc

13

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

hospitals in Britain. The hospitals themselves have fought back with high profile media campaigns and

criticisms of the data the review team used to come to its conclusions. At the time of writing it is still not
totally clear how secondary health care in London will change over the next decade: for example,

although Guy's and St Thomas' hospitals have been combined to form a single trust (the Guy's and St

Thomas' Hospital Trust), it has still not been decided whether one of the sites should close entirely, and if

so which it should be. The result of this procrastination is that the market has started to wreak the havoc

predicted, with University College Hospital and Middlesex Hospital being unable to carry out non-

emergency work for their major purchaser, Islington and Hackney DHAs. This in turn has lead to strikes

and accusations that the Government is turning the NHS into an emergency only service.

2.6 Conclusion: Complexity and Confusion

This chapter has been a brief introduction to the organisation of and the recent changes in the UK's
National Health Service, as seen from the vantage point of a major London Teaching Hospital. Much has
been skated over such as the nature of community services which have been gaining prominence in recent
years (One of the major trends on health systems in all developed countries has been a steady shift in
importance from acute illnesses that have been served by hospitals to chronic illnesses better served in the
community [Jones91]). The PhD not only used St Thomas' Hospital as the subject of its research, but was
based there with the author having an office in a clinical area of the hospital (as opposed to a managerial
or administrative area). As a result the daily issues that were considered important to the staff of the
department where the project was based were also considered important to the author, and have
influenced the analysis which has been the topic of the work. For this reason a basic grasp of the
organisational and political environment within which the hospital exists is important if the reader is to
understand some of the decisions that were taken as part of the analytical process.

The most important impression that the reader should be left with is one of extreme organisational
turmoil that has recently engulfed the health service and the confusion and organisational complexity that
has resulted. We should note that none of the changes and reforms described above has resulted in a
wholesale redefinition of the existing structures and definitions. Each change has been incremental and
has added to the previous system. The current NHS has aspects of function and structure that can be

traced back to any of the organisational changes we have looked at. That the different reforms represent
extremely different (and non-complementary) political and managerial philosophies has merely added to

what has always been a culturally and politically complex environment. When we consider additionally
the recent turbulence over the Tomlinson report and the destruction being wreaked on the historically

stable London Teaching hospitals by the mechanics of the 'internal market' we should not be surprised to
discover that the prevailing culture of the NHS in London is one of bewilderment and confusion tinged

with frustration and despair.

In short, we leave this chapter cognisant of the facts that the NITS has been subjected to a series of

extreme and rapid changes, and that the combination of these has left the employees of the service

confused and unclear as to the effects that these changes will have on their work.

In the next chapter we will see how the changes described above affected St Thomas' Hospital, and how

they resulted in the expressed need for a new type of computer system -a Directorate Information System.

d: \jes\dis\wip\phd\phdtext2. doc
14

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Chapter 3: St Thomas' Hospital and the Directorate Information System Project

3.1 Introduction

In this chapter, we will investigate the background and rationale of the project that is the subject of this
thesis. St Thomas' Hospital is described, and its decision to introduce the specific clinical directorate

structure as a response to the challenges it faced at the end of the last decade is explained. Computing in
the NHS has historically concentrated on management and strategic systems rather than operational ones.
This anomaly is explained and criticised in two of its guises - at the level of national policy in the form of
the case-mix management specification and locally in the form of the hospital's information technology
strategy. One way of addressing this anomaly was considered by St Thomas' - the integration of central
and local systems at the level of the directorate to create 'Directorate Information Systems'. The concept of
the Directorate Information System, and the nature of a project that would investigate the idea in some
depth is explained here. Finally, some functions of such a system are presented in order to give substance
to the concept so as to help the reader in the following chapters.

3.2 St Thomas' Hospital and the Introduction of the Clinical Directorates

3.2.1 St Thomas' Hospital: An Ancient Institution

St Thomas' is one of the oldest, largest and most famous hospitals in the country. Founded by Augustinian

monks in 1106, it moved to its present site in 1871. The hospital has over 600 beds, and treats 45,000

people as inpatients every year. Each year, 254,000 appointments are made for the outpatient clinics and
70,000 patients are seen at the Accident and Emergency department. In addition to the large amount of
routine medical activity that takes place in the hospital, as a teaching institution (the associated medical
school is incorporated into the University of London) much effort is expended on educating student
doctors and nurses, and on research into a multitude of medical conditions.

The hospital has tended not to exploit the organisational changes in the health service as immediately as

others: for example, St Thomas' was one of the last hospitals in London to be granted trust status. It has

always been willing to learn from the experiences of others however - the introduction of clinical

directorates is no exception.

In the late eighties, the hospital suffered from poor financial management, and an associated string of

scandals. It was badly in debt at a time when the government was increasingly insisting on 'balanced

books' in the public sector. Poor financial performance associated with rumblings about imminent shake-

ups in London's healthcare led to low staff morale and antagonism between clinicians and administrators.
Guy's Hospital, two miles east of St Thomas', had suffered from similar problems for many years. In 1985

it introduced the clinical directorate management structure, and subsequently became one of the first

hospitals to take part in the Resource Management Initiative. Since this time, it was generally considered

that the management of the hospital had improved markedly - it was no longer so indebted, and the

morale of the staff was dramatically increased. The management at St Thomas' decided a system similar

to that at Guy's hospital could be usefully set up there. Consequently St Thomas' applied to join the

resource management initiative in 1988 and implemented its own Clinical Directorate management

structure in 1989.

3.2.2 The Directorate Structure at St Thomas'

The structure that was chosen for St Thomas' was slightly different from that at Guy's. It was considered
that the prevailing culture at the former hospital would accommodate many small tightly defined
d: \jes\di s\wi p\phd\phdte xt2. doc

15

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

directorates rather than a few large ones that covered a number of specialties. Whereas Guy's introduced 6

directorates, St Thomas' set up over 30. The size of a clinical directorate was thus similar to that of a
department of the medical school. It was clearly infeasible to have 30 clinical directors sitting on the
hospital board, so the directorates were grouped into a smaller number of larger administrative units: the

group clinical directorates. There are six group clinical directorates at St Thomas - the Diabetes and
Endocrine directorate is in the general medical group: group two. Each group directorate is headed by a

group director, who sits on the hospital's management board, representing the interests of the directorates

he or she leads.

This structure seems to have been generally accepted at St Thomas', and is regarded as one of the factors

that has changed the hospital from being the lame duck of London hospital healthcare to one of its most

successful components: the hospital is one of the few that actually faired relatively well out of the recent

review carried out by Professor Bernard Tomlinson (St Thomas' is to merge with Guy's, but most of the

clinical services will be provided on the St Thomas' site). In fact, the entire Resource Management

Initiative is generally considered to have resulted in better, more responsive hospitals, and improved

patient care by a wide variety of clinicians. This is in marked contrast to the hostility with which the

changes associated with the 'Working for Patients' white paper are viewed.

3.3 Local and Operational Information Systems: The Weak Link in NHS Information
Technology

3.3.1 The Case-mix Management System and its Feeders

The introduction of the clinical directorate organisational system was only one part of the Resource
Management Initiative. Equally important to the managerial structure were to be the information systems
that supported that structure. The clinical directors needed to know how their directorate was performing
in relation to the various activity, financial and quality targets that were agreed at board level. The
information needed would be of an unprecedented sophistication, and a new type of computer system was
specified: the case-mix management system [Bullas89]. This would enable clinical directors (and others)
to investigate how the directorate was performing in all the specialties and sub-specialties it was involved

with. Individual cases could be presented, or aggregated into clinically meaningful categories, called
Diagnosis Related Groups (DRGs). What proportion of the case load was caused by which DRG, in other
words the case-mix, would be one statistic pertinent to the management of the directorate that could be

generated by the system. There were many others besides such as waiting times, length of stay statistics,
activity rates of different clinicians and so on.

It was not intended that the case-mix management system would be an operational system that data would
be directly entered into - it was really a sophisticated database reporter that could manipulate existing
data so it would be useful to those running the hospital. The operational systems that provided this data

were called the 'feeder' systems. The purpose of these systems and their specifications were not provided
other than a description of the data they needed to supply to the case-mix management system. Herein lies

the major problem with the Resource Management Initiative (RMI) - the feeder systems generally do not
exist, and where they do, the information is often in a form which is incompatible with the case-mix
database. As a consequence of this, most hospitals employ data-entry clerks to enter data from the

patient's notes directly into the case-mix system - this is expensive and extremely inaccurate. Doctor's

notes are notoriously illegible, and the clerks tend to be poorly trained and motivated.

It was clear that more needed to be done at the feeder system level. This is the germ from which the

notion of the Directorate Information System sprang.

d: \jes\dis\wip\phd\phdtext2. doc
16

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

3.3.2 IT Strategy Document - Practice management systems

St Thomas' Hospital has been heavily involved in the leading edge of IT in support of Health Care, and
for many years was the most technologically advanced hospital in the country in this area. More recently,
IT stagnated somewhat in the hospital, with little investment and an erosion of energy and morale in the

computer department. The hospital decided it wanted to regain its pre-eminent position in medical

computing and commissioned a study by the management consultancy KPMG to this end. The study took

several months to complete, and was delivered in December 1989. The initial report [KPMG89] was not

enthusiastically welcomed by either clinicians or the computing department. It was re-worked by the St

Thomas' computing department, and this new document has formed the basis of the hospital's IT strategy,

a developmental framework funded for 6 years by the St Thomas' special trustees.

At the time of writing of the IT strategy document, a great deal of time and effort had already been spent

addressing the information needs of acute hospitals. Most of this was not directed at discrete task related

systems, but rather at single monolithic systems serving entire hospitals. Many millions of pounds have

been spent on the development and implementation of these Hospital Information Support Systems, or
HISSs. Many workers feel that the achievements of the HISS projects are not commensurate with the time

and effort invested however, and that more capable systems are needed if the goals of the RMI, and of
hospitals in general are to be met. Indeed, all of the three pilot HISS sites had the systems delivered late

and millions of pounds over budget. Indeed one, at the Nottingham City Hospital, has still to be

completed, more than four years after the HISS initiative started.

There are two conceptual reasons why the efforts expended on the HISS projects may be misguided.
Firstly there is a conflict between the distribution of control and management represented by the Clinical

Directorate structure, and the centralisation of information definition and provision represented by the
HIS systems. A hospital which uses a monolithic HISS and has the Clinical Directorate structure will
have to make an unhappy compromise between the conflicting philosophies of corporate

compartmentalisation with semi-autonomous business units on the one hand, and of central co-ordination

and control on the other. The second reason, allied to the first, is that a hospital is too complex an

organisation to be analysed, investigated and supported 'in one go'. The amount of work required to devise

a system that supports the business of a hospital with several thousand employees and such an enormous

multiplicity of goals and functions is vast. None of the HISS sites that has opted for the centralised

approach has a system which could be said to support more than a subset of the hospital's business

requirements, and the majority have spent many millions to achieve this (see for example [NScApr92 1).

The hospital decided that the monolithic 'big-bang' approach to hospital information systems was

misguided, and opted to go for a number of smaller individually less ambitious systems that satisfied

clearly defined needs which could be integrated together to form a larger more complex system which

would approximate the desired function of the HISSs.

In addition to this architectural decision, there were several guiding principles to the development of the

strategy, some of which are spelt out below:

Data should be collected at its source

In the past data to support the management and planning functions of the hospital was gleaned from

discharge summaries, patient records and GP letters, and entered into the hospital's computer system by

'coding clerks'. It was considered that this was inefficient - partly because of the necessity of employing
large numbers of clerks to carry out the uncreative data transfer activity, and partly because the data

d: \jes\dis\wip\phd\phdtext2. doc
17

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

transferred tended to be very inaccurate. It was considered that if data could be entered by the person

seeing the patient, at the time of the encounter (as opposed to retrospectively in batches), then the quality

of the data would be improved, and the coding clerks could be re-deployed.

0 Data should be collected once only

Hospitals are notorious for demanding the same information of the patient many times. Part of this is

necessary - it is best for each doctor who sees the patient to hear about his or her condition 'from the
horse's mouth'. Other information should only be collected once: the patient's demographic details, details

of their family and GP, and much medical information do not change, or do not need to be explained to

each health care professional who comes in contact with the patient by the patient themselves. However,

often these details are collected many times - once for each information system, be that a paper based or

automated one. This is not only wasteful in terms of time taken to collect and record the information
being sought, but can also lead to discrepancies between the different systems resulting in ambiguity and
consequent degradation of data quality and reliability. By integrating together the information systems (a

process which, while difficult for paper based systems is at least technically straigh, forward for automated
information systems), this duplication of data entry can be prevented.

" 'Management' information should be a by-product of operational care.

One source of hostility between clinicians and administrators has been the necessity for the former to

collect data that appeared unimportant in order to satisfy the seemingly arbitrary demands of the latter.

This again led to time being diverted from patient care to form-filling. The idea behind this guideline was
that clinicians and other 'operational' staff should only collect data that they thought relevant. Through

appropriate system integration and data reporting, the information that managers needed to manage

would be provided automatically. The idea that management information can be a by-product of the

operational aspects of the hospital's business is essentially an article of faith - it is not obvious that it is

valid, and has yet to be tested in practice.

These guidelines contain implications about the makeup of the hospital's information systems. One of

these implications is that systems must be in place in order for the operational staff to record useful

aspects of their work, to aid them in their jobs, and to provide the information needed by managers. The

original IT strategy document described a number of these - appointment systems, bed management

systems, pathology systems and nursing systems. It also recognised that much work is carried out by

individual clinical practices that would not be covered by any of the above systems. These clinical

practices (or departments) would be provided with so-called practice management systems to help them

run their activities. These too would act as feeders to the rest of the hospital's information infrastructure.

However, as with the Case-Mix feeder systems, the practice management systems were not specified, nor

was their purpose described. Thus again, much of the logic of the information system plan depended on a

class of systems that neither existed nor was specified anywhere.

3.3.3 Desire for Directorate Autonomy

There is a long established tradition of distinct groups of people working with a great deal of autonomy in

the hospital. This is not unique to St Thomas': the aim of most junior doctors is to become either a

General Practitioner, or, if they stay working in hospitals, a consultant. At a large hospital like St

Thomas, there will at any one time be around one hundred consultants on the staff. Although once a

consultant you can gain in experience, respect and reward, as far as the official medical hierarchy is

concerned, this rank is the highest achievable. Thus no consultant is medically responsible to any other,

d: \jes\dis\wip\phd\phdtext2. doc
18

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

and each enjoys almost total discretion when it comes to planning and delivering medical care. Not only

are consultants essentially independent of one another, but the entire medical profession has fought

successfully to keep responsibility for the major component of hospital care - the medical process - to

itself. Thus doctors are autonomous en masse with respect to the hospital management and (once they
become consultants) they are autonomous individually with respect to each other. This tradition of
independence is one of the reasons for the popularity of the clinical directorate structure, which also

encourages autonomy, albeit to a slightly larger group than consultants' firms.

Now, we have seen that both the Resource Management Initiative and the hospital's IT strategy hinge on

systems being run at an operational level - respectively feeder and practice management systems. The

functions that these operational systems might provide could be aggregated to form discrete systems in a

number of ways. An obvious way of grouping functions (and one that has been used in the past) would be

hospital-wide by task. Thus we might have a bed-management system, a nursing management and
information system, an appointment and resource allocation system and so on. However, implementation

of these centrally based systems would not reflect the enthusiasm for autonomy in the clinical directorates.

Clearly some way of consolidating the economies associated with central information systems and the

increasing independence of clinical directorates was needed. It was envisaged that this consolidation

would be achieved through the introduction of Clinical Directorate Information Systems.

So we see that the IT strategy adopted by St Thomas' insists not only on the distribution of computer
functions operationally, but also local identity for those systems. In other words, they must be integrated

at the level of the directorate.

3.4 The Concept of a Clinical Directorate Information System

3.4.1 The Original Idea

The idea of the Clinical Directorate Information System (which shall be referred to as simply the

Directorate Information System, abbreviated to DIS, below) was derived from that of the practice

management systems proposed in the original IT strategy document delivered by KPMG, but with the ill-

defined 'practice' redefined as the clinical directorate.

It was envisaged that the Directorate Information System would not be so much a discrete identifiable

system, as an integration of hospital-wide systems with local systems in such a way as to provide useful

functions to the directorate. It was hoped that through the integration of the different subsystems available

in the hospital, each class of user would be able to use the particular selection of such subsystems

appropriate to its tasks as a single computer system. The user would not (necessarily) be aware that the

particular functions she was using were implemented as a collection of separate subsystems from a

diversity of suppliers passing data between different databases according to standard protocols. This

perceived or'virtual' system would be different for different users exploiting different functions, but it was

expected that there would be different classes of users. One of the most important class of users, or user

'constituency', would be the operational clinical staff - doctors, nurses, paramedics, clinic clerks and so

on: the people that go to make up clinical directorates. The virtual systems used by different directorates

might well be different but would have common features: perhaps at some sufficiently abstract level they

might be considered to be of identical form. The proposed common virtual system for clinical directorates,

tying together 'real' hospital-wide and (similar) local systems is what was called the Directorate

Information System.

d: \jes\dis\wip\phd%phdtext2. doe
19

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

3.4.2 The Directorate Information System Project

To investigate the Directorate Information System further, two parallel approaches were taken. The first

was to react to the most pressing needs of directorates in an ad hoc manner, according to the

requirements of the directorates that seemed to be most urgent. As a result of this approach many
directorates can now access copies of centrally held word-processor, spreadsheet and electronic mail

programs. In addition, several hospital wide systems such as the patient registration system and patient
booking system (for inpatients) can be accessed from terminals based in the clinical directorates, although

these have not been integrated at the directorate level.

The second approach was to set up a small experimental project looking at the requirements for such a

virtual system in a more structured and formal way. At the end of the project it was hoped that we would
have an abstract design for a DIS which could be constructed out of existing systems and new ones as

required. Necessarily the analysis and design for this system would be highly abstract, avoiding as far as

possible technical issues relating to the particular implementation of subsystems chosen for any particular
function.

In having two approaches to the problem, the hospital risked little and could potentially gain much. If the
formal project failed to produce any requirements or ideas, then at least the directorates would be sure to
derive at least some tangible benefit from the ad hoc approach, and not much money would have been

wasted as the experimental project was small in scope. If the formal project provided valuable insights
into the problems associated with integrated information systems integrated at the directorate level, then
the benefits to the hospital could be enormous.

The formal project was based in the Diabetes and Endocrine Directorate: the initial work would
concentrate on this directorate, with the lessons learned being tested in other specialties in due course to

see which were specific and which were common to all the clinical directorates in the hospital.

The progress and findings of the experimental project constitutes the main subject matter of this thesis.

3.4.3 Information Systems in Directorates or Directorate Information Systems

We should note here that all directorates have a directorate information system of sorts already as they all
do perform the functions required of them. Information to support patient care is provided by the paper

case notes and the availability of test results. Patient administration is supported through the existence of

clinic lists, hospital waiting lists, a variety of call / recall systems and so on. Directorate management is

supported through the provision of simple financial reports from hospital management, a profusion of

medical audit systems, and informal quality monitoring by members of staff.

The difference between a Directorate Information System as envisaged in the IT strategy and information

systems that are used in directorates is that these latter are not 'coherent' or 'integrated'. The information

system components currently used in directorates do not support each other or reflect the fact that each

activity should be viewed not so much as a separate self-contained function, but rather as a part of a large

and complex process - the running of the Clinical Directorate. A Directorate Information System should

tie these functions together into a robust whole such that each activity will be able to support the others.

3.4.4 Some Functions of a Directorate Information System

In order to give a better understanding of the sort of thing a Directorate Information System might be,

some specific function areas that would be catered for by such a thing are listed below.

d: \jes\dis\wi p\phd\phdtext2. doc
20

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The administrative functions of the system would support those processes that ensure that the right people

are in the right places at the right times, and that they take part in the right activities. These include

referral handling, patient acceptance, clinic booking, patient admission, and patient discharge".

The clinical functions of the system would support the specifically clinical aspects of the directorate's

operational activities. This means the provision of information relevant to the clinical care of a particular

patient and includes the case note system, test results reporting, and any advisory / care guidance / care

control system.

The managerial functions of the system would provide information to enable the monitoring and change

of the various activities of the directorate so that they more appropriately provide its 'goals'. These include

support for medical audit (clinical management), resource management, non-clinical quality

management, and higher order management such as market analysis and management. In addition these

components of the system would deal with financial monitoring and reporting, a increasingly important

part of the directorate manager's responsibilities.

As pointed out previously, all these functions are already supported in one way or another. The

Directorate Information System will tie them all together in such a way that they support the 'business' of

the Clinical Directorate.

3.5 Conclusion

We saw in this chapter that one of the missing components in integrated clinical computing both

nationally and at St Thomas' is a type of information system that can work locally supporting the

operational divisions of the hospital. Where local systems do exist, they do not reflect the new

organisational structure of the hospital which encourages autonomy of the Clinical Directorates. One way

of addressing this problem is to integrate both hospital-wide and local systems at the level of the clinical
directorate. Although each directorate would have a slightly different 'virtual' computer system, there

would presumably be much in common between them. The abstract virtual system that could be shared by

all directorates was termed the Directorate Information System. Two projects were set up to address issues

in this area - an ad hoc reactive one and a small scale experimental, but formal one. It is this latter that is

the subject matter of this thesis. Finally some possible functions of a Directorate Information System were

presented to give some form to the discussions that are to follow.

In the next chapter, we will investigate the major areas that the experimental Directorate Information

System project could most usefully address. We do this by recognising that the cause of the extensive
failures in both clinical and business computing is generally considered to be poor systems analysis and in

particular requirements elicitation.

n All these activities are explained more fully later in this paper

d: \jes\dis\wip\phd\phdtext2. doc
21

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Chapter 4: Problems with Developing Clinical Computer Systems

4.1 Introduction

Clinical computer systems seem difficult to design, and there have been a number of high profile and

expensive disasters relating to their introduction in recent years. Although computing in the NHS appears

to be particularly accident-prone, the frequency of computer system failure in all areas of their application

should lead us to believe that the design of such artefacts is especially difficult. Studies have shown that

this is indeed the case, and the failure rate of computer system developments runs as high as 95%. The

most difficult information systems to design are those that will support co-operative work such as is the

essence of an organisation - in other words organisational information systems are even more difficult to

design and implement successfully than other forms of computer application.

The blame for these failures is accepted by many in the computer industry as due to inadequate systems

analysis. In particular requirements analysis has been described as the "hardest part of building a software

system" and that "No other part of the work so cripples the resulting system if done wrong. ".

Although always difficult and important, aspects of the particular problem being faced can ease the

analysis process by providing us with useful guides. In the case of the project reported here the nature of

the problem being addressed is such that the computer system designed is to be an 'information system'.
One of the assumptions underlying this work (albeit justified at some length below) is that in use, an
information system is interpreted into the world as it is perceived by its users. If this is the case, then in

order to be acceptable to its users, an information system must be capable of being thus interpreted: it

must be a good representation of the perceived world (also called the domain in this thesis). One of the

roles of an analyst is therefore to create a description of the domain to determine to what extent an
information system can be thought of as such a representation. Having done this, we can make alterations

to the design of the system so it is an improvement as far as representational adequacy goes. This is the

methodological framework within which the analysis conducted fits. The crux of the problem now is the

derivation of a good and insightful description of the domain. This seems particularly hard for clinical
information systems as clinicians and computer professionals tend to think very differently about the

world - the former anecdotally, the latter universally. The two groups play very different 'language

games'. With regard to this, the author turned to the well established scientific method to see if it could

shed any light on the problem at hand.

The method of empirical science, as described by Sir Karl Popper can be used to guide the construction of

theories of a defined subject of interest. It encourages us to attempt to refute our theories by searching for

counter-examples, and to construct ever bolder theories more susceptible to such refutation.

The scientific method has been shown to be enormously powerful and has significantly affected the shape

and evolution of society. Although the subject matter of our investigation - the clinical directorate - is

'softer' than the typical target of conventional science, we can nevertheless use the method to great effect.
The use of mathematics means that we can investigate the consistency of the theory - something which is

vital if we are to build a computer system based on our findings. The bolder the theory around which the

computer system is built, the greater the semantic content that system is likely to have, and the 'better' it

will be. Through the conduct of experiments, carried out as interviews with users, the theory will become

more robust and a better reflection of the reality that those users perceive. Finally, because the end

product of the method is a theory constructed of universal statements, and yet the constructive process

d: \jes\dis\wip\phd\phdtext2. doc
22

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

involves anecdotal refutations, the method is a particularly good bridge between the community of

clinicians and the community of computer scientists.

By the end of this chapter, we will have argued for a particular methodological framework within which
the analysis for a Directorate Information System will be placed, and against which a number of existing

systems analysis methods will be judged.

4.2 The Difficulty of Information System Design

4.2.1 Clinical Computing: A History of Failure

Computing in the medical sector has been characterised in the last few years by a number of high profile
disasters. Although expensive clinical computer systems that provide no great benefit to medical care
have been a part of the NHS for many years, the increasingly vast quantities of money being spent on such

systems (one survey puts this at £900 million each year [CompAug92]) allied with a willingness by

governmental and parliamentary bodies to discover and expose public sector profligacy has illuminated

the enormous extent of the problem. In the words of one MP, the NHS is currently plagued by an
'apparently endless string of computer purchase scandals' [CompNov92]. As well as the dubious merit of

the HISS programme that has been discussed above, there have been a number of extremely public
failures of computer system procurement in the last few years.

Perhaps the most shocking of these was the introduction and subsequent withdrawal after a matter of
weeks of the London Ambulance Service's computerised dispatch system [CompApr92], [SWTRHA92].

This system was to be used to log and prioritise emergency calls and control the subsequent response by

the service's ambulances. In the short time that the system was operating, many ambulances were
incorrectly or inefficiently allocated, and some calls were 'lost' altogether meaning that several
emergencies were responded to hours after the initial call. The ensuing chaos almost certainly resulted in

several deaths.

The abandoned Healthtrac system, although not responsible for any deaths, nevertheless resulted in large

amounts of public money being wasted. West Midlands Regional Health Authority commissioned the
development of this system to automate the ordering and purchasing of supplies. It was estimated that £40

million would be saved by the system each year. In fact by the time the system was complete, the process
it was to support had so completely changed as to render it utterly useless. This was not before £2.3

million had been spent on the project however [Collins92].

The most expensive scandal concerns the so-called Regional Information Systems Plan (RISP) at Wessex

Health Authority. RISP was a strategy which envisaged a coherent set of compatible systems being used at

all levels across the region. By insisting on strong central control, compatibility of local systems could be

ensured, and the running of the service at Wessex made significantly more efficient. The reality has

proved to be very different from this ambitious plan. The authority was investigated by the district auditor

who found that it spent over £43 million before abandoning the project, of which £20 million was

estimated as having been entirely wasted [CompJul92]. Irregularities in the awarding of the contract only

heightened the public's sense of outrage at the waste of taxpayer's money.

These recent failures are only the most visible manifestations of a problem that seems to be endemic in

the health service. In 1992 a television documentary (Dispatches) investigated computer related waste in

the NHS (this is described in [Collins92]). In the three months it took to prepare the film, the research

d: \jes\dis\wi p\phd\phdtext2. doc
23

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

team found so many examples of misspent money that it could not include them all in the 45 minute
programme.

St Thomas' Hospital is not immune to the condition of misguided computer purchase. For example, the
local regional health authority provided a system called the IRC - PAS (Inter-Regional Collaboration -
Patient Administration System) to the hospital in the mid-eighties. Although free to the hospital, it cost

the health authority millions of pounds. Most of the functionality that this system provided already existed
in hospital's other systems. Consequently the large ICL mainframe that the IRC-PAS was implemented on

was only used to reformat one file retrieved from the hospital's operational systems so it could be used by

the regional health authority's own computer programs.

Even at the departmental level we do not have to look too hard to find examples of money spent on

computer equipment that has turned out to have been wasted. When the hospital first introduced clinical
directorates in its own resource management project, a commercially available case-mix system (see

above for discussion of the purpose and function of this) was purchased to provide the directors with the
information that they needed. In the Diabetes and Endocrine Directorate this system was found to be

cumbersome to use and not well suited to the idiosyncrasies of diabetic care. The software was delivered

to the department on a high-powered (for that time) personal computer which proved very useful as a

replacement for the ageing machine used by one of the secretaries. Thus a system that cost tens of

thousands of pounds was used as a word-processor.

Some might say that the anecdotes related above are evidence of widespread corruption and incompetence

in the NHS. The author's experience is completely contrary to this: the vast majority of workers in the

health sector are intelligent, hardworking, and have great integrity. In addition there is a general

recognition of the great benefits that computerisation might bring, reinforced by the existence of a few

brilliant systems that are used continuously and gratefully by health care professionals. Examples of these

are the hospital's 'Telefile' system, and the Diabetes and Endocrine Directorate's Diabeta system. These

notable successes do not cover up the vast extent of inefficiency relating to computer system purchase in

the NHS, however. If not stupidity and greed, what are the causes of the ubiquitous waste that seems to

characterise information technology in the UK health sector? If we are to answer this question, we need to

look at other sectors and their experience with computer systems.

4.2.2 Organisational Information Systems: A Tough Nut to Crack

Computer technology is perceived by many as a readily available and straightforward solution to many of

the information handling problems facing organisations and societies today. However, it is often the case

that the attempt to introduce a computer system creates as many problems as it solves, and large

quantities of money can be spent discovering this. If we look at the trade journal where most of the NHS

related examples above were reported (Computing), we see that computer fiascos are certainly not

confined to the health sector. Dipping at random into issues released over the last year, we find the

following headlines.

0 Year delay to crime system [McNevin93 I

This article reports a delay of a year and significantly increased costs to a £1.5 million integrated police
information system. The hold-up is blamed on delayed and complex requirements specifications.

0 MPs attack Department of Employment over IT waste [Hill94a I

d. \jes\dis\wip\phd\phdtext2. doc
24

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The Public Accounts Committee (PAC) issued a report [PAC93 I criticising a major IT project
commissioned by the Department of Employment. The department paid for the development of a system
to link training facilities. When the government changed the mechanics of training sponsored by the
department, the system was rendered effectively useless. By this stage, the department had spent £48
million on the system.

0 NAO finds fresh errors [Hi1194b]

The National Audit Office (NAO) issued a report [NAO94] in which £44 million of computer related
waste is catalogued. This was not due to the rejection of an expensively developed system, but rather
because the system was used and malfunctioned, causing £44 million of benefits to be lost.

The above examples of failed information systems should not lead us to believe that such waste only exists
in the public sector. One of the most spectacular computer project fiascos of recent years was the stock

market's TAURUS project. After 4 years and more than £75 million spent on development, the system

was abruptly abandoned. This was in spite of the recognition that such a system (to settle shares on the
day of issuance) was considered vital for the City of London to retain its pre-eminent position in

international finance (the City continues to function nevertheless).

The tales of computing debacles given here, and the fact that they were so easy to find, should lead us to

suppose that there is something extremely difficult about the business of designing and implementing
information technology systems. In fact, the rarity of good computer systems and the difficulty inherent in

building them has been well known to specialists for some considerable time. Fifteen years ago, the US

Government Accounting Office completed a study into the worth of nine computer projects which cost a
total of $7 million and reported on its findings [GA079]. Of all the software developed, only 2%

(assessed on cost) was used as delivered, a further 3% was used after minor modifications, 20% used after

extensive modifications, and 75% never used at all. Bickerton [Bick92] describes a more recent study
[Pye88] conducted by the Department of Trade and Industry. Here the situation was generally improved

in the main, but some types of computer system were much more susceptible to failure than others. In

particular, where the process being supported was deemed to be simple (word-processing, for example),

the software, some of it functionally extremely complex, was generally successfully implemented. As the

work being supported by the system became more complex, so the chances of system failure increased

(even though, in this case, the software was not as functionally sophisticated). The study found that none

of the software that was developed to support the totality of a particular form of co-operative work (in this

case a police investigation system) could be considered a complete success.

What these two sources and the above examples tell us is that developing computer systems is difficult:

developing successful organisational information systems that support an organisation's collaborative

processes (such as would be the case for a directorate Information System) would seem to be almost
impossible. The next section describes what is commonly thought to be the cause of this difficulty - the

elicitation and recording of user requirements.

4.2.3 The Essential Problem - Requirements Analysis

Over the last 20 or so years, the nature of computing has changed enormously. Technological advances
have been made on all fronts. The main processing units have become faster, smaller, more robust and

vastly cheaper. Storage devices, although not much different in type, have hugely improved performance.
Whereas computer terminals were definitely the preserve of the computer specialist in the 1970s, now
they surround us, and the sight of a high powered computer on everyone's desk is not unusual in a place
d: \jes\dis\wip\phd\phdtext2. doc

25

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

of work. Large organisational networks are now commonplace, meaning that office automation, electronic

mail, shared word processed files and the like are no longer the preserve of the large computer companies
(such as IBM) and their clients, but can be seen in relatively small businesses. In short, the technological

advances made by the computer industry are quite staggering - it has been claimed that if the progress

made in this field in the last two decades had been applied to car manufacture, a driver could drive to the

moon and back in half an hour on a gallon of petrol, in a Rolls-Royce that had cost him or her less than 5

pence and was the size of a matchbox.

Software technology too, continues to improve. Fourth generation languages allied with relational
databases support the rapid development of complex applications. The emerging object-oriented

programming paradigm will (it is hoped) lead to reusable software components, increasing still further

the ability of programmers to develop reliable systems cheaply and easily.

The hardware on which computer systems run is enormously capable, and the software to run on that
hardware is easier to build than ever before. As we have seen however, the rejection rate of computer
systems by their putative users is still alarmingly high. This is due to the one aspect of applied technology
that has hardly improved at all since computers started to be introduced into businesses: the matching of
the abilities of the technology with the needs of its users. This process is known in the computing sector
as requirements elicitation or requirements engineering. Many commentators consider requirements

engineering to be the most critical issue for the discipline of software engineering in the 1990s

[Siddiqi94], and yet it is an area where very little progress has been made [Davis94].

Indeed, that the critical problem facing software engineers is systems analysis, which incorporates

requirements engineering, has been generally accepted by information systems specialists for many years.
One such specialist is Frederick Brooks, who was the manager of the IBM Operating System/360 project
in 1964 and 1965. Brooks wrote about his experiences in a seminal work: 'The Mythical Man-Month'

[Brooks82 1, first published in 1975. Brooks considers that software engineering, especially of so-called
'large systems', is one of the most complex technological processes that we can embark on, using the

metaphor of the prehistoric 'tar pits' to convey the insidious and inexorable nature of the problem:

"No scene from prehistory is quite as vivid as that of the mortal struggles in the tar pits... Large system

programming has over the past decade been such a tar pit, and many great and powerful beasts have

thrashed violently in it. Most have emerged with running systems - few have met goals, schedules and
budgets ...

Everyone has been surprised by the stickiness of the problem, and it is hard to discern the

nature of it..

He claims that to make any progress, the design or architectural issues must be considered in isolation
from those pertaining to implementation:

I will contend that conceptual integrity is the most important consideration in system design ... The

separation of architectural effort from implementation is a very powerful way of getting conceptual
integrity on very large projects. "

where

"by the detailed architecture of the system, I mean the complete and detailed specification of the user
interface. ".

d: \jes\dis\wip\phd\phdtext2. doc
26

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The specification of the user interface is the job of the systems analyst. Twelve years later in 1987, Brooks

wrote another highly celebrated paper: 'No Silver Bullet' which developed this theme further [Brooks87].

In this work he is more specific: not only is systems analysis a separate and intractable part of software

engineering, but the most difficult and important part of this is requirements engineering:

"The hardest part of building a software system is deciding precisely what to build
...

No other part of the

work so cripples the resulting system if done wrong. ".

Brooks' thoughts have since been adopted and reiterated by many others in the software engineering
community, and are now a part of the discipline's orthodoxy. We are thus in good company when we
observe that requirements engineering is the crux of the matter, and it is here that we should focus our
attention if we are not to repeat classic mistakes.

4.3 Systems Analysis: A Possible Approach

4.3.1 Introduction

In this section we will consider the nature of information systems and see how this should influence our

attitude to their analysis. In particular it is argued below that when in use, information systems are
interpreted by their users into the organisation being supported (also called the domain). Having accepted

this assumption a methodological framework that reflects it can be stated. This requires the representation

of the domain in order to judge the adequacy of an information system that is to support it. This is a
difficult problem in any domain, especially the clinical one where the barriers to communication are

particularly insurmountable. It is explained that the scientific method (briefly described below) might be

of some benefit in attacking this issue.

4.3.2 Information Systems: What Are They?

Information systems can be thought of as general purpose tools for supporting the collaborative aspect of

an organisation. Thus one of their distinguishing features is that they are used by a number of workers,

with a number of tasks. Depending on how we choose to consider the organisation, we can divide the

workers into two groups: operational and managerial. In this classification scheme, each group uses

information systems in a different way (though we must recognise that one person can act at different

times operationally and managerially). The essential difference between these two groups is that

operational workers perform the functions that enable the organisation to achieve its purpose (be that

producing widgets or curing patients), whereas managers observe this operational behaviour and

intervene so as to render the organisation more efficient, profitable, effective, or generally successful. If

we use the analogy of a rowing boat, the operational staff would be the oarsmen and women, while the

managerial staff would be at the helm, steering the boat. This is of course an extremely simplistic view of

the enormous complexity of human organisations (which is not the main subject matter of this thesis): the

reader is referred to Morgan's excellent book: "Images of Organisation" [Morgan86] for a thorough and

insightful study of the nature of management and organisations.

From this description, we can see that both groups of workers need to be aware of what is happening in

some or all of the rest of the organisation and / or its environment to be able to do their jobs. The

operational worker is part of a larger whole, and it will almost certainly be the case that he or she will

need to be informed of events that have happened elsewhere in the organisation or outside it. Thus the

purchaser at a factory needs to know what has been received at 'goods inward' and which finished goods
despatched by 'shipping' in order to procure the correct quantities of raw material for the next week. The

d: \jes\dis\wip\phd\phdtext2. doc
27

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

telephone receptionist at a hotel needs to know who has called, what sort of rooms they require, and for

when, along with the availability of rooms on that day (the rooms possibly having been booked by other
people), if he or she is to be able to book the customer's reservation. The doctor in a hospital needs to
know what is wrong with the patient and what other doctors and nurses who have already dealt with him

or her have discovered and decided if the treatment prescribed is to be successful. It is equally clear that

workers in the managerial group need to be aware of what the operational staff are doing, and what the

organisation's relation is with the outside world, if they are to be successful at the helm.

An information system helps both these groups of people by presenting them with the information they

need to do their work in the form of a description of the current (and past) state of the organisation. In the
factory example, a 'Stock Ordering System' might record how much raw material was received today, how

many finished goods despatched, and what is on order and when it is scheduled to be delivered. At the
hotel, a 'Customer Booking System' might record the rooms booked for other prospective residents, their
state of confirmation, and details of the customer in question (such as whether they are new or regular
visitors). At the hospital, a 'Clinical Record System' might record the administratively relevant details of
the patient being considered and medically relevant ones such as past diseases, conditions, interventions,

test results and preliminary diagnoses. In each of these cases, the information in the information system
would help the operational worker do his or her job and, in aggregate, would help the managerial worker
monitor the progress of the organisation in such a way as to be able to exert control successfully.

All these information systems have in common the feature that they record and represent some aspect of
the organisation and the world it is working in. Operational workers are presented with information about
that part of the world that is directly pertinent to the task they are engaged on and is available on the
information system. Managerial workers are presented with aggregated summary information describing

the current and past states of the organisation and its relation with its environment in a simplified, less
detailed form.

As a result of the operations the operational workers decide to effect, the state of the organisation is

changed (a new order has been sent to a supplier, a room is booked, a patient is admitted to hospital). As

the information system will be used again, by the same or another worker, this change should be recorded.
We can say then that the operational worker manipulates the state of the information system in

accordance with his or her manipulation of the state of the organisation and its relation with the rest of
the world. Managerial workers do not manipulate the state of the information system directly - they

observe it, and affect the operations that the operational staff engage in as a result of their derived

understanding of the state of the organisation and its relation with its environment.

Of course the above description is a vast simplification of the various phenomena that can be observed in

an organisation: the division between managers and operational staff is often extremely blurred; the
influences on the behaviour of all workers are myriad - many are unrecorded or unrecordable; the idea of

an organisation having a state at all is a philosophical presumption that can be easily challenged.
Nevertheless, thinking of organisations in these terms gives us insight into the nature of their information

systems and enables us to proceed, though we must bear in mind that the philosophical underpinning of

our work is based on a simplification. Further ramifications of the assumptions made here are presented
in Section 13.2 and Section 13.3.

If we accept the arguments presented above, we are led to conclude that an information system is a
representation of some aspect of the world. That part of the world that an information system represents is

called its domain in the body of the thesis. In order for an information system to work successfully, its

d: \jes\dis\wip\phd\phdtext2. doc
28

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

various users have to recognise the domain in the numbers, words, and symbols presented to them by it.

In other words, the users of an information system must be able to interpret the information system into

the world. This interpretation must cover the state of the information system (which must describe the

state of the domain), the allowable operations on the information system (which must describe relevant

operations in the domain), and the state of the information system after those operations (which must

represent the state of the organisation after the domain operation that the information system operation is

perceived as representing). If the representation of the domain is faulty, then some or all of these

interpretations will become difficult and counter-intuitive, leading to dissatisfaction with the system.

Of course there are many other causes of user dissatisfaction, and an information system that faithfully

represents the domain to its users might still be extremely unpopular (it might be slow, result in job

losses, support an insufficient part of the organisation by having an inadequate domain, or simply annoy

people by introducing technology where it is not wanted). These other problems, although extremely
important, are not considered directly here: we cannot hope to solve all the problems of computer science
in a single piece of work. Indeed we cannot really expect to solve any, but merely address a small range of
issues that are of some significance to the development and use of successful computes systems - this is

what this thesis attempts to do.

4.3.3 A Methodological Framework

If we accept the argument presented above, we are bound to try and create an information system that can
be interpreted into the domain. This thesis works from the assumption that the argument is valid, and the

necessity of creating a system that can be interpreted into the domain is one of the main postulates of the

work.

In order to create such a system, an iterative engineering stance must be adopted. We first posit an
information system design, consider how it might be interpreted into the domain, and make
improvements to the design in this light. We cannot investigate this interpretation directly - we generally
do not have direct access to the information system if it has not been constructed, and we certainly don't

have direct access to user's perception of the domain. We can however, represent the important properties

of both of these in a more or less accurate way: we can describe salient properties that the information

system and domain are thought to exhibit and investigate whether these descriptions are accurate. Once

we have a (to us) satisfactory description of both information system and domain, we can compare them

to determine how one might be interpreted into the other.

This argument can be considered as a methodological framework for information systems design,

involving the following steps.

0 Derive description of the properties of the domain

0 Derive description of the properties of the posited information systems

" Inspect the possibility of good interpretation of an information system answering to the derived

description into a domain answering to the derived description.

. Alter the design of the information system as a result of this inspection.

Description, or 'reverse engineering' of information systems is relatively straightforward. If we are to

understand how this might be interpreted in use, we need a good domain description. Before we consider

d: \jes\dis\wip\phd\phdtext2. doc
29

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

how we might get such a description we ought to be aware of some of the difficulties associated with
describing and representing other people's perceptions of (an aspect of) the world they live in.

4.3.4 Clinical Systems Analysis: A Breakdown in Communication

The recognition that the majority of the effort should (at least initially) concentrate on domain description

rather than any other aspect of the systems development process only helps us so far. This is certainly not
the first project to recognise the importance of specifying requirements, and the understanding of the
difficulty of the task has not made it any easier or helped to make the success of large computer systems
more assured. Specifically we have not seen why clinical information systems seem particularly difficult

to deliver.

In the Diabetes and Endocrine Directorate, one of the prevailing opinions at the time of the project's start
was that clinicians and computer professionals did not and could not understand each other, the two
disciplines speaking fundamentally different languages. This accords with recent developments in

philosophy (for example [Lyotard84] and less recently but more seminally [Witt53]) and philosophically
informed discussion in the systems analysis literature [Goguen92], [Floyd9l].

One of the ideas pervading much of this literature is the rejection of 'classical' notions of objectivity and
reality, and their replacement with various forms of relativism. One of the components of this relativism
is the concept of the 'local language game' [Witt53]. This contends that the concepts that a person uses to

understand their reality are particular to that person, but are shared to a greater or lesser extent with
others with whom that person has an empathy, such as friends, relatives, work colleagues, or members of
the same discipline. The concepts are shared through the mechanism of the language game within which
discourse takes place. Each of the social groups that a person belongs to will have its own language game
which that person may be able to play more or less well. Communication between individuals in different

groups is only possible inasmuch as the two are part of a larger group (such as both being workers at the

same hospital, citizens of the UK, or even human beings) which plays a much looser and less specific
language game. The above is a greatly simplified account of this subtle and sophisticated idea. For a

richer understanding of this fascinating area of philosophy the reader is referred back to the source
documents. [Floyd9l] discusses these and other ideas from the point of view of requirements engineering

and systems analysis. The idea of local language games is similar to that of experiential reality which is

presented in a digestible form by Lakoff [Lakoff87].

We can get a better understanding of the idea of language games by considering two examples - one
trivial and one more serious. The trivial example is one that many people will be familiar with - the
dinner party. In the author's experience, it sometimes happens that there are two or more identifiable

groups of people at the same dinner party in the hope of generating interesting conversation. For example
the host might choose a number of his or her guests from the set of university acquaintances and a

number from the set of work colleagues, or some from a hobby group and some from friends of the family.

If the language games played by guests from each group are specific to that group - for example the

university friends reminisce about their shared experiences, and the work colleagues discuss the latest

political development in the office - then the discourse between the groups will be minimal and the dinner

party will (short of providing sustenance) have failed to achieve its purpose. If one of the groups is a

singleton group (that is, it only has one member), then that group may well enjoy no language game at all

resulting in an unsatisfactory evening for its member.

A more serious example of the lack of communication between two groups can be taken from the

development of computer systems. Here, one group is those who commission and will eventually use a

d: \jes\dis\wip\phd\phdtext2. doc
30

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

computer system, and the other those that are responsible for delivering it. The former group is generally
referred to as users or stakeholders, and the latter as computer professionals, or more specifically systems
analysts. Each group of users will typically play a different language game all of which will be different
from the language game played by the systems analyst. One can imagine degrees of 'difference' between
the language games played by two groups"'. If the first group consists of mathematicians and the second
of systems analysts, the difference between their language games is relatively small - the members of both

groups place great store by logical thinking and the development of predictable mechanisms, the terms

used are often the same (at least at the arithmetic level), and the backgrounds of the members are often
similar (many mathematicians, or mathematically inclined people get involved in computing at some
level). Possibly as a result of this, much mathematical and scientific software has been extremely

successful. If the first group consists of clinicians, and the second of systems analysts, then the difference

will be much greater. Not only will the terms used and the backgrounds of the members of the groups
typically be very different, but so are some of the most fundamental reasoning structures that each uses.

The end result of systems analysis is generally a system specification. Such a specification can also be

regarded as a theory of how the completed system will work. This theory records rules which, assuming
that the system is implemented correctly, will always be obeyed. As the rules will always be obeyed, we
can call them universal statements, or simply universals. Computer programs themselves are effectively
sets of universals - as programmers we cannot (for any reasonably complex system) predict all the
behaviours of the system and list a response for each one - rather we describe the required response for a
(possibly infinite) range of conditions. Clinicians on the other hand rely on exemplary and anecdotal
evidence to great extent. To this extent their job is similar to that of a lawyer. Both professions resort to
cases and recalled examples (called precedence in the case of the legal profession) to guide and justify
their actions. Groups which play language games incorporating universals will have great difficulty

entering into discourse with groups , playing predominately anecdotal language games. This
incompatibility of language games may go some way towards explaining the communications breakdown
between clinicians and systems analysts that has been observed in the Diabetes and Endocrine
Directorate. Without effective discourse with the users, the analyst cannot know whether his or her ideas

about the requirements of a computer system are genuine or fantastic.

In fact, we can be stronger still in characterising the problems presented by language barriers. Not only do

computer scientists play a'universal' type language game, but such universal statements are necessary if a
computer system is to be the result - this is because (as we have seen) a computer system is effectively
controlled through the use of universal statements expressed within a computer language. Moreover, these

universal statements need to be logically rigorous: paradoxes, inconsistencies and ambiguities in program
construction translate as errors in the implemented system. Universal statements are needed then:

clinicians (or other users) are totally unqualified to construct them however. Although a typical clinician

will be very capable of doing and talking about her job, the process of representing it in the form of a
paradox-free, consistent, and unambiguous universal statement is not something that their training has

shown them how to do. Conversely it is clear that although a computer scientist might be able to construct
a consistent universal statement, she is totally unqualified to talk in any knowledgeable way about the
clinical domain.

tu It should be noted that it is very difficult to talk about these concepts clearly or with philosophical rigour. In discussing the topic, the
author is attempting to utilise the language games of those who espouse the idea. The concept of 'degree of difference with its implications
of extent, position and measurability belong to a different language game than does the notion of 'language game'. However, that a phrase
is philosophically suspect does not prevent it from carrying some force of meaning and illuminating the concept that the author is trying to
convey.
d: \jes\dis\wip\phd\phdtext2. doc

31

Jeremy DH Holland
The Requirements Analysis & Design fora Clinical Information System: A Formal Approach Volume I: Thesis

Even if the argument presented here is correct and is one of the reasons for the difficulty of the systems
analyst's task, it is not obvious what can be done about it. The conventional process of analysis - the
development of universal theories and their presentation to the users for comment - is clearly
inappropriate here. We need a better approach that will help reveal the validity (or lack thereof) of the
analyst's (universal) ideas and theories without requiring the clinician or other user to construct universal
statements (which would be prone to error). The approach adopted in this project was based on the
method of empirical science as described by Sir Karl Popper. Before we consider how and why this
approach might address the problems discussed, we must understand how Popper's method works in the
general case and why it has had such a major effect on the development of scientific knowledge.

4.3.5 The Scientific Method

Science has been practised for many centuries. Many of the early Greek philosophers could be considered
to be scientists in that they sought knowledge about the world they lived in. The words 'science' and
'scientist' were first used with their current meanings in the 16th century [0ED87] however, although
there was much in these early days that we would not now consider to be science at all, such as alchemy
and astrology. Over the years, a feeling for what is valid 'scientific' knowlecge about the world has
emerged, and alchemy and astrology are no longer considered valid occupations for serious scientists.
Although the extent and soundness of natural science, and certainly its impact on our lives, has increased
steadily since the middle ages, even at the beginning of this century there was much debate as to the
nature of science, and how scientific knowledge might be distinguished from other forms. Although the
debate continues to this day, it has been shaped by one man more than any other - Sir Karl Popper.
Popper elucidated what he termed the method of 'Empirical Science', first introduced in 'Logik der
Forschung' [Popper34], published in 1934 which was translated into English as 'The Logic of Scientific
Discovery' in 1959 [Popper59]. The publication of these two books acted as an epiphany for many
scientists because they presented for the first time an intellectual framework that united the diversity of
scientific activity" into one coherent and rigorous (at least significantly more rigorous than previous
attempts) philosophical structure.

The scientific method is a means of constructing and testing theories which tell us something about the
nature and behaviour of some aspect of the world we live in. We can best understand it by considering
two directives which, in order to comply with the method have to be followed. The first is that we must
attempt to discredit the theory with utmost vigour, and only if we fail in this task can the theory be

considered valid. The second is that we must attempt to render the theory as easy to discredit as possible -
the 'best' theories are considered those which appear easiest to disprove and yet, in spite of the best efforts
of scientists, have not been.

A theory is a set of rules which we claim hold true about some specified subject matter in which we are
interested. These rules, in common with most rules, are of a 'thou shalt not' rather than 'thou shalt' form.
In this way they describe and prohibit classes of phenomena. The testing of the theory involves the search
for (repeatable) examples of the forbidden phenomena. If any are found, the theory is considered to have
been refuted, and must be reconstructed.

Although not always the case, for the purposes of the argument we can assume that a scientific theory is

presented in mathematical terms: a number of statements are given which outlaw certain classes of

iv it must be said that the strictness of Popper's arguments are more easily applied to the 'harder' sciences such as physics than the 'softer'
life sciences such as biology (of which Popper himself was unfairly quite dismissive). Even so, students of the life sciences were equally
affected - Sir Peter Medawar, the famous biologist, said in a review of 'The Logic of Scientific Discovery' published in the New Scientist:
"one of the most important documents of the twentieth century".
d: \jes\dis\wip\phd\phdtext2. doc

32

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

behaviour. In mathematical parlance, these statements are called axioms. The advantage of mathematics
is twofold. Firstly the meaning of mathematical terms and symbols is very well defined. The 'fuzziness'

and 'ambiguity' of natural language is avoided resulting in a clear and emphatic meaning for any

statement. Secondly mathematics comes with a deductive mechanism - from the axiomatic rules we can
deduce derived properties or theorems which we claim must hold true of the subject (and act to specify
further proscribed behaviours). These theorems can in turn be used as the basis for further derivation. It

was originally thought that it should be possible to tell from a sound theory whether any given behaviour

is allowed: Gödel's famous 'incompleteness theorem' tells us that this is not in general true, but the power

of mathematics to create complex intellectual edifices from seemingly extremely simple axioms is great -
Bertrand Russell derived (albeit not uncontroversially) almost all of mathematics from three axioms
[White87]. The set of behaviours that we can show are valid according to the theory is sometimes known

as the theory's consequence closure.

Once we know what behaviours are forbidden by the theory, we must search for examples so as to
discredit it. We should not waste our time looking for behaviours that we are unlikely to see - on the

contrary we must take care to look for behaviours that we might expect to see and yet are forbidden by the

theory. The choice of which behaviours to look for, and how to look for them is the art of the

experimental scientist. A scientific theory is always a simplification - we cannot describe the whole world
in all its complexity, and the theory thus only lends insight into a well defined part of all natural
phenomena. The construction of experiments must thus endeavour to exclude those parts of the natural
world that the theory is not concerned with. An experiment which does this is called a 'controlled

experiment'. The advantage of the precision and clarity of universal statements expressed in mathematical
notation here is that it is relatively straightforward to determine whether or not an observed behaviour
does indeed represent a refutation.

The second directive was the need to render the theory as falsifiable as possible. Clearly, the more
behaviours a theory prohibits, the more falsifiable it is as there are more refutative counter examples to be
found. The more behaviours that are forbidden, the more powerful and useful the theory is. In the body of
the thesis, a theory which is more falsifiable than another is said to be bolder than that other: the second
directive tells us that if a theory has not been refuted, we should endeavour to embolden it.

The above is a greatly simplified description of the method of empirical science - there are many

subtleties not described here but to be found in Popper's original works concerning such areas as

probability and quantum physics. Nor can we maintain that Popper's ideas cover fully the concerns of

scientists. For example scientists must also be concerned with the expressive elegance of their theories,

and the utility of their subject matter.

4.3.6 Why The Scientific Method Will Help

From the above description it should be clear how the scientific method might help overcome some of the

problems associated with requirements analysis. In a previous part of this chapter we saw how, if a

domain description is to useful in the construction of an information system, it must take the form of a

mathematically rigorous universal statement.

This presents two related problems, both of which are addressed by the scientific method. Firstly a

domain theory constructed by the analyst will inevitably be flawed - the analyst's understanding of the

domain will be very different from that of the user, and will contain many preconceptions and plain

errors. Additionally, in the case of the clinician especially, and perhaps also with other users, the

'universal' language of the analyst (needed to derive a computer system design which is a universal

d: \jes\dis\wip\phd\phdtext2. doc
33

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

statement) is very difficult to converse in. Clinicians (and perhaps other users) would appear to be much

happier talking in anecdotal singular form (this is a simplification - another parallel argument has it that

no matter which form of language clinicians use, we can rely on the singular more than the universal).

It is thus not only important, but also highly problematic to root out errors caused by a misunderstanding

of the domain on the part of the analyst. The scientific method as described is a likely candidate for a tool

to overcome these problems. Firstly, as we have seen, the use of mathematical notation to express

theorems of the theory means that it is a comparatively straightforward task to determine whether or not

an observed (or as we shall see, related) behaviour is a refutation of the theory. This adds a degree of

objectivity" to the process of unearthing and challenging the preconceptions of the analyst which have

been expressed as a theory of the domain of interest. Secondly the scientific method acts as a bridge

between singular and universal statements. It was stated earlier that the user or other stakeholder in a

system is generally not capable of expressing a formally consistent description of the domain whereas the

computer scientist, while (more) qualified to construct consistent universal statements has little or no

understanding of the domain. The scientific method, through the exploitation of the singular statement in

the construction of the universal helps us resolve this paradox. The key is that while the universal

statement as expressed by a user is prone to errors, the singular statement is much less so. We would be

rightly sceptical of a user's claim that 'all clinical appointments apply to a single patient': we would have

less reason to disbelieve the statement 'my last appointment was for Mr Jones and no-one else'. The use of

the scientific method does not just facilitate the communication between computer scientists, but more
importantly it enables the refinement of universal statements so that they do not conflict with the

experiences of the domain workers.

The situation is not quite as simple as has been suggested however. The subject area, or domain, that we

are interested in is not generally investigated using the method of empirical science, the approach is more

suited to 'hard' physical systems and is weaker when it is used to investigate the nature of soft of human

organisations. However, as an additional tool it can be used even in this unlikely setting and will shed

valuable light on the nature of the problem domain. The way in which the method was harnessed to create

a theory of a clinical directorate is presented in the next section.

4.3.7 How Might The Scientific Method Be Used Here?

There are a number of ways in which the scientific method can be exploited to support the analysis

needed to construct an information system. Firstly scientific theories must be internally consistent if they

are to have any validity at all. The consequence closure of an inconsistent theory contains negations for

all its theorems - in other words anything the theory prevents it also allows and vice-versa. If we can

derive any theorem of the form 'statement A is true and statement A is untrue' then the theory is

inconsistent and must be re-constructed. Similarly, a valid computer programme specification must not be

inconsistent - if it were it would not be capable of being implemented.

The directive which tells us to embolden the theory is also useful in the development of computer systems.

The data held in a computer's database can be described in terms of invariants which act to forbid certain

classes of behaviours (it is in this sense that a specification is a theory). The stronger the invariants, the

bolder the specification, and the more information content the system is considered to have [Cohen92].

v Although as we shall see in Section 13.3 the process is still highly subjective: it is nevertheless less subjective than many of the other

approaches commonly used in requirements and systems analysis.
d: \jes\dis\wip\phd\phdtext2. doc

34

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Most importantly perhaps, we can refute the theories that we have used to describe the domain. We can
look on discussions with users as experiments (although these are admittedly not rigidly controlled in the

way a controlled experiment in the natural sciences would have to be). Interviews can be held with the

users and other stakeholders covering topics that the analyst wants to explore - areas where the theory

presents surprising results or where it is anticipated that the theory must be particularly accurate. The

analyst searches for counter examples to the theory in the responses that the interviewee makes: if such a

counter example is found, then (assuming repetition, perhaps in the form of agreement from a second
interview with a different interviewee) the theory has been refuted. In this way the theory acts as a form of

script around which the analyst must base conversations and interviews with workers in the domain. It is

moreover claimed that this method of creating universal theories is particularly well suited to the problem

of linking the players of a language game which is strongly anecdotal (such as clinicians, or so it is

claimed) with players of one that leans towards the universal (such as computer professionals). The

facilitation of communications between analyst and domain worker is beneficial, and can lead to an

accurate domain description expressed in the form of a consistent universal statement.

Before we blindly accept the assertions of the above argumerts me should be aware of a number of
problems. These are discussed later in the thesis in Chapter 13: here we will consider some of them
briefly so that we can view the results with the appropriate level of caution. Popper's 'Logic of Scientific
Discovery' was the source quoted at the introduction of the concept of the universal and singular
statements. However, in the same work Popper also notes that the two are not as clear cut as we might
suppose, and that embedded in every singular statement are fragments of the universal. The use of any
term implies the existence of some underlying universal concepts - use of the word 'doctor' for example
implies the existence of a group with this name, distinguishable from others. Science, it is claimed does

not then rely on the rigid distinction between universal and singular statements as is illustrated in the
following passage taken from the book:

'The empirical basis of objective science has thus nothing 'absolute' about it. Science does not rest on
solid bedrock. The bold structure of its theories rises, as it were, above a swamp. It is like a building

erected on piles. The piles are driven down from above into the swamp, but not down to any natural or
given' base; and if we stop driving the piles deeper, it is not because we have reached firm ground. We

simply stop when we are satisfied that the piles are firm enough to carry the structure, at least for the

time being. ' (taken from [Popper8O] pp 111)

Once we have seen that the distinction between universal and singular statements is somewhat artificial

we can consider the language games played by clinicians and analysts in a sophisticated way. While both

clinicians and computer scientists use universal statements, those of the latter group are more universal
than those of the former group. That the statements of the clinicians are less universal than those needed

to make a computer system means that the problems of inconsistency ambiguity and paradox are lessened,

not removed. If there is a refutation of the description or theory that has been constructed we should not

assume that it must be the theory that is at 'fault': the problem might lie in the user's expression of her

experiences.

There are a number of ways that we might choose to deal with such an 'error' in the user's understanding.
Firstly we might consider that a given 'disagreement' with the theory has been caused by a genuine

confusion in the mind of the domain worker over the nature of the tasks in which she engages. In this

case, the theory would be considered to be 'correct' and the possibility thus presents itself of 'educating' the

user, improving her understanding of her job. The process of client education is central to the Total
Quality Management (TQM) and Business Process Re-engineering (BPR) approaches to planned

d: \jes\dis\wip\phd\phdtext2. doc
35

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

organisational development. Although not the subject matter of this thesis, these disciplines are important

to the evolution of information systems as a whole, and are briefly discussed further in Section 14.7.

Another possibility is that two sub-domains are perceived according to different concepts and 'internal

models' by a domain worker. This is often the case, even in the 'hard' sciences, and is a useful intellectual

tool in the attempt to render an extremely complex world comprehensible. Although mutually
inconsistent perspectives of reality might be helpful to us humans in understanding the world, they are
fatal to computer systems. In this case, user education is not appropriate as the understanding of the
domain is already adequate. The best we can hope to do is discover where inconsistencies exist, and
where they do, to discover which of the two possible theories is more likely to represent the way the user
will view the world in these circumstances.

In general however, we as analysts should have the humility to recognise that the user knows her domain
better than we, and that if a disagreement between the domain worker's account and the theory is

observed, the error most probably lies with the theory and not the user's understanding. We should not
discount the latter possibility, just recognise that it is less likely than the first.

4.4 Conclusion

In this chapter, we saw that the design of computer systems of all types - especially those in the clinical
sector - is extremely difficult and prone to failure. Especially difficult are organisational information

systems such as the proposed Directorate Information System. We saw that the culprit for this difficulty is
the initial systems analysis, and especially that part responsible for specifying the requirements of the
system, known as requirements engineering. It is argued that all information systems are interpreted as
aspects of the domain that they are supporting. This leads to the statement of a methodological framework
for designing systems that can be interpreted into the domain. Use of a method conforming to this
framework creates the necessity of a good description of the domain. It is the process of getting this
domain description that is at the nub of requirements analysis, and it is here that the essential difficulty
lies. The apparent intractability of understanding the user's perception of the domain is to a great extent
caused by the different and incompatible language games played by the potential users of the system and
its designers and implementors. This difficulty is especially pronounced when the users are clinicians.
The use of the scientific method in the elicitation and representation of requirements was described, and it

was explained how it might help address the problems associated with requirements engineering in

general and requirements engineering in the clinical sector in particular.

We are now in a position to refine the methodological framework so that it reflects the one that guided the

project reported here.

0 Derive a description of the properties of the domain, using the scientific method so to do.

9 Derive descriptions of the properties of the posited information systems

" Inspect the possibility of good interpretation of an information system (conforming to the derived
description) into a domain (conforming to the derived description).

0 Alter the design of the information system as a result of this inspection.

d: \jes\dis\wip\phd\phdtext2. doc

36

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The first stage, the derivation of properties of the domain, depends crucially on the use of the scientific

method with its insistence on theory construction and refutation, and formalism of representation.

The next chapter will briefly consider some of the conventional systems analysis methodologies in the

light of the discussions above, and describe in more detail how the scientific method might be used to

address the problem at hand, and in particular what theories we should construct.

d: \jes\dis\wip\phd\phdtext2. doc
37

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

d: \jes\dis\wip\phd\phdtext2. doc

38

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Part Two:

Review of Methods, Method Used and
Identification of Problem Boundary

d: \jes\dis\wip\phd\phdtext2. doc
39

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Chapter 5: Review of Existing Analysis Methods

5.1 Introduction

In this chapter we will explore various existing methods of systems analysis in the hope that one will be

capable of exploitation within the framework we have judged to be appropriate for the project. We first

consider analysis in general: what are the features that are common to all techniques of analysis and set
them apart from other forms of problem solving? It is argued below, and illustrated with two examples
taken from disciplines other than computer science, that these common features are threefold: the set of
problems capable of resolution through the use of a particular process of analysis tends to be small and
well defined; a limited set of procedures is available to be used in solving the problems; and the results of
the analysis are presented in a standard form. The type of analysis we are interested in, systems analysis,
is no different. Each method of analysis addresses a well defined type of problem, each presents its would-
be users with a set of techniques and procedures to use, and each encourages those users to record the

results of the analysis in standard forms.

From the observation that all analytical techniques consist of processes and presentational media, and that
the systems we are analysing should represent a part of the world, we can derive three criteria to judge the
methods being reviewed. These are:

" do the processes conform to the scientific method?

" are the presentational notations semantically rigorous?

" are the problem and solution distinguished?

This chapter proceeds to criticise a number of analytical methods for failing to meet the three criteria.

5.2 What Is Analysis: Process and Presentation

Many disciplines, be they of a scientific (both hard and soft) or engineering nature, use forms of analysis
to understand further a well structured problem, and perhaps to suggest a solution. The term has come to
describe so many activities that it has become abstract and vague with very broad usage. Indeed, the
dictionary entry of the word confirms this - if we look in the Oxford English Dictionary we see that

analysis is described as:

'... the exact determination of the elements or components of anything complex':

a definition so imprecise as to verge on the meaningless. Consequently in use the word is commonly used

with a qualifier, and even where it is not it is because the type of analysis being carried out is well

understood. There is however a common essence to all these forms of endeavour that mark them out from

the more general search for knowledge. We can illustrate this commonality through the use of two forms

of analysis with which the author has a (very) small degree of understanding: the chemical analysis of

metal salts (which many will remember from their school days), and the structural analysis of bridges.

The aspects of analysis that are common to all its forms might be considered to be as follows.

0 The problem area is (relatively) well defined.

Although analysis as a concept is very broad, each of its multitudinous forms is fairly well defined, and

addresses only a small class of problems with well defined boundaries. If we take our example of chemical

d: \jes\dis\wip\phd\phdtext2. doc
40

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

analysis, we have selected that sub-specialty which addresses only the composition of metal salts. The

analysis method is incapable of identifying and discerning other compounds, so in general it would be

preceded by a broader compositional analysis or some other form of reasoning that meant that the analyst
was sure that the substance being investigated was in fact the salt of a metal. Not only are the types of
substance that the analysis can be used to investigate restricted but the results of the analysis are limited

as well. Chemical analysis can tell us the chemical composition of a compound - it will not tell us
anything directly about its crystalline structure (though it might be possible to deduce this from its

chemistry), its mechanical properties, its cost, abundance, or utility. All these questions can be answered,
but each requires a different form of analysis.

Our other example was structural analysis, specifically that relating to static load bearing structures (such

as bridges). The form of analysis used by bridge engineers would be of little use for exploring the

structure of an airframe as it passes through the sound barrier, or a golf ball as it is hit by a club. The

complexity of these problems is greater, and so the analytical methods used are more involved. As with
the chemical example, not only is the range of entities susceptible to investigation limited, but so is the

range of properties pertaining to those entities. Structural analysis is a useful tool for predicting the

stresses that a given structure will have to endure, aspects of the finished article such as aesthetic appeal

or traffic carrying capacity are totally outside the scope of the technique.

" There is a recognised and recorded structure to the analysis process

For any type of analysis, there is a limited and well defined set of procedures that it is appropriate to use.
In many cases, these procedures must be undertaken in a specific order - in short, there is a structured
method to the analysis.

In the case of the chemical analysis, the techniques and procedures at our disposal include: the
measurement of solubility in various solutions (usually aqueous); flame tests; measuring electrolytic
potential; testing acidity; and in more complex cases various forms of spectrum analysis (infra-red, ultra-
violet or nuclear magnetic resonance). As chemical analysis is so established and refined, there is a
recognised sequence to the application of each of these processes leading to the most rapid identification

of the substance in question. There are other techniques that can be used to investigate the nature of a
compound - magnetic tests can tell us whether it is diamagnetic or paramagnetic, x-ray crystallography
will help us discern its internal atomic arrangement, and investigation of appropriate catalogues or the

commodity markets will tell us of its likely price. All these might be useful but have no place in the

process of chemical analysis.

In the case of structural analysis of bridges there are a similarly well bounded set of procedures that the

engineer deploys to address the problem. These are essentially the identification of forces applied to the
bridge, the resolving of those forces through the structure and the equating of the forces and moments

such that there are no net linear or angular forces (which would result in a decidedly non-static bridge). If

the deformation of the bridge is important then the restoring force of its component parts becomes

significant, and the stiffness coefficients of the materials used in its construction must be added to the

equations balancing forces and moments. In general these calculations are sufficiently well understood
that they can be performed by computer, using the method of 'finite element analysis' which enables the

structure to be considered as a composition of many more parts (meaning that the resolution of the

analysis will be finer) than would be reasonable with humans performing the necessary calculations - the

resolving and balancing of forces and moments are still the major processes that constitute this form of
structural analysis.

d: \jes\dis\wip\phd\phdtext2. doc
41

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

0 There is a recognised and standard means of representing the results of the analysis.

There is generally a standard notation used for presenting the findings of the analysis, enabling the

maximum relevant information to be presented in the most succinct way. In the case of the chemical
analysis, the notation used depends on the complexity of the substance that has been analysed, but the

compound is simple, the familiar system where the elemental components are represented by letters or
pairs of letters, and the molecular ratio of these elements by subscripted numbers is used (thus NaCl for
Sodium Chloride, and KMnO4 for Potassium Permanganate). More advanced nomenclature presents the
informed reader with more information - thus pseudo-cumene represented in standard S. I. nomenclature
becomes 1,2,4 trimethyl benzene indicating that a molecule of this chemical takes the form of a benzene

ring attached at its first, second and fourth vertices to a methyl group (-CH3).

In a similar way, structural analysis relies on a limited number of representational notations. The most
important of these is the force diagram where the forces, stresses, and strains affecting the structure are
represented in geometrical form. In addition to this diagrammatic notation, numeric conventions are used
to represent elastic deformations and safety limits (such as the maximum axle weight permitted on such a
bridge).

In our case we are interested in that branch of analysis known as'Systems Analysis', specifically that part
which relates to the construction of computer systems. It should come as no surprise to hear that this form

of analysis exhibits the general properties described above. As the discipline is fairly young, there are a
number of methods vying with each other for primacy. That none is entirely satisfactory can be seen from

the large number of computer systems which fail to satisfy the requirements of the user. Each method uses
a different set of procedures, and presents its results in a different form. All have the same limited domain

of application: this is the construction of the design of an information system starting with a poorly
articulated expression of need. In the next few sections we will discuss the process and presentational
notations of a number of systems analysis techniques, and consider how well they conform to the

methodological framework described in Chapter 4.

5.3 Some Popular Methods

5.3.1 Criteria For Judgement

In the last chapter of the previous part we discussed and stated the methodological framework that will be

used in the analysis and design of the information system we are interested in. We can use this to guide

investigations of common systems analysis techniques. The first stage of an analysis within this

framework must provide a description of the domain of interest derived using the scientific method. The

processes associated with the systems analysis technique we choose should thus conform to the scientific

method. The success of science has depended partly on the rigour of the notation used to construct the

theories being developed. The presentational notation supplied with the systems analysis technique should

thus have formal semantics and a deductive calculus. Even if the processes of the analysis technique do

not conventionally support the scientific approach, it might be possible to use the presentational notations

that accompany it providing they are mathematically sound in this way. Finally, our methodological

framework insists that we need to assess how well the IS can be interpreted into the domain. This

suggests another property that the analysis technique should exhibit: how well does each ensure that the

resulting information system can be interpreted into the domain? If the method does not ensure this, we

need to understand the implications. This is in many ways similar to the engineering maxim that the

problem must be understood before a solution can be created: in the case of the design of an information

system, understanding the problem involves understanding the organisation that it is to serve.

d: \jes\dis\wip\phd\phd text2. doc
42

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The above discussion can be summarised by stating three criteria that can be used to judge the suitability
of systems analysis techniques:

" Do the technique's processes conform to the scientific method?

" Do (any of) the technique's presentational notations possess formal semantics?

" Does the technique encourage the description of the domain separately from the information system -
does it distinguish between the problem and the solution?

In the next few sections, we will investigate a few different classes of method. We will judge each of these

according to the criteria given. We shall see that, as a result of judgements on the basis of these criteria,
all the methods considered are rejected: this is not because the methods themselves are inadequate, but

rather because they do not conform with the scientific method, their notations do not support the sort of
reasoning we are interested in, or they fail to adequately separate the problem and solution.

5.3.2 Data Modelling

Data modelling is the most common form of analysis used in the design of information systems: it uses
such familiar techniques as data flow analysis [Yourdon89], functional decomposition [Yourdon78],

entity relationship modelling, [Chen76] as well as subsequent developments [Hu1187]. There are a
number of distinct methods in use, the most familiar being James Martin's Information Engineering
[Martin89], the French MERISE [Flynn93], and the UK government's SSADM [Downs92]. SSADM is
typical of all these methods and can be taken as a representative example of the class.

SSADM commences with a feasibility study during which the problem to be addressed is defined and the
feasibility of a computer system solution assessed. This stage is followed by a requirements analysis phase
which examines the existing information system (automated or otherwise), and considers different options
for change to this. The existing information system is described in terms of dataflow diagrams, or DFDs,

and logical data models, or LDM (also known as entity relationship - ER - models, entity relationship
attribute - ERA - models and Bachman diagrams). The requirements analysis phase is followed by

requirements specification. This is a specification of the proposed 'solution' system specified with LDMs

and DFDs. The subsequent logical system specification refines this high level design through the use of

user dialogue definitions and entity life history - ELH - diagrams. Finally the physical design phase takes
decisions pertaining to performance and cost criteria - for example whether a given entity should be

represented as a data file in a relational database, or 'hardwired' into the system, and whether it should

always be kept in memory, or have to be reloaded from disk each time it is accessed.

There are two things that should immediately strike us reading this (admittedly extremely brief) summary

of this very popular method. Firstly almost all of the process is focused on the design of the new system
(based on the old system) rather than attempting to understand the problems facing the organisation, and

secondly there is little mention of the users of the system being analysed. These two observations are

related.

d: \jes\dis\wip\phd\phdtext2. doc
43

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

In the standard textbook of the latest version of SSADM, there are five phases as described above. The

first is the feasibility study, which is described as necessary, but maybe not as part of the structured part of
the analysis. A 'flow chart' is given describing this phase -a simplified version is presented here.

Input

Prepare for
Feasibility Stud)

Output

Define the
Problem

Assemble
Feasibility Repor

Select Feasibilit,
Option

Figure 2-1: Detail of Feasibility Phase (One of Five) of SSADM Mc [hod.

This is the only phase in the method where the problem is defined, and here it is only one step of four. It

would seem from this that SSADM is best suited to projects where the problem is very well understood
already. Some might object to this statement by observing that we have already accepted that the essence
of the problem lies in the representation of the organisation, and that SSADM and the other data

modelling methods are good at doing this through the use of LDM and ELH diagrams. While it is one of
the assumptions of this thesis that representation of the domain is essential to good information system
design, it is not clear that SSADM does in fact support this. LDM diagrams, for example, were first
described by Chen [Chen76] as a means of developing semantically relevant database systems,
specifically those supporting the relational model as defined by Codd [Codd70]. In SSADM, an LDM
diagram is derived in the requirements analysis phase and refined in the requirements specification phase.
The operations on the entities in this structure are defined in the logical systems specification phase, and
their implementation planned in the physical design phase. Thus the LDM diagram is always a (possibly

very high level) specification for the structure of the eventual database. The distinction between the

representation of the domain and the representation of the information system (which is what a

specification is) is not made. This might be a pedantic point if the information system was just an
implementation of a specification that was identical in form to an LDM based description of the domain,

but this is very rarely the case. As the same description is refined to produce the specification of the
database structure, decisions taken early on in the LDM modelling process affect the design of the

eventual system enormously. As a result, issues relating to the representation of the domain and issues

relating to implementation considerations become unavoidably confused: the method does not in fact

successfully distinguish domain and computer system, and so does not manage to separate problem and

solution.

The other observation that was made above concerning the method was the lack of communication with

users. The majority of the method is devoted to the documentation of the specification of the required

system, with very little discussion of how that specification is to be elicited from the stakeholders. Where

mention of the difficulty of effectively communicating with users is made, it is as an aside rather than

central to the argument. For example, at the end of the description of logical data modelling in one of the

standard SSADM handbooks, we find a short 'cautionary note':

d: \jes\dis\wi p\phd\phdtext2. doc
44

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

"... there are many situations where judgement is needed as to whether or not something is an entity. The

general principles are ...
firstly consult with the people whose system it is and try to reflect their view of

what matters .. secondly to try to make the model describe the underlying and stable rather than the
immediate and specific. " [Downs92, Page 128]

In the book, this discussion of user involvement lasts for eleven lines! Even if we choose to spend more
time talking to users than is suggested by the method, we do that by discussing the models that have been

so far devised, be they in the form of DFDs, LDMs, or ELHs. These models are of a universal nature, and
it is these universal statements that we discuss with the users, seeking approval for the 'theory' contained

within them. This is very different from the scientific approach described earlier, and does not help

overcome the language barrier discussed.

To sum up the above arguments, the process of SSADM (and by implication other data modelling
techniques) is not scientific (which is one requirement for the method to be used), and it does not

sufficiently distinguish between problem and solution (which was another requirement). What of the

presentational notations? In common with other forms of analysis, data modelling techniques use certain

pre-defined standards for presenting their results. These are many and varied, and in general each method
is supplied with its own diagrammatic conventions. Again, SSADM is typical of the field, and inspecting

this method will tell us if the notation used for recording the results of the analysis can be exploited by a

method of our own construction. Alas, the answer is no: the semantic power of the different

representational systems is too poor. Of the three main diagram forms, DFDs, ELHs and LDMs, it is the
latter which has the firmest mathematical foundations but even these are poor. Firstly what can be

expressed using an LDM diagram is formally extremely limited, and secondly the deductive power we can

use on the theorems expressed in an LDM diagram is almost non-existent.

We can understand the first point by considering two mathematical relations: less than (<), and less than

or equals (<_). Although these are relations over the same entity - numbers - they say different things. The

way we would express the first of these relations is to use a 'pig's ear' relation over the 'number' entity
thus:

Number

Figure 2-2: LDM (or ER) diagram for the relation '<'

but this is also the diagram we would have to use for less than or equal. This is because all the diagram

has said is that the relation '<' holds between any number and some other numbers. In the set theoretic

notation used elsewhere in the thesis, we have said:

<: Number H Number.

The second point is related to the first - because we have not said very much about the relation, we cannot
deduce many of its properties. For example, we know that one of the properties of < is as follows

a<b&b<c=*a<c.

d: \jes\dis\wip\phd\phdtext2. doc -
45

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

We cannot deduce this from the diagram, because exactly the same pictorial representation (with different

labels) would be used for relations that do not have this property, such as 'is a friend of between people,

or 'is adjacent to' between objects. If we could deduce this property, known as 'transitivity', for <, then we

could also do it for these other relations. The other notations used by SSADM share similar problems

associated with low semantic content.

As the various data modelling methods, as represented by SSADM, do not follow the scientific method,

do not sufficiently distinguish the problem and solution, and come with notations that have limited formal

content, we shall not use any in the work we are engaged on. Some readers might raise an objection here:

'surely a thousand systems analysts can't be wrong? '. Indeed, data modelling is extremely popular in the

systems analysis and software engineering community - why is this? The problems discussed above mean

that these methods are weak as requirements elicitation and specification tools: as systems engineering

tools they are very powerful however. If the nature of the proposed system is clearly understood, then

SSADM and its sister methods are a useful means of engineering an information system from the (already

known) requirement. Thus if we look on data modelling methods as guides for solution engineering, and

use them as such then their problems are no longer of such concern and their advantages (i-icluding

lucidity, clarity of representation, ready availability of automated support tools) explain their popularity.

If we are going to use a data modelling method as some form of solution engineering guide, we should be

aware that there are differences between their different forms. In particular the recently developed 'object-

oriented' modelling systems are supposedly easier to understand (by virtue of class inheritance) and

provide better support for the dynamic properties of the system being modelled. Particularly strong on this

last point is the method described by Rumbaugh [Rumbaugh9l].

5.3.3 Soft Systems Analysis Methods

There are a number of analytical methods that can be thought of as 'soft' in their outlook, but most have

been derived from the most celebrated of all of these, Checkland's Soft Systems Methodology [originally

Check72 , and more recently Check90 J. This approach to problem solving will be taken as a prototypical

example below. The benefits of Checkland's method apply to most soft systems methods, and similarly the

criticisms of the example can be levelled at all members of the class.

The Soft Systems Methodology was devised by Peter Checkland at Lancaster University. It is very much a

product of the 'systems movement' which could be considered to have started in the 1930s by Betalanffy

with his 'General System Theory' [Bert68]. This movement considers human systems as holistic entities

with emergent properties that can only be understood by considering the whole. The systems approach to

problem solving has split into 'hard' and 'soft' camps. The hard methods consider systems that have a

clear purpose and well defined goals, and are useful for designing solutions that achieve those goals. The

soft methods on the other hand recognise that many human activity systems are so complex that they do

not have a single goal, and to impose a solution that embodies a single purpose can be extremely

damaging to the system. Checkland's method, which he calls Soft Systems Methodology (SSM), lies in

this second camp.

SSM can be understood as having 7 steps. The first is to investigate the problem situation, and the second

to express this in the form of 'Rich Pictures' which describe the problem from a social as well as

'mechanical' perspective (an example of a Rich Picture can be found in Section 7.2). Of crucial

importance at this stage is the recognition that different stakeholders in the problem might have very

different understandings about its nature: some might not consider the problem to be a problem at all.

Checkland refers to these as different 'world views' or 'Weltanschauungen'. The investigation of different

d: \jes\dis\wi p\phd\phdtext2. doc
46

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

world views reveals potential conflicts within the organisation being studied, and these must be recorded

on the rich picture. The third step is to devise a number of 'root definitions' that endeavour to describe the

essential nature and purpose of the system. It will generally be appropriate to have one root definition for

each world view. In the fourth step, for each root definition a conceptual model is created describing a
hypothetical system that would satisfy that purpose, and that purpose alone. The fifth step is to compare

the various new hypothetical systems with the current perceived reality as represented in the rich pictures

produced in step two. This comparison is done in conjunction with the stakeholders of the problem - the

main purpose is to stimulate discussion about possible changes to the current organisation. The sixth step
is to recommend changes on the basis of these discussions, and the seventh is to implement those

changes.

One observation that we can immediately make about SSM is that it explicitly and clearly distinguishes

between the problem and a possible solution. Although that solution does not necessarily take the form of

a computer system, that is certainly one of the possible results of the decision making process in steps 5

and 6 of the method. For this reason SSM is popular as a method to be used to define the nature of the

problem and suggest the scope of a computer based solution. At least one popular method [Avison90 I

combines SSM and SSADM together such that the first describes the boundaries and requirements of the

computer system, and the latter helps in its engineering. However, while the organisation and its

associated 'problem situations' are explored explicitly, that exploration is not carried out in a 'scientific'

manner such as we require. Indeed, it is the rich picture that is the main form of communication and

record during the step which describes the problem domain, and the stakeholders are actively encouraged
to take part in its construction. While this is highly commendable, it does not follow the scientific

method, and the end result is a diagram that has been agreed rather than tested.

As with the data modelling, we cannot even reject the method but use the associated notations. The only
representational notations that are at all standardised are the rich picture and the bubble diagrams that are

used to present the conceptual models of proposed systems. Neither of these has any formal semantic
content at all to speak of. In fact, the SSM can be followed perfectly well without using either of these

notations, relying on conventional English instead`''. There is consequently nothing here that we can use
to support formal reasoning.

Although we will not use the method because it fails some of the criteria we are insisting the method

chosen needs to satisfy, SSM nevertheless raises issues that the analyst must be aware of, and need to be

addressed by any analysis. The first is that there is no such thing as 'the purpose' of a complex human

organisation: at least not one that we can unequivocally define. The analysis reported in this thesis tried

as far as possible to avoid describing any form of purpose at all, concentrating on the operational rather

than managerial aspects of the directorate (it was considered that there would be less controversy

surrounding what the directorate 'does' than why and how it does it).

The second issue raised that we must be aware of is the lack of any single world view, and the possibility

that different stakeholders or would be users have very different outlooks, and 'constructed realities'. This

issue is discussed further in Section 13.3, but we should note here that however many different versions of

reality exist amongst the workers in an organisation, a computer system can only work according to one

consistent set of rules. The theory that we construct can only support a single view of reality: the analyst

vi It might be said here that this disagrees with our earlier insistence that all analytical methods presented their results in standard forms.
This is indeed the case, and SSM is very unusual in this respect. Some would say however that SSM is not an analytical method at all, but
rather a framework for'Action Research'. If this is so, then we should not be surprised to find that the process is considered of much greater
importance than any presentational products, and the result of that process is an altered organisation. This differs from SSADM which
places much store on the creation of 'products' such as LDMs, DFDs, and ELHs,

d: \jes\dis\wip\phd\phdtext2. doc
47

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

must ensure as far as possible that that theory can support, and is not refuted by, the multitude of

experiences reported by the workers interviewed.

A final point concerning SSM is that its use is not confined to designing information systems, and might
indeed be better used for other purposes. The way in which different world views are accommodated and
different conceptual models compared with the real situation before changes are chosen and implemented

makes it particularly useful for organisational restructuring projects. Business process re-engineering,

although an extremely interesting subject, was not the subject of the work reported here: the relevant
decisions had already been taken by the time the Directorate Information System project started. If the

project had started in an even more ill defined way than it did, then SSM might well have been an

appropriate tool to use, and the creation of a Directorate Information System might have been one of the

recommended changes to be implemented in step seven of the method.

5.3.4 Rapid Prototyping

In many ways, rapid prototyping is not a method at all, but we will consider it here as it is a recognised
and popular means of proceeding from a loosely structured requirement to a finished system. There are
many forms of prototyping used by the information systems community, ranging from one off prototypes
to see if the conceptual system design meets the stated requirements, to evolutionary prototypes that start
as mock-ups of the proposed system and end up being used in earnest (see [Boehm88] and
[McCrack82]), to'throw-away' prototypes that are used to elicit requirements from the users and then are
disposed of [Dearnley83]. It is this last form of prototyping that we are interested in here, though even
here there are many different ways to approach the task of creating and using the prototype [Kammer84].
The luxury of being able to create a system only to throw it away has been made possible by the
introduction of so-called 'high level' computer languages (Fourth generation languages, and visually
based languages such as Visual Basic) that enable working systems to be developed easily and cheaply,
though not of a sufficient robustness to be implemented.

Rapid prototyping techniques generally start with a sketchy outline of the desired system. A prototype of
the system is made, demonstrated to the user, and his or her comments about its usefulness used as a
guideline for its further development. The user might decide that the representation of her requirements is
faulty, or that her requirements themselves were erroneous and need to be changed. Once the changes
suggested by the user are incorporated into the prototype (this should not take longer than a few days), the

new version is shown to the user, and the process is repeated. Once enough iterations have taken place
(the decision that the prototype has stabilised is one of the most difficult parts of the method), the

prototype is considered to be complete, and can be used as the specification for a 'production' version that

can be implemented.

In common with the previous methods, we will ask the questions: is the method scientific; does it

successfully distinguish the problem from the solution; and is the presentational notation of any use to us.

The answer to the first question is maybe, but usually not. A prototype can act as a bridge between

universal and singular in the same way as a scientific theory: the specification of the prototype consists of

universal statements in common with all specifications (the statement of its program is universal), and yet

when demonstrated to the user, it becomes anecdotal and exemplary by virtue of its instantiation. In

practice, the use of the prototyping approach tends not to be scientific - the anecdotal aspect of the inquiry

is used in a fairly unstructured way to reveal requirements for the finished system, not as experiments

attempting to refute the universal statement, or theory, embodied in the prototype system, and still less as

a means of defining the user domain. Because of this, the approach tends to uncover already well

d: \jes\dis\wi p\phd\phdtext2. doc
48

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

understood and unambiguous (though probably previously unarticulated) requirements, rather than

exploring the limits of system behaviour. The consequences of this are shared by many tools and
techniques that 'learn' mechanically (including so-called 'Neural Networks', often hailed as useful
'knowledge' tools for clinicians much as expert systems have been) without providing insight: the majority
of the behaviour is as required, but when the system has to react to unexpected combinations of states and

operations, its behaviour will be unpredictable. The system created as a result of this process will thus be

attractive to the user -'user-friendly' - but will not display much robustness.

Although rapid prototyping is generally unscientific, it could be used in a more scientific manner

assuming the analyst had an accurate conceptual model of the underlying behaviour of the prototype. The

technique would still fail by virtue of our second criterion - it does not separate the problem from the

solution. Rapid prototyping is an iterative process that refines a potential computerised solution: the

requirements that result take the form of the specification of the finished prototype which have to be

reverse engineered from it (a far from trivial process). At no stage does the analyst or the user get a
deeper understanding of the problem that is being addressed (which in the case of an information system
is the organisation being supported, as we have seen). Without any deeper understanding, not only do we

miss the 'exceptions' to the general rule, but we also cannot anticipate likely evolution of the system, nor

ensure that the system will be able to act as a part of an eventual larger integrated system. Prototype

systems tend to be good at satisfying the immediate needs of the users: the absence of any investigation of
the underlying processes that are being supported means that ease of modification and maintenance of the

system, as well as the facility with which it can be integrated with other systems, will be a fortuitous

coincidence rather than a result of the prototyping method.

The processes associated with rapid prototyping are of no great use to us in the initial stages of our

analysis - how about the notation? The notation used to record the results of the prototyping-based
exploration of users' requirements is the artefact itself, or perhaps a statement of the programme
expressed in the programming language used. The statement of the programme takes the form of a

mathematical theory. The language is the particular formal system that is used to communicate with the

target machine. However, the forms of mathematics expressed as computer languages tend to be obscure

and unclear, the syntax confusing, and the semantics disguised (although some computer languages are

more 'mathematically pure' than others). An example of this is the popular computer language C++. Even

in an environment created to shield the developer from the idiosycracies of the particular machine being

used (Microsoft Visual C++ for Windows), we find passages such as follows in the statement of the

functional programme module:
#include "stdafx. h"
#include "resource. h"
#include "hello. h"
CTheApp NEAR theApp;
CMainWindow:: CMainWindow(
{

LoadAccelTable("MainAccelTable");
Create(NULL, "Hello Foundation Application",

WS_OVERLAPPEDWINDOW, rectDefault, NULL, "MainMenu");

All of this is necessary for the programme to function correctly - none of it casts any light on its essential

purpose or requirements.

Similarly, the statement of the programme tends to confuse the ephemeral and incidental with the

persistent and essential. This is because the prototype is not simply a statement of the requirements but a

d: \jes\dis\wip\phd\phdtext2. doc
49

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

crude working system that needs to be implemented on a physical machine: all computer languages used
for conventional rapid prototyping thus reflect this and 'incidental' considerations (such as how to store a

particular data type, or how to present information to the user) often obscure the essential logic of the

system. In extreme cases, the algorithm of interest occupies a negligible amount of the statement of the

programme - for example, C++ for Windows famously requires a programme whose pre-compiled state

occupies hundreds of thousands of characters just to print 'Hello World' on the screen. Of course,
sometimes it is precisely the incidental that we are interested in, and if we needed to explore the logical

consequences of certain data storage strategies, or information presentation protocols, then we would be

grateful for (some of) this extra content. At the stage of system development that we are currently at
however, this extra verbiage is unnecessary and confusing.

While the above is true for conventional prototyping approaches, there are some which are very close to
'pure' mathematics, avoiding the confusing syntactic encrustations of more common computer languages.
Among these are the functional languages such as Standard ML and Haskell, and the specification

animation systems such as OBJ3 / 2OBJ and the experimental SUZAN system developed by Surrey
University both of which 'execute' mathematical specifications which act as the 'programming language'.

The notation for one of these is similar to that chosen to represent the theories developed for this project,
and animation would have been used were it not for the unstable state of the animator and the great size
of the theory. Animators are generally distinguished from prototyping environments as the presentation of
the instantiation of the theory tends to be crude and inefficient, concentrating on the essential functions

rather than the user interface or communication with the host machine.

In conclusion, the rapid prototyping method of analysis is not appropriate for the task we are faced with:
structuring and understanding the essence of the 'problem domain' which is the clinical directorate. Few

rapid prototyping advocates would claim that it was, however. Just as the SSM might be usefully used
before a project such as this was defined (in order to produce such a project definition), so rapid

prototyping might be used once this project is complete, to ensure that the systems specified do indeed

satisfy the needs of the users, to refine the user interface so that it is 'user-friendly', and to act as a vehicle
for further experiments which might serve to refute the original theory. The prototyping approach was

used with some success to refine the interface for the 'Out-Patient Contract Management System', a

system which supported the contracting process, described in Appendix 6.

5.3.5 Others

The above review only covers a small part of the vast range of available systems analysis methods. Many

of these are described in the comprehensive review of the field conducted by Matthew Bickerton

[Bick92]. This review explores 17 methods in some detail, and a further 22 in a more cursory fashion: all

these have been used to help design computer systems, some many hundreds of times. Each of the

methods described is unique in one way or another, and more or less powerful at what it does. The degree

to which these methods separate the problem and the solution is varied, but all were rejected on the other

two criteria. None of these conventional and popular methods explicitly harnesses the power of the

scientific paradigm and the notation used by each is semantically weak (Bickerton describes 22 of the

presentational notations used by the methods he reviews). The two points are generally linked - if the

scientific method is not to be used, then the medium of communication and validation of the theory (or

model as many methods call it) will probably be the presentational medium. Because of the difficulty in

communicating well defined universal statements (along with their implications) to non-technically

minded users, the documentary evidence has to be extremely simple and of great clarity. Some of the

popular notations achieve this, but at the expense of accuracy or precision: accuracy when unrigorous and

d: \jes\dis\wip\phd\phdtext2. doc

50

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

ambiguous notations are used (such as is the case with DFDs); precision when the complexities of the

system being analysed are left out, and a simplified (albeit accurate) representation is provided (such as is

the case with ER diagrams).

5.4 Conclusion

In the above chapter we investigated what is meant by analysis, and what common features different

analytical techniques exhibit, through the consideration of two very different analytical processes:
chemical analysis, specifically of metal salts; and structural analysis, specifically of static structures. It

was explained that for each analysis method, a limited set of techniques and processes is used, and the
results are expressed in a stylised and structured form (called the presentational notation in the argument
above). Both the processes and the notation were considered when the methods chosen for review were
investigated.

Methods that might have been used for the project described in this thesis are judged according to how

well their associated processes and presentational notations support the scientific method. The degree to

which the techniques of the analysis bridge the gap between the unive-sal theory on the one hand and the
anecdotal experiment on the other is assessed. If these techniques were taken to be inadequate by this
criterion, then the notation was considered to see if it could be salvaged. The criterion for the selection of
the method was formal semantic richness - the notation needed to be able to say useful things about the
problem formally, and it needed to support rigorous deduction of theorems from the theory.

In addition all methods that are intended to be used to analyse potential information systems should
support the clear separation of the problem and solution - in particular by facilitating the description of
the domain without any consideration of an eventual computer system.

Three classes of analytical method are considered in this review: data modelling, soft systems methods,
and rapid prototyping. For each of these, a typical example of the genre is taken and judged against the
three criteria.

The processes used in the data modelling approach, typified in the text by the Structured Systems
Analysis and Design Method, do not fit in with the interpretation of the scientific paradigm described in

this thesis. The presentational notations display poor semantics: they do not say very much, and
consequently deduction from them is extremely limited. As the 'high level' diagrams are refined to a

system description, we can see that the problem and the solution are not sufficiently distinguished. Data

modelling is rejected as a vehicle for the scientific method - it is claimed that it would be more

appropriate to use it as a system engineering tool.

Although they address some important issues, the processes used in soft systems approaches, typified in

the text by Checkland's Soft Systems Methodology, do not use the scientific method. The presentational

notations, where they are defined, have even less formal semantic content than the notations associated

with data modelling. In spite of the observation the SSM effectively supports the separation of problem

and solution, it is not considered suitable as a basis of the method that might be used here. The fact that
SSM addresses social issues well, and that its perspective on the relation between the 'problem' and
'solution' is philosophically sophisticated mean it is well suited to being used 'upstream' of a project such

as this, to define the scope of the project. In this instance this was not necessary, as many of the
boundaries of the project (the existence of the clinical directorate structure, the desire for an
organisational computer system) had already been decided.

d: \jes\dis\wip\phd\phdtext2. doc
51

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The processes of rapid prototyping, although acting as potential communication channels between the

community of computer scientists and that of clinicians, generally do not accord with the scientific

method. Even if the approach was modified so that it did so more explicitly, it suffers from the fact that

generally no attempt is made to understand the nature of the problem at all, often leading to superficial

and fragile information systems. The presentational notation used to record the specification at the end of

the process takes the form of the statement of a computer program. For the most part, the syntactic
idiosyncrasies of the language used obscure the abstract processes being supported by the prototype. It is

argued that just as SSM is more suited to work 'upstream' of the type described in this thesis, so rapid

prototyping is more suited to work 'downstream'. Once the underlying structure of the system has been

specified, the iterative nature of prototyping and the close and direct involvement of users means that it

can be successfully used to refine the system.

Finally, we briefly considered other analytical methods described by Bickerton in his 'Practitioners

Handbook of Requirements Engineering Methods'. Although some of these successfully separate the

problem and solution, none follows the scientific method, and each is forced to use a clear but

semantically poor presentational notation.

It seems that none of the common systems analytical techniques reviewed can help in our desire to follow

the scientific method. As the project took the form of a doctoral study the development of a method

specific to the project and the problem was not infeasible. Because the hypothesis being tested was

specifically that a more explicit and concerted application of the scientific method would result in benefits

to the construction of clinical systems, this more thorough course was the one chosen. The method
developed is described in the next section.

It might be argued that the wrong selection criteria have been used to assess the methods reviewed.
Indeed, some of the issues covered by other analytical methods - those reviewed here and others - are

completely ignored in the arguments given above for rejection. Examples of methods and the aspects of

the problem they cover particularly well include: Checkland's SSM which addresses the description of

social conflicts; Mumford's ETHICS [Mumford86] which tackles job satisfaction; Beer's Viable System

Methodology [Beer8l] which explores organisational efficiency; Joint Application Development

[August9l] and Rapid Prototyping which encourage user 'empowerment'. That these other issues are not

explicitly covered by the method eventually used does not mean that the methods that address them are

not useful, and that we will only consider one 'invented here'. On the contrary, the end product that all of

this thought and work is leading to is the design of a successful information system (which is, as we have

seen, a difficult proposition): any insight we can gain into the problem can only be beneficial, and the

more tools that we use to help in our investigation then the deeper and more varied will be the insights

that we achieve.

The purpose of the academic aspect of the project is not to develop a successful computer system - it is

rather to test the stated hypothesis and achieve the stated goals. These hinge on the question of whether or

not a more explicit use of the scientific method is beneficial to the design of a clinical information system.
The use of the other methods described, or at least the adoption of their underlying philosophies, will

almost certainly help in the design of information systems - such use will not help us complete the

particular task being addressed in this thesis.

d: \jes\dis\wip\phd\phdtext2. doc
52

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Chapter 6: The Method Chosen - An Introduction

6.1 Introduction

This chapter discusses the method actually used in the project. This is necessary if the results are to be
understood. However, the aim of the project was to test the worth of the method as well as use it to derive
an information system specification. Consequently the method is also discussed in the light of the results
in Chapter 13. As in the last chapter the method is described in terms of both the processes and the
presentational medium used.

Firstly the presentational medium is explained - this is based around mathematics and symbolic logic. In
fact the particular notation used was the Schuman-Pitt notation, a type of model based notation. Model
based notations are in their turn a part of a larger family of presentational conventions known as formal
methods or formal notations. A formal notation is a structured way of using set theory and discrete
mathematics. A justification for the use of the type of notation chosen, and a brief overview of the way
that the notation works, is given at each level of selection.

The second section of the chapter describes the processes used to conduct the analysis. These concern the
creation of three theories - the domain theory, the information system specification, and the interaction
theory which composes the first two - and the use of those theories to engineer an (improved) information
system specification.

6.2 The Chosen Method: Presentation

6.2.1 Introduction

In order to appreciate some of the concepts used in the rest of this chapter, and certainly before the results
can be understood, we need to consider further the presentational medium that will be used. Some of the
arguments presented below are subtle and thus explained at some length - the author makes no apology
for this as he feels that clarity is more important than brevity. However, as the nature of set theory and
formal notations is not the main subject matter of the project, the ideas introduced here are generally not
discussed elsewhere in the thesis.

The idea of the scientific notation is first discussed and the means by which a body of knowledge can be

expressed in it described. The use of the appropriate calculus for deriving properties of the system that the
theory describes is explained. The choice of discrete mathematics in the form of set theory and first order
predicate logic as the basic notation and calculus is justified. A crucial distinction is made in the next
section - between theories and models. In short, a theory is a set of rules, and a model of that theory is a
'real thing' that can be considered to obey those rules. The use of a particular variety of discrete

mathematics, so called'formal methods' or more accurately formal notations is explained. Specifically the
type of formal method is the model based approach. The philosophy behind this - the representation of
systems in terms of an instantaneous state and changes to that state - is presented. A model based formal

method can be used to describe systems in terms of rules that are always obeyed by that system - its
invariant properties - and those which are obeyed when it is undergoing a particular change - the pre- and
postconditions of events. The need for consistency in the theory if any model is to be possible is

explained. The way in which set theory was used in the project, taking advantage of its semantic richness
but avoiding the use of formal proof procedures is described. The choice of model based formal notations
over other forms, and specifically the Schuman-Pitt notation, is justified. Finally, the way in which the so
called 'schema calculus' supports the rapid and concise statement of theories of systems is explained.

d: \jes\dis\wi p\phd\phdtext2. doc
53

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

If the reader feels he or she has a good grasp of formal notations then Sections 6.2.4,6.2.5, and 6.2.6 may
be omitted. If he or she is familiar with the Schuman-Pitt notation in particular then Section 6.2.8 and
6.2.9 may be similarly avoided.

6.2.2 Notations and Calculi: The Choice of Discrete Mathematics

Scientific rigour rests heavily on the use of logical notations with which to describe its theories and relies
on calculi to derive the theorems to be tested. We too used a form of mathematics familiar to computer
scientists - discrete mathematics in the guise of formal methods - to conduct all stages of the analysis.
However a theory is represented (and we might not recognise the mathematics in some forms of
presentational notation), the fundamental idea is the same. All theories act as sets of rules that a system"
is imagined to obey. Each rule in this basic set is an axiom of the theory: from these axioms we can derive
further rules by inference. Mathematicians call the inference mechanisms they use calculi: each branch of
science has its own calculi, though they might not refer to it as such. In this parlance, the derived rules
are called theorems.

The notations and calculi that are appropriate to our current task - the constriictio. i of an information
system - are those commonly associated with computer science. Fortunately, there is a generally accepted
basic notation and calculus available to us that has historically been used to talk about computer systems.
The notation is a set theoretic one, and the calculus the first order predicate logic. Between them these
constitute a variety of discrete mathematics. There are versions of discrete mathematics that do not use set
theory (for example the mathematics associated with the process description notation CSP), and some that
do not use first order predicate logic (for example Imperial College's FOREST which uses modal logic),
but by and large the type of mathematics we have chosen has more than enough deductive power and
semantic richness to construct the sort of theories of concern to us. The type of notation chosen and the
deductive apparatus is a familiar one. An example of a derived theorem is as follows -

given the three relations°"'

Daughters: Women -H Women

Aunts: Women 4+i Women

Sisters: Women (4) Women

and the axioms

Sisters = Daughters-' 0 Daughters \ id[Women], and

Aunts = Sisters 0 Daughters.

and the rules of logic and set theory, we can deduce that

Daughters-1 0 Aunts n Sisters =0

A proof of this theorem is given below in section 6.2.7. The collection of all the theorems that can be
derived from the axioms of a theory (including the axioms themselves) is known as the consequence

V0 system is used in its widest sense here. Theories can describe systems as diverse as the quantum mechanical behaviour of electrons, the
properties of the natural numbers, the reproduction rates of geese and foxes, or even the behaviour of human organisations such as a
clinical directorate.
v"' The set-theoretic symbology used here and elsewhere in the thesis is described in Appendix 1.
d: \jes\dis\wip\phd\phdtext2. doc

54

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume !: Thesis

closure of the theory - it is the consequence closure which lists all the rules that must be obeyed if the

theory is correct (However, as Gödel showed, the consequence closure does not describe all the rules that

must be obeyed - there is always the chance that some implications of a formal system will not be

derivable using a formal calculus).

6.2.3 Theories and Models

While we are considering theories, we ought to address one misconception that is often made concerning
the distinction between a theory and a model. A model is:

'... a preliminary solid representation, generally small ... to be followed in construction: something to be

copied ... an imitation of something on a smaller scale... ' [Chambers88].

In other words, it is something that takes the form of a quantity of interest. A theory is very different from

a model: it does not take the form of the entity in question, it rather lists rules that (we claim) the entity

obeys. Thus an entity relationship diagram which purports to describe an organisation would be better

described as a theory rather than a model. While a theory and a model are two very different things, we

can talk about a model of a theory. A model of a theory is a real thing that obeys the rules set out in the
theory. For example if we consider the domain theory, then one possible model of that theory is the
Diabetes and Endocrine Directorate (assuming the theory is a good one). We could just as easily produce
a computer simulation that has database entities corresponding to the major elements of the theory (its

state components), and which obey the rules recorded in the theory. When implemented, such a computer
system would be another model of the domain theory. Alternatively, we could consider a computer
specification which acts in the same way as a theory. A correctly implemented programme would be a
model of that specification. We must bear this distinction in mind when considering the discussion below

- the domain theory characterises the clinical directorate, a model of the theory would behave in a similar
fashion, and obey the same rules as the clinical directorate (again, assuming the theory is good).

6.2.4 Model Based Notations I: Structural Invariants

As explained above, the notation used is based around set theory, and its associated deductive calculus -

symbolic logic. In particular, a branch of set theory was used which was developed for describing a

particular class of mathematical systems. These mathematical systems are logically consistent entities

which behave in a manner that is both capable of description and which depends on previous behaviours.

An example of this sort of mathematical system is an implemented computer programme, and the branch

of set theory used to describe them have largely derived from the computer science community. Computer

scientists refer to these notations as'Formal Methods' or 'Formal Notations'.

The type of formal notation employed is sometimes termed'model based'. A theory presented using such a

notation describes rules which a system must obey if it is to be considered a model of the theory. Of

course, the system being described is intended to be a 'real' one, be it an organisation, or more

conventionally a computer system. How do we know whether these entities are indeed models of the

theory - how should we interpret the theory into a model? The model based approach uses a fairly simple

philosophy in this respect. The part of the world being described is considered at any instant to be static.

Because of this, we can imagine the system being described (instantaneously) by a description of its state -

a list of elements that exist, the classifications of those elements, and their relations to each other. If the

model is correct (with respect to the theory), its state will be one that is allowed by the theory at that time.

Most model based presentational notations use a type of rule to describe the state of the system, called an

invariant property. An invariant property, or rule, is one that always holds true over the state of any

d: ljes\dis\wip\phd\phdtext2. doc
55

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

model of the theory. This idea may sound confusing, but is in fact quite straightforward, and may be

understood more clearly through the use of a (very) simple example.

Let us consider a computer system that will store numbers - perhaps a crude database recording the ages

of a group of people (but not their names), the extension numbers of the staff of a department, or recent

years producing good claret. We could specify this in the following way -

Dataset: Set[N*)

that is - the dataset is a set of natural numbers (positive integers greater than zero). Let us now assume
that the available memory on the computer is very limited, and in fact we are only allowed four entries in
the database. We could specify a rule to this end"x:

#Dataset _< 4.

As there are an infinite number of numbers, the possible models of this theory are also infinite in

quantity. For each potential model, we have a criterion for judging whether it is indeed a model of the
theory as presented - namely we can count the members of the dataset and discard those which have more
than 4 (as well as those that contain elements that are not natural numbers greater than zero). We can
discuss and describe models directly through the use of the notation of set extension. Here a set is
described not by the rules it obeys, but its contents, using the set extension symbols '{' and '}'. Thus the
sets described by the set extension expressions

{13,4645,9J,

{2), and

(which is the empty set) all obey the rule. The set described by the expression

{56,1985,5534,1,10,99354672 }

does not as it has six elements. Of course the sets

{93, it) and

18,6, "rice pudding")

are not valid models of the theory either: it is Real but not Natural, and "rice pudding" is not a number.

The above theory is so simple as to be almost useless - for a theory to be valuable it must be able to

describe things of many kinds. Thus even a simple database in use will not only store numbers, but also
dates, addresses, names, and so on. When describing the clinic we will be interested in patients, doctors,

operations, consultations and many other quantities besides. Each of these types is represented by means

of a set. A model can be described at any instant by presenting the extension of each of those sets. Each

set, which may be simple or complex (such as a relation, function, bag, sequence or other structure), is

referred to as a 'state component' of the model. The invariant properties of the theory describe these state

tx A glossary of set theoretic terms is to be found in Appendix I
d: \jes\di s\w i p\phd\ph d to xt2. doe

56

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

components and the mutual constraints that act between them. The model of the theory is described by

listing the extensions of the state components - that is, enumerating their contents.

6.2.5 Model Based Notations II: Events

We are not only interested in the state of the system being considered - we are also concerned about

changes to that state - what are permissible behaviours of models of the theory. Model based approaches

again present rules that cover types of behaviour. They do this by listing a number of valid classes of

event that can change the state of the model. Each class of event has a name such as 'Create Entry', or
'Clear Dataset', and each is described by listing rules that must hold in addition to the invariants before

the event can take place, and those which must hold after the event has been completedx. The additional

rules that describe the circumstances under which the event is valid are known as the preconditions -
those that apply to the state of the model after an event are the postconditions. Again, the ideas here can
be better understood through the use of an example.

Suppose the database above was used to record the weight of a new-born child, in ounces, at birth and at

monthly intervals thereafter. The weight of a normal baby will increase each month. A simple error

prevention mechanism might thus be to only allow weights to be entered that were higher than all the

others in the dataset. Suppose we call this operation 'EnterWeight', and the new weight to be entered was

a quantity x, we might insist on the following rule as a precondition:

Vdata: Dataset "x >_ data.

The postcondition to this event would be to ensure that x was now a member of the dataset -

Datasetpost-event = Datasetpre-event u (x).

We can see if a model's behaviour is allowed by the theory by inspection. One behaviour might start with

the model state

1119,158,1321

and 'EnterWeight' with a new weight of 164. This is allowed as 164 is greater than any of the values

currently in the set. The postcondition tells us that the only acceptable new value for the set is

1119,158,132,164):

any other value for Dataset after the event would not be observed in a valid model of the theory. A

behaviour where a new weight of 120 was added to the same set would be similarly not be observed in a

valid model - 120 is not greater than each of the set's current values.

6.2.6 Model Based Notations III: Consistency

There are certain properties that the theory must exhibit if it is to be able to describe a model. Possibly the

most important of these is consistency - it must be possible for a model to obey the rules laid down in the

theory. If the theory is mathematically inconsistent then this will not be possible - an inconsistent theory

describes nothingxi. There are two types of consistency that we are interested in - static and dynamic.

x Note that in general. model based approaches do not say anything about the state of the system whit the event is taking place - other
approaches deal with these transient states much more effectively
xý This is a simplification (we are forced to make many such by virtue of the use of mathematics): some systems, such as the human mind,
can exist in apparently inconsistent states. We can believe in things that might be paradoxical or seemingly inconsistent. Some forms of

d: \jes\di s\wip\phd\phdtext2. doc
57

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System. A Formal Approach Volume 1: Thesis

Static consistency concerns the invariants alone; dynamic consistency concerns the interaction between

the invariants and the pre and postconditions.

Two invariants are inconsistent if there is no model that can obey them. For example, if the Dataset

theory was developed through the introduction of the invariant

#Dataset >4

then any model of the Dataset state component would have to have fewer than five elements and more
than four. There is no set that can satisfy both these criteria, and we can say that the theory is inconsistent

and cannot be a valid theory of anything.

In the same way, for a model of a theory to exhibit a behaviour described by an event specification both

the precondition and the postcondition must not be inconsistent with any invariant. More subtly, an event

must not take place which will leave the model in contravention of one of the invariants. In the database

example, with the current invariants and preconditions the following event is not explicitly prohibited.
Suppose the model of Dataset was

1119,158,132,164)

and the event EnterWeight occurred with the value 177 then in the starting state of the behaviour all the
invariants and preconditions are satisfied - the cardinality of Dataset is less than or equal to four, and the

new value is greater than each of the existing ones. However, were the event to take place, then the

postcondition tells us that the new state of Dataset would be

Datasetpre-event v1 x).

that is

1119,158,132,164} u{ 177) = 1119,158,132,164,177).

But if this were the case, then #Dataset =5 which contravenes an invariant. We must ensure that all the

events allowed by the preconditions and invariants give us legal models after the events. In the database

example this would mean the introduction of an additional precondition. One further predicate must be
introduced before we can construct the finished precondition - we need to be sure that x is in fact a real
number - we need a means of preventing such quantities as it and "rice pudding" from being entered into

Dataset. The correct precondition to EnterWeight is thus

xe N+ A `ddata: Dataset 9x >_ data A #Dataset < 4.

6.2.7 Set Theory in Use

One of the great advantages of the combination of formal logic and set theoretic notation represented by

the formal method movement is that the formal deduction of one property from another is enabled. Thus

the consistency criteria described above can be precisely specified in set theoretic notation and then

proven to hold, or to be broken, by the combination of other axioms in the theory. In a similar way, many

theorems can be formally derived from a small number of axioms thus easing the search for counter-

examples. However, this is not how the notation was used in this project; the deduction of theorems,

logic can represent certain model states and behaviour that would be considered inconsistent and thus impossible using conventional first-

order logic and Zermelo-Fraenkel set theory. Such logics are called non-monotonic.
d: \jes\dis\wip\phd\phdtext2. doc

58

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

although possible is difficult and longwinded in practice, even where automated support (such as the

BToolw") is available. It was felt that the major contribution of the project was in the use of the scientific

method to investigate a complex human domain rather than the deduction of interesting theorems. For

this reason the majority of the intellectual effort of the project was invested in gaining an understanding

of the user's domain rather than exploring the logical implications of the theory.

Nevertheless, the semantic richness and rigour of the theory was not ignored. Properties that were

considered to describe the domain under investigation were all expressed as axioms: time and effort was

thus not spent deriving theorems, but was rather devoted to ensuring that the (large) set of axioms

recorded were mutually consistent. This consistency checking was not done formally (although such
formal checking is perfectly possible and examples are given in part 3 of the thesis), but informally and
by inspection. The clarity and precision of the notation means that the implications of a theorem are
illuminated, and such informal checking is generally sufficient (and where it is not, it is better than the

more generally employed alternative where no consistency checking is performed at all).

We can see this clarity if we consider a relatively simple theory and try to express it in both conventional
data modelling terms, and also in set theoretic notation. We will take as an example the set of women and

the (family) relations between them: specifically aunts, daughters, and sisters. We can express this in

LDM terms as is shown in the following diagram (note that Daughters is the inverse of a one to many

relation - that is, it is many to one):

Aunt

Sister

r

Figure 2-3: LDM of the entity Woman and relations over that entity

There are a number of ways in which the relations interact. These are recorded below in textual form as

they cannot be expressed in the ER diagram:

" If two Women are related to the same Woman via Daughter, then those two Women are also related to

each other via the relation Sister. The exception to this is if the two Women are identical. There are

no other elements in the relation Sister.

" If one Woman is related to another via Sister, and a third is related to that second via Daughter, then

the first and the third are in the relation Aunt with each other. There are no other elements in the

relation Aunt.

We can propose a number of further properties of the theory and, using the facts presented above see if

they are logically implied or even at all possible. One of these is as follows:

If a Woman is related to another via Daughter, and that second is related to a third via Aunt, can the first

and the third also be in Sister?

xn A software tool for supporting the discharge of proofs developed by BP's Computer Laboratories

d: \jes\dis\wi p\phd\phdtext2. doc
59

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Using the above statements and the ER diagram such a proposition would be very difficult to reason

about. Even if we can find the answer a presentation of the argument will be laboured and unclear. If we

consider the problem in set theoretic terms, it becomes easier.

We have an element Woman taken from some carrier set:

Woman: Set[W]

and three relations:

Daughter: Woman -H 4Woman

Aunt: Woman (4) Woman

Sister: Woman FH Woman.

The first rule can be translated as the invariant property

Sister = Daughter1 0 Daughter \ id[Woman]

and the second as

Aunt = Sister 0 Daughter.

The proposition in question can be rephrased as:

Can pairs in Daughter 10 Aunt also be in Sister?

If we can show that Daughter's ° Aunt n Sister =0 for all Aunt, Sister, Daughter, Wonuin then the
proposition will be false. This is what we will do below.

Using equalities which are the invariants, we can say that

Daughter l0 Aunt n Sister = Daughte»» 0 Sister 0 Daughter n Sister = Daughter-1 0 (Daughter'' 0
Daughter \ id[Woman)) 0 Daughter n Daughter'' 0 Daughter \ id[Woman].

But from the observation that backward relational join '0' is a disjoint operation, we can say that

Daughter 1° (Daughter1 ° Daughter \ id[Woman]) ° Daughter =

(Daughter' ° (Daughter -I 0 Daughter) \ Daughter1 ° id[Woman]) 0 Daughter =
Daughter» ° Daughter' ° Daughter ° Daughter \ Daughter-' ° id[Woman] 0 Daughter=

Daughter' 0 Daughter -I 0 Daughter 0 Daughter \ (Daughter -I 0 id[Dom(Daughter)] ° Daughter v B)

Where B= Daughter-' ° id[Woman\Dom(Daughter)] ° Daughter.

But a basic rule of set theory tells us that A° Cod(A) =A for any relation A. We thus know that

Daughter1 ° Daughter-» ° Daughter ° Daughter \ (Daughter 1° id[Wonian] 0 Daughter L) B) _
Daughter1 0 Daughter' ° Daughter ° Daughter \ (Daughter 1° Daughter U B) _
X\ Daughter' 0 Daughter

d: \jes\dis\wip\phd\phdtext2. doc
60

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

where X= Daughter ° Daughter, 1° Daughter 0 Daughter \ B.

The expression

Daughter ° Aunt n Sister

can thus be written

X\ Daughter' ° Daughters Daughter '° Daughter\ Y=

X\ Sisters Sister\ Y

where Y= id[Woman].

It is clear that this intersection is the null set - whatever X is, the intersection of X excluding Sister with a
subset of Sister is empty. This might be considered to be a trivial example of the power of set theory but it

suffices to demonstrate the rigour and flexibility of the notation and its calculus. From the axioms given,

we have been able to clearly show that the daughter of a woman's aunt can never be her sister. If we find a

refutative example (and this is not incredible), then either the axioms are incorrect, or the proof given
above has been discharged incorrectly.

Although the terms used in the above argument are expressed in formal terms, the argument itself is not:
English phrases such as 'We know that', 'But', and 'Where' are used as conjunctions in the argument
without giving them any formal semantics. A formal proof would not use such terms, and the

conjunctions in the stages of the argument would themselves have formal definitions. Such arguments are
often called 'proof trees' and ,

because of the formality of the semantics of the argument, can be generated
(semi-) automatically. Much of the reasoning presented in the next part is even less formal than the one
we have just seen: however, it all exploits set theory to a greater or lesser extent thus adding to the force

and clarity of the arguments used.

The next two sections will discuss the particular brand of formal notation used in the project: the
Schuman-Pitt formal notation. The reasons for its choice and its unique features will be considered.

6.2.8 The Schuman Pitt Notation I: Why Was it Chosen?

Having decided that the appropriate mathematics to use is the discrete variety in the form of set theory

and first order predicate logic, and moreover that the conventions associated with formal methods are
useful we are still faced with a bewildering array of notations and approaches. Which formal method
should we use and why?

Cohen [Cohen84 1, [Cohen9l] divides formal methods into three types (though he also considers

structured methods such as data modelling as having a minimal degree of formality and thus semantics):
the algebraic, the process based and the state or model based. Any formal notation can be used to describe

the behaviour of any formal system, such as a computer, but some classes of system are more susceptible
to description by certain types of notation than others.

Algebraic notations were designed to describe and reason about abstract data types (ADTs). Examples of

such notations include CLEAR, OBJ, and Miranda (which is a functional programming language). An

abstract data type describes a class of data that shares structural and behavioural properties. The algebraic

notation specifies a valid 'language' and 'grammar' that can be used to describe the value of a particular
ADT. The language is composed of terms which are instances of the ADTs, and those which are operators

d: \jes\dis\wi p\phd\phdtext2. doe
61

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

which take those instances and return others of the same or different ADTs. Behaviour as such is not

represented, nor state - only the nature of valid operations on instances of ADTs. Because of this,

notations of this kind are useful for describing operations on data types supported by a given computer
language (such as the behaviour of the ADT 'set', 'list', or 'number' in a particular language), or for

specifying compilers and interpreters which transform data of one type (programme notation) into another
(machine readable code). Describing information systems or organisations in terms of ADTs and the

operations on them would be possible but tedious and result in a theory that was difficult (for the analyst)
to interpret into the domain.

Process based notations are used to describe behaviours of systems that are composed of interacting parts.
Examples of process based notations are CSP, CCS, and Occam (which is the programming language for

computer systems built using the Transputer parallel processor). A particular strength of these approaches
is that they enable the composition of and reasoning over actions and classes of action. Specifically they
help us to investigate the effects of concurrent processes in the same system. A computer system can be

thought of as just such a confluence of processes - the actions it engages in depend on the actions which
are interfering with it, past actions it has engaged in and actions it is currently attempting to complete.
Note that the factors determining which actions the process will engage in are other actions, not the state

of the system: in fact the state of the system is not represented at all in most process based notations. For

this reason, process based notations are particularly useful for describing a system without much apparent
internal state, but where the interference between processes is important. Examples of such systems
include a telephone network (where the behaviours of telephones and the central exchange will interact in

subtle and complex ways) or an operating system (where the behaviours of the different aspects of the

system - storage, display, processor, keyboard - will interfere with each other). A solely process oriented

method is not suitable for describing systems which can be best thought of as having a complex internal

state such as an information system or an organisation.

Notations which were solely algebraic, and those which were solely process based were deemed unsuitable
for our purposes: namely the investigation and description of an organisation and the information system
that is to support it. It seemed that the easiest way to represent an organisation was to adopt the

underlying philosophy of the model based methods: representation via models of the theory that possess
instantaneous state, and where behaviour is dependent on that state. This was also considered to be an
appropriate notation for the specification of an information system which would be implemented as a
relational database.

Having decided that the model based notations are most suitable for the tasks embarked on, there are still
several possible methods to choose from. Two very popular ones are VDM [Jones90] and Z [Spivey89].

The Viennese Development Method was developed by IBM in the 1970s: it is not only one of the earliest
formal notations, but also one of the most widespread. Although it is a popular notation, has been used in

many commercial projects, and there is much literature related to it, more recent developments feature

improvements over the technique. The most obvious drawback with VDM is the paucity of the structuring

conventions: theories have to be specified 'all at once': complexity cannot be introduced incrementally - in

fact the notation itself is very similar to'raw' set theory.

Z, developed at the Oxford University Computing Laboratory in the early 1980s (from original work by J

R Abrial), is another notation that is popular, is extensively supported by literature, and has been used in

commercial projects (for example in the widely reported re-development of the IBM product CICS

[Hayes93]). The notation features more structuring than VDM and introduces a 'schema calculus' which

d: \jcs\dis\wip\phd\phdtext2. doc
62

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

enables specifications to be combined and refined incrementally. Although this is an improvement over

VDM, Z does not readily support composition of several systems which mutually interfere in the way that

the process oriented notations do. Support for such composition would be very useful in the process of

analysis for two reasons. Firstly we want to investigate different aspects of the organisation in isolation

and see how they interact, thus reducing the complexity of the work through the effective 'separation of

concerns' (this concept is discussed more fully in Section 6.3.3). Secondly we need to compose two

different theories together - the domain theory and the information system specification - to form the

interaction theory.

Composition of processes and systems is supported in a model based framework by the Schuman-Pitt

notation. This is from the same stable as the more common Z (they are both developments of earlier

pioneering work conducted by JR Abrial) and was developed by Steve Schuman and David Pitt at the

universities of East Anglia and Surrey. Using this method we can talk about processes and compose those

processes together (as we can with CSP and CCS) so as to analyse possible behaviours (expressed as

'traces' of events) of the composite system. The advantage of the notation over the more conventional

formal process description languages is that it is model based and thus enables the expression of theorems

that describe and constrain the possible instantaneous states of the system. It does this through its own

schema calculus which describes the means of composing two theories and the resulting semantics of the

composition. One remarkable feature of the notation's semantics which helps class composition is the

support for indeterminate post-conditions. The Z notation insists that the state of an object following an

event is completely specified. This is a problem when composing classes as great care must be taken that

postconditions from composed operations are not mutually inconsistent. In designing a theory or

specification in Z, component classes often have to be re-engineered to reflect a constraint that the

composite class imposes. In other words, specifying in Z benefits enormously from the wisdom of

hindsight. The Schuman-Pitt notation on the other hand is more flexible when it comes to composition.

Instead of insisting on deterministic specification of postconditions, more indeterminate predicates can be

used. In short, the specifier is able to define what the essential changes to the state of the system will be

after the operation, and the semantics of the notation are such that only those changes that are necessary

to ensure that the invariants are not contravened are implied. By only describing the essential changes,

composition is possible without the necessity of re-engineering the component classes. This is described

further in the next section. For an in depth review of the concept of the weakest postcondition, the reader

is referred to `the Rest Stays the Same' [Schuman94] by Steve Schuman and Dave Pitt. It should be noted

here that another benefit of the semantics is that the specifier needs to concentrate on making the

strongest invariants possible, and the weakest postconditions. This is in general a good design strategy

anyway. It enables us to tightly specify the topology of the system's state space which can not only reveal

valuable insights but is substantially easier to reason over than the state space represented by the sum of

all possible behavioural traces.

Before we leave the subject of class composition, a significant difference between the Schuman-Pitt

notation and other Object-Oriented (00) specification notations should be commented on. Whereas a

common feature of many 00 notations is the representation of mutual constraints imposed by two classes

on each other through the passing of messages between them, the Schuman-Pitt notation directly

represents these as direct conjunction and specification of new invariants over the conjoined class. This

again means that we can directly and tightly define the topology of the system's state space rather than

having to infer it by considering sequences of messages and their effect.

Because of these advantages (and the willingness of one of the originators of the notation, Steve

Schuman, to work closely with the author) the Schuman-Pitt notation was the one chosen as the means of

d: \jes\di s\wi p\phd\phdtext2. doc
63

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

expressing and presenting all the theories. The next sub-section gives a very brief overview of the

Schuman-Pitt notation, and describes some of its unique features.

6.2.9 The Schuman Pitt Notation II: How Does it Work?

As explained earlier, the basic notation used is set theory (specifically the strongly typed variety defined

by Zermelo and Fraenkel in the early years of this century [Hayden68 1) and the associated calculus first

order predicate logic. The Schuman-Pitt notation provides a set of structuring conventions so that we can
easily describe the behaviour of complex systems.

A theory is created in the notation out of syntactic and semantic units. The syntactic, textual, unit is the

schema. A schema looks somewhat like a table with set theoretic predicates as its contents. The semantic
unit is the class. The Schuman-Pitt formal language is 'object-oriented' which is one of the reasons why it
is so powerful - objects are not described directly, but the classes which act as the containers of the object
are. Using the various schemata, a theory of the behaviour and states of objects which are instances of the

named classes can be constructed. One of the important concepts of the object oriented approach to system
description is the notion of inheritance. Thus a class whose instances are objects with simple states and
behaviours can be refined to create a class whose instantiated objects are more complex. The development

of the theory of one class into a theory of another class is made possible by the 'schema calculus' which
describes how a schematically described class can be refined, and defines the semantics of such
refinement. The schema calculus supports multiple inheritance - in other words a class can be composed
of two or more others in which case its instantiated objects will in some sense exhibit properties of all the
inherited classes. How the schemata describe the states and behaviours of objects, and how such schemata

can be combined to form new theories is explained briefly below.

There are two types of schemata: state schemata and operation schemata. A class is described by one state

schema and a number of operation schemata all of which share the same tabular form with up to three

areas where descriptions can be entered as follows:

Area I

Area 2

Area 3

Figure 2-4: Tabular format of state and operation schemata.

Note the three areas where predicates and other set theoretic expressions can be entered: Area I (at

the head of the schema), Area 2 (above the line), and Area 3 (below the line).

The state schema of a class describes the rules limiting the possible states of an object of the class. The

name of the class of objects currently being described by the theory is written in area I at the head of the

schema. In the body of the schema, above the line, type declarations and invariants are presented. The

type declaration defines the most basic nature of the state components of the objects in the class in terms

of more primitive state components (the most primitive of which are the carrier sets, the basic types in the

theory). The invariants are set theoretic predicates which describe allowable states of the state

components. Below the line, in area 3, the initialisation pseudo-operation is written: what value objects in

d: \jes\dis\wip\phd\phdtext2. doc
64

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

the class start with are recorded here. Using the example of the database theory introduced earlier we can
illustrate the way in which the state schema of the Schuman-Pitt notation describes the state components

and invariants of objects in a class.

BasicDatabase

Dataset: Set[N+] (Type Declaration)

#Dataset <_ 5 (Invariant Predicate)

Dataset' =0 (Initial Value)

The 'dash', or 'prime' character following the name of the state component under the line indicates that
this is its state after initialisation.

The operation schema describes a class of events that the objects being defined can engage in (In this
thesis, events in the model's behaviour are called operations). At the head of the schema we write the
name of the operation, and any parameters that the operation takes. Thus in the database example, a name
of one of the operations is EnterWeight and the parameter is the weight to be entered to which we assign a
(dummy) label thus: EnterWeight(x). In area 2 the parameters are described in terms of the state
components (be those primitive or specified) of the class - in our example the parameter, x, must be a
natural number so we say:

z: N+.

Once the parameters have been described we can write the precondition to the operation - this is also done

above the line in the second area. Finally, below the line we write the postcondition - the prime character
is again used to distinguish the value of a state component after nn operation from its value before. The

example for EnterWeight would thus be:

BasicDatabase. EnterWeight(x)

x: N+

Vdata: Dataset "x >_ data A #Dataset <4

Dataset' = Dataset u(x)

A class theory can be refined, composed with another class theory, or composed and refined in order to

create a theory of a new class. The semantics of this composition is given as part of the schema calculus

and is precisely defined. In general we can give the form of a typical state schema as follows:

Class]

Xi: PTd'1; X2: PTo12;
... ;

&u: PTclnt

P1(X1,
...,

Xn,);
... ;

PPP(X1, ...,
X, 1)

11(X1 ',
...,

Xnt);
... ;

lni(XI ',
....

Xnt')

d: \jes\dis\wi p\phd\phdtext2. doc
65

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

In the above schema, PTi is a primitive type, so the first line in area I is declaring types (The semi-colon

enables two type declarations or predicates to be written on the same line - semantically, two predicates

on adjacent lines, or on the same line but separated by a semi-colon can be thought of as being joined by

the A conjunction). P; (XI,
...,

X�1) is the ith invariant predicate over the state components X1,
...,

X 11t.
Similarly !; (X1 ', ...,

X�/) is the ith initialisation predicate over the same state components dashed. Suppose

we had defined the invariants of another class as follows:

Class2

YI : PTC21 ; Ymr PTC2mt

QI (Y1,
",

Ymt); ; Qmp(Yl,
"'

Ymt)

�I (Yt
+ "+

Ymt); ; �mi(t ..., mt

We can compose the state schemas of these classes together to give the state schema of a third as follows:

Class3

Class], Class2

Zl : PT C31;
... ; ZIt: PTc3n

RI(%XI, "+ Xnt, Y1, "' Ymt" ZI+ ""+ Z1); ; Rlp(XI, ", X, , Yt, " ", Yint, ZI, ", Z11)

Kl (X (', ...,
X"t

,
Y1 ',

...,
Y1, ZI',

...,
Z1t);

... ; Kli(X 1', ...,
X' t" Y1',

...,
Ymt', ZI'..... zit')

The schema calculus tells us that the meaning of this schema is given by replacing the word Class] with
the type declarations and invariants from that class (Class]) above the line, and the initialisation

predicates below. The equivalent (and normal form) expanded class schema would thus look like this:

Class3

X,: PTA11; ... , X,,,: Pi1 nt Type Declarations

Yl : PTo21; ., Ym,: PTc2mt

Z1: PTC31; ... ; Zr,: PTc3, t

PI(XI, ..., Xnt); ... ; P�p(X,, ..., Xnd Invariant Predicates

QI (YI,
...,

Ymt);
... ; Qmp(Y1

...,
Ymt)

R1 (X), ..., Xnn YI, ..., Y, nr, Zi, ..., Zit); ... ; Rip(Xl, ..., Xnr, YI,..., Yin: ' Z1, ..., Z11)

Il (itý , ...,
Xntý); ... ;

Ini(Xiý, ..., %tnt)
lniiial Values

Yint');
... ; Jini(YI Y?

nt')

KI(XI ', ..., Xni , Yj ', ..., Yºrri , Zj', ..., Zit'); ... ; Kli(X I ', ..., X,, ', Yj ', ..., Y,, ', ZI ', ..., Zit')

It is because the type declarations and the predicates are inherited from the composed classes that we can

create invariant predicates in the new theory that refer to state components defined and constrained in

d: \jes\di s\wip\phd\phdtext2. doc
66

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

previous theories. The necessity of consistency between invariants in a class thus does not apply solely to

the invariants specified in that class's state schema, but to the set of invariants in the expanded schema. It

should be noted here that the primitive types that are used in the type declarations in the composed class

might be constructed out of the declared types in the earlier schemata. If this is the case then the type
declarations in the unexpanded schema of the composite class must be rewritten as declarations which do

not use previously defined types (as opposed to given types, such as the carrier sets) and appropriate
invariants which constrain the now relaxed types. For details of this and other subtleties of the schema

calculus as it applies to the composition and refinement of state schemata the reader is referred to the

original literature [Schuman90].

Operation schemata are composed together in a similar way - the expanded schema taking all the

preconditions and postconditions from the composite schemata as well as the unexpanded one. Of course

we need to specify not only the classes being composed, but also the operations within those classes. One

important aspect of the notation that was commented on above is the idea of minimal specification of

postconditions. This point merits further consideration.

Suppose in our database example we had defined an operation, Remove Weight, to remove the lowest

value element from the state component Dataset (This would have the effect of changing the starting

point of the weight measurements from birth to one month, then two months and so on). A reasonable
definition for this operation might be:

BasieDatabase. Remove Weight

Dataset ý0

Dataset' = Dataset \ {x: Dataset I Vdata: Dataset "x5 data}

Which has the effect of removing the lowest value of Dataset.

One possible refinement of the dataset would be to introduce a new operation on a subsequent refined

schema which kept the cardinality of Dataset the same, but changed one of its members - thus the

updating of the database could be done in one operation rather than two. This could be specified by

creating a new operation (in a derived class) which invoked both the EnterWeight and RemoveWeight

operations from the previous class thus:

LessBasicDatabase. CliangeWeight (x)

BasicDatabase. EnterWeight(x)

BasicDatabase. Remo veWeight

There is no 'below the line' section here because we need to specify no new postconditions. With the

existing postconditions for EnterWeight and RemoveWeight, however, there is a problem. As the

postconditions are inherited and conjoined the postcondition of the new operation would be:

Dataset' = Dataset v {x} A Dataset' = Dataset \ {x: Dataset I Vdata: Dataset "xS data). With the

specified preconditions this is inconsistent: from the first postcondition we have

d: \jes\dis\wip\phd\phdtext2. doc
67

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Dataset' c Dataset

(because we know that x0 Dataset)

but the second tells us that

Dataset c Dataset'

(as we know that Dataset # 0).

These two propositions cannot both be true. The Schuman-Pitt notation allows us to be less prescriptive
about the postconditions but still say what we want to. For example, instead of writing

Dataset' = Dataset v (x)

as the postcondition for the first operation, we can say

xe Dataset'

and for the second operation (that removed the lowest member)

{x: Dataset I Vdata: Dataset 9 x: 5 data) n Dataset' = 0.

These two propositions are not inconsistent. The semantics of the notation mean that we can deduce the
exact state following an operation from these seemingly less deterministic postconditions: the specified
change is accommodated but where possible, the rest of the state of the object described stays the same.
Thus in the case of the earlier postcondition, Dataset has x as a member after the operation, but is

otherwise unchanged. Exactly what 'the rest' which remains unchanged is rigorously specified by the
notation's semantics. In this area these are subtle and somewhat involved, and they will not be explained
further here. In use however, the meaning of the operation schemas is informally clear without taking

recourse to the formal details of the language - the idea of 'minimum change' is intuitive if difficult
(though certainly possible) to define rigorously.

While considering consistency, we can briefly discuss the proofs we are obliged to discharge to
demonstrate that a class is consistent. The Schuman-Pitt notation insists on a predetermined number of
proof obligations for each class. For each state schema, we should discharge two proofs - one to show that

a valid model of the class exists, and the other to show that the initial state of the class is a valid one.
Clearly these two proofs can be discharged with the same argument that demonstrates that all possible
initial states of the class are valid. Each operation is similarly associated with two proof obligations - the
first shows that a state of a model of the class that satisfies the invariants and the preconditions of the

operation exists, and the second that for all such initial states, a state exists that satisfies the

postconditions and invariants (in their dashed forms). Thus for each class, 2n +2 (where n is the number

of operations in the class) proof obligations must be discharged if we want to guarantee consistency.
Although formal proofs were in general not discharged in this project, the fact that we know exactly how

many there are, and exactly what form these take, ease the task of informal consistency checking by

inspection. Simple proofs for the consistency of one class are conducted in Section 9.2 of the thesis.

One final point will be made here before we proceed to the next section of the chapter. Although the

notation is heavily 'object oriented', not all of the features of this 'paradigm' were used in the theories
created by the project. Notably, the specification of separate objects that communicate and interfere with
d: \jes\dis\wip\phd\phdtext2. doc

68

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume (: Thesis

each other was avoided. Thus a model of the complete theory can be thought of as being one object that

has instantiated all the properties of all of the classes described in the theory. The fact that the

organisation is described by defining one highly complex object as opposed to a network of simpler
interfering ones renders the semantics of the theory simpler and thus hopefully easier to understand. A

reworking of the ideas making more use of this aspect of the notation might be a fruitful exercise
however, as is pointed out in section 14.7.

The next section describes the processes used in the analysis (as opposed to the presentation of its results).

6.3 The Method: Process

6.3.1 Introduction

This section will talk about the procedures and processes used in the analysis. Firstly we will talk about

the need for three separate theories - the domain theory, the information specification and the interaction

theory that composes these two together. The domain theory describes the part of the organisation under
investigation; the information system specification describes an existing or proposed information system

as a basis from which we engineer future changes; the interaction theory composes the two together so

that the adequacy of the interpretation of the information system into the domain can be assessed. The

method used for deriving the domain theory is presented briefly. This revolved around the use of singular

statements in the form of anecdotes elicited during interviews with clinicians to refute and thus refine

universal theories of the organisation. The information system specification describes either a current
information system that needs to be improved and integrated more successfully with the organisation, or a

proposed information system that will address a particular need. The interaction theory composes the
domain theory and information system theory together to create a third metaphysical theory which

attempts to show how the latter will be perceived in use as a representation of the former. Finally, the last

three sub-sections consider how the combination of these three theories can be used to engineer a better

information system.

d: \jes\dis\wip\phd\phdtext2. doc
69

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

6.3.2 The Need for Three Theories

The previous chapter introduced one of the most fundamental assumptions on which this work is based:

namely that when in use, an information system is interpreted into the world by its users. In other words,
an implemented information system is understood to be a representation of a component of the world as
the user perceives it. Furthermore, if the information system cannot be interpreted (or can only be partly
interpreted) as an aspect of the world, then the users will display dissatisfaction with the system. We

cannot access either the user's perception of the world (called the domain) or her interpretation of the
information system directly. We investigate this indirectly, however, by saying (more or less accurate)
things about the domain and seeing whether an appropriate interpretation is possible for the designed
information system, assuming that the things we said about the domain were correct. This is illustrated in
figure 2-5 below.

Information System
Theory stru n , 9n

Systerr Implementation

Theory of Theory of
Domain Information System

-J l

Interaction , vk"
Theory

Domain
Information
System

Interpretation

Figure 2-5: Illustration of the method used.

Although we cannot directly access the users' perceived realities or domains, or their interpretations of the
information system into the domain, we can construct theories which give us insight into these
intellectual constructions. We need three theories if we are to be able to do this.

Firstly a theory of the domain must be created, independently of any considerations of the information

system (although the sch of the domain will inevitably be influenced by these considerations - see
section 7.3). The theory records a set of properties that we claim the domain exhibits. A theory of the

proposed, or existing, information system is straightforward to create - it will often take the form of a
functional specification. The final theory we construct is called the interaction theory. This is a theory of

the user's interpretation of the information system: it takes the form of a composition of the domain theory

and the information system theory. If the interaction theory is well constructed, it can reveal the extent to

which an information system that is a correct implementation of the specification (that is, the information

system theory) can be interpreted into the domain. This may reveal a number of shortcomings in the
information system. For example: an entity in the information system might exhibit an insufficient range

of behaviours when interpreted into the domain; the entity might exhibit behaviours that are never

observed in the domain; the entity might exist in insufficient states thus not representing the required
d: ljes\dis\wip\phd\phdtext2. doe

70

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

extent of the domain; the entity might exist in states that represent states of the domain that are never

observed; or the entity might exhibit a number of these inaccuracies. Thus through inspection of the

interaction theory, we can understand how the information system will be interpreted and determine

where that interpretation is problematic.

Understanding the world is the role of science - acting to change it is the role of engineering. We can

engineer better systems specifications once we have gained (through use of the scientific method) a better

understanding of the parts of the world we are interested in (namely the domain, the information system,

and the interpretation of the information system into the domain by the users) and expressed it in the form

of the three theories. By inspection of the interaction theory we can see where interpretational weaknesses

of the information system lie, and can thus take action to overcome them.

This engineering step is not mechanical, and there is no 'correct' way to complete it. It is often not
desirable to have the computer system act as a perfect representation of the domain. In fact, it is argued

elsewhere (Section 12.4) that in general we should strive for simplicity and minimalism in

implementation. There are, however, guidelines that can be used - some errors of representation are more

serious than others. By using the interaction theory, we are confronted with the implications of the design

decisions that we make. In this way the method advocated here enables the design of the information

system to be completed in an informed manner - neither we as designers, nor the users (assuming they are

consulted in the engineering process) should be presented with any unpleasant surprises upon
implementation.

It should be remarked here that the domain theory is not the same as the requirements of an information

system. Even if we accept our assumption concerning the interpretation of the Information System, we
have not in our analysis identified for which aspects of the domain support is required. It is unlikely that

the entirety of the domain analysed should be given computer assistance, and even if it should,

computerisation of different sub-domains will have differing priorities. The statement of the areas of the
domain that require most urgent support is a different sort of statement of 'requirement', equally
important, but not addressed by the method discussed in this thesis. In practice, the choice of system
implementation ordering will in all probability be made by the commissioner of the analysis. The

existence of the domain theory is crucial here so that the meaning of a requirement for a 'booking system',

or 'an internal referral system' is clear, and the implications of implementing support for those sub-

domains alone is apparent.

If the engineering decisions described in the previous paragraph are to be made wisely, we must ensure

that our three theories are as accurate as we can make them. If the information system being investigated

already exists then the information system theory must be derived from it -a classic case of 'reverse

engineering'. If it does not, then the information system will be an implementation of the specification,

and accuracy becomes an irrelevant concept (it will be important to provide an accurate implementation,

but we are not concerned with that here). Similarly, if the information system is being designed, then the

interaction theory will be almost impossible to verify (though this does not prevent it from being wrong:

see Section 13.4) - even if the information system exists, the interaction theory will be very difficult to test

because of the tenuous and indirect nature of the domain being described (the interpretation of a symbolic

structure into a perceived reality). The essential problem is that we cannot predict how the information

system will be used any more than we can predict how any tool will be used. We cannot demand that the

user of an information system interprets the entity named 'patients' as the real-world concept patients and

not hospitals, doctors, or drug regimes any more than we can demand that the user of a screw-driver uses

the tool to tighten screws rather than open tins of paint, bang in nails, or stab passers-by. This does not

d: \jes\dis\wip\phd\phdtext2. doc
71

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

relieve us of the obligation to create as realistic and honest an interaction theory as we can - merely that

the scientific method is of limited use in so doing. In practice, the interpretation of entities and operations
in the information system are generally fairly obvious, and introspection is usually sufficient to create a

good interaction theory. The technique of constructing the interaction theory is examined in greater detail

in Section 11.3. The domain theory, however, can be tested extensively and according to the scientific

method - this must be done if the information system is to have a chance of benefiting from the approach
described here. The quality of the decisions made concerning the engineering of the system specification
depends on the accuracy of the various theories required: it is beholden on us to ensure that these are as
'correct' as we can reasonably make them.

The following three sections describe in more detail how the three theories are constructed, and how they
are used to engineer an information system specification. We will presently consider the construction of
the first of the three theories - domain theory - but first we will make some important observations about
theories in general, and the notation employed.

6.3.3 The Domain Theory

The method used to construct the information system depends crucially on the central assumption

concerning interpretation of the information system: in order for it to deliver an effective system, a sound

understanding of the domain is required. This understanding is expressed as the domain theory - it is this
theory which acts as the starting point for the engineering of the system specification. If we get the
domain theory 'wrong' then the whole process is rendered invalid. Conversely, the better our domain

theory, the more likely we are to identify potential interpretational shortcomings in the eventual
information system. However, not only is the domain theory the initial and thus the most important of the

theories to get 'right', it is also the most difficult. The attempt to understand any person's world view is

fraught with difficulties of a philosophical as well as a practical nature: that the world view concerns a

subject area as complex as the delivery of health care increases still further the problems we face.

From the above preamble, it should come as no surprise that it is the construction of the domain theory

that takes the greatest time, and it is here that the greatest degree of intellectual effort should be invested.

In the event, the development of the domain theory took eighteen months - half the time allotted to the

entire project (excluding 'writing up'). The observation that this part of the project would be the most
important and demanding meant that it was here that the scientific method was followed most

scrupulously. The manner in which the scientific method was used is described in the next few

paragraphs (a deeper and more detailed discussion is presented in Section 13.3).

The scientific method relies on the development of ever bolder (or more falsifiable) theories and their

subsequent refutation and reconstruction. In order to start the process, an initial theory is needed. This is

a first guess or best estimate, derived inductively from a combination of observations, discussions and the

analyst's prejudices. The scientific method says nothing about this process which is a fundamentally

creative one. In the same way it does not present a way of creating a new theory when an existing one is

refuted - it merely sets out criteria for judging the merit of a given theory. A discussion of the creative

process lies more in the realm of psychology than systems analysis and will not be discussed further here.

Suffice it to say that it is clearly one of the most fundamental, if ineffable, components of any difficult

intellectual endeavour - analysis is no exception and the use of mathematics to help judge its results

should in no way be taken as an attempt to 'automate' this most human of activities. For interesting and
illuminating discussions of the nature of creativity, the reader is referred to, for example [Koestler89].

d: \jes\dis\wip\phd\phdtext2. doc
72

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

In the case of the analysis reported here the initial theory was constructed after the analyst had explored

the domain in an informal manner, by means of observation of the clinic in operation and discussion with

workers in the directorate. Once the initial theory was defined and stated, the cyclical theory development

process could be embarked on.

As was explained earlier, the theory consists of axioms and rules of deduction with which theorems can
be derived. If any theorem is seen to be incorrect, then the axioms must be false (or possibly the rules of

mathematics, though this is a lot less likely!), and as a result the theory itself is refuted. The rules that

govern our lives tend to be of the 'thou shalt not' rather than 'thou shalt' variety (at least in English law):

society decides the limits of acceptable behaviour within which its citizens may act as they wish. The

rules which together form the theory of the domain are no different - they describe the limits of acceptable
behaviour of the system. The difference between these two bodies of law lies in the appropriate reaction to

the breaking of a rule. In the case of a citizen breaking the rules of the society she lives in, that person is

considered to have transgressed and will recieve some form of sanction. In the case of the system

exhibiting a behaviour that is forbidden by the theory that purports to describe it, the theory is considered

to be incorrect and should be abandoned. In constructing a theory of the domain, we are not prescribing

the allowed behaviour of the organisation - rather the assumption is that there is some (consistent,

cohesive, complete and closed) set of rules that do govern its behaviour (that we are unaware of) and we

are trying to discover and represent them explicitly. If a behaviour which the theory forbids is observed,

then that theory clearly does not describe the rules that the system being observed obeys. Refutation of the

theory thus takes the form of a search for behaviours that are forbidden by one of the 'rules' or theorems

(be they axiomatic or derived) from which it is composed.

The way in which refutations are obtained is of necessity somewhat different when the system being

investigated is a human organisation. Simple observation of phenomena is not generally sufficient to

generate refutations for meaningful theories - if a theory is to have a chance of being correct it will have

to account for the general case. That a theory can 'explain' an unusual and unexpected phenomenon

makes it far more powerful, and it is consequently on the unusual, that the theory allows and yet previous

theories and notions forbade, that we must focus our attention. In order to do this, conventional science

relies on the use of controlled experiments. An experiment is an artificial environment that, assuming the

theory is correct, constrains the system being investigated to behave in an unusual manner allowed by the

theory. More specifically, if the theory is incorrect, a good experiment will force the system to exhibit

'forbidden' behaviours. Any theory will be limited in scope -a useful theory will not address aspects of the

world that are of no immediate concern to us. A controlled experiment will exclude the influence of

aspects of the world that are not covered by the theory. For example a basic theory of dynamics might not

describe the behaviour of bodies in viscous liquids, so an experiment to test some aspect of it must

somehow contrive to counteract the influence of viscous forces.

Where the domain being investigated is a human organisation, such controlled experiments become

almost impossible. It is not feasible (nor morally acceptable) to inflict artificial conditions on the clinic

just to test an analyst's theory. We might choose to rely on observation alone, but as with conventional

science the most likely phenomena to be observed will be the most common - exceptions that prove the

rule will happen less frequently, and may not be observed in the time frame of a reasonable development

project. Even if we were willing to spend significant periods of time observing the organisation being

studied, the resulting theory would only be of our own domain rather than that of the users or

stakeholders of the system. The world view of the organisation developed by an external analyst will

almost certainly be very different from that of a member of its staff.

d: \jes\dis\wip\phd\phdtext2. doc
73

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Here we come to an important point: there is a fundamental difference between a theory of some part of
the world conventionally talked about by 'hard science' and a theory of an organisation. When considering
a physical system, such as an electric circuit or a particular molecule, each of us can be equally
dispassionate about our contemplations. The same is not true of an organisation. The world view of those
who are not associated in any way with the organisation might possibly be dispassionate in the same way
as a 'scientific viewpoint' can beX"': the world view of those who work for that organisation or are closely
involved with it will certainly not be dispassionate. In a sense, the reality we are writing theories about is
that belonging to a part of the system being analysed. It is for this reason that the concepts and categories
that the analyst creates to understand the domain will probably be very different from those that the
concerned participant uses.

In the domain analysis conducted in the Diabetes and Endocrine Directorate, direct observation was used
relatively little - instead a form of 'experimental' interview was relied on. In these interviews, the analyst
tried to elicit examples of behaviour of the domain from the interviewee - generally a clinician or
paramedic. These interviews acted, after a fashion, as experiments in that the discussion was guided by
the analyst to address areas of behaviour that would test the theory most rigorously. The theory is refuted
when a counter-example to one of the theorems of the theory is produced by the interviewee. Through the
use of interviews, guided by the predictions of the theory, we can test the theory in an efficient and
effective manner. By eliciting anecdotal counter-examples from the clinicians being interviewed we gain
two further benefits. Firstly we are building a theory of the clinician's domain rather than one constructed
by the analyst: the clinician will relate examples using the concepts and terms that she is comfortable
with. Secondly, by using a universal theory to guide the elicitation of anecdotal counter-examples, we are
facilitating communication between clinicians and computer scientists.

When the scientific method was introduced, in Section 4.3, we saw that it involved two directives. The
first was the insistence that a theory should be tested as rigorously and honestly as possible. This directive
has been addressed through the advocated use of experimental interviews. The second was the need to
render the theory ever bolder, or more falsifiable. The way this is done is by increasing the ratio of
refutative potentially observable behaviours to corroborative potentially observable behaviours: in this
way, a behaviour picked 'at random' from the set of all those that are possible would be more likely to
refute the theory. We can either choose to restrict the allowable behaviours of models of the theory as it
stands by introducing more rules over the existing structure, or we can introduce new components into the
theory and then forbid some combinations of states of this new component and those of existing
components.

These two methods of emboldening the theory can be illustrated with a simple example - the father-son
relationship. Suppose we start with the theory that a person must be in the relation 'is son of with exactly
two people. We can restrict this theory by adding the rule that the identity of neither of the two distinct

people that the first person is son of is the same as the identity of that first person. The first theory would
allow a person to be his own son - the second, restricted theory forbids this. If the first theory had been
tested to our satisfaction, we would attempt to refute the second by seeking cases where someone was their
own father (though we would be surprised to find such a case). The theory can be enriched by adding a
new concept: gender. We first expand the scope of the theory by introducing this concept, insisting that

xtn This is of course a simplification - we should take heed of Dunne's observation that 'No man is an island'. The interconnectedness of
human organisations and systems is much less clear cut and the mutual influences much more insidious than for hard physical systems:
there are thus few human systems that we do feel dispassionate about. Indeed the notion of dispassion about physical systems is moot (and
objectivity which is often associated with it has certainly been challenged by the 'social construction of reality' stance taken here) but it
would be fair to say that most people care more about their jobs or hobbies than the discovery of a new quasar or bacterium genus
(although they may well be interested in this latter, they have less at stake than they do with the organisations they interact with).
d: \jes\dis\wip\phd\phdtext2. doc

74

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

every person has a gender, and that this gender can take one of two values: male or female. Although we
have increased the number of possible behaviours, or rather states as this theory is presented as static, the

ratio of allowable states to forbidden ones is preserved - we say that the new state component is currently

orthogonal. The enrichment consists of introducing a new component and describing an interaction with

those in the original theory. In this case we would say that the person who is the son must be male. By

forbidding female sons we have reduced the number of states allowed, and thus the ratio of forbidden

states to allowed states is increased vis a vis the original theory. Both these approaches were used

extensively during the course of the analysis.

One of the capabilities of the Schuman-Pitt notation that was of great benefit in the progressive

emboldening of the theory was that of theory composition. This was described in Section 6.2.9 - the

schema calculus allows two separate class schemas to be combined to form a third which inherits the

properties of both in a precisely defined manner. What this means is that sub-domains of the problem area

can be analysed and described in isolation. The nature of the interaction of two sub-domains can be

considered separately thus drastically reducing the complexity of the analysis. This technique was used

extensively in the project, not least to consider the so-called 'specialisation' state components
independently of the 'operational' ones, and then investigate the way in which the former constrained and

controlled the latter. The investigation, representation and composition of these sub-domains is often

called the 'separation of concerns' [Alex71] and good analysis methods support it.

The domain theory is the result of many iterative construction - emboldening - refutation - reconstruction

steps. After eighteen months the process was stopped. It is not true to say that the resulting theory is

perfect - what we can say is that it is better (bolder and more accurate) than it was at the beginning.

In the next section we will explore in a little more detail what an interaction theory is, and how it can be

used to guide the engineering of the information system.

6.3.4 The Information System Specification

Once a satisfactory theory of the domain has been created, we use an interaction theory to tell us how well

an implementation of a given information system specification will represent that domain. This begs the

two questions - what is an interaction theory, and what is an information system specification. The latter

theory is the more straightforward to explain so we shall consider this first.

The theory of the organisational domain represents a physical system by means of the rules that constrain
its behaviours. If we choose a computer system as the physical system, and represent this through the use

of behavioural rules, we will have an information system specification. Whereas the state components in

domain theory should be interpreted as concepts in the real world (such as patients, doctors, clinical

interventions and so on), the state components in the information system specification should be

interpreted as aspects of a computer system. How these state components are to be implemented is an

issue that need not concern us at this stage - we might subsequently decide that one state component

should be represented as an entity held in a relational database, another as a global variable in the code of

the system, another merely accessed remotely from another computer, and not stored in the local system

at all. However the state components are implemented, they will exhibit, at an abstract level, the

behaviours described in the specification.

The specification thus tells us how the state components of an information system are to interact - which

combinations of behaviour and state of the different components are permitted. The specification tells us

nothing about the domain that it is imagined that the information system will support. We can tell how

d: \jes\dis\wip\phd\phdtext2. doc
75

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

well a given information system implements the specification - we cannot deduce anything about the
domain from these two entities so are ignorant as to the success or failure of the system in use. In order to
do this, we need an interaction theory.

a
6.3.5 The Interaction Theory - What Is It?

The interaction theory tells us how the state components of the information system will be interpreted into
the domain once the system is in use. A model of the interaction theory tells us what state or states of the
domain a model of the information system specification represents. The elucidation of the interpretation

of information system concepts is provided through the use of an interpretation function. A model of a
given interpretation function takes the state of (a model of) a state component of the information system
as its argument and returns the state of (a model of) a state component of domain. The interpretation
function is not always a simple thing to represent as the state of the information system will affect its

content in a non-straightforward manner. Some behaviours of the domain will not be represented by the
information system, and some behaviours of the information system might be a simplification of what
seems to happen in the domain. For this reason the interaction theory will not simply be a composition of
the information system specification and the domain theory along with a number of functions: it requires
the specification of rules over those functions as well. It is because there are forbidden states, or
combinations of states, of the interpretation function that tell us that the two systems - the domain and the
information system - interact. This is the reason this theory is called the interaction theory.

The interaction theory must be constructed as accurately as is feasible. As we saw earlier, it is almost
impossible to use the scientific method to test this theory. We should thus devote much careful thought to
the decisions made here - luckily for the most part these are fairly easy and uncontroversial. If we do

manage to create a prudent interaction theory, we can use this to see how the state space of a model of the
information system specification will be mapped via interpretation onto the state space of the domain. The

approach we should adopt when constructing the interaction theory is discussed further in Section 11.3.
Where this mapping is lacking or is in some way inadequate, there lies a potential weakness of the
information system.

6.3.6 Engineering the Information System I: Arguments for Interpretational Weakness

The observation of a flaw in the interpretation of the information system into the domain does not

automatically imply a problem with the specification as there are many reasons why we would not want to

represent all the investigated aspects of the organisation described in the domain theory. Most obviously,
there may be a stated desire (by the commissioner of the analysis) to support one aspect of the

organisation but not others. Although this is generally the starting point for conventional starting point
for systems analysis, here such a stated need is seen as a means of limiting the scope of the sub-domain

which the information system supports. For example, having completed the work recorded in this thesis,

the author suggested a number of areas where automation might be useful. Some of these components of

an eventual information system were considered extremely useful (such as an expansion of the clinical

record system, an integration with the hospital appointments system, and a contract management system),

others were not thought to be immediately necessary (such as an internal referral system, or a system

which could reconstruct medical records from computers in other departments). To complain that a

system to manage the booking of patient appointments fails to account for the referring of a patient from

one paramedic to another is to use a false yardstick - that part of the domain is not represented because it

does not need to be supported (for now).

d: \jcs\dis\wip\phd\phdtext2. doc
76

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Not only will some aspects of the domain theory be unimportant to the sub-domain that we are currently
interested in supporting, but even when the behaviour of the information system being considered is

directly relevant to the problem being addressed, there are a number of causes which might lead us to
justifiably depart from a truthful representation of the domain.

Firstly the more complex an information system, the greater the chance of error and the more difficult it
is for the user to understand why that system is behaving as it is. For this reason simplicity should be

striven for. Secondly it is a good idea to minimise the workload of the user. Many parameters and
arguments are needed to accurately describe the state of a complex organisation such as the clinical
directorate - asking the user to provide all of these might impose an unacceptable and unnecessary data

entry burden. Thirdly, even within a well defined sub-domain where an information system is required,
there will always be some areas where automated support is not required, and providing it will handicap

the smooth running of the organisation in some way. For example, when a patient turns up with acute
hypoglycaemia, she needs to be stabilised, not recorded. Lastly, we need to consider existing technical

artefacts, whether they are the primitive data structures of the implementation vehicle, or legacy computer

systems that are to be integrated: these all imply constraints on the behaviour of the system if it is to be

affordably and efficiently implemented.

6.3.7 Engineering the Information System II: Arguments for Domain Conformance - The
Developmental Motives

To set against the above quoted justification of faults in the interpretation of the information system are a
number of factors that encourage conformity with the domain theory. These have been called the four
developmental motives later on in the thesis. They are called motives as they motivate us to create an
information system that is a more accurate representation of the domain. The developmental motives are
summarised below (they are described in more detail in sections 12.4 and 13.4).

0 gratuitous expansion of scope

If the scope of the domain represented by the information system is increased, we get a richer and more
'realistic' picture of the domain. If we can do this without significantly adding to the complexity of the

system, the data entry burden on the user, or the difficulty of integrating the system with existing

technology, then we should do.

" functionality of interpretation

For every state of the information system, there should be at most one valid state of the domain. In other

words there should be no information system state that can represent (within its scope) more than one

state of the organisation. If there were, the interpretation of the information system would be ambiguous

and the quality of the information it stored would be degraded.

0 reduction of behavioural entropy

For any state of a valid model of the interaction theory, the information system acting in isolation of the
domain should not present to the user possible operations that are forbidden in the domain. We want to

represent the constraints that are present in the domain and so help the user to avoid making mistakes in

representation.

" prevention of prohibition

d: \jes\dis\wip\phd\phdtext2. doc
77

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

For any valid state of a model of the interaction theory, all the behaviours of the domain model in
isolation must be allowed when it is embedded in interaction theory. The only way in which this might
not happen is if the interaction theory defines areas of the domain where automated support is

compulsory, and yet the information system is not capable of representing the totality of that sub-domain.
An example of this somewhat baffling notion might be when an inadequate information system has been
introduced and yet a parallel manual system is not allowed as it will lead to ambiguity.

6.3.8 Engineering the Information System III: How To Do It

Assuming we are interested in engineering a new system and not just examining an existing one, the
above discussion still begs the question: how do we do it? Well, we are now in a position to put the pieces
together. In the same way that the domain theory started with a hypothesised theory derived from

educated guesswork, observations, and informal discussion with domain participants, so the system
specification starts as a hypothesis derived from informed cogitations, observations and discussions with
local computer specialists. For example, most 'new' information systems are integrations of existing
legacy computer software and hardware - these must be specified separately and then composed together
in such a way that the domain is roughly supported by the overall system.

Once the 'first version' specification has been completed, an interaction theory can be sagaciously
constructed for it which reveals how it will be interpreted into the domain. Having done this, changes to
the specification should be motivated on the one hand by the various reasons for divergence between the
specification and the domain theory discussed in section 6.3.6, and on the other by the four developmental
motives which encourage us to emulate the domain theory in the specification.

The process is iterative: having changed the system specification, a new interaction theory must be
created, the affect of the changes assessed, and further modifications made to it as are appropriate.

Through the use of the interaction theory, the implications of the compromises made during this system
engineering stage are revealed, and as a consequence the decisions that the analyst makes, in consultation
with the would-be users and stakeholders of the system, become more enlightened.

6.4 Conclusion

This chapter described the method used both in terms of the notation with which the results were
presented, and the processes and procedures used to derive those results.

The notation chosen was a state or model based formal notation. This decision was explained, and the
way in which such an approach might describe an organisation - ie as an object with instantaneous state
that is changed by 'events' - was discussed. The particular conventions and benefits of the Schuman-Pitt

notation, the state-based formal method chosen were discussed briefly. The main benefit is the way in

which theories can be easily built up out of simpler sub-theories so that a separation of concerns can be

achieved.

The processes by which the final results - specifications of the appropriate information systems - are
derived were presented. These hinge on the creation of three theories to describe the domain, the
information system and the interpretation of the information system into the domain. Once these theories
have been constructed (in the case of the domain theory through use of a variant of the scientific method)
they can be used to engineer an information system with 'better' interpretational properties (if this is
deemed appropriate).

d: \jes\dis\wip\phd\phdtext2. doc
78

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

We have discussed at some length how the problem area is to be investigated. What we have not yet done

is consider what the problem area is. Although a detailed description of this is the role of the analysis

process, and is thus presented in the third part of the thesis, a broad understanding is required before we

can conduct any investigation at all. In short the boundaries of the problem need to be identified. These

are discussed in the next chapter, in the light of existing analyses of the clinical area.

d: \jes\dis\wip\phd\phdtext2. doc
79

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Chapter 7: Identification of the Problem Boundaries.

7.1 Introduction

All of the above discussions have revolved around the ability of a given method to analyse a particular
problem area with a view to constructing a 'solution' in the form of an information system that provides
support to that area. We have not thus far made any attempt to discern and name that problem area. To
observe that the problem area is 'the clinical directorate' is not adequate - there are many aspects of such
an organisation that we either cannot or do not wish to support with a computer system. Even those areas
of the directorate's business for which we can and wish to provide automated support are extremely
extensive: we could imagine clerical, managerial, financial, medical, personnel, resource management
and many other types of computer system. To try and investigate all these areas of a clinical directorate in
any depth is clearly infeasible in the time scale of the project. In short the scope of the initial domain
analysis needed to be limited. Of course, any decision taken at the beginning of the project would be sure
to be changed as the nature of the problem was illuminated by the light of experience. A preliminary
identification of the boundaries of the problem area is nevertheless necessary if we are to apply our efforts
efficiently. The statement of these boundaries is the subject of this short chapter.

7.2 Other People's Theories

Before we consider where the analysis ought to be focused, we should look at the results of analyses that
others have done of similar areas - namely aspects of the provision of healthcare. In this section we will
consider a number of such theories (although theories, these are generally referred to as models) and
ponder the problem areas they are concerned with.

7.2.1 An Abstract Model of Care

Carson and Cramp [Carson93 I present a highly abstract model which describes a generalised medical
intervention using the control engineering metaphor of the feedback loop. This is given in the following
figure:

Resources

Clinical Health
Decisions Clinical Output / Health Outc me

Clinical Output
Outcome Transformatio

Decision Make linical Activiti anent processes
Instructions (Evolving over time)

Information System
Consultations, Laborator,

data processing, etc)

Information Syste

Figure 2-6: Feedback Loop representing the Clinical Process (From [Carson93])

In this model, the clinical process is shown as comprising a quartet of objects which act upon each other -
namely the decision maker, the clinical activity or intervention, the patient, and information concerning

the result of the intervention passed back to the decision maker by way of an information system. There

are other objects which have a modifying effect on the process - these being the availability of resources

d: \jes\di s\wip\phd\phdtext2. doc

80

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

and the assessment of the merit of the outcome of the clinical process when compared against the
expectations and desires of the patient, clinician, and society at large.

This abstract model is used to provide insight into the way in which a clinician intervenes to alter a

patient's state of health. Its extremely abstract nature means that it tends to be used for didactic purposes
to give a structured overview of the common elements of the medical process. The problem area in this

case is the state of the patient's health, the medical decision making process, and the effect that the

clinician has on the patient. Understanding of this kind is especially important if we are intending to

create a system that will guide the clinician in choosing the intervention most relevant to the patient's
condition. This is generally the role of an expert system rather than an information system. Because of
this (and as we will see later the fiendish complexity of medical aspects of healthcare) the problem area
described by this particular model is unlikely to be one that we are interested in.

7.2.2 A Customer-Supplier Model

Doyle [Doyle93] describes the procedures associated with the delivery of care in two settings, the
Diabetic & Endocrine Day Centre featured in this thesis, and the Obstetrics ward at St Thomas' Hospital.
One of these models is given below:

Supplier - Customer Relationships
eg. request for mid-stream urine (msu) test

1. Patient requests professional help
2. Doctor requests msu
3. Nurse takes urine sample
4. Nurse requests sample to be tested
5a. Clerk requests results
5b. Doctor requests bulletin board results Patient
6. Doctor requests results in notes CS

/S

Doctor C2C\
CCS Nurse

16 C

S/

Sb Clinic Cler

5V /4

S
Microbiology

s

Figure 2-7: Customer - Supplier model of a procedure in the obstetrics ward. Taken from [Doyle93].

This diagram records the responsibility structure for the discharge of a particular medical process. It does

this by representing the stakeholders in a particular clinical process, and explores the relations between

them in terms of the service each provides, and the recipients of those services - in short who supplies

what to which customers. For this reason these models or (theories) are called Customer / Supplier

models. Models such as this are widely used by the Total Quality Management movement to help workers
inspect and improve their jobs by thinking about the service they provide for others. We are not

particularly interested in changing people's jobs, but we are interested in the jobs people do and how these

d: \jes\dis\wip\phd\phdtext2. doc
81

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

relate to each other. An information system supports an organisation by recording the changes wrought

on it by the people that work in it and the external influences on it, so the nature and interactions of the

tasks that domain members participate in is clearly of great interest to us. The boundaries of such a model
might be similar to those of the system the project has been tasked with designing.

7.2.3 A Soft Model

Checkland uses work conducted by his department analysing some of the problems faced by the

Community Medicine Department of East Berkshire Health Authority as an example in his book 'Soft

Systems Methodology in Action' [Check90]. A simplified version of one such model (in the form of a
'rich picture') is presented below:

East Berks DHA

Planning Team

_ MgmtTeam----
Community
Medicine

£
'Department, Decide ProgranimesT

Joint Planning
Structure

1

j Community Windsor
Slough 1 'Head

-lifestyles 350.000 people cnvt threats
econ, social pressures

Figure 2-8: (part of) Rich picture for study of East Berkshire Health Authority

Models such as this are used to help guide organisational change: changing the procedures that

organisations use and the relations between the individuals that go to make up that organisation. The

boundaries of this model include inter and intra- organisational conflicts, managerial functions with

respect to monitoring and control, and goals and purposes projected onto the organisation by its

stakeholders. Although it must be recognised that the introduction of an information system might affect

working practices in quite a major way, we are not interested in organisational change directly, and

should not be surprised if the boundaries to the problem area addressed by this model are different from

those that apply to the analysis for a Directorate Information System.

d: \jes\dis\wip\phd\phdtext2. doc
82

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

7.2.4 Clinical Data Models

In any hospital there probably exists a number of complex clinical systems used to store clinically relevant
data in single departments or for individual doctors. By virtue of our assumption that information systems
are interpreted into a problem domain when in use, we ought to be able to reconstruct some aspects of
clinical domains from the theories embodied in clinical database systems. Reverse engineering a
specification from an information system is extremely difficult: in the case of systems that use relational
databases, we can extract an entity relationship model (or rather theory) quite readily. This was done for
two clinical systems used at St Thomas' - ER diagrams for these are presented below.

d: \jes\dis\wip\phd\phdtext2. doc
83

Although there are some similarities between the two diagrams, the two models are very different and are
both very complex. One of the goals of the experimental project set up by the hospital to analyse a
Directorate Information System (of which this thesis is a report) was to discover and record the properties
that such an information system would possess in all directorates - in other words the theory was to be
generic not specific. The identification of an abstract data model of some value from the above two ER
diagrams is a daunting prospect: before embarking on such a course, we should be careful that we do not
bite off more than we can chew.

7.2.5 The Common Basic Specification

The desire to gain an understanding of the complexities of health care is not limited to academia and
individual clinicians. The NHS itself has spent a great deal of resource and time over the last ten years
developing a single data and process model that purports to describe the entirety of the health service of
the United Kingdom. This process started in the mid 1980s with the Körner datasets and progressed to a
more comprehensive treatment of the service in the form of the NHS dataset. Finally four million pounds
and four years were allocated by the NHS Management Executive to a project to create a definitive model,

called the 'Common Basic Specification' (CBS) [IMC92 J. The history of the development of the CBS and
its status as a theory of the NHS is presented in [Cohen93].

It was envisaged that all computer systems used by the NHS would be designed according to the rules

recorded in the CBS. If this were the case, the scope of the model needed to be extremely broad: indeed

the CBS is a truly vast data model, describing almost two hundred entities and sub-entities (for this

reason, a pictorial representation of the model is not presented here). The 'specification' purports to cover
all the activities that the NHS engages in, ranging from the most strategic policy decisions to everyday
procedures carried out by doctors and nurses. The size of the CBS, and the effort that has gone into its

d: \jcs\dis\wi p\phd\phdtext2. doc
84

Jeremy DH Holland
The Requirement- Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

construction (hundreds of man years and millions of pounds) ought to encourage us to look for a less

ambitious domain. If the envisaged use of the CBS were reasonable, then the fact that the Directorate

Information System is to be a computer system used by the NHS, ought to enable us to find a description

of the domain we are interested in somewhere in its extensive data structures. The reason why we should

not use the CBS as it stands is that it has been designed in the same way as any data-model - non

scientifically, with the results presented in a semantically poor notation. Because of this, we cannot be

sure what a given concept means, and the absence of any refutative evidence means that we are ignorant

of the justifications for the theorems embodied in the data structure. Still, as is discussed in Section 14.6,

some of the concepts in the CBS seem to be very similar to those in the theory as developed.

The next section considers what an initial appropriate boundary might be for the problem domain

pertinent to the construction of the Directorate Information System should be.

7.3 The Problem Boundary

7.3.1 Introduction

Before the project is commenced, there are certain assumptions that can be made which help to guide the

analysis. These can be justified by considering the nature of the problem that the project is tasked with
solving, and the issues raised by the review of other theories constructed in this area. One possible
problem boundary is presented below and justified accordingly.

7.3.2 Operational Concerns, Not Managerial

Early on in the project it was noticed that there is a great cultural emphasis towards the 'grass roots' of the

organisation. The basic operational activity is much more central to the essence of a hospital than is the

case in many other organisations. Thus a hospital is commonly perceived as a physical and administrative
framework within which medical care is provided to patients: a bank would generally not be perceived as

merely a framework for the receipt and dispensing of money to individuals. This clarity of central
function is reflected in the hospital's IT strategy document which states that 'management information

should be a by-product of patient care' [KPMG89].

This argument is also supported when we consider the models described above. Where the problem

domain includes patient management (as for example in the first model by Carson), the model is to be

used for either for educational purposes or to guide the development of decision support systems. Where

the problem domain includes resource and personnel management (as in the case of the model created by

Checkland and the CBS), the purposes of the model encompass deep organisational change - by deep we

mean that the controlling management structures are to be changed as well as the controlled operational

systems. The purpose of the project reported here is the design of a computer system, not the achievement

of organisational change although it is recognised that the introduction of information systems can have

far reaching effects on the nature of the host organisation. As the purposes of the models whose

boundaries incorporate patient and administrative management are different from the purposes of this

project, we should not be surprised to see that these functions can and should be left out of the analysis.

7.3.3 Avoid Medical Details

The above argument tells us that the domain boundaries encompass aspects of the operational functions of

the directorate, but exclude the managerial ones. This is still a phenomenally complex area embodying

most of practical medicine. It was decided that the analysis would avoid considering the 'knowledge' side

of medical care: at the same time as this project was being run, a patient record system was being

d: \jes\d i s\w i p\phd\ph dte xt2. doc
85

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

developed separately - by the DIABETA III project - that addresses many of the medical aspects of data

storage for diabetes care. It should also be noted that much work is being carried out in this country and
others in this area by the medical informatics community - for example by the AIM projects DILEMMA

[Fox92] and GALEN [Rector93]- and it was important that the project did not duplicate any of this

effort. Similarly the project avoided knowledge support as this has traditionally been the role of
knowledge-based (or expert) systems, not information systems of the type envisaged.

Referring back to the clinical data models reviewed in Section 7.2, we are encouraged in our decision to

avoid the temptation to represent medicine itself. The two data structures presented were fairly involved -
the details of the data types not recorded in the ER diagrams mean that the composite properties of the
database from which the diagrams have been extracted will be complex indeed. This intricacy is hardly

surprising: medical information systems need a high degree of data resolution - the organisation of data

needed to help with a particular clinical task tends to be extensive and highly interconnected: the
information needs of medicine are very intricate and detailed. It is important to note that while all patient
record systems are likely to be complex, they will be complex in different ways. Thus the Diabeta system
and the Cardiology system display similar degrees of complexity, but their underlying data structures are
very different: this is because they support very different tasks.

Because of the difficulty associated with the design and implementation of medical systems, we should be

very wary of getting involved in this area. Similarly, the differences between the structures of the domains
in different clinical specialties means that a generally valid theory of medical care would be even more
difficult to devise. This is not to say that the search for the structure of a common medical record is a
foolish one, only that we should not expect to be rewarded: the architecture of the general medical record
is a form of 'holy grail' to medical informaticians. Indeed many large and sophisticated projects have

endeavoured to define such a computerised record both in this country [Kalra93], and abroad (for

example the emerging Pl 157/1-1L7 standard of the IEEE in the U. S. A.). Although contributing to the

search, none has yet found what it was looking for.

As a result of the above arguments, it was decided that the perceived medical state of the patient, and
diagnoses and decisions pertinent to that state, would be ignored by the analysis. In the event this

restriction was complied with - even to the extent that the gender of the patient was not represented (this
is only relevant to the medical process inasmuch as some conditions behave differently depending on the

gender of the sufferer, and thus can be thought of as an unchanging state of health).

7.3.4 Be General and Accommodate Change

Finally, as was noted earlier, the project was set up to look at the problem of clinical directorates in

general rather than a specific one. It was decided that the domain theory, although concentrated on the
Diabetes and Endocrine Directorate should be able to describe (if possible) as many directorates as
possible. The analysis needed to convey abstract principles rather than the particulars of individual
departments. Yet at the same time the theory had to be able to say things that were useful to the
department in question.

Even if it was decided to limit the project to the design of an information system for one directorate

(presumably the Diabetes and Endocrine Directorate), abstraction and generalisation would still be of

utmost importance. As we saw in Chapter 2: Historical Background to the NHS and St Thomas' Hospital,

change is a constant companion to today's health service, and St Thomas' Hospital in particular continues

to experience radical evolution and upheaval in the way it perceives itself and provides care. The failure

of an information system to cope with change in an organisation is a common reason for system rejection
d: \jes\di s\wi p\phd\phd to x t2. doc

86

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

(indeed, often the organisation will change radically between the statement of the requirements and the
delivery of the system thus rendering it obsolete before installation). The problems faced by the analyst
who tries to ensure that the system specification will be able to cope with the changes in an evolving
organisation are similar to those that he or she faces in endeavouring to render the specification equally
valid in different organisations. In both cases the task is to find the common irreducible core behaviours

that characterise the class of organisation. If this can be done, then a system based around that core
should be equally useful in all organisations in that class - assuming that in its evolution a particular
organisation stays in the same class (in other words we are assuming that the Diabetes and Endocrine
Directorate, or a successor organisation stays in the business of providing health care), then the system
should remain applicable.

However, it is important that the specifications devised are not only equally useful in a relative sense, but

actually useful in an absolute sense. For this to be possible, the system must be able to support services
that distinguish one directorate from another, or that characterise the evolution of a directorate over time:
in short the analysis must acknowledge and deal with organisational idiosycracies rather than glossing
over them through the use of abstraction. Yet how can a theory of an organisation be equally valid in all
organisations (from a given class) and still describe the unique characteristics of any given organisation?
We can resolve this apparent paradox through the identification of a common pattern to the idiosycracies

of the different directorates, or the same directorate at different times. If we are successful in our search,
then the different organisations (or the same one at different times) will display behaviours that are
typical of one or other 'instances' of the pattern. The scientific method helps in our search for generality,
and in testing any pattern proposed - it is down to the skill of the analyst to identify the pattern. This

approach is taken in this project with the definition and use of two classes of state component: the
specialisation state components which define the instance of the pattern, and the operational state
component that record the organisation's instantaneous state. The pattern itself is specified in the form of
the names of the state components and the invariant relations and mutual constraints between them (This

concept is discussed further in Section 8.3.5). Although it might be moot to claim that the need for

simultaneous abstraction and semantic richness is a boundary of the problem, it is certainly one of the

characteristics of the problem domain and its possible solutions.

7.4 Conclusion

In this chapter we considered a number of existing theories that are relevant to the area of human activity

that we are considering - namely healthcare. It was argued that the models that existed were either too

abstract (Carson & Cramp's control engineering model), created for a different reason (such as to
facilitate and guide organisational change as in the case of Checkland's model of the East Berkshire

community medicine department), or too complex (the' clinical data models of working clinical record

systems). Armed with this review, we can consider what a reasonable boundary to the problem we are

confronting might be. It must be clinically useful and thus specific to health care. It must thus focus on

the work that clinicians do day-to-day rather than on the underlying nature of either the medical process

(as in the case of Carson and Cramp's model) or the organisation of the delivery of that process (as in the

case of Checkland's model). However, we do not want to get bogged down in the details of medicine as

this is too complex (as evidenced by the data models for the clinical record systems described). Two

guidelines consequently present themselves:

" we should focus on operational concerns, and not managerial ones; and

" we should endeavour to avoid medical details.

d: \jes\dis\wip\phd\phdtext2. doc
87

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

In addition to this, we have seen that the domain we are concerned with - clinical organisations - is

changing very rapidly. This observation gave rise to a further guideline:

" the theory should attempt to illuminate what is common to all directorates, but still provide useful
insight to individual cases.

The goals of the customer - supplier model and the CBS are similar to that of this project, and we should
thus not be surprised to find common properties of these descriptions. For example, the customer -
supplier model analyses processes in terms of types of clinicians and interactions between them (which in

many ways parallel the HCP Type and Activity concepts), and the CBS has many concepts that have
direct equivalents in the domain theory presented below. This is discussed further in Section 14.6.

In this part of the thesis, we first considered how all types of analysis could be characterised as using a
limited set of processes and procedures, and presenting their results in standard forms. We then reviewed
existing methods and the one chosen in terms of the processes used in the analysis, and the notation with
which the results were recorded. The next part reports on those results and discusses the particular means
by which they were derived case by case. Firstly we will consider the part of the hospital where the
analysis was based, and give an informal overview of the way in which the theory attempted to describe
the domain.

d: \jes\dis\wip\phd\phdtext2. doc
88

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Part Three:

The Results

d: \jes\dis\wip\phd\phdtext2. doc
89

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Introduction: Structure of Part 3

The objective of this part of the thesis is to report the conclusions of the analysis, both in terms of the

theory of the domain that was developed and the subsequent investigations and designs of information

systems using this theory. One of the main thrusts of the analytic technique is that of justification': it is

important not only to present the results but also to explain how they have been derived, and why the

particular structures settled on have been chosen. This section therefore attempts to give a justification

both for decisions taken at the domain modelling stage and at the information system design phase. The

formal theories of the domain, the various information systems and their interaction theories are not

presented in their entirety here as this would obscure the messages that the author intends to convey.
Instead only such fragments of the theory as are deemed necessary to help in the illumination of its most

salient features are presented in the body of the text: the reader is referred to Appendices 2,4, and 5 for

the complete formal theories.

Part three is divided into eight chapters, which can be loosely aggregated into two logical groupings.
Chapters 8,9 and 10 together form the first natural grouping in that they all 'ielp to present the domain

theory that was developed to describe the behaviour of a generic clinical environment. The formal

arguments and justifications for the decisions taken are presented in chapters 9 and 10. The derivation of
the formal domain theory represents the majority of the work recorded by this thesis. As such its

exposition is careful, detailed and extensive (though the author hopes, not longwinded). In order to equip
the reader with the necessary understanding before he or she can embark upon the discussion of the
intricacies of the derivation of the formal theory, chapter 8 provides a brief informal overview of the ideas

behind the finished article.

Chapters II and 12 explain different aspects of the relation between the domain theory and the

understanding and / or the development of information systems that will act in that domain. Chapter 11

relates to an existing system - the Clinical Record System. The first part of this chapter describes the
behaviour of the system, and explains how this was put into the Schuman-Pitt notation used in the project.
The second part introduces a simple interaction theory and discusses how it can be used to explore the
interpretational adequacy of the Clinical Record System.

Chapter 12 describes the development of a new information system, facilitated as it was through the use

of an interaction theory. The first part of this chapter describes the structure and behaviour of the new

system, and explains how it is (designed to be) composed of two pre-existing systems: the clinical record

system (described in chapter 11) and an outpatient appointment system (described in this chapter). The

system described, called DIS 1 as it is a (first) fragment of a 'Directorate Information System', is thus an
integrated information system. The second part of chapter 12 describes the way in which the use of the

interaction theory guided the decisions taken in the design of the DISI specification. It is chapter 12 that

explains why and how the domain theory is useful in the design of computer systems and is thus crucial to

the understanding of the contribution of this thesis to the discipline.

d: \jes\dis\wip\phd\phdtext2. doc

90

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The structure of part three is summarised in figure 3-1 below.

Introduction Chapter 8:
To Part 3:

Introduction to the Domain Theory

Chapter 9:
The Domain Theory I

Chapter 10: Conclusion to

The Domain Theory 11 Chapters 8,9, and 10

Introduction The Domain Theory

Chapter 11:

f Information Systems

and Interaction Theories

Chapter 12:
DIS I- An Integrated Appointment

and Clinical Record System

Information Systems

Figure 3-1: Organisation of the chapters in Part III of the thesis.

The presentation of the theory relies on the use of italics to record the names of formal quantities. Italic

terms with upper case initial letters are the names of state components - sets, relations, and other

structures - those with lower case initial letters are generic names for arbitrary members of models of

those state components. Thus the term Activities denotes the basic set whose members in the domain are
'medically meaningful encounters', while the term activity represents an arbitrary member of that set.
Occasionally, when talking about various theorems of the domain, we need to distinguish between

different members of a model of a state component, or incorporate a name for one or more such members
into a set-theoretic expression. In this case we might say something like 'consider an activity al' whence

al is a specific, named member of the set of which activity is the arbitrary, unnamed member: that is to

say Activities.

d: \jes\dis\wip\phd\phdtext2. doc
91

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Chapter 8: Introduction to the Domain Theory

8.1 Introduction

8.1.1 Presentation of the Domain Theory

The purpose of the next three chapters is to explore the theory of the medical domain that was developed

by the author over the course of the project. This phase of the work lasted eighteen months and the

concepts presented are thus the majority of the 'results' of the project. By the end of chapter 10, the reader

should not only be furnished with a detailed understanding of the domain theory as it currently stands, but

also have an understanding of why the theory is as it is, and how the assertion that it represents the

medical domain might be justified. The domain theory itself, expressed in the Schuman-Pitt notation

employed in its development, is presented in Appendix 2.

To enable this, the reader is first given a brief overview of the theory. This is the purpose of chapter 8. A

basic grasp of the form and scope of the theory is required before any more detailed exposition if the

reader is to understand what is presented and not get lost in the detail of the subsequent pres.: ntation.
Once we have seen loosely how the theory works, we can attack it in more detail.

Chapters 9 and 10 examine the domain theory in more detail. As we have already discussed, the
development of the theory was influenced heavily by the 'scientific method'. The presentation reflects this,
being organised around two directives of the method: the quest for a refutable and bold theory, and the

reconstruction of the theory on refutation. The first directive results in the creation of ever more complex

and semantically rich theories of the domain. This is represented in the following description through the
incremental introduction of state components (in the form of sets, relations, and other set-theoretic

structures), operational refinements and class compositions, all of which imply movement from simple

and sparse to complex and rich forms of representation. This enrichment of the theory is done in such a

way as to make refutation more likely: in the absence of refutation, the bolder theory is the more useful
(this was discussed earlier in Section 4.3). The notation used supports this incremental enrichment of

structure through the composition of smaller, or more primitive, conceptual units or 'classes' to form more

complex aggregate classes, models of which are in some way behaviourally constrained.

While this search for semantic richness and behavioural constraint is the strategy guiding the exposition

of the theory, the tactics are those of refutation. Consequently the majority of the contents of the next two

chapters thus follow a similar pattern. A property of the theory is introduced and described both

informally and formally: a refutative counter-example observed in the domain (or rather elicited from a

clinician who observed the counter example in the domain) is described and shown to disprove the theory:

and a new property introduced to replace the old that is not refuted by the counter-example.

Many of the lessons learned through the development of the theory reflect not only on the structure of the

theory but on the nature and appropriateness of the scientific method that was employed. These are briefly

discussed as and when they arise in the description of the theory, and rounded up and discussed more

fully in Chapter 13.

8.1.2 Introduction to This Chapter

The theory as developed is large and complex, and spans over 40 pages of set theoretic notation, but the

central concepts can be quickly explained. The most important abstract entities are activities, types and

patients which are represented in the theory as sets, and the (instantaneous) interaction between these

d: \jes\dis\wip\phd\phdtext2. doc

92

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

entities as relations between the sets. These sets and relations are all 'state components' whose values

together describe the state of the domain as it is at any stage. Remember that it is the state of a model of

the theory rather than the theory itself that provides this description (see the earlier discussion on the

distinction between a theory and a possible model of that theory given in Section 6.2.3).

Although the theory was created to be capable of representing a large number of directorates, the project

was based in one in particular: the Diabetes and Endocrine Directorate. This behaviour of this directorate

influenced the nature of the theory more than any other, and it would be fair to say that insofar as the

theory is broadly applicable, it is a generalisation of a theory of this 'home' directorate. Although the

concepts from the theory are introduced below in as explanatory a manner as possible, the reader will find

them easier to understand if he or she has a basic knowledge of the Diabetes and Endocrine Directorate.

To this end, the section below describes some of the services delivered by this part of the hospital.

8.2 The Diabetes and Endocrine Directorate

8.2.1 The Endocrine Disorders and Diabetes

The Diabetes and Endocrine Directorate exists to provide care for patients with endocrinological
disorders. These are many and varied, but are all metabolic in nature, and all are concerned with
problems relating to the endocrine glands, responsible for secreting certain hormones into the
bloodstream. Common types of endocrine disorders include acromegaly, Cushing's syndrome, goitre, a
number of growth and development disorders, and diabetes (more correctly termed diabetes mellitus to
distinguish it from other forms of diabetes).

Diabetes is the most common and complex of these disorders, and is thus dealt with in a more

sophisticated way than the others. In general, however, the endocrine part of the directorate works in

much the same way as a normal medical department - patients are seen by the specialist doctor for a

number of out-patient visits, prescribed medication or other form of therapy, and if necessary admitted to

hospital for further tests and possible surgery.

Diabetes care is dealt with differently, partly because the disease is more complex, and partly because it is

more common than other forms of endocrine disorder. Diabetes mellitus is one of the commonest and

most widespread Chronic Disease, and it affects between 1& 3% of the population of the countries in

Europe. It is a life-long condition that can be controlled but not cured. When their condition is well

controlled, people with diabetes are healthy and fully active in virtually all walks of life. When poorly

controlled, it can and does cause substantial morbidity and early death. Particular problems associated

with the condition are blindness (Diabetes is the commonest cause of blindness in those of working age),

limb amputation (Diabetes accounts for more than 25,000 limb amputations each year in Europe), and

renal failure. The key to diabetes care lies in regular screening for problems so that they can be checked

and solved before serious complications evolve. This involves close co-operation between many different

types of health care professional, at all levels of care, but if the care is successful, the patient need never

be admitted as an inpatient.

8.2.2 The DEDC: Collaborative Out-Patient Care for People with Diabetes

The following section describes the nature of outpatient care as it is delivered to diabetic patients by the

DEDC. It is based closely on some previous work conducted by Shirley Smith, the physiologist at the

directorate, which was summarised in a document intended to market the out-patient part of the

d: \jes\dis\wip\phd\phdtext2. doc
93

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

directorate, the Diabetes and Endocrine Day Centre (DEDC) [Smith92]. As such, the document is a
succinct introduction to the services provided.

People with diabetes fall into two groups. The most common form is treatable through the prescription of
appropriate diet and tablets, and affects older patients: this is called non-insulin dependent diabetes
mellitus (NIDDM). The less common, but more well known, form strikes people at a younger age, and
requires insulin injections as well as diet and tablets for treatment. This is known as insulin dependent
diabetes mellitus (IDDM). Care differs for the two groups.

There are a number of health care professionals who work in the DEDC. These include:

" Doctors with specialist training in diabetes and endocrinology

" Diabetes specialist nurses with special training in the education and treatment of people with diabetes

" Diabetes dietitians with expertise in diets which are fundamental to the treatment of diabetes

"A chiropodist with expertise in foot care for diabetic people (foot disease is a major complication of
diabetes)

"A physiologist with expertise in the testing for eye disease and nerve disease, two more areas where
serious diabetic complications might be manifest

0 Clinic nurses who perform a range of tests

0A laboratory technician who conducts the chemical analyses relating to some of those tests

A formal diabetic clinic is held on most working days in the week. The service that such a clinic provides
for the patient depends on whether they have IDDM or NIDDM, and whether they are new patients (to
the day centre) or followup patients.

New patients with IDDM are often emergencies in which case they will be seen by a doctor briefly
immediately, who will instruct the specialist nurses to start the patient on insulin. An hour long
appointment with the doctor will be made for all new IDDM patients, though for emergencies this first
visit is arranged at the earliest opportunity possible. The specialist nurses will then see the patient several
times in the first week, and with decreasing frequency for the next few months. New IDDMs are seen as
soon as possible after diagnosis by the dietitian for one initial and two followup consultations.

Once they are registered with the clinic IDDM patients are seen for followup appointments with the
doctor once every 6-8 months: alternate visits taking the form of the more thorough 'annual review'. If

any problems are detected, the doctor may refer the patient to one of the other specialists in the centre. At

present, followup visits are continued indefinitely, or until the patient dies or moves away from the area.

New patients with NIDDM are seen initially by the doctor for a detailed examination (sometimes lasting

over an hour). The patient will then typically be referred to the specialist nurses in order to attend group
patient education sessions. The patient will attend two such sessions which are attended by a specialist
nurse, a dietitians and the chiropodist. Patients also see the dietitian for an individual appointment,
reflecting the crucial role diet has to play in treating this condition.

d: \jes\dis\wip\phd\phdtext2. doc

94

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

NIDDM patients are then seen for followup appointments with the same frequency as IDDMs, and

similarly are referred to other specialists as and when the need arises. These specialists include a

chiropodist and a physiologist.

Patients with an acute foot problem, perhaps an ulcer, that can nevertheless be treated as outpatients will
be seen by the chiropodist once a week for several weeks until the problem is resolved. Other patients that
do not have an immediate problem, but are considered to be at risk of foot complications by the doctor are

seen once a month by the chiropodist. All patients are checked annually for developing eye complications.
This is done by the physiologist in the Diabetes Eye Complication Screening clinic. This involves the

photographing of the retina of each eye, and examining the resulting print for certain patterns which
indicate incipient eye disease. If discovered, the patient will be referred to the hospital's central eye clinic
for laser treatment which should solve the problem before it causes more serious damage (such as
blindness).

There are a number of more specialised clinics run by doctors in the day centre. These include: the

children's clinic, run -ointly with the paediatric directorate; the MARS clinic to treat diabetic related
impotence; and the combined antenatal and diabetic clinic run jointly with the Obstetrics and
Gynaecology directorate.

8.2.3 In-Patient Care

All the services described above are conducted by the DEDC as part of the care given to diabetics who are
outpatients of the hospital: sometimes diabetics are admitted as inpatients. This will happen in two cases.
Either the patient is admitted as an emergency via the Accident and Emergency department, or for

elective treatment which requires residence in the hospital.

People with diabetes are occasionally admitted as emergency patients if they have had some form of
extreme reaction caused by the condition. Such patients will generally be exhibiting the symptoms of
hypoglycaemia (insufficient glucose in the bloodstream), hyperglyca,; mia (over abundance of glucose in

the bloodstream), or ketoacidosis (caused by excessive ketones and acetones in the bloodstream). In

advanced cases, such patients might arrive in a coma. These people will be admitted as inpatients where
their conditions will be brought under control as quickly as possible. After this they will be seen as
outpatients, and if not already one of the clinic's patients, registered with the day centre.

If the strategy of avoiding complications through regular examination and screening fails, then the patient

might need to be admitted electively to the hospital. This might be in order to amputate a limb that has

developed gangrene, or provide kidney treatment if the patient is suffering from renal failure. Assuming

the patient recovers, they will be discharged and continue to visit the DEDC as an outpatient. If the

patient is suffering from one of the other endocrine disorders then she might be admitted for other types

of surgical treatment (such as the removal of part of the pituitary gland) or for some of the more involved

clinical investigations.

8.2.4 Other Directorates

Although the majority of the analysis was conducted within the Diabetes and Endocrine Directorate,

several other areas of the hospital were considered briefly. These included the following units responsible

for providing aspects of medical care.

d: \jes\dis\wip\phd\phdtext2. doc
95

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The General Myeloma Clinic: This is a standard outpatient clinic run for people who suffer from cancer

of the bone marrow. At this clinic the doctor decides which investigations to request, and what actions
should be taken on the basis of the results of those investigations.

The Haematology Contact Clinic: This is a clinic run by the haematology department for patients with

well understood and routine problems. For example the patient might be recovering from a thrombosis

and need to be prescribed the blood thinning drug wharfarin - either the drug will be prescribed at this

clinic or the GP will be instructed to continue the writing the prescriptions. This process can be conducted
by post with the patient represented by a 'log book' that they send in.

The Dermatology Directorate: This is one of the most complex directorates in the hospital, having been a
separate hospital until relatively recently. All types of skin disorder are treated here, there being sixteen
types of specialist clinic (with different clinics covering skin tumours, urticaria, dermatitis, blisters, hair,

nails, corns and so on). A patient referred to this directorate will initially attend the general dermatology

clinic where their condition will be assessed: if necessary, they will be referred to the appropriate specialty
skin clinic. Each specialty clinic will provide treatment as is appropriate, or will call on one of the

services available centrally to the entire directorate (such as use of the sun lamp, and provision of
dressings).

The Diabetes Directorate at the Medway Hospital: One of the research doctors at St Thomas' is the
Diabetes consultant at the Medway Hospital in Kent. It was thus possible to investigate briefly how

another Diabetes directorate differed from the Diabetes and Endocrine Directorate at St Thomas'. The

care provided by the department at Medway is in many ways more sophisticated and represents a model of

what the service at St Thomas' might become. In particular, much importance is placed on the
development of shared care, where responsibility for the patient's condition is shared equally between the
GP and the hospital clinic (at least while the patient is an out-patient). Typically the GP will hold a 'mini-

clinic' for all her diabetic patients once a week or month. The GP might be assisted by a specialist nurse
from the hospital, and possibly by the consultant as well. The patient can also be referred to the hospital if

they seem to be developing complications that the GP does not feel qualified to deal with, and once there

can access a multitude of services in much the same way as with the DEDC at St Thomas'. This shared

care system is seen by many as the way in which diabetes care will develop over the next few years: the

high quality of specialist care will still be available to the patient, yet expensive hospital visits will
become less frequent thus saving money.

Having considered the nature of the directorate where the analysis was in the large conducted, we are in a

position to examine the theory that was developed. As was discussed earlier, before considering the
formal theory, an informal introduction is presented to help in the reading of the next two chapters.

8.3 The Domain Theory: An Informal Overview

8.3.1 Introduction

In this section I have attempted to explain the meanings of the state components to help in their

interpretation by the reader. The way the sets interact, and how they behave and constrain each other is

the essence of what the theory describes. Exactly what is meant by a particular set can never be fully

'pinned down' or described from one person to another without any fear of ambiguity, but a mixture of

informal description such as that given below and the formality of the theory together support the process

of comprehending exactly what is meant by, for example, the set Patients. The problem of interpretation

is profound and is discussed at some length in the conclusion, in section 13.3.

d: \jes\di s\wip\phd\phdtext2. doc
96

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

One of the central themes of the theory is the interaction between 'operational' state components, and
'specialisation' state components. The main form that this takes is the constraints that the values of the set
Types and its graphs place on the possible behaviours and values of the set Activities and its graphs. This

idea and its attendant problems are discussed at some length in the next few sections, but the reader

should be aware before the theory is described of the importance and centrality of the interaction to the

representation of medical practice that has been produced, for it is here in this distinction that the theory

is able to represent the particulars of a given directorate and yet remain general to all.

8.3.2 Activities

An activity is a medically meaningful encounter between a patient and some representative of medical
care. This encompasses obvious encounters between a clinician and a patient as well as more abstract
medical activities such as the care delivered to a patient by the clinic over a period of years. Examples of
activities are:

0 The meeting between Dr Lowy and Mr Jones at 4.30pm on 26th May 1992

0 The meeting between Sister Kidd and Mr Jones at 4.50 on 26th May 1992

0 The meeting between Mr Jones and Dr Smith six months later.

0 The care provided to Mr Jones by Sister Kidd over a prolonged period starting in May 1992.

The first three activities are straightforward meetings between a healthcare professional and the patient
but the third is an example of a more abstract activity - the continued provision of care by one healthcare

professional to the patient. Activities can stand in a number of relations to each other. One activity can be

Before another, and one activity can Include another. Both Before and Includes are represented in the

theory as partial relations. Thus an activity may be Before a number of other activities, and may include a

number of others.

The relations Before and Includes are intended to be medically as well as chronologically meaningful.
Thus a blood test for Mr Smith might well be required Before a followup visit for the same patient, in

which case the blood test will have to be completed before the followup visit starts. A blood test for Mr

Smith might turn out to be scheduled to take place before a followup visit for Mrs Jones: although these

two activities will be chronologically ordered, this is not the intended meaning of the relation Before as

expressed in the theory. Similarly with the Includes relation - if activity al Includes activity a2, the

intended interpretation of this situation is for a2 to be a part of al, rather than just for a2 to start after al

starts and to finish before al finishes which would be a more strictly chronological understanding.

In the theory as it has developed, the concepts Before and After are not much used. They are left in as

they are used in the development of the idea of the followup activity and might be developed further in

future. Although it seems that medically related chronological ordering is not particularly useful in the

representation of the Diabetes and Endocrine Day Centre, it might very well be important in other areas

of medical care, particularly for the modelling of 'Care Profiles' and 'Care Protocols' which are a mixture

of guidelines and 'best practice' rules for nurses and doctors (generally respectively) to use. The further

development of these ideas is discussed in the conclusion of the thesis.

An activity can be requested, whence it becomes a Request, can then start, whence it becomes a

Proceeding activity, and can then finish, whence it becomes a Completed activity. Request, Proceed and

d: \jes\dis\wi p\phd\phdtext2. doc
97

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Complete are disjoint subsets of Activities - the operations described move an activity into Request, from

Request to Proceed and from Proceed to Complete respectively. Request and Complete are more 'abstract'

concepts than Proceed (which is itself a fairly abstract notion) but they constrain the state of the domain

as perceived just as much as do those activities that are currently running (though not in the same way).
The way we should think about requests is as potential activities - for example an appointment to see a
patient at some time in the future, or merely an agreement to have a patient referred for treatment. By

treating Requests, Proceeding activities and Completed activities in the same way, we can examine their
life cycles: an activity changes state rather than nature as time passes.

8.3.3 An Aside: "Graphical Graphs", a Helpful Notation Introduced

In general, instances of graphs can be represented just as precisely and much more clearly using a

graphical notation. This is introduced here: consider the partial relation Includes. This is a graph as it is a

relation over a single set, so in the case of Includes both the domain of the relation and the range, or

codomain of the relation both come from the same set, that is the set of activities.

Suppose we were investigating a possible model of the theory, and were interested in the activities al, a2

and a3 where a] represents the meeting between Sister Kidd and Mr Jones at 4.50 on 26th May 1992, a2
the meeting between Sister Kidd and Mr Jones at 11.30 on the 17th of October 1992, and a3 the care

provided to Mr Jones by Sister Kidd over a prolonged period starting in May 1992. We might want to say

that a3 Includes al and a3 Includes a2 (In fact, we probably would want to say this). The model might

record this as a textual representation of the relation as a set of pairs with the set defined by listing each of
its members. Thus the model of During would be {(a3, al), (a3, a2)}. An alternative graphical model of

the same relation might represent the pairs as arrows between elements in the basic set (ie the set of
Activities). A graphical model of During would then be

a3 or more simply still a3

al a2 al a2

In the second graphical model of the relation, the arrow heads are dispensed with and replaced by the

convention that all lines are taken to be arrows pointing down the page. In both cases we can see that the

left hand arrow represents the pair (a3, al), and the right hand arrow the pair (a3, a2). I will use this

notation sporadically from now on where it might clarify an otherwise difficult point.

8.3.4 Types

A type is the medical description of the activity: in other words, what sort of an activity is it? Some types

are:

0 Doctor Consultation

0 Specialist Nurse Consultation

" Dietitian Consultation

" Ophthalmologist Consultation

0 Specialist Nurse Care.

d: \jes\dis\wi p\phd\phdtext2. doc
98

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

We can assign each of the earlier mentioned activities to a type. Thus the meeting between Dr Lowy and
Mr Jones at 4.30pm on 26th May 1992 is an activity of type Doctor Consultation; the meeting between
Sister Kidd and Mr Jones at 4.50 on 26th May 1992 is an activity of type Specialist Nurse Consultation;
the care provided to Mr Jones by Sister Kidd over a prolonged period starting in May 1992 is an activity
of type Specialist Nurse Care. Each activity has exactly one type, a fact we express by defining the
relation that returns the type of an activity, called ActType, to be a total function.

When an activity is created it must be given a type which it keeps from then on: an activity cannot change
type.

As explained earlier, we have tried to carefully disentangle the specific properties of one area of hospital

care (at one period of time) away from the general properties of all areas (or one area as it changes over
time). The theory is general and abstract in structure, but can be specialised to represent a particular
clinic or part of the hospital. This is done by giving values to the types described above, and to relations
between those types. For example the specialisation to the diabetic day centre involves types such as
'Diabetic Care', 'Diabetic Specialist Nurse Consultation', 'Diabetic Eye Complication Screening
Consultation' and 'Oral Glucose Tolerance Test', whereas a specialisation to the Dermatology department
involves types such as 'General Dermatology Clinic', 'PUVA Visit', 'Dressing Session', and 'Urticaria

Consultation'. This issue is discussed in more detail in the next section: Structure and Value: Different

Levels of Refutation.

The distinction between activities and types, and the static and dynamic relations between them are

central to the domain theory. Rules and structures over the set of types dictate how activities that are of
those types can behave, and what possible activity structures are or are not permissible.

One example of such an invariant linking types to activities is that concerning the relation Can-include

(this relation has been replaced by a more sophisticated one called TypeGuide which will be discussed in

depth in the body of the chapter: the ideas underlying both relations are the same, and the simpler version
is sufficient to explain the concepts involved for now). The relation Can_include is a graph over types so

each member of the relation is a pair of elements from the set types. In the specialisation for the Diabetes

and Endocrine Day Centre the pairs (Diabetic Care, Doctor Care), (Diabetic Care, Diabetic Specialist

Nurse Care), and (Diabetic Specialist Nurse Care, Diabetic Specialist Nurse Consultation) are all

members of the relation Can-include. The invariant linking this relation to possible activity structures
says that if an activity al Includes activity a2, then the type of al Can-include the type of a2, or to put it

another way if the pair (al, a2) can only be an element of the relation Includes if the pair (Type of al,
Type of a2) is in the relation Can-include.

d: \jes\dis\wip\phd\phdtext2. doc

99

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Using the graphical notation based on that introduced in the previous section, we can represent part of the

model of the Can-include relation that records the nature of the type structure in the Diabetes and
Endocrine Day Centre, and see how this affects possible models of the Includes relation.

Diabetes Care

Doctor Dietitian
Care Care

Initial Dr Blood
Dietitian

Consultation Test Consultation

Followup Dr
Consultation

Figure 3-2: Model of the Can_include relation.

This model represents the part of type structure in the Diabetes and Endocrine Day Centre. Here each node
represents an element of the set of Types. Note that both Doctor Care and Dietitian Care Can_fnclude
Blood Test

Using this as our model for Can-include, we can see that the following graph of Includes is permissible:

al, Diabetes Care

a2, Doctor a3, Dietitian
Care Care

a4, Blood a5, Initial Dr
Test Consultation

Figure 3-3: Permitted Model of the Includes graph.

This model is one permitted by the model of Can-include described earlier. Here each node represents an
activity, as identified by the label to the left of the comma. In addition, the type of each activity has been

recorded to the left of the comma - we can do this as each activity is associated with one and only one type.

(in fact this is a model of the graph:

(id[Activities] 0 ActType) ° During ° (id[Activities] 0 ActT)pe)-1)

d: \jes\dis\wip\phd\phdtext2. doc
100

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

We can see that this model is permitted by the rule relating Can-include to Includes, assuming we use the

model of Can-include described above. For example, activity a2 Includes activity a5: this is permissible
as a2 is of type Doctor Care, and a3 of type Initial Doctor Consultation, and Doctor Care Can include
Initial Doctor Consultation. On the other hand, the following model of Includes is not permissible

al, Diabetes Care

"ýDietitian
a2, Doctor Care
Care

a4, Blood a5+ Dietitian
Test Consultation

Figure 3-4: Forbidden Model of the Includes graph.

This is a model of the Includes graph forbidden by model of Can-include described earlier.

We can see that this model is not permitted by looking at the activity pair (a2, a5). Activity a2 Includes

activity a5: a2 is of type Doctor Care, and a5 is of type Dietitian Consultation, but the pair (Doctor Care,
Dietitian Consultation) is not in the relation Can-include so this model is prevented by the same rule as
allowed the previous model.

There are a number of other rules relating possible activity structures, and behaviours of those structures
to types: that linking Can-include to Includes is perhaps the most important.

8.3.5 Structure and Value: Different Levels of Refutation.

As we have seen behaviour of activity structure, the operational record of what the clinic 'does', is
governed by both rules linking Includes to Can-include and the particular model of Can_include we are
using. The rule is intended to apply to all (or many) areas of medical care, and is specialised through the
instantiation of the set of types and the relation Can-include to reflect the behaviours and structures
observed in a particular area. We might think of the instantiation of the set of types and relations over
them as a configuration of the general theory so that it fits a particular medical area.

We can think of the theory as being expressed at two levels. The first and most abstract theory is one that
applies to all areas of medicine: a 'theory of care' perhaps. The second is a more specialised theory that
applies to one clinical area, for example the Diabetes and Endocrine Day Centre, which is different from

the general theory in that it has been partially instantiated - the 'configuration' sets and relations have
been given values. The more specialised theory is still a theory rather than a model as most of the sets are
still to be assigned values. Interviews with doctors and other clinicians only allowed the specialised theory
to be refuted: in some cases this meant that the general theory had to be incorrect (if the refutation
covered a 'theoretical' property such as activities and relations between activities) while in other cases it

might be that the general theory had been configured poorly and that the models of the specialisation sets

were 'incorrect'. The general problem in the latter case was that there was no efficient way of deciding

that the error was one of instantiation or of general theory structure, so although a new, and possibly more
'correct' theory could be constructed there was no guidance obtainable from the refutation to decide which
of the two theories - the general or the specialised - should be reconstructed.

The way the analytic technique we used coped with these problems was to first try and re-specialise (or

configure) the concrete theory while keeping the general theory the same, and then if no specialisation

d: \jes\dis\wip\phd\phdtext2. doc
101

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

was capable of rendering models that behaved in the desired manner, the general theory was re-worked.
Examples of this approach are given in the section which describes the theory in more detail.

It should be noted however that the problem was especially acute as by far the majority of effort was spent
in only one clinical area: the Diabetes and Endocrine Day Centre at St Thomas' Hospital. Although other
clinics and hospitals were looked at, there was not enough time to examine sufficient departments in

sufficient depth to enable the different levels of error mentioned above to be easily distinguished.

This difference between general and specialised theories crops up throughout the analysis. I will call the

sets and relations that specialise the theory so that it represents a particular medical area specialisation
state components, and those that record the instantaneous state of the clinic or department operational
state components. Using this parlance we can say that Activities and ActTvpe are operational state
components whereas Types and Can-include are specialisation state components. The difference is one of
stability: although we can expect the types of activity delivered by a department, and the types (and

names) of clinicians employed to change over time, this change will take place over a much longer period
than the change in the state of activities currently Proceeding. New activities are started every few

minutes, new clinicians are employed every few months.

The theory as it currently stands does not explore how the configuration state components behave
dynamically: the introduction of a new type of activity would be represented by a re-specialisation of the
theory. The theory does describe static rules that must hold true of the configuration state components -
for example a type cannot be in the relation Can-include with itself (in fact we say that the graph
Can-include is directed and acyclic) - but does not describe how the state components will change. This is

not to say that this is issue is unimportant: on the contrary the ability to support change is one of the most
fundamental requirements of a medical information system. It is merely noted here that the problem is

very difficult and only partially addressed by the theory. This is one of the areas where more work might
be fruitful, as is discussed in Section 14.7

8.3.6 An Example of Types and its Graphs: The Diabetes and Endocrine Day Centre

As has been stated previously, the majority of the work was based in the Diabetes and Endocrine Day
Centre at St Thomas' Hospital which is where all the outpatient activity of the Endocrinology directorate
takes place. In order that the reader can get a feel for the way the theory dealt with this environment, a
model of some of the specialisation state components is given here as it was applied for the day centre.
The earlier and simpler version of the type structure is given here - the more sophisticated representation
is given in the detailed description of the domain theory.

The majority of the clinical activity in the directorate concerns diabetes which is where the analysis was
initially focused. The most abstract type of activity as it applies to the service the directorate provides for

diabetics is called 'Diabetes Care' in this specialisation. Diabetes Care can be discharged in a number of

ways by a number of people. In the day centre a number of different types of professional act in concert to

provide that care: these are Diabetologists (which we call Doctors in this specialisation), Diabetic

Specialist Nurses (DSNs), Dietitians, Chiropodists, Ophthalmologists and Clinic Nurses. All these types

of clinician, except for the Clinic Nurses, are responsible for delivering care in certain well defined semi-

autonomous areas of professional expertise. For this reason the types Doctor Care, DSN Care, Dietitian

Care, Ophthalmologist Care and Chiropodist Care are all represented in this specialisation, and activities

of these types are all candidates for inclusion in activities of type Diabetic Care. Each of these types of

care are discharged through successive consultations between the health care professional and the patient

concerned. Thus we say that Doctor Care Can-include Doctor Consultation. Included also in an activity
d: \jes\dis\wip\phd\phdtext2. doc

102

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

of type Doctor Care might be Blood Tests and Telephone Calls. We can see a similar situation with the

other paramedics (DSNs, Dietitians, Chiropodists and Ophthalmologists). In the case of Doctor Care, it

was felt that the initial consultation between the patient and the doctor was sufficiently different in kind

from subsequent, or followup, Doctor Consultations. We can express the types and the graph Can-include

as follows:

Diabetes Care

Doctor DSN Care Dietitian Ophthalmologist Chiropodist
Care 911, Care Care Care

r Initial Dr
nsultat Followup Dr

Consultation Dietitian Ophthalmologist Chiropodist
Consultation Consultation Consultation

Dr Telephone DSN DSN Telephone
Dietitian Ophthalmologist Chiropodist Consultation

Telephone Telephone Telephone

Dr Pop-in

Figure 3-5: Model of the (directed acyclic) graph Can-include as specialised for the Diabetes and
Endocrine Day Centre.

Occasionally the chiropodist will want to prescribe a drug to the patient. As, in the day centre, the
chiropodist is not qualified to do this, she must call on the doctor to briefly agree that the prescription is

appropriate and sign the prescription card. This type of activity has been called the Dr Pop-in' to
emphasise its brevity: it is in the relation Can_include with Chiropodist Consultation.

8.3.7 Patients

A patient is any person who is a 'target' of a medical activity (see Section 13.3 for a discussion of how

concepts can reinforce each others semantics on interpretation). All activities must pertain to exactly one

patient. We express this fact by defining the relation that returns the patient for whom an activity is

created, called ActSubject, to be a total function. Although every activity has one patient as its subject,

that patient need not be present for all or any of the activity. For example a patient need not be present for

her blood to be analysed, though she must be present for the blood to be taken in the first place. Similarly

a patient need not be present for an activity of type Specialist Nurse Care to run, though she must for the

component specialist nurse consultation activities.

If two activities are in the During or Before relation to each other then they must have the same patient as

their subject. This is a corollary to our earlier insistence that these two relations must be medically

meaningful. The development of this constraint is described later in section 9.3.3.

The set Patients and function ActSubject are operational state components.

8.3.8 Clinicians

A clinician is the medical person responsible for the delivery of care. Thus a clinician can run an activity,

or can request for someone else to run the activity. Clinicians are grouped by clinician type, examples of

d: \jes\dis\wip\phd\phdtext2. doc
103

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System- A Formal Approach Volume l: Thesis

which in the Diabetes and Endocrine Day Centre are Doctor, Dietitian, Diabetic Specialist Nurse,
Chiropodist and so on: each clinician has only one type, so this relation is represented by a total function,

called Prof Type. A type of activity can only be run (ie an activity of that type started such that it becomes

a Proceeding activity) by clinicians of a specified type. This is recorded in the relation RunType. Similarly
different types of activity can only be requested by given clinician types. This is given in the relation
EmbedType.

In the same way as the set of types, and rules over those, clinicians and types of clinicians are
specialisation state components: although the theory contains rules for deciding whether or not a
particular structure of clinicians, clinician types, activity types and so on is possible it does not explain
how these change over time.

8.3.9 Time & Information

Concepts representing time are introduced towards the end of the theory development. Time is modelled

as a sequence of labels. For example one label might be 6.11 pm, 6 October 1993, and the'next' label in

the sequence might be 6.12 pm, 6 October 1993. All activities are given a time when they were requested,

when they started and when they finished. In addition appointment times are given for some activities.

Towards the end of the theory's presentation, medical information is introduced and described. Of course,
the whole theory is of 'information' in a sense in that its models are a representation of the domain.

Information as a set in the theory is more specific than this however, and refers to information recorded

about the patient, during a particular activity such that the record is in some way long-lasting. This covers

not just the 'official' medical record, but also the various notes that are jotted down and passed between

clinicians, test results, the records that professionals other than doctors keep about their own patients and

so on. Information is associated with activities through the relations RecSource and RecCont in such a

way that a record is linked to a single piece of information, and every record relates to only one activity.

The theory uses an utterly unstructured representation of medical information: The content and format of
the medical record has not been investigated at all. This reflects the earlier decision to leave the
'knowledge' side of medicine well alone. Many other workers have looked at, or are looking at, the

structure of a generic medical record and no firm consensus has as yet emerged. Medical record systems

specific to particular departments have been created and are used to great effect but these tend to be very

non-generic. By representing information as a simple set, we can allow for any subsequent structuring of

the medical record, and we thus preserve the generality of the theory. The simplicity of representation acts

as a sort of boundary to the problem area: the decision not to describe the health of the patient is reflected
by this aspect of the state of the organisation being represented as abstractly as possible. Thus no insight

is given as to the structure of a patient's health, or rather the organisation's perception of the patient's
health, other than to observe that it is appropriate to consider each patient separately, and that certain

operations change the value of that perception, albeit in unspecified ways.

8.3.10 Realism

The basic concepts introduced so far are suitable for the description of a (useful) part of the characteristics

of a particular medical area, and its instantaneous state. As we shall see, the operations that are used to

represent the behaviour of the organisation are flexible and describe valid changes in that instantaneous

state. They can do this because they are general, primitive and can be composed together to form new

operations of greater complexity: they do not on the whole represent operations that might be recognised
in the domain. For example, the operation Embed would probably not be one that clinicians clearly

d: \jes\dis\wi p\phd\phdtext2. doc
104

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

understood: they would probably talk instead about referrals, followup visits, appointment booking and so
on. Towards the end of the theory, we compose, refine and categorise the primitive operations so that
their names can be more realistic, and they can describe more directly the 'business activities' of the
directorate.

8.4 Conclusion

This last chapter presented aspects of the directorate where the project was based, and introduced the
domain theory in an informal way. The theory that was created was intended to be generic, but most of
the analysis was conducted in the Diabetes and Endocrine Directorate. It might thus be fair to say that the
theory is an abstraction of one derived from an observation of one particular directorate. However, a
number of different areas of St Thomas' and a department in another hospital (the Medway hospital in
Kent) were also investigated in order that this abstraction had some credibility.

A brief description of the services offered by the directorate is given, both in terms of out-patient care and
the rarer in-patient care. The patients in the directorate can be divided into those that suffer from Diabetes
Mellitus and those that are afflicted by a different endocrinological disorder. Endocrine patients are
treated in outpatient clinics and sometimes admitted to hospital if surgery or complex test are required.
Diabetes patients are given sophisticated care mainly by the collaborative care team in the Diabetes and
Endocrine Day Centre as out-patients. They will be admitted to hospital as emergency in-patients if their
diabetes becomes dangerously out of control, or electively if they need kidney treatment or require the
amputation of a limb.

The subsequent section in this chapter introduces the domain theory so as to aid comprehension of the
formal chapters which follow. The theory is complex, but the main points are quickly explained - these
centering on the interaction between Activities and Types. A distinction is made between specialisation
and operational state components. The specialisation state components have a constant value for any
particular model of the theory. These describe the structure and behavioural rules as they apply to the

particular medical organisation being modelled. The operational state components record the
instantaneous state of the particular organisation and thus characterise observable behaviours. Activities

and its graphs are the main operational state components: types and its graphs the main specialisation

state components. The distinction is introduced above, but is covered more fully in the next two chapters:

while reading the subsequent chapters it is important to be clear as to the difference between the general
theory, a specialisation of the theory, and an operational model of a specialised of the theory.

Other fundamental concepts described include clinicians, patients, time, information (or rather an

abstraction of the state of the patient's health, or more accurately still of the organisation's perception of

the patient's state of health). This chapter also introduced a pictorial representation that can be used to

talk about graphs. This form of representation will be used and expanded on in the next two chapters.

d: \jes\dis\wip\phd\phdtext2. doc
105

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Chapter 9: The Domain Theory I

9.1 Introduction

This and the next chapter give a more detailed description of the domain theory and provide some
justification by way of refutations of early theorems and their replacement with unrefuted theorems.

This chapter describes those concepts that are the most fundamental and essential to the working of the
theory. The next will describe enrichments to these fundamentals that make the theory more 'realistic'

through the introduction of new state components (such as Patients and Health Care Professionals) and
more refined operations (such as Referral and Booking).

The chapter is divided into four parts. The first introduces the central concept of the theory represented as
the set Activities, explains the various partitions of the set and how their members behave dynamically.
The second part describes relations between activities which represent medically meaningful ordering and
composition of activities. The third part introduces the first specialisation state component, Types. This

set has relations over it which act to constrain possible values of the relations over activities in models of
the theory - these are described in the fourth part of the chapter.

An index of state components, the sections in which they are discussed, and the classes in which they are
declared is included at the end of Chapter 10, on page 168.

During the development of the theory, the role of formal proof has been fairly small: the intellectual effort
in the PhD has gone into the representation of the domain as a formal theory. Consistency checking has
been carried out throughout the project, but more by way of inspection and reasoning than formal syntax
manipulation. In general, if a particular property was desired of the theory that property was expressed as
an axiom, or invariant, of the theory rather than being formally derived from others. Once expressed as an
invariant the property could be assessed for consistency with other invariants using the informal

mechanisms of inspection and reasoning. Nevertheless, some consistency proofs are presented below, and
some theorems derived from the invariants shown along with their derivations.

In the following description of the theory, type declarations which are as they appear in the theory are
labelled Ti:, and invariants In (where n is a number). This is to facilitate the discussion of invariants that
have been introduced earlier, and to help the reader find them in the formal presentation of the theory

given in Appendix 2. If a type declaration or invariant label is suffixed with a prime ('), it is a correct but

partial representation of an invariant from the theory. Invariants and type declarations introduced without
a number come from early incorrect versions of the theory indicating that a refutation of the property they

enforce will be given prior to the introduction of their replacements.

Although the notation has been briefly described in an earlier chapter, many of the underlying concepts
are discussed as they are introduced to aid readability, as are additional explanatory devices, terminology

and different forms of theory and model representation.

9.2 Activities and Its Subsets.

9.2.1 Introduction

This section describes the most fundamental concept in the domain theory - the medical activity. This is

represented formally by the set Activities, and partitions of that set - Request, Proceed and Complete. In
models of the theory, activities have a lifecycle, being created as members of Request, and subsequently
d: \jes\dis\wip\phd\phdtext2. dce

106

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

moving between the partitions in a controlled manner, eventually to be a member of the set Complete

whereupon no further change is permitted. Operations that enable these state changes are described and
discussed below. The need to limit the organisational scope of specialisations of the theory is explained,
and a crude mechanism for achieving this is described.

9.2.2 Activities

An activity is the term used to talk about a medically meaningful encounter between a patient and some
attribute of medical care. The word attribute is used as although we might immediately imagine an
activity as concerning a patient and a health care professional, there are more abstract activities such as
GP care which continue over long periods of time, but are still activities in the sense of the theory. An

activity may not have started but still exist -a booking for an operation for example - or it may be

currently in progress, or it might have already been completed.

This is the intended interpretation: the theory merely represents Activities as a set of a given, though

unspecified, type. Thus we say that

Ti: Activities: Set[A]

which means that we define the label Activities to mean a set, all of whose members are represented in the

set A. The notation actually says that the Activities is a member of the 'Power Set' (the set of all subsets)
of A. (Other notations use the symbol c for power set in place of Set[]).

Throughout this presentation, large Sans-Serif type is used to represent these unspecified 'carrier sets'
that define the type of the most basic concepts. The existence of carrier sets reflects the notation's

compliance with the notion of 'strong typing' which is a characteristic of the version of set theory on

which the notation is based [Hayden68]. Strong typing outlaws certain (algebraic) operations on different

types. For example we cannot construct the union of two sets that have different underlying types as
defined by the carrier sets from which they are derived.

9.2.3 Request, Proceed and Complete

Activities have a lifecycle, and may exist in any of a number of stages. An activity may not yet exist

whence it is in the set difference of A and Activities. An activity may have been requested but not be

currently in progress or have finished (maybe it has not yet started) whence it is a member of the set
Request, or it may be currently in progress whence it is a member of the set Proceed, or it may be finished

whence it is a member of the set Complete.

A member of the set Request is also an activity, so we will want to say, or be able to derive

Request s Activities

If the above is true, we know that Request must also be a subset of A, and so a member of Set[A]. In other

words that

Tr: Request: Set[A].

The same is true for Proceed and Complete, so the most basic type definition we have is

Tr: Activities, Request, Proceed, Complete: Set[A].

d: \jes\dis\wip\phd\phdtext2. doc
107

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The commas separating the set names mean that they all are of the same type. The initial type declaration
tells us what sort of a thing is represented by a particular label: all the labels in the previous type
definition refer to subsets of A.

9.2.4 A Word on Type Declarations

The notation allows the definition of types in terms of constructed quantities, providing all of those

quantities have themselves been defined earlier. Thus later on we say that ActAtt (the set of all activities

currently attended by a patient) is defined as

T6: ActAtt: Set[Activities\Coniplete].

This is possible in the notation as by the time we want to define ActAtt, we have already defined
Activities and Complete (insofar as a 'previous' class has already defined them in terms of a carrier set).
The use of previously defined quantities in a type declaration is a form of shorthand, bringing together a
type declaration based on carrier sets with an invariant rule. For example the previous type declaration

might have been written

ActAtt: Set[A] Type Declaration
ActAtt C; Activities\Complete Invariant

9.2.5 Invariants over Activities and its Subsets

The type definition tells us very little about the nature and behaviour of the concepts defined. This is
expressed using invariant properties linking different declared quantities together. In the case of the sets
Request, Proceed and Complete we know these are all subsets of Activities. We also want to say that an
activity (that exists - not some hypothesised future activity) must be in one of these sets. These are
invariant properties in that they always hold over all valid models of the theory - no matter what, all
members of Request are also members of Activities. We express both of these invariants in one
expression:

i v. Request u Proceed v Complete = Activities.

The union of the three sets Request, Proceed and Complete is equal to the set Activities. From this we can
deduce, using set theoretic axioms, that Request is a subset of Activities.

We know from

Request v Proceed v Complete = Activities

that

Request c Activities

We also want to say that not only must an activity be in one of the sets Request, Proceed or Complete, but

it must be in no more than one: an activity cannot be proceeding and have been completed simultaneously
(or at least, this is an axiom that we did not manage to refute, or indeed expect to). We say this in the
following invariant:

12: Request n Proceed = Proceed n Complete = Complete n Request = 0.

d: \jes\dis\wip\phd\phdtext2. doc
108

Jeremy DH Holland
The Requirements Analysis & Design fora Clinical Information System: A Formal Approach Volume 1: Thesis

None of Request, Proceed or Complete intersect with any other, or at least their intersections contain no
members.

The major difference between the type declaration and the invariant is that the declaration is definitional

and says what sort of thing the state component is while the invariant is an axiom that describes
limitations to and constraints on its behaviour. The important distinction as far as we are concerned is
that the invariants are assertions that are waiting to be refuted. For example, it seems pretty clear that an
activity is never both a Request and Complete at the same time, but this is a claim that the analyst has

made about the nature of the domain. If an : nstance of an activity that was both a Request and also
Complete could be found (though what sort of a thing that would be is difficult to envisage), then the
theory would be invalid and would have to be re-worked. A refutation of the axioms expressed so far

would be pretty incredible, but for some of the more complex invariants described later, counter-examples
are easier to imagine, and in some cases were found.

9.2.6 The First Class Schema

We now have our first class definition schema

ActClassOld

Activities, Request, Proceed, Complete: Set[A]

Request u Proceed u Complete = Activities

Request n Proceed = Proceed n Complete = Complete n Request =0

0 I Activities' =

The name of this class, or theory fragment, is ActClassOld. 'Old' is suffixed to indicate that this was not
the final version.

The initialisation pseudo-event gives the set Activities a starting state of the empty set in all models of this

class. Because all the other state components defined here are subsets of Activities, their initialisation

values are given also as

xc0=* X=0 for all X.

At all stages of the construction of the theory, we ought to construct and discharge proofs that the

resultant set theoretic expressions, declarations, invariants and other rules are at least consistent in the

universe of set theory. If this is not the case then the theory is not valid and cannot represent anything in

the world. As explained earlier, formal proof did not play a major part in the development of the theory,

the author relying on inspection and reasoning instead. Informally we can readily see that this class can

be implemented consistently and non-trivially.

The proof obligation for a state schema is class consistency. That is, there is an object which obeys the

rules of set theory and the invariants of the class. There is a subsidiary proof obligation which is to show

that the value of a model (or object) after initialisation is a valid state for a model of that class. Clearly the

demonstration of the existence of a valid initialised object also discharges the first proof obligation. In the

case of this initial state schema, the initialisation 'post-condition' is

Activities' = 0.

d: \jes\dis\wip\phd\phdtext2. doc
109

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Now we must see if there is a possible model of this class where its state components are of such a state
that Activities is the null set and all the invariants are satisfied. Such a model has the following

instantiated state components:

Activities = Requests = Proceed = Complete = 0.

The first invariant is

Request u Proceed v Complete = Activities

substituting the values of the sets in the initialised model for the state component names in the above

expression we get

ououo=o

which is true: this model complies with the first invariant. The second invariant is

Request n Proceed = Proceed n Complete = Complete n Request = 0.

Again, substituting the model values for the names above we get

0n0=OnO=0n0=0

which is again true. We have thus demonstrated that a valid model of this class exists.

9.2.7 The Operations: First Version

It is all very well to know what states the system might possibly exist in, but we have not seen how those

states might be reached. In other words we know something about the structure of possible models of the
theory, but not much about their behaviour. This is given through the definition of operations that might
be invoked that change the state of the system.

We know that all models of the class ActClassOld start off with all their state components set to equal the

empty set (by virtue of the initialisation pseudo-event), so their are no activities at all before we invoke an

operation on a model (or object) of the class.

The operation that is responsible for the creation of the activity in this class is called

ActClassOld. Request(-4a)

This operation takes no argument - we can invoke it without stating what values it is to use in its

operation - however, it does return an argument: a. This is indicated by the arrow in the brackets

following the operation name. The arrow is merely a decoration to aid our interpretation of the operation -
it has no formal semantics, and when considering pre- and post-conditions, as well as during the static

analysis of the class we must ignore it.

The argument a must be described in the operation schema as we do not know anything about it so far.

Note that a is not a value, or an element of any set, but is a variable name for which can be substituted

real values or elements from sets when we investigate behaviours of models of the system. The role of

arguments in operations is much the same as variables in familiar school algebra: compare with, for

example, x in 'Let x be the unknown, and suppose x2 + y2 = 4'.

d: \jes\dis\wip\phd\phdtext2. doc
110

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

We must give a type for the returned argument, and say what the state of the system in relation to the

value of the argument must be if the operation is to be allowed. This is the pre-condition of the operation.
In the case of the operation .

Request (I will use this shortened form where it is not confusing to do so -
the ". " distinguishes the operation .

Request from the state component Request) the type of the argument is

given by the expression:

a: A

or a is of the type A- it is a member of the set A. and the precondition by

ao Activities

or a is not a member of the set Activities. We can express this more succinctly as:

a: A\ Activities

or a is a member of the set difference of A and Activities - it is in A but not in Activities.

We know when the operation might be invoked - whenever a is in A but not in Activities (although the
intended interpretation is that the invoker has no control over the value of a, as explained the arrow in the

operation name has no formal semantics and so this is technically a precondition) - we need to know what
happens as a result of said invocation (or else our behavioural description would not have achieved
much). This is given in the post-condition:

aE Request'.

Where the dash after the name of the state component indicates that the predicate applies to its value after
the invocation of the operation. What the post-condition says is that following the operation, a is a
member of the model of the state component Request.

This operation can be expressed in the operation schema:

Act ClassOld . Request (-4a)

a: AWctivities

aE Request'

Another operation that we want is that which starts the request and turns it into a proceeding activity. The

operation that achieves this is

ActClassOld. Start(a).

For this operation the invoker must provide the argument herself: we must 'tell' the model which activity
it is that we want to start. In the pre-condition for this activity we want to say that we can only start

activities that already exist, and moreover have not yet been started and are still requests. This we do by

asserting:

a: Request.

d: \jes\dis\wip\phd\phdtext2. doc
111

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Subsequent to the operation we wish to say that the activity has started - it is a member of the set Proceed.
Thus:

ae Proceed

and the operation schema is

ActClassOld. Start (a)

a: Request

aE Proceed

In the same way as the static class schema, we can informally demonstrate the consistency of this
operation schema.

We must discharge two proof obligations for the operation schema. The first is to show that there is a
state of a model of the class where the precondition and the invariant allow the operation to occur. The
second is to show that whenever the operation is invoked, there is a possible model such that the
postcondition and invariant can both be observed. We can (informally) discharge the first proof obligation
by proposing the following model:

Activities = Request = {al }
Proceed = Complete =0

Here the type declaration counts as a sort of pre-condition - there must be at least one element in Request
for us to be able to extract. This can be shown to satisfy the invariant properties of the class through
substitution as follows:

(a1 }uO= {al }

which is true, and

{a1] nQ=OnO=OnO=(

which is also true. We can discharge the second proof obligation by showing how to construct a state of a
model after the operation for any value of that model where the operation is legal. One such construction
is as follows:

Activities' = Activities
} Request' = Request \ (a

Proceed'= Proceed v {a}

Complete' = Complete

where a is some element of Request - in fact the one indicated by the argument of the operation (we know

there must be at least one such element from the implicit precondition in the type declaration).

We know that the post-condition to the operation is satisfied as

ae Proceed v(a) = Proceed

d: \jes\dis\wip\phd\phdtext2. doc
112

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

whatever the value of Proceed. We can show that the invariant is satisfied by replacing the dashed state
component names with the undashed ones according to the equalities above.

We want to show firstly that

Request' u Proceed u Complete' = Activities'

but we know that the left hand side of this expression can be re-written as

(Request \{ a)) v (Proceed v{ a)) u Complete

((Request \ {a)) v (Proceed v {a))) v Complete

((Request v (Proceed u {a})) \ ({a} \ (Proceed v {a}))) u Complete

((Request v (Proceed u (a))) \ 0) u Complete

Request v (a) v Proceed v Complete =
Request v Proceed u Complete

as we know that a is an element of Request. Now we know from the in\ ariant that

Request u Proceed v Complete = Activities,

and as

Activities' = Activities

we can see that the invariant with dashed state component names holds. For the second invariant we want
to show that

Request' n Proceed = Proceed n Complete' = Complete' n Request' = 0.

Substituting the undashed state component names we get

(Request \{a }) n (Proceed v{ a)) = (Proceed v (a)) n Complete= Complete n (Request \ (a)).

Taking the first expression (before the first equality)

(Request \{ a)) n (Proceed u{ a))
(Proceed u {a}) n Request \{a}
(Proceed n Request) u (Request n{ a)) \{a
0u{a}\{a)
0

as we know that a is an element of Request, and Request and Proceed are disjoint. For the second
expression we have

(Proceed u [a)) n Complete
(Proceed n Complete) u ({a) n Complete)
0V ((a) n Complete) E
000=-
0

d: \jes\dis\wip\phd\phdtext2. doc
113

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

as a cannot be a member of both Request and Complete due to their disjunction. Finally the third

expression gives us

Completer) (Request \ (a))=-
(Completer) Request) \ {a}
0\{a}=

0

as Complete and Request are disjoint. We have thus shown that from the invariants, when the state of the
model is such that the pre-condition to the operation holds, we can always construct a state of the model
such that the post-condition and the invariants hold.

The above proofs are sufficient (albeit informally) to show the applicability and effectiveness of this
operation. Proofs of class consistency and operation applicability and effectiveness are not discharged

elsewhere in the thesis due to the length of their exposition.

We have seen an operation that creates an activity and one that starts a request. Other reasonable
operations that are defined in this class are Complete which takes a member of Proceed and puts it in the
set Complete, and Cancel which takes a member of Request and removes it from sight forever. When a
patient has been booked in to attend the clinic, but then cancels there appointment, perhaps because they
have moved away or their GP decides the referral is inappropriate after all, or the patient has died, we can
forget all about the activity - it is of no consequence to the clinic and does not effect how it functions in
future (though we might like to keep a record of it) - it is as if it never existed which in a sense is true. An

activity that has started cannot be so denied, nor one that has finished. This is the interpretation of the
operation Cancel: it can only be applied to these 'fictitious' activities that have never started: the pre-
condition insists that 'a' is a member of the set Request.

In this class, we can express the behaviour of individual activities using a state-transition diagram. This is

not generally a feasible way of understanding class behaviour, but as ActClassOld is so simple structurally
and dynamically, and because one activity behaves totally independently of all others we find that such a
diagram is indeed a useful tool. A state transition diagram for a member of the set A is given below.

Request

. Start Proceed

. Cancel Complete

. Request

Complete

A \Activities

Figure 3-6: State transition diagram showing the possible operations in the class ActClassOld on a

member of the set A, depending on the state of that member.

d: \jes\dis\wi p\phd\phdtext2. doc
114

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

This state transition diagram shows that there is a standard lifecycle for activities - if an activity is not

cancelled (in which case it is as if it has been destroyed and we are no longer concerned with it) then it

moves from Request to Proceed to Complete, always in that order, when it is completed, nothing can

change its state.

9.2.8 The Operations: Second Version

The class as it stands is an extremely basic theory of how a clinical domain behaves. Of course there is

much more to a clinic than the set of Activities (we have not spoken formally even about patients yet) just

as there is more to a hot cup of tea than the theory of thermodynamics. Although the scope of the theory

so far is limited, we would hope that what little it does have to say by way of predicting static and
behavioural properties of the domain is accurate. Newton's laws of mechanics do not give us a total

understanding the solar system, but the predictions they do enable us to make are valid (more or less).
The way the laws given by the theory we are developing work is as a set of constraints that forbid certain
model states and behaviours. An activity is forbidden to be both a Request and be Complete at the same
instant. An activity that is in Proceed and thus is currently in progress is forbidden from becoming a
Request or ceasing to exist altogether: it may become a Complete activity, but equally it may not and stay
as in Proceed forever. If we can find real examples of activities that disobey these laws, then the theory is
invalid and must be re-worked. Even at this early stage of the analysis we did indeed find such counter
examples that 'refuted' the behavioural laws given in ActClassOld.

The theory as it stands forbids an activity to be 'created' as a member of the set Proceed: it must first

become a Request. This is fine for the bulk of clinical activity, but even in a mainly outpatient directorate

such as the Endocrine directorate, emergency work is extremely important. When a patient is delivered by

ambulance to the Accident and Emergency department, treatment starts immediately - the activity never

passes through the Request state. Although an emergency patient is passed to the Endocrine directorate

through a process of service request, the theory is supposed to be sufficiently general to cover all domains

of medical care and so should be able to address the emergency as seen from the Accident and Emergency

department. Not only do emergencies directly achieve the Proceed state, but in the day centre, telephone

calls to the doctor or, as happens more frequently, to the specialist nurse are not first requested and then

started - the activity starts as soon as the telephone is picked up. There is no operation in the old version

of ActClassOld that allows for this creation and commencement simultaneously: the theory forbids it and
has thus been refuted. A more realistic theory would accommodate such a possibility, and indeed a new

theory was constructed which included an operation called ActClassl. SuddenStart(--a) which takes a

member of AWctivities and puts it into the set Proceed.

The original theory expressed by the class ActClassOld allowed for activities in Proceed to stay in

Proceed or move to Complete: interruptions were forbidden. Early on in the analysis process, it became

apparent that not only did interruptions regularly take place, but many of them were important for patient

care. Particular findings regarding interruptions recorded at interviews with a clinicians were:

Drs frequently have the activities they are involved in interrupted. They might be called / bleeped by

a junior Dr about one of the inpatients they are responsible for. They might be telephoned by a

patient's GP or community nurse for some advice about a particular patient.

40 Interruptions are significant for patient - after all, there must be a good reason for interrupting a Dr.

" Interruptions can often be thought of as mini-activities (some with the patient not present).

d: \jes\dis\wip\phd\phdtext2. doc
115

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

It seems that another of the behavioural predictions of the theory - namely that an activity that is a
member of Proceed can only be moved to Complete - has been refuted.

If an activity has been interrupted, it cannot continue to be in the set Proceed. A new theory would have
to address this, either by introducing a new disjoint subset of Activities (perhaps called 'Interrupted'), or
create a new operation that moved the activity from Proceed back to Request, whereupon it could be (re-)

started at any time. The latter solution was chosen as it introduced minimum confusion and complexity to
what was the most basic class in the theory. The new operation is called ActClassl. Suspend(a). There is

no limit to the number of times an activity might be started and suspended - it can still only be completed
once.

The behaviour of activities in the new class can be represented in the following state transition diagram.

Request Start

.
Suspend Proceed

. Complete

. Request Cancel SuddenStart

Complete

A Activities

Figure 3-7: State transition diagram showing the possible operations in the class ActClassI on a member
of the set A, depending on the state of that member

One of the features of the new class is that it permits models in which the following sequence of events is

observed. An activity is requested whereupon it becomes a Request, it is then started and becomes a
member of Proceed. Something happens to cause the clinician to suspend the activity at which point it is

returned to Request, and as the activity is now a member of Request, it can be cancelled and the clinic
will behave as if it had never existed. This is nonsense: we cannot deny the existence of an activity just
because it has been suspended. In this case the anomaly would be fairly easy to fix: an introduction of a
new subset of Activities as was proposed earlier would enable us to prevent such an undesired sequence of
operations.

Although the theory as it currently stands allows for this unrealistic behaviour, we have already seen that
its strength lies in its prohibitions rather than its exhortations. We can fail to discover behaviours that are

allowed by the theory and still have reason to believe in its validity. If we discover behaviours in the
domain that are disallowed by the theory, then the theory has been refuted, and must be discarded. Thus

the theory as it stands at the moment might not be as 'good' or 'realistic' as one in which a suspended

activity could not be cancelled, but it is not 'wrong' insofar as it has not been refuted.

Of course if we are not bold in our attempts, and try merely to create a theory that is not refuted, we might

end up with one such as has been described. The purpose of this analysis is to understand and represent
the domain into which an information system might be placed. The theory we have developed so far,

d: \jcs dis\wip\phd\phdtext2. doc
116

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

concerning only state changes of activities, does not really tell us anything useful at all: it lacks semantic

richness. The more wealth of detail we add, providing the theory is not refuted, the more aspects of the
domain we will have represented. The 'scientific' method that was used in the development and

refinement of the theory does not help us to decide which aspects of the domain should be modelled (for

this we must resort to common sense and guidelines such as those discussed in Section 7.3), it merely
helps us to see if we have made an error in the representation of the domain.

We have seen that the theory as it stands so far is not 'wrong' in the scientific (as we have defined it)

sense, but contains insufficiently rich semantics reflected by a paucity of state components (patients have

not been mentioned yet) and by its failure to prohibit behaviours of models that are never seen in the

domain (as seen in the possible cancellation of suspended activities). Many state components have been

introduced into the theory as we shall see, addressing the problem of insufficient state components. As for

the 'sloppiness' of the behavioural specification of the theory so far, we shall see that cancellation of
interrupted activities is forbidden later on after time has been introduced: we will see that only activities

that have never been started can be cancelled.

9.2.9 Limiting the Scope: Introducing Boundaries

Although we want the theory to be designed such that it can be specialised to any area of medical activity,
we do not need to (and could not hope to) represent the totality of medical care. For any specialisation
there is thus a boundary between those activities that are pertinent to the medical domain we are
interested in and those that are not. The theory distinguishes those activities that are inside the boundary -
whereby they are members of the set In - and those that are outside the boundary - which are members of
Out. The intended interpretation of these concepts is as follows. Any activity that the medical domain we

are currently concerned with is responsible for carrying out is a member of In, and all those that we are
interested in but have no control over are members of Out. In the case of the DEDC activities of type
Doctor Consultation and Diabetes Care would be members of the In set whereas those of type Blood Test

(carried out by Clinical Chemistry) and Surgical Intervention (carried out by Surgery) would be in Out.

The partitioning of Activities into In and Out is 'orthogonal' to that into Request, Proceed and Complete

in that a member of either In or Out can be in any of the temporal subsets. We are not so concerned with

the details of Out activities so the operations on these are simpler:. OutRequest(-4a) which produces a

member of both Request and Out; . OutProceed(a) that moves an external activity from Request to

Proceed; and . OutComplete(a) that moves an activity to the set Complete. We are not interested in

whether or not an external activity has been interrupted, so there is no equivalent to the Suspend

operation, and the . Cancel(a) operation can be applied to activities that are members of either In or Out

(as long as they are also in Request).

9.2.10 Conclusion

In this section a number of very simple, but very important, operational state components from the

domain theory have been described. Even this early in the presentation of the theory, we have seen how

some behavioural properties of the theory were refuted: specifically the first version of the theory

presented did not allow for an un-requested activity to start (as happens in emergency and unplanned

activities), or for an activity to be suspended. The two new operations . SuddenStart and . Suspend address

these problems, but have the side effect of admitting the unrealistic case of an activity being requested,

started, suspended then cancelled. This 'semantic sloppiness' is not refuted but goes against the spirit of

the first of the scientific imperatives we are observing - that we should strive for as much realism and

d: \jes\dis\wi p\phd\phdtext2. doc
117

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

boldness in our theories as we can. This particular problem is solved when time is introduced in a

subsequent class.

The partitions of Activities, In and Out are introduced which are a simple means of creating a boundary of

our 'domain of interest': activities that are in In are inside the boundary; those in Out are outside. There

are no operations which change which of these partitions an activity is in.

9.3 Graphs Over Activities

9.3.1 Introduction

As it stands, the theory, although 'correct' inasmuch as it has not been refuted, is not particularly
illuminating. The first of our two scientific imperatives exhorts us to add more richness and constraint. So
far, activities are described as existing in isolation - in fact medical care consists of complex interactions

of aggregates of medical activities. One of the thrusts of this work has been to find how these aggregates

are constructed and structured. Observation of medical care as a discipline (and many if not most other
disciplines besides) seems to indicate that some activities are before others, and some activities are a part

of others. In the theory these properties of medicine are represented as relations over Activities. A relation

where the domain and codomain are of the same type (ie they are subsets of the same carrier set) is called

a graph. Where the relation is also a function, the graph is also known as a tree. A useful metaphor to use
when talking about graphs and trees is that of a family tree. This metaphor is briefly discussed below and
is used subsequently when discussing appropriate aspects of the theory.

9.3.2 Before and After: Medical Ordering Introduced

Before and After are both graphs over activities which represent aspects of their chronological ordering.
As explained earlier, these concepts have not been used greatly in the specialisation of the theory to the
DEDC (they are only used in the definition of a followup activity). They have been left in as it was felt

that they might be useful in other areas of medical care, specifically to support the notions of Care Profiles

and Care Protocols. The way in which the interpretation of the relations changed through the refutative
process is interesting, so they are discussed below.

The types of these state components are given as follows:

T2. Before, After: Activities (4) Activities.

Both are partial relations - we do not want to be forced to order all activities with respect to each other,

and indeed in many cases we can not. The chronological nature of the relations is given in the invariants:

i z: Before = After

I4: After+ n id[Activities] =0

is (in: After) (Proceed u Complete) C Complete.

Before and After are the inverse of each other: in other words if activity al is Before activity a2, then we
know that a2 is After at. The second predicate says that the graph After (and hence the graph Before) is

acyclic: if we arrange activities in a sequence such that every activity is After the preceding activity in the

sequence, then we will never find the same activity at two locations in the sequence. An activity can never
be After itself, or After an activity that is After itself, and so on. The third invariant says that any activity

d: \jes\dis\wip\phd\phdtext2. doc
118

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

that a member of Proceed or Complete is after must itself be complete. If we consider an activity a 1, then

all activities Before al must be completed, and hence members of Complete, if al is to start.

These invariants between provide constraints on possible values of Before and After that we would expect

to hold in any conventional understanding of the nature of time. This does not tell us anything

particularly interesting: if one activity takes place before another we should not be surprised to see it

finished before the second commences. These invariants do not say anything about when we might want

to say that one activity was after another: we must be careful how we decide on and explain the intended

interpretation of the concepts.

We are interested for now in structural and behavioural properties that are essential to an understanding
of the medical domain. There is nothing essential to medicine about the observation that 4 O'clock in the

afternoon is after 3 O'clock in the afternoon: in other words we do not want a representation of time (yet).
The sort of thing that is important to medicine is the observation that Mrs Jones was admitted for surgery

after she had a series of outpatient encounters with a consultant from the hospital. Two activities related
through After must be so ordered for some reason germane to the delivery of care.

Similarly, if we want to the state components to have some effect on the behaviour of models of the theory

as a whole then Before and After must say something about the domain as it is unfolding, not just record
some subset of the observed temporal sequencing of activities that have taken place. Thus if an activity aI
is Before a2, part of the interpretation is that al must have finished before a2 can start, even if at this

stage both activities are members of the set Request. In short Before and After represent behavioural
imperatives and not just historical records.

The precise interpretation that was desirable is still not totally clear, and indeed changed over the course

of the theory's development. The nature of that change is interesting, and is presented below. The

following argument makes use of state components that have not yet been introduced: these are explained
here but should not cause concern, what is important is how the interpretation of Before and After

changed as a result of the discovery of a counter-example that refuted a theorem of the theory (expressed

as an invariant).

9.3.3 The Problem of the Blood Test

One of the theorems that was included (as an invariant) in an early version of the theory related possible

orderings of activities with participants involved in those activities. The form of the theorem was:

Vaa: After+ r-) (Doni(Participant))2 " (Participant ° {aa} ° Participant-1) n id[NSR] #0

At this stage of the development of the theory, the nomenclature of the various sets and relations was as

follows. NSR is the set of 'Non Shareable Resources', a fairly unpalatable name for clinicians, patients,

and other resources that can only be in one place at a time. This is in contrast to consumables such as

'bandages' or 'swabs' that by their continuous nature can be used in a number of sites simultaneously (at

least they are considered to be continuous - we are not concerned with the identity of individual swabs and

bandages). Participant is the relation that links NSR with Activities. Thus (im Participant) (a) is the set

of clinicians, patients and resources that are currently physically present at activity a.

What the invariant says then is that any two activities which have clinicians, patients or resources

physically associated with them and that are ordered with respect to each other must share at least one of

those associated 'non-shareable resources'. This seems to make sense - after all why would one activity

d: \jes\dis\wip\phd\phdtext2. doc
119

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

have to be after another unless it was because the patient involved, one of the clinicians, a room, or a

piece of equipment was needed for both, and could only be used by one activity at a time? Although the

explanation of the invariant is fairly long-winded, its statement in the set-theoretic notation above is

succinct and precise, and predicts a definite property of the organisational system.

The theorem survived for two iterations of the theory, but was 'refuted' by the example of the blood test. It
is necessary that the blood for a blood test is taken before the blood is analysed, but none of the same
clinicians, resources or the patient need be present at both the extraction of the blood and its analysis.
Thus it seemed that the theorem as it stood did not accord with the observed facts.

A number of ways in which the theory could be adapted to accommodate this problem were considered.
Firstly the blood sample could be designated a participant of the activity. This seemed a little bizarre, and
did not really fit in with any intuition of what sort of thing a participant in an activity was. Alternatively,
Parts could refer to the patient the activity was about, not just the patient who was present at the activity.
This would do, but could be viewed as the addition of an exception solely to allow the invariant to be

preserved rather than add any insight into the nature of the domain. The third approach considered which
was adopted was to re-define After and Before so as to be 'medically meaningful'. The ordering of two
operations in an operating theatre is necessary for scheduling reasons. The ordering of a test and a visit to
the doctor to review that test is considered necessary for medical reasons. Thus the theorem became:

114: ActSubject ° (Includes v After) 0 ActSubject'l s id[Patients]

This says that any two activities that are related via the After or Includes (see below) relation must refer to
the same patient (via the function ActSubject which is described in more detail below). In this case, the
refutation of a theorem led to a change not only in the structure of the theory, but also a re-interpretation
of some of its components.

The concepts Before and After are in fact more complex still as it is almost never the case that one
medical activity must take place after another: if a blood test is required before a doctor sees a patient, but
for one reason or another has not been carried out, the doctor's consultation with the patient will still take

place but will be of a lesser quality. The assumption embedded in the theory that applies here is that in

order for the later activity to start, the earlier activity must either be completed, or cancelled in which case
the pair is removed from the After (and Before) relation: this is a reasonable theorem, but might not
accurately represent what actually happens. The relations are used in other more subtle ways throughout

the exposition of the theory however, and it is imagined that they would come in useful if the concept of
care plans was to be described.

9.3.4 Includes and During

In the early stages of the theory construction process, it seemed that the concepts Before and After would
be extremely useful - after all what is medical care other than a time ordered sequence of clinical
interventions of one sort or another? It was found over the course of the work that although looking back

on a medical history, one can re-construct such a sequence (or at least imagine that one has done so), the

use of such ordering to constrain the process of care as it takes place is too prescriptive: the business of

medicine is not only extraordinarily unpredictable, but the exceptions are of great importance and so must
be accommodated in any theory of care (the Care Profiles and Care Protocols mentioned earlier in this

respect are precisely rules and guidelines laid down to ensure consistent good quality care). Of much

greater use in the development of the theory was the notion of activity inclusion. This was considered of

d: \jes\dis\wip\phd\phdtext2. doc
120

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

potential though secondary interest at the start of the analysis, yet was developed to be the main form of
structuring used.

The intended interpretation of During and Includes is, as with Before and After, a medically meaningful
one. If activity al Includes activities a2 and a3, then activities a2 and a3 are medical components of al:
in attempting to deliver the care implied in al, activities a2 and a3 are created and discharged. We can
see how this might work in the case of a blood test. Before a blood test can be satisfactorily completed, a
blood sample must be taken, and that sample analysed. If we call an instance of a blood test al, and the
sampling and analysis of the blood a2 and a3 respectively, we can see that al Includes both a2 and a3.

As with Before and After, During and Includes are graphs and are the inverse of each other. We could say
that

T3: During, Includes: Activities EH Activities

and

17: During = Includes-1.

For much of the theory's development it was considered that During was not only a partial relation, but a
partial function also (also called a tree when it is a subset of a graph as in this case):

During: Activities -+i Activities.

In other words, any activity can be a part of at most one other activity. Thus a dietitian consultation is a
part of one instance of dietitian care and not of any others, and a particular blood test might be a part of
doctor care (although other health care professionals may want to look at the results, this is through the
sharing of information - the blood test is still a 'part of the health care process that it was requested to

support, in this case an instance of doctor care). The assumption that an activity could be a part of at most
one other activity, as recorded through the representation of the During relation as a tree, was taken early
on in the project, and was not questioned for many iterations of the theory development cycle. This is an
example of a 'paradigm trap' such as is discussed in Section 13.3. It is also useful here to record that

refutative examples of behaviours of the domain do not 'leap out' at the analyst, but must be sought after.
The good analyst, much as the good scientist, is beholden to try and refute his or her theory as
determinedly as possible: it is not acceptable to create a poor theory and then act as an apologist for it.

The intention of the author was to act as a responsible analyst - the success and sincerity of the effort is

for the reader to decide.

The assertion that During behaved as a partial function was refuted however, and many counter-examples

have been found since then. The example used in the original refutation was that of a nurse changing a
bed-pan once for a patient who was in hospital for two completely different operations. Changing a bed-

pan might be a required activity in the 'care plans' for both concurrent episodes of care, but we would see

it take place in the domain only once: it is a component of both clinical procedures. It would be possible

to construct a type structure that could support this problem, and prevent it from contravening the

invariants (changing the bed-pan, for example, might be thought of as a direct part of some high level 'in

patient episode' activity or some other artificial activity type), but there are other aspects of care that still

cause problems. One of these is observed in the care delivered to diabetic women who become pregnant.

The diabetic woman will typically be a long-standing patient of the day centre (unless the condition is

Gestational Diabetes Mellitus - diabetes confined to pregnancy) and will have had many activities

d: \jes\dis\wip\phd\phdtext2. doc
121

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

completed of which she was the subject, under a single instance of 'diabetes care'. Many of the activity

types she will attend as part of the care delivered by the hospital during the ante natal and confinement

stages of the pregnancy are common to all such 'patients', but some are provided for only those pregnant

women who have diabetes. An example of such an activity type is the combined clinic run by the

Obstetrics and Gynaecology Directorate in association with the Endocrinology Directorate. The activities

that take place within this clinic are in some sense, and at some level, components of both Obstetrics &

Gynaecology care and Diabetes Care. Multiple conditions (insofar as pregnancy can be called a condition)

are commonplace in medicine, and are dealt with through formal or informal collaboration such as that

described between the Obstetrics and Gynaecology Directorate and the Endocrinology Directorate: to

insist that any activity is a component of at most one other means that this situation is very difficult to

describe (and so, by Occam's razor, the less flexible structure is 'wrong' in much the same way as the

Ptolemaic description of the solar system is'wrong' when compared to Kepler's).

As a result of these and other counter-examples, the representation of During was changed from a tree to

a graph:

TX: During: Activities 4+ Activities.

During and After are given formal semantics in the theory through the description of their interactions

with other state components. At this stage we have only met the partitions of Activities, Before and After.
The relevant theorems concerning these sets and relations are:

IS: During' n id[Activities] =0

19, (im Includes) Complete c Complete

i uk (im During) Proceed c Proceed

i i: (After tI Before) D Dom(During) C Includes 0 During

During (and hence Includes) is a 'Directed Acyclic Graph': no component (or sub-component, or sub-sub-
component, and so on) of an activity can be itself. Any activity that is a component of a completed activity
must itself be a member of Complete, and similarly, if an activity is proceeding, then the activity of which
it is a part (if any) is itself a member of Proceed. Thus a doctor cannot be still seeing a patient if that

patient has left the clinic, and if the doctor is seeing a patient, then the clinic of which that doctor

consultation is a part must have commenced (and not yet be complete).

The last invariant states that any two activities that are in the After relation that are each Included in

some activity, must have at least one of those 'higher level' composite activities in common. This is part of
the definition of After and During: if any two activities are ordered, it must be because they are part of a
higher level activity that requires such an ordering.

9.3.5 The Graph as a Family: a Useful Metaphor.

The clumsiness of the explanation of the last invariant illustrates an important point. A very succinct

piece of set theoretic notation might be very difficult to explain informally. This must be tried however,

both as a courtesy to the reader and to aid interpretation of the concepts involved. Sometimes such

informal explanations will inevitably be either clumsy or longwinded as complex ideas, expressed

precisely as symbolic predicates, are translated into natural language. At other times however we can use

the power of natural language to help us in our task. A powerful reasoning aid is the use of metaphor, and
in many cases we can use a metaphor for the structure or theorem defined in the theory to help in its

d: \jes\dis\wip\phd\phdtext2. doc

122

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

informal exposition. An example of this that will be described here is the use of the family metaphor to
help us understand the relation between elements of graphs.

A family tree can be understood as being a particular sort of graph. The main link in the classical family
tree is from father to child. We are not interested in implicit sexual discrimination so we can say that the
link we care about is from parent to child. A family tree of this type is given below, based around the
graph is-parent-of, using the same style for representing graphs as was introduced earlier.

Ag
/\z\

CDE
/\/

FG

Figure 3-8: A representation of the Directed Acyclic Graph is_parent_of

In this case this can be represented as: {(A, C), (A, D), (B, D), (B, E), (D, F), (D, G), (E, G)}.

If we consider this as a family tree, then we can use conventional descriptions of family relations to
describe selected pairs of elements. Thus A is a parent of C, and a parent of D. Someone's parent's child is
a sibling, so C is a sibling of D. The relation is-sibling-of could be represented by the set: {(C, D), (D,
C), (D, E), (E, D), (F, G), (G, F)). It is usually considered to be the case that someone's child's parent is
either that person or their spouse. Thus A is the spouse of B, and the relation is-spouse-of could be
represented by the set: {(A, B), (B, A), (D, E), (E, D)). Someone's ancestors consists of his or her parents,
their parents, their parents and so on. Thus the ancestors of F are (D, A, B). Descendants is the inverse of
ancestors. Pushing the analogy a bit far, we might also say that A and B are orphans as neither has
parents.

If we change the names of the sets, relations and values in the family tree, then we can represent any
graph, and using the family as a metaphor, we can talk about the relation between two elements of this
arbitrary graph as siblings, ancestors, spouses and so on. Thus if activity al Includes activities a2 and a3,
we can say that a2 and a3 are siblings.

Using this metaphor to talk about the Includes graph, we can more easily express the last invariant by
insisting that if one activity is after another, those two activities must be siblings.

9.3.6 Operations on ActClass3

The operations that are invoked in the class where Includes and During are introduced - ActClass3 - are
different from those described in earlier classes, but taking advantage of the compositional calculus of the

notation enables us to describe new operations as refinements of old ones. For example, we saw that an
activity cannot be completed unless all its component activities have been finished also (Invariant 19).
Thus the operation ActClass3. Complete(a) is described in the notation as follows:

ActClass3. Coinplete(a)

(im Includes) {a) c Complete

ActClass2. Complete(a)

d: \jes\dis\wip\phd\phdtext2. doc
123

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The precondition of this operation says that not only must the preconditions of ActClass2. Complete be

satisfied (and any operations that inherits), but also the predicate

(im Includes) (a) c Complete

which says that all child activities of the activity to be completed -a- must be members of the set
Complete.

Each operation that appeared in ActClassl has been inherited by ActClass3, and appropriate

preconditions specified. For example, when an activity is suspended, we must sure that it has no
proceeding children. We do this through use of the precondition

Includes {a) c Request v Complete.

When we cancel an activity, we must be sure that all its descendants are members of the set Request:

(im Includes+) (a) c Request.

Not only that, but we must also ensure that those requests are themselves removed from the set Activities
(if an activity is cancelled, then so are all its component parts). We do this through the use of a
postcondition:

(im Includes+) {a) n Activities' = 0.

ActClass2. Request(Ah, a�) has been inherited and given the new name ActClass3. Create(Ah, a�) which
creates an orphan activity and places it After all activities in the set Ah. The only new operation is
ActClass3. Embed(Ap, Ab, af). This creates a new activity a, (c for 'child') and also places it After all
activities in the set Ah (b for before): it also makes it a child of all activities in the set Ao (p for parent).

The preconditions define the states of the system where we want the operation to be valid. Remember that
the notation dictates behaviour through the insistence that at all times the invariant is satisfied, and that

additionally, if an operation is to be invoked, the precondition must be satisfied. After the operation has

been invoked the invariant is still satisfied, as is the postcondition. As long as there is a possible state that

contravenes neither the postcondition or the invariant, then (subject to the precondition), the operation

can be invoked. The precise change to the model state that the operation makes is derived from formal

arguments based around the notion of 'minimal change' (discussed briefly in Section 6.2.9). As we have

seen, formal proof was little used in the exploration of the theory. For this reason, the pre-conditions were

made sufficiently strong to ensure that the 'minimum change' was precisely what was required, and the

changes to model states are easily deducible from the pre and post-conditions, and the class invariants.

The case of the Cancel operation is an example where we needed to add additional strength to the

postcondition. Without a postcondition, the operation would be formally valid, but not have the desired

effect. The invocation of the Cancel operation on the parent activity would remove it from the set
Activities. After the operation, the semantics of the notation says that the state of a model of the theory is

that which satisfies the postcondition and invariants, and is changed minimally compared to the state
before the operation. Without the postcondition specified, one valid state of the model after invocation of

the operation would have all the original children of the parent activity remaining as elements of Request,

but all pairs in the Includes and During relations which have the parent activity as a member removed. As

this state is closer to the original than the desired one where all 'child' activities are cancelled as well, it is

d: \jes\dis\wip\phd\phdtext2. doc
124

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

the one implied by the operation according to underlying semantics of the notation. Because of this we
need to strengthen the postcondition accordingly.

Another example, where additional strength was added to the precondition of an operation is as follows.

Consider the operation ActClass3. Embed(AP, Ab, aC): in the schema for this operation, we insist that none

of the potential parent activities of a, - that is, the set Ap - are yet complete, and that all activities in Ab

have a parent in A. These type declarations and preconditions are thus (in addition to those specified in

ActClass3. InRequest(Ab, a�) which is the inherited operation):

AP: Activities\Complete

A,, c Dom(During t> AP).

The postcondition states that (in addition to the postconditions of the inherited operation) a,. is the child
of all activities in A,,, as defined by the new state component During':

{aj x Ap c During'.

Thus the final operation schema is:

ActClass3. Embed(Ap, Ab, aj

Ap: Activities\Complete

ANnIn#0

Ab c Dom(During D Ap)

ActClass2. InRequest(Ab, a�)

{a, } x Ap c During'

(The extra pre-condition enforces a property relating to the boundary of the domain). Now this

postcondition could be satisfied without having to use the preconditions described. For example, we might

not insist that no parent activities were members of Complete. This operation schema would look like

this:

BadAct Class3. Embed (AP, Ab, aJ

AP: Activities

A,, nIn* 0

Ab S Dom(During ' A,,)

Act Class2. InRequest(Ab, a�)

{aj x Ao a During'

The effect of this operation on a model where some of Ap were members of Complete would be to take

them from that set and insert them into either Request or Proceed in order that invariant 19 was not

contravened. As we saw in the discussion of the activity state transition diagram, we want to be sure that

d: \jes\di s\wip\phd\phdtext2. doc
125

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

when an activity is complete, it stays complete. Thus the operation BadActClass3. Embed(Ap, Ab, ac) is not
formally invalid, but displays properties that would be undesirable in a model, and are not observed in the

domain. At all stages in the development of the theory care was taken to ensure that the class schemas

were not only consistent in a formal sense, but also ensured that models of the theory displayed desirable

properties. This is one interpretation of the directive of the scientific method which encourages us to

embolden the theory and render it more falsifiable.

There are parallels with most of the above operations that apply only to external activities: these are
Act3. OutCreate(a), Act3. OutEmbed(Ap, a,), Act3. OutProceed(a) and Act3. OutComplete(a).

One final point should be made in this sub-section. If we inspect the operation . Start(a) in this class, we
find the postcondition

(im During+) {a) s Proceed.

However, the invariant

(im During) Proceed c Proceed

from the state schema renders this unnecessary. We could rewrite this invariant as:

Vp: Proceed " (im During) {p }c Proceed.

As we know that following the operation a is an element of Proceed, we can thus say

(im During) {a} c Proceed.

Now if the parents of a are in Proceed, then so must be its 'grandparents': if the 'grandparents' of a are in
Proceed, then so must be its 'great-grandparents', and so on. ie:

(im During+) (a) g Proceed

which is the postcondition. In other words the postcondition is derivable anyway from the invariant

making its presence superfluous.

The use of a specification is as an aid to communication, not an elegant mathematical statement. Thus

tautologies should be encouraged where their introduction acts as a reminder to the reader of a property

that is logically implied but might be overlooked. In this way the postcondition of the Start operation in

this class acts as an 'aide memoire' and, it is hoped, adds clarity to the presentation.

9.3.7 Conclusion

In this section we have investigated the nature and representation of two different graphs (and their
inverses): Includes (and During) and After (and Before). The original interpretation of After was as a

resource dependant ordering of Activities, but this was refuted by the example of the blood test. The new
interpretation of After is as a medically meaningful ordering which thus always applies to the same

patient. During, the inverse of Includes was introduced as a tree: an activity might be During no more

than one other. This assertion is refuted through the examples of pregnancy care for diabetic patients, and

shared care (between hospital and GP): the new theory thus defines During to be a graph with the

attendant invariants re-worked.

d: \jes\dis\wip\phd\phdtext2. doc
126

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume !: Thesis

9.4 Types

9.4.1 Introduction

We have still not said anything of great interest about medicine as we do not know what sort of activities
we are dealing with. This lack is partly remedied through the definition of the medical type. This next
section introduces the set Types, and explains how the class which introduces Types (TypeClassl) and the
latest operational class featuring only Activities and its graphs (ActClassl) are brought together to form a
composite class (ATClassl) which is defined in some detail. A behavioural model of the theory thus far

presented is expressed, introducing the concept of animation.

9.4.2 Types

A type is the medical description of an activity, and as such it is an attribute, or descriptive term, of the

activity. Some examples of types from the DEDC are Dr Telephone, DSN Consultation, DSN Education

Session, Established Diabetes Mellitus Pregnancy Care, Finger Prick Test, First Dr Consultation and
Followup Dr Consultation (and many others: the most recent instantiation to the Endocrine Directorate

involves forty types). Other clinical domains have other types: for example types of activity relevant to the
Dermatology Directorate might be General Dermatology Clinic, PUVA Visit (PUVA is a form of sun-
lamp treatment), Dressing Session, and Urticaria Consultation. A good understanding of the activity types

was a central theme of the analysis, as it is mainly through the type of an activity that a clinician (or

anyone else) describes what he or she does. A diabetologist, when describing the clinics she runs will talk

about the 'initial visit' and 'followup visit' rather than individual activities of those types. The set of types

that is pertinent to the Endocrinology Directorate is given in Appendix 3.

The set of Types was initially chosen from a single new set:

Types: Set[T].

As explained in section 9.2.9: Limiting the Scope: Introducing Boundaries, it became necessary to
distinguish between those activities that take place within the organisational boundary in which we are
interested, and those that take place without. As we saw in the case of diabetic pregnancies, activities that
take place outside the scope of the particular medical area we are currently modelling might still be of
interest to us. To distinguish between the types of 'internal' activities and 'external' activities, the carrier
set of Types was changed into a Cartesian product of two sets: the 'descriptive term' (Blood Test, Doctor
Consultation, Limb Amputation) and the 'organisation' (Diabetes and Endocrine Day Centre, Chemical
Pathology, Surgery). Thus we have

Tr: Types: Set[DT EH Org].

We note the name of the organisation we are currently interested in when specialising the theory in the

set Home, where

T8: Honte: Set[Org].

Home is intended to be a singleton set when the theory has been specialised: it is a set at all rather than
just a value to enable class initialisation. In the case of a specialisation to the day centre Home would be
{Endocrine Directorate}. We can then define the set HomeTjpes as all types that are applicable to
internal activities as follows:

d: \jes\dis\wi p\phd\phdtext2. doc
127

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Ti: HomeTypes: DT E+i Org

and

118: HomeTypes = Types > Home.

As was explained in section 8.3.5: Structure and Value - Different Levels of Refutation, the behaviour

specialisation state components, of which Types is an example, was not explored. There are rules
determining what is or is not acceptable (such as that defining HomeTjpes), but no investigation of how

the 'rules of the game' might be changed as the game is being 'played'. In short what this means is that

there are invariants over types (and other specialisation state components) and one operation called

.
Specialise which sets up an initial value for a model. This can only be invoked when the set of activities

and types is the empty set. This is a totally unrealistic operation that doesn't reflect any in the domain - it

is included in the theory for the sake of completeness, and to enable models to be run.

9.4.3 The Class Structure so far

So far in the presentation of the theory, four classes have been described. The first was ActClassl which
introduces Activities and its partitions. The second was ActClass2 which introduces the graphs Before

and After. The third class, ActClass3 describes two more graphs over the set Activities: During and
Includes. Both of the last two of these three classes adds to its predecessor through a process known as
inheritance (by the 'Object-Oriented' community) or refinement (by the 'Formal Methods' community).
Thus a model of ActClass3 would incorporate Activities, its partitions, and the graphs Before and After as

well as those relations introduced in the class.

The last class described, TypeClassl, did not need to refer to activities at all. The class introduces the set
Types, the singleton set Home, and some derived state components; it also describes a (very primitive)

operation of the class. In describing the way members of the set Types behave, and possible models of the

class TypeClassl, there is no need to consider the set Activities at all. By considering how the various

activity classes behave independently from the type class, and vice versa, we have achieved a 'separation

of concerns', one of the keys to successful systems analysis [Cohen84].

Although it is useful to examine Activities and Types independently of each other, it is the interaction of

the concepts described that helps us to understand the operational behaviour of the domain. Thus we want

to say that all activities have types, and the types they have constrain the behaviour of the model in which

we find them: to do this, we must compose the classes ActClass3 and TypeClassl together. In the theory

this class is called ATClassl (Act Type Class 1). The invariants that hold over the composite class

constrain the interactions of the state components that have been defined in the component classes. This

is achieved partly through the use of relations between state components from each of the component

classes, partly through predicates involving these state components and derived relations, and partly

through the introduction of state components derived solely from one class, but only having significance

as regards their interaction with the other class.

The facility with which we can investigate aspects of the domain in isolation, and then examine the

interaction between these aspects is aided by the structure of the notation that was used in the work,

specifically the schema calculus which is in many ways more powerful than those of the more common

model based specification notations Z and VDM.

d: \jes\dis\wip\phd\phdtext2. doc
128

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The class structure as it has been described so far is illustrated by the following diagram.

ActClass]

Refinement

ActClass2

ActClass3 TypeClass I

Composition

ATClass 1

Figure 3-9: An Illustration of the class structure described so far.

ActClass2 is a refinement of ActClassl. ATClassl is a composition of ActClass3 and TypeClassl (See the

conclusion of this chapter for an explanation of the dotted line between ActClass3 and ATClasst)

The theory as it was developed is not structured exactly like this - patients are introduced before activity

types. It was considered that the introduction of types at this stage was more helpful in terms of the

explanation of the theory.

9.4.5 Interactions Between Types and Activities: The Class ATClassl

We are interested in the concept of types only inasmuch as it can be applied to activities. This we do with
the total function ActType:

rv: ActTjpe: Activities -9 Types;

all activities have exactly one type. Each structure which holds over types has some role to play in the

constraining of possible model behaviours, or more specifically over possible activity structures. Thus

with the quantity HomeTjpes which was defined in the last section, we have two invariants:

121: (im ActType) In c HomeTypes

122- (im ActT), pe) Out r1 HomeTjpes = 0.

Or, informally, there is no activity in the set In that has a type that is not in HomeTjpes, and there is no
activity in the set Out that has a type that is in HomeTjpes. Another invariant that we introduce at this

stage is one that constrains possible models of Includes:

123: ActT3pe ° Includes+ 0 ActTjpe-1 n id[Types] =0

which says that no activity can have a descendant that is the same type as it is (this invariant is similar in
form to the one discussed later that insists that Can_include is a directed Acyclic graph).

The last two invariants that are pertinent to this class are:

d: \jes\dis\wip\phd\phdtext2. doc

129

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

126: #ActType 0 (Includes D Proceed) = #(Includes D Proceed),

i zr: #ActType ° (Includes > Request) = #(Includes I Request).

These two predicates are similar in structure: the first says that for any activity, only one component
activity of a given type can be a member of Proceed, the second that only one component activity of a
given type can be a member of Request. Thus a doctor can only order one blood test at a time (though he

can order one at the same time as another is being carried out), and a specialist nurse can book only one
followup appointment as a result of a patient visit. These invariants were tentatively suggested as a means
of tidying up the structures of possible models, but they have not yet been refuted and are useful later on
in the theory when we want to be sure of which activity we are talking (ie we can say the request that is
included in activity al rather than a request).

When creating new activities, the types of those activities must be given: thus ATCIass3. Create,
ATClass3. Embed and ATC1ass3. SuddenStart (and their equivalents that apply to external activities) have

an extra argument each, specifying the type of a� and a, respectively. In addition these operations have

preconditions ensuring that invariants 126 and 127 are not contravened. The operations that move
activities from one partition of Activities to another do not change the type of the activity, so they have no
new arguments.

9.4.6 A Model of the Theory So Far

It is all very well talking about the theory in abstract, and examining some possible models that do not

contravene any invariants, but we have not yet got any feel for how the domain that we are theorising

about behaves. This we do by constructing behavioural models, or animations. The way we do this is by

creating an initial (specialised) model and observing how its state components change when we invoke

operations on it. We can show formally at each stage that the model does not contravene the invariants.

To do so would lead to vast numbers of proofs of fairly trivial results (this level of theorem proving or

model validation is best done by computer, and various animation programs exist for a number of formal

notations - for example OBJ3 and 2OBJ. An animator does not yet exist for the Schuman-Pitt notation,
but one - SUZAN - is currently being developed at The University of Surrey). Instead, the formal

invariants are compared with the formal model informally. Some of this informal reasoning is given
below.

The state of the domain model is given by values of the sets Activities, Request, Proceed, Complete,

Before, During and ActType. The initial state (after invoking the specialisation operation) is recorded by

'initialising' all these sets to the empty set:

Activities = Request = Proceed = Complete = After = Includes = ActType = 0.

The operations that have been defined in the five classes described are: Create, Embed, SuddenStart,

.
Start, Suspend, Complete, Cancel, OutCreate, OutEmbed, OutProceed, OutComplete. and

.
Specialise. Confining ourselves to internal activities, and ignoring the Specialise operation that has

already been invoked, and cannot be invoked again, we have seven operations to choose from (in addition,

we shall not use SuddenStart at the moment).

d: \jes\dis\wip\phd\phdtext2. doc
130

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

The only operation we can invoke from our initial 'empty' state is ATClassl'. Create(Ab, tfl--*a�)xiv - all the

others have preconditions that require the existence of elements of the set Activities. We must invoke this

operation and supply the required parameters. Suppose we create a new activity of type Doctor Care:

ATClassl'. Create(O, Doctor Care-*a1)

Note that it is the model itself that 'provides' the activity name, chosen at random from the set
AWctivities. We assume here that it has provided one called al. The new state of the model is:

Activities = [a l}
Request = {al)
Proceed =0
Complete =0
After =0
Includes =0
Act Type = ((al, Doctor Care))

Using the graphical notation introduced in Section 8.3.3 above, we can represent the current state of the

model as:

al, Doctor Care

Doctor care is comprises a number of sub activities such as Initial Doctor Consultation (Init Dr Cons),
Followup Doctor Consultation (Followup Dr Cons) and Blood Test. The allowable hierarchies have not
been described by the classes described so far, so al could equally well include activities of type Diabetes
Care, or Specialist Nurse Consultation. It is not the intention of the author to mislead, so we will only
consider reasonable structures (neither prescribed nor prohibited by the theory so far) for the model.

We next invoke the operation

AMass l'. Embed((aI), O, lnit Dr Cons-4a2)

whereupon the state of the model is

al, Doctor Care
Activities = (al, a2)

I Request = {al, a2}
Proceed =0

a2, Init Dr Cons Complete =0
After =0
Includes = {(al, a2)}
ActType = {(a1, Doctor Care), (a2, Init Dr Cons))

From now on the state of an animation will be given in two columns - the right hand column expressing
the state of the model as values of sets, the left hand column being a graphical representation of the same
thing.

We cannot have a2 a member of Proceed unless a] is also (invariant 110). However, as we have seen

. Start can be invoked using a child of a request as its argument - the operation has a postcondition which

ensures that all parents are members of Proceed. The operation we invoke in the model is:

AT1. Start(a2),

xtv This operation is marked with the prime symbol as the equivalent in the actual theory has an additional argument in the form of a
patient identifier. Patients have not yet been introduced, so the argument has been left out here.

d: \jes\dis\wip\phd\phdtext2. doc
131

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

after which the state of the model is:

a1, Doctor Care
Activities = {al, a2)
Request =0
Proceed= {al, a2}

a2, Init Dr Cons Complete =0
After =0
Includes = {(al, a2)}
ActType ={ (a 1, Doctor Care), (a2, [nit Dr Cons))

This diagram introduces a new graphical representation: any activity in a 'bubble' is in the set Proceed,

and any activity in a'box' is in the set Complete (any activity without a border is in Request).

To represent the doctor ordering a followup visit, we invoke the operation

ATClass1'. Embed({al }, {a2}, Followup Dr Cons-*a3)

to give us

al, Doctor Care

a2, mit Dr Cons a3, Followup Dr Cons

Activities = {al, a2, a3}
Request= {a3}
Proceed= {al, a2}
Complete =0
After= { (a3, a2))
Includes = ((al, a2), (al, a3)}
ActType = {(al, Doctor Care), (a2, Init Dr Cons), (a3,
Followup Dr Cons) }

Here the activity a2 has been placed in the relation Before with the new activity (not shown on the
graphical representation).

Now because a3 is After a2, a3 cannot be started until a3 has finished. In other words, the operation
ATClassl. Start(a3) is forbidden in this state by its precondition. We must first complete activity a2 by
invoking the operation

ATClass 1. Complete(a2)

to give us the state

a 1, Doctor Care

a2, Init Dr Con a3, Followup Dr Cons

Activities = (al. a2, a3 l
Request= {a3}
Proceed= (a I)
Complete = {a2}
After= { (a3, a2))
Includes = {(al, a2), (al, a3)}
ActType = {(al, Doctor Care), (a2, Init Dr Cons),
(a3, Followup Dr Cons)}.

Now we can start the followup activity using the operation

ATClassl. Start(a3)

d: \jes\dis\wip\phd\phdtext2. doc

132

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

which gives

al, Doctor Care

a2, Init Dr Con , Followup Dr Co

Activities = (al, a2, a3)
Request =0
Proceed ={ at, a3)
Complete = {a2}
After= { (a3, a2))
Includes = {(al, a2), (al, a3)}
ActType = {(al, Doctor Care), (a2, Init Dr Cons),
(a3, Followup Dr Cons) }

The behaviour seen in this model is not very informative, but it does give a feel for how possible
behaviours of the model are constrained by the theory. As the theory gets richer these behavioural models,
or animations, become more useful.

9.4.7 Conclusion

This section has discussed the (medical) Types which is a specialisation state component, and its
interaction with Activities, an operational state component. Types is given values via an operation called

.
Specialise that can only be invoked once, immediately after the model has been initialised. Some values

of Types specific to our main exemplar medical domain, the DEDC, are given above. A model of the
theory can be expressed using set extension and an appropriate graphical representation. A behavioural

model of the theory can be explored by animating a static model. Operations are invoked with real values
as their arguments, and the state of the model can be examined before and after the invocation.

9.5 Structures over Types

9.5.1 Introduction

Now that we have introduced types and ensured that every activity has one we can start to impose
constraints on activity structures that are specific to the particular medical domain we are looking at. The
two classes we are interested in here are TypeClass2 and ATClass2. TypeClass2 is a refinement of
TypeClassl, and introduces a structure over the set Types. The structure was initially a graph but was re-
defined as a more complex concept. Most of the ideas behind the structure introduced in this class can be

understood by considering the earlier and simpler relation, so we will investigate this first. TypeClass2 is

composed with ATClassl to give ATClass2 which describes the interaction between the specialisation
state component Can_include (or its subsequent derivative) and the operational state components relating
to Activities. An animation of a model of this class would be constrained by the particular structure
created on specialising the theory to the medical area of interest, and so could only be a model of that area
(with the previous operational class, ATClassl, an animation could be made to be a model of any medical
area just by changing the names of the types - the same cannot be done once activity constraining
structure over Types is introduced). For this reason, it is necessary to use the correct values of Types and
its structures when specialising the theory - discovering what these values were is an important part of the
analysis.

9.5.2 The Graph Can_include

The first structure introduced was the graph Can-include, defined as follows:

Can-include: Types EH Types.

d: \jes\dis\wi p\phd\phdtext2. doc

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The role of this relation is to act as a constraint over possible Includes hierarchies - an activity of type ti

can be During an activity of type t2 only if tl Can-include t2. The only invariants pertinent to this
(hypothetical) class are

Can_include+ n id[Types] =0

and

Can-include n (TypesVIomeTypes)2 = fÖ

(These are not given invariant numbers because they do not appear in the final theory, their function here

being to give the relation Can-include some formal semantics). The first invariant says that Can_include

is an acyclic graph, the second that if two types are in the Can-include relation, then one of those types

must be in HomeTypes.

In defining Can-include to be a directed acyclic graph, we are limiting quite severely the sorts of things

we can talk about: in particular we cannot include any generic types as well as their subtypes in the set
Types. An example of a generic type might be 'test'. An activity might well be a test, so why should we
not say that the type is permissible? The problem comes if we consider subtypes of the test. For example a
blood analysis is also a test, and a complex test might well have a blood analysis as one of its components.
We could say that test Can-include blood analysis, but as the analysis is also a test, we would have to say
that test Can-include test which we have disallowed through the invariant. We must be careful how we

choose the types with which to populate the specialisation state components: we must ensure that we

never have two members of Types, tl and t2, such that we can say a tl is a t2 or vice versa.

The second invariant reflects on the nature of the boundary we set at any specialisation. The boundary has

a degree of fuzziness about it in that an internal activity can include external activities (The Home

organisation might 'sub-contract' some of its services to other organisations - blood tests carried out for

the Endocrinology directorate by the Clinical Chemistry Directorate for example) and an external activity

can include an internal one (where the Home organisation is itself acting as the sub-contractor as in a

reversal of the situation above, or the situation where Diabetic Specialist Nurse support is given by the
Diabetes and Endocrine Day Centre to a GP -a form of 'shared care'). However, we never need to know

how the external activities choose to structure themselves internally to their own organisations. For

example a blood test, carried out by the Clinical Chemistry directorate might be composed of several

subsidiary activities, involving different health care professionals. Unless the Clinical Chemistry

directorate is our Home organisation we do not need to know this, so this 'internal' structure would not be

recorded in a model of the theory. We can insist on this by saying that an external type can never be in the

relation Can-include with another external type, as in the second invariant.

As with the TypeClassl, TypeClass2 is composed with a class defining activity behaviour. This is done

with ATClass 1 to give the composite class OldATClass2. There is only one invariant in this class:

ActT}pe ° Includes 0ActTjpe-I c Can-include

which says that for any pair of activities in Includes, the corresponding pair made of the types of those

activities must be in Can-include. The operations where we must consider this invariant are Embed, its

derivative SuddenStart, and its parallel for external activities OutEmbed. Thus a precondition of the

operation

d: \jes\dis\wip\phd\phdtext2. doc
134

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

OldATClass 2. Embed (tt, an, Ab-4a,)

Is

(ActT), pe(ap), t,) e Can-include

or the type of the parent activity Can-include the type of the new child activity.

We can see here why this early version of a structure over Types might was abandoned - it was sufficient
to constrain behaviour while During was a tree (as is supported by this operation where the child activity
can only be embedded in one parent), but is too simple to be able to apply to the present theory where
During is represented as a graph.

Before we examine a new structure over Types that supports this multiple parentage of activities, we can
use the simpler version to investigate how a proposed specialisation of the theory was refuted, and a more
realistic one was constructed in its place.

9.5.3 How Important is the Visit?

Once the theory was considered sufficiently robust, it was specialised to be relevant to an area of the
hospital - the Diabetes Day Centre. This was done by giving values to the elements of the set Types and

the relations over that set. Again, the rigour of set theory helped in this task by making predictions that

could be refuted. Initially, the analyst and the 'tame clinician' who had agreed to help in the project

viewed the process of care as delivered by the centre to be grouped by 'visit'. The first activity arranged for

the patient was a visit to the day centre. This visit comprised of a Doctor Consultation, a Dietitian

Consultation, a Specialist Nurse Consultation and a Blood Test. The Specialist Nurse Consultation might
be followed up by others over several weeks. Thus the visit was considered an abstract event that took

place over a prolonged period of time. The instantiation of the set types was then:

{GP Care, Hospital Diabetic Care, First Visit, Followup Visit, Doctor Consultation, Blood Test, Dietetic

Care, Specialist Nurse Care, Dietetic Consultation, Specialist Nurse Consultation} a Types

and the relation Can-include could be represented by the following graph (DSN is the abbreviation for

Diabetic Specialist Nurse):

Diabetic Care

Initial Visit Followup
Visit

Blood Dr Cons Diet DSN
Test Service Service

II

Diet Cons DSN Cons

Figure 3-10: Graph of initial Can-include relation over the set Types

named above.

d: \jes\dis\wip\phd\phdtext2. doc

135

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume L: Thesis

Thus every dietetic consultation is associated with a dietetic care activity and a 'visit'. There is generally

one doctor consultation per visit, the doctor creating a followup visit at the end of the consultation, so

each dietetic consultation could be associated with a particular doctor consultation. This seemed to be the

way things happened - the doctor deciding whether or not a patient needed to see the dietitian or specialist

nurse at each visit, delegating authority to treat to the nurse or paramedic, and then regaining control in

time for the next visit. One of the implications of this structure is that as one followup visit is generally
After the preceding one, the dietitian and specialist nurse must have finished the care they are dispensing

before the next doctor consultation. We can see this in the following behavioural model which represents

a typical sequence of care for a new patient as perceived under the original specialisation. Note that this is

a typical sequence of care - not the standard, or the necessary, or the recommended. There are many

possible behavioural sequences, far too many for us to investigate (the number of possible behavioural

traces will increase roughly exponentially with the number of operations invoked). All we can hope to do

is see if there are real behaviours of the domain that cannot be modelled using the theory: the
identification of these requires knowledge of both the theory and the domain. The following is an example

of such a behavioural refutation.

Initially, all sets are empty. We first invoke the Specialise operation to specialise the theory to the
Diabetes and Endocrine Day Centre. Consequent to this operation, the specialisation state components
have values as described in the graph above, and the operational state components will remain

unchanged, all being equal to the empty set:

Activities =0
Request =0
Proceed =0
Complete =0
After =0
Includes =0
ActType = 0.

The first ('operational') operation we invoke is

OIdATClass2. Create((), Diabetic Care-pal)

to represent the initial referral of the patient to the clinic. The result of the operation is:

Activities = {al }
al, Diabetic Care Request = (a I)

Proceed =0
Complete =0
After =0
Includes =0
ActType = {(al, Diabetic Care)}

After the creation of this activity, which will span all the care provided to the patient by the day centre,

generally an agreement to treat the patient will have to be made by the relevant consultant after which we

can claim that the activity has started:

OldA TClass2. Start(a 1)

d: \jes\dis\wi p\phd\phdtext2. doc
136

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

which gives

al, Diabetic Care
Activities = {al }
Request =0
Proceed= {al }
Complete =0
After =0
Includes =0
ActType = {(al, Diabetic Care)}

As shown in the illustration of the Can-include relation, there are only two types of activity that can be

embedded in Diabetic Care: Initial Visit and Followup Visit. Even if the patient is an established patient

at another clinic, and has started attending the day centre at St Thomas' (maybe because the patient has

moved house), they will (almost always) still attend the 'initial visit' first. So the usual operation invoked

is:

OldATClass2. Embed (a 1, O,! nitial Visit--)a2)

to give

Activities = {al, a2} al, Diabetic Care
Request = {a2}
Proceed ={a1}

a2, Initial Visit Complete =0
After =0
Includes = {(a1, a2)}
ActTjpe ={ (a 1, Diabetic Care), (a2, Initial Visit))

Note that the form of Embed we use here is different from that described for ATClassI in that a single
parent activity is provided as an argument instead of a set.

The initial visit typically consists of a blood test, a doctor consultation, and a visit to the specialist nurse

or dietitian. The analysis seemed to reveal a longer sort of visit which included a sequence of specialist

nurse and dietitian consultations. These consultations were provided as parts of the service that the

paramedics were requested (by the doctor) to deliver to the patient. In short, the observed sequence of

operations and subsequent model states was

OldATClass2. Embed(a2, (, Dr Cons-m3)

al, Diabetic Care
Activities = {al, a2, a3}
Request= {a2, a3}
Proceed= (al)

a2, In i Visit Complete =0
After =0
Includes = {(al, a2), (a2, a3)}

a3, Dr Cons ActType = {(a1, Diabetic Care), (a2, Initial Visit), (a3, Dr Cons))

OIdATClass2. Start(a3)

Activities= {al, a2, a3}
al, Diabetic Care

Request =0
Proceed = {al, a2, a3)

a2, Initial Visit Complete =0
After =(

Dr Cons a3
Includes = {(a1, a2), (a2, a3)}

, ActTjpe = {(al, Diabetic Care), (a2, Initial Visit), (a3, Dr Cons))

d: \jes\dis\wip\phd\phdtext2. doc
137

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

OIdATClass2. Embed(a2, (, DSN Service-a4)

Activities = {al, a2, a3, a4)
a 1, Diabetic Care Request= { a4)

Proceed ={a1, a2, a3)
a2, Initial Visit Complete =0

After =0
Includes = {(a1, a2), (a2, a3), (a2, a4)}

a3, Dr Cons ActType = {(a1, Diabetic Care), (a2, Initial Visit), (a3, Dr Cons),
a4, DSN Service (a4, DSN Service)}

OldATClass2. Embed(a2,0, Dietitian Service-*a5)

Activities = {al
, a2, a3, a4, a5)

al, DiaFa5, Request = (a4, a5)
Proceed ={a1, a2, a3)

a2, InComplete =0
After =0
Includes = (al, a2), (a2, a3), (a2, c4), (a2, a5)} a3, Dr Cons Diet Service ActType = {(al, Diabetic Care), (a2, Initial Visit), (a3, Dr

a4, DSN Service Cons), (a4, DSN Service), (a5, Diet Service))

Before the doctor finishes the consultation, he or she will almost certainly arrange for the patient to come
back for a followup appointment in six month's time or so. To do this, a followup visit must be created,
and another Dr Cons embedded within it. The Followup Visit is After the Initial Visit, and this is

reflected in the operations invoked which are as follows:

OldA TClass2. Embed(a 1, { a2 }, Followup Visit-4a6)

a6, Followup Visit

a5, Diet Service

OldATClass2. Embed(a6,0, Dr Cons-4a7)

Diabetic

Initial Visit a6, Followup Visit

a7, DJ Cons

a3, Dr Cons 1
a5, Diet Service

a4, DSN Service

Activities = {al, a2, a3, a4, a5, a6}
Request = {a4, a5, a6}
Proceed = {al, a2, a3}
Complete =0
After= { (a6, a2))
Includes = {(aI, a2), (a2, a3), (a2, a4), (a2, a5), (al, a6))
ActType = {(al, Diabetic Care), (a2, Initial Visit), (a3, Dr
Cons), (a4, DSN Service), (a5, Diet Service), (a6, Followup
Visit))

Activities = {al, a2, a3, a4, a5, a6, a7}
Request = {a4, a5, a6, a7}
Proceed = {al, a2, a3}
Complete =0
After= { (a6, a2))
Includes = {(al, a2), (a2, a3), (a2, a4), (a2, a5), (al, a6),
(a6, a7))
ActType = ((al, Diabetic Care), (a2, Initial Visit), (a3, Dr
Cons), (a4, DSN Service), (a5, Diet Service), (a6, Followup
Visit), (a7, Dr Cons))

d: \jes\dis\wip\phd\phdtext2. doc
138

a4, DSN Service

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

OldA TClass2. Complete(a3)

Visit

Cons

Activities = {al, a2, a3, a4, a5, a6, a7}
Request = {a4, a5, a6, a7}
Proceed ={a1, a2 l
Complete = {a3}
After= { (a6, a2)1
Includes = {(al, a2), (a2, a3), (a2, a4), (a2, a5), (al, a6),
(a6, a7)}
ActType = {(al, Diabetic Care), (a2, Initial Visit), (a3, Dr
Cons), (a4, DSN Service), (a5, Diet Service), (a6, Followup
Visit), (a7, Dr Cons))

The discharging of the DSN Service is the responsibility of the diabetic specialist nurse; the discharging

of the Diet Service the responsibility of the dietitian. Both of these services will generally be discharged
through the provision of a succession of consultations (specialist nurse or dietitian), blood tests, telephone
consultations and so on. A typical sequence of these is given below along with the eventual state.

O1dATClass2. Embed(a4,0, DSN Cons-ßa8)
OldATClass2. Start(a8)
OIdATClass2. Embed(a4, (a8), DSN Cons-4a10)
OIdATClass2. Complete(a8)
OIdATClass2. Embed(a5, (, Diet Cons--+a9)
OIdATClass2. Start(a9)
OIdATClass2. Embed(a5, { a9), Diet Cons-pa 11)
OldATClass2. Complete(a9)
OldATClass2. Start(a 10)
OldATClass2. Embed (a4, {a 10) , DSN Cons-'a 13)
OIdATClass2. Complete(a 10)
O1dATClass2. SuddenStart(a4, DSN Telephone-*a12)
OldATClass2. Complete (a 12)

Q, Diabetic Cam

a2, Initial Visit a6, Fo11 wup Visit

a7, D1 Cons
a3, Dr Cons a5, Diet Service

4, DSN Service

a11, Diet Cons

a9, Diet Co

a8, DSN Cons

a10, DSN Con
\a13.

DSN Cons

1a12, DSN

Activities = {al, a2, a3, a4, a5, a6, a7, a8, a9, alO, all,
a12, a13)
Request = {a6, a7, al 1, a13}
Proceed ={a1, a2, a4, a5)
Complete = (a3, a8, a9, a10, a12)
After ={ (a6, a2), (a 10, a8), (a 13, a 10), (all , a9))
Includes = {(al, a2), (a2, a3), (a2, a4), (a2, a5), (al, a6),
(a6, a7), (a4, a8), (a5, a9), (a4, a10), (a5, all), (a4, a12),
(a4, a 13))
Act Type = {(al, Diabetic Care), (a2, Initial Visit), (a3, Dr
Cons), (a4, DSN Service), (a5, Diet Service), (a6, Followup
Visit), (a7, Dr Cons), (a8, DSN Cons), (a9, Diet Cons), (a 10,
DSN Cons), (a11, Diet Cons), (a12, DSN Telephone), (a13,
DSN Cons))

Inspection shows that at no stage are the state invariants contravened, nor any pre-condition violated.
Two invariants to remember are 126 and 127 that prevent their being any more than one request (or,

respectively, proceeding activity) of a given type included in a single activity. This means that only one
paramedic followup visit can be booked at a time.

The important activities here are the paramedic consultations that have not yet been completed: all and
a13. Because the Initial Visit (a2) is Before the Followup Visit (a6) which includes the followup Dr Cons
(a7), the next visit to the day centre cannot take place until the initial visit is complete, which in turn

d: \jes\dis\wip\phd\phdtext2. doc
119

a4, DSN Service

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

entails the completion of all the paramedic activities which are descendants of a2. This seemed reasonable

enough as generally the DSN Service and Diet Service activities are complete within a matter of weeks,

and the followup visit will still be several months away.

While presenting this model at a departmental meeting it was claimed (by one of the clinicians present)

that this was a poor representation of how things actually worked in the clinic. The specialist nurse and
dietitian might continue to dispense care irrespective of when the doctor sees the patient. The patient

might refer themselves to the specialist nurse many months after the first visit, and be seen by him or her

regularly over a period which spanned the first followup visit. This is not permissible in the specialisation
described, and even if it were, we would not be able to represent the perception of the majority of the

clinicians which was to accord nurses and other paramedics a significant degree of professional

autonomy. A new specialisation was developed which takes this into account, and relegates the 'visit'

concept to a scheduling detail rather than the central component of Diabetes Care. The new specialisation

of the theory is illustrated in the following figure (of a subset of the new Can-include):

Diabetic Care

Dr Care Diet DSN
Care Care

Blood
Test

Dr 2ons Diet Cons DSN Cons

Figure 3-11: A Model of Can-include

The new specialisation can support the same order of activities as the old one, and can also represent

those occasions when the specialist nurse or dietitian act independently of the doctor. It is important that

models of both sorts are permitted, for to simply change from allowing one group to allowing another

would imply that the observations that lead to the creation of the first specialisation were wrong. The

observations, elicited from clinicians, were not wrong - it was the underlying structure, in the form of the

values of the specialisation state components, that was wrong and that it was insufficiently flexible to

support the circumstances that came to light in the departmental meeting.

9.5.4 Compulsory Activities: the Brief Appearance of Comprises and Requires.

Early versions of the theory had two additional structures over the set Types. The first was Comprises

which was a subset of Can-include, the second Requires which was a triple over the set. In the old theory,

the structures were declared and defined as:

Comprises: Types E+i Types

Requires: Types 43 (Types EH Types)

with the invariants

Comprises s Can-include

d: \jes\dis\wip\phd\phdtext2. doc
140

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume L: Thesis

and

Vt: Types " Dom(Requires(t)) u Cod(Requires(t)) S Im Comprises {t)

The thinking behind these two quantities was as follows. Activities of certain types always seem to have a
certain minimum structure in terms of component activities. Thus (it was thought) an initial visit always
comprises a blood test followed by a doctor consultation and never just a sequence of blood tests or even a
solitary diet service, and a specialist nurse service always comprises a specialist nurse consultation and
never just a telephone call (these structures were refuted while the Can-include relation was still based

around the idea of successive 'visits'). If an activity does not include activities of the types Dr Cons and
Blood Test, it cannot really be an Initial Visit. The way this essential structure was recorded was through
the relation Comprises: if tl Comprises t2, then an activity of type tl cannot be complete until an activity
of type t2 has been embedded within it and completed. The first invariant confirms the obvious: that all
pairs of types in Comprises are also in Can-include. Requires is a function from Types to a graphs over
Types. Thus Requires(tl) would return a particular set of pairs of members of Types. The purpose of this
structure is to store required orders of types of activities: not only is it necessary that any activity of type
Initial Visit Includes both a Blood Test and a Dr Cons before it can be completed, but the Blood Test must
be Before the Dr Cons. We could represent this last observation by including the triple (Initial Visit,
Blood Test, Dr Cons) when we specialise the Requires function. The last invariant above insists that any
pair of types required to be ordered in a particular way with respect to a 'parent' type (from the function's
domain) must both be in the relation Comprises with that parent type.

The intended use of these two structures is explained further through the formal definition of their
interactions with the operational state components of the theory. The class that incorporated Comprises

and Requires into the theory used the following invariants:

((im ActType) Complete) 4 Comprises c ActType 0 (Complete 4 Includes) ° ActType'l

`da: Complete " Requires(ActType(a)) g ActType°(((im Includes) fa)) , 14 Before)°ActType'1

which define in formal terms the properties described in the previous paragraph.

Comprises and Requires were used when an activity was started. If the type of the activity was in the

relation Comprises with a number of other types, then activities of those other types were created and

embedded (in the appropriate order as specified by Requires) in newly commenced activity. This reflected
the 'automatic' nature of the creation of these activities - no one requests a blood test at the initial visit: it

'automatically' happens as it is assumed by the clinic nurse that it will be required. The way that the

theory ensured that the operation had the desired effect was through the use of a very complex

precondition".

Although it was considered at the time that some form of structure such as that described was desirable,

the particular structure described was refuted quite readily. It might be considered very important, or even
declared as necessary, for a blood test to have been carried out before the doctor sees the patient, but if the
blood analysis machine in the day centre has broken down or the lab technician has not shown up the
doctor consultation will still take place (though admittedly without the recommended level of
information) as both the doctor's and the patient's time is too valuable to have them wait until the blood

XV one component of which was:
[[t: (im Comprises) ActType(a)]j "
(Al = (b: (im During) (a) I ActType(b) e Dom (Requires(ActType(a)))) A
(A2 = {b: (im During) (a) I ActType(b) E Cod (Requires(ActType(a))}) CatActEmbed(tA1 A2, a)!

d: \jes\dis\wip\phd\phdtext2. doc
1A1

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

test has been performed. This does not represent a refutation of the structure Requires as it appears in the
theory, but intended specialisations (to represent the case above for example) have been refuted. It seemed
that there were very few elements that could be put in a specialisation of the Requires function such that
that specialisation was not to be refuted.

This case with the blood test also refutes desired specialisations of the Comprises graph. Another desired

specialisation is for Doctor Care to comprise Initial Visit. Here too we can find refutative examples.
Sometimes a patient will see the specialist nurse or dietitian before the doctor - especially when there is a
long waiting list for doctor appointments: if the patient dies or moves away then we have a completed
Diabetes care activity that has never had an initial visit. The same is true if the patient is admitted into
hospital suffering from a complication of hitherto undiagnosed diabetes - they will be seen by the
specialist nurse, and maybe a doctor so that they can be 'stabilised': if the patient has been taken ill while
visiting the area and does not live near the hospital they might register with a diabetes clinic where they
live, and never be seen by staff from the Endocrine directorate again.

Only two members of the structure were discovered that were relevant to the DEDC. Firstly a blood test
consists of taking blood followed by its analysis - both are necessary and the taking of the blood must
precede its analysis. Secondly an Initial Visit must include a doctor consultation - otherwise it is not an
initial visit. As we disposed of the visit concept (as discussed above), this second member was excluded. A

replacement member which would say that Doctor Care Comprises Init Dr Cons might be acceptable, but
in the Diabetes Clinic at the Medway hospital, even this assertion is often refuted as that centre uses
'Shared Care' with the General Practitioner - the doctor sometimes never seeing the patient. As the DEDC
has started to investigate and promote 'Shared Care' it is considered that cases such as those seen at the
Medway hospital will be observed at St Thomas'. In short, there is very little to be gained from
incorporating the structures Comprises and Requires into the theory, and much to be lost in terms of
'semantic overhead': too much complexity in the theory will make it less comprehensible and less useful.

In this case some properties of a proposed theory have been refuted, or at least so many useful
specialisations of the theory have been refuted as to render the properties useless. The 'solution' to this
problem was to abandon the graph Comprises and the structure Requires and not replace them with
anything else. That there are properties of the domain at least informally or intuitively similar to those
described seems likely. After all, most Diabetes Care episodes include an initial doctor consultation, and
it is true to say that doctor consultations are almost always preceded by a blood test which are rarely
explicitly requested. It seems that medicine is so complex that most general rules of this nature that can
be found will either fail, or be of no use in our understanding. We should continue looking for such
properties in the domain however, as until we find them some fundamental aspects of medicine have

escaped us.

The proposed rules associated with Comprises and Requires would be more appropriate to a stochastic as
opposed to a logical model. Structures similar to those described might be useful in the definition of Care

Profiles and Care Protocols, but in this they are not, to use Jackson's terminology [Jackson93) 'indicative'

properties of the current domain, rather 'optative' properties of some future imagined one, and so have no

place in this particular theory see Sections 13.3 & 14.7 and Appendix 6 for a discussion and example of

such hypothetical domain descriptions).

9.5.5 TypeGuide: A Replacement for Can-include

The representation of Can-include as a graph was sufficient to constrain possible values of Includes in

models of the theory when During was a tree: when any activity had at most one parent. As we saw in

d: \jes\dis\wip\phd\phdtext2. doc
142

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Section 9.3.4, it is unrealistic to suppose that During is a tree, and we changed its representation to a

graph. If we kept Can-include in the theory as a graph we would not be able to distinguish between: the

case where an activity of a certain type might possibly be During any of a number of activities of certain
types but not more than one at a time, and the case where an activity of a certain type might be During a

number of other activities of specific types. A Blood Test might be During an activity of type Dr Care, or
DSN Care but never both at the same time. An activity of type Diabetic Obstetrics Care would be During

two activities of type Diabetes Care and Obstetrics Care at the same time, but never During only one. To

distinguish between these cases we need a more sophisticated structure. The state component used for this

purpose in the final theory is called TypeGuide and has the following type declaration:

TII: TypeGuide: TGrouper -i (Types EH Types)

TGrouper is just a collection of markers that enable us to aggregate pairs of types in different ways. For

each member of TGrouper, tg, TypeGuide(tg) returns a possible structure of types. If we take an activity a
of type t and call its parents Ap, there must be a member of TGrouper, tg, such that the set of types of the

parent activities (call this Tp) will be equal to (im TypeGuide(tg)) {t}. To distinguish between the cases
above we would have the following as members of the specialisation of TypeGuide:
(tg 1, Blood Test, Dr Care)
(tgl, Dr Cons, Dr Care)
(tgl,..)
(tg2, Blood Test, DSN Care)
(tg2,...)
(tg3, Diabetic Obstetrics Care, Diabetes Care)
(tg3, Diabetic Obstetrics Care, Obstetrics Care)

To show how this works, we can consider possible parents of a blood test and of an instance of Diabetic
Obstetrics Care. Suppose an activity, al, of type Blood Test only has one parent, a2 of type Dr Care. This
is allowed as there is a tg such that (im TypeGuide(tg)) (Blood Test) = (Dr Care) - that tg is tgl.
Similarly a Blood Test can be part of an instance of DSN Care, a3. Imagine now that al (a Blood Test)
has two parents: a2 of type Dr Care and a3 of type DSN Care. There is no member of TGrouper such that
(im TypeGuide(tg)) {Blood Test) = {Dr Care, DSN Care) in the specialisation of TypeGuide we are

using, so such a model would be impossible. Now consider the case of a4, an instance of Diabetic

Obstetrics Care. If we examine the values of the specialisation of TypeGuide, we see that there is only one

possible tg such that (im TypeGuide(tg)) (Diabetic Obstetrics Care) is not the empty set - this is tg3. Now

(im TypeGuide(tg3)) (Diabetic Obstetrics Care) = (Diabetes Care, Obstetrics Care), so only parents with
types Diabetes Care and Obstetrics Care respectively are permissible.

It is interesting to note how a comparatively simple change in the early structure of the theory can result
in such a large and complex change in a subsequent invariant: this is inevitably the case as a change in

the most basic and primitive classes will carry implications for all the subsequent classes that are either

refinements or compositions of them. This is something that was borne in mind when constructing the

theory and care was taken to ensure that the most basic classes were those considered to be the most

stable. In this way unnecessary work was avoided, and the number of classes that needed regular

reworking was minimised.

9.5.6 Other Subsets of Types

There are a number of subsets of types that have not been discussed so far. In addition to HomeTypes, the

sets Access, Unplanned, Bookable, and PatReq.

d: \jes\dis\wip\phd\phdtext2. doc
143

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Access is a set of types, activities of which can be created from outside the home organisation and

embedded in no other activity. Examples of these are Diabetes Care which can be requested by a GP,

another hospital or the Accident and Emergency department, or DECS care which can be requested by a
GP irrespective of whether the patient is registered with the day centre. The operation Create creates
'orphan' activities, and as such can only be invoked to produce an activity of a type represented in Access.

An activity of a type that is a member of the set Unplanned can be created as a member of Proceed,

skipping out the Request stage. Examples of such types are Dr Telephone (which happens spontaneously:
the person instigating the phone call does not put in a request to do so before making the call), and DSN
Cons which might take place without being planned if the patient 'drops in' to see the specialist nurse
without having made a booking. The operation SuddenStart is the one that creates proceeding activities
in this way, and as such can only be invoked to produce an activity of a type represented in Unplanned.
Note that although an unplanned activity cannot be created as a request, it will become one if it is

suspended: for this reason there is no invariant forbidding an unplanned activity from being a member of
Request.

An activity of a type that is a member of Bookable can be booked: that is it is creased as a request and
scheduled to take place at a future specified time. Examples of such types are Dr Cons and DECS Cons,
both of which can be, and generally are, booked in advance. This subset is considered in more depth later

on in section 10.5.2.

An activity of a type that is a member of PatReq needs a patient to be present before it can start. This set
is discussed in more detail in the next section.

9.5.7 Conclusion

The introduction of Can-include means that we can start to construct specialisations of the theory that

apply only to one medical domain. An early specialisation that applied to the Diabetes and Endocrine Day

Centre was refuted as it could not express the relative autonomy of the specialist nurses and paramedics.
The new specialisation of the theory deals with this by having the types DSN Care and Diet Care as

siblings rather than children (using the family tree metaphor over the graph Can-include) of Dr Care.

Two further specialisation state components, Comprises and Requires, were considered. Comprises

specifies what an activity has to include (in terms of types of component activities) if it is ever to be

completed. Requires specified any ordering (via Before or After) that was required of the comprised

activities. It transpired that there were so few useful specialisations that were not refuted that these

quantities were almost useless, and to avoid cluttering the theory were abandoned.

When During was changed from a tree to a graph, Can-include became insufficient to be able to

constrain activity structures of models of the theory in the desired manner. For this reason it was replaced

by a more complex structure called TypeGuide.

9.6: Conclusion

The classes we have investigated so far represent the foundations of the general theory of the medical

process that has been developed over the course of the project. Although we have not really described

anything particularly medical such as patients, doctors, medical records, referrals, and the like, we will

see that with a satisfactory bedrock to the theory these concepts can easily be 'added on afterwards'. We

have reason to believe that the theory defined so far is a foundational one in that what it says is very

d: \jes\dis\wip\phd\phdtext2. doc
144

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

abstract and very general (and in fact, prior to specialisation, could apply to many domain areas that are

nothing to do with medicine - see Section 14.7 for a discussion of the possible use of the theory to

represent other service processes). We have no justification in believing that the theory so far is

satisfactory or correct per se, only that it is more correct after each refutation / reconstruction cycle than
before. Thus it is more accurate to represent During as a graph than as a tree, but we should not imagine

that because we have improved our representation of the domain we have somehow arrived at the perfect

representation (in fact it is extremely doubtful that there is any such thing). The use of the scientific

method means that we have some form of yardstick of relative goodness of description, and we should

strive to find (among other things) better and bolder theories as measured by that yardstick. The use of the
formal notation helps us in this quest by being 'easier to measure'.

The following table lists the original properties and components of the theory, what refuted them, and

what replaced them. In this way we can get an overview of the improvements made to the theory as

explained so far.

Original Property Refutation / Reason for New Property Discussed in
Abandonment Section

Rigid activity life cycle: Discovery of emergency or More flexible activity life cycle 9.2.7 & 9.2.8
Request -4 Proceed -4 unplanned activities, and of through introduction of
Complete. importance of temporary SuddenStart and Suspend.

interruption of activities.

Before interpreted as ordering Blood Test is ordered, but Before interpreted as medically 9.3.3

required by usage of 'non- shares no non-shareable meaningful ordering, pertinent
shareable resources'. resources. to only one patient at a time.

During represented as a tree. Diabetic Pregnancy Care and Re-definition of During as a 9.3.4
Diabetic Shared Care activities graph.
have multiple 'parents'.

DSN Care and Diet Care (and Paramedics enjoy a great deal of New specialisation of theory 9.5.3

other paramedic care) types professional autonomy, and where Can-include has DSN

subsidiary to'Visit' type in often work in 'parallel' with Care, Diet Care and Dr Care as

specialisation of theory to doctor visits. siblings, and disposes of visit
DEDC. entirely.

Comprises and Requires define Almost all specialisations were Comprises and Requires 9.5.4

what are necessary components refuted - medicine is too varied abandoned and not replaced.

of activities. and unpredictable to be

restricted like this.

Can-include defined as a Insufficient to constrain During Can-include replaced by 9.5.5

graph. when redefined as a graph. TypeGuide, a more
sophisticated structure.

Table 3-1 Summary of properties that were refuted, the refutations, and the subsequent improvements to the

theory

d: \jes\dis\wip\phd\phdtext2. doc
145

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

We have discussed seven classes of the theory thus far. The three classes ActClassl, ActClass2, and
ActClass3 are successive refinements introducing more state components and operations over those state

components. TypeClassl introduces Types which is composed with the activity classes to give ATClassl

which describes interactions between Activities and Types. TypeClass2 is a refinement of TypeClassl, and
is composed with ATClassl to give ATClass2 which describes the interaction between the graph over
Activities called Includes and the structure over Types called TypeGuide. The formal theory as presented
in Appendix 2 introduces Types in a class after the one that introduces Patients. The informal

presentation contained in the body of the thesis introduces Types before Patients as Activities, Types, and

their interactions are more fundamental (as far as the theory is concerned) than Patients. The following

figure illustrates the refinement & composition hierarchy that has been introduced so far

[C1asJs
1

ActClass2

ActClass3

ATClass 1

ATClass2

Figure 3-12: Refinement and composition diagram for the seven classes described so far.

The dotted line between ActClass3 and ATClassl indicates the presence in the formal theory of
intermediate classes that have not been explained in the formal text. These are PatientClass and APCIass

which introduce Patients and are described in the next chapter.

d: \jes\dis\wip\phd\phdtext2. doc
146

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Chapter 10: The Domain Theory II

10.1 Introduction

Now we have explored the underlying structure of the medical process as described by the domain theory,

we can embellish it to make models of the theory appear more 'realistic'. For example, we have not yet

spoken about patients, clinicians, appointments or medical records: omissions that must all be addressed.
In this chapter the way in which these different components interact with the structure created so far is

presented and discussed.

The nature of the presentation is similar to that of the last chapter: an initial property of the theory is

presented along with its formal definition, invariants and / or operations, any refuting examples
explained, and the new (unrefuted) property given.

One of the most important changes recorded in this chapter is that relating to the creating agent for a
child activity. The change at this stage was not a simple case of refutation of an initial property and a
straightforward reconstruction of the theory -a major conceptual change was required before the theory

could be designed that was not unfeasibly complex and was not refuted. This major conceptual change has
been called a 'paradigm change' after the philosopher Kuhn [Kuhn70]. This is presented in Section 10.3:
Cause and Effect.

10.2 Patients

10.2.1 The Introduction of Patients

So far we have not said anything about patients -a gross omission in any healthcare system - the patient
is, after all what the process is all for. We should not be totally shocked to find that the patient is

introduced halfway through the presentation of the theory because of the particular domain we are looking

at. We are concentrating on the operational essence of the medical process - this is the activity, or
interaction between patient and health care professional. A patient can be though of as a way of
'aggregating' these activities so that they have some relevance to the purpose of the enterprise. A patient

experiences sequence of activities as they pertain to him or her: this sequence (and what the constituent

activities are themselves comprised of) is the concrete manifestation of medical care for a patient. A

health care professional experiences a sequence of activities that he or she conducts or at least takes part

in: this sequence is the concrete manifestation of the care that is delivered by that clinician. The clinic is

an interaction between patient and health care professional which takes place in individual activities.

Thus, if we want to understand the essence of the clinic, we do not want to concentrate on either the

patient, or the clinician, but on the interaction between the two - the activity. This is what was done in the

development of the theory - patients and clinicians being almost 'properties' of the more abstract activity,

and certainly not more fundamental concepts.

In spite of this contention that Activities is a concept closer to the essence of the medical process than the

patient or the clinician (though these too are, of course, absolute requirements), we do not need to refer to

the basic set when we are defining the class that will deal with patients - we use the technique of the

separation of concerns again. Thus we say that

T4": Patients: Set[P].

We also represent as a state component those patients that are currently present in the organisation. This

set, a subset of patients, is called PatPres, where
d: \jes\dis\wip\phd\phdtext2. doc

147

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

T6': PatPres: Set[P]

also, and

i 13: PatPres c Patients.

The theory then defines operations that create (and remove) patients, and represent their arrival at and
departure from the organisation. The operation that creates a patient does not represent that patient's
birth, but rather their introduction to the home organisation: the act of turning a person into a patient.
There are many operations and state components such as these associated with Patients that do not really

represent anything in the 'physical' world: there is no physical change to the person, or any aspect of the

clinic, when that person has bestowed upon them. The state of some abstract perception of the world

shared by the medical personnel in the organisation does change however, and this is what we are

effectively theorising about, having no desire or ability to gain access to any 'real' world that might exist
independently of these perceptions. The question of what precisely we are constructing theories and

models of is examined more closely in the section 13.3.

10.2.2 ActSubject -a Definitional State Component

As was said in the previous section, a patient is regarded almost as a property of an activity: a patient is

the 'target' or 'subject' of the activity. An activity is only ever targeted at one patient however, and always
has such a target - there is no such thing as a 'medically meaningful encounter between a patient and

some representative of medical care', even when that encounter is only hypothetical and planned (as in the

case of a member of Request), without a patient being specified. This assertion is described in the theory

with the type declaration

Ts: ActSubject: Activities -4 Patients.

That is, all activities have a subject. This type declaration is partly an assertion and partly a definition of

what an activity is. For example, preparing an operating theatre at the beginning of the day, taking dinner

to a ward, or fixing the hospital lifts are all excluded from consideration as medical activities because

those procedures not being targeted at one identifiable patient: this observation helps us to understand the
intended interpretation of the set Activities. It becomes an assertion when we find examples of activities

that we would want to consider as such, but seem to have more than one patient as the subject.

A case in point is the education sessions held by specialist nurses. The majority of the day centre's

patients are NIDDMs: these do not need to be shown how to inject themselves with insulin or given

(much) detailed counselling as to the nature of their condition, but rather given an introduction to the

issues that they ought to take more care over, and provided with a general education as to the nature of

diabetes. This education is delivered in the form of two two-hour long 'patient education sessions'. These

sessions are provided by a team of paramedics to a number (generally six) of newly diagnosed NIDDM

patients. At first glance, activities of the type 'patient education session' would appear to refute the

functional nature of ActSubject. The way this was dealt with was to keep to the original definition and say

that observable phenomena such as the Patient Education Session were in fact an aggregation of separate

medical activities that took place at the same time in the same place, and run by the same clinicians. This

change in the way some apparent activities were perceived meant that a later invariant, that a clinician

could only be tending to one patient at a time was thus refuted - see Section 10.3.6 for a presentation of

this.

d: \jes\dis\wip\phd\phdtext2. doc
148

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

10.2.3 The Creation of Patient Specific Activity Structures

Not only do we insist that each activity applies to only one patient, but that any other activity that is in the

same 'family' must be targeted at the same patient also. This seems to make sense - Diabetes Care for Mr
Smith would not consist of, among other things, a consultation between a doctor and Mrs Jones. We have

already discussed this property of the relations Includes and After in Section 9.3.3 where we saw the
invariant

I I4: ActSubject ° (Includes v After) 0 ActSubjecr' c id[Patients].

Again, this is partly definitional, and partly an assertion. The definitional part we have already seen (in

the section mentioned above), but if we look around, we can find activity structures that seem to refute the
invariant so in that sense the invariant might be an assertion. One refutative example found recently was

activities associated with pregnancy. It is reasonable to think of pregnancy care as consisting of care for

the mother before the delivery (pre-partum), and of the mother and baby immediately after the delivery

(post-partum). This is clearly a special case, but has not been addressed by the theory to date, whether by

re-casting the invariant or representing the birth in an artificial way so as to comply with the existing
theory (as we did with the Patient Education Session).

10.2.4 Patient Presence: its Necessity and Cardinality

It might be thought that activities that cannot include any others by virtue of the relation Can-include (or

its derivative TypeGuide) always need the patient to be present if they are to start. This is not so. A

refuting type of activity is Blood Analysis which does not need patient presence, or at least does not need
the whole patient to be present - it is sufficient for the patient to be represented as a vial of blood. There

are also types of activity that may or may not have a patient present at them (the Blood Analysis activity

never has a patient present) - an example of this is was discovered at the beginning of the project in the

form of the types of activity observed in the general haematology clinic at St Thomas'. Many people who

suffer from coronary problems need Warfarin to thin their blood: they will always need it, and they will

almost certainly need the same amount. In this case it is not necessary for the doctor to always see the

patient: sometimes a 'postal encounter' will take place where the doctor writes out a prescription for

warfarin and sends it to the patient. Occasionally the patient does attend the clinic if there is something

bothering them about their treatment and they want to see the doctor.

In spite of all these cases, there are many types of activity where the activity cannot start unless the

patient is present. These types are recorded in the subset of Types called PatReq. With activities of these

types, we say in the theory that the operation Create cannot start unless the patient has not only arrived

at the clinic, but is present at the activity about to start - of course, the patient that is present at the activity
must be the same as the patient who is its subject.

A more general rule that we might think about is that restricting patient presence to one activity. An early

version of the theory did just this, using a state component called PatAct which was defined to be

PatAct: Patients + Activities.

whereupon we could say that

ActSubject ° PatAct c /d[Patients].

d: \jes\dis\wi p\phd\phdtext2. doc
149

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

PatAct thus records which activity a given patient is currently present at: the invariant states that the

patient present at the activity is also its subject. This property of the theory was refuted by the example of

the type of activity that is called (in the specialisation of the theory to the DEDC, and for want of a more
formal name) the 'Dr Pop-in'. The chiropodist, as a paramedic, is not formally qualified to dispense drugs.

Occasionally, however, she will feel that the most appropriate treatment for a patient's foot related

problems is for that patient to be prescribed a particular curse of drugs. When this happens the

chiropodist finds the patient's usual doctor and asks them to see the patient, agree the therapy, and sign

the prescription form for the drug. This activity does not take long, as the assumption is that the

chiropodist will act appropriately with the doctor only ratifying her decision. The important thing to note
here is that the patient must be present for the chiropodist encounter to start, and for the Dr Pop-in to

start. We can see here then that if the patient is present at the Chiropodist Cons, then they will be present

at the Dr Pop-in, thus refuting the earlier insistence that a patient could only be present at one activity at a
time. Other examples of patients being present at multiple activities simultaneously occur in a surgical

operation (that requires the presence of a patient to start) which might consist of sub-components (that

also require the presence of patients to start).

The final theory deals with the problem by allowing patients to be present at a number of activities at a
time. The set of activities that have a patient attending them is ActAtt (Activities that are Attended).

where

T6: ActAtt: Set[Activities\Complete].

All attended activities are so attended by the patient that is their subject - something that is ensured by the

operation that assigns patients to activities. A relation that related activities to patients present at them

would thus be given by:

ActAtt 4 ActSubject

Although a patient can now be present at a number of activities, those activities must be in the inclusion

relation with each other - for example in the example given, instances of Dr Pop-in are always

components of instances of Chiropodist Cons. The way we say this is to use the following predicate as an

invariant:

i is: b'p: Patients " ((im (ActAtt 4 ActSubject)-1) {p})2 c During* u Includes`

This says that any pair of activities that are attended by a patient p, must either be in an ancestral relation,

or a descendant relation (or be the same activity). This invariant is satisfied through the preconditions of
the operation that assigns patients to activities:. PatUoin(a, p).

The recast theory is not quite as strict as the original, but only the minimum amount of flexibility has

been introduced to prevent it from being refuted by the counter examples described above. We could have

said that a patient could be at a number of activities and left it at that - this would be difficult to refute,

but precisely because it is difficult to refute, it is not very informative. Popper's injunction that we should

strive for theories that are increasingly more falsifiable has been used to guide decisions taken with regard

to patient presence, just as it has guided the entire analysis.

d: \jes\dis\wip\phd\phdtext2. doc
150

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

10.2.5 Conclusion

Patients, although essentially the purpose of all health care, are not the most basic concept at an
operational level. This status should rather be accorded to the interaction between patients and clinicians,
in other words the patient activity. Patients do need to be introduced, and this was done in this section.
ActSubject, a total function from Activities to Patients is discussed, and explained is part of the definition

of an activity, and partly an assertion about an activity. The fact that the assertion might be refuted leads

us to change slightly our interpretation of what an activity is, so as to observe the definition. In this case,
the Patient Education Session must be interpreted as a number of parallel activities that start and finish at
the same time, run by the same clinician: this interpretation is not the most intuitive, but it observes the
type declaration of ActSubject.

The assertion that any 'activity structure' is associated with exactly one patient is similarly partly
definitional of Includes and Before, and partly assertive. Here, the assertion is challenged by activities
associated with child-birth, a problem that is not yet resolved.

Originally, a patient could only be physically present at one activity at a time. This theorem was refuted
by the example of the Dr Pop-in activity leading to the property being slightly relaxed.

10.3 Cause and Effect

10.3.1 Introduction

We have so far looked at a number of constraints governing what the possible activity structures of
models of the theory will look like. We have not investigated when new activities are created. As far as
the theory is concerned so far new activities might spontaneously come into existence, so long as they are
of a type that allows them to be children of there parent activities. One of the early contentions held by the

author was that any activity must be created as a result of another. Thus, as a result of a consultation with
the doctor, a specialist nurse activity might be created (if the doctor decided that the patient needed to see
the nurse), booked, and run at the appropriate time. At the same consultation the doctor might decide that

the patient needed to come back to see him or her again in six months time for a followup consultation. In

a sense, we can say that both the specialist nurse consultation and the followup doctor consultation were

created as a result of, or even by, the initial doctor consultation. There are constraints that seem to be

demonstrated in this area in the domain. For example, although a blood test might be created as a result

of a doctor consultation, the reverse is not observed -a blood test would never create a doctor consultation
(or so it was believed at the time). Rather the results of the blood test would be reviewed by a doctor at a
future consultation, and it would thus be at that doctor consultation that the required future activities were
decided on. Similarly, as a result of a specialist nurse consultation, a followup specialist nurse

consultation might be created. It is never observed in the day centre that a specialist nurse consultation is

created by a chiropodist consultation.

There are clearly some rules governing when an activity can be created, who can create it, and as a result

of which activity: what these were was not clear at the beginning of the project. It was decided then that

this area of the domain, the issue of cause and effect, was worthy of investigation as it had the potential to

add a great deal of rich and relevant structure to the theory.

d: \jes\dis\wip\phd\phdtext2. doc
151

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

10.3.2 InLoco as a Two-Place Relation

An early class tried to address the problem through the introduction of a number of new graphs and other

structures over existing state components. One of these was the graph CreatedBy, defined in the type

declaration:

CreatedBy: Activities -+i Activities.

The intended interpretation of this function is as a record of which activities gave rise to which others.
Thus if the pair (a2, al) is a member of CreatedBy, the activity al gave rise to the activity a2. As in most
of our other graphs, this structure is directed and acyclic:

CreatedBy+ n id[Activities] = 0.

The function CreatedBy was updated every time a new activity was created and embedded in another:
when operations of this sort were invoked, the creating activity had to be supplied as one of the required
arguments.

The behaviour that this early version of the theory attempted to represent was as follows. An activity can
always create any of its allowable 'children': an activity of type Diabetes Care can give rise to instances of
Dr Care, DSN Care or Diet Care among others; an activity of type DSN Care can give rise to activities of
types DSN Cons or DSN Telephone. An activity can also, under certain circumstances, give rise to a child
of one of its ancestor activities. For example, as a result of a consultation, a doctor might want to create a
DSN Care activity whereupon we would have an activity of type DSN Care CreatedBy an activity of type
Dr Cons. Although it is not true that Dr Cons Can-include DSN Care (at least not in the specialisation
we are using for the DEDC), it might be true that the Dr Cons activity is a child of a Dr Care activity, and
the Dr Care activity a child of a Diabetes Care activity which allows as possible component activities
instances of (among others) DSN Care. In this case then an activity has not given rise to a child activity,
but rather a child of an ancestor (in this case the appropriate activity of type Diabetes Care).

We do not want any activity to be able to give rise to any possible children of all ancestors -a Blood Test

activity would not give rise to a Diet Care activity for example. We constrain possible events of this type

using a graph over types called InLoco. This is defined in the theory in the following way:

InLoco: Types EH Types

InLoco c (Can_include+)'I

If one type of activity, tl, is InLoco another, t2, then an activity of type tl can act as if it were one of its

ancestral activities, of type t2, and create child activities of that ancestor (in loco is Latin for 'in place of

and is usually used to describe the relationship between a teacher and a pupil - the teacher acting in loco

parentis). The invariant says that if type tl is InLoco type t2 then t2 has tl as a child through the relation
Can-include (ie using the 'family tree' metaphor for Can-include as we did for the graph over Activities,

Includes). The use of InLoco is defined in the invariant linking it to CreatedAY:

(a, b) e CreatedBy (a, b) E During v (3 c: Activities\{a, b} " (a, c) E During A (b, c) e During" A

(ActType(b), ActType(c)) e InLoco).

This invariant is structured in a similar way to the informal argument used to describe allowable

CreatedBy values presented above. If a is CreatedBy b, then one of two things is true: either a is During b,

d: \jes\dis\wip\phd\phdtext2. doc
152

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

or a has a parent c which is an ancestor of b, and activities of the same type as b are capable of acting
InLoco activities of the same type as c (At this stage in the theory's development During was still a partial
function).

This then was the (somewhat complex) structure that was proposed as a theory of the domain of interest.

This property of an early theory was abandoned as it was not sufficiently semantically rich to represent

the behaviour that is actually seen in the DEDC. Notably, this collection of theorems cannot reflect the

selectivity of the creation of activities by different professionals: an activity might be able to give rise to

some components of an ancestral activity, but not any. For example, a Diet Cons activity might be able to

give rise to a DSN Care activity, but not a Ophthalmologist Care activity.

10.3.3 InLoco as a Three Place Relation

This asymmetry was dealt with through the re-definition of InLoco as a three place relation:

InLoco: Types % (Types EH Types)

If we have a triple (tl, t2, t3) in InLoco, we know that an activity of type tl can embed an activity of type t3

in an activity of type t2, subject to all the usual constraints. To indicate that an activity of type Diet Cons

can give rise to an activity of type DSN Care as a part of Diabetes Care, we would put the triple (Diet

Cons, Diabetes Care, DSN Care) in the relation. Clearly in this case the pair (Diabetes Care, DSN Care)

must be (and is) a member of Can-include. In fact we can specify the invariant:

Cod(InLoco) c Can-include

which asserts the general case. The activities of the first type in the triple must be possible descendants of
activities in the second type (barring other constraining factors) which is asserted by the invariant:

Va: Dom(InLoco) " Vb: Dom(Im InLoco {a)) " (b, a) e Can-include'.

The interaction between this specialisation state component and the operational state component InLoco

is given in the following invariant which is similar in intent to that proposed when InLoco was a two

place relation:

(a, b) e CreatedBy (a, b) e During v (3c: Activities\{a, b) " (b, c) E During+ A (ActType(b),

ActType(c), ActTjpe(a)) e InLoco.

This means that if a is CreatedBy b then either a must be During b, or there is a third activity c that is an

ancestor of b and where the types of b, c, and a are in the triple InLoco. Because of the invariant over
InLoco, from this we can deduce that a is a child of c. Using the family analogy still further, we can say
that if a is CreatedBy b, then a is either a child of b, or a child of an ancestor of b.

The new collection of theorems although working more effectively than the old, was refuted and

abandoned. The counter-example in this case was the creation of specialist nurse consultations. The

doctor might, during a Dr Cons activity, decide that the patient needs to receive DSN Care which can be

accommodated under the existing theory. The doctor might also book the patient in to see the specialist

nurse him or herself, or at least the clinic clerk will do on behalf of the doctor. Here a Dr Cons activity

has given rise to a DSN Cons request: DSN Cons is not a child of an ancestor of Dr Cons - it is a

'grandchild'. This example also refutes the earlier two-place InLoco relation.

d: \jes\dis\wip\phd\phdtext2. doc
153

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

10.3.4 A 'Paradigm Shift'

The new structure was already fairly complex (and this was while During was still a function): any

alteration of the form of the various state components so as to accommodate the observed refutative

example would add still more complexity and the resulting invariants and state components would
become incomprehensible. This aspect of the theory did not seem to work, and it was difficult to see how
it might. The solution came in the form of a'paradigm shift', or a challenging of (some of) the underlying
assumptions on which the theory was based.

One of the earliest assumptions of this part of the theory was that activities were created by other
activities. The goal was, for any activity, to be able to derive a chain of its causative activities. That an
activity is caused by another seemed like a good idea - the problem was how to frame this causation in

technical terms. That an idea is appealing to an analyst does not mean that it is a useful one with which to

understand the domain, and in the case of InLoco, the Byzantine nature of the various possible
(unrefuted) theorems and structures would indicate that that particular idea was neither particularly useful
or insightful. Indeed, looking back through the records of the formal interviews the analyst had with a
number of clinicians, no mention was made of the referring activity, only of the referring clinician. The
fact that this was not picked up on by the analyst is symptomatic of the 'paradigm trap' discussed in
Section 13.3. In short, the appropriate course of action at this point in the development of the theory was
to abandon the necessity of recording the creating activity altogether, and instead look at who was able to
create which activities and when.

Once it was decided to dispense with the CreatedBy state component and its associated ideas and

assumptions, several things that were puzzling before were understandable, and capable of being

represented. We said that a blood test could not give rise to a doctor consultation, and that if it was to be

read, there must be activities that have not finished that will be able to respond to the results of the blood

test. In the case of the DEDC this will normally mean that the results of a test are reported back to the

current doctor consultation, if the blood test is very rapid, or to the next doctor consultation if the test

takes a bit longer. For some conditions however, there will be no followup consultation for the test results

to return to. Instead, they are sent to whoever requested them at which point a decision is made whether

to create a new activity. If we were still labouring under the 'activity begets activity' paradigm, we would
have to invent a new activity type that represented the act of perusing the test results, an instance of which

was created by the test activity. If we had defined all these and similar interactions as types of activities,

the specialisation to any domain of medicine would become unfeasibly huge. Moreover, we would be

forcing the idea of clinical activity to unrealistic extremes - maybe we could think of a doctor's perusal of

a patient's medical record, or a computer's monitoring of desired patient recall dates as clinical activities -
but to do so would not reflect an intuitive understanding of what kind of thing an activity is. By thinking

of the behaviour of the domain in terms of health care professionals creating activities rather than

activities creating activities, we can cut down on the number of types and represent what is observed in a

more 'reasonable' manner.

10.3.5 The New Theory and Embed Type

The new theory disposed of the state components CreatedBy and InLoco and replaced them with

structures controlling what sort of person is capable of creating different types of new activities. In order

to do this, the theory has to describe those people who are now the creators of activities - the clinicians.
We have

Ti2: HCP: Set[P]

d: \jes\dis\wip\phd\phdtext2. doc
154

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

where HCP stands for Health Care Professional. Health care professionals are also people which is why

they are taken from the same carrier set as patients: HCP could be taken from a completely new carrier

set, however, and not affect the behaviour of models of the theory. Values of HCP might include Peter,

Jake, Gill, Jill and Sara. Each HCP has a clinical type which we might call 'Profession'. We assume here

that the set of types of clinicians never changes so we can say that this set is an unchangeable carrier set:
Pr. Each clinician has one profession which is recorded via the function Prof Type, defined as

T 15: ProfType: HCP -4 P r.

Though this may change, we do not specify in the theory how: ProfType is a specialisation state
component. In the specialisation of the theory to the DEDC, Prof Type might include the pairs:

(Peter, Doctor)
(Jake, Doctor)
(Gill, Dietitian)
(Jill, Chiropodist)
(Sara, Diabetic Specialist Nurse)

Each profession is capable of creating a subset of all those activities that can be created. The way we
represent this is through the use of a structure called EmbedType. EmbedTjpe is a function from a
profession to a subset of TypeGuide. The type of this function is declared as:

T 16: EmbedType: Pr -+i (TGrouper -) (Types EH Types)

where

i6: Cod(EmbedType) c TypeGuide

Now suppose that a new activity of type tc can be embedded in two activities of types tp1 and tp2

simultaneously, then there will be some member of TGrouper, tg, such that

((tg, tc, ttI), (tg, tc, tp2)}

is a subset of TypeGuide. If a clinician of profession pr is allowed to embed a new activity of type t4. in an

activity of type tpi when that activity is intended to be a part of two activities of types t, 1 and tp2

simultaneously then we know that the tuple

(pr, tg, tc, tpI)

must be an element of EmbedType. However, if the clinician is to be able to embed the new activity in an

activity of type t, 1 through recourse to this structure, she must also be able to embed it in an activity of
type tt2 as the activity must be embedded in both simultaneously. This means that the tuple

(pr, tg, tc, tt2)

must also be an element of Embed Type. We ensure this in the general case with the invariant

Vpr. Pr, tg: TGrouper; t: Types "

(im EmbedType(pr)(tg)) {t} =0v (im EmbedType(pr)(tg)) {t} = (im TypeGuide(m)) {t}.

This means that for any profession, value of TGrouper and type, either a clinician of that profession is not

allowed to embed an activity of that type in any parent activities of the types specified by tg, or she will be

d: \jes\dis\wip\phd\phdtext2. doc
155

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

able to embed it in all parent activities of the types specified by tg (the invariant is presented somewhat
differently in the theory as 137).

The operation to embed a new activity in another now requires the name of the clinician who is the

creator to be supplied as an argument. The class in which EmbedType is defined is called ATClass4 - the

operation to embed a new activity is thus ATClass4. Embed(Ap, Ah, tt, hcp-4a,). A precondition ensures that

the operation is only invoked when it will result in a model that is permitted under invariant 137. The

operation as it appears in the theory is thus:

AT4. Embed(AP�Ab, tt, hcp-*a,)

Pr 97: hcp: HCP

w98: 3tg: TGrouper " (im ActType) Ap = (im EmbedTjpe(ProfType(hcp))(tg)) 1 tc)

Prvg: AT3. Embed (Ap, Ah, tC, hcp-3aß")

The latest theory is not particularly difficult to grasp conceptually, but the invariants and preconditions
are fairly clumsy. This probably indicates that the same (formal) effect could be achieved through using a
different set of set-theoretic constructions. Tidying up the representation of the theory in this way is one of
the areas for future work described in Section 14.7 of the conclusion.

We can see that this new theory allows (with the appropriate specialisation) the behaviour observed in the
domain that refuted the previous version. Consider a specialisation of the theory which included the

quadruple (Doctor, tg2, DSN Cons, DSN Care) in EmbedType. Suppose we have the following (fragment

of a) model of the theory:

al, Diabetes Care

a2, Dr Care a3, DSN Care

// \ a6, Diet Care

a5, Dr Cons
/\

a4, Blood Test

Figure 3-13: Fragment of a model of the theory, specialised to the DEDC.

The links with only one node indicate components that have not been specified. The important relation
here is: al Includes a3.

Now, with the model in this state, we can invoke

AT4. Embed({ a3) ,Q, DSN Cons, Peter-aas.),

which has the precondition (on invocation - ie with the variable arguments replaced with values):

3tg: TGrouper " (im ActType) {a3} = (im EmbedTjpe(ProfType(Peter))(tg)) {DSN Cons)

d: \jes\dis\wip\phd\phdtext2. doc
156

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The specialisation of the theory to the DEDC contains the following values in the structure EmbedTjpe:

(Doctor, t82, DECS Care, Diabetic Care)

(Doctor, tgZ, MARS Care, Diabetic Care)

(Doctor, t83, Followup Dr Cons, Dr Care)

(Doctor, tg4, DSN Cons, DSN Care)

(Doctor, tg4, DSN Edcn Session 1, DSN Care)

Assuming these (more than) are the only elements of EmbedType of concern to us, we can argue as
follows.

We know that

(im ActType) (a3) ={ DSN Care)

and

ProfType(Peter) = Doctor.

Thus we are looking for an element from TGrouper, tg, such that

{DSN Care) = (im EmbedT)pe(Doctor)(tg)) (DSN Cons).

If we can find such an element then the precondition is satisfied and the operation is permitted. We can
find such an element: it is tg4. We can see this as follows:

(im EmbedType(Doctor)(tgq)) { DSN Cons)
(im { (DSN Cons, DSN Care)) { DSN Cons) _
(DSN Care).

Thus the precondition is satisfied and we have the new model:

al, Diabetes Care

a2, Dr Care a3, DSN Care

a6, Diet Care \

r Cons
a7, DSN Cons

a5, D\

a4, Blood Test

Figure 3-14: Fragment of same model of the theory, after invocation of the operation
AT4. Embed({a3 }, O, DSN Cons, Peter-, aj

10.3.6 RunType

The other specialisation state component that links professions to activity types is RunType. This

component of the theory records which types of professionals can start which types of activity. For

example, a Dr Cons activity can be 'run' - ie started, suspended and completed -only by a Doctor, not by a

d: \jes\dis\wip\phd\phdtext2. doc
157

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

Dietitian, Ophthalmologist or any other type of clinician. This is represented in the theory as a total

relation between HomeTypes and Professions - for every type of activity the home organisation can run

there is a professional that belongs to the organisation that can run it. Thus

r 1a: RunType: HomeTypes H Pr.

The way the theory applies this relation is as follows. Before an internal activity can start (or be

suspended or completed), it must be in the domain of the partial function ActRun:

T15: ActRun: In \ Complete 43 HCP.

This records the health care professional that is currently responsible for running a particular activity. Not

any clinician can be associated with any activity through ActRun - the invariant

t: w: HCPProf ° ActRun ° ActType-1 c RunType

means that only clinicians who are of a profession that can run the type of activity in question are allowed

to be so linked to that activity.

Early on in the project, it was imagined that a clinician could only run one activity at a time. This is

untenable however -a clinician might be running one activity and decide that a subsidiary activity was

required and thus needed to be run - in this case the clinician would be running two activities. An

example of this would be the decision of a doctor, running 'Doctor Care' to create a subsidiary activity
'Doctor Consultation' and run this, concurrently with the first. A new invariant was thus added as follows:

Vhcp: Cod(ActRun) " Vat, a2: (im AetRun'I) {hcp) " (ai, a2) E Includes' U During" v a, = a2

This says that if a clinician is running more than one activity, then any two of those must be in an
ancestral relation with each other.

This property was refuted by the same example that caused us to question the nature of the Activity -
Patient link: namely the specialist nurses' patient education sessions. We said that an activity is related to

one patient only via the function ActSubject, and that the Patient Education Session is in fact several
activities occurring in parallel. A Specialist Nurse will be present at all of those activities simultaneously,

and will in fact be running them all. The previous invariant is falsified by this example, and must be

replaced. In the event, it was not clear what an alternative invariant might look like: a decision was taken

to say nothing about restrictions on concurrent activities being run by the same clinician. The theory,

while not being refuted in this respect, is inevitably much weaker as a consequence of this decision. This

is thus considered one of the fruitful areas of further investigation and is presented as such in Section

14.7.

10.3.7 Conclusion

This section has explored the notion that all child activities are created by some sort of 'agent' whose
identity and attributes are recorded in models of the theory. Initially it was assumed that one activity was

created by another. With this underlying assumption, or paradigm, increasingly complex structures and
behaviours were represented in the theory to avoid a succession of refutations. This increasing complexity

was not only formal, but conceptual too. No progress was made with the problem until the underlying

paradigm was changed, and the creating agent was considered to be a clinician rather that another

activity.

d: \jes\dis\wip\phd\phdtext2. doc
158

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Physical presence of clinicians at activities is represented via the function ActRun. An activity cannot start

until a professional of the correct type is associated with it via the function. Originally a clinician could be

associated with only one activity at a time: this theorem was refuted by the example of the patient

education session and replaced with a less stringent one.

10.5 Further Enrichments and Enhancements of the Domain Theory

10.5.1 Introduction

It is not the intention of this chapter and the last to explain the whole theory in detail, rather to indicate

how it was derived through the theory construction and refutation cycle. However there are some classes

of the theory that were arrived at without much reworking. Some of these classes are those that refer to

time, and the booking and scheduling of activities. These classes nevertheless represent an important

aspect of the theory and are introduced in this section. More detail that is particularly relevant to the

clinical domain is the keeping of medical records on patients, and communicating those records to other
healthcare professionals.

Further enhancements that might be made to the theory lie in the form of the operations that are invoked

to change the state of its models. Little attention has been paid yet to the link between the types of

operations that the theory supports and the type of events that are observed in the domain. This is

discussed in this section.

Finally a few words must be said about the representation of boundaries of the particular domain of
interest. How might we interpret such things, and what is a boundary in 'reality': this is discussed in the
final part of this section below.

10.5.2 Time and Booking

Because of the compositional nature of the notation, we can represent time independently of the body of
the theory, and then incorporate it when it is needed. This we do through the classes Clock which is

refined with Scheduler which in its turn is composed with ATClass4 to produce ATC1ass5. The details of
the class is not important here, being presented with the rest of the theory in the Appendix 2. The reader

who is interested in the formal representation of booking systems is referred to the CAVIAR specification

which is clearly presented in [Flinn85 1, and from which some ideas in the theory that are pertinent to
booking and scheduling are taken.

The introduction of time into the theory allows us to say when activities are created, when they start and

when they stop. This 'time stamping' of activities allows us to 'tighten up' the looseness of the earliest

class. We saw in section 9.2.8 that there was nothing to stop an activity from being requested, started,

suspended and then cancelled which is a behaviour not observed in the domain. By assigning times to

activities, we can distinguish between those members of Request that have started and been suspended,

and those that have never started. A precondition of the cancel operation is

Pr128 (im Includes') {a} n Dom(ActStart) =0

thus preventing the cancellation of any activities that have been suspended, or have descendant activities

that have been suspended.

We can also assign times to certain types of activities (specified by the subset of Types called Bookable)

indicating when we would like them to start and stop - this is the way we represent the booking

d: \jes\dis\wip\phd\phdtext2. doc
159

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

procedure. The way this works is that an activity that is to be booked is assigned a 'slot' which has a
beginning and an end. Each slot belongs to a clinic list, of which there are a fixed number (the names of

clinic lists are a specialisation state component). No two slots on the same clinic list can overlap. This is

the basis of the booking system in the DEDC, and most other medical domains (in surgery for example,
the 'clinic list' would represent an operating theatre).

All activities that are booked and have never started are members of the set Request. All members of
Request, even those that are of types in Bookable are not necessarily booked however. This property of the
theory allows us to represent waiting lists -a situation where bookable activities are requested, but are not
booked until they come to the 'front of the queue'.

Although the development of this class of the theory is not of great interest, it is pertinent to the later
integration of the outpatient appointment system with the clinical record system, and into the domain. For
details of the behaviour of the domain with regard to bookings, the reader is referred to the formal theory

presentation in Appendix 2. Here the behaviour is expressed in terms of such state components as Slots,

ActSlots, Clist, and so on.

10.5.3 Information and communication

As was discussed in the last section, before the attempt to give each embedded activity a single creator

activity was abandoned, the theory developed undesirable complexity. This was needed to represent the

observed behaviours of the domain within the chosen paradigm. Much of this complexity was introduced

to deal with the issue of medical communication between professionals. Through discussions with

clinicians it was revealed that there were two sorts of 'internal' referral in the DEDC. The first was a

referral from the doctor to another paramedic. If the doctor decides (presumably as part of some activity)

that the patient needs to see the specialist nurse, an activity of type DSN Care will be created to enable

that. The doctor might go so far as to book the patient in for an appointment with the specialist nurse in

which case an activity of type DSN Cons would be created as well as one of type DSN Care. If a specialist

nurse thinks that a patient ought to see the doctor, or dietitian or chiropodist, she will talk to the

professional concerned and it will be as a result of this conversation that a decision is made. If we wanted

to represent this second method of internal referral using the assumptions implicit in the 'activity as

creator' paradigm, we would have to create a new type of activity to represent this conversation between

clinicians. This is what was done in an early version of the theory, there being a special member of Types

called 'Professional Dialogue' for which there were special rules.

When this way of thinking about the domain was abandoned, the consultation process no longer had to be

represented as an activity, but it is nonetheless important and must be incorporated into the theory

somehow. Communication needs to be understood if we are to be serious in our efforts to have the theory

represent causality - many activities are created as a result of communication between health care

professionals inside and outside the clinic.

Although the final theory does not depict 'inter-professional consultations' as explicit state components, it

recognises that they nevertheless give rise to activities. Thus if a specialist nurse phones up the

chiropodist to discuss the necessity of the patient getting foot care, then although the chiropodist might

decide to not see the patient, the act of talking about him or her to the specialist nurse might be

considered to represent a form of care: the state of the patient is being considered by a health care

professional, and a medical decision is being made on the basis of that consideration. The telephone

conversation (or whatever form the communication takes) is thus a sort of referral, and is portrayed as

such in the theory.
d: \jes\dis\wip\phd\phdtext2. doc

160

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

While the theory does not explicitly represent communications, it does incorporate the content of that

communication into its theorems and state components. The content of a patient-related communication is

information about that patient, and although communications are not represented as such, information is.

We must be careful when talking about information - we do not mean the symbols that are recorded on

pieces of paper any more than the set Patients meant the written names of the clinic's patients.
Information is used in association with the medical record. This record is a representation of the

perceived state of the patient's health. It differs from a clinician's hunch or fleeting opinion in that it is

recorded somewhere, and is thus part of the organisation's knowledge rather than any particular
individual's. As such it is a state component as much as any other. The perception of the state of health of

a patient will place constraints (of a possibly intractable nature) on the conduct of the organisation, in just

the same way as the registration of a particular patient, the booking of an appointment, or the

employment of a clinician. These medical records, being perceived states of health, are depicted in a very

abstract manner: information is considered to be a totally unstructured (carrier) set I. In order to link this
information with patients and activities we use a set of records -

T? -. Records: Set[R]

where each record has an informational content given by RecCont (Record Content):

T31: RecCont: Records 3I

Whenever something is recorded about a patient, a new member of Records is created and associated with
a member of I. This is about as crude a representation of patient data as can be devised. This reflects the
decision taken at the start of the analysis not to get bogged down in the 'medical knowledge' side of the
clinical process (clinical records systems are an interesting area, but are proving to be a barely tractable
problem). This issue was discussed earlier in Section 7.3.

Each clinical record has one activity associated with it as defined by the type declaration of RecSource -

T 3i-RecSource: Records 9 Activities.

Note that an activity might have many records associated with it. The quantity

(im RecSource ° RecConr1) 1 a)

thus gives all information associated with activity a. This is not just the information recorded in the

official 'patient notes', but all forms of information that might be associated with the activity, be it in a

computerised, typed, written or scribbled form. This reflects the interpretation of the medical record as the

organisation's collective perception of the state of health of a particular patient. The reason why we want
to allow such flexibility is in recognition of the fact that the introduction of operational computer systems
into an organisation will inevitably change the type and manner of the storage of information: we do not

want to be in a position where we cannot consider one form of activity information that turns out to be

much more important than was imagined. Thus, a telephone conversation is represented by the operation

ATClass7. Referlnt(a, Ap, t,, hcp, i-a,., r)

which represents a telephone call which is also a referral (referrals will be discussed in the next sub-

section).

d: \jes\dis\wip\phd\phdtext2. doc
161

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Communication that cannot be a referral (for example by a clinician to a type of activity that she cannot

.
Embed) is not represented explicitly at all. This is because there would be no change in the state of a

model of the theory were such an operation to be invoked that distinguishes it from the more general

operation NoteTake. In other words, such an operation would be semantically identical to that latter one.

The medical record represents the organisation's perception of the patient's state of health - we are not

concerned here how that perception is distributed within the organisation. Thus in sending a message to

another health care professional, the clinician augments the record, the source of that augmentation being

the activity that was being conducted when the message was written. Once written, the theory says that

there is open access to its contents. While this might seem unrealistic, it is not as it stands inaccurate -
merely unrefined. The mechanisms for medical data access are liable to be as complex as those for its

storage: we want to avoid getting dragged into contemplating the former for the same reason as we want

to avoid the latter.

Although this is the limit of consideration of medical records in this statement of the theory, a foundation

has been laid that enables future restrictions and enrichments (that will be less generic) to describe data

storage, data access, referral and communication in a way which is coherent and consistent with the
behaviour of the organisation as described in the body of the theory.

10.5.4 Final Operation Refinements and Followups

The amalgam of activities, patients, clinicians, types, professions, time and 'information' described so far

enables models to be constructed that can represent the directorate with a fair degree of 'accuracy'%°'. The

operations are still too general to enable us to capture important aspects of the behaviour of the medical
domain. The most significant operation that creates new activities is Embed. Although this is a
reasonable operation in that with it we can represent the majority of medical event inceptions, it is not one
that accurately reflects what is perceived to happen in medicine: doctors do not 'embed' activities in

others, rather they make followup visits, refer patients to other professionals, book patients to come to the

clinic at a certain time, order tests or particular treatments and so on. Each of these procedures can be

represented as a (different) refinement of the Embed operation.

Consider the act of ordering a test, or a treatment. This operation is called Order. Order is a refinement

of Embed (and . OutEmbed). An activity can be ordered by a clinician when it is of a type that cannot be

run by that clinician, and has no followup types (As given in FollowGuide, to be explained shortly). If the

type of the new activity is in HomeType, then the Embed operation is invoked, otherwise it is

. OutEmbed. The operation is as follows:

ATClass6. Order(Ap, Ai�t,, hcp-*aC)

(tt., ProfT)pe(hcp)) 0 RunType

t,. o Dom(FollowGuide)

t,. E HomeTypes ATClass5. Embed(AP, Ab, tt, hcp-4a,)

t, o HomeTjpes =ATClass5. OutEmbed(Ap, Ab, t,, hcp-4a,)

%°t In the theory itself as presented in Appendix 2, information and communications are presented after the operational refinements. The

ordering in the thesis has been decided for didactic purposes, the author considering that that chosen is clearer than the alternative.

d: \jes\dis\wip\phd\phdtext2. doc
162

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Thus a doctor might order a blood test, or Chiropodist Care, or DSN Care. A doctor cannot order a DSN

Cons activity as this has potential followups (instead, that activity, if created by the doctor, would have to

be booked using one of the operations .
Book). Although it is undoubtedly possible to refine the operations

as the theory has done, the question that has to be asked is whether the refinement so presented

corresponds to the name of the operation. There are occasions when a clinician 'orders' an activity (or at
least would claim to have done so) - whether this occurs in those circumstances circumscribed by the

preconditions of the theory is open to doubt. This is one of the least 'tested' or 'refuted' areas of the theory,

so should be viewed most sceptically.

One of the refinements of the Embed operation that is of most interest to us is
.
Followup. The idea of the

followup consultation is central to a hospital's view of medicine, especially in a predominately out-patient

oriented area such as the Endocrine directorate. The underlying structure of care as it is provided for

diabetics in the DEDC takes the form of an initial consultation with the doctor and followup visits every

six months or so. The vast majority of diabetic care at St Thomas' is delivered in this way with the doctor

having the responsibility for periodically and regularly reviewing the patient's health for as long as they

are registered with the hospital. Although the paramedics do not work quite like this, they too, on seeing

the patient during a consultation may decide to have them come back again in a day, a week or a month

so that 'progress' can be assessed. In the theory then, certain activity types have followups. The followup

to an Init Dr Cons will be a Followup Dr Cons, and the followup to a Followup Dr Cons will be another
Followup Dr Cons. This property of the domain is recorded using the structure over types called
FollowGuide where

T28: FollowGuide: Types -H (Types -) Types).

Any member of the set FollowGuide will have the form (ti, t2, t3), in which case the followup of an

activity of type t2 will be an activity of type t3, so long as both are embedded in an activity of type tl. In

other words, an activity has only one type of followup activity for a given parent (The case where the

activity has multiple parents is dealt with in the precondition of the operation .
Followup). The actual

followup of an activity is represented by a tree over Activities. Thus

T 29. Followsup: Activities -H 4 Activities.

If activity al Followsup activity a2, then al must be After a2. We enforce this observation through the

invariant

161: Followsup s After.

A followup activity is never the child of more than one parent: this makes the . Followup operation

clearer, but must be remembered when specialising the theory (although the invariants associated with
FollowGuide mean that this invariant can be kept, it might make an appropriate specialisation harder to
find). This invariant is defined with the predicate

162: (Cod(Followsup) d During) e Activities -H Activities.

Finally, there is a theorem which say that when activity al Followsup activity a2, the type of al must be

allowed to followup the type of a2 as specified in (the codomain of) FollowGuide. Thus

163: ActTj pe 0 Followsup ° ActType't c Cod(FollowGuide).

There are a number of other invariants that describe in formal terms the relation between the Activity tree
Followsup and the domain of FollowGuide. These are too longwinded to describe here - the reader is

referred to Appendix 2 for an explanation of these other invariants.
d: \jes\dis\wip\phd\phdtext2. doc

163

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

10.5.5 Boundaries

We saw briefly a representation of the boundary of the particular medical domain we were interested in at
the beginning of Chapter 9 when the sets In and Out were discussed. But what do we mean by an external
activity? If we claim to be constructing theories about the 'real world', how then can we construct any sort
of boundary at all - after all we cannot see this boundary and surely it is not 'real' in the same sense as a
patient or a clinician. The mistake is to imagine we are or could ever hope to be constructing theories of
the real world: this is not the case. We are constructing a theory where behaviours of its models comply
with a clinician's (or any other domain stakeholder's) view of the world. The hope throughout the work
has been that there is enough in common between different domain workers that one theory can in some
sense serve them all. Thus the theory is constructed so as to comply with some sort of shared perceived (or

construed) reality.

Now no clinician or anyone else can hope to know of all the activities that go on in the hospital, or
probably even all the activities in their own department or directorate. Equally very few clinicians will be

aware only of those activities taking place in their own area: he or she will be clearest about those
activities that are most immediate both in terms of responsibility and time, and 'vaguest' about those that
are most distant. How a perception 'shared' between clinicians might appear is impossible to say, but the
theory works according to an interpretation that has proved to lead to satisfactory models (ie the models
are not of the shared perception, but are consistent with it).

This interpretation is as follows. We assume that all activities inside the boundary are known about: they
are all started, and stopped, and most of them are created by the organisation of interest, that is, inside the
boundary. Whenever an activity is started in a model of the theory, this is intended to represent the start
of an activity in the domain. Not all activities outside the boundary are known about however, only those
that the organisation has been 'told about'. Thus activities in In in models of the theory represent activities
in the domain, whereas activities in Out in models of the theory represent place holders for activities that
the organisation has been told about: we might say that activities in Out were 'ghosts' rather than the real
thing. These ghost activities have many of the same properties as the internal activities - they can be

requested, start and stop. However, a requested ghost activity does not have the same interpretation as a
request in In. If an internal activity is requested in a model of the theory, this activity should be imagined

as coming into being in the domain. If a ghost activity is requested in the same model, we should interpret

this as a request for a service being sent out from the home organisation to some other organisation that is

to perform the activity.

For example the DEDC might request a particular blood test of the pathology department, and send a

sample of blood along with the request. Generally this would result in the blood test being carried out and
the results returned to the day centre. Occasionally the blood sample will get separated from the test

request, or both sample and request might get lost totally, or at least delayed through a problem in

hospital portering. In these cases, although a test request will not be created in the pathology department,

as far as the DEDC is concerned, a request has been made: this is represented by a ghost activity in a

model of the theory.

In a similar way to state changes in activities, various attributes of activities should be interpreted

differently depending on whether they are external or internal. For example, all 'information' that is

generated and in some way recorded in an internal activity is represented in models of the theory (at least

this is the intended interpretation). Information associated with ghost activities on the other hand should

be interpreted as records that have been sent to the home organisation from outside the boundary. Thus in

d: \jes\dis\wip\phd\phdtext2. doc
164

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

our case of the blood test, a result might be recorded in the pathology lab, but it is not until that result has
been passed to the day centre that any record would be associated with the appropriate ghost activity.

Of course, this difference in interpretation between members of In and members of Out is not defined or
hinted at in the formal theory. In order to understand models of the theory however, and interpret them as

representations of the 'world' that are in some way consistent with domain workers' constructions of that

world, we need to be fairly clear about the distinction in meaning between the two sets.

10.5.6 Conclusion

This section has dealt with a number of subsidiary topics that are nonetheless important if we are to gain

an insight into the theory and thus into the domain. Time and booking have been represented in a fairly

straightforward manner, with certain types of activity susceptible to booking and certain types not. An

early version of the theory represented communications between health care professionals as activities of a

special type called 'Professional Dialogue'. This was abandoned along with the "activity as creating agent"

paradigm. Communications between professionals is now only represented when it leads to the creation of

a new activity: the content of communications now being represented in the same way as any information

that can be shared around the home organisation (at least the theory does not say that it can't as
interrogation of the state of the organisation is not described by the theory). The operation Embed was

refined so as to reflect more closely the sorts of operations that are observed in the domain such as

referrals, booking and arranging of followups. Finally, we discussed briefly different interpretations of

activities in In and those in Out. This is a symptom of the deeper problem pertaining to the exact
epistemological nature of the theory. This is discussed in more depth in Section 13.3.

10.9: Conclusion to Chapter 10

Chapter 10 has examined and described enrichments rather than major change to the underlying theory

presented in the previous chapter. We now have representations not only of activities and types, but also
of patients, clinicians, professions, time, medical records and more. As well as adding detail to the state
components of the theory, we have refined its operations to be more realistic in that they now have names
and functions similar to operation types perceived in the domain.

One of the most interesting phenomena observed in this chapter is the 'paradigm shift': the change from

the assumption that 'activity begets activity' to the assumption that 'clinician begets activity'. After this

profound change in the theory, the conceptual structure was much simpler, although the formal

presentation of that structure is probably as complex if not more so than previously. This particular

problem might be solved by looking at representing the properties expressed by the theory in a clearer
(though equally formal) manner. The paradigm shift helped the project move out of the rut it had got into

over representation of 'professional dialogue' activities.

A summary of the 'improvements' described in the last chapter are given below:

Original Property Refutation / Reason for New Property Discussed in
Abandonment Section

Each activity has exactly one Patient Education Session is Patient Education Session (and 10.2.2

patient as its 'subject'. attended by many patients. similar procedures) redefined as
I many parallel activities.

d: \jes\dis\wip\phd\phdtext2. doc
165

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Each activity 'structure' has Activities relating to child birth Problem unsolved - theory 10.2.3

exactly one patient as its may have activities related to unchanged.
'subject'. baby included in activities

related to mother.

Patients may be physically Some Chiropody Cons activities A patient may be present at 10.2.4

present at one activity at a time. Include a Dr Pop-in activity. many activities, so long as they
The patient will be present for are all direct ancestors or
both of these. descendants of one another.

InLoco, a2 place relation over Relation could not represent InLoco changed to a3 place 10.3.2
Types, dictates which types of asymmetry between different relation to support

activity can create which other Health Care Professionals asymmetry.
types.

InLoco, a3 Place relation over A DSN Cons activity might be Abandoned paradigm of activity 10.3.3,

Types, dictates which child of created as a result of a Dr Cons as (activity) creating agent. 10.3.4, &
an ancestor an activity can activity, but DSN Cons is not a New theory has a clinician as 10.3.5

create. child of an ancestor of Dr Cons. the creating agent.

Activities run by a clinician New definition of (eg) Patient Nothing said about clinicians 10.3.6
simultaneously are in ancestral Education Session as many and concurrent activities at all.
relationship. parallel activities.

Communications represented as Complexity of representation Communication represented in 10.5.3

activity type: 'Professional and 'paradigm shift' from the same way as all
Dialogue'. activities to clinicians as information: associated with the

creators of activities. generating activity and
observed by other activities.

Table 3-2 Summary of properties that were refuted, the refutations, and the subsequent improvements to the
theory

d: \jes\dis\wi p\phd\phdtext2. doc
166

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The final theory is expressed in a class that is the refinement or composition of eighteen others. The

refinement and composition hierarchy is illustrated in the following diagram:

ActClassl

ActClass2

ActClass3 Patient-
Class

APClass TypeClassl

ATClassl TypeClass2 ClinClass

ATClass2 TypeClass3

Clock ATClass3 TypeClass4

Schedule- ATClass4
Class TypeClass5

Record- ATClass5
Class TypeClass6

ATClass6

Figure 3-15: Refinement and composition diagram for all classes in the domain theory.

PatientClass and APClass introduce the set Patients and examine the interaction between Patients and
Activities respectively. ClinClass introduces Health Care Professionals and professions, TypeClass3
describes some of the state components that use these concepts and Types, notably RunType. TypeClass3
is refined to TypeClass4 which defines EmbedTjpe. TypeClass3 and TypeClass4 constrain the operational
behaviour of the theory as explained in ATClass3 and ATClass4. Clock introduces a simple theory of
time which is refined to make it more specific to the clinical domain in ScheduleClass. TypeClass5 is a
refinement of TypeClass4 that defines subsets of types that are relevant to booking and scheduling (for
example the set Bookable). The theory of time and the time related specialisation state components are
composed with the operational theory as it stands to give ATClass5. Finally, a very basic theory of records
and information is given in RecordClass, those specialisation state components pertinent to records are
described in TypeClass6, and the whole theory brought together and presented in ATClass6.

d: \jes\dis\wip\phd\phdtext2. doc
167

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Finally, an index is provided below for all the state components of the domain theory (sorted in alphabetic

order) indicating in which class they are introduced (declared) and in which section of the thesis (if any)

they are discussed. An index of classes is presented in Appendix 2 which is where the formal domain

theory is presented.

StateComponent Class Where Declared Section Where Discussed

Access T eClassl 9.5.6

ActAtt APClass 1 10.2.4

ActEnd ATClass5 Not Discussed

Activities ActClassl 9.2.2

ActRe ATCIass5 Not Discussed

ActRun ATClass3 10.3.6

ActSlot ATClass5 Not Discussed
ActStart ATClass5 Not Discussed

ActSubject APClassl 10.2.2
ActType ATClassl 9.4.5

After ActClass2 9.3.2
Before ActClass2 9.3.2
Bookable TypeClass5 9.5.6
Complete ActClassl 9.2.3
During ActClass3 9.3.4
Earlier Clock Not Discussed

EmbedT e TypeClass4 10.3.5

FollowGuide TypeClass6 10.5.4

Followsup ATClass6 10.5.4

HCP ClinClass 10.3.5

Home T eClassl 9.4.2

Homer es T eClassl 9.4.2

In ActCl ass l 9.2.9

Includes ActClass3 9.3.4

Later Clock Not Discussed

Next Clock Not Discussed
Now Clock Not Discussed

Out ActClassl 9.2.9

OutNonCont TypeClass7 Not Discussed

OutRefType TypeClass4 Not Discussed

Patients PatientClass 10.2.1

PatPres PatientClass 10.2.1

PatRe TypeClassl 9.5.6

Previous Clock Not Discussed

Proceed ActClassl 9.2.3

ProfType ClinClass 10.3.5

RecCont Information 10.5.3

Records Information 10.5.3

RecSource ATClass7 Not Discussed

d: \jes\dis\wip\phd\phdtext2. doc
168

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Request ActClassl 9.2.3

RunType TypeClass3 10.3.6

SlotClist Scheduler Not Discussed

SlotEnd Scheduler Not Discussed

Slots Scheduler Not Discussed

SlotStart Scheduler Not Discussed

TGrouper TypeClass2 9.5.5

TypeGuide T eClass2 9.5.5

Types T eClassl 9.4.2

Unplanned T eClassl 9.5.6

d: \jes\dis\wip\phd\phdtext2. doc
169

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Conclusion to Chapters 8.9. and 10

The previous three chapters have explored the nature, content and rationale of the domain theory. In

particular we have seen in many cases how refutation of early theorems has led to an improvement in the

theory. We thus can now not only understand what the form of the theory is, but also why it is as it is: in

this sense it has been 'justified'. It is claimed that the scientific method has guided the development of the

theory, specifically the imperative to confront refutation through the construction of 'bold' theories, and
the imperative to re-work the theory when one of its properties is refuted.

As a consequence of consciously embracing the scientific method the theory we have developed is rich
and, if not robust, then at least more robust than it was. Whether the enrichments are in the right areas is
impossible to say at this stage - the test of this lies in the ease of construction of useful IS from the domain
description. This is addressed in the next chapter on the design and justification of Information System
designs.

The scientific method as proposed by Popper is not without its critics [Kuhn70], [Lakatos76], [Feyer93].

Many of the problems that have been discovered in its application manifested themselves (albeit in a

modest way) over the course of the project. These are discussed in more detail in Section 13.3, but we
have already seen some of them such as the difficulty in pinning down the interpretation of a concept, the
difficulty of knowing whether it is the general theory or its specialisation that has been refuted, and the
importance of being able to'shift paradigms'.

One major area that has not been addressed yet is the issue of organisational change. We can specialise
the theory to represent an organisation at any stage in its development by invoking the . Specialise

operation after model initialisation. We cannot thereafter change that specialisation which we would need
to do if the organisation introduced even the smallest procedural change. In other words, we have enabled
the rules of the game to be set up: we have not shown how to change the rules whilst the game is in

progress.

There are a number of ways of dealing with this (and any implemented information system would need to
have a strategy for supporting organisational change), the most basic being the recording of past
structures and rules which apply to previous operational values that are no longer active (for example,
completed activities). In this way historic values of the organisation do not contravene the system
invariants, and future values can be made to comply with the new specialisation: this leaves those

currently active operational state components (such as proceeding activities) having at times to work to
the old specialisation and at others to the new one. That there are ways of representing the dynamics of
organisational change is not in doubt: it was considered a problem outside the scope of this project
however, and is suggested as a valid area for future development in Section 14.7.

One conclusion we ought to draw is the extreme difficulty inherent in the application of formality to the
description of medicine. This is probably because the human body is such a complex entity, and the

structure of medicine ought to and indeed does intimately reflect this complexity. For example, gender is

generally considered to be a 'binary' phenomenon -a person is either a woman or is not a woman, in

which case he is a man. This assumption is reflected in the vast majority of computer systems that
impinge on this area. The assumption is generally made in medicine also, but in those areas that deal with
hermaphroditism (one of which is endocrinology) and other gender 'defects' the binary concept is no
longer valid, and in fact is useless even as an approximation of the truth as the interesting information

lies in the manner by which the patient breaks this 'law' of gender exclusivity.

d: \jes\dis\wip\phd\phdtext2. doc
170

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Notwithstanding the intractable nature of clinical practice and the deep problems inherent in the scientific

approach, a theory of the medical domain has been developed. How are we to use this to develop

Information Systems? This issue is addressed in the next chapter: Information Systems and their

Interaction Theories.

d: \jes\dis\wip\phd\phdtext2. doc
171

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Chapter 11: Information Systems and Interaction Theories

11.1 Introduction

Although an understanding of the domain may be of interest to people who work within it, we have not
yet seen how the theory that has been developed is going to be of specific use to the goal of this project -
the design of information system components that will help with the running of the organisation. The
formal theory may very well not be of interest to the workers in the domain as their concerns might not be

with those aspects of the domain that the theory has covered. In general there are major problems with the

representation of informal human activity system in formal terms. The formal theory comes into its own
when it is used to aid the abstract specification of 'mathematical' entities that are to be used to represent
and aid the operational running of the domain. The digital computer is an example of such a
mathematical entity, as are aggregates of those computers known as information systems.

If we are to construct an information system that supports the domain, what form should it take? The

author has asserted earlier that useful information systems represent a perception of the world that its

users can understand and 'live with' - that the user can interpret the concepts repr: sented in the computer
system into her domain. We can gain an insight into the nature and validity of the interpretation of the
information system by comparing it with a reasonable understanding of world. We already have such an
understanding in the form of the domain theory explored in last three chapters and in Appendix 2. By

representing the behaviour of the proposed computer system in abstract terms, we can add a degree of
formality to the investigation of the interaction of the information system with the domain interaction

with theory. We do this by comparing and composing the information system theory, or specification,
with the domain theory to give what is termed here the 'Interaction Theory'.

The way in which this process of information systems analysis will be demonstrated here is through the
presentation and explanation of an abstraction of the proposed information system (or that fragment in
which we are interested), and an examination of its interaction with the domain theory through the
construction of the interaction theory. In the case of an information system, the most crucial aspect of this
interaction is its interpretation into the domain. It is only through interpretation that the system can be
considered to say or mean anything, and thus only through interpretation that it has any interaction with
the user's world. The interaction theory thus records the (or rather a possible) nature of this interpretation.

It is useful to note here that the requirements process described here - the derivation of a domain theory,
the proposal of an information system component, and the construction and examination of an interaction
theory - is incomplete. There is a stage before the information system design that has been left out - that
of selecting the area of the domain for which automated support is required. That this is a part of
requirements elicitation is beyond doubt and has been investigated by many workers and reported
extensively in the literature%°". This issue has not been investigated in this project partly because of the
extensive effort already expended in this area, and partly because in the domain where the author was
based, there was not much doubt in the system procurer's mind which were the most pressing needs
(though how to satisfy those needs, and how to integrate any system successfully into the functioning of
the directorate was unclear to him).

x"u Many books that tackle systems analysis and IT strategy will address the subject of which is the most pressing sub-domain for
computerised support. For an up to date insight into this and other aspects of requirements analysis, the electronic magazine: 'The
Requirements Engineering Newsletter' (Back issues can be obtained via anonymous ftp from ftp-host: dse. doc. ic. ac. uk. Directory:
requirements)
d: \jes\dis\wip\phd\phdtext2. doc

172

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The next two chapters attempt to illuminate the nature of the interaction theory and its use in

understanding and engineering information systems through the introduction and discussion of two

examples.

In the first chapter we consider an existing information system (actually one that is all but complete but

has not yet been installed). This is the departmental Clinical Record System (CRS). By considering this

system in a highly abstract (and simplistic) way, we can see how we might represent an information

system in terms of a mathematical theory, and how we can construct an interaction theory to assess the
interpretational adequacy of the system.

Understanding the limitations of any tool makes its use much more effective, however the main purpose
for the derivation of the domain theory and the construction and inspection of interaction theories is the

design of new information systems. The second chapter in this logical group considers just such a new

system: an integrated system which both supports the patient record and facilitates booking of clinic

appointments. A hospital-wide appointment system already exists, but it is not integrated with the CRS,

and does not support all the functions associated with clinic booking. By using the method explained
here, we can see how we might integrate the appointments system with the CRS, and add functionality

that does not yet exist (note however that the technical as opposed to the semantic aspects of this systems

integration are not addressed by the thesis). We do this by first considering the appointment system in

isolation, then composing it with the CRS to form a proposed integrated information system. The design

of this integrated system was influenced by the existence of interaction theories: the way in which the

interaction theories inspired the design is given finally.

In both these areas, an abstract specification of the information system (real or proposed) is presented and

explored, followed by a development of a theory of its interaction with the domain. Formal notation and

informal text will be mixed together in whatever way is considered most useful in putting across the

argument, much as with the last two chapters. This chapter contains no refutative experiments however:

these are appropriate to the development of the domain theory, but not to the design and investigation of

information systems based thereon. Of course when designing systems, the information system design and

interaction theory were developed and used iteratively: such is the nature of engineering. At presentation

of the results however, for didactic purposes of clarity and comprehensibility, the information system

theory and the interaction theory may be reasonably separated.

Although the purpose of this project has been to conduct analysis and design for a directorate information

system, less time was spent on the derivation of these specifications than on the development of a robust

domain theory. This is partly because the act of producing and refining a formal theory of a domain as

complex as medical care was sufficiently difficult to occupy the majority of the time allotted to the project,

and partly because it is the author's belief that once an adequate domain theory is derived (along with an

understanding of the areas of the domain that require automated support) the design of information

systems components, at least at an abstract level, is comparatively straightforward. In short, the

development of the domain theory is the most important aspect of this method, and so most effort should

be expended on it.

Those components of the directorate information system that have been specified below were chosen

partly due to pressing (expressed) needs in the directorate, and partly to illustrate and explore important

concepts associated with the method. The implementation of these components is outside the scope of the

project, although aspects of the information systems described are being implemented now. The results

d: \jes\di s\wip\phd\phdtext2. doc
173

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

and lessons learned from the implementation of the directorate information system will be the subject of
future papers.

11.2 The Clinical Record System

11.2.1 Introduction

First we will investigate the interaction between an existing information system and the domain. The

information system we will investigate here is the department's Clinical Record System (CRS). As

explained earlier, the departmental computer system - Diabeta - was being re-written at the time of the

project to make it more flexible and easier to maintain. The language and system architecture were

chosen so that the new system would comply with the hospital's declared 'Information Technology

Strategy' [KPMG89]. This insisted on a Client-Server hardware architecture, with the server acting as the
data repository running under the UNIX operating system, and the client systems being IBM-compatible

personal computers running under Windows and DOS. The development environment chosen is a fourth

generation language which is responsible for the creation of relational databases, and 'forms' through

which the databases might be manipulated, updated and interrogated. Because of the type of development

environment used, and the manner in which the new system is 'written', it was not very difficult to

represent the CRS in an abstract manner using the formalism of the Schuman-Pitt notation. This is not

generally the case, and for many, or even most programmes an accurate 'reverse engineering' into a
formal abstract specification would be prohibitively difficult (though there are tools such as BTool and
MALPAS that assist in the process).

It should be noted that the new CRS was still under development at the time of writing this thesis. The
domain analysis described above, and subsequent formal and informal investigation of the interaction of
the CRS with the domain (as understood through the domain theory) all influenced its design, and
continue to do so. The information system described in this section is thus an abstraction of the CRS at
one stage in its development.

The full and formal description (in Schuman-Pitt notation) of the CRS and its interaction with the domain
is given in Appendix 4.

11.2.2 Explanation of existing components

The Clinical Record System that is used in the DEDC, known as 'Diabeta', is largely responsible for

keeping diabetic records on patients (though a paper 'back-up' copy is also kept of any information stored
on Diabeta which is kept with the conventional patient notes). The system is first used with regard to a
particular patient when he or she arrives for their first outpatient doctor consultation, or visit. It is used to

store details relating to followup visits thereafter. The original system on which the new CRS is based,

only recorded information entered at a doctor consultation. This was adapted recently so that it could also

support specialist nurse consultations, and more recently still, chiropodist consultations.

At a single session, the user would be presented with a patient selection screen followed, upon such a

selection, by a 'demographics screen' which records essentially unchanging details pertaining to the

patient such as patient address (obviously this will change, but at a much lower frequency than patient

visits), GP name and address, postcode, and gender, none of which is clinical information. Thereafter the

system is divided into three 'clinical pages' which can be chosen and moved between arbitrarily. The

problem page lists the medical problems that the patient has had, or currently suffers from. The test

results page gives a longitudinal display of the test results form the last six visits. Using this page, the

d: \jes\dis\wip\phd\phdtext2. doc
174

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

doctor or nurse can determine if there are any undesirable long term trends with weight, blood sugar
level, diabetic 'control' and so on. The medication page records the drug regimens the patient has been

prescribed over the last six visits. Using this and the test results pages the doctor or nurse can see what

course the diabetes is taking, and what effect different drug regimens are likely to have.

The new system mimics this functionality, but has been designed with 'generality' in mind. Thus it is

designed to represent many different sorts of encounters, or types of visit, and so is similar in some ways
to the domain theory. Another similarity with the domain theory is the support for an inclusion relation

where a record is kept of which visit is a part of which other visit. These differences with Diabeta I are

partly due to the slightly different needs of the new system, and partly due to the analysis described in the

thesis.

11.2.3 Description of existing components in Schuman-Pitt Notation

The Initial Operational Classes: Static Specifications

As was explained earlier, we can abstractly represent the new clinical record system using the notation we

exploited to represent the domain. The theory of the CRS is built up by composing together more

primitive classes, mush as we saw for the domain theory. The most basic class represents the structure of

the entity crs-Visit. Note that all state components of the information system are denoted by the prefix

'crs-': through the use of his prefix we will be able to more easily distinguish these sets and relations from

those pertaining to the domain, something that will be useful when we construct the interaction theory.

The set crs-Visit should be interpreted as a data-file in a computerised database. It is through strict
interpretation of the 'crs-' state components as aspects of the information system that we can say that the

formal theory we are presenting is in some way a specification of the information system. The set crs-Visit
is of a certain data type, thus we say

crs. T i'. crs-Visit: Set[crs-V]

where crs-V is the carrier set that denotes the type. This set is partitioned into crs-Proceed and crs-
Complete, so we can say

crs-T r: crs-Proceed, crs-Complete: Set[crs-V]

crs. 1 i: crs-Proceed n crs-Complete =0

crs-I 2: crs-Proceed u crs-Complete = crs-Visit

in much the same way as we did for the set Activities at the start of the domain theory.

The sets crs-Proceed and crs-Complete are of the same type as crs-Visit as indicated in their type

declaration. We might imagine that each member of crs-Proceed is a record in an entity called crs-Visit,
implemented as a table on a relational database system. Maybe this table contains a 'flag' field to enable a

distinction to be drawn between those records that are members of crs-Proceed and those that are in crs-
Complete. The details of the implementation are of no interest to us here, however: it is only important to

know that the information system in some way distinguishes between the two sets.

d: \jes\dis\wip\phd\phdtext2. doc
175

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The initial class used to define these most basic structures of the Clinical Record system is CRSCIassl:

the type declarations and invariants are given in the following schema.

CRSCIass1

ors-T i: crs-Proceed, crs-Complete, crs-Visit: Set[crs-V]

cf-i r crs-Proceed n crs-Complete =0

Erz-I r crs-Proceed v crs-Complete = crs- Visit

crs-Visit' =0

This class has only two operations associated with it:. CreVis which creates a new member of crs-Proceed
and . FinVis which takes a member of crs-Proceed and puts it in crs-Complete. We do not choose to
compose this class with any domain class at this stage, as there is insufficient structure in CRSClassl for

us to gain any useful insight into its relation with the domain. We need to enr'ch the information system
theory further if it is to be of genuine benefit to us in our attempts to understand how the CRS and the
domain interact. The first such enrichment is recorded in CRSClass2. This defines a graph over the set
crs-Visit called crs-VisRel (Visit Relation). In fact the graph that is defined is a tree: the relationship
between the domain and codomain is functional, and is non-cyclical. We say this by putting

ors-T2: crs-VisRel: crs- Visit -fl crs- Visit

and

Cry-I 4: crs-VisRel+ c id[crs- Visit] = 0.

This last invariant says that crs-VisRe! is a directed acyclic graph.

If a visit record vl that is a member of the set crs-Proceed is related to a visit v2 via the relation crs-
VisRel (ie (vl, v2) e crs-VisRel), then v must also be a member of crs-Proceed. This property is expressed
using the invariant. Furthermore, inspection of the system revealed the absence of any mechanism for

moving 'parent' crs-Visit records to the crs-Complete set. These two observations are recorded in the
invariant

c s"i 3: Cod(crs- VisRel) c crs-Proceed

which says that any parent of a visit record must be in the set crs-Proceed.

Interpretation of the Information System Theory: A Word of Caution

It is tempting to try and understand these type declarations and invariants by interpreting the sets and
relations as concepts in the world. If this were the case we could think of a visit as an event with duration,

which starts and stops. The invariants could then be interpreted as meaning that a visit cannot start unless
the visit it is a part of has started, and that a visit could not stop until all visits that are part of it have

stopped. This interpretation would be similar to that intended for the state components of the domain

theory, Activities and Includes. This temptation must be resisted as it is wrong and misleading. The
domain theory is a theory about the processes observed, or perceived, to take place in the world, or at least

a particular part of the world (the domain). The state components are intended to be interpreted as aspects

d: \jes\dis\wip\phd\phdtext2. doc
176

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

of the world, and the values in models of the theory as objects or attributes of objects in the world. The

information system theory is a theory about a computer system, and the sets and relations described in the

theory are representations of state components of the computer system: bits and bytes, files and tables or

entities and relations depending on the level of abstraction we are using to think about it.

The reason why it is important to distinguish between the domain and the information system in this way
is because it is precisely the interpretation of the information system state components as aspects of the

domain that we are interested in: in other words, we must be careful not to treat interpretation in a

cavalier manner. It is true that when in use, the state components of the computer system are likely to be

interpreted as aspects of the domain: it is our purpose here to investigate whether possible interpretations

are valid, and what is missing in it. We want to do this explicitly through the investigation of the formal

relation between the domain theory and the information system theory. If we are to do this, we must be

sure of what the different theories are speaking: the domain theory is speaking about the 'reality' of the

domain, and the information system theory is speaking about the computer system that is to be introduced

(or has been introduced) into the domain. That, in turn, the computer system can be understood as talking

about the domain is something that we want to investigate prop--rly and explicitly in due course. In short,

we do not want to discuss interpretations informally here: we will discuss them formally later.

The Initial Operational Classes: Dynamic Specification

As in the earlier CRS class, we have operations to create a visit record as part of the crs-Proceed

partition, and one to move it to the crs-Complete partition. The CRS does not just create new visit

records, it relates them to others via the crs-VisRel relation. There are three different sorts of visit record

creation operation defined in this class:. CreVis, EmbInOld, and EmbInNew. While CreVis creates a

new visit record that is not in either the domain or codomain of crs-VisRel, EmbInOld and EmbInNew

each create a number of new visit records that are all related via the relation crs-VisRel. For example,

take the operation CRSClass2. EmbInOld(v,,, V�) which returns a set of newly created visit records V�

when supplied with an existing visit record that is in the set crs-Proceed. Thus we have

crs-W3: V,,: Set[crs-V\crs-Visit]

and

crs-Pr 4: V.: crs-Proceed.

Each member of the set Vn is a value of the correct type (as specified by the Type declaration) but is not a

member of the set (or entity or file) crs-Visit. After the operation all members of V� have been created as

records in the partition crs-Proceed: this is specified by the'pre-condition'

crs-Pr i:
VV,,: V,, " CRSCIass1. CreVis(v�)

d: \jes\dis\wip\phd\phdtext2. doc
177

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

which states that the operation CRSCIassl. CreVis should be invoked for every member of the set V.

After the operation, we want a number of new crs-Visit records as specified by Vn: we also want them to

be in the relation crs-VisRel with each other. The intention eventually is to describe a situation where an

operation to create a new crs-Visit record will recursively create a parent record (through crs-VisRel) until

such time as the'topmost' new parent visit is embedded in the existing visit record. This idea is illustrated

by the following illustration: Figure 3-16.

Existing is-Visit records
Existing is-Visit records Iv

° Vn' Vol
v

J

° NO ,2 is-VisRel J

n4 "ý Vn4
\ \

I,

'New' is-Visit J
records n3

State before operation - v,, , Vn2 etc are values of the State after operation. The vertical line represents

correct type that are not yet in the set crs-Visit the existence of the connected pair of records in the
crs-VisRel relation (for example: (vn3i Vni) E crs-
VisRel

Figure 3-16: (partial) States before and after invocation of the operation CRSClass2. EmbInOld(v0, {v�i,
Vn2, VO, vn4))

We specify this through the post-conditions:

crz-Po 3: RestVisRet = ({ v0) u V�) 4 crs-VisRel' D ({ v,,) v V�),

crz-Po4. #RestVisRel' = #V,,, and

., -No s: Dom(RestVisRel') = V,,.

In these postconditions, the first predicate defines a quantity, RestVisRel (a Restricted version of the crs-
VisRel relation), which is used in the other predicates. Here, RestVisRel is the set of pairs from crs-VisRel

where each member of the pair is one of the new crs-Visit records, or the specified existing one, v0. The

other postconditions place further restrictions on this quantity. For example, the number of such pairs

must be the same as the number of new crs-Visit records, and all the new visit records must be present in

the domain of the defined subset of crs-VisRel. We already know that crs-VisRel is a function, and also a
directed acyclic graph, so the only configuration possible is the one that we want - namely that after the

operation, each member of Vn has one 'parent' from the same set through crs-VisRel except for the most
'senior' member which has vo as its parent.

The operation CRSCIass2. EmbinNew(V) is similar to CRSClass2. EmbInOld(v,,, V�) except that there is

no existing record to which all the members of V are to be related via crs-VisRel. The reason why this

class needs three different operations to create new visit records is that each one takes different argument
types:. CreVis takes no arguments and returns a new visit record; EmbInOld takes an existing visit

record and returns a set of new ones; and EmbInNew takes no argument and returns a set of new visit

records.

Again, as with the last CRS class, there is no point examining the interaction between this theory and the

domain theory yet as we have not expressed enough of the structure of the information system to get any

d: \jes\dis\wip\phd\phdtext2. doc
178

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

determinism in the resulting composite theory: sometimes an operation in the domain will coincide with

an operation on the information system, but we have as yet insufficient information system state

components to decide which these are. In other words we are currently defining an architecture for the
information system, not (yet) the services it offers.

Specialisation Classes and Their Composition with Operational Classes

The class CRSTypeClassl, which is not a refinement of any other class, introduces an entity called crs-
Types, and a tree over this entity called crs-TypeParent. Both of these quantities are specialisation state

components, and in the eventual information system theory will have similar relationship with the

operational state components crs-Visit and crs-VisRel as Types and TypeGuide do to Activities and
Includes in the domain theory. As crs-Types and crs-TypeParent are specialisation state components, we

will not worry about operations in this class other than one called Specialise. We cannot learn anything
from the operational interaction between this class and a corresponding class in the domain theory,

because we have not investigated how the specialisation state components on the domain theory (which as

we shall see are intended to be the interpretation of these specialisation state components in the

information system theory) behave in an operational sense either.

The classes CRSCIass3 and CRSTypeClass1 are composed together to give the class CRSVTClass1. This

class relates the state components of its composite classes through the function crs-VisitType and its

subsequent invariant. That is

c s-Tx crs-VisitType: crs-Visit -3 crs-Types

crs-I7: crs-VisitType ° crs-VisRel ° crs-VisitType-I c TypeParent.

This class has only three operations - that which is used when registering a patient, that which creates a

visit record, and that which finishes a visit record. The operation that creates a visit is the most complex
in that it selects one of the three creation operations from CRSC1ass3 according to the type of the visit

record that is to be created.

d: \jes\dis\wip\phd\phdtext2. doc

179

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

The operation CRSVTC1ass1. CreVis is given a type, t, and a patient identifier, pid, as its arguments,

whereupon it returns a newly created visit record that has the type t. There may be other visit records

created - whether or not they are, and what their types are is dependant on what t was, and what the value

of crs-VisRel was for visits relating to pid. If t is not the domain of crs-TypeParent (it has no parents

through the function crs-TypeParent) then only one new visit record is created and is given the type t. If t
does have a parent through crs-TjpeParent then either a visit record which is a potential ancestor of v�
(through crs-TypeParent and crs-VisitType) and is in crs-Proceed exists, or does not. If such a potential

ancestor does exist, then it is identified, and passed as one of the arguments (v,,) to
CRSClass3. EmbInOld(pid, v, �V�). If such a visit record does not exist, then the operation
CRSC1ass3. Emb1nNew(pid, V) is invoked. The new visits have such types that the invariant crs-17 is not
contravened, and in both these latter cases the visit returned by the invoking operation
CRSVTCIass1. CreVis is a member of the set of new visit records. This complex operation is given in the

operation schema

CRSVTCIass l. CreVis(t, pid-4v,,)

crs-Pr21: t: crs-Types

c s-I 22. t0 Cod(crs-TypeParent)

I crs-Pr23: CRSClass3. CreVis(pid- vn)

crs-Pr24. t 9- Dom(crs-T)peParent)

crs-vo i3 crs-VisitTjpe'(v�) =t

.2 cri-PT 25: CRSClass3. EmbInOld(pid, vo-+V�)

cr. "Pr26: V0 E (im crs-VisPid'1) (pid} n (im crs-VisitType-I) (im crs-TypeParent+ {t})

crs"Pr27: (im crs-VisitType) (im crs-VisRel-") (v0 }n crs-Proceed n (im crs-TypeParent+) ft } =O

cri"Pr28-#Vn = #((im crs-TjpeParent+) {t) n (im crs-TypeParent-I *) {crs-VisitType(v�)})

crs"Pr 29: Vn E V.

crs"Po l4: (im crs-Tj peParent*) ft) \ (im crs-TypeParent* { crs-VisitType(vo) }= (im crs-VisitType) V�

cr, -P, i5: v� 9 Cod(V� 4 crs-VisReP D V�)

.3 cr,. vr rt CRSClass3. EmbinNew(pid- W

cri-Pr 3i: (im crs-VisPid-1) { pid }n (im crs-VisitTjpe-I) (im crs-TypeParent+ ft }) n Proceed =0

crs-Pr 32: #V = #(im crs-T)peParent') { t)

crs-Pr 33 V, EV

er, -po i6: crs-VisitTjpe' 0 (V4 crs-VisRel' t> V) ° crs-VisitType'-I c crs-TypeParent

rr, -P, 17, (im crs-T)peParent*) (t) = (im crs-VisitT)pe) V

trs"P, ix: v� Cod(V 4 crs-VisRel' D V)

d: \jes\dis\wip\phd\phdtext2. doc

180

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

That this operation is so complex is interesting, and might reflect a confusion in the underlying semantics
of the CRS. On the other hand, the invariants we have seen so far have not been over complex, and this

operation is only of this form in order that those invariants are not contravened. The complexity is due at
least in part to the need to calculate what new visits should be created when only one type is provided as
an argument. As we shall see, this is caused by an artificial restriction on the sort of visits that can be

explicitly created - only those which do not have children through crs-TypeParent - as reflected in the
type declaration:

crs-Przi: t: crs-Types

and precondition

c. s-Pr n: t 0 Cod(crs-TypeParent).

We now have a reasonable model of how the Clinical Record System works. Visit records are started and

completed, and may, upon creation be related to other visit records via the crs-VisRel relation. Each visit

record is assigned a type on creation which does not change. Whether a visit record can be in the relation

crs-VisRel with another is deduced from their types and whether those types are in the relation crs-
TypeParent. Any visit record must be associated with exactly one patient id, and two visit records related

via the crs-VisRel relation must both be associated with the same patient id.

The class structure that has been used to describe the system should not be taken as any sort of

representation of the architecture of its implementation. The notation is 'object oriented' and allows for

inheritance of properties and for the refinement and composition of primitive concepts to create more

advanced ones. The clinical record system as currently being implemented is based around the relational

model of information storage and manipulation which is not object oriented, and does not support the

composition and refinement used in this description. The class structure of the information system theory

given here enables us to understand the bahaviour of the final clays CRSVTClass 1 relatively easily, which
in turn provides an abstract representation of the behaviour of the CRS.

Of course, the implemented CRS will be much more complex than the theory we have developed, and will
include data files that represent clinician identifiers, medical results, test orders, drug dosages and so on.
Some of these aspects will be investigated later on in this chapter, but for the moment, we have enough
structure in the theory to compose it with the domain theory to see how it interacts. This is the purpose of
the next section.

11.3 An Interaction Theory for the Clinical Record System

11.3.1 Introduction

We now want to compose the information system theory with the domain theory. We will do this in two
stages: CRSlnteractionl which considers the interaction between domain and information system
specialisation state components, and CRSlnteraction2 which does the same for the operational state
components as a refinement of CRSlnteractionl. Before we do this, let us consider what we need to do in
order to compose the two theories.

We have seen that models of the domain theory should be interpreted as possible behaviours of (parts of)
the organisation we are investigating. In a similar way, models of the information system theory should be
interpreted as possible behaviours of the computer system we are investigating. As we have already seen,
one of the central assumptions of the thesis is that when in use, an information system is interpreted into
d: \jes\dis\wip\phd\phdtext2. doc

181

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

the domain by the users. This interpretation is difficult to talk about: any informal discussion involving

natural language statements about the domain, the information system, and the interpretation by users of
the one into the other is liable to be long-winded, clumsy, obscure and prone to error. However, because

we already have formal theories of the domain and the information system, we can represent (to some

extent) the interpretation formally. This makes a discussion of the representational adequacy of the
information system possible and clear. The theory which enables us to do this must contain both the
domain theory and the information system specification: it has been called in this project the 'Interaction

Theory' and it is a composition of the two earlier theories and a description of the mutual constraints each

places on the other.

We represent the interpretation of the information system's state components through the introduction of
an explicit 'interpretation function' which is a state component purely in the interaction theory. This is a
function which relates members of state components from the information system theory to members of
state components from the domain theory. The inverse of an interpretation function is a representation
relation which is generally a function also (though unlikely to be total).

An example of an interpretation function is IntV which represents the interpretation of the set crs-Visit.
This is defined in the type declaration

crs"mI-T 3" IniV: crs- Visit 9 Activities.

Thus each visit record should be interpreted as an activity. We have the representation function for
Activities:

cr, -ant-T4: RepA: Activities -H 4 crs-Visit

which tells us that some activities, objects in the domain, are represented as members of crs-Visit, records
in the information system. Now if activity a is the interpretation for the member of crs-Visit v, then v is
the representation for a- representation being the inverse of interpretation. In this case we have

crr"mt"14': lntV = RepA'1.

It should be observed that we are investigating the interpretation of an 'idealised' information system
model in that we are not concerning ourselves with 'mistakes'. One of the manifestations of this
assumption is the representation of the interpretation function as a total function. We will assume that we
do not have two separate crs-Visit records for the same activity (unless the composition of the theory
operations prevents this), and we will also assume that we will not have crs-Visit records that do not
correspond to any activity at all. These are clearly not valid assumptions to take generally, but we are not
concerned with the potential for information system misuse, which is always large and is difficult to
analyse formally, but in its scope of validity when it is used correctly.

The manner in which the domain theory and information system theory interact can be examined through
the construction of invariants that hold between state components in the two theories. All of these
invariants must be predicates which incorporate an interpretation function and / or representation
function. How do we discover such invariants? How do we construct the interaction theory? This question
is addressed in the following sub-section.

d: \jes\dis\wip\phd\phdtext2. doc
182

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

11.3.2 How To Build an Interaction Theory.

Before we can consider a 'method' for building an interaction theory, we must consider how we intend to

use it, and hence what sort of a thing it is.

We can never predict with certainty what interpretation is going to be placed on the system by its users,
but what we can say is that for a given interpretation, as described by the interaction theory, the
information system will provide support in identifiable areas in identifiable ways. We must make certain

assumptions as to what meanings the user will impute to various information system state components: if

an information system state component has similar behavioural characteristics to a domain state

component, then it is probably reasonable to imagine that the latter is a fair interpretation of the first. Of

course, the user might not use the same interpretation: there are many ways in which poor user interface

design can obfuscate the most lucid semantic representation, but the best user interface in the world

cannot redress the shortcomings of an inadequate data structure.

As a result of the impossibility of accessing the 'real' interpretation of the information system, what do we

think the interaction theory is. The error lies in thinking that the theory is a description of the actual
interpretation of the information system: it is not. It is rather a description of the intended and likely

interpretation and use of the system, and must be created in that light. In its construction we must try to

be as honest as possible, putting ourselves in the shoes of the user (there are after all countless

unreasonable and obtuse interaction theories that could be constructed) both in terms of how the state

components of the information system will be interpreted and how it is to be used (this amounts to a
description of the 'interpretation' of operations) - that is we should be sure that the intended use is a

reasonable use. The interpretation of the state component crs-Visit as Patients would be unreasonable, but

not mathematically or logically incorrect: it would however describe an intended use where the support

given to the domain by the information system was extremely poor. Clearly, experience of the use of
information systems is helpful here.

The more complete the interaction theory the better. Its main purpose is to investigate the extent to which

the information system can be thought of as representing the domain. Consequently we should try to

construct an interaction theory that is not only reasonable, but describes the state of the domain as fully as

possible - the interpretation of all information system state components should be investigated, and the

system explored to see which state components of the domain can be considered to be represented.

Decisions as to the interpretation of information system state components are thus more art than

engineering, but this should not discourage us. In the case of the interaction theory for the DISI system,

we have described what seems to be a reasonable interpretation, and moulded the information system

around that. We can thus say that such an information system should be, at least functionally, 'user

friendly' in that its state can be interpreted in terms of primitive concepts germane to the user's

understanding of her universe, and that the system behaves more or less consistently with that universe.

Having said that the construction of the interaction theory is difficult and non-trivial, the creation and

exploration of a'good' interaction theory will reveal potential errors in representation for discussion with
domain stakeholders. In other words the interaction theory must be good: it does not have to be perfect.
The way in which (hopefully) good interaction theories were created in the project is described below.

The finished interaction theory is a balance of interpretation functions, invariants and embedded

operations that records the interpretation and use of the information system as faithfully as possible. It

therefore makes sense to first of all describe the interpretations we are most sure about. For this reason we

d: \jes\dis\wip\phd\phdtext2. doc
183

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

first inspect the most fundamental and basic state components of the domain theory to see if there are any

possible representatives in the information system. If there are, then simple interpretation functions

linking the two are specified. Once the interpretations of the most (conceptually) fundamental

components of the information system are described, basic domain operations are searched for which have

an obvious and straightforward representation in the information system: these are recorded by

embedding the latter operation schema in an interaction theory operation schema along with the

represented operation from the domain. theory. In doing this we will have started to make assumptions

about the nature of interpretation and use of the information system - we must feel happy that these

assumptions are reasonable.

Once the most basic interpretations of state components and operations have been defined, derived
interpretations of the more complex state components of the information system should be constructed

where possible. For example, having decided that crs- Visit should be interpreted as Activities and crs-Pid
as patients, we should look at the information system to see if there is any state component which could be

thought of as an interpretation of ActSubject. For such an interpretation to be valid it must be consistent

with the two more basic interpretations as well as the intended use of the system as defined by the bound

operations. This is not as easy as it seems, and the greater the degree to which the intended use and
interpretation is pinned down, the less the scope for consistent interpretation of the remaining state

components. The skill in constructing the interaction theory is the balancing of the interpretations of state

components and operations such that the information system says the most obvious and extensive things

about the domain (ie its scope of coverage is greatest) and yet is internally consistent.

The next sub-section describes the construction and nature of one such interaction theory - that used to
understand the previously described CRS.

11.3.3 The Interaction Theory I: CRSlnteraction.

Let us first consider the interaction between the different sets of specialisation state components. This we
do in the class CRSlnteractionl. The information system theory does not describe the CRS in detail - as
we have seen, there is no mention of clinicians, professions, or medical records yet. Because of the
abstract nature of the information system theory, there are many state components in the domain theory
that we will not use and can say nothing about at present: introducing these into the interaction theory

will only serve to obscure the argument. For this reason, the interaction class is the composition of the

most highly refined CRS specialisation class - CRSTypeClassl - with the least refined domain

specialisation class that still contains all the state components that we are interested in - TypeClass2.

The interpretation and representation functions are easily defined:

cr,., n,. T 1. lntT: crs-Types --) Types

�-ani-T2 RepT: Types 4) crs-Types

and

ors-irl-l i. MIT = RepT *.

The representation function is declared to be partial because on inspection it transpires that there are

many types of activity that are not included in the CRS. This does not tell us much as it stands - we don't

know what sorts of types are or are not represented, just that the representation may be partial. We can
discover more about the nature of the interaction of the specialisation state components by looking at
invariants relating to subsets of the set Types. There are a number of these: HomeTjpes, Unplanned,

d: \jes\dis\wip\phd\phdtext2. doc
184

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Access, and PatReq for a start. Invariants in this area are difficult to find, as the representation of types

and rules over types is much cruder in the CRS than in the domain theory. As a consequence there are no

structural constraints in the former that prevent major changes in what sorts of types the information

system can represent. For example, there are no visit types in the current implementation of the CRS that

allow for the support of telephone calls (or any type in Unplanned). There are no structural properties of

the various programs that have been written that prevent representation of such activity types, however, so

although we might be able to say

(im Intl) crs-Types 0 Unplanned =0

for the particular implementation being planned in the department, this would not provide us with any
deep insight into the nature of the underlying structure of the code of the CRS. The same is not true for

the subset of Types called HomeTypes. There is no facility for activities conducted outside the department

to be represented in the system. For this reason we can say

cri-ani-I 3: (im Intl) crs-Tj p's c HomeTypes

and have actually described an aspect of the intended interpretation of possible values of concepts in the

information system rather than the interpretation of values that it currently has.

What other invariants should we look for? The class TypeClass2 defines the state components Types,

Unplanned, Access, PatReq, HomeTypes and TypeGuide. The Class CRSTypeClassl defines crs-Types

and crs-TypeParent. We should endeavour to find invariants that link as many state components in the

domain theory to ones in the information system theory as we can. So far we have seen interpretation

predicates and declarations that cover Types, crs-Types, and HomeT}pes. crs-TypeParent is intended to be

interpreted as a set of rules that constrain which visit types can include which others - an appropriate

domain state component to use to describe this would thus be TjpeGuide. On investigation it was found

that

ors-int-T 2: IntT 0 crs-TjpeParent 0 RepT c Cod(TypeGuide).

which tells us little more than what we would expect to be the case. Further inspection of the CRS

revealed the invariant

crs-int-I 4: (im IntT) (crs-Tjpes\Don: (crs-TjpeParent)) c Access

which says that any member of crs-Types that has no parents through TjpeParenr' is a representation of

a type in Access.

We have not learned much from the investigation of interaction at type level, partly because the invariants

and rules in the domain theory are much stronger than they are in the information system. We have seen
however, that TypeGuide is a more complex structure than its representation, crs-TjpeParent. We would
therefore expect the activity structures that can be represented and supported to be similarly cruder. That

this is indeed the case is discussed in the next sub-section which describes the interaction between the

operational state components of the information system and the domain.

d: \jes\dis\wip\phd\phdtext2. doc

185

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

11.3.4 The Interaction Theory II: CRSlnteraction2

Having investigated the interaction between the specialisation state components from the domain and
information system theories, we can attend to the operational state components. This we do in the

composite class CRSlnteraction2. The inheritance structure that gives rise to this class is as follows:

Domain Interaction I Information System
Theory I Theory Theory

Other Domain Theory I Other Information System
Classes I Theory Classes

TypeClass2 CRS
TypeClassl

ATClass2 VV CRS
VTClass 1

CRS
, Interaction I

CRS
Interaction2

Figure 3-17: Class inheritance / composition structure for class CRSlnteraction2.

As the reader will probably have guessed by now, the entity crs-Visit is intended to be interpreted as
Activities. Thus we have

crs-ml-T3: IntV: crs- Visit -9 Activities

cr. -i l T4: RepA: Activities -H crs-Visit

and

,, w-t5.1ntV = RepA-

There is an equally obvious interpretation for the entity crs-Pid, that is

irs-ini-TS- /ntP: crs-Pid 3 Patients

c., -ißt-T6. RepP: Patients -H crs-Pid

where

<rs-iM-I c: lntP = Rep'*.

The invariants here are more interesting than in the previous class. We first need to relate the partitions

of Activities to those of crs-Visit:

d: \jes\dis\wi p\phd\phdtext2. dce
186

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

crs-ina-t 8: (im IntV) crs-Complete c; Complete

or crs-Complete is a partial representation of Complete. Again, the reader has probably worked out the
intended interpretation of crs-VisRel which is given by

«s-int-I 9. IntV ° crs-VisRel ° RepA During.

An obvious interaction invariant is

crs-tnt-t 6: Cod(IntV) s Activities\Out.

Only internal activities are represented in the CRS. Were this not the case, then either the interpretation

of the crs-Type associated with the crs-Visit would be a type not in HomeTypes (which has been forbidden

in the earlier interaction class) or we would not be able to interpret crs-VisitType in the manner described

above.

We might expect to see an invariant such as

(im IntV) crs-Proceed C Proceed

in the interaction theory. We saw in Section 11.2 that there is no facility to finish activities that have

children. This means that a specialist nurse care activity might be completed, but the representation of
that activity remains a record in the set crs-Proceed. The invariant relating crs-Proceed and Proceed

would be more complex:

(im IntV) crs-Proceed \ Cod(crs-VisRel) c Proceed

in other words, all records in crs-Proceed that have no children are representations of activities in

Proceed. As it happens, this invariant is excluded also: when a visit record is created, it represents a
member of Proceed, but if that activity is suspended, it becomes a member of Request. There is no facility
for suspending visit records implemented in the CRS, so on suspension of an activity, the visit record
represents a member of Request. The final invariant is

irs-ins-I 7. (im IntV) crs-Proceed \ Cod(crs- VisRel) c Proceed U Request.

The formal interaction theory also covers invariants relating crs-VisPid to ActSubject, and crs-VisitType
to ActTj pe.

The invariants in this interaction class give us a feeling for how the information system represents aspects
of the domain. We can get more of an insight into the interaction between the two if we examine the
operations on the class.

We know that some requests might be represented in the CRS, that these are only those that have been

suspended is recorded through the composition of operations. In particular, the operations in the
composite class that create activities do not invoke any CRS operation. Thus we have the two operations

CRSlnteraction2. InCreate(Ab, p�, t�-4a�)

crs-r�, -I i: ATClass2. In Create(Ab, p,,, t�-4a�)

d: \jes\dis\wip\phd\phdtext2. doc

187

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

, and

CRSInteraction2. Embed(Ao, Ab, tt-3ac)

crs-jet-I'. 2: A TClass2. Embed(Ap, Ab, tc 9a,)

which create an activity in the domain, but do not change the state of the information system. The first

activity that does that is CRSlnteraction2. Start(a) which is given the definition

CRSlnteraction2. Start(a)

crs-int-Pr 4" ATCIass2. Start (a)

.I
Icrs., m. ers: ActType(a) E Dom(RepT)

c. s-inI-Pr6: /ntT ° ((Cod({ RepT(ActType(a))) d crs-TypeParent")) d crs-TypeParent) ° RepT c
ActType ° ((Cod({a)d During)) d During) °ActType'l

crs-mt-R r CRSVTCIass 1. CreVis (RepT(ActT)pe(a)), RepP(ActSubject(a))- *v�)

crs-int-Po i:
(v

, a) e %ntV'

This operation schema says that a Start operation in the interaction theory is synonymous with a Start

operation in the domain theory. However, the Start operation in the information system theory is invoked

only if a number of preconditions are satisfied. Firstly the type of activity a must be represented on the
information system. Secondly, the activity structure of which a is a part must be such that the operation

can be invoked without leading to an inconsistency between the new activity structure and the new

structure of crs-Visit records. The complexity of the second pre-condition reflects the representation of a

graph in the domain theory (During) as a tree in the information system theory (crs-VisRel). The start of

an activity can only be recorded by the information system if the parents of that activity contain one that
is of a type whose representation is the allowed 'TypeParent' of the representation of the activity's type:

and the parents of that second (parent) activity contain one that is of a type whose representation is an

allowed 'TypeParent' of the representation of the second activity's type, and so on.

Once we have limited the applicability of the operation in this way, the postcondition is straightforward,

merely identifying the most 'junior' of the newly created crs-Visit records as representing the commenced

activity. This is only possible because of the nature of the postconditions for the relevant cases in the

. CreVis operation from the information system specification. Each new crs-visit record has one parent

that is of the crs-type given in crs-T)peParent. As long as there is a potential activity for the crs-visit

record to be matched to through IntV (and the pre-condition tells us that there will be), then the invariants

interpreting crs-VisRel and crs-VisitType ensure that there is only one valid state following this operation.
The succinctness of the representation of the postcondition in cases such as this is one of the advantages

of the idea of minimum change for operations (discussed earlier in Section 6.2.9)

d: \jes\dis\wip\phd\phdtext2. doc
188

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Having invoked the Start operation, assuming the precondition are met, we may have created a record in

crs-Visit. If we then invoke the operation . Suspend(a) which is defined

CRSlnteraction 2. Suspend (a)

ors-im-I s: ATClass2. Suspend (a)

we see that a is now a member of Request while its representation (RepA(a)) is a record in crs-Proceed.
This operation is the cause of the complex interpretation invariant crs-int-17 seen above.

There is one further area where the interaction theory is useful, but where the mode of use is more subtle.
This concerns operations which are permitted in the information system but whose interpretations are
forbidden in the domain. We said above that we were not concerned with misuse of the information

system. This is by and large true, but the smaller the scope for misuse we can present to the user, the more

robust the system. We can find these operations by looking for behaviours in the information system alone

that cannot be observed when it is interacting correctly with the domain. An example of this is the

possibility of multiple crs-visit records in the crs-Proceed set with the same crs-type and with the same

parent. To prevent this from occurring there would need to be an invariant of the form

#crs-VisitType ° (crs-VisRel'I > crs-Proceed) = #(crs- VisRel- I> crs-Proceed)

in the specification of the CRS. This means that two clinicians could claim to be seeing the same patient

at the same time in two separate activities of the same type. Assuming that the domain theory is correct

the existence of such a state will be erroneous. Interpretational problems of this sort are discussed in

greater detail below in Section 13.3.

11.4 The Interaction Theory: Conclusion

By looking at the invariants and the operations in the interaction theory, we can get an idea of the scope
of the information system, the operations (in the domain) that it supports and the reasonableness of its
interpretation. The formality of the interaction theory helps in all these areas. We have a better idea now
of which activities are represented in the CRS, and at what stage they become so - as indicated by the
invariants and the four operations described above.

By inspecting the interaction invariants we can get a feel for how reasonable the interpretation of the
information system is. For example the invariant described earlier linking crs-Proceed to the domain:

crs-int-I 7: (im lntV) crs-Proceed \ Cod(crs- VisRel) s Proceed u Request

shows that the interpretation of crs-Proceed is far from straightforward. The desire to create a simpler
invariant and finding it wrong led to the discovery of a discrepancy between the CRS and the domain

theory - namely that there is no facility for completing activities that have children.

Inspection of the operational preconditions tells us the scope of applicability of the information system
operation compared with the domain operation it is supposed to support. For example, in the case of the
start of an activity in the interaction theory, we saw that a complex precondition had to be satisfied before

a similar operation could (validly) be invoked in the information system. This tells us that not only must
the activities be of a given type, but the types of the ancestors of that activity must be of a certain subtle
structure. In practice this means that if the record of a blood test can be created as part of the record of a
doctor consultation, one cannot be created as part of the record of a nurses consultation.
d: \jes\dis\wip\phd\phdtext2. doc

189

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Finally, if we find classes of behaviours that are allowed by the information system specification but

forbidden when composed with the domain theory to form the interaction theory, then we have observed

an increased potential for error. For example the information system permits the representation of an
illegal state where multiple proceeding activities of the same type share a parent.

If a discrepancy is found between the information system and domain theories, we do not have to assume
there is a mistake or deficiency in the information system for two different sorts of reasons.

Firstly the discrepancy might not lie in the information system. The theory of the information system
might be incorrect. The domain theory might itself be wrong (and we will see later an example of a
theorem of the domain theory that was discovered to be refuted only after and because of the development

of the interaction theory). The interpretation of the information system theory into the 'real' domain might
be more reasonable than the interpretation of the domain theory into the domain. The interaction theory
invariants might themselves be inaccurate, that is the interaction theory may have been poorly constructed

- this is a special danger here as the various theory constructions have proceeded without using formal

proof, only informal reasoning over formal structures.

Secondly, even if the discrepancy is a 'genuine' one where the fault lies with the information system, it

might be no concern to the system users that the scope of domain representation is limited or inaccurate.
For example, it has not been a great cause for concern hitherto that the CRS has not represented requests
or bookings. Similarly the lack of a function which enables visits to be interrupted has not given rise to
much complaint. In short, we do not have to insist that the information system is a model of the domain
(or shared perception thereof): the domain theory is niL a statement of system requirements. The

availability of the interaction theory enables debate about future system enhancements to be held in a
more informed manner, however. If problems do arise in the enlargement of the CRS (and they have)

then the interaction theory might be able to point to the cause of the difficulties, and through its
inspection the system developers might gain insight into how the problems should be tackled. Areas

where the domain theory and interaction theory have been of practical use alre: 'dy are discussed in
Section 14.6.

It should be noted that the conceptual structure of the re-designed CRS was carried out in parallel with
the development of the domain theory, and the ideas from this work influenced the new system. If this
had not been the case, the construction of an interaction theory might have been significantly more
difficult: for example, it would be much more difficult to compose a theory of the existing operational

system (written in APL) with the domain theory.

In the next chapter we will investigate further the uses of an interaction system. Specifically we will

consider how it influenced the creation of a specification for a system that integrated the CRS with a
hospital system: the Outpatient Appointment System.

d: \jes\dis\wip\phd\phdtext2. doc
190

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1" Thesis

Chapter 12: DIS1 - An Integrated Appointment and Clinical Record System

12.1 Introduction

In the last chapter we saw the construction of an interaction theory to help examine an existing system.
This helped us understand the functions of the system as well as some of its potential interpretational
shortcomings. However, we can also use such a theory to help us design new systems. This chapter
explores how an interaction theory helped in the creation of one such specification, for an integrated

record system and outpatient appointment system.

The domain analysis revealed several areas that could potentially be supported through the use of

computer technology. These included more realistic representation of patient activity and storage of notes

generated therefrom, the setting up of a clinical electronic mail system that supported internal referral of

patients, a more efficient order communications system that more accurately reflected the way in which
tests are requested and used, and an appointments system that integrated effectively with the running of

the clinic and with other systems in the hospital. From this list the integration of the record system with

the appointment system was given the highest priority. More important still was the construction of a

contract management system: this is not the representation of a current aspect of the domain however,

and so is tangential to the concern of this thesis. It is the representation of a hypothetical domain that

would exist were the directorate to efficiently secure and maintain contracts. Such a hypothetical domain

is described in Appendix 6. This chapter concerns the creation of a system that integrated the CRS with

the hospital's outpatient appointment system.

An appointments system is scheduled to be implemented over the next few months in the hospital. This

will happen in two stages with the outpatient system following the inpatient system. The domain analysis
has concentrated mainly on the outpatient side, and this is where support is needed most urgently for the
directorate (inpatient appointments are currently dealt with centrally).

This chapter is presented in three sections. The first describes the salient features of the proposed

outpatient appointment system through the use of a 'reverse engineered' specification. The second
describes the intended integrated system. The third explains how the use of an interaction theory

influenced the design of the specification of this integrated system.

12.2 A Specification of the Outpatient Appointment System (OPAS)

There is an informal implied domain theory represented by the appointment system. In order to

understand some of the constructions below it would help if we first considered this as it behaves in an

unusual way.

The central concept is the slot which has most of its attributes pre-defined: the clinic it belongs to, the
'stream' in that clinic (several streams will run in the clinic on the same day), its scheduled start and stop
time, the day it is to take place on and so on. The slots are defined several months in advance for a
particular clinic. A booking is made when a patient is assigned to a slot - the identity of the slot a patient
is associated with thus determines when the patient should arrive and what clinic they should attend.

The structure of the specification reflects this underlying conceptual structure. The first class, OPASClock
(OPAS is an acronym standing for Out-Patient Appointment System), describes the representation of time
that is implemented in the appointment system. This is inherited by OPASSIots, the class which describes
the creation of slots. The 'clinical' attributes of slots are described in OPASClinics which composes the

d: \jes\dis\wip\phd\phdtext2. doc
191

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

slot definitions with a number of configuration, or specialisation, state components from the class
OPASConfig. The assignment of patients to slots is dealt with by a refinement of this class called
OPASAppt.

This representation of time by OPAS is based around a sequence of 'day' records, and a sequence of
records corresponding to times of day. The specification reflects this through the definition of two ordered
graphs. The first graph is over the infinite set as-Days and is called as-Precedes_D, the second is over the
finite set as-TofD and is called as-Precedes_T (note that all state components of the DISI system are
denoted by the prefix 'dis-'). The type declarations for these graphs are as follows:

. 8-T 3,: as-Precedes_T as-Tof D -H as-Tof D

and

.. -T4: as-Precedes_D: as-Days --> as-Days

These two graphs are constrained to be directed and acyclic through the use of appropriate invariants.

We insist on the total ordering of these two graphs, or trees, by saying that their inverses are also trees.
Thus we say:

c s-Trr: as-Follows_T: as-TofD -H as-TofD

where

w-i -. as-Precedes-7'1 = as-Follows_T i

and similarly with as-Precedes_D. In fact, both the functions as-Precedes_D and its inverse are total.
This, together with the fact that both structures are also directed acyclic graphs (as specified in invariant

as-I 2), the set as-Days must be infinite. Of course the implementation does not represent the infinite set
explicitly, as to do so would require infinite storage. The set would probably be generated algorithmically,
but this is of no concern to us here. There must be a first and a final time record for each day record so we
say

�x-r r. as-FrrstT, as-LastT: as-TofD.

This class also introduces a function which returns a natural number when applied to a pair from the set
as-TofD. Thus

v-15: as-Duration: as-TofD x as-TofD -H N.

This represents the duration of the interval between the times represented by two as-TofD records. The

mutual constraints between these different state components are expressed through a number of invariants

that we need not go into here, the reader being referred to Appendix 5 for the full specification.

It might be remarked that the use of sequences to express the orderings of the various sets described

would be more elegant and clear. This is probably true, but the use of more sophisticated primitive

structures has been avoided throughout the various theory presentations derived from the project - state

components are sets, relations, or graphs and we see no bags or sequences. The use of such simple basic

structures means that we only need a minimum of set-theoretic operators to construct the desired

description. For this reason we do not need to bother with the definition of such concepts as bag union,
d: \jes\dis\wip\phd\phdtext2. doc

192

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

sequence concatenation, squashing and the like. Whether the resulting description is actually clearer is

questionable, and a reworking of the various theories using more sophisticated primitive structures might
well be profitable.

The class OPASSlots introduces a set called as-Slots and defines attributes of members of this set.
Remember that in the informal domain around on which this system is based, each slot is associated with
a stream, a day, a start time, an end time and a duration. Having defined the representation of time that is

used in the appointment system, we can use the concepts introduced in the earlier class to express the way
in which the OPAS represents these relations and their properties. For example we say that

wT ur. as-SlotStart, as-SlotEnd: as-Slots -i as-TofD

and

as-T i: as-SlotLength: as-Slots 4N

where the value of as-SlotLength is given by the invariant

as-i i i: as-SlotLength = as-Duration ° (as-SlotStart 0 as-SlotEnd).

In other words, that the 'duration' of a particular slot record is the same as the duration returned by the as-
Duration function applied to the start time record associated with the slot record and the associated end
time record.

The stream record provides a method for aggregating members of as-Slots. For a given stream record no
two as-slots can be 'overlapping': if the start time record of an as-slots is 'before' (as defined by as-
Precedes-?) the start time record of another, then so must be the end time. The as-Slots records need not
be contiguous however: this reflects the situation in the domain where there are gaps in the clinic sessions
for lunch breaks, tea breaks and so on.

Operations on the class support the creation and deletion of stream records, and the creation of as-slots
and their assignment to as-streams. This operation is intended to be used once every few months to create
all the slot records needed to support clinic bookings in the immediate future.

OPASConfig describes the specialisation state components that are used to configure the system to a

particular aspect of medical care. Again, referring to the implicit domain theory we see that the set as-
CTjpes represents the type of the clinic to be supported while as-ApptMode represents the set of allowable
modes of session. Two slots of the same mode will have the same duration: the introduction of different

modes allows the support of situations where slots of different lengths are permitted in a single clinic
stream (such as would be the case in an outpatient clinic that saw both new and followup patients).

Members of the set as-CTypes can be associated with members of as-ApptMode through the relation as-
CTypeModes - for example a diabetic clinic might support both new and followup patients while an
inoculation clinic makes no such distinction. Each pair in as-CT)peModes is associated with a number.
This represents the duration of slots associated the clinic type and appointment mode represented by that

pair. This is done through the function as-CModeLength.

This property is expressed in the next class - OPASClinics. This class introduces a number of direct and
indirect attributes of slots. For example each slot is given a mode directly thus:

d: \jes\dis\wi p\phd\phdtext2. doc

193

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

as-I 14: as-SlotMode: as-Slots -) as-ApptMode

whereas the member of as-CTypes associated with a slot can be derived from the construction

as-ClinicType 0 as-Stream Clinic 0 as-SlotStream

where as-ClinicType is the member of as-CTypes associated with a particular clinic record, as-
StreamClinic the clinic record associated with a particular stream record, and as-SlotStream the stream

record associated with a particular slot record. The invariant that determines the 'length' of as-slots is thus

.. -i m ((as-ClinicType 0 as-StreamClinic ° as-SlotStream) 0 as-SlotMode) ° as-SlotLength't c as-
CModeLength-*.

The final class in this 'reverse engineering' of the appointment system is called OPASAppt. This

associates slot records with patient identifiers via the partial function as-Appointments. Additionally a slot
that is associated with a patient through the as-Appointments function may also be associated with an

arrival time record, a start time record and an end time record. The relevant invariants here are

w-i ia: Dom(as-ArrivalTime) Q Dom(as-Appointments),

, s-i i9: Dom(as-StartTime) c Dom(as-ArrivalTime),

and

as-i m: Dom(as-EndTime) s Dom(as-StartTime).

The operations that are pertinent to this class are those that assign patient ids to slot records, update those

assignments and delete them. There is no explicit registration operation - the registration being dealt with

at the same time as the initial booking. The booking of a patient is easily represented using the existing

state components. The preconditions for the operation OPASAppt. BookKnownP(pid, sl) are simply

a-w 29 pid: as-Pid,

. -Poo. sl: as-Slots\Dom(as-Appointment)

which ensures that the slot record is not currently in use by any other appointment record, and

.. FY 31: as-SlotDay(sl) E (im Precedes_D*) 1 as-NowD }

which ensures that the slot record that is being assigned is one that is assigned to the record of some
future day. The operation OPASAppt. PatArrive(sl, t) allocates an arrival time record to the slot record,
OPASApptApptStart(sl) a start time record, and OPASApptApptStart(sl) an end time record. The first

of these operations has the time record provided explicitly as an argument whereas the (records of) times

that are used for the latter two operations are always as-NowT. It is envisaged that the PatArrive

operation might be invoked after the patient has arrived at the clinic, possibly during the consultation, so

the assumption that the appropriate time is always as-NowT is in this case incorrect.

This then is a brief description of the behaviour of the Outpatient Appointment System that is to be

implemented at St Thomas' over the course of the next year. This theory has much in common with the
domain theory in that it is a formal description of a system that already exists and can thus be refuted.

d: \jes\dis\wip\phd\phdtext2. doe
194

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Refutation of the theory is significantly easier in this case as properties can be tested by 'trying them out'
on the information system in question. Before a system such as that proposed in the next section could be

constructed, the validity of the theory, or specification would have to be carefully checked against the

actual appointment system.

A diagram indicating the class structure of the OPAS theory is presented below:

OPASCIock

OPASSIots

OPASConfig

OPASCIinics

OPASAppt

Figure 3-18: The class structure used in the theory of the Outpatient Appointment System (OPAS)
described above.

12.3 A Composition of OPAS with CRS -A Directorate Information System (DIS1)

The purpose of carrying out this 'reverse engineering' to arrive at a specification of the appointment

system is to enable us to integrate it with the existing clinical record system. We want this integration to

support relevant behaviours of the directorate - this is investigated through the interaction theory. The

composite system incorporates both the CRS and the OPAS, and introduces additional state components

and constraints over those. The composite system is a fragment of the eventual integrated directorate

information system, and has thus been called DIS I.

This section describes the specification, or theory, of DISI as a composition of OPAS and CRS. The next

section investigates the way in which it was constructed with the help of an interaction theory. The

sequentiality of presentation is intended to aid the reader by introducing new concepts slowly - it does not

reflect the way in which the work was carried out however. The existence of a domain model influenced

the design implicitly and explicitly. Implicit influence came through an understanding of the domain

theory and a feel for the sort of interaction theory that was desirable. Explicit influence came directly

from the formal interaction theory, developed after the initial DIS specification, but causing subsequent
designs to be changed. The appropriate place for discussions of the nature of the interaction of the

information system with the domain is precisely during the presentation of the interaction theory - this is

after all what the interaction theory is for. It should nevertheless be remembered that the design of the

DIS did not occur independently of the interaction theory - rather the two were developed in parallel.

d: \jes\dis\wip\phd\phdtext2. doc
195

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

There are two classes used to specify the information system DIS1. These are DIS1Types that describes

the specialisation state components, and DISiClassl that describes its operational behaviour. DISiTypes

composes the specialisation classes from each of the OPAS and CRS class groups - namely OPASConfig

and CRSTypeClass. DIS 1 Class 1 composes DIS 1 Types with the most refined operational classes from the
OPAS and CRS class groups - namely OPASAppt and CRSClass4.

DISITypes introduces three subsets of the Set crs-Types. These are dis-Bookable, dis-Accessible and dis-

Unplanned (note that all state components of the DIS I system are denoted by the prefix 'dis-'). These will
be used in DISClassl to segregate the various operations that are responsible for the creation of new
activity records. Only those activity records that are to be associated with a type record in dis-Bookable

may be created via the Book operation, only those that are to be associated with a type record in dis-
Unplanned may be created via the SuddenStart operation, and only those that are to be associated with a
type record in dis-Accessible may be created via the Create operation.

The partial function dis-TypeLink relates the set crs-Types with the set as-CTypeModes which plays a
fairly similar function in the appointment system. Each member of crs-Types can be mapped onto a
member of as-CTypeModes - the reverse is not true as there may be slots that are intendei to run in the

same clinic and take the same amount of time, but are nevertheless different sorts of medical activities. As

we shall see, all the visit records (actually now activity records) that are of types in the domain of this
function might have been created through the Book operation: consequently we need the invariant

dii-T 2: Dom(dis-TjpeLink) = dis-Bookable

which ensures that any activity record that can be associated with a slot is of a type that can be created via
the Book operation.

Note that all the state components are subsets of and structures over existing state components (we have

not had to use any carrier sets). The scope of the system is the same at the specialisation level as the

scopes of the CRS and the OPAS. This is not true of the operational integration class DISIClass I.

DISIClassl introduces dis-Activities, dis-Request and dis-Clist, all of which are defined in terms of a

carrier set. For example we have

ass-T3: dis-Activities, dis-Request: Set[crs-V].

The set crs-V has been seen before in the class CRSClassl as the carrier set for crs- Visit. What this means
is that the set dis-Activities is of the same data type as the set crs-Visit, but not necessarily containing the

same records. That the sets crs-Visit and dis-Activities are of the same data type means that such

expressions as dis-Request n crs-Visit and dis-Activities \ crs-Complete are valid, that is they have are

well formed within the particular version of set theory that we are using. In fact this class introduces the

invariant

a,. -is: dis-Request = dis-Activities \ crs- Visit

which says that dis-Activities iF partitioned into dis-Request and crs-Visit (which is itself partitioned into

crs-Proceed and crs-Complete).

d: \jes\dis\wip\phd\phdtext2. doc
196

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Any activity records that are not present in crs-Visit will not have types via crs-VisitType or associated
patient identifiers via crs-VisPid. The specification of the functions dis-ActSubject and dis-ActType

redresses this shortcoming thus:

di -T 6': dis-ActSubject: dis-Activities -) crs-Pid

and

ass-T6': dis-ActType: dis-Activities 9 crs-Types

(the next section illustrates further the value of such an introduction). These functions are supersets of

corresponding functions found in the specification of the CRS - in fact if all records in the set dis-

Requests are removed from the domain of dis-ActType (or dis-ActSubject) we are left precisely with crs-
VisitType (or crs-VisPid):

dis-Request 14 dis-ActType = crs-VisitType

and

dis-Request 14 dis-ActSubject = crs-VisPid

(these expressions can be derived from dis-T 6, dis-I 5, and dis-I 6).

Another state component introduced that is not a derivation of an existing one is the clinic list:

dis-T5: Clint: Set[dis-CI].

This set allows stream records to be aggregated. A clinic list is represented as a sequence of stream

records associated with different as-days (remember that each stream record is associated with a particular

day record via as-StreamDay, and that all slot records asso, iated with that stream record are also

associated with that stream's day). The way we achieve this aggregation is through the function dis-

StreamClist.

di&-T8: dis-StreamClist: as-Streams -i dis-Clist

and the invariant

dis-I 14: (dis-StreamClist 0 as-StreamDay)-I E (dis-Clist x as-Day 4) as-Stream)

which says that for any Clist record, every stream record associated with it is assigned a different day

record through as-StreamDay.

If we are to integrate the OPAS and the CRS, we need to specify some state components and invariants

that link and mutually constrain the two theories. Without such mutual constraint the composite

specification would consist of two orthogonal parts that were totally un-integrated. Examples of state

components linking the two concepts are dis-ActSlot which indicates which activity record a particular
slot record might apply to:

a�-1 r: dis-ActSlot: dis-Activities -H as-Slots,

and dis-Pidas which ties the patient register in the CRS to that in the OPAS:

d: \jes\dis\wi p\phd\phdtext2. doc

197

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

dis-I r: dis-Pidas: crs-Pid 4) as-Pid.

In the case of dis-ActSlot, we have the invariant

da-I 12: dis-ActSlot-1 E Dom(as-Appointments) -4 dis-Activities

which insists that every slot that is associated with a patient id through as-Appointments has an activity
record linked to it via dis-ActSlot. The existence of these state components enable us to place powerful
mutual constraints on the two systems as a result of the composition. For example, we cannot now invoke
the operation which records a booking for a patient without having assigned that patient id to an activity
record. Furthermore, the invariant

dis-i iS: (im dis-ActType) Dom(dis-ActSlot) c dis-Bookable

specifies that each of these activity records must be of a type in dis-Bookable. The possible states of one
system are thus severely constrained by the states of another. This is precisely what we mean when we
talk about system integration. If the CRS and OPAS were not at all integrated, the composite class would
be empty of mutual constraints, and the 'state space' of the new system would be the product of the state
spaces of those systems that comprise it (multiplied by the state space implied by any state components
introduced in the new class). As it is the state space is constrained by every invariant - each of which
describes a manner in which one system interferes with another. A similar argument could be made for

the space of possible behaviour traces before and after mutual constraints have been introduced.

In addition to the types of invariants described above, we can introduce some that place constraints on
state variables that come entirely from one of the component subsystems. These are introduced to

constrain operations that were not described in the components classes or simply to add semantics that

were left out of the earlier system design. An example of such an invariant is

, is-I21: #(crs-Proceed 4 crs-VisPid) = #(crs-Proceed d crs-VisPid) 0 crs-VisitTjped

which constrains values of state components all of which are specified in the CRS system. The reason for

the introduction of this predicate is explained in the next section.

If we investigate the operations supported by this class, we see that some totally new, some are
refinements of a single operation from an earlier class, and others are compositions of several operations
from the component classes (with additional pre-conditions).

An example of an operation that is totally new is that which is responsible for creating new activity

records and placing them in the set dis-Request. This is

DIS 1 Class 1. Generate(tc, pid-*a,)

taking as its arguments a patient id and an element of the set crs-Types, and returning a new activity

record as a member of dis-Request. Because the relation crs-TypeParent is a tree, and because of the

invariant that says that an activity record cannot have two 'child' records in dis-Request (through dis-

VisRel) that are of the same type, we know what types of activity record must exist and be related to the

new record through dis-VisRel, although we may not know the 'names' of these activity records. These

activity records that are the 'ancestors' of the new record through dis-VisRel may or may not exist before

the operation. Some of the preconditions thus set up a set of activity records that do not yet exist and are

to be in the relation dis-VisRel+ with the new record after the operation (this may of course be the null

d: \jes\di s\wi p\phd\phdtext2. doe
198

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

set). For the operation to be invoked, there must be at least one activity record that exists, is not complete,

and could act as an ancestor of the new activity record through dis-VisRel. Thus, in any model of the

specification, any Generate operation must be preceded an appropriate Create.

The postcondition that ensures that the new activity records have the right type and are in the right

relation with each other is

di -Po 6: ActType' ° ({ a,, ap }u A� 4 crs-VisRel' D{a,, aa }u A�) ° ActTy pe'-1 s crs-TjpeParent

where a, is the new record, a,, is the nearest possible parent activity record, and A� the set of new activity

records (other than ar). We saw similar postconditions in the operations that create and embed new visit

records in the CRS specification (. EmbinNew and .
EmbInOld).

An example of an operation that is a refinement of only one from an earlier class is that which is

responsible for creating an appointment record:

DIS1Class 1. Book(tt, pid, c, d, tib >a,, s).

This is similar in many ways to the Generate operation as it creates a record in dis-Request and embeds

it appropriate parent records. Because the operation is similar, it is constrained by many of the same

preconditions as the operation described above. However, in this case we want to create a booking at the

same time. There are two operations that do this in the final class in the OPAS group:

OPASAppt. BookKnownP(pid, sl)

and

OPASAppt. BookUnknownP(sl-4pid).

The operation Book in the DISClass1 class decides which of these two operations to invoke by

introducing conditions into the predicates that 'contain' them. OPASAppt. BookKnownP is only invoked if

the patient id that the activity record is associated with is represented in the appointment system's own

register: if not, then OPASAppt. BookUnknownP is invoked. During the operation a slot record is

assigned to an appointment record: afterwards, we may need to update the link between the appointment

system's register and that of the CRS. Following the operation described here, the pair (pid, aspid) will

certainly be in dis-Pidas, the relation that links the two registers: this does not preclude the possibility
that the pair was in the relation before the operation as well. If we have booked an appointment for a

patient id in the OPAS' register, then aspid is known before the operation is invoked, and there is no

change to dis-Pidas. If the patient id is not in OPAS' register, then we invoke the second booking

operation which returns aspid. The way we achieve all this is to define two predicates in the precondition

of DIS1Classl. Book to be:

dis. Pr22: pid e Doni(dis-Pidas) = aspid = dis-Pidas(pid) A OPASAppt. BookKnownP(dis-Pidas(pid), s)

and

ais. PT23: pid 0 Dom(dis-Pidas) = OPASAppt. BookUnknownP(s-)aspid)

with a postcondition

dis-Po 15: (pid, aspid) e dis-Pidas'.

d: \jes\dis\wip\phd\phdtext2. doc
199

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

An example of an operation that is the composition of several others is the one that is invoked to move the

activity record into the set crs-Proceed - that is:

DIS1Class l. Start(a) where a is a known record in dis-Request.

We have already seen an operation that puts an activity into crs-Proceed: it was introduced in the CRS

group of classes and was called CreVis. The latest refinement of this operation that we are interested in

is:

CRSVTClassl. CreVis(t, pid-->v�).

In the case of the operation in the composite class, we already know the 'name' of the activity record - it is

already a member of dis-Request. The purpose of the operation is to take this record and move it to the set

crs-Proceed. We do not want the 'type' of the record, nor the patient identifier to which it is associated,

nor even the identifier of the record itself, to be changed by the operation. For this reason we must be

careful to pass it the right arguments. The 'type' of the record before the operation is dis-ActType(a); that

after the operation is the type passed to CreVis as the first argument. If the type record that the activity

record is associated with is not to change, then we must be sure that this first argument is dis-ActType(a).

A similar presentation could be made for the second argument of CreVis which must be dis-

ActSubject(a). Finally, we already know the identifier of the record we are talking about, and we want to

make sure that the properties of this activity stay associated with this activity and not given
indeterminately to another, and that it is this activity that is moved to crs-Visit and not any others.
Because of these requirements, the operation inherited from CRSVTClassl is

ai5-P. $: CRS VTCIassl. CreVis(dis-ActTjpe(a), dis-ActSubject(a)-*a).

By invoking this operation, we have moved a from dis-Request to crs-Proceed. Any 'parent' activity

records that a might have had are also moved to crs-Proceed. We know this must be so as a can only have

one parent, one 'grand parent', one 'great-grandparent' and so on. CRSVTCIass1. CreVis(t, pid-4v.)

returns v� with all of its 'ancestor' visit records in crs-Proceed - the structure is not changed by invoking

the operation, only the status of the activity record a and its ancestors.

The other operation that is inherited here is OPASApptApptStart(sl). This puts a time stamp on the slot
record, indicating the time of commencement. Not all activity records are associated with slot records and

vice-versa, The form of the predicate which invokes this operation is thus

d. -N ac: ae Dom(ActSlot) = OPASApptApptStart(ActSlot(a)).

We might have just as well chosen to represent the pre and postconditions of this operation without

referring to these other classes at all. After all, the purpose of a specification is to present to the reader the

precise behavioural properties (within certain constraints of scope) of the system being specified as

clearly as possible. In this case we are specifying the behaviour of a sub-component of the Directorate

Information System: there is surely an easier and clearer way to present this behaviour, maybe by defining

more 'logical' sub-classes to act as the building blocks of the DIS1Classl system description? Surely by

using 'reverse engineered' descriptions of existing systems as our sub-classes we are forcing ourselves to

be unnecessarily constrained by the idiosyncrasies of these earlier systems that were not designed with

integration along the lines suggested in mind? This is all certainly true, and the description of behaviour

presented here is not the clearest and simplest possible. It does, however, enable us to see how we might

set about implementing a system such as that described in DISlClassl in terms of the information

d: \jes\dis\wip\phd\phdtext2. doc
200

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

systems that we already have. In other words, the reason the description in DIS1Classl is so complex is

that it not only describes (in an abstract way) what the system is to do, but also how (in an abstract way) it

might be designed out of existing information systems. It is in this sense that we can say that the

specification supports systems integration.

In the next section we will see how the integrated system described here was influenced by the existence
of an interaction theory, and consider the way in which we can use such a theory to refine the

specification.

12.4 Using An Interaction Theory to Develop an Information System

12.4.1 Introduction

The astute reader should find no great difficulty in getting an idea for the intended 'interpretation' of state
components in the specification of the first phase of the DIS. Calling a state component dis-Activities

immediately tempts us to imagine that this would be designed to represent those quantities in the domain

that are called Ac'ivities in the domain theory: indeed, for the designer of the specification to intend

otherwise could be considered mischievous and misleading. The interpretation derived from the names of
the state components in this way is informal, probably ambiguous, possibly misleading and certainly not

entirely accurate. It is only through the construction of a formal interaction theory that we can gain a

proper insight into the role the information system will play in the organisation that has been modelled.
Because of this we should endeavour to think of the state components of the information system

specification as quantities incorporated within a computer or computers, and it is for this reason that the
last section talked of activity records rather than activities.

We have already seen how an interaction theory might be constructed and what it means in Section 11.3.

A similar interaction theory has been constructed for the DIS system that was described in the previous

section. This is presented in its entirety in Appendix 5. The purpose of this section is not to describe the
interaction theory in detail - little would be gained through the completion of this task that has not

already been achieved in previous sections (though in a presentation of the specifications to a client, this

sort of detailed description might well be required). Rather the author would like to show how the
interaction theory was used to guide the development of the specification of the information system -
DISI - described above.

Before we explore the relation between interaction theory construction and information system

specification, a brief discussion of the new techniques that were used in the formal presentation of the
interaction theory should be presented.

Firstly, the interaction theory described in the class DIS I Interaction introduces names for state variables

of the domain that are supported, or rather represented, by the information system. Thus we have SupAct

which is the subset of Activities that is represented in the DISI system. We define this using the

assignment

arg-iota 14: SupAct = Dom(RepA).

We can also give names to subsets of these supported quantities which play a distinctive role in the
behaviour of models of the interaction theory. Thus FullRepTypes is the subset of SupT)pes that

enumerates a set of types, proceeding activities of which must be supported by the information system.

d: \jes\dis\wip\phd\phdtext2. doc

201

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The assigning of names to these subsets of domain state components makes it easier to describe some of
the properties of the interaction theory, and more importantly helps us to understand it.

The interaction theory describes some operations that are not composed of information system operations

even though such a composition would be meaningful. This enables us to describe the situation where
information system support is available, but is not used for a legitimate reason. For example there are two

similar operations in the interaction theory called DIS1Interaction. NonRecGenerate and
DISIInteraction. RecGenerate. These both invoke the domain operation ATClass5. Generate to create a
new activity and embed it in existing ones - they differ in whether the operation DIS1Class l. Generate in

the information system specification is invoked. The first operation whose name stands for Non-Recorded
Generate can be invoked whenever the corresponding domain operation can be invoked and where such
an invocation does not effect the state of the information system. The second operation whose name
stands for Recorded Generate invokes the pertinent operations from both the domain and from the
information system, but only when the type of the new activity is supported (ie it is a member of
SupTypes). Thus the circumstance where a referral to another health care professional within the DDC is

requested but not recorded as such on the information system can be represented.

As mentioned above, we want to be able to represent the legitimate non recording of an operation that
changes the state of the domain, but not the illegitimate use. For example, when an activity of a type that
is in FullRepTypes is started, we intend it to be accompanied by a corresponding operation to 'start' a
representation of that activity in the information system. For this reason the precondition

dis-inl-P 39: ActTjpe(a) o FullRepTjpes

is incorporated into the schema for the operation DIS1lnteraction. NonRecStart(a). This precondition
represents an intended use of the information system - to record the start of every activity of a type in
FullRepT}apes. Of course there is no mechanism available to us that can ensure that the system is used in
the manner intended - indeed whenever it is used with 'dummy data' such as during testing it will not be
being used in this way - but we are primarily interested in the information system's use rather than its

misuse. An example in the DDC is the First Doctor Consultation. It is intended that whenever a patient
sees a doctor for an initial consultation, the patient's details should be entered into the computer - the
number of such consultation records should thus be equal to the 'number' in the domain. The system is not
always used like this however, and some doctors might not bother to enter the patient's details at all,
preferring to use paper notes alone. There is nothing that can be done about this, short of encouraging all
the users of the system to use it in the manner for which it was designedxviii

One, perhaps unrealistic, decision that was taken concerning the interaction theory was to represent the

record of a domain state change as happening at the same time as the change being recorded. Information

systems are often not used like this. For example many GP systems record details of patient encounters,

yet there is no terminal in the consultation room. This is because the doctor writes down the observations

made during the consultation in the patient's (paper) notes, and a clerk is employed to enter the new
details for all of the day's consultations recorded in the notes onto the computer system at the end of the
day.

Such delayed representation of the domain brings problems that an interaction theory would help explore
(many of the temporal invariants in the information system would have to be relaxed for example).

xv'u It should be said here that there is evidence to suggest that users are more willing to enter the data required of them if they know that
others do and that they will benefit from it.
d: \jes\dis\wip\phd\phdtext2. doc

202

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

However, this thesis has not explored these issues. The formal interaction theory is already a complex
entity: the introduction of delayed representation would add a further dimension of difficulty obscuring
the lessons learned from the process of constructing and using such a thing. For this reason dissociated
domain and information system operations are not described in either of the interaction theories presented
in the thesis.

The interaction theory is assembled out of three classes - Clocklnteraction, DISITypelnteraction and
DIS]Interaction. The way these are composed together and with classes form the domain theory and IS

theory is given below in figure 3-19.

Figure 3-19: Illustration of class structure of interaction theory.

Classes from the domain theory are on the left hand side of the diagram, those from the information

system specification are on the right hand side of the diagram, and those that comprise the interaction

theory are in the middle of the diagram, distinguished by double borders.

Remember that DISiClassl is itself a composition of classes from two earlier theories - the specification

of the OPAS and the specification of the CRS. The class which indicates how the proposed DIS is to
interact operationally with the domain is the final one: DIS I Interaction.

12.4.2 Four motives to guide development

The ideas and thoughts guiding the development of the information system have been grouped into four

sections each of which motivates the decisions taken. Each of these motives is covered in more detail

below with the help of examples from the interaction theory we are currently discussing. The four motives

are:

" The scope of the information system, as expressed in the interaction theory, should be expanded to

cover more of the domain behaviour.

d: \jes\dis\wip\phd\phdtext2. doc

203

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

" Each state and behaviour of the information system should have only one interpretation into that part

of the domain that is supported by the information system.

" The information system should be specified such that non-sensical operations are prevented as far as
possible.

" The information system should not place restrictions on the domain: we should not find that certain
operations that were permissible in the domain are prevented through the introduction of the
information system.

In all of these motives, we are trying to increase the amount that the information system says about the

world. As we saw, we need to make certain assumptions to construct the interaction theory. The
interaction theory describes (one possibility of) how the information system will be used, and how it will
be interpreted. It must be remembered that it is only within this understanding of how the information

system will be used that we can investigate how a better interaction theory might be constructed by

changing some of the properties of the information system. If the interaction thf ory describes a use to

which the information system will not be put, then the new information system will not be an
improvement at all.

Of course, all of these motives can be entirely fulfilled if the information system is a complete and total
representation of the domain. Although the information system could never be a complete representation
of the enterprise, we could create one that is a complete representation of the domain theory, which is our
best formal description of the 'reality'. In many cases, even this is undesirable. There are many factors that
can argue against full and complete representation. The larger the scope of the information system, the
more data has to be entered into it to keep the representation accurate and current. This increase in data
input presents the user with a greater workload which generally is not wanted. The increase can only be
justified if it is necessary to support required system services. What this means is that expansion of the
scope of the information system should only occur in areas where support has been requested or is

required. In the case of the DISI system, we have not represented the name and type of the clinician
invoking the operations as this has not yet been requested. Not only might the domain theory have a
larger scope than the information system specification, but it might also be more complex. The greater the
complexity of an information system, the greater the potential for error. This error might come about in a
number of ways: the implementation of the information system is less likely to be a correct model of the
specification, errors in the specification are more likely (though these errors would also be present in our
domain theory, which we can never be entirely confident about), and greater difficulty in understanding
the underlying semantic model might be presented to the user increasing the chance of misuse of the
system. Most of these potentials for error can be reduced by the judicious use of formal methods (the

power of which has only partly been exploited by the approach recorded in this thesis), but it would be

naive to imagine that any of them can be entirely prevented [Goguen90a].

There are a number of other reasons why we might not want close conformity with the domain theory.
Firstly, for some of the functions computerised support is not required, and providing it will get in the

way. For example, if a patient turns up in the clinic with acute hypoglycaemia, she needs to be stabilised
before going into a coma, not recorded on the information system. Secondly there is the need for

simplicity to ease the task of system construction and maintenance: the more complex the specification,
the more difficult it is to create a computer system that will perform the functions required of it.
Simplicity itself is not the only influence on the difficulty of system construction and maintenance: the

ease with which the information system can be constructed from existing technical artefacts will have a

d: \jes\dis\wip\phd\phdtext2. doc
204

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

direct bearing on the size of the implementation task. These technical artefacts might be the primitive
data structures of the implementation vehicle (in this case a relational database and 4GL application
description language which readily supports different structures than does, for example, LISP) or legacy

computer systems that are to be integrated.

We have seen that there are a number of reasons for the general desire for simplicity in the design of the
information system. This has to be balanced by the desire to represent some useful aspects of the domain

and to demonstrate conformity with the domain (or at least its descriptive theory) on interpretation. There

are a number of ways in which conformity with the domain theory is especially important - these are the
four developmental motives which urge us away from simplicity towards 'realism'. The rest of this section
will explore the developmental motives listed above in greater detail, with reference to the class
DISIInteraction of the interaction theory.

It should be said before we consider each of these motives in more detail that the business of designing an
information system is extremely subtle and complex. That something similar to the interaction theory
described can be of help in this process seems clear to the author. Exactly how such a thing should be

used is less clear. For this reason the developmental motives represent somewhat artificial categories. We

shall see in the last part of the thesis that each of these motives has a theoretical counterpart in computer

science where we compare each with an obligation associated with specification reification. In spite of
this, the distinction between one motive and another is often not as clear as it would seem from the

presentation. Indeed, the same decision might be taken as a result of a number of motives. This is not a

problem - we are looking not for categorical neatness in the following discussion, but rather an
illumination of how the interaction theory might be beneficially used to tame the enormous difficulty of
information system design.

12.4.3 Expansion of scope

This motive encourages us to expand the behaviour space of the specification of the information system to

represent a greater area of the behaviour space of the domain theory. This motive is tempered by a desire

to have the information system as simple and compact as possible. In general, the greater the degree

representation of the domain, the more 'realistic' is the information system, and the greater the degree of

support it can provide to the organisation.

The scope of the information system should be expanded in terms of number of state components, number

of operations, and the extent of each state component (in terms of the fraction of the domain state

component that is represented in the information system). If we look at the interaction theory as it appears
in Appendix 5, we can see where this expansion of scope has taken place.

First of all, let us see where it was decided to increase the number of state components. Most of the state

components of DISiClassi are predetermined by the existing OPAS and CRS systems. Where these state

components are to be interpreted as the same domain variable, new functions are defined. Examples of
this are: dis-ActSlot which relates some crs-Visit records with a subset of slots (as well as some dis-

Request records - the actual type declaration being

oig-i7: dis-ActS! ot: dis-Activities -H as-Slots);

and dis-Pidas which matches the register in the OPAS with that in the CRS. These do not really represent
an increase in scope: they exist to mutually constrain the component systems in a realistic manner -
something that is discussed further in Section 12.3.5. Two totally new state components have been

d: \jes\dis\wip\phd\phdtext2. doc

205

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

introduced that genuinely do increase the system's scope: these are dis-Request, which is of the same type

as crs-Visit, and dis-Clist, which is of a totally new type. These expansions are not always as simple as we

might think however, as the interaction theory tells us.

Consider first the state component dis-Clist. This is defined in the DIS I information system specification

as an aggregation of the set as-Streams. This definition was created in such a way that the entity is

capable of representing the concept of clinic list that was discovered in the domain. This is the intended

interpretation of this state component and the interaction theory says as much. The concept of clinic list

has a bearing on the behaviour of slots in the domain. As such it is central to the behaviour of the area of
the domain we are endeavouring to support with the proposed DISI, and represents not only a genuine
but also a useful expansion of the scope of the information system.

The state component dis-Request also represents a genuine expansion of scope, but is slightly more subtle
than in the case of the introduction of dis-Clist. We might assume that this straightforwardly represents a
state component that has not previously been supported - that is Request. The situation is slightly more
complex than this as inspection of the interaction theory tells us. Now we know tl at all complete visit (or

activity) records represent complete activities in the domain from the invariant

a�-ißt-I 22: SupAct n Complete \ (im IntA) Cod(dis-VisRel) = (im IntA) crs-Complete

from which we can trivially deduce

(im IntA) crs-Complete c Complete

(remember that the way in which we constructed the interaction theory was to form the most 'logical'

interpretation and then relax it by the minimum amount to fit in with the other invariants and operations -
this is how this and the other invariants here were formed). The entity crs-Proceed cannot be interpreted

so clearly however, and the most constrained invariant we can construct tells us only that

di -im-I21: SupAct n Proceed \ (im IntA) Cod(dis-VisRel) c (im IntA) crs-Proceed

which is similar to the equivalent invariant in the CRS interaction theory. What this means is that the

start of any activity represented by a 'childless' activity record is itself recorded. There might be other

activities that have started that are not recorded (even if they are represented activities -a parent activity

might well start and not be represented as such), and there might be childless supported activities that are

not in Proceed that are nevertheless represented as members of the set crs-Proceed (these will be

activities that have been suspended in the domain). What benefit do we gain by introducing the new

element dis-Request: that is, how does it expand the interpretational scope of the information system? We

will see later on that such an introduction reduces the ambiguity of the information system. But it also

genuinely helps to increase the information system's scope. Although inspection of the invariants of the

interaction theory does not show how the interpretation of dis-Request differs from that of crs-Proceed, if

we look at the operation schemas of the theory, we see that the only time a record in crs-Proceed

represents an activity in Request is when that activity has been started and then suspended. Thus the set
dis-Request can represent some part of the domain that was before totally unsupported - namely requests

that have never been started.

There are other state components in the domain theory that we have not represented in the DISI system.
If we look at the final domain theory class - ATClass7 - there are the state components Followups.

Records, RecSource and others, none of which is represented in the information system. Earlier in the

d: \jes\dis\wip\phd\phdtext2. doc
206

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

theory we were introduced to In and Out subsets of Activities, and to clinicians and other health care

professionals represented by the set HCP: again, these are not represented in the DIS I system. These

other sets and relations may be useful at some future date, but they do not add greatly to the immediate

concern which is to integrate the appointment system with the clinical record system. It is because of this

that, by virtue of our desire to avoid any unnecessary complexity, these state components have been

excluded. To this end, the interaction theory inherits the earlier class ATClass5 from the domain theory,

and even then some of its state components do not have their properties refined in any way as in the case

of HCP.

We can also see an expansion in scope in terms of the operations supported by the information system

DISI. Examples of explicit operations that are not supported by either the CRS or OPAS systems are

.
Create, Generate, SuddenStart, and Schedule. We can see by inspecting the interaction theory that

each of these operations should be interpreted as its namesake in the domain theory. The operations

DIS1Class1. Create, and DIS1Class l. Generate are not strictly necessary inasmuch as the behaviours of

the domain that are of immediate interest to us (those that directly affect the recording of the medical

details associated with activities, and those that affect the booking of some of those medical activities) can

be understood without recourse to their use. However, the added behavioural richness obtained through

the use of the new operations means that we can not only represent the processes we are directly

concerned with, but some of the behavioural context within which these are observed. For example the

existence of the Generate operation enables us to support the creation of requests that are not to be

booked for a particular time (at least not yet). Although we do not need to describe this operation to

represent booking, its existence lends a greater degree of completeness to the semantics of that part of the

information system that covers appointments. The Schedule operation is necessary as a result of the

introduction of the Generate operation - if we did not have the latter, the Schedule operation in the

interaction theory could always invoke the Book operation in the information system.

The third area where we can increase scope is in the coverage of particular state components or

operations. For example, we might try to increase the applicability of those operations that create or start

activity records in the information system. We could do this by introducing new structures over types and

relations over activities so that the limitation on the activity record creation operations is reduced. This

would entail effectively recreating dis-VisRel as a graph and crs-TypeParent as a structure similar in form

to TypeGuide (we could not recreate what already exists in the CRS, but the addition of extra state

components such as those described and their appropriate linking with the CRS components would have a

similar effect). This would certainly expand the possible scope of the operations but would vastly increase

the complexity of the information system as well as the data input burden of the operator. It is doubtful

that the extra value introduced through the creation of these new constructs outweighs the extra

complexity of design and use, at least for the time being.

Of course, the decisions involved in choosing whether and where to expand the scope of the information

system are entirely subjective, and the criteria used for selecting which additional domain behaviours

should be supported verge on the aesthetic. The first motive for development tells us that expansion of

semantic scope is generally good in that it increases the amount and richness of information that can be

derived from the system. In which cases this motive overrides the counter argument that the information

system should be kept as simple as possible in use and structure is open to question, and should be

resolved through debate with the users. The interaction theory helps us decide what behaviours there are
to be supported, and how that support might be designed.

d: \jes\dis\wip\phd\phdtext2. doc

207

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

12.4.4 Functionality of interpretation

This motive ensures that we always understand what any state of the information system seeks to

represent in terms of the domain, and similarly what change in the domain any information system

operation portrays. The insistence of interpretation of state means that it must be possible to create a total

function from any representative state component in the information system to a state component in the

domain. We are interested in the representative state components inasmuch as there will be some aspects

of the state of the information system that have no bearing on the state of the domain: the set of windows

currently open on one workstation, the identity of the button most recently depressed on another

workstation, the relation between the identity of users and their passwords and so on. Thus not all
information system state components are intended to be interpreted into the domain: still other state

components may be only partially so interpretable. Where a state component is partially interpretable, we

should be sure that we can determine which members are to be interpreted, and under what

circumstances. The same desire for interpretability of individual state components should be extended to

the representative state as a whole - thus the entire state of the information system should, as far as

possible, be capable of being interpreted as one state of the domain. Although we cannot always ensure

this functionality of interpretation and still have the simplicity of design we are simultaneously seeking, it

is nevertheless a 'motive' for the development of the system specification.

The desire for functionality pervades the design of the system. Specifically we need to be sure that all the
interpretation functions can in fact be functional. This necessitates obvious conformities with the domain

theory. For example, the creation of a patient in the information system must be accompanied by the

creation of one in the domain, and not several. Suppose that an existing patient id were reused when a
patient was registered with the system. If this happened then we could not in general determine which
patient a record in the register referred to. Although this example seems so trivial as to be not worth
considering, the hospital does re-allocate patient record identifiers in this way if a registered patient does

not attend the hospital at any timexix.

Not only must we be sure that each defined interpretation function is in fact functional, but interpretations

of compositions of state components must be as unambiguous as we can reasonably make them. Thus

even if all state components can be interpreted functionally, the state of the overall system might be

considered to represent any of a number of domain states. Clearly there will always be many possible
interpretations of a given information system state not least because many domain state components are

not represented, and so can be imagined to take any values. The desire to reduce the un-represented part

of the domain was covered by the previous developmental motive. Even when a state component is

represented and the state component that is that representation can be interpreted functionally there will

still be scope for ambiguity in interpretation of the composite state. Two properties of DIS1 are described

below which were introduced to strengthen the system's interpretational functionality, and reduce the

scope for interpretational ambiguity of this kind. The first of these properties is that which constrains the

relation between the entities as-Slots and dis-Activities, the second the more specific representation of the

domain provided by dis-Request.

Inspection of the specification for the integrated DIS I reveals not only the type declaration

dis-T7: dis-ActSlot: dis-Activities 4 as-Slots

but also the invariant

xix This is not as ridiculous as it sounds and is a policy introduced to conserve the pre-printed patient stationery used by the hospital.

d: \jes\dis\wip\phd\phdtext2. doc
208

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

dig-i 12: dis-ActSlorl E Dom(as-Appointments) --i dis-Activities.

This tells us that every slot record to which a patient id has been allocated is associated with precisely one

member of the set dis-Activities. Why was it necessary to specify this invariant? Let us consider the

situation were we to not have insisted on this constraint. Consider the booking operation. This would

allocate a patient id to a slot record, and would create a new activity record. The operation is clear and its

interpretation can be functional. As the specification stands, immediately following the operation the slot

record must be related to (only) that activity record through dis-ActSlot. Without the invariant this

relation need not be thus set up: of course we can always insist that such a pair were created but this

would specify the same behaviour as might be observed with the invariant, which we have assumed is not

necessarily being obeyed.

Immediately after the operation, assuming that the dis-ActSlot relation has not been augmented, we lose

all knowledge of the relation between the activity and slot records. The user of the system would have no

way of linking the newly created activity with the slot. Observing the information system, there would be

a number of equally valid interpretations that could be made. For a giN en slot record we might be able to
find a number of possible activities that should be started at that time. Constructing the interaction theory

with this reduced version of the information system, we can still make a number of deductions. The

activity that the appointment slot record refers to must have the interpreted patient id as its subject, it

must be in Request, and it must be of a bookable type. Other than that we cannot assume anything about

the activity. There might be a number of activity records in the information system that fulfil these

criteria, and any one of them might be the one that the appointment record concerns. In short, there are a

number of interpretations that could possibly be made of the state of the information system, one for each

pairing of the interpreted slot record with a valid (represented) activity.

The only way of recording which slot relates to which activity would be to write it on a piece of paper: not

a useful suggestion when we are talking about the design of a future automated information system. Even

if such redress were taken, the same problem would be encountered when the activity started. As the

information system doesn't record which is the associated slot record, and it is to this latter entity that the

time (that the Start operation is invoked) is attached, the user could, after the operation, only derive a

similarly ambiguous understanding of the start time of the activity. In short there is no way of

determining (from the information system) with certainty the start time of any activities.

There are thus several problems relating to this ambiguity of interpretation. We don't know when a

booked appointment is to start: we can send a letter to a patient requesting them to attend the clinic on a

specific day, but could not then (in general) decide which clinical encounter they had arrived for.

Similarly in future we could not determine when the activity had started, and when it had finished. All

these problems are solved by insisting on an invariant over the integrated system of the form

dis-I 12. dis-ActSlot'l E Domas-Appointments) -3 dis-Activities.

Now, when we book a patient in for a particular clinical activity, the identity of that activity is recorded in

the information system. When we start the activity, we can ensure in the information system that the slot

starts at the same time. The start and finish times of a given (booked) activity can thus be recorded. These

latter observations are recorded in the two interaction invariants

d: \jes\dis\wip\phd\phdtext2. doc

209

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume t: Thesis

dis-iii-I 29: as-StartTime s RepTime ° (SupSlot d (ActStart ° ActSlor 1)) 0 IntSlot

and

des-im-I; n: as-EndTime c RepTime ° (SupSlot d (ActEnd ° ActSlor l)) ° IntSlot

which say that the start and end times associated with slot records can be functionally interpreted as start
and end times of activities.

A similar (though less interesting) argument to the above can be presented justifying the linkage of the
two patient registers crs-Pid and as-Pid through the function dis-Pidas.

We should note here that the important feature of dis-ActSlot-1 was the totality of the relation, not its
functionality. In fact, the functionality places a constraint on the information system limiting the support
it can give to the organisation. Recall (Section 10.2.4) that the assumption that one activity could only be

associated with one patient was challenged by the example of the patient education session. The same
example presents problems for the fun tional relation between the slot record and the activity -ecord. If

the patient education session is to be represented as many parallel activities, then the slot that is

appropriate for the patient education session must similarly be related to multiple activities. As this is

prevented by the integration invariant we have seen, patient education sessions can not be supported by

the DIS1 (at least not straightforwardly - there are ways around this problem such as the creation of many
sequential slot records of very short duration, but this leads to other problems). The integration invariant
does not constrain the system further than it would do if the inverse of dis-ActSlot had been relational as
the following type declaration in the OPAS system

as-T 24: as-Appointment: as-Slots -H 1as-Pid

makes clear.

One place where existing invariants meant that the functionality of interpretation was improved is in the
introduction of crs-Requests. We know that the state component dis-Activities can be interpreted as a set

of Activities in the domain as illustrated by the following type declaration from the class DIS I Interaction:

dis-ißt-T5: IntA: dis-Activities --) Activities.

Thus for each member dis-a of dis-Activities there is a corresponding member a of Activities that is its

interpretation in the domain. The same cannot be said for the subset of dis-Activities called dis-Request.

There is no function in the interaction theory that interprets dis-Request as we do not know, without

inspecting the state components of the domain explicitly, whether the members of dis-Request should be

interpreted as members of Request or Proceed. This is because activities in the domain can start without

that fact being recorded on the information system: there is no way of interrogating the information

system, even if it has been used correctly, to determine whether a member of dis-Request is supposed to

represent a requested or proceeding activity. The same is true of the information system state component

crs-Proceed. Although we know that there is an interpretation of this state component as a subset of

Activities, ie

(im httA) crs-Proceed c Activities

(which we can deduce from crs-12, dis-15, and dis-int-T5)

d: \jes\dis\wip\phd\phdtext2. doc
210

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

we do not know what that subset is (although from dis-int-I21 we can see that there is an identifiable

subset of (im IntA) crs-Proceed). An activity in the domain might be started, and have that start recorded
in the information system, but might then be suspended and become a member of Request again: there is

no information system operation that represents the Suspend operation in the domain. Similarly only

members of the crs-Proceed set that have no 'children' though dis-VisRel can be completed in DIS I so we

cannot say that a member of crs-Proceed does not represent a completed activity. However the situation
is not as vague as it might be - we can say that any member of crs-Complete represents a completed

activity, and that no member of dis-Request represents a complete activity.

We know that the first of these statements must be true by investigating the operations that have been

defined in the interaction theory. As described, the intended usage of the system is such that the only time

an activity record in DIS1 is completed, the corresponding activity in the domain is also completed. This

is represented by the following schema

DIS llnteraction. End (a)

dis-ißt-P. w: a e SupAct DISIClass l. End(RepA(a))

dis4nt-Pr5 1: ATClass 5. End (a))

which says that the information system operation is invoked whenever there is a representative of the

activity being finished in the domain, and the preconditions for the invocation of the information system

operation are satisfied. Note that one of the (inherited) preconditions of DISlClassl. End is that RepA(a)

is a childless activity record. The absence of a NonRecEnd operation reflects one of the intended usages

of the information system: namely that the completion of all activities in the domain that are represented

in the information system by a 'childless' visit record must be recorded in the database. This intended

usage is described in the interaction theory by the invariant

dis-int-1 u. (SupAct n Complete) \ (im IntA) Cod(dis-VisRel) = (im IntA) crs-Complete.

Whatever the circumstances for invocation of the information system operation, we can see from the

interaction theory operation defined here that the End operation is always invoked in the domain:

whenever an activity record in completed in the information system, it must be completed in the domain

also. This simple observation enables us to write

(im IntA) crs-Complete c Complete:

that is, that all members of crs-Complete should be interpreted as completed activities is a straightforward
implication of the intended use of the system.

The situation with dis-Requests is a little more complex, but from the existing interpretations and
invariants in the information system specification we can see that such a record, although possibly

representing a proceeding activity, should never be interpreted as a member of Complete. We can show

this is so from the following argument.

Recall that in the specification of DIS1 we not only introduced the set dis-Request, but also expanded the

tree over the (similarly expanded) set dis-Activity to form the new relation

di-T4: dis-VisRel: dis-Activity -H dis-Activity

d: \jes\dis\wi p\phd\phdtex t2. doc

211

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

where

dis-I 8': crs-VisRel dis- VisRel.

The invariant

ass-i i i- Dom(dis-VisRellcrs-VisRel) c dis-Request A Cod(dis-VisReMrs-VisRel) n crs-Proceed Cod(crs-

VisRel)

describes the difference between dis-VisRel and crs-VisRel. All activity records that are the first half of a

pair which is in dis-VisRel but not in crs-VisRel must be members of the dis-Request set. This is because

as soon as an activity record starts (ie - moves into crs-Proceed), then its 'parent' must also be in crs-
Proceed. dis-VisRel is intended to be the smallest extension of crs-VisRel needed to represent inclusion in

the new activity records. The difference between it and crs-VisRel thus contains pairs of the type (request,

request), (request, visit), and (visit, request) of which the last is not possible as we have seen. The second

part of the invariant says that if any second part of a pair in this set difference is a visit record, then that

visit record must also have a 'child' as recorded in crs-VisRel. This is because only activity records that

are of types that are forbidden 'children' via crs-TypeParent can start explicitly. In other words any

activity in the codomain of dis-VisRel that has started must have started because one of its 'child' activities

started: a pair consisting of the started parent visit record and the necessary started child visit record will

be in crs-VisRel.

dis-int-I 16: IntA 0 dis- VisRel ° RepA c During

tells us that the dis-VisRel tree represents part of the During graph. Finally, we know that

19: (im Includes) Complete s Complete

from the domain theory.

These invariants together with the one defining intended use that we saw earlier, namely

dis-ini-122: SupAct n Complete \ (im IntA) Cod(dis-VisRel) g (im IntA) crs-Complete,

show that a member of dis-Request can never be interpreted as a completed activity. We demonstrate this

through the use of the principle of reductio ad absurdum where we assume that the property to be proven

is false and show that this leads to an inconsistency.

Suppose that a member of dis-Request, dis-r, were interpreted as a member of Complete, c, then we would
have

dis-r e dis-Request, cE Complete, and (dis-r, c) e IntA.

dis-r is either in the codomain of dis-VisRel or it is not. We will take the two cases separately. Suppose

dis-r 65 Cod(dis- VisRel)

then, as IntA is a function we can say that

c ie (im IntA) Cod(dis-VisRel).

d: \jes\dis\wip\phd\phdtext2. doc

212

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

But

ce Complete, and ce SupAct

because

SupAct = Cod(IntA).

We can thus say that

cc (SupAct n Complete) \ (im IntA) Cod(dis-VisRel).

From Invariant dis-int-122 we can hence infer that

cE (im IntA) crs-Complete:

that is, the representat'on of c must be in crs-Complete. In this case the interpretation of the request

record as a completed activity is inconsistent. Suppose we take the other case where

dis-r e Cod(dis-VisRel).

As the set of dis-Activities is finite in extent, and as dis-VisRel is directed, there must be a descendant of
dis-r that is not in Cod(dis-VisRel): ie

3descdis-r: (im dis-VisRel-1 +) }dis-r) " descdis-r e Cod(dis-VisRel).

Because of the invariant showing that we can interpret dis-VisRel as part of During, we know that there is

an interpretation of descd; s-r" call it descp, where

desca E (im Includes+) { c) .

Invariant 19 tells us that the child of a complete activity is complete: so its grandchild must be too, and
hence its great-grandchild, and so on. Thus from this invariant and the previous result we can deduce that

descQ e Complete.

The first part of the argument showed us that if an activity is completed, and it is represented by an
activity that is not in the codomain of dis-VisRel, then that representation cannot be in dis-Request: it

must thus be in crs-Visit. The record descd; s-, is not in dis-Request, but one of its ancestors, dis-r, is. The
information system invariant dis-I11 showed that

dis-I ii: Dom(dis-VisReAcrs-VisRel) s dis-Request A Cod(dis-VisRel\crs-VisRel) n crs-Proceed S Cod(crs-

VisRel)

from which we can infer (for a directed acyclic tree which is what dis-VisRel \ crs-VisRel is) that

Dom((dis-VisRel \ crs-VisRel)+) c dis-Request.

The pair (descdis_� dis-r) must be a member of (dis-VisRel \ crs-VisRel)+ as dis-r does not feature in crs-
VisRel. This again is inconsistent - we demand at once that descd; S-, is a member of dis-Request and crs-
Visit where

d: \jes\dis\wip\phd\phdtext2. doc

213

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

dis-Request n crs- Visit = QS.

We have thus shown that no record in dis-Request can be interpreted (according to this interaction theory)

as an activity in Complete.

In this section we have examined a couple of areas where the second developmental motive helped guide
design decisions. The motive encouraged us to ensure that the information system could be interpreted

into the domain functionally. This applies not just to individual state components but to states represented
by compositions of several state components. The examples discussed above demonstrated how judicious

use of state components and invariants in the information system could reduce possible ambiguities of
interpretation (assuming that the system was interpreted and used in the way specified by the interaction

theory). The first example concerned the specification of an invariant linking the domain of as-
Appointments with records in dis-Activities. Through the introduction of this invariant property in the

information system design, by inspecting the information system we can determine which slot relates to

which activity: without it we would not know (through the information system) precisely which activity

should be started when a particular slot was due to commence. The second invariant introduced

concerned the nature of the extension to the relation crs-VisRel in DISI (that is dis-VisRel). The existence

of this invariant (and the operations that support it) means that although we cannot be sure that a member

of dis-Request does not represent a proceeding activity, we do know that it can never represent one that is

in Complete. By reducing the ambiguity (and thus increasing the functionality) of possible interpretation,

we have effectively increased the quantity or quality of information deducible from the system.

12.4.5 Restriction of non-sensical IS operations

This is one of the most important of the four motives as it helps us to make decisions concerning the

extent of the information system, especially when it comes to system integration. This motive helps us
introduce three sorts of constraint. The first is a constraint on an existing information system which

previously supported non-sensical operations. For example there are a number of operations supported by

the Clinical Record System that are not observable in the domain. An example of one of these spurious

operations is the one in the CRS which allows many activity records of the same type, with the same

parent activity record, to be in Proceed at the same time - when this is non-sensical and how we refine the

system to deal with the problem is described below. The second sort of constraint restricts the values of a

state component that has been introduced in this system (this is the only sort that applies if the system is

totally new and not an integration of any others). An example of such a new state component is the

introduction of a representation of the clinic list: various invariants are needed to prevent non-sensical

states such as the existence of two overlapping slots in the same clinic list. This example is discussed

below. The third sort of constraint is most interesting: these constraints ensure that the component

information systems of an integrated system interfere with one another and mutually restrict each other's

possible states. Before we consider examples of these sorts of constraints and the non-sensical behaviours

and states they prevent, let us consider this last case and see how the introduction of such mutual

constraints is the essence of system integration.

Consider a system S1 which has a number of possible behaviours. These behaviours correspond to

trajectories in the system's 'state space'. The number of possible trajectories will be huge, but assuming

that our carrier sets are finite, the state space will be finite, and so will be the number of distinct

trajectories. Let us call this number of possible behavioural trajectories of Si Ns1. In the same way, we

can call the number of possible behavioural trajectories of some other system, S2, Ns2. Suppose we

somehow combine the two systems SI and S2 to create a third composite system S3. If SI and S2 are

d: \jes\dis\wip\phd\phdtext2. doc
lid

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

totally un-integrated, the number of possible behavioural trajectories is Ns1 * NS2. This is the case when
the state of one information system is totally independent of the state of the other.

Suppose we now take two aspects, or sub-domains, of some domain of interest: if these two sub-domains
interact with each other at all, then the behaviour space of the domain is smaller than the product of the
behaviour spaces of its sub-domains. For example, in the case of the domain of the DEDC, we can look at
the sub-domains of appointment booking and activity delivery. Here, the two sub-domains interact, and in

our theory, we cannot book an appointment after we have completed the activity to which that

appointment refers: this is an example of a class of behaviours that is forbidden to the domain by virtue of
their interaction.

Suppose our two information systems, SI and S2, were representations of two interacting aspects of the

same domain. If SI and S2 were reasonable representations, then it would be likely that an un-integrated
S3 would support behaviours that were not seen in the composite domain. An integrated information

system is one that consists of component systems that represent different, but interacting, sub-domains of

a single domain in such a way that those behaviours that are prevented in the domain by the interaction of
the sub-domains, are also prevented in the information system by the constraints placed on the

composition of the component systems. What this means is that if Sl were an appointment booking

system (for example the OPAS described above), and S2 were an activity delivery system (for example the
CRS), then an integrated information system that supported both activity delivery and appointment
booking would, unless Si and / or S2 were very deficient in their own support for their respective sub-
domains, have a much smaller number of possible behavioural trajectories than Ns, * Ns2. This is the

essence of systems integration - preventing those behaviours of a composite information system that are

not observed in the domain by virtue of the interaction of the sub-domains that each system component

represents.

The above discussion begs the question 'why bother? '. Why should we be interested in preventing the user
from accessing operations that correspond to behaviours that are never seen in the domain. Surely the

user will never have need to invoke such operations, so their existence or lack thereof is irrelevant? In the

case of the integration of two systems the reason for the explicit representation of the mutual constraints

that the two sub-domains place on each other is clear: the un-integrated approach will result in the need
for more work from the user in order to represent a given change in domain state. If a single event in the
domain is represented in both Si and S2, then a user will have to invoke two operations - one for Sl and

one for S2 - if the composite information system is to represent the domain. By representing this

operation in the domain as one (integrated) operation in the information system, we cut down on user

work, but prevent the independent alteration of the state of Si and S2.

It is in fact the reduction of work from the user that is the background to this motive. For any state of the
information system, the user is presented with a set of potential behaviours from which one must be

chosen. The smaller this set the easier the choice. If the magnitude of the set is increased through the
presence of behaviours that should never be selected, the task of the user is rendered more onerous
needlessly. We can see this more easily if we consider an example from a field other than computing.

Consider the task of the driver of a car when steering the vehicle: by the introduction of a constraint in

the form of a steering rod the number of possible behaviours that a car can exhibit is reduced, but the
driver's job is greatly eased. The front two wheels of a back wheel drive car are in many senses
independent of each other. Each wheel revolves independently at whatever speed is appropriate for the
local ground speed: each moves vertically in the shock absorbers independently, responding to the bumps

d: \jes\dis\wip\phd\phdtext2. doc

215

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

in the road. In at least these respects, the two wheel assemblies are un-integrated (at least explicitly by the

car designer - in use each wheel revolves at approximately the same speed, the integration being provided
by the single surface they are running on). However, in terms of lateral rotation - steering - the wheels are
integrated by the steering rod that connects them. In the absence of a steering rod, we could still have

reliable control of the position of the car if we were provided with two steering wheels. However, driving

would be much more difficult as we would have to be careful that we turned the steering wheels in concert
otherwise the car would skid and possibly crash. The introduction of two steering wheels would not
prevent us from driving properly, but it would make it much more difficult. The reason for this is that we
would be presented with many more possible 'behaviours' to choose from. Most of these behaviours result
in 'non-sensical' behaviour (in this case an angle between the two front wheels leading to a skid). Through
'integrating' the steering of the two front wheels, we drastically reduce the number of possible behaviours

that the driver can choose from. This is not an arbitrary reduction - there are many integrations that

would be disastrous. For example, we could say that when the left wheel turned to the right, the right one
turned to the left. This would present the driver with a behaviour space the same size as that of the system
when it was constrained by the steering rod, only this time almost all of them would be 'non-sensical'.

Similar arguments to those presented above hold in the case of information systems development. We

must present the user with the smallest number of choices necessary to record the change in state of the
domain, or at least that part that is supported by the information system. What we are doing in effect is to
reduce the entropy of the system, without reducing its informational content. This motive does not just

apply to systems integration: it is vital to all types of system development, for as we extend an information

system, we are in effect integrating sub-components into a whole, although we might not explicitly
recognise that this is the case. The desire to restrict non-sensical operations is essential to systems design,

and is the essence of systems integration. Remember again, however, that this motive should be tempered
by the need to keep the semantic model embodied in the information system simple, concise and robust,
meaning that we should think very carefully if a highly complex representational structure were
introduced which only prevented a very small number of behaviours. Indeed, on the whole we will be

powerless to prevent the vast majority of non-sensical behaviours: when we are presented with an
opportunity to decrease the entropy 'painlessly' we should seize it.

How do we recognise a non-sensical operation? How can we tell if the information system allows an

operation that is not valid in the domain? This is not difficult, as long as we construct the interaction

theory carefully. A non-sensical behaviour is one that the information system can exhibit but which does

not represent one in the domain. If we consider a state of the interaction theory, this will have

corresponding information system and domain states (along with the interpretation functions relating
those two states to each other). If a particular change to the state of the information system is allowed by

the information system specification but prevented by the interaction theory then this is an example of an
illegal behaviour. Of course we are less concerned with individual examples of such behaviours than with

classes of them. The reason we must construct the interaction system carefully is because we must ensure

that each operation corresponds to one in the domain theory, and there are no cases where the invocation

of an interaction theory operation invokes an information system operation but not a domain theory

operation. Inspection of the interaction theory for DIS I reveals that this is the case here. A further

sophistication, discussed in section 14.7, would be to allow the state of the information system to 'lag

behind' that of the domain. This would represent the way that many information systems actually work to

represent an organisation. Although the interaction theory in this case would be significantly more

complex than that presented here we would still have to be sure that what was being reported (albeit in a

post facto manner) was a valid state of the domain.

d: \jes\dis\wi p\phd\phdtext2. doc
216

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

The vast majority of design decisions taken in the construction of the DIS1 specification were of this

entropy reducing nature. This is not surprising as DISI is an integration of two subsidiary systems -
OPAS and CRS - each supporting and thus representing separate sub-domains: as the sub-domains
interact and thus constrain each other, we would expect there to be many invariants in the composite

system acting to mirror those constraints. However, not all the constraints specified in the composite

system act to integrate the sub-systems. Indeed, there are a number of ways in which either of the

components are representationally inadequate prior to integration, and where each supports non-sensical

operations even in its own sub-domain. The introduction of invariants in the integrated system might
improve one of the individual component systems independently of any other parts (if there are any) of

the complete system.

We will discuss four cases where the introduction of invariants or state components acted to reduce the

entropy of the system. Firstly we shall consider the introduction of an invariant which constrained the

CRS independently of the OPAS. Secondly we shall consider the way in which constraints needed to be

created following the introduction of a new state component. Thirdly we shall see how the fact that DISI

is an integration of two component system led to the introduction of a mutual constraint. Fourthly we

shall see a more complex argument that justifies the increasing of the scope of a particular state

component in terms of the reduction of entropy.

The first example concerns the introduction of an invariant that constrains state components from the

CRS system alone. As such it is not an aspect of the systems integration that is essential feature of the

DIS1: it is an 'improvement' to the CRS. An invariant noticeably lacking from the CRS specification is

one that prevents two visit records of the same type with the same parent record from being in the set crs-

Proceed. An invariant over the state components of the domain theory that are the interpretations of these

sets does exist that mirrors this property, namely:

126: #ActTjpe 0 (Includes D Proceed) = #(Includes > Proceed).

The absence of a corresponding invariant in the CRS leads to the possibility of non-sensical behaviours.

Two visit records of the same type with the same parent cannot be in crs-Proceed simultaneously unless

they are of a type that can have no children. This is because such visit records cannot be created explicitly

at all, but are rather recorded as a result of the explicit 'starting' of records of a type that has no children,

as stated in the precondition to CRSVTCIass1. CreVis:

Pr22: te Cod(crs-TypeParent).

If a visit record in crs-Proceed exists that could possibly be a parent of the newly created record, then

after the completion of the operation it will be and a new parent visit record will not be created. However,

the same is not true of those visit records of types that do not have any children through crs-TjpeParent.
There is nothing to prevent the creation of any number of such visit records of the same type with the

same parent, all in the set crs-Proceed. This clearly can give rise to non-sensical states of the information

system. We know from the interaction theory invariant that

crs-in*-i 7: ((ini IntV) crs-Proceed) \ Cod(crs- VisRel) c Proceed u Request.

In other words, a visit record such as that which we are considering (that has no children) is to be

interpreted as either being a request (as long as that request is a suspended proceeding activity) or a

proceeding activity. Now we know from the domain theory that there can only be one activity of a given
type with the same parent activity that is in Proceed or was in Proceed but has since been cancelled.

d: \jes\dis\wip\phd\phdtext2. doc
217

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

From this we can see why the operation to create two members of the crs-Proceed set represents an illegal
behaviour in the domain. Suppose we had a state of the information system represented by the following

graph:

crs-vl, crs-tI

crs-v2, crs-t2

which was interpreted as the following structure in the domain:

al, tl
I

a2, t2

We know that if crs-v2 is in crs-Proceed, then a2 must either be in Proceed, or have been in Proceed, but

since been suspended into Request. If we take the information system specification cn its own, then an
operation which creates a new visit record of type crs-t2 is not prohibited. The resulting state of the
information system would be represented as

crs-vl, crs-tl

crs-v2, crs-t2 crs-v3, crs-t2

again where both crs-v2 and crs-v3 are in crs-Proceed. This new state in the information system would be

prohibited in the interaction theory however for the following reason. If a2, the interpretation of crs-v2,
were in Proceed, then we would have two activities of the same type with the same parent in Proceed

which is prohibited by invariant 126. If it were in Request, then another proceeding activity of that type

could not be started by virtue of precondition Pr67 (to the SuddenStart operation) and Pr7l (to the Start

operation). We have seen a class of cases where, starting with a valid model of the interaction theory, the

model of the information system in isolation allows behaviours that are forbidden in the model of the
interaction theory. These are the non-sensical behaviours described in this section, and if they can be

prevented then they should be.

In the event this class of non-sensical behaviours is prohibited by the introduction of the invariant in
DISClassl :

dis-I21: #(crs-Proceed d crs-VisPid) = #(crs-Proceed d crs-VisPid) 0 crs-VisitTjpe *.

We are able to make the invariant of this form (no two visit records with the same patient id, rather than

with the same parent) because if two visit records have the same patient id associated with them, then

they will have the same parent visit type. This is true because crs-TypeParent is a function: two visit

records of the same type must have the same type of parent, and by virtue of the above invariant, as those

parents must be in the same subset of crs-Visit (ie crs-Proceed or crs-Complete) they must be the same

record.

The second example of the introduction of invariants to reduce entropy relates to the introduction of a

new state component in the information system. The state component dis-Clist was introduced to

represent clinic lists in the domain. this is recorded in the interaction theory through the interpretation

function:
d: \jes\dis\wi p\phd\phdtext2. doc

218

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

dis-int-T 8: IntClist: dis-Clist -4 C

(remember that we did not trouble to consider the creation of clinic lists in the domain which is why it

was left as a carrier set). The introduction of this state component, and its intended interpretation, gives

rise to the need for a number of invariants to prevent potentially non-sensical operations. The problem

comes from the relation between slots and clinic lists. In the information system, a member of as-Slots is

functionally linked to an entity called as-Stream. as-Slots is interpreted onto the state component Slots

through the interpretation function IntSlot. There is no direct interpretation of as-Streams however,

rather members of this set are functionally linked to the state component dis-Clist. If this were as far as

the DIS I specification went then the possibility of non-sensical behaviours arises. as-Slots records that are

associated with the same as-Stream must not 'overlap' (by virtue of their representation of their 'start' and

'stop' times). As several members of as-Stream can be associated with one as-Clist record however, two

records in as-Slots that are linked to the same as-Clist record might well be overlapping. The domain

state that such an information system state attempts to represent is illegal. We exclude the representation

of these impossible domain states through the introduction of the invariant

dis-! 14: (dis-StreamClist 0 as-StreamDay)-1 e (dis-Clist x as-Day -+) as-Stream)

which insists that only one as-Stream record per as-Day can be associated with a dis-Clist record. As as-
Day is the representation of a 'day' (defined in the class Clocklnteraction - there is no 'day' in the domain

theory), this effectively prevents overlapping as-Slots records.

Note that we could have chosen not to introduce a representation of the clinic list at all, and said that as-
Slots should be interpreted as clinic lists instead (although the inverse of such an interpretation would not
have been functional): that is

dis-int-I 7': IntSlot: as-Slots
) C.

If we accompanied this with a statement of intended use (ie an invariant in the interaction theory) which

said that any two slots interpreted as the same element of C must be associated with separate days. This

alternative course of action was not taken as it was felt that clinic lists were entities with a greater degree

of 'reality' in that clinicians spoke about these in interviews, and did not explicitly mention the concept of

streams.

The third example of a change introduced by virtue of this motive concerns the integration of the two

subsidiary systems CRS and OPAS to form DIS I. The introduction of an invariant constraining the OPAS

and the CRS was discussed in the section on the functionality of interpretation. This decision also has

implications for the prevention of non-sensical operations. Here we will consider the integration of two

information system operations however.

If we look at the Start operation in the class DISiClassl, we notice two things of interest. The first point

to note is that one operation in the integrated information system invokes two others - one from each of

the composite systems. The second point to note is that whereas the two component operations take three

arguments between them, the composite one takes only one. The latter point is a consequence of the
introduction of the set dis-Request and is of the same type of 'entropy decreasing' measures as were
discussed earlier in this section. It is the first point that we will discuss now.

As with the first part of this section, we will first consider what behaviours would be available for a user

to invoke if the system were not 'integrated' in the way that we have specified it to be. Suppose that the

d: \jes\dis\wip\phd\phdtext2. dOC
219

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

single operation Start were replaced with two others that were capable of being invoked independently.

These would be CreVis which invokes the eponymous operation from the class CRSClass4, and

.
ApptStart which runs its namesake from the class OPASAppt. While we are tinkering with the

interaction theory, we had better be sure we know how the different concepts are to be interpreted. In the

interaction theory of the integrated system as represented by DISIClassl, members of Dom(as-

Appointments) can be interpreted as members of the set dis-Activities. Although this interpretation is not

represented explicitly, it can be derived through the function dis-ActSlot and its inverse. The function dis-

ActSlot is one of the ingredients of the system integration that we are now assuming is missing - for this

reason we cannot presume its existence, and cannot thereby deduce the interpretation of Dom(as-

Appointments) as a subset of Activities. This does not alter the meaning of the set - we still want Dom(as-

Appointments) to be interpreted as a set of Activities, but must now state this explicitly in the interaction

theory. We would thus expect to see that Dom(as-Appointments) could be so interpreted, and must thus

state that this is its intended interpretation in the interaction theory.

As we saw above, a good way of seeing whether non-sensical operations are allowed in the information

system is if the interaction theory has to impose constraints on the information system. This would be the

case here. The interpretation of CreVis is the domain operation Start: in other words, the CreVis

operation would be invoked by an interaction theory operation that invoked the domain operation Start.

The problem is that the same would be true of the operation .
ApptStart. The operation in the interaction

theory would look something like this:

DIS llnteraction . RecStart

[Types]

[Preconditions]

[Predicate 1 =] DIS1 Class 1. CreVis

[Predicate 2 =] DISI Class 1 ApptStart

ATClass5. Start

[Postconditions]

Predicate I is some predicate that must be satisfied if DIS1Class l. CreVis is to be invoked, and Predicate
2 if ApptStart is to be invoked. The important thing to note is that there will be times when both

predicates are satisfied and on invocation of the interaction theory operation, the two information system

operations are invoked together: and it is at these times that the system will present the user with non-

sensical operations. For example, the user might choose the CreVis operation without picking ApptStart

to record the start of a booked activity. It would take two separate invocations of information system

operations to represent one domain operation. The state of the information system between these

operations would thus not represent the domain.

The solution to this problem as expressed in the version of the DIS I specification found in Appendix 5, is

the explicit representation of the link between some members of as-Slots and some members of dis-

Activities, and the combining of the two Start operations into one. Now, not all activities that start have

been booked, and we would want to reflect this in the integrated system. We thus embed the invocation of
the OPASApptApptStart operation in an implicative predicate. Thus the DIS1Classl. Start operation

d: \jes\dis\wip\phd\phdtext2. doc
220

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

always invokes the CRSC1ass4. Start operation, but invokes OPASApptApptStart only when the slot in

question is a booking, or a member of Dom(as-Appointment). The operation thus looks like

DIS1Class l. Start(a)

dis-Pr 33: a: dis-Request

dis-Pr 34: CRSClass4. CreVis(dis-ActType(a), dis-ActSubject(a) ---a)

dis-Pr 35: aE Dom(dis-ActSlot) OPASApptApptStart(dis-ActSlot(a))

Now that we have linked the two operations together in this way, the non-sensical behaviours that were
described earlier have been excluded. We have thus reduced the system entropy in a desirable manner.

The last example of the influencing of a design decision as a result of this motive is a subtle one. We

could have chosen to introduce the new entities dis-Request and dis-Activity without expanding the scope

of the various functions of crs-Visit. This might well have been simpler in certain implementations of the

system. However, this motive encouraged the decision to introduce new state components that mirrored

the attributes of crs-Visit in the CRS. Let us consider one of these, crs-VisitType and its expansion to crs-

ActType.

If we are to understand why dis-ActType was necessary, let us imagine how the DIS1 system and the

interaction theory would have looked were we to have excluded it, and relied on crs-VisitType to tell us

what type a given activity was. The function crs-VisitType returns the type record associated with any

activity record, stored in the CRS, that is a member of the sets crs-Proceed and crs-Complete. We know

this from the type declaration

crs-Trcrs-VisitType: crs-Visit -i crs-Types

and the invariant

c., -12: crs-Proceed u crs-Complete = crs- Visit.

In other words, records in the set crs-Request would not be associated with type records. This will have

one immediate effect on the operations that we can specify on the information system. When we invoke

the Generate operation, because we cannot allocate a type to a request record, we cannot determine

which is the appropriate 'parent' activity record. When invoking the Generate operation we must specify
the correct parent activity record - this in turn means that an immediate parent for the new activity record

must already exist preventing the creation of 'chains' of activity records from the invocation of one

operation. With this new type of operation we could generate a structure that mirrored part of the activity
structure on the domain. With this specification of the information system, there are a number of
operations that are available to the information system that are nevertheless 'non-sensical'. In line with
the discussions in this section, we should seek to minimise these non-sensical operations - unusually it is
fairly straightforward in this case.

d: \jes\dis\wip\phd\phdtext2. doc

221

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Firstly let us see what these non-sensical operations are. We can easily see one where a number of
different Start operations are presented to the user that do not correspond to operations that are

permissible in the interaction theory. Suppose we had the following values of dis-Activities, crs-VisitType,
dis-VisRel, and the interpreted equivalents:

d-al, "Diabetes Care" al, Diabetes Care

d-a3, "Dietitian
d- 2, Doctor Care"

a3, Dietitian
a2, Doctor Care

Care" Care

A graph showing values of dis-Activities, crs- A graph showing the interpretation of those values
VisType, and dis-VisRel for a particular model of on the left.

the system described.

Figure 3-20: An information system model and its interpretation

Now if we want to generate a new activity as a request that was During a'., and record this on the
information system we would have a choice of types to choose from. These types would be all possible
'child' types of Doctor Care that were supported by the information system. This is the set {Initial Doctor
Consultation, Follow-up Doctor Consultation and Doctor Telephone Consultation}. Suppose we choose
Initial Doctor Consultation. If we have created a request, the information system will not be able to record
the associated type. The new state of both information system and domain, as given by our model of the
interaction theory would be:

d-al, "Diabetes Care" al, Diabetes Care

"Di titian d- 3 a , e d-a2, "Doctor Care"
"

a3, Dietitian
a2, Doctor Care Care Care

d-a4 a4, Initial Doctor
Consultation

The graph of the state of the information system

after the creation of the new request record.
The new state of the domain after the same
(interaction theory) operation. Notice that although
a4 is of type Initial Doctor Consultation, we cannot
know this through observing and interpreting the
information system.

Figure 3-21: A new information system model and its interpretation

d: \jes\dis\wi p\phd\phdtext2. doc
777

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The activity record d-a4 is in the set dis-Request, and so is not associated with a type record. When we

come to start the activity in the interaction theory, we move a4 to the set Proceed and d-a4 to the set crs-
Proceed. In so doing, we must assign a type record to d-a4. The information system can not determine the
'correct' type record - ie "Initial Doctor Consultation" as it contains no record of the type of the activity it
is in the domain. Thus the information system must allow one of at least three type records to be assigned
to d-a4: "Initial Doctor Consultation", "Followup Doctor Consultation" and "Doctor Telephone
Consultation". Two of these operations are invalid in that they lead to inconsistent states of the interaction

theory. They are valid operations constrained by the interaction theory and are thus what we have

described as non-sensical. We can show the three operations in the following diagram:

"Pre" State Operation "Post" State al, Diabetes Care

d-al, "Diabetes Care"

a3, Dietitian
a2, Doctor Care

d- a3, "Dietitian 4 Care
d-a2, "Doctor Care" Care"

\ a4, Initial Doctor
Consultation

d-a4, "Initial Doctor
Consultation"

Valid

d-al, "Diabetes Care"
d-al, "Diabetes Care"

"Doctor -a3, "Dietitian
"N sensic 1" d a2 " " , Dietitian d-a3, Care

" " Care d-a2, Doctor Care"
Care"

,
"\

" d-a4, Followup Doctor
d-a4 Consultation"

"Nonsensical"

d-al, "Diabetes Care"

i i d 3 "Di an -a , et t d-a2, "Doctor Care" Care"

d-a4, "Doctor Telephone
"

The interpretation of the state of Consultation

' ' the information system. Because
operations that the non-sensical Diagram showing-one valid and two

information system will present to the user when she wants to record the type of a4 does not change,

" two of the operations on the left Doctor Telephone the start of activity a4. (In fact, starting d-a4 as a
Conversation" would be prevented as such an activity cannot be are 'non-sensical'.

requested. This point is incidental to our argument however, and has

been ignored.)

Figure 3-22: Non-sensical information system models and a permitted interpretation

This example illustrates well the increased 'entropy' of the system that the user has to overcome. There are

other cases where the lack of a type record associated with members of dis-Request can lead to non-

sensical operations. For example, given a member of dis-Request, the information system might allow us

create a child activity record, given that one of the allowable types of the request record is in Dom(crs-

TypeParent), whereas the interpreted activity in the domain is of a type that does not allow for child

activities. It is not difficult to think of a number of other 'scenarios' that result in the possibility of non-

d: \jes\dis\wip\phd\phdtext2. doc
772

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

sensical operations. At least some of these problems can be addressed through the extension of crs-
VisitType to cover dis-Request as well as crs-Visit. This extension is a new state component - we have

chosen to call it dis-ActType where

dis-T6: dis-ActType: dis-Activities -4 crs-Types.

Now, with the introduction of this new state component, the creation of a member of dis-Request must be

accompanied by its assignment to a member of crs-Types. Thus when the activity is requested in the
domain, the relevant type is assigned in the information system. The information system presents no non-

sensical operations to the user inasmuch as all the options correspond to valid operations in the domain.

This is not to say that the domain operation will always be invoked correctly -a doctor could record that

she was running a Doctor Telephone Consultation on the information system when she was in fact

running a Followup Doctor Consultation. We cannot do anything about misuse of the system, at least not
with the logical structure we are investigating here (this is more likely the role of training and good
technical support). If we further reduce the number of information system operations here, we will be

preventing the recording of valid domain operations.

It should be noted that the introduction of dis-ActType and the other attributes of dis-Request would also
be motivated by the desire to expand the scope of representation of the system. As was explained earlier,
one decision might have several motives. The decision in the case above is not quite as straightforward as
the examples given in the sub-section covering expansion of scope which is why it has been included in

this sub-section.

In all the examples given above we have reduced the entropy of the system by removing non-sensical
behaviours. This helps guide the user by preventing them from making certain classes of error in

behaviour invocation. We must be careful to make a distinction though, between the recording of non-

sensical behaviours and the incorrect usage of the system. The essential difference between the

presentation of operations that are non-sensical, and the invoking of operations that are incorrect

representations of changes of state in the domain, is a logical one. In the case of the non-sensical

operations described above, there is no operation that can be invoked on an appropriate model of the
interaction theory that can lead to the changes of state of the information system. In the case of the
incorrect usage of the information system, there is always a valid operation in the domain that can

correspond to that invoked on the information system - in practice we cannot be sure that this valid

operation is the correct one however.

One last point ought to be made that is pertinent to this part of the argument. It was stated above that all
the operations presented to the user, in this small part of the information system specification, were now
valid and represented possible changes in the state of the domain. This is still not entirely accurate - there

are some operations that are supported but are non-sensical because they are disallowed to the class of

user of the system. In the domain class TypeClass4 the structure called EmbedType prevented certain

sorts of health care professional from generating certain types of activity. This particular constraint is not

represented at all in the information system, meaning that in a DIS1 system that implemented the

specification described here, a dietitian could cause an activity record of the type "Followup Doctor

Consultation" to be created. This is a non-sensical operation as the domain theory prevents its

interpretation from occurring. In order to prevent non-sensical operations of this class, an entirely new

group of concepts and state components would have to be introduced to the information system, thus

greatly complicating its structure. As has already been argued, all the developmental motives are to be

tempered by the desire to maintain clarity and simplicity in the finished system: the benefits of

d: \jes\dis\wip\phd\phdtext2. doc
'1'1A

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

representational accuracy should be weighed against the costs associated with difficulty of implementation

and use. In the case of introducing a representation of health care professionals into the system, we would
gain little at the cost of a great deal of extra complexity, and so the 'improvement' should be rejected". In
the case of the extension of crs-VisitType to cover all members of dis-Activity, we reduce system entropy
by a modest amount, but the increase in complexity is negligible: for this reason this improvement was
introduced.

The next sub-section will investigate the converse of this motive, where the intended use of the
information system does not place constraints on the possible behaviours exhibited by the information

system, but rather on the behaviour of the domain. In other words the intended usage of the information

system will prevent certain otherwise valid state changes in the organisation from taking place.

12.4.6 Minimisation of prohibition

The last 'motive' we come across is that which encourages us to minimise the restrictions that the
information system places on the domain through the interaction theory. In many ways this is similar to

the last motive: in the last section we saw how we should prevent the domain from constraining the
information system, now we want to prevent the information system from constraining the domain.

Whereas in the case where the constraint was placed on the information system we observed that that

system presented the user with too many choices, in the latter case, where the information system

constrains the domain, we say that the system presents the user with too few choices. Behaviours that are

valid in the world are prevented through the use of the information system.

We might ask ourselves how this is so here: most of the interaction theory operations that we have seen
only optionally invoke the relevant operation from the information system specification. Many of the
invariants describing the interpretation of the information system state components are expressed as
predicates involving the subset relation. The use of the subset symbol here generally means that a certain
aspect of the domain is only partly represented in the information system. For example from the invariant

dis-irl-122: SupAct n Complete \ (im IntA) Cod(dis-VisRel) _ (im IntA) crs-Complete

we can deduce

crs-Complete c (im RepA) Complete.

which tells us that some of the activities in Complete are represented as members of crs-Complete in the
CRS database. Indeed, the interpretation and representation functions themselves inform us of this partial
representation. The type declaration

dis-mt-Ts: RepA: Activities 4 dis-Activities

says that only some activities are represented in the system: we have given this set the name SupAct

through the invariant

dis-tnt-I 14 SupAct = Donz(RepA).

xx In this particular sub-domain. If the system were required to record the category and identity of its users for security and audit purposes
this extra complexity associated with the introduction of 'Health Care Professionals' into the specification might very well prove to be
worthwhile.
d: \jes\dis\wip\phd\phdtext2. doc

11c

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

We know that there may be some activities that are not supported by the system because we present two

operations in the interaction theory that can generate new activities in the domain and the information

system: these are NonRecGenerate and .
RecGenerate. The first operation causes the creation of an

activity in the domain independently of the information system - an instance where the creation of an

activity in the domain has not been recorded in the information system. The second operation describes

the case where the creation of a new (subsidiary) activity has been recorded in the information system -
both the state of the domain and the state of the system have been updated simultaneously. Notice that
there is no 'third case' where the information system is updated independently of the state of the domain.
We said earlier that we prohibited this as we wanted to talk about the behaviour of the information system
when it was being used as intended. This property of the interaction theory is also enforced through the
invariants: IntA is a total function:

dis-ißt-T5; IntA: dis-Activities --9 Activities

so we know that there are no activity records in the DIS I system database that do not represent 'real'

activities from the domain. We have thus placed a constraint on the behaviour of z model of the
interaction theory that represents the use of the information system as we expect it to be used. We can go
further with our impositions, and make more rules that prescribe how the system must be used, and
investigate the implications of this declaration.

For example, we have insisted that once an activity is represented in the information system, its life-cycle
is intimately involved with its representation. We can create an activity that is not represented in the
information system, but if we choose to invoke the information system operation at the same time through
the use of the operation .

RecGenerate, we cannot thereafter explicitly start the activity in the domain

without recording the fact in the information system. This is because any activity record explicitly created
through the RecGenerate operation must be childless, and one intended use of the information system is

that the start of all requests represented by a childless record in dis-Activity is recorded - this is specified
through the invariant

dis-ißt-I21: SupAct n Proceed \ (im IntA) Cod(dis-VisRel) c (im IntA) crs-Proceed.

This close coupling of the lifecycles is not truly realistic. As explained earlier, we have tried to limit the

possible dissociation between the domain and information system in a fairly artificial way as this helps us
in the construction of the interaction theory. This is not a problem as long as we recognise that, at the

current level of sophistication, the interaction theory doesn't completely deal with the issue of the
interpretation of the state of the information system lagging behind the state of the domain. We see this

again reflected in the .
End operation where if the activity being ended is supported in the information

system, then the representation of the activity is 'ended' in the information system.

In the cases described above, domain operations must be accompanied by the relevant information system

operations, but in none of them is an operation in the domain prevented. We can now see how we might
describe the prevention of a particular operation however. If the system operation was constrained by

harsher preconditions than that in the domain, and we had insisted that the latter could not proceed

without the former, there might well be occasions where the behaviour of the domain was constrained.

For example, suppose we said that an activity record could only be moved to the crs-Complete set if its

type record was taken from a proper subset of crs-T)pes. If this were the case then there would be times

when the activity record could not be so reassigned, and as we had insisted that the domain operation be

accompanied by the system operation, the state of the domain would have to remain constant too. Of

d: \jes\dis\wip\phd\phdtext2. doc

Jeremy DH Holland
The Requirements Analysis & Design fora Clinical Information System: A Formal Approach Volume I: Thesis

course this is a ridiculous situation, and if we found this to be the case we would have to change the

nature of the interaction theory.

There are times, however, when this sort of thing is not ridiculous. We might be forced into the position
of relying on computerised support, or we might want to be able to use computerised support, but do not

want a parallel manual system to be used. The example that will be discussed now, the definition of the
booking system, is one of these.

Suppose we wanted to introduce the booking component of the DIS I system into the Diabetes Day Centre.

We know from our existing exploration of the interaction theory that there are certain types of activity
that are not supported by the information system. There are some types whose activities can not be booked

- those that can are in the set Bookable. Of those types that are Bookable and are supported by the

information system - ie the members of the set Bookable n SupType - we would expect that some are to

be booked through the appointment system. We would probably require that all of the activities of some

types that are booked should be booked through the computer - in other words, for some types computer

aided booking is desired and should not be complemented by a parallel paper based system. We cannot in

fact prevent a paper alternative being used in practice, but we can see what the effect of the hypothetical

enforcement of such a policy would be on the running of the clinic. The way we do this is again to

describe the intended use of the system through the interaction theory, and see what effect this has on the

possible behaviours of the domain.

We have a number of types and invariants already in place that help us to do this. We have said that

activities of certain types, or at least an identifiable subset of such activities, are represented fully by the

DIS I system. The set of types, as we have already seen, is called FullRepTypes, and the particular subset

of activities of these types is defined by the invariant

dis-im-I 2(k (im ActType-1) FullRepTypes n Proceed c (im IntA) crs-Proceed.

The set of types that can be booked by the appointment system is represented by the set dis-Bookable, and

can thus be written as

(im Intl) dis-Bookable

where (as we can infer from the definition of Sup Type and invariant dis-int-I10)

(im hitT) dis-Bookable c Bookable.

Now those types that must be booked by the information system is clearly a subset of (im Intl) dis-

Bookable: in the interaction theory presented here, we have assumed that this subset is in fact

(int Intl) dis-Bookable n FullRepTypes.

This is a reasonable assumption, and saves us from having to introduce a new named subset of Types to
describe this situation (the reader can probably think of occasions where this assumption is invalid, but as
long as we are clear that we have made it, we can proceed safely).

One more assumption we have made which may not be always accurate but seems reasonable is that not

only must all activities of the set described be booked through the computer, but no others may be: the

computer provides full booking support for certain types of activities or none at all. This means that the

set
d: \jes\dis\wip\phd\phdtext2. doc

117

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

(im /ntT) dis-Bookable n FullRepTypes

is equal to

(im Intl) dis-Bookable.

To summarise then, we have said that whenever an appointment is made for an activity of a type taken
from the set (im Intl) dis-Bookable the appointment must be made through the computer system, and that

only activities of this type may be booked using computer support.

The enforcement of this decision in the information system has some interesting implications. Let us
consider the booking operation that books a previously non-existent activity which we have called
DIS1lnteraction. Book. This operation always invokes the domain equivalent: ATClass5. Book. We have

said that whenever the type of the activity to be created is not of a type taken from (im Intl) dis-Bookable

then the information system operation is not invoked. For those types that are, then we can only invoke

the interaction theory operation if we also invoke the information system operation. We thus have a
skeleton operation schema that looks like this

DIS1Interaction. Book(... t...)

[Type Declarations]

ATCIass5. Book(... t...)

.1 cis-ißt-Pr 19: tie (im Intl) dis-Bookable

.2
lays-jet-Pr

20: tE (im IntT) dis-Bookable

[Precondition Case 2]

DIS 1 Class 1. Book(... RepT(t)...)

[Postcondition Case 2]

It is the contents of the precondition labelled [Precondition Case 2] that we are interested in. If we look at
the operation schema in the interaction theory in Appendix 5 we see that there are many complex

preconditions. Most of these relate clinic lists to their representations (the logic and structure of domain

clinic lists is different from that of their representation), and do not constrain behaviours of the domain.

The precondition:

dis-im-Pr2e: 3sl: dis-Slots " SlotStart(sl) = RepTime(tb) A SlotEnd(s!) = RepTime('re) A TypeLink(RepT(t)) _

((as-ClinicT)pe ° as-StreamClinic ° as-SlotStream) 0 as-SlotDay) (sl)

does constrain the domain fairly harshly. What the precondition says is that the operation can be invoked

only if the times of the appointment are such that there is an appropriate slot record (ie of the correct 'slot

type') in the OPAS that has commensurate start and finish times (as the number and length of slot records

is decided in advance via the information system operation DIS1Interaction. SlotsCreate). We saw in

Section 12.2 that the OPAS assigns a discrete number of slots of defined length to a particular 'stream'.

The duration that the slots can take depends on the 'type' of the clinic, and is fairly tightly constrained.
Given the way the appointment system would be used, the slots for a particular clinic would be assigned
d: \jes\dis\wip\phd\phdtext2. doc

ýýQ

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

and defined weeks if not months in advance. The domain theory that has been presented has none of these

restrictions. The clinician is free to create a (domain) slot of any length when she makes the booking. In

the interaction theory then, if we insist on the use of the computer to book certain types of activity, there

are many behaviours that are prevented.

An example of this can be taken from the DEDC. Once a week, a 'new patient' clinic is held at which all
the attendees are precisely that. On other days, a mix of new and followup patients will be seen. New and
followup doctor consultations are represented by different 'slot types' in the OPAS as they take different
lengths of time. The appointment system forces the decision about how many new and followup patients
can be seen on a particular day to be made (probably well) in advance of the booking being taken. Thus

when a patient is booked in for an appointment in a few months time, he or she must be allocated to a
pre-existing follow up patient slot record. If all of these have been allocated for a particular day, then

another day must be chosen, even if there are vacant new patient slots for that day. Another possible
domain behaviour that would be prevented by the interaction theory is the allocation of times for

appointments according to assessed patient need. If a policy of this type were being used, then a well

controlled diabetic patient could be booked in to see a doctor for 10 minutes whereas one with

complications might be booked in for 40 minutes: booking regimes run like this have been shown to be

more efficient in their use of resources. This domain behaviour would likewise be constrained if the use of

the OPAS system to book such activities were enforced.

We have discovered a particular and well defined area where the introduction of the information system
into the domain constrains the behaviour of that domain. We can interpret this finding and react to it in a
number of ways, not all of which reflect adversely on the information system.

Firstly, the specification of the OPAS is not the same as its implementation. The theory of the OPAS that

has been presented was derived from a cursory 'reverse engineering' of the proposed system (it is not
implemented at the time of writing this thesis). This method of specification derivation is always difficult,

and it is possible, or even probable, that the presented formal theory has many errors of representation.
The understanding of the system might be erroneous in just this area of slot creation and appointment
booking. Before the OPAS is criticised for imposing unreasonable constraints on the running of the clinic,

we should be sure that our understanding of its behaviour is accurate.

Secondly, the information system might be a more precise representation of this part of the organisation
than the domain theory. The logical mechanism we used for refuting, and thus enhancing, the domain

theory was that of counter-example discovery. A theorem derivable from the domain theory was
considered 'correct' until an example of a behaviour prohibited by the theory was observed, or claimed by

an interviewee. If the domain theory is correct, all the behaviours it prohibits will never be seen in the

organisation: it might, however, permit behaviours that we never see in the organisation. If this is the

case, we should not say that the theory is wrong, but rather that it could be made to be 'bolder' in its

prohibitions and still be correct. We have seen that the information system as described in the interaction
theory prevents some operations that are valid in the organisation: these excluded operations might never
be observed in the domain. In short, both the domain theory and the information system specification
might be equally accurate theories of a generic clinical grouping in this area, but as the DISI specification
is bolder, then it can be thought of as better. To determine which theory (the domain theory as it is, or one
that permitted the same behaviours as the OPAS system) was better in this case, we would have to
investigate those behaviours allowed by the current domain theory and prohibited by the information

system (when interpreted as a domain theory rather than an information system specification). If any
behaviours in this set were observed or claimed to exist by a stakeholder, then the OPAS specification
d: \jes\dis\wip\phd\phdtext2. doc

110

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

would genuinely prevent otherwise valid domain operations. If such a behaviour was never observed or
claimed, then we might reasonably take the domain theory as embodied in the OPAS as a better one than
that which has been presented in this thesis.

We should not be surprised if some behavioural areas of the organisation were better represented by the
information system than by the domain theory that has been presented. Not only is it likely that many
more man years have been expended on developing the OPAS than the theory, but those associated with
the latter have been concentrated on supporting a much smaller domain than the theory presented in this
thesis.

Even if the behavioural description embodied by the OPAS were inaccurate, we still have to decide

whether or not we are willing to live with it. It might be that the behaviour described by the OPAS

specification is significantly easier to implement than that described by the domain theory. Certain

structures and behaviours are susceptible to ready representation by the relational model while others are
more suited to representation through the use of matrices and tensors (which is the underlying logic of the
APL language). In these cases, there is a trade off to be made between the benefit of supporting the
operations in the domain that would otherwise be prevented by the introduction of the integrated DISI

system as described and the cost of designing the OPAS to more closely mimic the domain: these costs
and benefits must be assessed and an appropriately informed decision consequently taken.

Of course, it might be that the OPAS is a poor model of the organisation in precisely the manner
described, and it might be that the constraints placed on the clinic were it to be introduced would be

absolutely intolerable. Which explanation for the difference between the domain theory and information

system specification is most realistic has yet to be discovered: for this reason, no attempt has been made to
alter specification of the DISI system accordingly (the prohibited behaviours could be re-introduced with
the help of suitable extra state components defined at the integration stage - ie dis-... variables). What

can be said is that the use of the interaction theory here has illuminated an area that might have serious
repercussions on the usability of the implemented system. The decisions taken as a result can now be
informed rather than blind.

One last thing that ought to be said in this section is that the constraint that the OPAS will place on the

clinic should not be seen as a conscious policy change. Although we are assessing the validity of the
information system in terms of its interpretation onto the domain theory, what the specification 'really'

represents is a series of data sets and algorithms: any policy change should be described through an
extension to the domain theory. Behaviours of aspects of the organisation are represented through models
of the domain theory. Of course, once the domain theory has been modified, we can see how successful a
particular information system design will be in supporting the new procedures and policies. Although the

exploration of such 'hypothetical' domains is not the subject of this thesis, an example of such a domain

theory is included in Appendix 6 investigating possible constraints needed to implement the 'contracts for

service' being encouraged in the NHS.

12.5 Conclusion

We saw in this chapter how an interaction theory might be used to motivate decisions taken in the design

of new information systems. The specification of an information system that is to be implemented at St

Thomas' Hospital, the Out-patient Appointment System (OPAS) was described, as was the specification of

an information system that is an integration of this and the earlier described CRS. This is the first

fragment of a Directorate Information System and so was called DIS1. The main purpose of this chapter,
however, was to show how an interaction theory might be of use in the design of an information system.
d: \jes\di s\wip\phd\phdtext2. doc

ýzn

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

To this end a number of ways in which the construction of the specification of DISI were influenced by

the interaction theory were presented. There are two conflicting considerations when designing an
information system. The first is the need for simplicity of design to facilitate construction, maintenance

and use of the system. The second is the desire for the system to say as much about the world as possible -
in short for it to'conform' to the domain theory. Four ways in which such conformity should be sought are
described. These are called the four developmental motives as they provide the motivation for design

decisions which concern increasing the representational verisimilitude of the computer system. These four

motives encourage us to seek

0 the gratuitous expansion of scope,

0 the functionality of interpretation,

0 the reduction of entropy, and

0 the restriction of prohibition.

One conclusion of this chapter is that the role of formalism in the understanding of the use of information

systems is small. All the motives discuss the 'intended' or 'correct' usage of the information system being

considered. They have not said anything about how we can ensure such correct usage. There are a number

of ways in which we can achieve this (apart from being an improved representation of the domain) such

as good user interface design, user training and management (although a statement of the correct usage of

the system such as that given might well help with the running of a training scheme).

That there are many aspects of information system design that the process of formalisation offers no

support for at all is not a problem - the methods that are advocated in this thesis do not purport to be the

'answer' to the problems of information system design, they are merely of some use in understanding

aspects of the highly complex environment in which the analyst works. In the case of this example, we
have not arrived at the best information system to support the booking process: we have merely taken an

example of a possible design, shown that with a particular interpretation this design led to inconsistencies

of representation, and presented a second design which, with a similar interpretation, avoided these

inconsistencies.

It must be remembered that the interaction theory is only one of many possible interpretations. What we
have done is made an assumption about how the information system will be interpreted and used, and
'improved' the system on the basis of that assumption. The testing of a given interaction theory is outside

the scope of the thesis, but would be an interesting area for further work. This point is considered further

in Section 13.4.

Another point that is apparent is the way in which arbitrary choices in the construction of the domain

theory significantly influence the nature of the interaction theory. For example, the representation of the

cancellation of an activity as moving it from Proceed to Request reduces the clarity of the interaction

theory - certain invariants must be understood as applying to requests that were once proceeding

activities, although this cannot be described in the static schemas. Similarly, the representation of time in

the domain theory is quite different from that in the OPAS. As a result, the interaction theory is rendered

more complex without any corresponding increase in insight. The wisdom of altering the domain theory
in the light of the information system specification is uncertain however. The construction of the domain

theory should be influenced more by the experiences of the domain workers, than by the information

systems that are to be developed to help them.

d: \jes\dis\wip\phd\phdtext2. doc
T11

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach___ Volume I: Thesis

One final point that will be made here concerns the way in which the interaction theory might improve

the domain theory. An early version of the specification of the CRS assumed that all 'childless' visit

records were of a type where the patient had to be present before the activity being represented could be

started (this is so far the case - support for telephone conversations and other consultations where the

patient need not be present is not provided: this was not considered sufficiently important to keep in the

specification however as it represents an accidental, rather than designed, property of the system). While

this was the case, we might have expected to see an invariant of the type

(im IntV) ((im VisitType'») (is-Types\Cod(crs-TypeParent)) n crs-Proceed) c ActAtt

to be in the interaction theory. That is, all visit records in the set crs-Proceed that are childless should be

interpreted as activities that the patient is currently attending. When questioned whether an invariant of
this type should be in the interaction theory, the system manager of the department's current CRS said
that it should not be. The reason for this is that there is a problem with the domain theory concerning

activities that the patient did not attend but were completed anyway. These activities are called DNAs in

the clinic, and are an important aspect of its functioning. As a result of DNAs certain tasks are engaged
in, and during the DNA the clinician might well look at the patient's notes and add to them. This is an

example where the specification of an information system and the construction of the interaction theory

can help to refute the domain theory thus leading to its improvement.

d: \jes\dis\wi p\phd\phdtext2. doc
232

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Part Four:

Review and Conclusion

d: \jes\dis\wip\phd\phdtext2. doc

233

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

Chapter 13: Review of Results

It will be argued later that the hypothesis of this thesis has been shown to (more or less) hold. However,

the issues arising from the work need more careful consideration if we are to benefit from the method: the

project will only make a real contribution if others can learn from the problems encountered and mistakes

made by the author. For this reason, in this chapter, we will review the lessons learned from the work that

has been carried out over the past three years. Firstly the basic assumption underlying the project is

described, the method that was used and why that method is beneficial if one accepts the underlying

assumption. The remainder of the chapter goes on to question various aspects of the method in the light of

the experience gained over the course of the project. Firstly the underlying assumption is questioned, and

then each of the three major steps in the method. Each of these sections is laid out as a succession of
'justification, criticism, synthesis' subsections. The justifications of each part of the argument are

presented, followed by a discussion of its major flaws. The virtues and vices of that part of the method's

argument are consolidated in the synthesis. This is one of the main theoretical contributions of this thesis.

The method has been carefully thought out and explained, and then reinterpreted in the light of

significant experience of its use. Although the philosophical background to the method is not greatly
different from others that have been proposed (for example Checkland's Soft System Methodology), the

extent and nature of the use of formalism (especially concerning the interaction theory) is perhaps

unusual. The lessons learned from such use (and the goals sought through such use) are presented in this

chapter. The insights gained through the extended 'case study' both as presented here and as gleaned by

the reader from the results, are intended to contribute to the discipline known as'computer science'.

The way in which this chapter will be presented is as follows. Firstly the method and its rationale will be

briefly reiterated. Each major component of the method will then be examined in turn. Each examination

will have three parts: firstly the justification for this aspect of the method is presented, then the
limitations and drawbacks are considered as criticisms, and finally a synthesis of the two arguments is

presented which describes how to view this part of the method.

13.1 Synopsis of method and rationale

13.1.1 An Assumption Underlying the Method

There is a basic assumption underlying the work reported in this thesis. We must elucidate this if we are

to understand why the method is as it is. The assumption is as follows:

That users of information systems interpret (some) of the state and behaviour of the information system
into objects in the 'real world' as they perceive it, in particular that part of that world related to the task

being supported by the computer system (called the domain in this discussion).

It is further considered that difficulties of interpretation are manifested when the state components of the

information system do not behave isomorphically with the aspects of the domain that those components

are imagined to represent. These difficulties of interpretation are a significant cause of user dissatisfaction

with the information system. Furthermore a systems development method that in some way facilitates the

design of an information system that can be robustly and reliably interpreted into the domain by its users

will result in more useful systems.

Although this assumption is partially justified above (in Section 4.3) and discussed further below (in

section 13.2.2) it is not part of the argument presented in this thesis - rather it is a postulate on which the

d: \jes\dis\wip\phd\phdtext2. doc

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

argument is based. Having stated it we are in a position to consider the method in its entirety prior to

investigating its component parts.

13.1.2 Method

As a result of the underlying assumptions that have guided the analysis presented in the thesis, a
particular method has been used. One can never determine directly how a user is interpreting an
information system when it is being used - to imagine that we can do so when the information system is

proposed as opposed to already existing is doubly far-fetched. In order to prejudge this interpretation, we
must approach the problem indirectly.

The method used in the project works through constructing just such an indirect path to the

understanding of system interpretation. The analyst cannot access the interpretation of the information

system directly, but can judge the reliability of the interpretation through inspection of this indirect path

which represents a design process. The design process consists of three steps. Starting at the domain, or

rather the perception of the domain by the users, step 1 is the construction a theory of the domain. Step 2

is the derivation of the theory of an information system, more commonly known as a system specification,

and step 3 is the implementation of the specification as an operational computer system. If this is done

'correctly', the resulting computer system should be capable of being interpreted back into the domain by

the users in an intuitive manner. This process is illustrated by the diagram below:

Theory Construction Information System System Specifi cation

eta on Sym
n ti n eory of Impleme

Domain Information System

femrr

Theory
-� _

Interaction ,

fInformaemtfilon

Domain

Interpretation of Information System
Figure 4-1: The systems design process

Diagram illustrating method used in thesis. Stages 1,2,3 and 4 are commutative. We can interpret an
information system into the domain either directly (via step 4), or indirectly (via steps 3', 2', and 1' - the

reverse of steps 3,2, and 1). The analyst uses steps 1,2 and 3 to produce the information system. The

users use step 4 to interpret the information system into the world. If such interpretation is not possible,
it is because an error has been made in one of steps 1,2 or 3.

The word 'correctly' was used in inverted commas because we can never carry this process out completely

and perfectly, not least because we are attempting to describe an (essentially) infinite world using finite

d: \jes\dis\wip\phd\phdtext2. doc
235

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

language. The information system will thus only be a partial representation of the domain. Moreover, we

might have to make compromises for the sake of ease of implementation, speed of use, tractability of

computations and so on. All these compromises will have an effect on the usability of the system in terms

of its interpretation (though a perfectly interpretable information system might be unusable for other

reasons, for example extreme slowness). The method separates these compromises from the construction

of a theory of the domain. If we carry out steps I and 3 correctly, then all the problems and inadequacies

of interpretation should be apparent in step 2- the derivation of the information system specification from

the domain theory. By inspecting the workings of this step alone, we should be able to assess validity of
interpretation of the eventual information system. The appropriate artefact that is significant at this stage
is something that has been called the interaction theory in this thesis.

In order to confine discussions of interpretation, and thus according to the underlying assumption,

usability, to the interaction theory we must be sure that steps one and three are correctly completed. Each

of these steps is fraught with difficulty. Three of the next four sections discuss these problems and suggest

a more realistic way of viewing the method. First of all we must inspect the underlying assumption and

assess its Validity.

13.2 Issues concerning Underlying Assumption

As with the other sections in this chapter, we will explore the issues concerning our underlying
assumption through the use of a form of dialectic. The first sub-section maintains and argues that

computers are used as models of the world. The criticism sub-section points out flaws in this
interpretation and says that we should understand computers in a different way. The synthesis recognises
that this new understanding is superior in many ways but within it we can see that computers can
'deceive' users into thinking they are looking at a certain sort of representation of the world and then

proceed to let them down when this transpires not to be the case. This is undesirable and is one of the

causes of user dissatisfaction with information systems.

13.2.1 Justification

The assumption that an information system is interpreted into the world by its users is so ingrained in the

minds of many whose job it is to design and construct such entities that it is rarely questioned or even

articulated. Referring to standard texts on systems analysis (such as [Avison88], [Downs92], and
[Coad9l]) we can infer that this is considered to be a property of the use of information systems from

observing the importance such works place on understanding and representing the problem domain that

the system will address. However, we should not have to rely on custom and habit for justification of the

statement: indeed, by considering what a computer system is and how it will be used we can see that the

assumption is eminently reasonable.

A computer can be most generally thought of as a device for manipulating symbols. It can create, destroy,

shuffle, recieve and display (or, more generally output as the 'display' might not be visible) these symbols

according to set of (symbolic) rules. What makes such machines useful is the way in which people are

able to interpret those symbols as representing things that are of interest to them. Without such

interpretation, computers would be mathematical curiosities - with it they are playing an increasingly

major role in human society. The things that people are interested in might not be aspects of the 'real

world': a word processor for example does not represent any part of the world, but its users still interpret

the symbols it manipulates as things that are of interest to them - namely letters, words, punctuation

marks, paragraphs and other aspects of documents. An information system is a particular type of

d: \jes\dis\wip\phd\phdtext2. doc

236

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

computer system, however, and the way in which it is used carries implications about the way in which

the symbols it manipulates and displays are interpreted.

As we saw in Chapter 4, we can divide the workers in an organisation into two groups: the operational

and the managerial. Both types of workers need to respond to changes in the organisation that have been

brought about by other workers or by interaction with its environment. In order to do this, each worker

needs to know what is happening in the organisation, and what has gone before. In other words she needs

to know what the 'state' of the organisation is. It is the role of an information system to record this state,
be it in on pieces of paper or in a computer's database. The computer system we are designing must thus

act as a record of the state of the organisation - the only way it can do this is if the symbols it stores,

manipulates and displays are understood as representing aspects of the organisation. In other words, in

use, the users of an information system interpret it into parts of the organisation, or domain.

It should be noted in addition that the type of information system being designed is operational rather

than managerial. In this respect it must record and present data which on interpretation describes the state

of the organisation so that workers can judge what actions are appropriate to take. We are not interested

in further massaging of that data to produce summaries, help predict trends or in any way help the

manager deal with the profusion of data available from it: this would be the role of a management

information system or, in the clinical case, a system to support epidemiology. Operational workers want

to understand the state of the world as it is, not as it might be given a different sales forecast, or patient

case-mix.

13.2.2 Criticism

The somewhat naive view presented above has come under increasing criticism in recent years. Some of

the criticisms (such as the subjectivity of the 'real world' and the impossibility of representing it in

symbolic form) are raised later in this chapter and so will not be discussed here. Instead we will look at

two ideas described by two authors in an influential book typical of the attacks on this 'classical' view of
information systems: Understanding Computers and Cognition by Winograd and Flores [Winog87]. The

first idea concerns the impossibility of neutral description, and the second the commitment that a good

system designer must show to the user.

The first idea has much in common with developments in language theory in the 1930s, notably the

development of speech act theory by Austin as first propounded in his book'How to do things with words'
[Austin62]. Earlier in this century a school of thought was pre-eminent in philosophical circles. The

doctrine that this school subscribed to was that of logical positivism. This doctrine held that all

meaningful utterances described some aspect of the state of the world, and as such it could be judged a

truthful description or an untruthful one. Any utterance that could not be deemed to be true or untrue was

simply rejected as meaningless. Austin showed that there were utterances that were definitely not

meaningless and yet could not be said to be true or false. For example the phrases 'I arrest you in the

name of the law', or 'I declare war on San Marino' do not describe the world - they act on it to alter it

(assuming the first is said by a policeman and the second by a national ruler). Austin went on to show that

the use of an utterance to act on the world is not limited to these formal and obvious examples, but applies

to all uses of spoken language. Whenever we speak we do so for a purpose - to explain a point, to describe

a situation, to start an argument, to defuse a row, to cause merriment and so on. In short, we all use words

not just to describe the world, but rather to do things to it and our relationship with it. Indeed no utterance

can be totally descriptive and achieve nothing, and in describing the world we are in fact also changing it:

in the case of a description these changes are usually limited to an altered understanding of some aspect

d: \jes\dis\wip\phd\phdtext2. doc

237

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

of the world on the part of the listener. The changes associated with such a description can be

infinitesimal (such as might be the case with the description of systems analysis techniques to a room full

of bored students) or large (such as might be the case with the description of conditions in a famine zone
on national television), but it is change of some sort that is the purpose of the utterance.

We can, with some care, extend the argument originated by Austin covering spoken utterances to other
forms of communication, both for private means such as might be the case with a written letter, or for a
public consumption such as might be the case with a novel or newspaper article. We could extend the idea

still further to cover more diverse media such as painting, sculpture, music, and so on. In fact any time a
medium is used to convey any form of message from the creator to an audience is an instance of
communication, and as such should be seen as being motivated and non-neutral. Winograd and Flores

concern themselves with cases where the medium of communication is a computer, especially information

systems. There are two ways in which computers act as conduits for communication - the first is for

communication between users, the second from the designer to the user.

In the same way that the spoken description is intended to change the world, so is the description

contained within an information system. The users of an information system are endeavouring to effect
change on the organisation they are describing. The motivation for recording data on a computer system
might be simple (such as when the act of recording is specified in the user's job description) or complex
(such as when a doctor records aspects of a patient's condition in order that she can rapidly assimilate the
salient characteristics of his state of health at the next consultation). Although it is reasonable to suppose
that the desired change in the state of the organisation is intended to be beneficial, it is certainly not
neutral. We should bear this in mind when considering the design of the system - its users will not think
of it as a neutral device for recording the state of the organisation, but rather a tool which can be used to

change the world in some way and this use must be understood by designers if it is to be successfully
introduced into the organisation.

A computer system is not a neutral object in its operation: neither should it be thought of as neutral in its
design. For an artefact to be designed, there must be a designer or team of designers. In the case of an
information system this designer (or team) with all her prejudices and preconceptions is often ignored,

and the computer system is seen in itself as an impartial object. Although the object might be impartial,

its actual or intended effect is certainly not. Winograd and Flores liken a computer system to a text which
is used to communicate between a writer and a reader. Although the medium of the message is much
more sophisticated than, say, the printed word, it is still a form of communication between, in this case,
the designer and user. The ideas communicated are often potentially more insidious by virtue of the fact

that computer systems are generally viewed as objective entities by their users. Indeed, generally neither
the designer nor the users is aware of the potential for computers to convey messages from the former to

the latter: this does not prevent the phenomenon - it merely renders it uncontrolled.

The recognition that computers are forms of communication from designer to user is an identification of a

problem, not a solution: how should designers react to this revelation? Winograd and Flores suggest that

any form of communication carries with it some form of commitment. For communication of any sort to

work, there must be shared and understood commitments between the speaker and the listener. There is a

commitment from the speaker to the listener to use words so as to imply a meaning from the utterance
that the listener will reasonably glean. Similarly there is a commitment from the listener to the speaker to

understand the utterance in the sense in which it was intended. For these commitments to work, the

speaker must have an idea of the way in which the utterance will be understood by the listener, and the
listener must be able to determine what a speaker must have meant from an utterance - these depend

d: \jes\dis\wip\phd\phdtext2. doc
238

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

wholly on the context in which the utterance was made, and the unarticulated concepts underlying the
listener's and speaker's understanding of that context. An example given by Winograd and Flores
illustrates the point

.. it is impossible to establish a context-independent basis for circumscribing the literal use of a term
even as seemingly simple as 'water' as shown by the following dialogue

A: Is there any water in the refrigerator?
B: Yes.
A: Where? I don't see it.

B: In the cells of the eggplant. '

In asking the question, A assumed there was a commitment between her and the listener such that B

would understand that she was asking for water to drink (of course, one can think of contexts in which the

answer given did not break any of the unspoken commitments likely to exist between A and B). If we are

considering the design of a computer system as a form of message from the system designer to its users,

we must understand what commitments exist if the communication is to work effectively.

In thinking about a computer system as a medium for various forms of communication, we have

challenged the notion presented in the sub-section on justification presented above. Firstly users do not

think of an information system as purely a representation of the world but as a tool to influence it, and

secondly that a computer system is not a neutral object but carries a form of message from the designer to

the users. That we can understand computer systems with a greater degree of sophistication does not

mean that the earlier and simpler assumption is invalid: indeed, we shall see that this more subtle and
insightful view renders greater still the importance of ensuring a good representation of the domain.

13.2.3 Synthesis

Although the above arguments question the simplistic reasons for arriving at the central assumption, our

more sophisticated view need not change our conviction that we should build a computer system that in

use can be interpreted into the world. We saw that designers as communicators are entering into a

commitment with the listener, or user of the system. To comprehend what these commitments are we

need, to understand how information systems are used. We saw that the earlier assumption that a

computer system is a neutral representation of the world is not wholly valid, and that a more accurate

understanding has it that computers are used in order to create a change in the world. Workers change the

world through communicating statements to each other concerning the domain they are working in. The

terms that are communicated refer to things that are of common concern to the workers. However those

terms are embodied, be they verbal, written or typed, there is a commitment on the part of the originator

and the receiver that they should be understood as talking about those entities that are of importance to

the shared task, and that that understanding should take place within the context of the domain of

activity.

If we can see the way in which the users will exploit the system, we as designers can discern what (one of)
our commitments as communicators must be. As users want to talk about aspects of the world of interest

to them within the context of the domain of activity, we must provide them with a medium by which they
can do this. One of the forms that such a medium might take is a structured representation of that
domain. The fact that the system is structured means that less work is needed to construct a message, and
the scope for 'errors is diminished. The fact that it is a reasonable representation of the domain of activity
means that the terms that go into the creation of a message can be reliably understood as referring to the
d: \jes\dis\wip\phd\phdtext2. doc

239

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

entities of concern to the user. Of course there are many other ways in which we could construct a system
that enabled users to communicate other than to provide them with a dynamic representation of their
domain, but this is one way in which we can create a construct that fulfils our commitment - namely to

allow the users to pass commitment making messages to each other thus influencing the state of the

organisation.

We can see then that while the statement about information systems representing the world is not the

whole truth it can be construed as an aspect of the truth. To this end the method described in the thesis
helps. In some ways, and at some times, the user will expect the information system to behave as a model
of the world - in providing an information system we are entering into a commitment to support this

expectation. When we fail, the user will be dissatisfied. Of course any user of the computer system will
have many other expectations - by addressing one we do not exclude the possibility that she will be
disappointed elsewhere. We can say that a method based on this underlying assumption will help the

process of systems analysis and design - it will not be a tool to cover all aspects of the task. However, as
systems analysis is such a difficult process, we should jump at the chance to use any tool that will provide
us with genuine help.

13.3 Issues concerning Construction of Domain Theory

In this section we will discuss the first step in the systems analysis / design process that was presented in

Section 13.1.2. This step is the construction of the domain theory. Again the dialectic approach is used to

help us in our exploration of the issues involved. The justification explains how we are constructing not a

model of the world, but a theory of a small part of it called variously the universe of discourse, the domain

of discourse, or just the domain. The similarity of the approach with the scientific method is explained

and used (with reference to the latter's 'success') as a justification. The criticism questions this faith in

such a 'rationalist' approach and presents objections which are themselves justified by calling on

philosophical works and the experience of the project. The synthesis accepts that the problems associated

with a more relativist and deconstructionist view of reality will not go away and are indeed fundamental

to our way of thinking, but that if we accept the need for consciously created artefacts such as a computer

system, we will inevitably be forced to make the philosophical 'mistakes' exposed by such a discussion.

The approach advocated does not address these deep problems that will always occur, but avoids others

that many methods make in addition.

13.3.1 Justification

The first step in the information system design process used in the project is the construction of a formal

theory of the domain of discourse. The thesis, or argument, that we are discussing here is that we can

understand the world, and specifically that we can understand it through the use of formal theories that

have been exposed to 'experimental' refutation.

We are interested in understanding a part of the world as it is perceived by a group of workers, in our case

the staff of the Diabetes and Endocrinology Day Centre and to a lesser extent of other directorates. We

call the part of the world (construed by the workers) that we are interested in the domain. We do not want

to make a representation, or model, of the domain - rather we want to understand it and its

characteristics. To this end we construct a theory which can be used to judge the verisimilitude of any

models that might be made. If our theory is correct, then the real organisation (or domain) that we are

analysing should be one of its possible models. If this is the case then other models, if interpreted into that

organisation, might exhibit behaviours that, when interpreted, will be observable in the organisation. In

d: \jes\dis\wip\phd\phdtext2. doc
240

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

this way, we are not describing the domain we have chosen to analyse, but rather a class of objects all of
which share some behavioural similarities with that domain.

As described, what we are doing has many parallels with the scientific method elucidated by the
philosopher Sir Karl Popper in his book 'The Logic of Scientific Discovery' which has been extensively
discussed elsewhere. In this work, Popper points out that we can never prove a theory, but rather only
disprove, or refute, it. A scientific theory attempts to explain some aspect of the world through the
positing of behavioural rules that that aspect of reality obeys. If reality is observed to behave in a way that
has been forbidden by the rules in the theory, then the theory is in error and should be discarded: we say
that it has been refuted. There are two points we should bear in mind that apply to scientific theories as
well as those that endeavour to describe social entities such as organisations. These are that it is in

general impossible to prove a theory, and that an unrefuted theory might allow behaviours that are never
observed.

The Impossibility of Proof

However, we cannot assume that the theory is correct, just because we have not observed behaviours that

refute it.

Firstly we might not have found any counter-examples because we did not look. Popper explains in his

autobiography [Popper92 I that the event in his life that caused him to think carefully about

epistemological issues and thus develop the scientific method was his flirtation with Marxism and

socialism. He argues that for a while in his youth, not only did he believe that the end justified the means,
but also that the means would inevitably lead to the end. It was only after a violent demonstration in

Vienna that the young man reflected on what he believed and realised that not only was there no evidence

to suggest that the socialist utopia would be realised through the means advocated by Austrian Marxists,

but that there was significant reason to suppose that the Marxist theory was wrong. Predictions that Marx

made had been refuted, and the social change he forecast was nowhere to be seen. A theory of a clinical

department is a small thing compared to one that purports to describe social progress (and influences it

considerably). Nevertheless in both cases the need for intellectual honesty remains - we must try our

utmost to disprove any theory before we place any faith in it.

Similarly, we might have looked for counter-examples but not found them. Sir Isaac Newton's laws of

mechanics were tested in extreme conditions for many years and were observed to hold from the very

small (gas molecules) to the very large (the movement of planets). It was only with the advent of
instruments and techniques that revealed the behaviour of components of reality that were even smaller
(elementary particles such as electrons), even bigger (the universe) or faster (light 'particles') that it was

revealed that the theory was at best only an approximation of those that were introduced subsequently
(quantum mechanics, the general theory of relativity, and the special theory of relativity), and at worst

plain wrong.

Neither of the 'erroneous' theories described above could be claimed to be correct, but we would be

justified in saying that Newtonian mechanics was corroborated to a greater degree than Aristotle's theory

about women's teeth as it was tested in more extreme circumstances. The reason why we cannot 'prove' a

theory about the world is that we cannot observe (interpretations of) all its possible behaviours. This is at
least as true about a theory of an organisation as it is about a theory about the physical world.

In fact this problem is more extreme when it comes to observing behaviours in a social domain such as an
organisation. In the case of the physical world, we can test our theories with great rigour by controlling
d: \jes\dis\wip\phd\phdtext2. doc

241

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

and manipulating the environment of the 'domain of discourse'. This is the purpose of the 'controlled

experiment'. We can rarely conduct such controlled experiments in an organisation - firstly because to do

so would be unethical, and secondly because people are fundamentally uncontrollable in this sense. Our

ability to seek counter-examples is thus severely curtailed, but this should not prevent us from looking for

them. An alternative to the running of controlled experiments is presented later on in this section. Before

we discuss this, we should understand another limitation of the process - that a theory might be correct

and yet not say anything useful, or at least be less useful than another equally accurate one describing the

same domain.

The Existence of Better Theories

The mechanism for determining the verisimilitude of a theory described above has been used for many
years to a greater or lesser extent in the scientific community and has contributed to the faith that our
society has in that community's findings'°'

.
The method that was used in the project to construct the

theory has many parallels with this scientific approach, though with modifications to the experimentation

process which are discussed below, and to the underlying philosophy (this is more modest than might be

thought - although the author has a less classical and rationalistic stance than many scien ists, Popper

recognised some of the flaws inherent in the method and accounted for them in his philosophy).

A mechanism for discovering errors in a theory is only half of what we need, however, and only half of
the scientific method as described by Popper. The process of refutation tells us only whether or not a
theory is correct, or more accurately whether or not a theory has been refuted. In the language of set
theory the mechanism allows us to choose to which of two exclusive sets a (consistent) theory belongs -
the set of theories that have been refuted, and the set of theories that have not been refuted yet. If we take
the domain of electromagnetism, we will find many members of the set of not-yet-refuted theories. One of
these will be Maxwell's theory. Another will be the theory that states 'At any time there are a number of

electromagnetic waves each of which has an associated frequency' and -no more. While the former has

been used to guide the development of the electronics industry ever since its inception, the latter tells us

so little as to be almost useless - yet they are both members of the not-yet-refuted set. We can see that we

need more than the logical division of theories provided by the refutation mechanism: we need a

mechanism for discussing the quality of a not-yet-refuted theory so that we can order our corroborated set.
Popper describes this qualitative aspect of a theory as falsifiability: in this thesis, it has been called its

boldness which the author feels conveys the spirit of the idea.

The idea of the boldness of a theory can be easily expressed - the bolder a theory, the more states and
behaviours of the domain it prohibits. Popper says '... theoretical science aims, precisely, at obtaining
theories which are easily falsifiable in this sense. It aims at restricting the range of permitted events to a
minimum' ([Popper80] pp4l) and again 'Not for nothing do we call the laws of nature 'laws': the more
they prohibit, the more they say' ([Popper8O] pp] 13). In the case of the domain of electromagnetic

radiation that was discussed in the previous paragraph, Maxwell's equations are more useful precisely
because they prohibit a greater number of states than the single sentence theory stated above. If we have

faith in Maxwell's theory, we can rely on never observing those behaviours prohibited by it. If we had

access only to the less bold theory, we could not exploit the fact that nature appears to work in a much

more predictable way than that theory suggests. The reason why the theory which prohibits more states

and behaviours is a bolder theory is that it is easier to refute. There are many behaviours that the bolder

theory prohibits that the less bold one permits. If one of these is reliably observed, then the bolder theory

xxi Although some question the 'honesty' of workers who claim to have used the mechanism [Feyer93]. the author would contend that this
shows that Poppet's ideas should be understood as a framework for reasoning rather than a list of actions
d: \jes\dis\wi p\phd\phdtext2. doc

242

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

is refuted. By asserting that a bold theory is a correct description of the domain, we are taking a greater
risk that we shall be shown to be mistaken, but as long as we have not been thus discredited, our
predictions will be more specific and thus more useful. The goal of science is thus not just to develop

correct theories, but correct theories that are as bold as possible.

We are given two directives by the scientific method that together guide our actions. We must first create
a theory that is as bold as possible, and then try as hard as we can to refute it. The scientific method has

no contribution to make as to the relevance of the domain (as given by the interpretation of the
instantiated specialisation state components of the theory) to the problem we are currently interested in.
Maxwell's theory is bold and successful in the domain of electromagnetic radiation and has undoubtedly
had a considerable impact on our lives. It will prove to be of little benefit to us in our current task of
trying to understand the behaviour of clinical directorates. The difficulty of ensuring that the formally

specified domain is pertinent to our problem is discussed below in Section 13.3.2.

The next two sub-sections explain how we interpreted the two scientific directives to the issue at hand -
constructing a theory of the clinical domain.

The Experimental Process

To construct a theory of a clinical directorate is not in itself hard. Anyone who works in a hospital has his

or her own ideas about what goes on and why. Formalising these ideas into a mathematical statement is

not easy, but the nature of this task is not the subject of this thesis so we shall not discuss it here.

Attempting to refute the theory is as we have seen an essential part of the process. Controlled experiments

are not possible (certainly in this domain, and probably in most that are concerned with 'human activity

systems'). We need some form of experimental process that does not need such controlled conditions.

The domain, as we have said, is not some form of objective reality'' ,
but rather a 'social construction'

that is in some way shared by all interested parties in the domain (this idea is discussed in more detail

later in Section 13.3.2). In this sense workers in a directorate are not 'impartial observers' in the

'scientific' sense but are aspects of and participants in the domain. The ideas, opinions and recollections

that these participants have of the domain are more than proxy observations of some reality - they are, or

at least can be, direct revelations of that reality itself (though we must not discount the possibility of a

recollection or opinion being wrong). Accessing these ideas and recollections is possible, and is the basis

of the experimental technique. The purpose of the experimental process Is to provide counter-examples

with which we can refute the theory in question: one of the directives that the scientific method provides

us with is that we should pursue our objective of refutation with the utmost vigour. This means that

experiments should test those aspects of the theory with which we have least confidence, or seem to be

most surprising in their predictions. We must therefore seek out surprising or unlikely properties of the

theory: these are expressed as theorems - rules that we claim to hold true in the domain.

Empirical science exploits this process and it is only those that have been tested most rigorously that are

accepted as 'true' by the scientific community. Newton's theories of mechanics have been proved in this

manner a number of times (and in this century found wanting). One of the surprising predictions the

theory made was the existence of an eighth planet. For many centuries astronomers had known about

seven planetary members of the solar system. It was felt that this catalogue was complete, and there were

several explanations propounded as to why there could only be seven solar planets. The nineteenth

X)L" It should be pointed out that in many ways the idea of scientific objectivity too is flawed: observers can never be totally detached from
their observations, both in terms of their social constructions of the concepts and categorisations they are using, and in terms of their
dynamic influence of those observations, a property most famously described by Heisenberg as his 'uncertainty principle'.
d: \jes\dis\wi p\phd\phdtext2. doc

243

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

century saw the introduction of more powerful telescopes meant that planetary orbits could be studied

more closely. In the course of these investigations a previously un-noticed perturbation in the orbit of the
(assumed to be) outermost planet Uranus was discovered. Newton's theory predicted that the perturbation

could be explained by a number of external influences, the most simple of which was the existence of an

unexpected eighth planet with a certain orbital radius and mass (and hence size). When astronomers

searched the part of the sky prescribed by the theory they found a shadowy object that we now know as
Neptune.

Just as we can find surprising properties of a scientific theory, so we can of a theory of a human domain

such as the one we have constructed. The experimental process used in this project involves deriving such
theorems and endeavouring to elicit a counter-example from a participator in the domain through means
of discussion and interview.

A crucial point should be made here. In order to elicit a counter-example from a worker in the domain it
is not necessary to present or explain in detail the theory itself. It was decided that the mathematical
structure of the theory as developed in this project should never be shown to a clinician - it is not
important for him or her to understand the abstractions and behavioural structures in the theory - he or
she is only required to give counter-examples of theorems to the analyst. It was considered that the best

way to do this was to induce as broad a discussion as possible in the behavioural area which the theorems
in question affected. In a typical interview the interviewee was not presented with an English statement of
a theorem to refute, but was encouraged to describe his own understanding of a particular area. By

endeavouring to draw counter-examples from the participant being interviewed, we avoid the necessity of
having to teach him or her about the theory. Valuable contact time with workers in the domain is thus
spent learning from those workers rather than teaching them how the analyst thinks. It is the author's
contention that many analysis techniques suffer from this drawback where the major education effect is of
the domain worker rather than the analyst.

Although the interviews described, being little more than a guided conversation with a clinician, seem
about as far away from the formal scientific experimental process as it is possible to get, they nevertheless
are based around the same philosophical concept. This is the desire to find counter-examples (or other
refutative evidence) to the properties embodied in the theory: particularly properties which are in some
doubt or seem unlikely.

An example of the elicitation of a 'counter-example' from a discussion was that which resulted in the

abandonment of an early type structure to represent the behaviour of the day centre. The author presented
some of the findings of the theory at a departmental research meeting. The areas that were chosen for

presentation and discussion were those that were open to some questioning, although of sufficient

credibility to be worthy of consideration by the departmental staff. Thus the type structure of the clinic

was discussed, and the life-cycle of activities was not. There are valid theorems that could be clearly
discussed with clinicians concerning the history of an activity. For example an activity that has been

completed may not re-commence. This property did not seem particularly controversial or a useful subject
for debate and so was not dwelt on. The hierarchy of types on the other hand implied a behaviour in the

clinic which the author believed to be true (it had already been 'tested' in earlier interviews) but

nevertheless was quite surprising. This was that the paramedical staff had always completed a sequence of

consultations before the next doctor consultation. It was asserted by a clinician present that there were

cases where the paramedical staff dispensed care totally separately from the doctor, and thus the two

processes - the six-monthly review of the patient by the doctor and the periodic encounters (often patient

d: \jes\dis\wi p\phd\phdtext2. doc
244

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

instigated) with the specialist nurse or dietitian - can run in parallel. The details of this 'experiment' were
discussed in Section 9.5.3.

While the setting up of interviews for the purpose of exploring a particular area of the theory is similar in

many ways to the experimental process, there are other benefits to be gleaned from discussing the domain

with its participants. During discussion an entirely unrelated topic or fact might be mentioned that the

analyst had not intended to investigate further, and yet refutes one of the theorems of the theory. An

example of this might be the discovery that some activities seemed to have more than one patient in

attendance at a time. That an activity referred to only one patient was not open to question. However,

while discussing the activities of a specialist nurse with a doctor, it transpired that the 'patient education
sessions' which they ran were generally attended by half a dozen people'° . The way that this refutation
was dealt with is explained more fully in Section 10.2.2.

The interview, being a form of experiment, was the most important refutative mechanism used in the

project. There were others however, the most important of which are 'refutation by observation' and
'refutation by inspection'. Refutation by observation takes place wh(na counter-example to a theorem is

observed directly by the analyst. For example, in a very early version of the theory (before the first attempt

at formalisation) all clinical activity had been divided into tests, anamnestic consultations and
interventions. Sitting in a clinic session with one of the clinicians, it became apparent that any such
distinction was meaningless as each consultation consisted of all three - testing the eyes and blood

pressure one minute, taking a medical history the next, and advising the patient on their lifestyle

(education is one of the most important interventions in the care of diabetes) the next.

Refutation by inspection is the last refutative mechanism used in the project. While the 'experimental'

interview is the most important conceptually, refutation by inspection is the most useful. This involves the

use of knowledge accumulated by the analyst to see if he or she can find a counter-example to the

theorems or laws implied by the theory simply by looking at it. An example of this was the refutation
described in Section 9.3.3. It was realised that the insistence of resource sharing for any ordered activities

meant that 'Blood Tests' where phlebotomy preceded analysis were disallowed. The analyst did not need

to ask a clinician about the validity of this invariant - it is clearly invalid. Through inspecting the theory a

property was 'discovered' that was deemed incorrect based on the analyst's own understanding of the
domain. Care must be taken here however - it might be obvious to the analyst that a theorem is incorrect

but the analyst could well be wrong in his or her assumptions. The construction of the domain by the

analyst is inevitably going to be very different from that of the clinician, and it is for this reason that the
'experimental' interview is the most important mechanism.

The Boldness of the Theory

We have seen that there are a number of mechanisms that we can use to refute the theory that has been

developed. This will help us move towards a theory that is 'correct', or at least more correct than one that
has been refuted. This alone is not enough - as we have seen, a theory can be correct and still useless. We

need to enhance any theory to forbid as many behaviours as possible (within the limit of refutation) - it

needs to be made as bold as possible. There are two ways in which we can do this: by the introduction of

new constraints on existing state components; and by the introduction of new state components that
interfere with existing ones. We shall see how these two forms of theory enrichment were used to develop

the domain theory that has been presented.

xxiii lt would appear that this is a fairly common mistake to make. The operational requirement of the Outpatient Appointment System for
St Thomas' Hospital specified that an appointment slot should never be associated with more than one patient.
d: \jes\dis\wip\phd\phdtext2. doc

245

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

An example of a case where existing state components were tied together by invariants so as to constrain

the number of behaviours possible was the specification of the interaction between the graphs over

activities: Before and After. When the theory was first constructed no constraint between these two

relations was defined. As the analysis progressed, it became clearer what it meant for an activity to be

Before, or During another. To represent this emerging understanding a greater semantic richness was
introduced into the theory. This semantic richness was precisely represented as a reduction of possible
behaviours. This reduction of behaviours was in turn represented through the specification of certain

states as being 'illegal': in short, through the use of invariant properties that could not be violated. Firstly

it was noticed that the precedence of activities did not really apply to activities that were during one

another - thus all states where an activity is in the relation Before with one of its ancestors through
During are disallowed. A subsequent realisation was that the conventional understanding of During

incorporated notions of encapsulation - if an activity was Before another, it was also Before all those

activities that were During it. Thus all states where an activity is Before any others that are not 'siblings'

were declared to be illegal. All states that are excluded by the former prohibition are also excluded by the
latter, and so one invariant can express both properties - this invariant is 111. Both of these prohibitions

constrain behaviours without the introduction of new state components. The theory without the invariants

was just as 'correct' in that there are no behaviours allowed in the constrained theory that were disallowed

in the unconstrained one: if the constrained theory is unrefuted, then so too will be the looser one.
However, since the more highly constrained theory has a greater degree of semantic content by virtue of
the introduction of the prohibitive rules it can be said to be a bolder, and so better, theory.

Another case where existing state components were constrained so as to reduce behaviours was discussed

in Section 9.4. Here the existing state components are Activities, its subsets, the various graphs over them,

and Types and its structures. At one stage of the theory's development, the only constraint involving these

components ensured that any activity structure could be projected onto firstly Can-include and then
TypeGuide (given by invariant 132). This property was not refuted, but still allowed what seemed to be

unrealistic behaviours. According to the theory, not only could an activity of type Dietitian Care include

one proceeding activity of type Dietitian Consultation, it could equally contain many activities of that

type, all of which were proceeding. It was asserted that this is not observed, and two invariants covering

the general case were introduced. These were invariants 126 and 127 which state that no two siblings
(through the Includes relation) can both be proceeding and of the same type, or both be requested and of

the same type. Again, this constraint does not add to the scope of the theory but through the prohibition of

certain states (and hence behaviours) increases its semantic content.

Not only should we strive to constrain the behaviours allowable by the theory within the limit of

refutation, but when a particular theorem is refuted, we should ensure that a new theory, while allowing

the existence of the observed behaviour, is still as restrictive as possible. An example of this is discussed

in Section 10.2.4. The theory originally stated that a patient could be physically present at only one

activity at a time. The example of the chiropodist consultation, at which a patient must be present,

including a Dr Pop-in which the patient must also attend, refutes this. Instead of abandoning the invariant

altogether, allowing patients to be physically present at any activities (that they are the subject of), the

new theory allowed patients to be present at more than one activity only if they are all direct ancestors or

descendants of each other. In this way the counter example that refuted the theory is accommodated but

the increase in the number of behaviours allowed is minimised.

The above three examples illustrate how invariants were introduced to the theory so as to reduce the

number of possible states that models could exist in. We can also make the theory 'bolder' by introducing

new state components that interfere with ones that already exist. An example with this is the introduction

d: \jes\dis\wip\phd\phdtext2. doc
246

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

of first the relation Can-include and then the structure TypeGuide. By the time the theory has been

refined to ATClassl, all activities are defined as being created with a type that does not subsequently

change. At this stage an activity's type is not constrained in any way other than to insist that it is a

member of the set Types. The next refinement introduces a new state component and associated invariants

that constrain the number of behaviours. The finished theory uses the structure (a triple) called
TypeGuide, but the ideas behind its introduction are equally well illustrated through discussion of an

earlier theory that used the graph Can-include and we will thus use this relation for simplicity.

Can-include is an acyclic graph over types that does not change after being set up (in this version of the
theory). As each activity has a type, we can project a structure of activities into type space. The invariant

that is introduced with this new state component insists that the projection of any permissible activity

structure into type space is a subset of Can-include. By introducing this new state component and its

associated invariant we massively reduce the number of possible states of a model of the theory. We are
forced to reduce the number of allowable states no matter what (legitimate) values we give to the relation
Can-include: as Can-include is an acyclic graph, there are more pairs of types that are excluded than are

allowed (ie 2*# Can_include S# Types x Types for any allowable sets Types and Can-include). This is a

case where a new state component was needed to represent the constraint we wanted to describe, but the

number of possible states of models of the theory after the introduction of the new state component is less

than it was before.

It is generally not the case that the introduction of a new state component that is not constructed from

existing carrier sets constrains existing behaviours. Can_include was constructed from an existing carrier

set, the set Ta. The introduction of types also introduced that carrier set, and so we would not expect the

appearance of Types in the theory to constrain behaviours. We might take the introduction of the set

Patients as an example of this case. There are all sorts of invariants governing the interaction of activities

and patients, such as the association of every activity with exactly one patient, and the insistence that

every activity in a given structure is associated with the same patient: these do not represent reductions in

the volume of state space over the theory before Patients was introduced. In fact the introduction of a new

state component massively increases the number of possible behaviours that a model of the theory can

exhibit: for every valid state before the new state component, there will be at most the cardinality of the

new set valid states after its introduction. However, if we put any constraints on the interference of the

new set with the existing state components, we have still managed to embolden the theory. The reason for

this is that we should not measure absolute numbers of states prohibited, but rather the ratio of the

'volume' of state space forbidden to the volume of state space permitted. If we introduce a new totally

disjoint state component that behaves independently of the existing system, we have not changed the ratio

of the number of forbidden states to the number of permitted states meaning that the theory is no bolder

than it was. If we define an invariant that acts to mutually constrain the states of the existing system with

the new set, then we have moved some of the previously permitted states into the forbidden region of state

space, thus increasing the ratio of forbidden to allowable states. By doing this, we make the theory easier

to refute: for every state that was allowable before, there are a number of new states that are forbidden

(where the previous state components keep their allowed values, but the new set takes values that are

prevented by the mutual constraints imposed by the invariants). Because the theory is easier to refute, it is

bolder. The introduction of new state components that interact and interfere with the existing system is

something that should be welcomed, and is in keeping with the general theme of theory emboldening
discussed in this section.

The construction of the theory was driven by the desire to create a description of the domain that was not
just unrefuted (after all reasonable attempts to do so), but that was bold and thus a 'realistic' and useful

d: \jes\dis\wip\phd\phdtext2. doc
247

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

reflection of the perceived reality. The previous part of the thesis that presents the results is constructed in

such a way as to represent the increasing enriching and thus emboldening of the theory. For further

examples, the reader is particularly referred to Section 10.3.5 that describes the introduction of the set
HCP, and Section 10.5.5 that describes the representation of organisational boundaries.

Conclusion

In the last section, we have discussed the conceptual underpinning to the method used to derive the
domain theory that is presented in Appendix 2. We have shown how the scientific method as originally
defined by Sir Karl Popper acted as the basis of the approach. The method of refutation of existing
theories has been modified so that the controlled experiment has been replaced by the 'experimental
interview', and examples of this were discussed. The development of the theory was guided by the second
'scientific imperative' - the desire to create a theory that is as bold as possible in that it prohibits the

maximum number of behaviours or states of models of the theory.

In the next section we will consider what shortcomings and problems with the method were encountered

over the course of the project.

13.3.2 Criticism

In this section we will consider some counter arguments that suggest the approach described above to the
derivation of a domain theory is at best simplistic, and at worst fatally flawed. The arguments presented
can be summarised as follows. The conduct of a refutative 'experiment' can be extremely difficult if not
impossible for some theorems, and might anyway give misleading results. The development of the theory,
although encouraged, is in many ways arbitrary as far as the described method is concerned. The
'constructed' and personal nature of reality, although recognised in the method, causes deeper problems
than have been addressed. Finally, mathematics might be a wholly inappropriate medium with which to
express such a socially complex domain as a clinical department.

The Difficulty of Refutation

There are a number of reasons why refutation can be extremely difficult. There are many reasons why we

might not be able to refute an incorrect theorem - this sub-section lists a few that were discovered over the

course of the project.

Firstly some behaviours can take a very long time to refute. This might be because counter-examples are

observed very infrequently in which case we should not necessarily worryx"1° - models of the theory, and
hence well-derived information systems, will normally behave as expected if this is the case. More

awkwardly, it might take a long time to observe a refutative example (or elicit one from a domain

participant) because the behaviour it applies to is very slow. A case in point is the evolution of the clinic
itself in terms of its operating procedures and organisational rules. This was discussed at some length in

Section 8.3.5, but will be recapitulated here to support the current argument. Although the theory does not

try to explore these processes of organisational evolution, it does try to represent valid states of

organisational structure at (fixed) moments in time. This it does through the use of the various invariants

governing the interaction of Types with itself and Activities. Although it is possible to describe the state in

a single clinic (as represented by, for example, the specialisation of Types and its structures to the

DEDC), it is much more difficult to identify general rules that apply either to a number of different

xxiv Note that in certain cases it is the infrequent events that are the most significant. A diagnostic system that failed to spot a particular
condition merely because it was rare would be of dubious benefit. It is considered that these 'rare' cases are less significant in the realm of
organisational & administrative behaviour.
d: \jes\dis\wip\phd\phdtext2. doc

248

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

organisations (remember that before specialisation, the theory is supposed to be general for a number of
departments), or to the same organisation as it develops over time. In order to refute a general theory

about the organisational structures of clinical departments, it would be necessary to construct

specialisations for a number of these different medical areas. Although other clinical domains were
investigated (particularly the Diabetes department at the Medway hospital and the Dermatology

Directorate at St Thomas' Hospital), only the DEDC at St Thomas' was explored in any great detail. Even

if we did manage to construct a specialisation of different directorates or clinics, it would not be clear that

a refutation was the result of incorrect rules governing the structure of all medical domains, or of a poor

specialisation. In other words we would not know whether the values of the set Types and its structures, or

the invariants governing them were incorrect.

Another reason why it is difficult to refute a theory is the inevitable blindness of the analyst when it

comes to understanding the meaning of an interviewee during one of the 'experimental' interviews

discussed above. This is similar to the idea of paradigm traps discussed below only more immediate. We

have seen that we do not want to explicitly represent the user's concepts of the world she inhabits, and

that we want to elicit counter-examples to the theory we are developing so as to be able to construct

models that exhibit familiar behaviours. It is thus up to the analyst to understand which concepts in the

theory describe the entities being discussed by the participant. This can, to a certain extent, be avoided

through the use of the implicative mechanism of the mathematics. When confronted with an example of a

behaviour, the analyst can question the interviewee about a property implied by that behaviour taken with

the rules in the theory. It is still easy to make 'mistakes' as a result of assumed interpretations of the

behavioural descriptions elicited from the domain participants. A good example of this is the 'DNA'

activity which the theory does not currently represent. The reason for this is the difficulty of finding out

what concept is being discussed when we talk about such a thing. A 'DNA' is a 'Did Not Arrive' -a visit

or consultation an expected patient did not show up. These are genuine entities in the DEDC as construed

by its staff and statistics are collected which detail how many 'DNAs' there were, and to which District

Health Authority they could be assigned. It is not clear however, which abstract concept such a thing

belongs to, or whether it needs a concept of its own to describe its properties. For example, it might be a

type of activity in which case what was a request of one type would become, on the non attendance of a

patient, a proceeding activity of another type. Alternatively it could be an attribute that could be attached

to any activity that patients are able to attend. The reason why the latter approach was not used is because

when questioned in an interview, one of the clinicians was emphatic that the DNA was a sort of medical

encounter, only with the patient absent, and medical decisions might be taken in it. From this explanation

it would seem that a DNA was indeed a type of activity with all the attendant problems - common sense

would tell us otherwise however. It was not apparent what the appropriate course to take was -

questioning the clinician further would quickly have resulted in confusion for all concerned. As a result,

the problem was put on one side to return to at a later date (it is listed as one of the outstanding tasks in

the conclusion to Chapter 10). This might seem like a trivial example, but is one which the author has

noticed: in general it is very difficult to identify areas where incorrect, or dubious, interpretations of the

discussions with stakeholders have been made. It is clear however that such problems of interpretation

inevitably exist.

A reason for difficulty in the accurate conduct of the experimental process as described will be obvious to

the reader from the rather dry way in which the scientific method has been presented. Science is used to

manipulating and forcing the natural world so that it answers the questions that are of interest. Francis

Bacon described this tendency in a delightful and famous quotation:

d: \jes\dis\wip\phd\phdtext2. doc

249

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

'... if any expert Minister of Nature shall encounter Matter by mainforce, vexing and urging her with

intent and purpose to reduce her to nothing; she, contrariwise ...
being thus caught in the straits of

necessity, doth change and turn herself into diverse strange forms of things. ... the reason of which

constraint or binding will be more facile and expedite, if matter be laid hold on by Manacles, that is by

extremities. '

The rather fiendish language used should not bother us in the normal course of science (at least the

physical sciences - we, though maybe not Bacon's contemporaries, would blanch at the application of this

attitude to, say, animal experiments) - it is if anything an amusing thought that a controlled scientific

experiment can be seen as the torture of Mother Nature. It would no longer be amusing if we understood

that the subject matter of our experiments was living people rather than inanimate 'brute matter'. The

consequence is that the experiments that we claim to be conducting through the structured interviews

described are almost totally uncontrolled. There are all sorts of ways in which the 'results' we obtain

might be erroneous. An obvious one is through the deliberate misleading of the analyst by the

interviewee. This is particularly likely if the subject matter is politically highly charged. This is one of the

reasons why the analysis confined itself to the less contentious area of the operation z1 behaviour of the

directorate. Even so we should remember that no human activity is ever totally apolitical. More

prosaically, the interviewee might be disinterested in the line of reasoning being pursued in the

discussion, or unable to see the point, or just annoyed about being badgered repeatedly about the same
issue. All of these will result in unsatisfactory elicitation of refutative counter-examples. Having made

these points, the author would like to stress that in the course of his analysis, all the domain workers who

were interviewed were extremely helpful and forthcoming with information, and if they were bored by a

particular line of argument, never showed it. This might not always be the case however, and the geniality

of the eventual users of a computer system is certainly something that cannot be relied on.

Lastly, we will revisit a problem that was discussed previously in Section 10.3.4 - that of the paradigm

trap. The term is taken from work by the philosopher Thomas Kuhn [Kuhn70]. Kuhn said that Popper's

presentation of scientific progress was overly optimistic and orderly. Rather the course of science could be

viewed as a sequence of revolutionary paradigm shifts, between which normal science (as described by

Popper and his followers) proceeded, but without which human knowledge would not progress

significantly. A paradigm is a way of thinking, a 'conceptual framework within which scientific theories

are established' [Chamb89]- great leaps forward in science are enabled by the discovery of a new and

more powerful paradigm which we can use to think about a particular part of science. The classic

example that is often given is that of the replacement of Ptolemy's cosmology by that of Copernicus.

While Ptolemy's model of the cosmos, with the Earth in the centre and the planets and stars on epicycles

circling it, had been adequate for hundreds of years, it was holding back the development of the subject.

In order to make its predictions more accurate, more and more complexity had to be introduced to the

basic model until it became essentially unworkable. This is not to say that the theory could not or did not

develop. It was the basis of astrological and astronomical calculations until late in the fifteenth century -
if an error was identified the theory was refuted and a new one proposed which would generally be

identical to the previous save for the addition of a new epicycle. It was not until the Copernicus published

his De Revolutionibus Orbium Coelestium in 1543 that this paradigm was replaced with the familiar one

which has the sun as the centre of the solar system, and the earth as one of several planets orbiting it. The

advance that this new paradigm represented cannot be understood in terms of the refutative process, or

even of the need to 'embolden' the theories that have been developed using the old paradigm, as both of

these were in evidence during the pre-eminence of the Ptolomaic system. However, the conceptual clarity

embodied by the Copernican theory led to a new golden age of astronomy, enabling the discoveries of

Brahe, Kepler, and eventually Newton. The history of science is punctuated with these paradigm shifts

d: \jes\dis\wi p\phd\phdtext2. doc
250

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

which act to release intellectual bottlenecks, and galvanise progress in its composite disciplines. Further

examples from physics are the creation of quantum physics by Bohr, Heisenberg and Schrödinger, and the
two theories of relativity, special and general, proposed by Einstein. An example from molecular biology
is the discovery of the helical structure of DNA by Crick and Watson and the associated 'decoding' of the

genetic message. What this tells us is that there is another mechanism at work in the construction of
theories of the world over and above the scientific method described which is more akin to inspiration

than conventional scientific endeavour. The method espoused by Popper cannot help us find new and
more powerful paradigms, nor can it tell us when an existing one has been exhausted. We can only rely
on our own feeling for elegance, simplicity and clarity for that.

An example of a paradigm trap that the author 'fell into' is that concerning the generation of new
activities. The paradigm that was initially used was one which viewed the activity as being the creator of

new activities. Any activity that was created must have another activity as its creator. Not only must an

activity have a creator, but that creating activity must be guided by rules over types: certain types of

activities would only be able to create certain other types, depending on the circumstances. Rules were

proposed and defined as invariants which structured this behaviour. In order to reflect the subtleties of

referring authority within the directorate, these rules became increasingly complex. A simplified account

of the evolution of the behavioural constraints on the creation of activities was presented in Section 10.3.

In that section we saw that a structure called InLoco had to be introduced which allowed one activity to

act as if it were another. This needed to be changed from a relation to a triple, and the attendant
invariants defining its interaction became increasingly confusing and unwieldy. Even with this greater

complexity, refutative counter-examples could still be found. The prospect of the need for structures and

rules of ever increasing elaboration and decreasing clarity presented itself. One solution to this would
have been to have admitted defeat and said that the constraints on the creation of new activities was

outside the scope of the description embodied by the theory. This was considered unsatisfactory as the

structure of activity creation was perceived to be at the heart of the intended domain of discourse - the

operational behaviour of collaborative clinical groups. In the event this was not necessary as it was
decided that a new paradigm could be used to guide the description of the relevant processes. This

involved the rejection of the idea that activities begot other activities, and replaced it with one where
health care professionals acted as the creators. With this new paradigm, although some of the structures

are of a similar complexity, the author feels that a greater degree of conceptual clarity has been achieved,
facilitating future 'progress' both in terms of accuracy of representation, and in terms of concision and
lucidity.

Although new paradigms for understanding parts of the domain can assist the development of the theory
greatly, the 'scientific' method espoused does not help us to discover what these might be and when we
might need them. Indeed, it might be argued that the labour associated with representing the
consequences of the use of a new paradigm in formal notation discourages us from looking for one.
However, we cannot delude ourselves when a particular aspect of the theory needs a different underlying
conceptual structure. Some examples of areas in the current theory that are in need of new paradigms are
given in the next Chapter.

An Arbitrary Description

There are two senses in which the description represented by the current domain theory is an arbitrary
one. Firstly we can find nothing in our method which tells us what an appropriate 'scope' of the theory

might be, and secondly we are presented with no advice on how to represent the phenomena we observe
and elicit from the domain participants.

d: \jes\dis\wip\phd\phdtext2. doc

251

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

To take the former point first, we do not and cannot know what the scope of the theory should be. In other

words, we have no way of knowing whether an observed property of the domain should be included in our

description or not. This is not an omission, but a fundamental problem of this approach, and indeed of

systems analysis in general. The essential problem is that we are endeavouring to describe a part of the

world and not an information system. A central tenet of the method used over the course of the project is

that we cannot understand the nature of an information system that will in some way support the

organisation before we understand the nature of that organisation. Similarly the particular part of the

organisation that we want to represent will depend on the function of the information system. Clearly this

is a 'catch 22' situation. However, we cannot avoid focusing on a particular area of the domain for to

describe 'everything' is infeasible. We must make some broad assumptions therefore about the sort of
information systems we are eventually hoping to design, and guide the scope of the description on the

basis of those assumptions. We saw how some assumptions of scope preceded the formal phase of the

analysis in Section 7.3: we cannot be sure that those assumptions are valid, and even so they only provide

a measure of guidance and to a great extent we are still 'groping in the dark', relying on intuition and

experience. Having accepted the assumptions of Chapter 7 (namely that we should describe a clinical area

as generically as possible, concentrate on operational behaviour, and avoid medical details), we might
describe an area of the domain in insufficient detail, or equally in too much detail. An example of each of

these cases is presented below.

Firstly we might not examine a particular part of the domain in sufficient detail. It is difficult at present to

say categorically where the domain theory is inadequate in this respect. Some areas where more work

could usefully be done are booking (so as to see whether the hospital's OPAS booking system is overly

prohibitive as discussed in Section 12.4.6) and clinic lists. The details of these cases are complex - for the

sake of example we will take the straightforward case of medical exclusion of certain types of activity

which clearly illustrates the points raised. The specialisation of the theory to the DEDC makes reference

to a type of activity called Diabetic Pregnancy Care, and to another called MARS Care. The MARS clinic,

which is periodically held in the centre, is for men only being concerned with issues related to male
impotence. Similarly the Diabetes Pregnancy Care activity type only concerns women. The theory as it

stands does not feature gender at allXX°, and consequently allows for unrealistic behaviours. For example,

a patient is allowed to attend MARS sessions while being given pregnancy related care. This is clearly an

impossible behaviour - although the theory does not forbid behaviours that are observed which would

mean that we would have to re-examine our understanding of the domain, it does allow behaviours that

will manifestly never be observed. In this sense the theory could easily be made bolder and hence better.

Clearly one has to stop analysing the domain somewhere if an information system is going to be designed

in a finite time, but where we decide to effect that stop is an entirely arbitrary decision. In this case a

reasoned argument could be made justifying the decision not to get involved in this consideration of

which activities prevent which others - for one we would very quickly get caught up in the morass of

'clinical knowledge' for which many have tried and failed to provide a valid generic theory. However,

there is nothing in the method described which tells us when we should explore further, and the decision

to stop analysing at a certain point is entirely informal.

An example of an area where perhaps too much effort was expended was in the issue of internal referrals

and activity creation discussed above in Section 10.3. Although a reasonable (albeit possibly overly

complex) theory has been defined and presented to describe behaviours in this part of the domain, the

arrival at the final version of this took a great deal of time. If it had been decided that this was outside the

xxv In fact, gender has been specifically excluded from the theory on clinical grounds related to the nature of endocrinology (see the un-
numbered section titled 'Conclusion to Chapters 8,9, and 10').
d: \jes\dis\wip\phd\phdtext2. doc

252

Jeremy DH Holland
The Requirements Analysis & Design fora Clinical Information System: A Formal Approach Volume I: Thesis

scope of the theory, other areas could have been tackled which would have provided a greater degree of
insight. Of course it is impossible to know in advance how much effort will have to be invested in order to

get a good description of a particular facet of the domain's behaviour, but in hindsight we can be wise and

say that perhaps other areas would have been more fruitful if attacked with the same amount of vigour.

In short, in both these cases we are given no help in knowing when to stop our analysis - the questions
'have we already gone too far' and 'have we not gone far enough' are not answered at all by the method

used, and inevitably many will deem the decisions that were taken to be poorly considered.

There is another way in which the description is arbitrary apart from questions of theory scope - this is in
the structure we choose to represent the phenomena we observe. The problems of interpretation - knowing

what perceived or described entities to assign to which concepts has already been touched on and will be
discussed again later on in this section. There are more pernicious problems here however.

Firstly we have made assumptions as to the nature of operations. An operation can be regarded as a node
in a tree of possible behaviours of a model of the theory. The number of possible states resulting from an

operation depends on the pre-state and the particular operation invoked. It might be that a single

operation that allows for a profusion of post states could more reasonably be represented as two distinct

but more restricted operations. An example might be the SuddenStart operation which creates a new
activity that is in the set Proceed. The decision to include this single operation instead of a normal

. Create followed by a Start is fairly judgmental, being justified only by the assertion that for certain types

of activity the state where that activity is a request is never observed. This argument could easily be

reversed however, and we might say that all activities are initially requests, but some for an
infinitesimally small time. Similarly the categorisation of operations is down to personal preference. We

could have chosen to represent the Start and . End operations as one, called perhaps ChangeState, which
moved an activity to the set Proceed or Complete depending on its current status. These are fairly trivial
issues, but we should be aware that they exist, and that we have made value based decisions with regard to

their outcome.

A more subtle problem concerns the decision to represent a particular phenomenon as a state component
rather than an operation, or vice versa. We have chosen to describe the part of the world we are
concerned with in terms of values of state components that can be interpreted into the world. The

operations we define describe how that state changes. There is a clear separation here between 'object' and
'process'. If we look more closely at the objects, we might be able to imagine representing some of them as
processes, and similarly if we investigate a particular process described by a single or sequence of
operations. To take the first case, many would find the terms 'operation', 'event' and 'activity' fairly

synonymous. Why have we chosen to represent one of these concepts, activity, as a state component? The

activity is a process - it is something that happens - and to many people it might be a completely counter-
intuitive notion to represent such a thing as an object. The notational structure chosen does not require
processes to be instantaneous - only that we describe the state of the system before one may start, and
following its successful conclusion. Indeed we could very well choose to think of the activity as an
operation (and indeed some will certainly be 'operations' in the surgical sense). If this decision had been

taken from the start the structure and feel of the theory would be very different. The choice made in this

respect seems to have worked reasonably well, but we must again be aware of its arbitrariness, and alert to
possible alternatives.

It is interesting to note that these issues are reflected in philosophical ideas and movements. For example,
the Greek thinker Heraclitus eschewed the notion of the world having a state which was subjected to

d: \jes\dis\wip\phd\phdtext2. doc

253

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

change. Indeed he is quoted by Plato as claiming that 'all is flux' (described for example in [Russell89]).

The notational framework chosen does not readily support this way of looking at the world (at least in the

way it has been used in this project), but others (for example CCS and CSP) would do so more readily.

The fact that questions concerning the representation of a thing as a process or an object have been

discussed since the ancient Greeks indicates the persistence of the issue. The debate is still relevant to the

area of medicine. In an early version of one of the 'feeder' projects for the Common Basic Specification of

the NHS (DiabPTech), the 'object of care' was represented as a process to reflect the dynamic nature of the

living organism:

'... the object of care ... is represented as an activity. This reflects the reality that an object of care
continually changes for example the process of ageing. This difficult notion is necessary if we consider
populations which are continually in a state of flux, or consider biochemical or physiological components
of the object of care which are never static. ' [Harrison89].

In none of these above areas - the question of theory scope, the identification of operations, and the
division between state and behaviour - dies the method used help us to make the 'right' decision. If we
decide to represent an area, it can tell us whether that representation is a good one - it cannot help us
make these fundamental decisions which are in many ways arbitrary and a question of personal taste. We

must be aware that these decisions have been taken, and be prepared to review them if necessary.

There are more serious issues that we must confront if we are to be honest about the utility of the method.
These concern the problems with the very idea of representation - can we ever hope to derive one
representation, and can such a representation ever hope to be a mathematical one.

The Social Construction of Reality

Classical philosophy has always maintained the duality of nature. This duality consists of an absolute

physical reality on one side and the human mind and spirit on the other. Over the past century, various

ideas have come to challenge this doctrine which is still very firmly embedded in the western mind. A

number of schools of thought have established themselves which have very different perspectives on the

universe, some questioning whether we can even say that such a thing exists, or more extremely whether

existence is a meaningful concept. Although there have been 'meta-analyses' conducted (for example

[Bick92]) which attempt to present an overview of large numbers of analysis methods and the

philosophical stances that inspire them, this is certainly not the task of this thesis. However, we should at

least recognise that the 'classical' understanding of reality is flawed, and any analysis method, especially
in the area of computing science, should not adhere too slavishly to it. One interesting and widely

supported philosophy has it that the reality that we see around us is essentially constructed by our own

thought processes. This view has been accepted by many in the academic computing community

[Floyd9l], and has formed the basis for a number of analysis techniques (two typical widely used

examples are SSM [Check90] and ETHICS [Mumford86]): in this section we will see what problems such

an approach presents to the user of the 'scientific' method described here, and how these problems

manifested themselves over the course of the project.

One way of understanding the constructed nature of reality is as follows. In a way it is nonsense to

maintain that reality is constructed: we cannot solipsistically deny the existence of any world outside

ourselves - what happens happens, whether we like it or not. The social construction comes with the

construction of an intellectual framework with which to view and think about the world. The grouping of

a number of molecules into an entity we call a person, the attachment of the label 'molecule' to an object,
the segregation of what we see into object and process, the categorisation of a large number of mental
d: \jes\dis\wip\phd\phdtext2. doc

254

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

impulses as 'sight': none of these is a property of 'reality out there', but of the way we understand, interpret

and think about the universe in which we find ourselves. Having said this, the basic understanding of the

world, the naming of basic categories is fairly constant, at least in a single society. Different societies may
well have very different ways of categorising their 'universe' and consequently the brand of reality that

members of that society inhabit might well be different from that of our own. Any group of people that we

call a society will be composed of a number of what we might call 'sub-societies' which in their turn will
comprise 'sub-sub-societies' and so on. At any level of division the (arbitrarily selected) groups will have

their own slightly or radically different realities. If we look at the hospital, there are a number of possible

sub-societies - dividing the staff into different directorates is one way of forming these separate groups as
is dividing the staff by profession, discipline, age, sex and so on. One of the sub-societies consists of the

workers in the DEDC. We can keep sub-dividing the societies of people to whom we ascribe a reality until

we get to the 'atom' - the single person who will have a different reality from each of his neighbours (at

least according to this philosophy - the ideas here are clearly not susceptible to proof). Although each

person that belongs to a society will have a different reality, some of their concepts will be shared as a

result of the interactions they are forced to make.

According to the philosophical stance briefly outlined above, although to a great extent there will be many

concepts shared between workers in the DEDC, each will have a (possibly subtly) different reality. The

theory cannot represent more than one 'system' at a time which means that we will be forced to choose a

particular reality to represent. If we are correct in our assumption that the DEDC is a well defined 'sub-

society', we can try to capture some of the essence of the shared reality in the theory. In this sense we can

expect at least some stability of representation. However, we will inevitably come across some

disagreements between domain participants that are the result of their different realities rather than

mistakes and omissions having been made in the describing of those aspects of reality that are shared. It is

very difficult to identify where this might have occurred, but it inevitably has. One area where different

realities encountered will be made apparent is through the different extensions of concepts with the same

name. The classic example in the health service is the contents of the set named 'bed'. To some people in

the health service, a bed is a physical construction on which a patient lies. To others it might be an area of

the ward - 'beds' stacked in the store room would not be beds at all in this case. For some people a hospital

trolley would be thought of as a bed - generally this would not be the impression of the patient lying on it.

This lack of co-extensivity of named concepts is one area where differently constructed realities manifest
themselves. There are other more subtle areas however. One encountered during the course of the project

concerns the hierarchical nature of medical care. Two different views were presented to the analyst that

could not both be accommodated in the same theory. The first was that the treatment of the diabetic

patient revolved around the doctor visit. The doctor, having overall responsibility for a patient, managed
him or her by means of a series of visits. As a result of these visits, the doctor might decide that a course

of treatment, therapy or education could be delegated to a paramedic, but this would be at the instigation

of the doctor concerned. The theory at this stage reflected this fairly rigid hierarchy with all paramedic

and specialist nurse activity being a component of the extended doctor visit. A different view was

presented to the author a short while later. On this occasion the (different) interviewee maintained that

the different health care professionals all acted fairly autonomously: a specialist nurse might well see a
patient completely independently of doctor. These two views need not be different tales, only one of which
can be correct, but might reflect two different understandings of the universe in which the domain

participants exist. If this difference is indeed the result of two contradictory realities, it would be
impossible to decide objectively which of these two views should be represented in the theory. It is not
possible to represent both however, and so in this case a subjective decision was made. The details of the
different theories were discussed in more detail in Section 9.5.3.
d: \jes\dis\wip\phd\phdtext2. doc

255

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Another, perhaps knottier, problem that faces us, in our attempt to understand the 'shared constructed

reality' that we believe can be deduced from discussions with stakeholders, is that it is in general
impossible to establish the interpretation that a domain participant has of a particular concept. What this

means is that when we discover what appears to be a refutative example showing a state or class of states

that are forbidden by the theory, we cannot know whether this is because the structure of the theory is

wrong, or because the intended interpretation of terms in the theory is not that which an interviewee has

made. This problem is most acute when it concerns different extensions of the same concept as was
discussed briefly earlier. The fact that a concept will be interpreted slightly differently by different people

should come as no surprise - the difficulty is identifying where this has occurred. The concepts that are
discussed by the different domain workers may be different, but if they have the same name, the lack of

co-extensivity is not apparent.

For example, one interviewee might present examples of a property possessed by elements of the class
'Patient' from which we derive a number of theorems. Another interviewee might present examples of
behaviour and state of the same concept that contradict the theorems derived earlier. This might be

because there is a class of people that the first interviewee considered to be patients that the second did

not. If one interviewee was a surgeon, a property she might ascribe to patients is their intermittent nature

-a person can be a patient and undergo surgery, convalesce and leave hospital whereupon they are no
longer a patient, or at least not until they are re-admitted. If the second interviewee was a diabetologist,

she might deny that a person ever stops being a patient, or at least that everyone registered with the
diabetes clinic remains a patient until they leave the area or die. These two properties seem to be flatly

contradictory, and a degree of understanding of the medical domain is required, even in this coarse

example, to see that although the same word is used - patient - the surgeon and the diabetologist are in

fact talking about different concepts. This problem is a variant on that described earlier where different

people have different 'realities': the fact that the two aspects of reality that differ have the same name

makes it very difficult to pick up.

It was said earlier that examples of behaviour that refuted the theorems of the theory rather than

agreement with general behavioural rules were elicited. As we are not concerned with agreement with

classes of behaviour as defined by the theorems (derived from reasoning over invariant predicates and
behaviour traces), it might appear that we should not have to worry about the interpretations of concepts
by domain workers. However, closer investigation of the counter-examples supplied in interviews

invariably reveals that single events are rarely if ever described - instead classes of behaviour are

presented. We can see that this is the case by considering the outcomes of the various interviews. The

following example of a discussion about 'shared care' illustrates the point.

'While some GPs may expect a full clinical service if the patient requires it, others do not expect this, and

at least one (Dr X) expects that the patient is sent straight back to him as he has a sophisticated
diabetology service run from his surgery'.

The interviewee, although being specific and not claiming to make any general statements about the

nature of medical care, is nonetheless making reference to classes of behaviours and objects. The phrases

'some GPs', 'the patient', and 'a... clinical service' all refer to classes of object. Similarly the expectation of

'some GPs' is of behaviours that are similar and can be observed many times - ie the provision of a 'full

clinical service', and Dr X (an individual, not a 'class of objects') expects, when certain criteria are

satisfied, another form of behaviour (that the patient will be sent straight back) for all of h's patients every

time they attend the clinic.

d: \jes\dis\wip\phd\phdtext2. doc
256

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

This might seem overly pedantic, but it is important that we recognise that abstract concepts are always

used in discussion (and not just with doctors, but with all people), and the problems of concept extension
(and intension) will inevitably dog the analysis. Although the interviewee will use generalities rather than
instances in conversation, we should encourage her to use concepts that are less abstract than those in the

theory rather than enter into a direct discussion of the worth of any derived general theorems. An example
where one class of behaviours was elicited from a domain worker and used to refute a general theorem

concerns the number of activities associated with a single 'slot'. Here, an early theory maintained that a

slot could be associated with only one activity at a time, and hence only one patient. In discussing this

area of the theory with a clinician, it became apparent that for a number of activities, for example the

patient education session, several patients were associated with the same slot. Here both the theorem and

refutative observation refer to classes of behaviours, but the refutation applies to a much smaller and more

specific class than the theorem being refuted. Because the class of behaviours being described is smaller,

we are justified in attributing a greater degree of credibility to it.

There is a further problem that we have not covered yet but is particularly relevant to the method we have

used. This is the use of the formality of mathematics to represent a system as informal as a hospital

directorate.

Can We Use Mathematics?

Related to the problem of reality is the problem of representation. We have chosen an extremely 'hard'

representation medium with which to record our theory. The reason we have done this is twofold. Firstly

the use of formal mathematics gives us great analytical power: we can deduce implications from the

theory which help us to test its validity. Secondly, the logic and behaviour of the mathematics accords

well with the logic and behaviour of a computer system which is the intended agent of change - the

eventual purpose of the analysis.

Again however there are problems with this approach. We have seen how the 'reality' we are trying to

model is a socially constructed one - one that is realised by the various groups of health care

professionals. In so fair as this reality resides in people's minds, it is not mathematical, and we should not

expect it to have mathematical properties. That people do not think according to the rules of set theory is

discussed convincingly by Lakoff [Lakoff87].

The difficulty manifests itself in two ways. Firstly the organisation might be considered to exhibit a

number of behavioural properties which can be and are represented as formal predicates constraining the

state space of the theory's models, but a theorem that is deducible from those properties might result in a

behaviour that is not believed in or observed by the same people who related the original properties. The

stated axioms, in the form of the theory's invariants, might be agreed with, and a theorem that is derivable

from those disputed: mathematically the latter might be clearly and rigorously implied by the former, but

unless the proof of this is very straightforward, the interviewee might not see why this is the case and

remain unconvinced by the argument. Although the nature of this problem can be clearly understood,

extended formal proofs were not used to any great extent in the derivation of the theory, and so the

problem of disputed formal derivations did not arise (that the author was aware of).

Secondly a concept that is understood to have certain values and behaviours in one context can be

considered by the same person to have different values and behaviours in another context. The nature of

the concept is thus tailored by the individual concerned according to the situation she finds herself in. The

concept of the bed comes in useful here again for didactic purposes. We saw before that a trolley could be

perceived as a bed by some people but not by others. These different interpretations might be made by the

d: \jes\dis\wip\phd\phdtext2. doc
257

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

same person at different times. A doctor might be charged with looking after a number of patients in the

Accident and Emergency department one of whom is lying on a trolley due to a lack of space in the

admissions ward. The trolley would probably be perceived as a bed in this case, but if the same doctor

then decided that the patient should be transferred to a particular ward where a 'proper' bed had come

free, and that patient was wheeled to the ward on the trolley, she would consider it as a device for

transportation -a more conventional understanding of what a trolley is. The two classifications might

even not be exclusive - while the patient is using the trolley as a bed, the doctor might be planning how to

get to the ward, and so be thinking of the trolley both as a bed and a transportation device simultaneously.
This has as much to do with the social construction of reality as discussed in the previous section as with

the problems of using discrete mathematics. However, the irrevocable placing of an element in a set is

part and parcel of the use of this type of mathematics, and the variety and variability of classification is

something not easily supported through the use of set theoryxx"

Of course, we can represent any observed behaviour using mathematics as long as we understand it. In the

above example, 'bed' might be a property that could be applied to certain objects, of which 'trolleys' is a

subset. Proceeding along this route, the theory can become arbitrarily complex and still not represent the

'truth' adequately. We cannot escape from the fact that mathematics can only approximate the constructed

world, and not represent it entirely truthfully (We know this formally anyway from Gödel's theorem

which tells us that in no formal system with the power of mathematics can we deduce all statements that

are true in the system).

Conclusion

In conclusion we can say that there are a number of drawbacks that can be attributed to the use of the

'scientific method' and formalism, many of which have been encountered in the course of the project. We

have seen that the conduct of refutative experiments in the form of structured interviews can be very
difficult. This may be because the behaviours being examined are very slow, the 'correct' interpretation of

an apparent counter-example might be unclear, the structured interviews being used as experiments are

very difficult to control, or we have inadvertently stumbled into a 'paradigm trap'. The method does not

really guide us when it comes to the construction of the theory which is (according to the method)

arbitrary in scope and in terms of the categorisation of events into operations and the grouping of

phenomena into either state or behaviour. The use of a unitary description means that it is particularly

difficult to cope with the socially constructed nature of reality. This manifests itself in a number of ways:

through the lack of co-extensivity of concepts, through different but equally valid descriptions of the same

behaviour, and through the difficulty in identifying where either of these different aspects of reality

construction have been encountered. We saw that the nature of discussion means that these problems,

associated with different valid realities, will inevitably occur (though they can be minimised through the

use of less abstract concepts in discussion). Finally we saw that the use of mathematics to investigate and

describe such a soft domain as a hospital clinic leads to certain problems. The first of these is the

occasional irrelevance or implausibility of logical derivation for interviewees, the second is the difficulty

of assigning an object to a set when for any given domain worker, that object might take on different

guises at different times, or even at the same time.

It would seem from the above section that there are a great number of drawbacks and limitations to the

method described. We might be tempted to deduce that the approach was so flawed as to be worthless as a

xxvi Actually the representation of variable set membership is fairly straightforward if attributes are used to describe class membership.
This approach can lead to excessively clumsy descriptions however, and is a way of 'working around' the limitations of the version of set
theory used rather than recognising them and creating a mathematical structure that is in tune with the presentational framework.

d: \jes\dis\wip\phd\phdtext2. doc
258

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

means of deriving domain theories prior to the design of information systems. It might also seem strange

to dwell so extensively on the problems associated with the method. It is only when we are sure of the

weaknesses of a tool, however, that we can exploit its strengths and decide the appropriate manner to use
it. In short, we should use the method only when we have successfully synthesised the understood

strengths with corresponding limitations. Such a synthesis is presented below.

133.3 Synthesis

The aim of this section is to demonstrate that in spite of the problems discussed above, and although the

method cannot provide us with an entirely reliable and indisputably complete representation of the
domain we are concerned with, it can nevertheless give us valuable insights into the nature of that domain

that might be overlooked if other methods were used. In a problem domain as complex and intractable as

medicine, the use of the scientific method and formalism as described represents a powerful weapon in

the armoury of the systems analyst.

The reason why we should not worry unduly about the problems discussed lies in the nature of the

systems analysis and design problem. There are many methods, some of which are extremely well known,

that we can use to produce information systems. In spite of these, the history of information systems
development is littered with extremely expensive and costly disasters. Many of the problems that lead to

the rejection of an information system can be traced back to an error in the initial analysis. Any method

that helps us to trap a potential problem at the analysis stage must therefore be welcomed. When we have

identified and rectified an error in the analysis, we cannot say that the new version is correct, but we can

say that it is less flawed than it was. In this way, although some errors will slip through the analysis net as
described in this thesis, some will be caught, and the quality of any resulting information system thus

improved. Moreover, the method of domain analysis described is better at trapping certain classes of error

than other techniques meaning that it is of genuine value in the information system design task.

Each of the problems discussed in the previous section places bounds on the usefulness of the method, but

at the same time helps us see its advantages with greater contrast and confidence. We can address the

issues raised above one by one and see how they should influence our understanding and use of the

analysis conducted.

For example, we have seen how refutation can, for a number of reasons, be rendered extremely difficult.

The fact that some refutations might be hard to find, however, should not stop us from looking, though we

should be prepared for frustration. We should bear in mind that a refutation will be harder to find in

behaviours that are infrequent or very slow. In the case of the theory as presented, this means that we

should not be surprised to see that the majority of the refutations concern observed operational behaviour

rather than the evolution (or possible values) of the 'configuration' of the clinic or even of clinics in

general. If we look at the summaries of major refutations presented in the conclusions to Chapters 9 and

10, we will see that this is indeed the case. That there are few refutations for the long term behaviour of

the clinic should not persuade us that the description presented is correct, and has been from the start,

rather we should recall the difficulty of refutation in this area, and treat all claims that the theory makes

with respect to the evolution of clinics with scepticism and care. In contrast to this, the profusion of

refutations pertaining to the operational behaviour of the represented clinic should encourage us to use the

part of the theory affected with greater confidence. In short, refutation is difficult, but at least it is

possible, and its existence provides us with a powerful tool: an understanding of its limitations means that

we can see where the tool is likely to have least effect thus helping us to avoid placing too much reliance

on the theory in those areas.

d: \jes\dis\wip\phd\phdtext2. doc
259

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The problem of the paradigm trap is an inevitable one that applies to all forms of human thought.

Heidegger [Heidd62 I recognised the phenomenon as concerning the way in which we perceive the world

(Kuhn spoke about the problem specifically as it related to the development of empirical science): he

explains that we are all blind most of the time to the most basic and common assumptions and properties

of our lives. When a person runs to catch a bus, she is generally not conscious of exactly where she is

putting her feet, how long her strides are, and how fast she is breathing: the action she is engaged in that

is most immediate to her is 'running to catch a bus'. Heidegger tells us that the we can gain illumination

by questioning our ideas and assumptions in this light (he suggests the use of language and etymology as

a means to this end), but cautions that it is not a straightforward task. We are not only blind, but we do

not know what form that blindness takes and what is being obscured from us. If this problem is as
fundamental as Heidegger makes out, we should not expect the method espoused to escape it. However,

we can get an idea when it might be especially useful or important to try and tackle this blindness and

recast our understanding of the system being described. When the theory gets too complex for us easily to

understand its main features and properties, then we should deduce that the particular viewpoint used

might usefully be changed, and we should look about for another one. For example, the representation of

the creator of an activity as another activity led to intolerable complexity in the theory, and a different

way of understanding the behaviour of the domain was sought -a replacement of this paradigm with one

where the creator of an activity is a health care professional has resulted in a far clearer conceptual

structure. Similarly, the representation of all types of activity as essentially equal, be they as abstract as
Diabetic Care or as specific as First Doctor Consultation, has led to a profusion of interacting attributes

that endeavour to describe their differences. The complexity observed might encourage us to think of a
different way of understanding the basic differences between activities of different abstractions. This is

discussed further in Section 14.7.1.

We have seen that the scope of the theory is not guided by the method advocated. This too should not
cause us too much concern. Where the scientific approach advocated is used, it should help identify

problems that might have escaped us. Which is the most appropriate sub-domain to investigate and
describe is up to the analyst. As a result it might be appropriate to use other methods and techniques to
help guide the analysis. For example, Checkland's Soft Systems Methodology might help in identifying

boundaries of the problem domain within which an information system might work. The author preferred
to use a few explicitly stated guidelines (discussed in Chapter 7) and an educated guess at the sort of

properties that might be significant in the development of an information system of the type described.

The most basic scoping of a problem is beyond the ability of any rigorous method or problem structuring

technique. Classical engineering can help us understand how to construct a bridge that will stand up - it

will not tell us whether or not a bridge is required.

The most thorny problems with the use of a method such as that described is the constructed nature of

reality - both in terms of its subjectivity and its ambiguity. Although this problem is intractable, certainly

using a scientific approach, in a sense it does not concern us. The agent of change that we are hoping to

introduce into the organisation is a computer system. This is a mathematical entity that works according

to the laws of physics and manipulates symbols according to mathematical rules which it is designed (or

programmed) to obey. One of the most fundamental of these rules is the law of the excluded middle. A

proposition is either true or not true (though, due to the limits of computability we might not be able to

discern which it is), or equally an element is either a member of a particular set or is not a member of that

set. Two valid realities, one where proposition p is true or element e is in set S, and another where p is

false and e is not in S, cannot both be represented by the information system at the same time. Somewhere

a decision will have to be made as to which is the reality that will be supported by the information system.
By using a unitary descriptive technique to conduct our domain analysis, we force such a decision to be
d: \jes\dis\wip\phd\phdtext2. doc

260

Jeremy DH Holland
The Requirements Analysis & Design fora Clinical Information System: A Formal Approach Volume 1: Thesis

made consciously at the very earliest stages of the design process. In this way it can be discussed

intelligently with the eventual stakeholders and users of the system without getting confused by such

practical concerns as implementation data structures, efficiency of processing, cost of development and so

on.

Many of the problems discussed in the previous section do not apply solely to the approach used in this

project, but to all methods that rely on the use of description to record and communicate subjective ideas

(such as the nature of reality). In many methods, the ultimate undecidability of reality is disguised by the

ambiguity of the descriptive language used. By using a (formally) semantically rigorous notation to record

our ideas, we confront the artifice of any representation all the more quickly and inevitably: an artifice

that is inescapable if we are to proceed consciously and rationally.

That we can never really understand the problem is explained by Christopher Alexander in his book

Notes on the Synthesis of Form [Alex7l]. In this he contrasts two forms of design - self-conscious and

unselfconscious. The primitive form of any design and build technique (the example used is that of the

design and construction of dwellings - mud huts) is unselfconscious: the designer / builder does not make

a conscious effort to relate the needs of the user of the designed artefact with its pertinent characteristics.

She builds in the same way as her predecessors, perhaps making small modifications to cater for a

specific new requirement (such as the need to build on a piece of ground that has not been used before).

The fact that the changes to the basic design are small, and in response to limited changes of

requirements, means that the nature of the designed artefact can gradually evolve along with the culture it

is created to support. Alexander claims that this form of design and build is the most appropriate when

the requirements change slowly with respect to the generation of the artefact to satisfy those requirements.

In fact, in the work in question, Alexander portrays an almost Darwinian model of the evolution of

artefacts. Due to the complexity of society and the things that are to support that society, and in particular

the rich interaction of sub-parts of those things with each other and the supported society, it is in general

impossible to predict the effects that a change in the design will have on the effectiveness of the eventual

product (in Darwinian terms we could liken this to the pre-emptive opacity of the link between the

genotype of an organism and its phenotype). If a change is made to support a new requirement resulting

in an artefact that, due to an unforeseen interaction, does not provide a function that is required and was

hitherto supported, the design will be 'selected against' and a new artefact will be designed and built

which satisfies both (in the same way as a new genotype might find expression in a phenotype that is ill

suited to its environment resulting in its 'de-selection').

While this form of unselfconscious design, and its proto-Darwinian evolution, is the best method of

getting a close fit between designed artefacts and the requirements of the society where the needs of that

society are changing very slowly, it is not suitable when the needs of the society are changing quickly

when compared with the 'generation span' of the product. This is the case in much of modern society - our
'need' for cars, buildings and information systems changes too quickly for the evolutionary approach alone

to be feasible. In this case we must rely on self-conscious design where we try and predict in advance the

nature of the thing we are designing, and how it will satisfy the requirements we are trying to support. In

its turn, self-conscious design must rest on the use of description to communicate with others, and for

communicating with ourselves over time. In short, although the use of description in design is fraught

with problems, for complex products that do not have time to evolve unselfconsciously, it is a necessary

evil. Having accepted the need for description, the use of formality gives us some benefits, and removes

some of the superficial ambiguity associated with other notations. In other words, all the alternative

approaches share the same underlying problems and have others besides.

d: \jes\dis\wip\phd\phdtext2. doc

261

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The design and building of information systems is clearly an area where, from the argument presented

above, we must rely on self-conscious design - the requirements of such an artefact are extremely

complex, and its generational span far too long to rely on the natural evolution of a system. Once we have

admitted that the problem is one of great difficulty, that has never been satisfactorily resolved (and

probably never can be), then we are in a position to recognise that the method described, with its

attendant scientific method and formalism, gives us an additional and powerful perspective over it. We

should not imagine that the insight it gives is complete or that it is superior to that gained from any other

perspective. Indeed, we should take heed of Morgan's work, Images of Organisation [Morgan86], and

recognise that, especially when it comes to entities as complex as human organisations, many ways of
interpreting what is observed should be encouraged, and that wisdom does not come from slavishly
following one intellectual ideology. Within the narrow and mechanistic framework that has been

prescribed, the method used represents a powerful and consistent technique that could usefully be added
to the analyst's armoury.

One last comment ought to be made while we are still considering methods for describing reality. Many

of the drawbacks in the method are mitigated somewhat because the agent of change we are intending to
introduce suffers from them also. The fact that discrete mathematics has been used to describe reality
presents less of a problem as computer systems are bound by the same formalism - if we accept that a
computer system is going to be introduced, we have already resigned ourselves to the limitations of
formality and so should not worry unduly that the descriptive method used shares the same weaknesses.
We should be more cautious however when it comes to using the approach to design systems that do not
have mathematical underpinnings. For example, if we are intending to re-design the business processes of
the organisation for some defined end, the eventual system that will be implemented (the new business

process) will certainly not be bound by the strictures of set theory and the predicate calculus, and any
reasoning mechanism that assumes it will be will inevitably be flawed. This does not mean that the use of
formality should be avoided in this area, and indeed novel and exciting work has been done in this very
area [Glykas94]: however, great care should be taken and the limitations of mathematics recognised.

13.4 Issues concerning Construction and Analysis of the Information System
Specification

13.4.1 Introduction

The stage of development which requires the most involved thinking to understand, and for which the

objections are most profound and far reaching is the development of the domain theory, and so we would
expect the previous section to be more far-reaching in its analysis of the techniques espoused. The

purpose of the project was not to produce a description of the organisation, but rather specifications of
information systems components that will support that organisation. The step from domain description to
information system specification is thus central to the purpose of the work, and we must investigate the

arguments behind the techniques involved in taking the step.

This section therefore explores the second step in the systems design process described in Section 13.1.

The justification re-iterates the method used to construct the information system specification through the

use of an appropriate interaction theory, and presents a computer science interpretation for the four

'motives' that guide this process. The criticism questions each of the motives and describes the shortfalls

of the approach. The synthesis likens the interaction theory to a map - it will not prevent us from making

mistakes, but will mean that we will act in a more informed manner when making decisions.

d: \jes\dis\wip\phd\phdtext2. doc
262

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

13.4.2 Justification

The Interaction Theory

One of the unusual aspects of the method espoused in this thesis is the use of an explicit 'interaction

theory' which links the information system specification with the domain theory. The intended
interpretation of the domain theory is as a selection of rules governing the behaviour of entities in the

world. As we have seen, we can (to a greater or lesser extent) examine the feasibility of this theory by

comparing its predictions with the behavioural scope of the real organisation as perceived by domain

participants. In a similar way, the intended interpretation of the information system specification is as a

selection of rules governing the behaviour of data files in a computer system. We can (as we shall see)

examine the accuracy of the specification by investigating the properties that the real information system

possesses (once it has been built) and comparing them with those claimed by the specification. We should

not directly interpret the components of the specification as entities in the domain as this is the role of the
domain theory. However, we know that we want the implemented information system to be interpretable

by a domain worker as a model of the domain, so clearly we have to find some method of determining the

adequacy of an it formation system built to the specifications given. This is the purpose of the interaction

theory. This is a formal theory that records a set of interpretations that we would like domain workers to

make on information system components in the implemented system. For example we might want a data

file labelled 'Patients' to be interpreted as a set of real patients in the domain. We can talk about

characteristic behaviours of the set of patients in the domain, and about behaviours of the data file

labelled 'Patients' in the information system, but without the interaction theory we have no formal way of

seeing if, in an implementation of the specification, the data file called 'Patients' is a good representation

of the real entity. By introducing an interpretation function (and conversely, a representation function),

we can see whether an implemented data set shares the same properties as the entity we wish it to

represent, and where any shortcomings might lie. In the case of the set of patients, we have the

interpretation function IntP where

dis-IM-T 6: IntP: crs-Pid -4 Patients

We now have a formal means of talking about the information system in terms of the domain. We saw in

Chapter 11 how we can use such a construction to investigate the limitations of existing information

systems. Such limitations might lie in inadequacies of scope where state components in the domain theory

are only partly or not at all represented, limitations of functional support where operations that take place
in the domain are only partly or not at all supported by the information system, and errors where a

consistent interpretation is not possible for a particular data file.

Desi ng of IS

Using the interaction theory, we can get an understanding of the degree to which an existing information

system can be though of as a representation of the domain. Perhaps more important however, is the

design of new information systems.

It is clear that a new information system need not share all the 'inadequacies' of those that already exist.

In the limit, we might choose to implement a model of the domain theory itself. If we did this then (to the

extent of the adequacy of the domain theory) the information system would be a 'perfect' representation of

the organisation, and a complete and consistent interpretation would be possible. There are several

reasons why this might be undesirable.

Firstly, we need to ensure that the implemented system is as simple as possible. The more complex the

data structures and processes of the finished information system, the more likely we are to discover

d: \jes\dis\wip\phd\phdtext2. doc
263

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

unexpected errors. Similarly a complex information system is generally more difficult to maintain than a
simple one. If the information system is not a good representation of the domain of interest, then at least

the user should be able to understand the underlying logic and hypothesise a domain that the information

system would support. If this is possible then the user can consciously derive utility from the system in

spite of its inadequacies. Additional complexity means that any erroneous behaviour becomes very
difficult to understand meaning that the information system is correspondingly less useful. In short, when
it comes to information systems there is a certain virtue in simplicity.

Several of the operations in the domain are characterised by many arguments -a degree of detail being

necessary to describe the change of state with sufficient completeness. If we want to represent the state of
the domain completely we will thus require the user to provide the information system with a great deal of
data - adding to his or her workload and inevitably contributing to user hostility. Any reduction in the
number of parameters we require of the user will have to be accompanied by a reduction of verisimilitude
of representation of the domain, however.

Not only do some operations require a more work to represent than they are wor. h, but some operations
we do not want to represent at all. For example, when a patient is admitted to a ward with acute
hypoglycaemia, she needs to be treated and her condition stabilised, not recorded on any computer
system. Other operations might record behaviours that we are totally unconcerned about, and that do not
interact with an 'important' part of the domain in any significant way. Here again, the function we are
supporting would be superfluous to the needs of the eventual system users.

Finally, we need to consider existing technology. In most system development projects there will be

existing, or legacy, information systems that need to be integrated to form a single coherent system. The
desirable change to these systems is also the minimum change - we should make the 'wrapping' software
which binds the legacy systems together as simple as is reasonable. Clearly in this case the nature of the

existing systems will influence the structure of the final one. Legacy systems are one form of 'technical

artefact' that we need to consider when designing the new integrated system. The implementation

language is another. Different languages or application development environments treat different data

structures and behavioural forms with greater or lesser efficiency. For example, the new departmental

clinical record system and its extensions are being implemented using a fourth generation language and a
relational database. Using this technology, simple sets and relations are easy to implement whereas more
complex structures such as directed acyclic graphs, lists, and interacting complexes of relations are more
difficult to implement. It is sensible to implement structures that can be easily constructed from these

primitives of the language or environment that is being used.

To summarise the above paragraphs, in constructing the information system we are encouraged to keep it

simple - simple to construct, simple to maintain, and simple to use. The simplest approach is clearly the
'no change' option, or just to continue using the legacy systems already in place. Clearly this is not going
to enable any change for the better - there must be some form of compromise between extreme simplicity

and total representation of the domain. The choice of the position of this happy medium can only be

determined on the strengths of the case being considered in consultation with users of and stakeholders in

the system. However, there are a number of areas where conformance with the domain theory is more
important than others. The author has grouped some of these into four guidelines to be used to help us
decide which new computer support is especially beneficial. These have been called developmental

motives as they provide the counteracting force to the drive for simplicity behind the decisions made
when constructing the specification of the integrated system.

d: \jcs\dis\wip\phd\phdtext2. doc
264

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The four developmental motives have already been discussed at great length in Sections 12.4. We will

revisit them briefly here and examine them from a perspective that should give them greater clarity and

place them in the context of mainstream computer science. This context is that of specification reification.

Four Developmental Motives - Variations on the Theme of Reification

Reification is a term that has been coined by H. Zemanek to describe the process which takes an abstract
formal specification of a system and alters its form so that it can be easily implemented on a computer
while preserving the essence of the behaviour described in the specification. Jones says:

The style of formal specification ... uses abstract models of data types... High-level design decisions

normally involve choosing the representation of data: data reification involves the transition from

abstract to concrete data types and the justification of the transition' ([Jones90] pp180).

The justification of a reification step hinges on the adequacy of its retrieve function. The retrieve function

returns an abstract (pre-reification) state when supplied with a concrete (post-reification) state. Three

points should be made about this function. firstly it is a function rather than a relation, secondly it is

complete, and thirdly it covers its range - it is surjective. If the abstract specification truly is abstract, then

we can assume that each different state must be represented by models of the concrete specification. If

retrieve were a partial function, then there would be states of models of the concrete specification that

represented no possible states of a model of the abstract specification: behaviours that were explicitly
forbidden in the abstract specification might be permitted in the concrete specification which is clearly

undesirable. If retrieve did not cover its range then there would be states of models of the abstract

specification that were not represented in models of the concrete specification and a computer system
implemented from the concrete specification would not fully support all the functions originally specified.

If retrieve were a relation rather than a function then we could not in general determine which of two

abstract states were being represented by a concrete state - any decision that we took would again lead to

incomplete representation of models of the abstract specification. Note that the retrieve function is not an

injection - it is not necessary for each concrete state to be retrieved to a different abstract state. We can see

that this would be the case if we consider the representation of a set in the abstract specification as an

indexed table in the concrete specification. The abstract data type does not distinguish between different

ordering of its elements whereas the concrete one does. As long as each member of the (abstract) set has a

single corresponding member of the (concrete) indexed table, then any ordering of the latter would

represent the same set. In this case if there were n elements in the set, then there would be n! possible

representations that could be retrieved to only that set.

Jones defines a retrieve relation for each data type in the concrete specification that is to represent an

abstract data type: a number of distinct retrieve functions (each with a different name) are needed to

reconstruct an abstract state from any concrete state. For the sake of the argument presented here, we will

not worry about the interaction between the different retrieve functions as they apply to a particular state

component, but rather talk about that functional construction, which can be created from all the separate

retrieves, that returns a valid state of the entire abstract model from a state of the entire concrete model.
We will talk only of this constructed function from now on, calling it retrieve.

d: \jes\dis\wip\phd\phdtext2. doc
265

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

We can represent the arguments presented above in graphical form as follows:

Abstract State Space

Key: Concrete State Space
Abstract State
Maplet in
retrieve function
Concrete State

Figure 4-2: Concrete and abstract state spaces

The ellipsoid drawn at the top of the figure represents the state space of a model of the abstract

specification. The ellipsoid at the bottom represents the state space of a model of the concrete

specification. Each state in the concrete state space is mapped to a unique state in the abstract state space
by the appropriate retrieve functions. Notice that retrieve is functional (each concrete state is mapped to

only one abstract state), total (every concrete state is mapped to an abstract state), and surjective (for every

abstract state there is at least one concrete state that maps to it).

d: \jes\dis\wip\phd\phdtext2. doc

266

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

We will be discussing different mappings from one space to another in some detail below, and will be

making of figures illustrating points similar to those illustrated above. For convenience, we will use a
'shorthand' version of the above illustration. One such is presented below:

AL... s...... " Oa,. a,. O. _.. __

Figure 4-3: Simplified diagram illustrating an argument about state space mappings.

In the figure above, the lower ellipsoid represents the state space of models of the concrete specification

while the one above represents the state space of models of the abstract specification. The shaded area in

the abstract ellipsoid represents the range of the retrieve function. In this example the retrieve function is

seen to be inadequate as there are abstract states (represented by the contents of the smaller ellipsoids)

that are not represented by any concrete state. An accurate 'graph' representing the retrieve function

would have to be multi-dimensional, with a separate dimension for each distinct state component. If a

concrete state component was not retrievable onto the abstract state space in any way, then the abstract

state space would have a lesser dimension than the concrete one. This is obviously difficult to draw and so
has not been attempted. Suffice it to say that diagrams which attempt to show, for example, increased

scope of coverage in the abstract state space (as here) should be understood as not only having greater
(multi-dimensional) volume, but also possibly greater dimensionality.

The rules governing adequacy of the retrieve functions are just that - they are not guidelines and are not

supposed to be enforced loosely. If the retrieve function can be shown to be non-functional, partial or non-

surjective then the concrete specification is a faulty reification of the abstract specification. This

demonstration can be performed according to the laws of logic and set theory - that is formally. It is the

ability rigorously to demonstrate the adequacy of retrieve functions that makes formal methods so

powerful - we can not only specify an abstract system, but we can show that a particular computer

program is a valid implementation of that specification.

There are many similarities between the reification of an abstract specification to form a concrete one and
the derivation of information system specifications from a domain theory. Instead of a number of retrieve
functions to take us from concrete to abstract state, we interpretation functions to take us from

specification to domain theory. As in the case of reification, we are taking an abstract representation of a
system and contriving to manipulate it so that it takes the form of some more readily implementable

structure. The differences between reification and specification derivation cover more than just the names

d: \jes\dis\wi p\phd\phdtext2. doc

267

Concrete State Space

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

of the different concepts however: when it comes to deriving an information system specification from the
domain theory, the rules are less hard and fast. As pointed out in the previous section, there may be good

reasons why a perfect implementation of the domain theory is not desirable. However, the rules for

reification of abstract specifications can be'diluted' to form guidelines, or motives, for the development of
computer systems. Each motive can be seen as a derivative of the three rules that adequate retrieve
functions must obey.

The four motives are: expansion of scope, functionality of interpretation, reduction of entropy and
restriction of prohibition. In the next four sections, each of these motives will be discussed with reference
to one or more of the retrieve function adequacy rules.

Expansion of Scope

The first motive is the gratuitous extension of the scope of the information system. The reification rule
that this can be considered to be derived from is that which insists that the retrieve function is surjective.
Every abstract state must be represented by at least one concrete state. As we saw earlier, there are
perfectly good reasons for the incomplete representation of certain state components in the information

system, or for omission of other state components altogether. However, in the absence of such reasons,
and where the increase in complexity of the system is supportable, we should take the opportunity to
expand the scope of the information system, both in terms of increasing the coverage of represented state
components and of representing previously unsupported state components. The more of the domain that
can be understood through interpretation of the information system the better as we will end up with a
richer and more 'realistic' picture of that domain from an implemented information system. Clearly the
greater the scope of coverage obtained by projecting the information system state space onto the domain

state space through the interpretation function, the more closely that function is to being a surjection. We

are thus justified in comparing this motive with the reification test that insists that retrieve must be

surjective.

The argument presented here is illustrated by the figure below:

Domain State Space

ýýýýý

-= 7z-
Original Information System State Space

Domain State Space

Figure 4-4. The more states of the domain an information system can represent the better.

Of the two information systems, the one on the left has a smaller coverage of the domain state space than

the one on the right. For this reason, the interpretation function for the information system on the right is

'closer' to an injection than that of the information system on the left and so the information system can be

said to be 'better'. Of course, these 'improvements' would have to be weighed against the problems caused
by any increase in complexity. If these problems are negligible, then we can say that the scope extension
is gratuitous and so should be encouraged.
dAies\dis\wip\phd\phdtext2. doc

268

Better Information System State Space

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Functionality of Interpretation

The second developmental motive is the functionality of interpretation. This requires some care in its

definition. Loosely speaking we could say that this motive leads us to create information systems where

every state of that system can be interpreted as one and only one state of the domain. The reification rule
this is based on is that which insists that retrieve is functional. Every valid concrete state should be able
to be mapped onto a valid abstract state. If we look at the information systems described above, we can see

that this is generally the case. For example, if a patient is recorded on the system as being registered, then

we should interpret this as meaning only that the patient has indeed been registered, and not allow

ourselves an alternative valid interpretation that the patient is not registered. The argument behind this

insistence should be clear. We do not want two conflicting states of the organisation to be described by the

same values of the database: if we allow this, then decisions taken on the basis of information form the

computer system will have to bear in mind that two or more, possibly very different, situations might hold

in reality and the user would have to be sure that she understood the implications of the decision in these

different possible worlds. In short ambiguity, although not rendering the information in question useless,
drastically reduces its value.

The reason why we must use care is that in an incomplete representation (and we saw earlier that any

representation is always incomplete if not of the finite domain theory then certainly of the essentially
infinite domain), there will always be some ambiguity. For example, none of the information systems

specified records at any stage the identity or profession of the people running the clinical activities
described. If at any time the current state of the information system described an Initial Doctor

Consultation as proceeding, a number of different valid interpretations could be made - one for each of

the valid health care professionals capable of running that activity. Similarly, in the initial Clinical

Record System, no mention is made of appointment slots. In this absence of information about slots, an

activity could be understood as having been booked for any time in the future implying an effectively
infinite ambiguity of interpretation. We are thus asking far too much of the information system if we
insist on functionality of interpretation of the system's state. If it is to be useful, this motive has to be

qualified.

d: \jes\dis\wip\phd\phdtext2. doe
269

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume l: Thesis

What we in fact require is that any state of the information system can be interpreted as only one state of

that part of the domain theory covered by the system. That part of the domain theory covered by the

system is defined as the interpreted values of all possible system states - that is the range of the
interpretation function. Thus all we have said is that our interpretation must be functional. The care

comes with the observation that the function will not be totally surjective over the state space of the
domain theory: there will be valid states of the domain theory that the information system does not totally
describe and yet have interpretations of all the (interpretable) components in the information system. This

argument is illustrated in the following diagrams:

Domain State Space

inter retatio
relation maplets

Domain State Space
od(interpretation)

to retatio feasible [unc
on maplet interpretation

S, sl = -_ =-_

Poor Information System State Space Better Information System State Space

Figure 4-5: Illustration of the motive encouraging us to look for functionality of interpretation.

Note that in the first diagram S01 cannot be a projection of SD2 and vice versa.

In the above figure, the diagram on the left illustrates a poor information system. The single information

system state S1sl can be interpreted as one of two possible distinct domain states: SDI and SD2, both of
which are in the range of interpretation which is thus in this case a relation. In the diagram on the left a
somewhat different case involving a better information system is presented. In this case, Slsl has only one
interpretation - that is, interpretation is a function though not surjective. The domain state SD2 represents
a feasible interpretation that is not specifically represented by Slsl. The reason why SD2 is a feasible
interpretation is that it can be projected onto SDI which is the direct interpretation of S,, 1. A projection
involves the compression of dimensions - in this case dimensions that are not represented by the
information system. Thus states in the domain space can be projected onto a state (which may not be

permissible in the full domain space) with the same dimensionality as the (interpretable) information

system.

For example, suppose we take the state of a domain which gave the health care professionals (if any)

running each proceeding activity. The projection of such a state into the range of the interpretation

function would involve simply removing all mention of the health care professionals from the state in

question, along with any other parts of state components that are not represented in the range of

interpretation - activities for example. Of course, the removal of the health care professionals (and any

un-represented activities or other values) might mean that the state no longer lies within the legitimate

domain space: some activities need to have health care professionals associated with them to run at all.

This is allowable as long as the states that have been projected are valid. The idea of projection to reduce

the dimensionality of a value in a generalised space (normally called a vector space) is a standard

mathematical technique. What is slightly different here is that we are not only reducing the dimension of

the space but also paring away those values that are not supported by the information system. This extra

restriction on the values of the projection are necessary as we allow many of the represented concepts to

be subsets of the concepts as they exist in the domain. For example we said that

dAjes\dis\wip\phd\phd1ext2. dcw
270

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

crs-int-T 5: ! ntP: crs-Pid -i Patients

from which we can deduce that

Cod(IntP) c Patients

and

c-ißt-I 6: Cod(IntV) c Activities\Out.

In short, for the purposes described above, a state Sp, can be though of as a projection of another So, if Sp

can be created only through the removal of values from So.

Obviously we can say nothing about the state of activities that are not in Cod(IntV) from looking at the
information system, and so these must be excluded from the state space we must construct to judge

whether the interpretation function is indeed functional.

Although the concepts presented here may seem complex, they are based on a fairly straightforward idea -
that interpretation must be functional. The complication comes when we observe that the function is not

surjective and that great care must be taken when deciding whether a given specification has been

designed well according to this motive.

Reduction of Entropy

The third developmental motive is the reduction of entropy. The reification rule this is derived from is

that which requires the retrieve function to be complete. What we might say in this case is that all states

of the information system can be mapped onto valid domain states via the interpretation function. This

simplistic understanding can be justified in the same way as we defended the decision to increase the
'refutability' of the domain theory: the greater the constraints on the world imposed by the theory, the

more we know and understand about the world (from the theory). If the information system supports
states that can be interpreted as illegal domain values then clearly some of the constraints represented in

the domain theory have not been introduced into its representation, and so the weaker and poorer that

representation is (in the limit such an information system might take the form of a word processor or even

simple text editor). As with the last motive, however, the situation is rather more complex than this in a

number of ways.

Firstly, even when two states are both capable of being mapped onto valid domain states, the information

system might still be inadequate with respect to them. The reason is that we must not only ensure that all

the states of the information system can be mapped onto the domain, but also all the behaviours as well. If

the information system allows an operation that alters its values from expressing one valid state to

another, we must be sure that the domain theory allows an operation that moves the domain values from

one interpreted state to the other. The argument behind this motive has been discussed at length in

Section 12.4.5. Put briefly, the exclusion of representations of invalid behaviours prevents the user being

presented with 'nonsensical' operations to choose from which would reduce the usability and usefulness of

the system.

d: \jes\dis\wip\phd\phdtext2. doc
271

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

These arguments can be illustrated with the appropriate diagrams. Firstly we can see what the 'ideal'

situation might be. This is the purpose of the following figure.

Good Information System State Space

Figure 4-6. A good information system where entropy of information system is minimised.

Here both the states and the behaviours of the information system can be interpreted as valid states and
behaviours in the domain.

We can then look at two cases where the information system might be judged lacking with respect to the
domain theory.

SD2
mäp! t

lated

Poor Information System State Space Poor Information System State Space

Figure 4-7: Poor information systems judged by the motive described here.

The diagram on the left illustrates the case where there is a state of the information system, S1s2 that

would be mapped by interpretation (if such an interpretation were possible) onto a state that is illegal in

that it violates laws stated in the domain theory. The diagram on the right shows the case where two

states of the information system, Sjsl and S1s2, can be mapped through interpretation onto valid states of
models of the domain theory: Sol and S02. Although the states are thus permitted, the information

system allows a behaviour which has S, sl as its pre-state and S1s2 as its post state: the domain theory

allows no behaviour which takes SDI as its pre-state and S02 as is post state. The user of this system

would thus be presented with a 'nonsensical' operation which is undesirable and reduces its usability.

There is a subtle addition to this motive that needs some careful thought. This is that the information

system might support a behaviour that is not illegal in the projection of the domain theory state space that

is the range of the interpretation function but is nevertheless forbidden by the full (unprojected) domain

theory. The way to understand if this is the case is to take a state from the state space of the full domain

theory, which we shall call SFl, and see if it can be projected onto the range of the interpretation

function, as a state which shall be called Spl, which is in its turn an interpretation of a state of the
information system, Stsl. What we would like to be able to say now is that every post state of Spl which
d: \jes\dis\w ip\phd\phdtext2. doc

272

Domain State Space

Domain State Space Domain State Space

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

is an interpretation of a post state of the information system (where the pre-state is Slsl) is a projection of

a possible post state in the full domain state space where the pre-state is SF1.

This somewhat complex notion can be better explained with a diagram.

Domain States from 'Full' Theory
SF2

SF1 -E: EýS F3
Projected Domain State Space

projected doma' at ýýýý\\ \\\\\\\\ý \

unc lon
mä

-O eration in I. S.

Poor Information System State Space

Figure 4-8: Information system that allows operations that are illegal in the 'full' domain state space.

Note that none of the possible states reachable for 'full' domain state SF1 (that is, states SF2, SF3, and SF4)

is capable of being projected onto S�2, the interpretation of S, 2. Thus the operation that takes us (in the

information system) from S1s1 to S1s2 is 'non-sensical' and should be prevented if (reasonably) possible.

In the above diagram, note that none of the possible states reachable for 'full' domain state SF! (that is,

states SF2, SF3, and SF4) is capable of being projected onto SD2, the interpretation of S1s2. Thus the

operation that takes us (in the information system) from S1s1 to S1s2 is 'non-sensical' and should be

prevented if (reasonably) possible.

In general it will not be the case that with the existing state components in the information system that we

will be able to prevent this sort of illegality occurring. However, we should be aware of its existence, and

if the opportunity presents itself to easily introduce an additional state component into the information

system that enable us to capture and prevent these invalid operations, then we should seize it. The

decision to expand the coverage of crs-VisPid from representations of proceeding and complete activities

to representations of all activities (ie, requests as well) is one of these cases.

This more subtle variation of the entropy reducing motive can be summarised as follows. The more a new

component would (validly) constrain the behaviour of the information system, the keener we should be to

introduce it.

Restriction of Operations

The final motive has been called here the prevention of prohibition. What this cryptic name is intended to

convey is that we do not want the information system to prevent us from carrying out a (useful) procedure

that was previously supported in the organisation. This is slightly different from the other motives
described in that it requires some form of statement of the intended use of the information system. We can

easily understand the times when our design decisions might be modified by this motive as these are

essentially the reverse of the cases described in the above section on the reduction of entropy. There we

wanted to prevent the information system from providing operations that were illegal in the domain: here

d: \jes\dis\wip\phd\phdtext2. doc

273

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

we want to ensure that the information system provides all the operations that are legal in a specified part

of the domain. This motive is thus similar to the first in that it encourages expansion of scope of coverage

of the domain by the information system and thus parallels the reification rule which insists that the

retrieve function must be surjective. The motive in question is stronger however in that we do not want to
increase the coverage provided by the information system in a general sense, we want to ensure that it is

total within a certain specified area. This reflects the case when the information system provides all the

support that is available for a certain class of behaviours, and so the coverage of the domain by the

information system is de facto complete. The motive tells us that in constructing the information system,

we must ensure that within this area, there are no behaviours of the domain that are prevented by our
insistence that the coverage of the domain is complete.

The area where the coverage is to be complete must be specified in the interaction theory as this is the

only place that we can talk about the state components of both the domain and the information system. By

constructing invariants over these state components from both theories, we can ensure that at any time

there is a complete representation of the sub-domain in question in the information system. For example,

we might say that for certain activity types, all activities of those types must be supported by the
information system. This might be departmental policy - in the DEDC the policy is for every Initial Dr

Consultation and Followup Dr Consultation to be recorded on the computer system at the consultation in

question. In the interaction theory we could record this by saying that at any time there are no proceeding

activities of the relevant types that are not in the range of the appropriate (local rather than global)
interpretation function. This might be specified formally as

da-int-im(inm ActTjpe'') FullRepTjpes n Proceed c (im IntA) crs-Proceed

d: \jes\dis\wi p\phd\phdtext2. doc
274

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

where Fu11RepTypes is the set of types that is to be totally supported by the information system. What we
have done here is define an intended usage of the information system - we cannot enforce these invariants

through skilled design of the information system, or in any (socially acceptable) manner at all. What we

can do is see what effect on the domain - information system ensemble such an intended usage would
have. Thus, having specified the area where support or coverage is to be complete, we are obliged to
investigate the behavioural implications of this decision. In particular we want to determine if the

provision of this compulsory support prevents certain behaviours that might be observed in the domain as
it is without any information system. An obvious example of this can be imagined in the case above: if all

activities of a certain type need to be recorded on the information system, and the information system
doesn't in fact recognise activities of one of those types, then no activities of that type can run at all. In

general the restrictions that the intended use of an information system places on the domain will be more

subtle than this, but the effect might be equally unacceptable, and we should at least know about them.

This argument is summarised in the following figure:

Domain State Space
iring

represented

Poor Information System State Space

Figure 4-9: Two poor information systems that restrict domain behaviour when used as intended.

In the above figure, two cases where intended use of the information system prohibits behaviours

allowable in the domain alone. In the diagram on the left, the domain alone supports a behaviour with the

pre-state SD1 and post-state SD2. The information system does not support a behaviour with the pre-state
Sls1 and post-state S152 where Sill and SIS2 are (assumed here to be the only) representations of the
domain states SD1 and SD2 respectively. Because SDI and SD2 are in the sub-domain where total support
is required, when the information system has been installed, if it is used as intended, the behaviour which
moves the values of the domain from SDI to SD2 will be prohibited. The diagram on the right is slightly
simpler. In this case, the domain alone supports a behaviour which takes the values of the domain from

the state represented by SD1 to that represented by SD2. The state SD2 is outside the scope of coverage of
the information system and so again, the behaviour is prohibited if the information system is used as
intended.

A good example of the prohibition of certain classes of behaviour when the information system is used as

intended can be found in the interaction theory that describes the support that the appointment system

provides for the clinic. This is discussed in some detail in Section 12.4.6, but we can summarise the main

issues here. The intended use of the appointments system is to provide complete support for certain types

of activity. This means that some types of activities can only be booked on the computer system, and that

there is no parallel paper based system in these cases. This constraint is specified clearly in the interaction

theory. If we inspect the appointments system, we find that there are indeed some behaviours that are not

supported by the new system that were previously possible. Notably the computerised system does not

support the assigning of estimated durations of appointments at the time of booking, nor the allocation of
different types of activity to the same clinic list in a flexible manner. If these functions are important to

d: \jes\dis\wip\phd\phdtext2. dOC
275

Poor Information System State Space

Domain State Space

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

the running of the clinic, then the intended use of the information system would be inconvenient and

obstructive. Of course, it might be that these functions are not important, or even that the behaviours that

they support are never observed in which case we could say that the information system is a better model

of the organisation than the domain theory is.

Conclusion

In this section we have investigated two opposing arguments that we should bear in mind when deriving

the requirements of an information system from a domain theory. The first argument urges us to create
information system specifications that are as simple as possible. This is so that the resulting design is easy
to implement, and that the installed system is more usable and more easily maintained than would be the
case with a more complex specification. The opposing argument encourages us to create specifications
that closely resemble the domain theory. The two arguments or points of view must be weighed against
each other when deriving the specification. There are a number of areas where conformity with the
domain theory is especially encouraged. These have been grouped together to form four guidelines, or
motives: so called as they provide the motivation and consequent justification for the decisions taken
during the design process.

The four developmental motives can be understood by comparing them with the requirements of the
specification reification process. In particular we can see similarities between the motives and the
adequacy obligations of the retrieve functions used in reification of abstract specifications. In this analogy
the abstract specification is equated with the domain theory, the concrete specification with the IS

specification, and the retrieve function with the interpretation function. The major differences between

the developmental motives and the adequacy obligations are caused by their partial application - the

motives are just that, not rigid rules and guidelines and the decisions taken in the development process
are subjective. The fact that the IS is almost certainly only partly to be a representation of the domain

theory means that there are many differences between the reification of abstract specifications and the
derivation of those specifications in the first place.

In this section we compared each developmental motive with the appropriate reification obligation, and
discussed what it means in the context of the partial representation of the domain theory.

13.4.3 Criticism

Introduction

From the complexity and subtlety of some of the above arguments, we should not be surprised to find that

in practice great care must be exercised when deriving information system specifications under the

influence of the four developmental motives. The motives are not as formalised as the specification

adequacy obligations, and it is sometimes difficult to see whether or not a particular decision 'satisfies'

them or not. In particular, some of the motives hinge on comparisons of states and behaviours of the

information system and domain combined in a manner described by the interaction theory and separately

as this is the only way that flaws in the interaction can be identified and understood. This inevitably adds

to the complexity of the process greatly: understanding the behaviours of the domain and the information

system together and in isolation is an order of magnitude more difficult than understanding the behaviour

of the domain alone. In addition to this complexity we are confronted with a vast array of possible choices

concerning the shape and form of the information system. We cannot contemplate all of these choices

even superficially, let alone with the detail advocated above. The decision concerning the area of the

domain that should be given greater and more sophisticated support is thus extremely subjective.

d: \jes dis\wip\phd\phdtext2. doc
276

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

All these are problems caused by the complexity of the process which become easier as the process itself
becomes more familiar. There are more intractable problems however that are less easy to address. These

are discussed briefly below.

Difficulty of Specifying

One of the features which have made the techniques described here so useful is the support they provide
for the composition of existing systems together in such a way as to create a single integrated information

system that can be 'greater than the sum of its parts'. This was done in the design of the first version of the
DIS (see the specification of DISI in Section 12.3) which integrated the clinical record system with the

outpatient appointment system. In all probability, almost any system design in an organisation that is

already heavily computerised will involve a degree of systems integration with any new automation
having to sit with a number of legacy systems, providing information to and retrieving information from

their databases.

In order to integrate existing systems using this method, we need to have a good understanding of their
behaviour. The legacy systems need to be 'reverse engineered' to form a specification that can then be

used as components of the specification of the integrated system. The need for this reverse engineering is

clear, but in practice it is a difficult and error prone process. In a sense, the derivation of a specification
from the system is similar to the construction of the domain theory -a theory is posited and can be refuted
through experimentation with the programme being described. In practice this can be very difficult,

especially if access to the system is limited (as will undoubtedly be the case with operational systems)

meaning that the best that can be done is to discuss its functions with systems managers and other experts

responsible for its running - there is clearly much scope for error if this route is chosen.

In addition to the difficulty of getting a good specification, it might be that one that is strictly accurate is

not very illuminating if it does not describe the manner in which the system will be used. Many

information systems can be configured after construction so that a generic system can be tailored more

closely to the users' needs. In the limit the flexibility provided by this configurability can be very great and

can totally change the nature of the system. A case in point is a standard modern word-processor. Most of
these come with an advanced language that can be used to create 'macros' that can then act on the text of
the document being processed. These macros can completely change the nature of the programme,
feasibly changing it from an unstructured text editor to a highly structured information storage system.
An accurate specification of such a programme would have to be extremely complex to reflect the

extensive configurability catered for. Such a specification would not demonstrate the extreme semantic
simplicity of the basic word-processor concept: merely storing and displaying unstructured strings of

characters. To a lesser extent, information systems such as those used in the hospital have to be flexible to

cope with future developments. While generally not going to the extent of providing a programming
language as part of the system, the extra semantic richness created by the structures needed to support the
different configurations can still obscure the underlying form.

In the case of the information systems examined (the clinical record system and outpatient appointment

system), the full extent of the functionality was not described, and in fact some assertions were made that

do not strictly hold. This was so that the system as it is envisaged could be investigated rather than all

possible configurations. Thus the data structure of the clinical record system supports multiple inclusion

of visits (a visit can feasibly be a part of more than one 'higher' level visit), but in its current form, with its

current configuration, the visit graph is actually a tree. Thus the limitations of the system as described in

Section 11.2 are not a reflection of the system design, but rather of its envisaged configuration and use.

d: \jes\dis\wip\phd\phdtext2. doc
277

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Although we can see that there are ways round these problems, they reduce the power of the arguments

we can rest on the specification of the legacy information systems and the corresponding interaction

theory.

Dangers of Relying on Domain Theory

The developmental motives described all rely on a robust and 'accurate' domain theory. If the domain
theory is flawed, then so too will the derived information system. In particular, if we are influenced
heavily by the motives which encourage us to reduce entropy and behavioural prohibition a poor domain
theory will compromise the resulting system design.

In the case of the reduction of entropy, we saw that an information system should not present operations
that are forbidden in the domain theory. If the operation is forbidden in the domain theory, but it

nonetheless becomes apparent that the corresponding behaviours are actually observed in the

organisation, then any information system that does not offer operations deemed illegal by the domain

theory will not support this new area of behaviours. In general this will not be a problem, but in extreme
cases it might render the information system useless or at least seriously inadequate. To cope with this,

most information systems provide functions to the system administrator that are forbidden for the normal
user. Simple screens that support the maintenance of single files might be examples of these. This is a
pragmatic solution to errors resulting from an excess of hubris during the design of the system, but it is
hardly elegant.

Similarly, we might be encouraged to facilitate a greater flexibility in an integrated system than is evident
in the constituent components by virtue of the fourth motive - reduction of prohibition. As we have seen,
even if the theory is correct, there may well be enhancements that can be made through making it bolder.
Indeed, it is unlikely that any abstract theory has represented all the constraints that operate in as complex
an environment as a hospital department, and there may be many behaviours that are allowed in our
description but are not (and can never be) observed. If an operation is allowed in the domain theory alone
but prohibited when the domain and information system are interacting, an assumption of inadequacy of
the information system is not the only conclusion we can reach. It might be that the information system
represents a better understanding of the domain, and the operations prohibited through the intended use
of the system represent behaviours that never are observed in the organisation. If this is the case, then any
introduction of flexibility into the integrated system will result in an inferior model of the organisation -
one that will be difficult to use, possessing as it does a higher degree of entropy.

Thus in the examples we have seen, the hospital's appointment system might embody a better

understanding of the way in which clinic bookings are made than the domain theory (though there is

reason to suppose that this is not the case - see the discussion in Section 12.4.6). Certainly there are areas

where it is clear that the domain theory allows behaviours that are not seen in the organisation. One of
these that was discussed in Section 13.3.2 is the support for two activities to be run for the same patient,

one that is only pertinent for women, and the other only for men.

Arbitrary Interpretation

A particularly difficult problem that is associated with the construction of an interaction theory is the

choice of interpretation. The adequacy or lack thereof of the information system as judged through

inspection of the interaction theory depends on the various interpretation functions being 'good'. Suppose

we have a data file is-A in the information system which we claim is interpreted as a concept A in the
domain theory. The interaction theory might then have an interpretation function IntA where in general

d: \jes\dis\wip\phd\phdtext2. doc
278

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

IntA: is-A EH A.

We might find that there are a number of reasons why the information system is inadequate: IntA might
be a partial function meaning that illegal domain states can be represented; IntA might not be surjective

meaning that some states in the domain are not supported by the information system; IntA might even not
be a function in which case a single domain state could be ambiguous and misleading. All these

shortcomings depend on us choosing the range of the interpretation function correctly. Suppose in use, an

operator of the system did not interpret is-A as the concept A, but rather as a slightly different one, A'.

We might find we could construct an interpretation function IntA' where

IntA': is-A -4 A'

and

/ntA'-l E A'--) is-A.

That is, this second interpretation function is perfect when judged by the four developmental motives
described. What we have discovered is that when used in a certain way, the information system has a

number of flaws and shortcomings - we cannot be sure that it will be used in this way, especially if it has

not yet been implemented. This is akin to claiming that a particular make of lawnmower is poorly
designed as it is awkward to use to bang in nails with. This is almost certainly a valid claim for the

majority of lawnmowers, but represents a faulty understanding of its intended purpose rather than any
design defect in the machine's construction.

In many cases, the intended interpretation of the data-sets in the information system is fairly easy to

divine. For example, the interpretation functions IntP, which maps the data-set crs-Pid onto a subset of
Patients, and IntV, which maps crs-Visits onto a subset of Activities, are not likely to generate much

controversy. Other interpretation functions are more open to debate. Especially contentious are those

interpretations that are derived from the more obvious ones via invariants in the interaction theory.

The assessment here of the adequacy of the information system hinges on this derived interpretation: if

we have deduced this incorrectly, we have said nothing useful about the system as it will be used, but

merely passed judgement on the consequences of an unlikely style of operation.

In short, through the introduction of an interaction theory, we have created another layer of doubt and

subjectivity - we can say a number of things about the information system in relation to its intended

environment, but only if we have defined aspects of the nature of that information system correctly.

13.4.4 Synthesis

The synthesis of the arguments for and against the method described for the derivation of information

system requirements is similar to that which justifies the construction of a domain theory. The assessment

of the adequacy of an information system with respect to its environment is extremely difficult - by

providing the tools and guidelines (in the shape of the interaction theory and the various developmental

motives) we can help to overcome some of the problems - others are more intractable and need other

approaches if they are to be solved, if they can be solved at all. As with the last synthesis section, we can

address each of the shortcomings in turn and consider how we should consequently use the methods and
tools at our disposal.

d: \jes\dis\wip\phd\phdtext2. doc

279

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

The derivation of a specification from an implemented system is undoubtedly extremely difficult - all such
'reverse engineering' is hard to do well. However, what is also not in dispute is the need to have a good

understanding of systems that are to be integrated if we are to have any hope of success in that task. Any

reverse engineering process constructs a specification from an implementation - the only difference here

is that the notation used to express the specification is a mathematically formal one rather than an
informal entity - relationship - attribute (ERA) diagram or dataflow chart. The formal reverse engineering

process is not significantly more difficult than the informal one, although the latter might be more readily

supported by commercial tools (although there are a number of tools that offer a degree of support for the
formal reverse engineering of systems such as MALPAS, and the BTool although these tend to be

implementation language specific and thus assume that you have access to any source code that might

exist).

The problem concerning of which aspects of system to represent in our specification is more difficult and

subjective decisions have to be taken. We should bear in mind when choosing which are the relevant
datasets and functions to define that it is the intended usage in a particular setting that we are interested

in, not some hypothetical system that might result from extensive configuration or other alteration. We

can discover this intended or common usage through observation of the system in use if it already is, or
discussion with the system designers if it is not. This is how the specification of the clinical record system
described in Chapter II was derived.

If we are ever going to grasp the role that an information system will play in an organisation, we need a

good understanding of that organisation. Correspondingly, if we have a faulty understanding then the

value of our cogitations concerning the usefulness of the system will be reduced accordingly. We should,
however, be sensitive to the potential for error in the domain theory when making any design decisions,

and we should discuss the implications as understood of a certain decision with the would-be users. At

this point it might become apparent that the domain theory is in error, or at least insufficiently bold, in

which case we should (providing there is time and inclination) return to the theory to correct it. That the

theory has been through several cycles of construction and refutation gives us grounds to believe that the

number of time errors such as this will occur will be reduced.

We have seen that any discussion concerning the adequacy of the information system as a tool depends

utterly on our determining its intended use. This decision is essentially subjective (although it can be

guided through observation of users of the system if it exists or with designers if not) and although

presented as a problem in the last section, it is a problem that must be shared with all design methods that

require an understanding of existing artefacts: if we have misunderstood the purpose of a tool we will not

be able to say anything about its usefulness. As is observed elsewhere, by using the formality of

mathematics to help formulate our arguments, the decisions made in this regard that might otherwise

have been taken implicitly are brought into stark relief: the subjectivity and consequent scope for error

must be confronted and addressed explicitly (though of course, explicitly taken decisions might still be

poor ones).

An interesting point to make here is that as the domain theory and its constituent concepts have been

derived from direct discussion (or 'experiments' - see Section 13.3) with domain participants, we are
justified in displaying more trust in these than in those of any information system where implementation

considerations will have influenced its form. If the concepts of the information system cannot readily be

mapped onto those in the domain theory, this in itself might demonstrate that the entities in the system
have been poorly chosen. Before passing judgement however, we should remember that any perceived

d: \jes\dis\wi p\phd\phdtext2. doc
280

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

reality is capable of being represented in a multitude of ways: although an information system is

structured very differently from the domain theory, we cannot automatically assume that it is in error.

Finally, it should be noted that although the method described does not provide us with much help in

determining the intended usage of an information system, there are techniques available in other
disciplines that address precisely this issue. In particular archaeology and anthropology concern
themselves very greatly with the function and usage of tools whose precise purpose has been lost over

time. If a society and culture has died out many centuries ago, often all that remains are precisely the
'tools' that supported that culture, where the term 'tools' covers all products that help the socio-economic
functioning of the society and individuals (so includes such things as conventional tools, weapons,
buildings, jewellery and so on). In order to understand the nature of the defunct society, the purpose of

those tools must be deduced. The problem is similar, albeit not so extreme, in living but alien cultures, or

even familiar cultures that must be explored in great detail. The techniques that are used to gain this

insight can be loosely grouped under the headings ethnography, ethnomethodology, or ethnology. For a

brief overview of some of the techniques and philosophy associated with archaeological interpretation, the

reader is referred to 'Reading the Past' by Ian Hodder [Hodder86].

In conclusion, we have seen that we can not use the method to lead us inexorably to the perfect system
design. Rather we should use it to shed light on areas where discussion with the would-be users and

stakeholders of the system might be particularly fruitful. If we use the construction and analysis of the
interaction theory in this way, then we have indeed a useful yardstick with which to measure the

usefulness of an existing or proposed system (and hence help us design such a system in the first place).

13.5 Issues concerning Construction of IS

Once we have derived a satisfactory specification of an information system, or at least of that component

of an integrated information system that is to be constructed, we can set about building the various

computer programs that will be the implementation of the specification. The construction of physical,
'concrete', programs from abstract specifications has been an area of study in computer science for many

years. Perhaps the most famous early method was that of Dijkstra, expressed in a paper as long ago as

1975 [Dijkstra75]. Since this time, many formal notations and associated refinement techniques have

been used. A recent survey [Austin93] showed that the most common of these are perhaps the state based

notations VDM and Z, and the temporal languages LOTOS, CSP, and CCS. It is not the purpose of this

thesis to contribute technically to the continuing formal methods debate, but for the sake of completeness,

some of the benefits and problems associated with their use will be briefly presented. This overview will

take the same form as the previous sections: first some of the benefits associated with the use of formal

methods will be presented as the justification, then problems that have been observed will be described to

form the criticism, and finally the way in which we should approach the use of the particular formal

method to derive a working information system is given in the synthesis.

13.5.1 Justification

The technique of formally deriving computer program from their abstract specifications is known as

refinement or reification. The process of reifying specifications, and the proof obligations associated with
such reification have already been discussed above in Section 13.4.2. The benefits have been widely
rehearsed in the literature: it suffices here to present a summary of claims made in support of formal

reification in such papers as 'A Justification of Formal Methods for System Specification' [Cohen89] and
'Seven Myths of Formal Methods' [Ha1190].

d: \jes\dis\wip\phd\phdtext2. doc

281

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The use of formal methods directly facilitates the construction of a working information system. Through

the correct use of the techniques of reification, an implementation of an abstract specification can be

accurately and reliably derived.

A derived program can be proven to be a correct implementation, or model, of the specification. The

satisfactory discharge of the adequacy obligations of the particular reification method used can greatly
increase our faith that a given program performs the functions it was specified to do. This is undoubtedly

useful, especially so in the case of so-called 'safety-critical' systems - surely a description of clinical

systems.

Software tools can help with both the reification and the discharge of the associated proof obligations.
Commonly used formal methods are supported by commercially available tools. These help with aspects

of inspection of formal notations and arguments. A few support the construction of and discharge of proof

obligations implied by the reification and even the construction of models of the specification as

prototypes (for example the B method and tool [Gardiner9l]).

The costs associated with the correction of errors is greatly reduced. Because the cost of correcting
mistakes in the function of a system increases dramatically with the stage in the system's 'life-cycle', the
fact that the implementation can be shown to be correct in terms of the specification, we are able to

prevent a class of late occurring (and thus expensive) implementation errors.

13.5.2 Criticism

Not only are the justifications of formal methods well known, but so are the counter arguments (see for

example [Goguen90a]). Some of these applied particularly to the project described in this thesis, and it is

these that this section will briefly comment on.

Strictly, the reification from an abstract specification all the way to computer code has only been achieved
for a few languages that are used for commercial system design (notably Modula). While it is claimed that

implementation into the syntax of any computer language can be supported with the help of the

appropriate logical framework, the construction of such a framework is in general difficult, and not

something to be undertaken lightly (for example, when studying for a PhD). Certain languages map more

or less easily onto certain specification notations. The ideas behind the notation used could only be loosely

compared with the implementation language chosen for the departmental system: a fourth generation

language called Uniface. The major problem lies in slightly different behaviour description philosophies.
Whereas the Schuman-Pitt notation relies heavily on the use of invariants to circumscribe the possible

states occupied by the system and less heavily on the use of pre- and post-conditions of individual

operations, Uniface places more emphasis on the pre- and post- conditions of a number of defined

operations, and only weakly supports the use of state space shaping invariants in the guise of declarative

entity-relationship rules. Problems associated with the mismatch of underpinning descriptive philosophies

are in principle soluble through the expansion of the pre- and post- conditions in the formal notation.

This process consists of adding (through the use of the 'AND' conjunction) the invariants of the system to

both pre-condition and post-condition of each operation. In practice this would result in very cumbersome

and incomprehensible expressions that were difficult to implement correctly.

In the event, no formal reification was used, the specification acting as an informal guide rather than a
formal director to the construction of the information system. As a result, many of the benefits of the use

of formal methods was lost at this stage. This is in common with the rest of the project however, where
the construction and discharge of formal proofs was minimal.
d: \jes\dis\wip\phd\phdtext2. doc

282

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

13.5.3 Synthesis

The previous two sections on the derivation of a domain theory and subsequent information system

specifications present methods that are relatively novel and were used more or less successfully. This

section on the construction of implementations from specifications reiterates tried and tested techniques

that were not used. We have not totally invalidated the project however. Although formality adds rigour to

an argument, an argument carried out without recourse to predicate calculus of other algebras is not
inevitably inadequate or erroneous. The existence of a formal specification helped enormously in the

(informal) coding of the computer systems that were influenced by the project. These systems are
described in more detail in Section 14.6. The existence of any explicit specification, formal or informal,

can help guide development of a complex system. If the requirements are stated in clear English, the

system is likely to better fulfil its requirements than if no clear requirements were specified at all. If

diagrammatic conventions such as ERA diagrams and data-flow charts are used, then the finished system

is likely to be better still. As it is, a notation that is more precise than the first and richer than the second

was used to create the specification. As long as it was used correctly and intelligently, this specification

was at least as useful as an equivalent English or informal diagrammatic description: the fact that it

defines the limits of (valid) system behaviour richly and rigorously means that it is actually better than the

less formal equivalents. In fact, it is easy to derive the less formal specifications from the formal, and this

to a certain extent was done (at least for the ERA diagrams) for the systems developed in the day centre.

13.6 Issues concerning the use of formalism

This section is not structured in the same way as the previous four. It does not concern one of the stages in

the system design method but rather comments about those tools that were used throughout the project:
formal methods.

Although there are many benefits to be accrued from the use of formal methods, there is a price that must
be paid in terms of intensity of labour. It can be extremely difficult to record as set-theoretic invariants

and pre and postconditions notation what is easy to think in your head. While this becomes much easier

with practice, the process of formalising informal thoughts will always be hard work. In order that any
benefit be gained at all from the use of the formalism, the resultant theory or specification needs to be

inspected for inconsistency. Although formal proof was not used, and even semi-formal mathematical

arguments were rare, careful inspection of the axioms of the theory to discover inconsistencies or

undesirable properties was performed throughout all formal stages of the project. This inspection, and the

consequent reworking of the invariants and pre and postconditions was difficult, longwinded and tedious.

Much of the difficulty encountered was precisely caused by the rigour of the notation that we have earlier

claimed to be a significant advantage of formal methods. This is indeed the case: when used correctly, the
formal notation helps prevent 'floppy thinking' which although useful in everyday life, is the curse of the

computer system designer. Unworkable ideas are exposed as such, and must be corrected. The concepts
behind the description being worked on, be it the domain theory or an information system specification,

need to be sorted out mentally before they can be satisfactorily committed to a formal record. This is hard

to do, and can be unpleasant and exhausting. It does mean that the resulting information systems are
based on concepts that are more considered than is often the case. Equally, unpleasant though it may be,

the identification of an error and the correction of such at this early stage is significantly cheaper than it

would be if it happened later on in the system lifecycle.

The use of set theory means that concepts can be represented very precisely, and thoughts that start as

vague notions are sharply defined by the time they are committed to paper. The obverse of this argument

d: \jes\dis\wip\phd\phdtext2. dOC
283

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

is that re-conceptualising an idea from the formal description can be hard. The cryptic and non-intuitive
nature of the notation, allied with the rigour with which concepts are recorded means that it is difficult to
read in a way that leaves us with a genuine understanding of its semantic content. This is partly because

we as humans are a lot happier thinking vague and ill-defined thoughts, and partly because the semantic
content of many of the theorems and axioms is so great. It is much easier to understand an ERA diagram

than a Schuman - Pitt schema describing the same domain, but then there is much less to understand in
the first place.

In short, it must be recognised that the benefits that were enjoyed through the use of a formal notation
throughout the project were only enabled through hard work. Harder work, such as the extensive use of
formal and semi-formal reasoning, would have delivered greater benefits. It is generally accepted that
errors in system design are more usefully and cheaply dealt with if they are caught in the systems analysis
phase than if they are only observed during the system construction phase, or even once in use. Any

method that is superior by this token will mean that later stages in the software lifecycle are cheaper,
faster and easier to complete. It will also mean that the earlier stages are more expensive, slower and
more difficult to deliver. The justitication for making the job of the systems analyst so much harder is the
reduction in cost and shortening of the timespan of the overall system development and implementation

project.

13.7 Conclusion

The message from the preceding sections in part four of the thesis is clear. Were the method described
foolproof and complete, the resulting computer systems would be brilliantly suited to the job for which
they were designed. However, each stage in the process is flawed, and the final system will suffer
accordingly. This should not lead us to despair or tempt us to abandon the method. As was argued in
Section 4.2, the process of systems analysis, specifically requirements analysis, is very difficult, and yet if
it is carried out poorly it can and does lead to appalling faults in the implemented system. In the same
section it was claimed that expensive failures are common and persistent: it is accepted that these failures

would be prevented through the application of successful requirements analysis. The appropriate
interpretation of these observations is not that the myriad system analysts and designers working are
going about there jobs incorrectly or negligently, but rather that the task itself is extremely difficult,

verging in many areas on the intractable. In this environment, a method that can be used to help improve

the analysis conducted, however marginally is a useful contribution. Equally, a method that purports to

provide the 'answer' to a problem that continues to baffle the entire computing community should be

treated with great scepticism. The author claims that the method used can identify classes of error that

might be missed through the use of a less formal or rigorous method. In the previous chapter, we have

seen how the method is rigorous and `scientific' (more so than many conventional methods) and explored

which classes of error it is particularly good at trapping. Additionally, by presenting the flaws of the

method, we can use it in a more enlightened manner, and can deploy additional methods to cover the

areas inadequately or erroneously addressed.

Joseph Goguen talks about the tendency of formal methods practitioners (and indeed the entire scientific
community) to deny the existence of error [Goguen90b]. The author believes that insofar as this is the

case, it is because the essence of the scientific method has been misunderstood. The way that this has been
interpreted in the project presented in the thesis is as a means of discovering errors, and benefiting from
them in a structured and rational manner. Error has not been denied - it is seen as an inevitable 'evil', but
through its discovery and understanding, we can increase our knowledge of the world and the artefacts we
are making to operate within it.

d: \jes\dis\wip\phd\phdtext2. doc
284

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Chapter 14: Conclusion

14.1 Introduction

This chapter concludes the thesis, and in so doing argues that the goals of the work have been met. Firstly

the objectives of the project are restated. Each of these objectives is then considered and is shown to have

been satisfied. As a result it is argued that the hypothesis of the thesis is correct. The major findings of the

project - its salient features - are then spelt out. It is these findings that are considered to be the major

contributions to the discipline. These findings are:

" the necessity of three theories -a domain theory, an information system theory, and an interaction

theory;

0 the benefit provided through the use of (a version of) the scientific method to derive a description of
the domain;

" the four developmental motives which balance of the need tor simplicity of information system
design;

0 the domain theory as developed and presented; and

0 illumination of a number of philosophical flaws in this and other analysis methods.

Some of the benefits that have already been drawn from the work are then discussed. These are: as an
influence on the design of the Diabetes and Endocrine Directorate departmental computer system; as the

starting point of an analysis for an out-patient contract management support system; and as exemplary
work for the IMC of the NHS Management Executive, used in their search for further development

strategies for the Common Basic Specification.

A number of avenues for further work, building on that described in the thesis, are then discussed. These

are of both practical theory improving, and methodological in nature. Finally the chapter is rounded off

with a conclusion.

14.2 The Objectives Revisited

The original requirement resulted from a long chain of changes in the nature of the health service, and

the role of St Thomas' Hospital within it. To be brief, a need was perceived for a computerised
information system that would 'support the business of clinical directorates in the hospital', a clinical
directorate being the name for an organisational unit roughly corresponding to the earlier hospital

departments. The project reported in this thesis represents work towards a design for such an information

system. The extreme difficulty in the design of clinical information systems (as evidenced by their high

failure rate) and the fact that the project took the form of a PhD meant that there was both the need and

the possibility for subjecting the problem to longer and more intense scrutiny than might be usual in such

cases.

One of the first observations made that shaped the work of the project was that when it is in use, an
information system is interpreted into the world by its users. The symbols and terms displayed to the users
are seen as representations of elements and entities in the world as they perceive it. Thus in order to

assess the worth of an information system, we must judge how effectively it will be interpreted into the

d: \jes\dis\wip\phd\phdtext2. doc

285

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

i

world: to this end we need a representation of the world, a representation of the information system, and a
means of judging one against the other.

Two points can be made which help us successfully to implement such a strategy. Firstly the
representations must generally hold (they are universal statements), rather than specifically recording a
single case (they are not singular statements). Secondly if the representation of the world, or domain, is to
have any credibility it should be derived using the method of empirical science (or a method based on
this).

We justify the first point as follows. The designed component of an information system, the 'program', is a
universal statement - it is a set of rules which constrain the behaviour of the system in certain ways
according to the 'input'. Although we can derive a good singular picture of the world as it might happen
to be now (or might have been at one time), this will only be of use in assessing the worth of the
information system design at a certain point, rather than generally. If we are to achieve a general
assessment of the worth of the information system design, we need to compare a universal statement of
the world with a universal statement of the information system - in practice a restatement, or 'projection',

of the system's program. In this thesis these universal statements have been called theories. To assess the
interpretational adequacy of an information system design we need a theory of the domain, a theory of the
system, and a comparison of the two. This comparison which also takes the form of a theory has been

called the 'interaction theory' as it attempts to show how the information system will interact with the
domain.

The second point follows from the first. A good theory of the domain in which we are interested - namely
a clinical unit - is an extremely difficult thing to derive. Information systems are notoriously difficult to
get right: it would seem that clinical information systems are even more so. This is partly because the
understanding of the user's domain by the computer system designer is inevitably flawed - the analyst's
understanding of the domain will be very different from that of the user, and will contain many
preconceptions and plain errors. Additionally, in the case of the clinician especially, and perhaps also
with other users, the 'universal' language of the analyst (needed to derive a computer system design which
is a universal statement) is very difficult to converse in. Clinicians (and perhaps other users) would
appear to be much happier talking in anecdotal singular form (this is a simplification - another parallel
argument has it that no matter which form of language clinicians use, we can rely on the singular more
than the universal). It is thus not only important, but also highly problematic to root out errors caused by

a misunderstanding of the domain on the part of the analyst. In order to address these problems, the

project exploited the power of the method of empirical science as described by Sir Karl Popper. This has

the benefit of being a framework of thought within which a degree of objectivity can be harnessed to

assess the worth of a particular theory (vis a vis its interpretation). It is also a bridge between singular and

universal statements, thus facilitating the communication between analyst and clinician or other potential

user. It is not immediately obvious how the scientific method might be used in this instance, so the

adoption of an approach that harnessed the method was one of the objectives of the thesis. In fact, the
hypothesis is

That the rigorous use of a method where a semantically rich description of an information system is

compared with a similarly rich scientifically derived description of the domain to be supported is

possible and can prevent interpretational problems in the resulting information systems.

d: \jes\dis\wip\phd\phdtext2. doc

286

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

The phrase 'semantically rich' is inserted as (as has been argued previously) the comparison of

semantically poor descriptions of domain and information system would lead to a correspondingly poor

assessment of the worth of one as a representation of the other.

There are a number of ways of demonstrating the validity or otherwise of any hypothesis. In this case,
three subsidiary objectives were defined which between them test the hypothesis. These are

Objective 1: A method such as that described in the hypothesis was to be developed.

Objective 2: The method should be used to derive a 'scientific' description of the clinical directorate.

Objective 3: From the resulting description, specifications for components of the Directorate
Information System were to be engineered.

As we shall see, these objectives have been met, and between them they do indeed validate the hypothesis.

In the next section we consider how the three objectives were satisfied.

14.3 Satisfaction of the Objectives

14.3.1 Objective 1: A Method Developed

A method was developed which meets a number of criteria set down in the hypothesis and elsewhere in

this thesis.

The method supports the scientific derivation of a domain theory. Through the use of 'experimental

interviews', singular statements were elicited from clinicians and other users which served to refute a

universal theory of the domain. The theory was not only refuted, but was rendered more refutable (that is,

more bold) as time passed. Although the approach is different from that proposed by Popper in a number

of ways (such as the lack of support for 'controlled' experiments), the use of the singular reliable statement
to refute the universal conjectural one, and the search for ever bolder theories is the crux of the scientific

process.

The resultant theories are presented in a semantically rich manner. The use of the unambiguous power of

set theory and predicate logic (specifically in the form of the Schuman-Pitt formal notation) means that

the theories are significantly more precise than they would be if presented in a more conventional

notation.

The domain theory can be compared with the information system theory. This is achieved through the use

of an 'interaction theory' where the anticipated interpretation of information system state components into

domain concepts is recorded. Criticism can then be passed where there is a mismatch between the
information system specification and the domain theory, and remedial action taken (if deemed

appropriate).

The method supports the engineering of information system specifications. Not only is it possible to

compare existing information systems against the domain theory, but it is possible to posit hypothetical

systems, and by using an appropriate interaction theory and the four developmental motives described in

previous chapters, move incrementally towards an improved system. The positing of hypothetical

structures, the use of defined ('scientific') procedures to assess their goodness, and their subsequent
refining is the essence of engineering.

d: \jes\dis\wip\phd\phdtext2. doc
287

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

14.3.2 Objective 2: A Description Derived

A theory of the domain was developed over a period of some eighteen months. The theory, spanning over
forty pages of set theoretic notation, was restated in its entirety over twenty times. Many of the theorems

embedded within it were abandoned after refutative evidence came to light. A dozen or so of these

refutations are recorded in this thesis as the original theorem, the refutative evidence, and the reworked
theory. After the eighteen months we cannot say that the theory is perfect, or that there is no room for

improvement, merely that it is better than it was. The use of set theory within the framework of the
Schuman-Pitt notation lends the presentation of the theory both clarity and precision. The way in which
the evolution of the theory has been recorded in the thesis means that the reader can see not only what
theorems the theory contains, but also in many cases, why it contains them and not certain others.

14.3.3 Objective 3: A Specification Engineered

The specifications of two information systems were considered in the light of the domain theory: that of
the Clinical Record System (CRS) and the first fragment of the Directorate Information System (DIS1).

In the case of the CRS the system already existed (albeit not in an implemented form), the interaction

theory merely serving to illuminate areas where discrepancies between the system and the domain theory

lie (and hence show where there are opportunities for 'improvement').

Although DIS I did not and currently does not exist, it is designed to be the integration of two components

that do - the CRS and the outpatient appointment system (OPAS). The specification of DISI is thus a

composition of the specifications of the CRS and the OPAS. Few extra entities are introduced in DIS I

that do not exist in either the CRS or the OPAS, the integration largely being concerned with how the

state variables of one of the component systems constrain values of those of the other system. The

integrated DIS I was developed with the aid of four developmental motives. These motives influenced the

response to inadequacies in the (putative) interpretation of DISI, thus motivating (some of) the design

decisions taken. Again, we do not know that DIS 1 is a good information system - merely that it is better,

at least in an interpretational sense, than the other possibilities discussed in Chapter 12.

14.4 Validation of the Hypothesis

Having demonstrated that the three subsidiary objectives have been met, we can argue that the hypothesis

has been validated with some conviction.

The hypothesis states that it is possible to show that a semantically rich description of an information

system can be compared with a scientifically derived description of the domain of activity which the

system is to support. Through the construction of a scientifically derived domain theory (it was argued

above that for all its differences with classical science, the essential features of the approach are

preserved), and its composition with the information system specification by way of the interaction theory

we have shown that such a comparison is indeed possible. The use of the Schuman-Pitt notation ensures

that the descriptions being compared are semantically rich.

Furthermore the hypothesis states that this procedure is of some benefit in that it can help interpretational

problems in the information system. We have demonstrated that this is indeed the case through the

recording of theorems from early versions of the theory and their refutation, and through presenting

potential interpretational inadequacies (with respect to the domain theory) in a designed information

system - DIS 1.

d: \jes\dis\wip\phd\phdtext2. doc
288

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

What we have not said is that the method used is better than any other at preventing such problems - to

argue thus would entail a detailed comparison with other similar systems designed using these other

approaches. Even were that possible it would be infeasible (or more likely impossible) to keep all other
factors constant meaning that any such empirical comparison would be flawed. Of course, the author

would argue that the method described does present the user with benefits not apparent in other

approaches. Indeed were this not to be the case the hypothesis would be validated but the work still

useless. Other methods do not articulate the problem clearly, and specifically do not compare the

information system against the organisation it is intended to support. They do not use a 'scientific' method

to understand the organisation, relying instead on discussions with users that have a universal quality,

and are thus difficult to understand let alone disagree with. They do not link the information system with

the organisation in an explicit manner meaning that we do not know where design compromises have

been made and why. Having said all this, it is clear that most of the commercial analysis techniques are

significantly easier to use than that described in the thesis.

14.5 Salient Features of the Project

We can summarise the work described in the body of the thesis in another way, by listing the major

achievements or findings resulting from, or emphasised by the work. These are briefly presented in this

section.

The first notable claim is that in order to judge the interpretational adequacy of an information system, we

need three theories. To see how the information system will be interpreted into the world we need:

0a theory of the (user's perception of the) world which is the domain theory;

"a theory of the behaviour of the information system which is the system specification; and

"a theory of how a model of the second theory will be interpreted as a model of the first - this is the
interaction theory.

It is only by inspecting the third composite theory that we can reliably find and comment on the
interpretational inadequacies of the information system with respect to the target domain.

The second claim concerns the derivation of these theories. The scientific method can to all intents and

purposes be used to refine the domain theory. This provides us with a reliable tool with which to judge

and improve a theory. It is particularly suitable, useful, and necessary in the creation of the domain theory
inasmuch as it:

0 enables the preconceptions of the analyst to be tested and where erroneous exposed;

" facilitates the communication between the universal language of theories and the singular language

of everyday experience (especially for clinicians); and

0 provides a measuring device by which two competing theories can be judged.

The scientific method is not really appropriate for the creation of the information system specification -
this is either a projection of existing theory (the system's program) or the statement of the behaviour of a
putative but currently non-existent system. Similarly the scientific method is of no great help in the

construction of the interaction theory: the only guidance here is common sense and to follow the advice
given in Section 11.3.2.

d: \jes\dis\wip\phd\phdtext2. doc

289

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

A third methodological as opposed to practical claim concerns the engineering of an information system

using the three theories. Here it was argued that balancing the desire for simplicity in the design of the
information system was a need for accurate domain representation. In particular four developmental

motives, similar in many ways to the adequacy obligations for data reification, have been stated and
described which guide and motivate the movement towards domain conformity.

On a practical note, the method has resulted in the creation of an extensive, robust, and sophisticated
description of the operational process of the provision of healthcare. Although it is by no means perfect,
we know that it is an improvement over other possible descriptions that were refuted during its
development and, because of the presentation of the refutations, we can see why it is a better description.

It is presented as a sequence of enrichments and refinements of an initial, highly abstract description

which represents the process of care as consisting of basic or composite clinical activities and the relations
between them. The existence of this theory, or at least the refutations, might well be of use to workers
endeavouring to derive similar articles (that is, other requirements analysts, systems analysts, and
designers).

One final claim relates to the philosophical points raised in Section 13.3 - Issues concerning Construction

of Domain Theory. Many of these are common to all forms of information systems and analysis
techniques. The precise articulation of the problem and the use of a formal notation to support the method

exposes these 'metaphysical' concerns more starkly. Although it might not at first seem that this is a
benefit, the understanding of the limitations of a tool can only increase that tool's efficacy. The

illumination of the problems of analysis in general, and this form of analysis in particular means that the

method can be used more powerfully (as indeed can other methods).

14.6 Preliminary Benefits

Although the major specification produced as a result of this project, namely DIS 1, has not been
implemented, the work conducted has nevertheless been beneficial in a number of areas. This section
describes these.

14.6.1 CRS design influence

As has been previously explained, the department's clinical record system (CRS) was being re-written at
the time of the project. Specifically the data modelling phase of the system's re-design was conducted
during the latter stages of the domain theory development process. Although the 'correct' time to consider

the data architecture of a system is (according to the method being espoused here) after a tentative first

pass specification and related interaction theory, the domain theory alone can help us in an informal way

with system design.

In this case it is claimed that the domain theory influenced the design of the data architecture of the CRS.

Although the earlier version of the CRS - called 'APL-Diabeta' - that was being updated placed the

clinical visit at the heart of that system's data architecture, its central role was reinforced in the new
design. Almost all the attributes of patient health and activity are now directly and primarily associated

with a visit record. This is in many ways similar to the structure of the domain theory where the activity

plays such a significant role.

Another area of similarity with the domain theory that was not present in APL-Diabeta concerns the

existence of an 'inclusion' relationship in both the new CRS and the domain theory. The APL-Diabeta

system and early versions of the new CRS data structure recorded the clinical type of a visit as an attribute

d: \jes\dis\wip\phd\phdtext2. doc

290

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

of the visit, but that was the only 'structural' information pertaining to the visit supported. At display time
a filter could select whether details of visits of a certain type or all types were displayed. The problem
came with the pregnancy episode. During the period of pregnancy the patient will see a doctor and nurse
much more frequently than they would normally meaning that 'recent' visits would have a different

meaning if the patient was pregnant compared with the normal state of affairs. This was considered
undesirable and therefore a problem. Creating new visit types for all visits during the period of pregnancy
was one solution, but this would have been a crude one as much of the activity conducted during the
pregnancy is in fact the same as a visit to that specialist outside pregnancy only at a higher frequencyxxvii
The approach taken is similar to that used in the domain theory which is to have hierarchies of visits such
that one can be included in the other. This has effectively given an additional, and more flexible, method
of categorising and aggregating visit records.

Although these changes might well have been suggested and implemented without the use of the theory, it

existence meant that the identification of these 'solutions' was more inevitable than it might have been. At

the stage of data architecture design, any contributions to the debate must be welcomed as useful -
mistakes made at the beginning are difficult and expensive (in terms of time at least) to fix.

14.6.2 The Out Patient Contract Management Support System

One of the areas of direct concern to the Diabetes and Endocrine directorate was the introduction of

contracts for services provided. In patient activity has been the subject of contractual agreements with

purchasers since the introduction of the NHS and Community Care act in 1990. There are a number of
different forms of contract, including Block, GP Fundholder, and the so-called 'Extra contractual' which
is really a contract that is negotiated on an ad hoc basis and not as implying a standing relationship
between purchaser and provider. It is vital that patient activity is tied to contractual income if the service
that the hospital delivers is to be managed rather than just administered.

The clerical burden associated with the setting up, monitoring. and discharging contracts is small when

compared with the cost of a typical in patient episode (which may cost thousands of pounds) but large

when compared with the cost of an outpatient consultation (which may cost under one hundred pounds).
For this reason out patient activity has generally been designated as an overhead to be distributed across

all in patient activity. This is a reasonable model for the majority of directorates where out patient activity
is a necessary precursor and follow up to in patient treatment. For the Diabetes and Endocrine Directorate

where the majority of activity is out patient based, this is an unwise not to say dangerous approach to take.
The whole directorate would become an overhead on the rest of the hospital, and its closure would result,

on paper at least, in significant efficiency enhancement for the other directorates. For this reason a

contract management and support system was needed in the directorate, and because of the low cost of the

services being contracted it was important that the procedure was as automated as possible.

This is the background to the stated need for an Out Patient Contract Management System (OPCMS).

The system itself was not specified in Schuman-Pitt notation, but a theory of the organisation as it would
be once contracts were efficiently supported was. This is an example of a hypothetical domain theory -a
theory of an organisation that does not currently exist, but rather the description of the behaviour of an

organisation that it is imagined could exist. In this case it is the theory of a mainly outpatient clinical
directorate which has an efficient contract management system in place. The hypothetical domain theory.

xxvii The approach used by APL-Diabeta was even cruder: the pregnancy module of the system was essentially an entirely distinct 'clone'
of the conventional system, specialised for pregnancy care, and with no communication with the conventional system.
d: \jes\dis\wip\phd\phdtext2. doc

291

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

was created as a refinement of the domain theory (in fact a refinement of a specific class in the domain

theory) and is presented in Appendix 6.

The theory of the organisation with an OPCMS in place was used by Sanjay Sanghrajka, a BSc student
from the University of Surrey, as the basis for a final year project he conducted for the department

[Sangh94). This analysed and documented the requirements for an OPCMS. Following the successful

completion of this project the author designed and constructed a prototype OPCMS as an extension of the

new CRS system.

14.6.3 IMC interest

The Information Management Centre of the NHS has for many years concerned itself with (amongst other
things) the definition of data standards for use by the health service as a whole. One of the data standards
is called the Common Basic Specification (CBS) [IMC92), discussed earlier in section 7.2. The
development of the CBS has developed over the course of four years at a cost of as many millions of
pounds. The work was suspended following the publication of a report, written by the management
consulants CASPE, which questioned the usefulness of the work and the way in which it was evolving.
On publication of the report, further development work was stopped and a number of projects established
to determine the effectiveness of and future development strategy for the CBS. These are known as the
CBS demonstrator projects - the outcome of the projects is being reviewed by the CBS Assessment Board
[IMC91). The projects have revealed a number of shortcomings. One of these is that the wealth of
knowledge and experience built up as a result of so many man-years of analysis work does not reveal itself
through the data model as presented. This is because the semantics of the presentational medium used
have been too poor [Cohen93 J. It is possible that the use of more formal notations would address this

particular problem.

For this reason the IMC has expressed a degree of interest in the work reported here, attempting as it does

to present a formal theory of a small part of the health service. It is interesting not just as an exemplar of
the sort of work that is possible, but also because some of the primitive concepts in the CBS also appear in

the domain theory described in this thesis. Notable similarities is the decision to represent medicine as a
hierarchy of nested activities (although those of the CBS are not exclusively clinical), and the association
of all activities with a subject (although those of the CBS are not exclusively patients). It seems that the
CBS is richer than the domain theory (and certainly more expansive) but less rigorous.

At the time of publication of the thesis, the future of the CBS is uncertain. However, a PhD project has

been set up with the involvement and blessing of the IMCu'"'. This is looking at the value that might be

gained from formalising the CBS, and the difficulties that will be encountered in trying so to do. This

work has taken heed of, and to a certain extent benefited from that reported in this thesis.

14.7 Further Work

As has been alluded to several times in the thesis, there are a number of ways in which the work described

might be continued and expanded on. Both the domain theory itself and the method for deriving the

information system specification would benefit from further work - this section comments on a number of

areas that might be of particular interest.

xxviii This work is being conducted by Max Jones at the Department of Life Sciences at the University of Nottingham

d: \jes\dis\wip\phd\phdtext2. doc
292

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

14.7.1 Towards a More Generic Domain Theory

Although much effort was made to ensure that the theory was general and applied to more than one
directorate, the claim that this effort has been successful is unsubstantiated. To have any confidence that

the theory is indeed general significant time and effort needs to be spent in other departments and
directorates. The results of analyses in other directorates would be specialisations (such as that included

in Appendix 3) that describe the particular conditions and services in these organisations. It might be that

the derivation of such specialisations is possible - it is more likely that some change to the structure of the

theory is needed before we can be confident that it is indeed generic.

One area where both specificity and genericity might be combined fruitfully is that of abstract activity

classification. In the theory as it stands the set Activities is partitioned into In & Out and Request,

Proceed, & Complete. However, the theory makes special provision for other, derived subsets of
Activities, in a number of places. One of the derived subsets is that sort of activity that can be considered

to be 'concrete' rather than abstract, and occupies the time of a member of staff of the organisation. Thus

Init Dr Consultation is a more concrete activity type than Diabete, Care, and the former needs continuous

resource to run where the latter does not. The addition of a new partition of Activities, say Abstract and
Concrete, and the development of properties of these subsets might be a valid and useful way of

representing domains as percieved by their workers. The development of this concept would be an

emboldening and would so lead to greater specificity. However, it is imagined that this is an example of a

property that is shared by all clinical domains and so is an example of (proposed) genericity.
Representation of the concept of concreteness might greatly improve the theory's descriptive power, and

whether valid or not the investigation of the area would surely lead to valuable insight.

14.7.2 Towards a More Elegant Theory

There are a number of ways in which the theory could be improved so that it describes much the same

system but in a neater and clearer way.

Firstly the theory could be semantically identical but syntactically neater. An example where this might be

useful is the definition of the structure and behaviour of the state component EmbedType. This is

currently declared as

T n6: EmbedT)pe: Pr -H (TGroupers -) (Types (0 Types)),

an ugly and difficult to grasp quartet which in turn renders the expression of the invariants that constrain
it bulky and complex. A little thought is needed to turn this and other over complex structures into more
simple concepts. Another area where some re-expression might be useful is in the definition of time in the
Clock class of the theory. Here the use of sequences and their associated operations might make the
introduction of time simpler - as it is a lot of effort has gone into defining and needs to go into reading a

part of the theory that does not say anything interesting about medicine. Just as not all the power of set
theory as developed in the literature has been exploited, nor has all the power of the representational
medium. The theory as presented makes little use of the 'object-oriented' properties of the Schuman-Pitt

notation. Although the properties of a class in the domain theory are inherited by its subsidiaries, none of
the other properties of the object oriented paradigm is used. There are no 'objects', no data and process
encapsulation, and no methods passing between processes. The recasting of the theory into a more object
oriented form might yield valuable benefits: it has been widely claimed that object oriented programs and
specifications are significantly easier to understand (although whether this is on an intuitive or formal

d: \jes\dis\wip\phd\phdtext2. doc

293

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

level is not clear) and develop. Any alteration that lends conceptual simplicity to the theory is to be

greatly welcomed.

Secondly there are a number of areas where the semantics could be changed slightly so that the theory

was sleeker and clearer. Currently the fact that the suspend operation returns an activity to the set Request

causes problems both in the theory and when it is composed with information system specifications. In the

theories a suspended activity is often treated differently where it can be (a request represented by a visit

record must have been suspended for example). This could be formalised by setting up a new subset of

activities - Suspend - which was similar in many ways to Request, but could be treated differently where

appropriate. The fact that the division into three disjoint subsets in the first class of the theory means that

the reworking required to effect this change would be significant. Another problem is that concerning

concurrent activities run by the same clinician. Although the rule originally suggested in the theory was

refuted, it was not replaced by a different one and the constraints are thus very weak in this area. It is

clear that some form of limiting theorem should be introduced (a nurse will not run a patient education

session for one patient while at the same time be prescribing insulin to another for example), but not what
form it should take.

14.7.3 Changing the Rules During the Game

The theory as it stands allows for one specialisation for any of its models. There are many specialisations
that are forbidden by the invariants in the specialisation classes, but once one that is permitted is chosen
there is no facility to allow for it to evolve. This is clearly unrealistic as the organisation that the model
purports to describe will undoubtedly change its nature over time. For example, new types of clinical
activity might be offered, new types of blood tests might be conducted, representatives of new professions
might be employed by the organisation, and the professional structure of the organisation might be

changed.

The issue of 'changing the rules as the game is being played' is an extremely difficult one to address. The

slow speed of change of the organisation when compared to operational behaviour means that further

experimental interviews with clinicians might not be as effective (as noted earlier in Section 13.3.2). One

way of overcoming the problem might be to suggest a number of pragmatic alterations to the model and

see what forms of change these prohibit. The prohibitions could then be discussed with clinicians to see if

any were likely to be observed. The theory that resulted would probably not be as 'realistic' as the

operational behaviour described by the theory, but at least it would be one that worked.

An example of a pragmatic alteration would be to allow multiple specialisations, each of which has a start
time. The relations between operational and specialisation state components would also specify which

specialisation was being referred to. When a new specialisation became valid new members of the

operational / specialisation relation would comply with the rules as defined by the new specialisation. The

complexity would lie in dealing with activity structures that spanned the change in specialisation.
Although a solution could undoubtedly be constructed, that it could represent the domain with acceptable

accuracy is less certain.

One thing that should be noted is that it is probable that any change to the theory to accommodate and

describe organisational change is liable to be extremely complex and increase greatly the difficulty in

comprehending the theory. The law of diminishing returns operates here and we should be clear that a
description of the nature of organisational change is sufficiently important to us to justify the extra work

required. Bearing in mind this caveat it is nevertheless clear that the theory could benefit from the
definition of a framework within which the specialisation state components could evolve, for

d: \jes\dis\wi p\phd\phdtext2. doc
294

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

completeness sake if nothing else. Such evolutionary invariants might prove significant if the information

system to be developed was a management information system which generated hypothetical future

scenarios for comparison with the current situation.

14.7.4 Other developments

There are many further ways in which the theory might be improved to give a richer and more accurate
description of the organisation. Any development which acts to constrain the possible states of models of

the theory (or rather increase the ratio of forbidden states to permitted states) is encouraged by the

directives of the scientific method. There are two areas where such development would be particularly

beneficial to the description of health care.

Firstly the representation of clinical records could be rendered more sophisticated. In the theory as it

stands the description of the health status of the patient is about as crude as it could be - in fact a

conscious decision was taken to avoid all aspects of the patient's condition even down to his or her

gender. The framework that already exists would be a good place from which 'o launch an exploration of

this most central aspect of health care. It has been argued earlier that the difficulties associated with a

representation of a clinician's perception of the state of health of the patient will be very hard to

overcome. To derive a theory that can account for the state of health of one patient as perceived by one

clinician would be an extremely difficult undertaking - to produce a theory that can accommodate all

patients and all clinicians would be a task many orders of magnitude less tractable. The problems of
'shared reality' and the subjective nature of knowledge cause even more of a problem in this area.

We should be sure that we know what we are attempting to describe with the theory before we embark on

the task of constructing it. We want an abstract set of state components and rules which can be used to

describe the state of health of a patient, and which can be agreed on by clinicians. The job of reaching

consensus in these matters is that which is undertaken by the whole machinery of professional medicine -
teaching hospitals, universities, royal colleges, pharmaceutical companies, academic journals, regulatory
bodies, and many other organisations. To suppose that the diverse opinions and understandings that are

reflected by this enormous spread of human endeavour can be succinctly encapsulated in a single

scientific theory demonstrates not only outrageous hubris but also a misunderstanding of the fluidity and

ephemerality of any knowledge and consensus that does exist.

Having said this, and recognising that a 'good' theory of the medical aspects of health care is even more

unattainable than one for the operational concerns explored in the thesis, the scientific method described

here can nevertheless provide useful insight to help in the development of medical computing. While it

has just been argued that a generic clinical record system is more or less impossible, such specifications

are nevertheless being proposed, produced, and incorporated into information systems used by the

medical profession. The testing and refutation of these theories will reveal where their shortcomings lie,

help to improve them, and thus help to improve the information systems that have been based upon them.

This is a useful pragmatic approach that could be adopted in the development of the domain theory so that

it can represent the health of the patient.

A second area where the theory would benefit from more work is in the clarification of the interface

between organisations. Although this has been somewhat addressed through the use of the 'In' and 'Out'

partitions of Activities, this part of the theory is nevertheless fairly crude. As the health 'market' continues

to evolve in this country, the sophistication of the boundaries between organisations will increase, as will

their importance to medical organisations, large and small. The historical, and relatively simple,

relationship between secondary, primary, and self care is likely to change radically and be replaced by a

d: \jes\di s\wi p\phd\phdtext2. doc
295

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

much more involved, complex and fluid system. Information systems will increasingly need to recognise

and adapt to these changing relationships - an abstract theoretical understanding of them could help

enormously. This then would be a fruitful area in which to invest time and effort so as to gain insight and

to enable the robust design of the necessary information systems.

14.7.5 Further Investigation into Hypothetical or Imaginary Domains

One area that has not been discussed much in the thesis is the use of information systems to facilitate and
encourage organisational change. One of the assumptions of the method is that the information system is

a fairly passive thing as far as the effects on the organisation to be supported are concerned. The
behaviour of that organisation, it is supposed, will not fundamentally change once an information system
has been introduced. We have taken the rules and state components expressed in the theory from the
behaviour of the domain as it is perceived by clinicians, and seen to what extent a proposed information

system might support or inhibit this. We have not imagined that the introduction of the information

system will enable and directly cause the introduction of entirely new state components, and change the

rules between those that already exist.

It has been shown, however, that the introduction of information systems, especially those of an
operational nature, can radically effect organisations and the way in which the workers in those

organisations perceive them [Scott9l]. As a result of the introduction of systems, the balance of power
can be dramatically altered, flows of information can be enabled or inhibited, and new roles and functions

of the organisation can be revealed. Some analyses go so far as to compare an organisation to an
information processing device [Morgan86]. If we accept this, we should not be surprised if the
introduction of an automated information processor jolts the organisation with sometimes unpredictable

effects.

There are number of ways in which we might explore the changes that information systems can wreak on

organisations. We can posit a new domain different from the current one, and design an information

system to support this in the hope that it will then influence the organisation to adopt the forms described
in this imagined domain. This is what has been done in Appendix 6. The new domain is essentially the

same as the current one with the addition of a few new state components to reflect the introduction of
outpatient contracts to the directorate. Although the directorate currently attempts to support the

contracting process it does this inefficiently and inflexibly. It is hoped that the implementation of an
information system that is a representation of the hypothetical domain described in Appendix 6 will

change the organisation in such a way that it accommodates and indeed exploits the 'opportunities'

presented by the introduction of health care contracts.

Another approach is to use information systems to introduce much more sweeping organisational change:
this is one of the goals of the technique known as Business Process Re-engineering (BPR) [Hammer93].

Although this is not the subject of this thesis, it is recognised that it is an area of extremely lively

academic debate. The use of formal methods can help significantly in providing an insight into the

behaviour of the re-engineered organisation. Interested readers are referred to the work of Holden and
Glykas (see eg [Holden93], and [Glykas94]) for further illumination in this fascinating subject.

The incorporation of hypothetical domains into the approach described in this thesis would much increase

its flexibility and power. There is similarly no reason to suppose that the continuing debate on the subject

of BPR would not benefit from some of the findings of this thesis. It is certainly an area where further

work might usefully be done.

d: \jes\dis\wip\phd\phdtext2. doc
296

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

14.7.6 Developmental motives and Information System Representation

The method as described exists in varying states of development. The use of the scientific method to

derive and refine the domain theory is fairly well developed, and is presented as a (reasonably) mature

and central part of the thesis. This is not surprising as by far the majority of time was spent on this part of

the project, and the problems associated with it were scrutinised most closely.

Equally important is the derivation of the interaction theory and the consequent engineering of the

information system specification. These areas have been discussed in the text, the developmental motives

in particular at quite some length. However, it is clear that there is much work that can be done here to

elucidate and clarify these topics. Specifically the way in which we should construct the interaction theory

is very under-developed: although the germ of the desired approach is presented in Section 11.3 there is

much more substance to this issue than is discussed and this can be and should be examined further. In a

similarly manner, the developmental motives merit more exploration. In particular the precise way in

which they differ from the obligations of reification as a result of pragmatic concerns needs to be more

authoritatively catalogued. As part of this process, the rationale for the use of each motive, and guidance

for when each should be used should be reinforced.

Further problems exist with the representation of the information system. In the work described here

various subjective judgements were taken in constructing and recording the specification of the clinical

record system and out-patient appointment system so that it was possible to construct an interaction

theory. In particular, the distinction between operational and specialisation state components was made

for the information systems such that the specification could be linked to the domain theory to form the

interaction theory. The problem with this was that some of the general rules of the domain theory were

actually expressed as specialisation states in the information system (at least this was the case with the

clinical record system). In other words the rules were not static and could be changed, or re-configured,

during operation of the system. In short, the information system is more adaptable than domain (as

perceived and described). Guidelines for the reverse engineering of such adaptable information systems

(and some languages lend themselves to much more adaptable implementations than the fourth

generation language used) should be discerned, catalogued, and presented.

Another area worthy of closer regard is that associated with delays in the state of the information system.

The interaction theory presented records an intended use for the information system where changes in the

state of the system reflect simultaneous changes on the state of the organisation. Very often an

information system is not used in this way: rather the database is interrogated in a 'live' manner, with

changes to the database input in periodic batches, possibly by secretaries or data entry clerks at the end of

the day. The effect of such 'delays' between the state of the organisation and that of the information

system could be explored using an interaction theory, but such a theory would be more complex than that

presented. In particular the invariants covering intended use would have to be cast with great care. Such

an interaction theory would help to reveal the implications of the use of old data on the behaviour of the

organisation, and illuminate problems and issues that would have to be addressed in the design of the

information system.

14.7.7 Possible development as general service model

Finally it might be worthwhile to explore how the domain theory could be developed so that it described

non-medical organisations. Many of the early aspects of the theory are not specific to medicine but could

equally well hold for any organisation concerned with providing services of differing types. In this sense

d: \jes\dis\wip\phd\phdtext2. doe
297

Jeremy DH Holland
The Requirements Analysis & Design fora Clinical Information System: A Formal Approach Volume I: Thesis

the early class schemas could be used as tool for exploring and understanding a number of such service

oriented organisations.

We should not assume that such generality exists, or even that it would lead to useful insights. However,

if fundamental similarities could be found between service providing bodies the job of the systems analyst

would be greatly eased and operational information systems, being smaller variations on a common
template, much cheaper to procure. Any project to investigate development in this area would have to be

very shallow, or very large, as the number of different organisations each of which claims to have totally

unique problems and world-views is vast. Nevertheless such a project might well prove to be rewarding

and interesting.

14.8 Conclusion

We are now in a position to conclude this final chapter and with it the thesis. We saw above that each of
the objectives of the project have been satisfied. Firstly, a method for constructing an information system
specification was devised and used which satisfies the criteria laid down in the hypothesis and fleshed out
in Section 5.3. Secondly, the method was used to derive a formally presented theory of the domain of
interest -a generic clinical department - in the scientific manner as described in Section 6.3. Thirdly,

components of an information system - in this case a Directorate Information system - were specified and
formally compared with the domain theory to reveal shortcomings and thus enable improvements to be

engineered. It is further argued above that the satisfaction of these objectives means that the thesis'
hypothesis has been shown to be correct.

We then saw that the work reported has already been of some benefit in a number of areas, both at the
departmental level (influencing the design of the Diabetes and Endocrine Directorate's Clinical Record
System and acting as a starting point for analysis of the out-patient contracting process) and to a lesser

degree at the national level (being of some interest to the IMC in their running of the CBS demonstrator

projects and assessment board). Finally we considered how future work developing the findings of the

thesis might be fruitful. This future work would be of both a direct theory enhancing and methodological
technique refining nature.

The text of the work is long and involved and many points have been made along the way. However, the

most important issues can be briefly re-iterated here. Firstly three descriptions or theories are needed to

understand the merits and shortcomings of an information system. These are the domain theory, the
information system theory or specification, and the interaction theory. Secondly, the determination of a

valid domain theory, although an extremely difficult and imprecise task, is helped enormously through

the use of the scientific method (or a modification thereof as described in the thesis). Thirdly, once the
information system specification and the domain theory have been composed together to form an
interaction theory (according to the technique described in Section 11.3), four developmental motives can
be used to 'improve' the specification.

Perhaps more important than any of this is the means of presentation of the thesis. This has taken the

form of an extended case study. The findings of the work (of which the most significant have been

summarised here) have not been presented as 'givens', but justified through the use of real examples. In

this sense it is hoped that the thesis is a revelatory and didactic rather than an instructional pedagogic

work: any value and lessons can be drawn out from the text by the reader, albeit that the process is guided
by the argument in the text. This applies not just to the methodological lessons learned but also the
domain theory itself. By sharing the path to the results with the author, the reader can not only see what
the details of the analysis are, but also why they are so.
d: \jes\dis\wip\phd\phdtext2. doc

298

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

This work should not be seen as a finished article, but rather a contribution to the debate concerning the

design of information systems, particularly, but not only, those destined for use in the medical sector. This

debate is an important one: information systems surround us and are influencing our lives to an in ever

increasing extent - it is vital that these ubiquitous creations help rather than hinder human endeavour. It

is hoped that this thesis helps progress the discussion and proves to be of interest to practitioners in the

field.

d: \jes\dis\wip\phd\phdtext2. doc
299

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

References

Abe192 Abel-Smith B (1992) The Reform of the National Health Service Quality Assurance in Health
Care, Vol 4, No 4 pp 263 - 272

Alex71 Alexander C (1971) Notes on the Synthesis of Form Cambridge, Massachusetts: Harvard
University Press

August91 August J. (1991) Joint Application Design: The Group Session Approach to System Design
Englewood Cliffs, NJ: Prentice Hall

Austin93 Austin, S., & Parkin, G. (1993) Formal Methods: A Survey. National Physical Laboratory,
Teddington

Austin62 Austin J. (1962) How to Do Things with Words Cambridge, Masschusetts: Harvard University
Press

Avison88 Avison D. & Fitzgerald G. (1988) Information System Development - Methodologies,
Techniques, and Tools Oxford: Blackwell

Avison9O Avison D., and Wood-Harper T. (1990) Multiview: an Exploration of Information Systems
Development Oxford: Blackwell

Beer81 Beer S. (1981) The Brain of the Firm Chichester: Wiley

Bert68 Bertalanffy, L von. (1968) General System Theory, Braziller,

Bick92 Bickerton M. (1992) A Practitoner's Handbook of Requirements Engineering Methods Oxford:
Oxford University Computing Laboratory

Boehm88 Boehm B. A Spiral Model for Software Development and Enhancement IEEE Computer 1988
21(5) pp 61-72

Brooks82 Brooks, F. (1982) The Mythical Man-Month: Essays on Software Engineering Reading,
Massachusetts: Addison Wesley

Brooks87 Brooks, F. (1987) No Silver Bullet: Essence and Accidents of Software Engineering IEEE
Computer April 1987 pp 10-19

Bullas89 Bullas S. (1989) Case-Mix Management System Core Specification London: HMSO

Buxton89 Buxton M, Packwood T, Keen J (1989) Resource Management: Process and Progress.
Monitoring the Six Acute Hospital Pilot Sites. Uxbridge: Health Economics Research Group, Brunel
University.

Carson93 Carson, E., Cramp, D. The Role of Health Care Modelling in the Development of Knowledge
Based Systems for Chronic Disease Management in Proceedings of the 1993 IEEE EMBS Conference
San Diego (1993) IEEE Press

Chamb89 Chambers English Dictionary (1989) Cambridge: Chambers Cambridge

Chambers88 Chambers English Dictionary (1988) Cambridge: Chambers Cambridge

Check72 Checkland P. (1972) Towards a Systems-Based Methodology for Real World Problem Solving
Journal of System Engineering 3 (2) pp 87-116

Check90 Checkland P., and Scholes J. (1990) Soft Systems Methodology in Action Chichester: John
Wiley & Sons

Chen76 Chen P. (1976) The Entity Relationship Model - Toward a Unified View of Data ACM
Transactions on Database Systems March 1976 pp 457-475

Coad9l Coad P, Yourdon E (1991) Object Oriented Analysis Englewood Cliffs, NJ: Prentice Hall

Codd70 Codd E. (1970) A Relational Model of Data for Large Shared Data Banks Communications of
the ACM 13 pp 5-15

d: \jes\dis\wip\phd\phdtext2. doc
300

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume 1: Thesis

Cohen84 Cohen B. (1984) The Specification of Complex Systems Reading, Massachusetts: Addison
Wesley

Cohen89 Cohen B. (1989) Justification of Formal Methods for System Specification Software
Engineering Journal 4(l) Jan 1989

Cohen9l Cohen B. (1991) Lecture notes to Software Specification and Validation presented at City
University 9th to 13th September 1991

Cohen92 Cohen B. (1992) Soft Systems - Hard Analysis. The Roles of Proof in Information Systems
Construction Inaugural Address delivered at City University December 1,1992

Cohen93 Cohen B. & Molteno, B. (1993) The Search for a Universal Model of Healthcare Proceedings

of MIE 93

Collins92 Collins, T. The wasted millions. Computer Weekly, 7 May 1992

CompApr92 Hayward, D. London Ambulance places dispatch system on sick list. Computing, 2 April
1992

CompAug92 NHS in IT costs shock. Computing, 20 August 1992

CompJul92 Wessex RHA summons police to help IT inquiry. Computing, 30 July 1992

CompNov92 MP prescribes NHS IT audit. Computing, 19 November 1992

Davis94 Davis, A. & Hsia P. Giving Voice to Requirements Engineering IEEE Software March 1994: pp
12-16.

Dearnley83 Dearnley P., and Mayhew P. (1983) In Favour of System Prototypes and their Integration
into the Systems Development Cycle Computer Journal 26 1 pp 36-42

Dijkstra75 Dijkstra, E. (1975) Guarded Commands, Nondeterminacy, and Formal Derivation of
Programs. Communications of the ACM, 18: pp 453-457

Disken90 Disken S, Dixon M, Halpern S, Schocket G (1990) Models of Clinical Management. London:

IHSM.

Downs92 Downs E., Clare P., Coe I. (1992) Structured Systems Analysis and Design Method -
Application and Context Englewood Cliffs, NJ: Prentice Hall

Doyle93 Doyle, V. C. F., Carson E, Sönksen P. Customer Supplier Modelling as a Framework for Quality

Improvement in Malek, M., Rashquinha, J., and Vacani, P., (1993) Strategic Issues in Healthcare

Management. Chichester John Wiley & Sons Ltd.

Feyer93 Feyerabend P. (1993) Against Method London: Verso

Flinn85 Flinn B, Sorensen I (1985) CAVIAR: A Case Study in Specification Oxford University

Computing Laboratory Programming Research Group. Technical Monograph PRG-48

Floyd9l Floyd C., Ziillighoven H., Budde R., & Keil-Slawik R. (1991) Software Development and Reality

Construction Berlin: Springer-Verlag

Flynn93 Flynn D., and Fragoso-Diaz O. (1993) Conceptual EuroModelling: How do SSADM and
MERISE Compare? European Journal of Information Systems 2 (3) pp 169-183

Fox92 Fox, J., et at. LEMMA: Methods and Architectures for Logic Engineering in Medicine. In:

Noothoven van Goor, J., and Cristensen, J., (1992), Advances in Medical Informatics: Results of the AIM

Exploratory Action. Amsterdam IOS Press.

GA079 U. S. Government Accounting Office (1979) Contracting for computer software development -
serious problems require management attention to avoid wasting additional millions. Technical Report

FFGMSD-80-4, U. S. Government Accounting Office, November 1979

Gardiner9l Gardiner P. & Vickers T. (1991) The Logic of B Oxford: Oxford University Computing

Laboratory Programming Research Group. Technical Monograph PRG-92.

d: \jes\dis\wip\phd\phdtext2. doc

301

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Glykas94 Glykas M. (1994) Agent Relationship Analysis in Organisational Transformation PhD Thesis:
Cambridge University, Department of Engineering

Goguen9Oa Goguen J. (1990) Formal Methods: A Position Paper in Goguen J. Four Pieces on Error,
Truth, and Reality Oxford University Computing Laboratory Programming Research Group. Technical
Monograph PRG-89 pp 2-10

Goguen90b Goguen J. (1990) The Denial of Error in Goguen J. Four Pieces on Error, Truth, and Reality
Oxford University Computing Laboratory Programming Research Group. Technical Monograph PRG-89
pp 18-28

Goguen92 Goguen J. The Dry and the Wet in Proceedings of Conference on Information Systems
Concepts, Alexandria, Egypt, 13-15 April 1992 pp 1-18

Ha1190 Hall A. (1990) Seven Myths of Formal Methods IEEE Software. September 1990.

Hammer93 Hammer M. (1993) Re-engineering the Corporation London: Nicolas Brealey

Harrison89 Harrison J., Harvey F., & Fowler M. (1989) Framework Model Level 2 View 3 3rd Report of
the EURODIABETA consortium: AIM Project No A1019

Harrison92 Harrison S, Hunter D, Marnoch G& Pollitt C (1992) Just Managing: Power and Culture in
the National Health Service. Kent: Macmillan

Hayden68 Hayden S., Kennison J. (1968) Zermelo Fraenkel Set Theory Columbus, Ohio: Merrill

Hayes93 Hayes I (1993). Specification Case Studies New York: Prentice Hall

Heidd62 Heidegger M (1962) Being and Time Oxford: Blackwell

Hill94a Hill, S. MPs attack Department of Employment over IT waste. Computing, 10 February 1994

Hi1194b Hill, S. NAO finds fresh errors. Computing, 17 February 1994

Hodder86 Hodder I. (1986) Reading the Past - Current Approaches to Archaeology Cambridge:
Cambridge University Press

Holden93 Holden T., Glykas M., & Wilhelmij G. (1993) Modelling the Collective Behaviour of
Organisational Agents in the Petrochemical Industry Using the Agent Relationship Morphism
Methodology (ARMA) in Kilov H. & Harvey B. Eighth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications Washington DC Sept. 1993

Holland92 Holland J, Carson E, Sönksen P, Swindells M (1992) The Directorate Information System at
St Thomas' Hospital in Chytil M, Duru G, Van Eimeren W, Flagle Ch; editors Health Systems - the
Challenge of Change (Proceedings of the Fifth International Conference on System Science in Health
Care) Prague: Omnipress pp 1238-1241

Hull87 Hull R, King R (1987) Semantic Database Modelling: Survey, Applications and Research Issues
ACM Computer Surveys September 1987 pp 201-259

IHSA83 Institute of Health Service Administrators (1983) National Health Service Management Inquiry
Report London: IHSA

IMC91 The Common Basic Specification and Proving its Worth. Official Notice 13215/A HSSH J1714NJ

IMC92 NHS Information Management Centre (1992) Common Basic Specification Generic Model
Volumes I& II London: NHS Management Executive

Jackson93 Jackson M. & Zave P. (1993) Domain Descriptions in Proceedings of Requirements
Engineering '93 Los Alamitos, California: IEEE Computer Society Press pp 56-64

Jones90 Jones C. (1990) Systematic Software Development Using VDM New York: Prentice Hall

Jones9l Jones, A (1991) Non-Technological Factors and Perspectives 10th report of the
EURODIABETA Consortium: AIM Project No A1019.

Kalra93 Kalra D. & Ingram D. (1993) The Good European Health Record in Conference Proceedings
HC93: Current Perspectives in Healthcare Computing 1993 Weybridge: BJHC Ltd pp 543-549

d: \jes\dis\wip\phd\phdtext2. doc
302

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Kammer84 Kammersgaard J. A Discussion of Prototyping Within a Conceptual Framework in Budde R.,
Kuhlenkamp K., Mathiassen L., and Zullighoven H. Approaches to Prototyping Berlin: Springer-Verlag
pp 294-321

Koestler89 Koestler A. (1989) The Act of Creation London: Arkana

KPMG89 KPMG Peat Marwick (1989) St Thomas' Hospital IT Strategy Report

Kuhn70 Kuhn, T. (1970) The Structure of Scientific Revolution Chicago Chicago University Press

Lakatos76 Lakatos I (1976) Proofs and Refutations: the Logic of Mathematical Discovery Cambridge:
Cambridge University Press

Lakoff87 Lakoff G. (1987) Women, Fire and Dangerous Things Chicago: University of Chicago Press

Lyotard84 Lyotard J. -F. The Postmodern condition: a Report on Knowledge: Theory and History of
Literature, Vol 10 Manchester University, 1984.

Martin89 Martin J. (1989) Information Engineering Englewood Cliffs, NJ: Prentice Hall

McCrack82 McCracken D., and Jackson M. (1982) Life Cycle Concept Considered Harmful ACM
SIGSOF ` Software Engineering Notes 17 02/04/1982

McNevin93 McNevin, A. Year delay to crime system. Computing, 16 December 1993

Morgan86 Morgan G. (1986) Images of Organisation Newbury Park, California: Sage

Mumford86 Mumford E. (1986) Designing Systems for Business Success, the ETHICS Method
Manchester: Manchester Business School Publications

NAHAT91 National Association of Health Authorities and Trusts (1991) NHS Handbook (7th Edition)
London: The Macmillan Press Ltd

NA094 National Audit Office (1994) Report on the Social Fund Account for 92/93 February 1994
London: HMSO

NHS83 Department of Health and Social Security (1983) 'NHS Management Inquiry' Press Release no.
83/30,3 February

NHS86 DHSS (1986) Health Notice (86) 34: Resource Management (Management Budgeting) in Health
Authorities London: DHSS

NHS89 Secretaries of State for Health, Wales, Northern Ireland and Scotland (1989). Working for
Patients, London, HMSO.

NHS90 Secretaries of State for Health, Wales, Northern Ireland and Scotland (1990). The National
Health Service and Community Care Act (1990), London, HMSO.

NScApr92 Computing the cost of health care. New Scientist, 25 April 1992 pp 22 - 23

OED87 Compact Oxford English Dictionary, 2nd Edition (1987). Oxford: Oxford University Press
pp1674

PAC93 Public Accounts Committee (1993) Department of Employment Management of Field System
House of Commons paper 93-94 Season London: HMSO

Pack9l Packwood T, Keen J, Buxton M (1991) Hospitals in Transition (The Resource Management
Experiment) Milton Keynes: O. U. P.

Politt9l Politt C, Harrison S, Hunter D, and Marnoch G (1991) General Management in the NHS: The
initial impact 1983-88 in Public Administration Vol 69 pp 61-83

Popper34 Popper, K (1934) Logik der Forschung Vienna: Springer-Verlag

Popper59 Popper, K (1959) The Logic of Scientific Discovery London Hutchinson & Co

Popper80 Popper K. (1980) The Logic of Scientific Discovery London: Unwin Hyman

Popper92 Popper, K. (1992) Unended Quest - An Intellectual Autobiography London Routledge

d: \jes\dis\wip\phd\phdtext2. doc
303

Jeremy DH Holland
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach Volume I: Thesis

Pye88 Pyc R, Bates R J, Heath L. (1988) Profiting from office automation: Office automation pilots. DTI,
London

Rector93 The GALEN Project Consortium (Rector, A. et al) (1993) GALEN: Generalised Architecture
for Language Encyclopaedias and Nomenclature in Medicine in: Commission of the European
Communities DG XIII 1993 Annual Technical Report on RTD: Health Care

Rumbaugh9l Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W. (1991) Object-
Oriented Modelling and Design Englewood Cliffs, NJ: Prentice Hall

Russell89 Russell, B. (1989) A History of Western Philosophy London Unwin

Sangh94 Sanghrajka, S. (1994) An Outpatient Contract Management System Computing Sciences BSc
Final Year Report Surrey University

Schieber87 Schieber G (1987) Financing and Delivering Health Care: A Comparative Analysis of OECD
Countries. Paris: Organisation of Economic Co-operation and Development Publication Service.

Schuman9O Schuman S., Pitt D., & Byers P. (1990) Object Oriented Process Specification University of
Surrey Computing Sciences Technical Report CS-90-O1

Scott9l Scott-Morton P. (1991) The Corporation of the 1990s: Information, Technology, and
Organisational Transformation New Y ork: Oxford University Press

Siddiqi94 Siddiqi J. Challenging the Universal Truths of Requirements Engineering IEEE Software
March 1994: pp 18-19.

Smith92 Smith, S (1992). Current Care Profiles Diabetes and Endocrine Day Centre, St Thomas'
Hospital

Spivey89 Spivey I (1989) The Z Notation -A Reference Manual New York: Prentice Hall

SWTRHA92 Report of the Inquiry into the London Ambulance Service (1992), South West Thames
Regional Health Authority.

Tomlin92 Tomlinson B. (1992) Report of the Inquiry into London's Health Services London: HMSO.

Water93 Waterhouse, R (1993) Dossier shows 'evidence' of queue jumping Independent Newspaper,
Thursday 30 September, pp 8

Webster88 Webster C. (1988) The Health Services Since the War, Vol 1: Problems of Health Care - the
Health Service before 1957. London: HMSO

White87 Whitehead A., & Russell, B. (1987) Principia Mathematica (to *56) Cambridge: Cambridge
University Press

Winog87 Winograd T. & Flores F. (1987) Understanding Computers and Cognition Reading,
Massachusetts: Addison-Wesley

Witt53 Wittgenstein L. (1953) Philosophical Investigations Part I Oxford: Blackwell

Yourdon78 Yourdon E, Constantine L (1978) Structured Design New York: Yourdon

Yourdon89 Yourdon E (1989) Modern Structured Analysis Englewood Cliffs, NJ: Prentice Hall

d: \jes\dis\wip\phd\phdtezt2. doc
304

The Requirements Analysis & Design
for a Clinical Information System: A

Formal Approach

by

Jeremy David Hasse Holland

A PhD Thesis

submitted to

City University,

The Department of Systems Science

January 1995

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Appendices

d: \jes\dis\wip\phd\appx. doc

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Table of Contents
APPENDIX 1: A GLOSSARY OF SET THEORETIC SYMBOLS

... 1
APPENDIX 2: THE DOMAIN THEORY

... 19
APPENDIX 3: A SPECIALISATION OF THE DOMAIN THEORY - THE DIABETES & ENDOCRINE DAY-CENTRE

........
67

APPENDIX 4: A THEORY OF THE DIABETA CRS AND ITS INTERACTION WITH THE DOMAIN
...............................

75
APPENDIX 5: A THEORY OF THE DISI SYSTEM AND ITS INTERACTION WITH THE DOMAIN

...............................
89

APPENDIX 6: THE EXTENSION OF THE DOMAIN THEORY TO A HYPOTHETICAL DOMAIN: OUT-PATIENT
CONTRACTING

.. 127

d: \jes\dis\wip\phd\appx. doc

W

Jeremy DH Holland Volume Il: Appendices

The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

d: \jes\dis\wip\phd\appx. doc

iv

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Appendix 1:

A Glossary of Set Theoretic Symbols

d: \jes\dis\wip\phd\appx. dOc

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

This glossary is intended to be used as a guide to the meaning of the set theoretic notation used in the
body of the thesis and in the appendices. It is neither rigorous nor complete. For such a 'mathematically
valid' definition of the terms of set theory, the reader is referred to standard algebraic reference books.

As well as being named, the semantic properties of each symbol are explained in two or three ways.
Where appropriate a 'formal' definition of the symbol is given: this is either taken from the
'mathematical toolkit' in Spivey [Spivey89] or based on the style used there. An informal explanation of
the symbol's meaning is given. Finally an example, or a number of examples, of the use of the symbol is
provided along with any additional comments that are considered to be pertinent.

The binding order of the operators presented below is explained briefly at the back of this appendix. The
normal mathematical symbols such as +, *, -, <, etc are not explained here.

Quantifiers

V, 3.

V is the Universal Quantifier, also known as 'for all'. 3 is the Existential Quantifier, also known as 'there
exists'.

Informal Definition

Both of these symbols are used in expressions where a predicate must be quantified - that is it is true
under certain conditions and with certain provisos. The format of these expressions is:

V (or 3) member: Set " Predicate(member).

This should be read as: For every (or far at least one) member of Set, Predicate is true when that member
is provided to Predicate to make it a proposition.

Examples

An example of this might be as follows:

tin: SetofAllNumbers "n+ne SetofAllNumbers

or for every member of the set of all numbers, that member added to itself is also a member of the set of
all numbers (the membership symbol, e, is explained below). Another example is

3n: SetofAllNumbers "n> 100

or there is at least one member of the set of all numbers that is greater than 100. That there are in fact an
infinity of such numbers does not invalidate the expression. Quantifiers can range over a number of
members such as in the expression

Vm, n: SetofAllNumbers "m+ne SetofAllNumbers

or for any pair of numbers the sum is also a number. Quantifiers can be arranged in a sequences such as
in the expression

Vn: SetofAllNumbers " 3m: SetofAllNumbers "m>n

or for any number, there is always at least one number bigger than it.

d: \jes\dis\wip\phd\appx. doc
2

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Not

- can be read as 'not'.

Informal Definition

When - is placed in from of a predicate or proposition, we may take it to mean that that predicate or
proposition is negated - it does not hold.

Examples

Negation applies to rules rather than instances, and so we expect to see it as part of predicates or
propositions. For example:

-A=B

or A is not equal to B;

-3x: X " P(x)

or there is no x for which P of x is true;

-Vx: X " P(x)

or it is not true that P(x) always holds;

Vx: X " -P(x)

or P(x) is never true, no matter what x is; and

3x: X " -P(x)

or there is some x for which P(x) does not hold.

The second and fourth of these examples are equivalent, as are the third and fifth.

Set Enumeration Braces

Informal Definition

These symbols are used to define a set by the enumeration of its contents. The discrete expressions
separated by commas (and not a component part of such a discrete expression) within the braces are
members of the set indicated by those braces.

Examples

The set of all positive integers less than 5 could be written as

{1,2,3,4}.

As there is no ordering over a simple set, we could equally have written

{2,3,1,4}.

d: \jes\dis\wip\phd\appx. doc

3

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

A set might be a discrete expression so the expression

(11,2), 1,2,3,4}

represents that set which consists of the elements: the set 11,2}; the number 1; the number 2; the
number 3; and the number 4.

Membership

E, g

e can be read as 'is a member of. e can be read as 'is not a member of.

Informal Definition

The E symbol occurs in expressions which take the form

SE S.

This means that the expression to the left of the symbol, (in this case s) is a member of the set indicated
by the expression to the right of the symbol (in this case S).

The 0 symbol occurs in expressions which take the form

S. so

This means that the expression to the left of the symbol, (in this case s) is not a member of the set
indicated by the expression to the right of the symbol (in this case S).

Examples

Suppose we call the set {{1,2), 1,2,3,4) X.

We can then say

IEX,
5o X, and
11,2) EX.

The Null Set

0

This symbol can be read as 'the null set', 'null', or 'the empty set'.

Informal Definition

The null set is the set which has no members.

Examples

The set of all numbers that are both greater than 5 and less than 5 is an example of the null set. It is used
in similar expressions indicating that no member of a set can obey a particular predicate. Because the set
has no members we can say

`dx: X"xf ýÖ

d: \jes\dis\wip\phd\appx. doc

4

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

where X is an arbitrary set. There are no members of any set that are members of the null set.

The null set is sometimes written as

0-

Pair (or Tuple)

0

Discrete expressions within brackets can (sometimes) represent an ordered pair, or if there are more than
two of them, a tuple.

Informal Definition

An ordered pair is a quantity that consists of two discrete expressions, separated by a comma. It is like a
two-membered set except that the order of the elements is important. If there are more than two
members then the quantity is called a triple, quadruple, pentuple, or more generally tuple or n-tuple.

Examples

A pair is most commonly used to talk about members of relations (see below). Thus the pairs

(1,2), (6,8), (2,3), and (4,9) are all members of the set <.

Binary Conjunctions: And, Or, & Implies

A, V, :: *.

A can be read as 'and'. v can be read as 'or'. can be read as 'implies' (although this can sometimes be
misleading).

Informal Definition

These symbols are conjunctions which can join two predicates or propositions. The expression P, A P2

means both predicate P, and P2 hold. The expression P, v P2 means that either predicate P, or predicate
P2 (and possibly both) hold. The expression P, = P2 means that if Pt holds then so does P2: if P1 does
not hold, then we can say nothing about P2.

Examples

6 is divisible by both 3 and 2. We can state this as follows:

6/3, E NA 6/ 2eN (see below for description of N).

Any number is odd or even. We can state this as follows:

Vn: N" n/2e N v(n+l)/2e N.

Any prime is divisible only by itself and 1:

Vp: P" `dn: N"p/nEN=n=pvn=1 (where P is the set of primes).

This says that for any prime, and for any number, the divisibility of the prime by the number implies
that the number is either the prime or one. The reason why it is sometimes confusing to consider = as
'implies' is that the following expressions are both true:

d: \jes\dis\wip\phd\appx. doc

5

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

1+1=3=1+1=5

and

1+1=3=ý 1+1=2.

This is because the expression to the left of the implication symbol is false, so we cannot say anything
about the expression to the right.

Cartesian Product

X

Informal Definition

This symbol is generally found in expressions of the type AXB where A and B are (expressions which
refer to) sets. AxB is a set of pairs such that for any member of A, and for any member of B, there is
one pair in the product set where the member of A is paired up with the member from B.

Examples

Suppose A was the set {al, a2, a3} and B the set (bl, b2).

AxB is then the set

{(al, bl), (al, b2), (a2, bl), (a2, b2), (a3, bl), (a3, b2)).

Square

Formal Definition

X2==XXX

Informal Definition

The square of a set is the cartesian product of the set with itself.

Examples

Taking the set A from the previous example, then A2 can be enumerated as follows:

((al, al), (al, a2), (al, a3), (a2, al), (a2, a2), (a2, a3), (a3, al), (a3, a2), (a3, a3)}.

In general, a set of pairs where all the elements of each pair are taken from the same set is called a
graph.

Set Constructor

Set[]

The set constructor applied to a set is sometimes called the 'power set' of the set.

Formal Definition

(VS: Set[SS] " Vs: S"se SS) n (-3S ie Set[SS] " Vs: S"sE SS)
d: \jes\dis\wip\phd\appx. doc

6

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Informal Definition

The set constructor applied to, or power set of, a set, S, is a set of sets. Each of the sets in Set[S] is a
subset of S- that is, every element of any set in Set[S] is also an element of S. In short, Set[S] is the set
of all subsets of S.

Examples

If we take A as before, then Set[A] is

{ {al, a2, a3}, {al, al }, {al, a2}, {al, a3}, {a2, a2}, {a2, a3}, {a3, a3}, {al }, {a2}, {a3}, 0}.

Union, Intersection, and Difference

U, n, \

The symbol u is called 'union'. The symbol n is called 'intersection'. The symbol \ is called 'set
difference'.

Formal Definition

X1

_u _, _n _, _L:
Set[X] x Set[X] -) Set[X]

VS, T: Set[X] "
SuT={x: XIxe Svxe T) A
SnT={x: XIXE SAXET}A
S\T={x: XIxESAX T}

Informal Definition

These symbols normally occur in expressions such as AuB, AnB, or A\B where A and B are
(expressions which refer to) sets. AuB, or the union of A and B is a set which contains all the

members of A and all the members of B and no more. AnB, or the intersection of A and B, is a set

which contains all the members of A that are also members of B. A\B, or the set difference of A and B,

is a set which contains all the members of A which are not in B.

Examples

Let us take the following sets:

A={a1, a2, a3, a4, a5 l

and

B={ a2, a4, a6, a7)

then

AuB= {a1, a2, a3, a4, a5, a6, a7),
AnB={a2, a4}, and
A\B={al, a3, a5}.

d: \jes\dis\wip\phd\appx. doc

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Subset, Superset, and Proper Subset

c, 2), C.

s can be read as 'is a subset of. can be read as 'is a superset of. c can be read as 'is a proper subset
of.

Formal Definition

X1

_ý, ý, _c_:
Set[X] H Set[X]

VS, T: Set[X] "
(ScT=_(Vx: X"xe S=se T)) A
(SQT=(Vx: X"xe T=se S)) A
(ScTeScTAS *T)

Informal Definition

If A C; B then every member of the set A is also a member of the set B. If A B, then every member of
b is a member of A. If AcB then every member of the set A is also a member if the set B, and the two
sets are not equal - there must be at least one member of B that is not a member of A.

Examples

Suppose we had three sets, X, Y, and Z, where

X={a1, a2, a3, a4, a5),
Y= {al, a2, a3}, and
Z= {a], a2, a3}.

We can say that

Y=Z,
Yg. X,
X2Y,
YSZ, and
YcX, but not
YcZ

as there is not at least one element of Z that is not in Y.

Distributed Union and Intersection

U, n.

V is called the 'distributed union'. r) is called the 'distributed intersection'.

Formal Definition

Ex'
V, r1: Set[Set[X]] -4 Set[X]

VA:

d: \jes\wip\phdýappx. doc

8

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

UA={x: X13S: A"xe S}n

nA={x: XIVS: A"xE S}

Informal Definition

The distributed union and intersection are operators which can be applied to sets of sets. The returned
quantity is a set that is the union of each of the sets in the set of sets.

Examples

Suppose we have a set

X={ {al, a2, a3, a4}, {al, a3, a5, a6}, {a2, a3, a5, a7 }}

then

UX= (al, a2, a3, a4, a5, a6, a7} and
r)X={a3}.

Of course, for any set

USet[X]=X

as each set in Set[X] is a subset of X, including X itself and

m Set[X] =(

as Set[X] includes the null set.

Relation

EH, 0

EH generates a set of partial relations. 0 generates a set of total relations.

Formal Definition

XEHY==Set[XxY]

XHY=={r: Set[XxY]IVx: X"3y: Y"(x, y)e r)

Informal Definition

X EH Y is the set of all subsets of the cartesian product of X and Y. XHY is a subset of this - that set
of all subsets of the cartesian product of X and Y where for each subset, every member of X is the first

component of an element of that subset. Note that X EH Y is not a partial relation - rather it enables us
to generate them. For this reason it is most commonly used to declare types as in

P Re1: XEHY

or P_Rel is an element of the set of partial relations, and is thus a partial relation itself -a subset of Xx
Y.

d: \jes\dis\wip\phd\appx. doc

9

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Examples

Suppose we have the sets

A= {al, a2, a3, a4) and
B= {bl, b2, b3)

then if we say that

P Rel: A FH B and
T Rel: AHB

then the following are possible values of P_Rel

((al, bl), (a2, b2), (a3, b3)}
((al, bl), (a2, bl), (a3, bl)}
0

and the following possible values of T Rel

{(al, bl), (a2, b2), (a3, b3), (a4, b4)}
{(al, bl), (a2, bl), (a3, bl), (a4, bl)}.

Note that AHBcA EH B thus any set that is a possible value of T Rel is also a possible value of
P Rel

Domain and Codomain

Dom(), Cod()

Dom(R) is referred to as the domain of relation R. Cod(R) is referred to as the codomain of relation R.

Formal Definition
X. Yl

Dom: (X (-4 Y) 4 Set[X]
Cod: (X (4 Y) -) Set[Y]

bR: XHY"
Dom(R)={x: X; y: YI(x, y)E R"x} n
Cod(R) = {x: X; y: Y1 (x, y) eR" y)

Informal Definition

The domain of a relation is the set of all elements which form the first component of the pairs that are
the members of the relation. The codomain of a relation is the set of all elements which form the second
component of the pairs that are the members of the relation.

Examples

Suppose we have relations with the following values

R1 = ((al, bl), (a2, b2), (a3, b3), (a4, b4)) and
R2 = ((al, bl), (a2, bl), (a3, bl), (a4, bl)}

then
d: \jes\dis\wip\phd\appx. doc

10

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Dom(R1) = Dom(R2) = {al, a2, a3, a4}
Cod(R1) = {bl, b2, b3, b4}
Cod(R2) = {bl }.

We can say for all relations, total or partial, that

R: Cod(R) H Dom(R).

Function

-H, -4.

-H generates a set of partial functions. -3 generates a set of total functions.

Formal Definition

X-+)Y== {f: X(0YIVx: X; y1, y2: Y"(x, yl)E fn(x, y2)e f=y1=y2}

X-)Y==X-HYnXHY

Informal Definition

X -+i Y is the set of all relations from X to Y where no two elements in the relation's domain share a
member of Y as their partner (in other words, the number of elements in the domain of the relation is

the same as the number in the codomain). X -4 Y is the set of all total relations from X to Y that are
also functions.

Because each element of the domain of a function is paired up with exactly one element in the
codomain, we can use the expression F(a) to refer to that element of the codomain of F that is paired up
with the element a.

Examples

Suppose we have the sets

A={al, a2, a3, a4}and
B={bl, b2, b3}

then if we say that

P_Fn: A .4B and
T_Fn: A --) Bc

then the following are possible values of P_Fn

((al, bI), (a2, b2), (a3, b3)}
{(al, b3), (a2, b2), (a3, b1)}
0

and the following possible values of T_Fn

{(al, bI), (a2, b2), (a3, b3), (a4, b4))
{(al, b4), (a2, b3), (a3, b2), (a4, bl)}.

We can construct an inclusion hierarchy for all the relations described.

d: \jes\dis\wip\phd\appx. doc

11

Jeremy DH Holland Volume II: Appendices

The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

-H H

C
-4"C

Figure Appl-l: Inclusion hierarchy for total function, partial function, total relation, and partial relation
generation operators.

Inverse

R'1 is referred to as the inverse of the relation R.

Formal Definition

[x. n
=ý: (X(-»Y)--i(Y(+ýX)

VR: X«*Y"
R71={x: X; y: YI(x, y)E R"(y, x)}

Informal Definition

An inversion of a relation is that relation with the order of the consituent pairs reversed.

Examples

Suppose we have relations with the following values

R1={ (a 1, b 1), (a2, b2), (a3, b3), (a4, b4) }, and
R2 = {(al, bl), (a2, bl), (a3, bl), (a4, bl)}.

Then

RI-t = {(bl, al), (b2, a2), (b3, a3), (b4, a4)}, and
R2-1 = {(bl, al), (b2, al), (b3, al), (b4, al)}.

Identity Constructor

id[]

id[X] is the identity function for the set X.

Formal Definition

id[X] == (x: X" (x, x))

Informal Definition

The identity function of a set is that function created by pairing every member of the set up with itself.

d: \jes\dis\wip\phd\appx. doc
12

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Examples

Suppose we have the sets

A={a1, a2, a3, a4}and
B= {bl, b2, b3}

then

id[A] = {(al, al), (a2, a2), (a3, a3), (a4, a4)}, and
id[B] = {(bl, bl), (b2, b2), (b3, b3)}.

These are examples of graphs. A graph is a relation where both the domain and the codomain are taken
from the same set. A tree is a graph that is also a function.

Relational Image

im

(im R) A is the relational image of the set A through the relation R.

Formal Definition

fl
-

(im
_) _:

(X (H Y) x Set[X] -i Set[Y]

VR: (X EH Y); S: Set[X] "
(imR)S= (x: X; y: Y1xe S n(x, y)E R"y)

Informal Definition

The relational image of a set A through a relation R is the largest subset of the codomain of R such that
every member of that subset is the second part of a pair from R whose f irst part is a member of A.

Examples

Suppose we have the relation

R= ((al, bl), (al, b2), (a2, b2), (a3, b2), (a4, b3))

and the sets

W={al, a2, a4},
X= (a I, a2},
Y={al}, and
Z= {a2}.

The following are the relational images of the above sets through R- that is:

(imR)W={bl, b2, b3};
(im R) X= {bl, b2};
(im R) Y= {b1, b2}; and
(imR)Z= (b2).

d. \jes\dis\wip\phd\appx. doc

13

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Backward Relational Composition

RI ° R2 is the backward relational composition of relations RI and R2.

Formal Definition

Ex'
°:

(Y EH Z)x(X(f Y)-ý(X(HZ)

VR: Y« Z; S: XEHY"
R° S= {x: X; y: Y; z: Z 1 (y, z) eRn (x, y) E S" (x, z)}

Informal Definition

The backward relational join of two relations, R and S (R 0 S), is another relation, T, such that for every
pair of pairs from R and S where the first part of R is the same as the second part of S, T contains the
first part of S followed by the second part of R.

Examples

Suppose we had two relations Age and Height where

Age ={ (Robert, 8), (Richard, 25), (Rowan, 1), (Ryan, 66), (Rapunzel, 28)), and
Height = ((Robert, 4' 3"), (Richard, 62"), (Rowan, 3' 0"), (Rapunzel, 5' 5"), (Radovan, 5' 8")).

Now there are no pairs from Age and Height such that the first part of the pair from Age is the same as
the second part of pair from Height. If, however, we take the second part of the inverse of Height we find
that there are matching components.

Thus where

Height'' = {(4' 3", Robert), (62", Richard), (3' 0", Rowan), (5' 5", Rapunzel), (5' 8", Radovan))

we can say

Age ° Height-I = 1(4'3", 8), (6'2", 25), (3'0", 1), (5' 5", 28)).

Relational Join

0
R1 0 R2 is the relational join of two relations Rland R2.

Formal Definition
X. Y. ZI

O:
(X(-»Y)x(X(0Z)--) (XEH(YxZ))

VRI: (X (4 Y); R2: (X (-» Z) "
RI 0 R2 = {x: X; y: Y; z: Z 1 (x, y) e R1 A (x, z) E R2 " (x, (y, z)))

d: \jes\dis\wip\phd\appx. doc

14

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Informal Definition

The relational composition of two relations, R and S, is another relation T. R, S, and T all have domains

of the same type. The codomain of T is a subset of the cartesian product of the codomains of R and S. T
is constructed in the following way. Where a pair from R has the same first part as a pair from S, that
first part is paired up eith a pair made from the second part of the member from R followed by the
second part of the member from S.

Examples

Suppose we have the two sets from the previous example:

Age ={ (Robert, 8), (Richard, 25), (Rowan, 1), (Ryan, 66), (Rapunzel, 28)), and
Height = ((Robert, 4' 3"), (Richard, 62"), (Rowan, 3' 0"), (Rapunzel, 55"), (Radovan, 5' 8"))

then

Age 0 Height {(Robert, (8,4' 3")), (Richard, (25,6' 2")), (Rowan, (1,3' 0")), (Rapunzel, (28,5' 5"))).

Domain & Codomain Restrict & Subtract

4, D

A4R is the domain restriction of relation R by set A. RDA is the codomain restriction of relation R
by set A.

Formal Definition
X. Y1

A-: Set[X] x (X EH Y) -4 (X (» Y)

D:
(X EH Y) x Set[Y]-) (X EH Y)

VS: Set[X]; T: Set[Y]; R: (X EH Y) "
S 4R= {x: X; y: YIxe SA(x, y)E R"(x, y)} A
RDT={x: X; y: YI(x, y)e RAyE T"(x, y))

Informal Definition

A4R is the largest subset of relation R such that each member of its domain is also a member of the set
A. RDA is the largest subset of relation R such that each member of its codomain is also a member of
the set A.

Examples

Suppose we have the relation

R= {(al, bl), (a2, bl), (a3, b2), (a3, b3), (a4, b4)}

and the sets

W=(al, a2, a3};
X= {bl, b3};
Y= {a1, a3, a5, a7}; and
Z=(

d: \jeMis\wip\phd\aPPx. doc

15

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

then we can construct the follwing relations:

W4R= {(al, b1), (a2, b1), (a3, b2), (a3, b3));
RDX= {(al, b1), (a2, b1), (a3, b3)};
YR= {(al, bl), (a3, b2), (a3, b3)};
Y4(RDX)=(Y4R)DX=Y4RDX={(al, bi), (a3, b3)}; and
Z4R=Rt Z=0.

Transitive and Reflexive Transitive Closure

+ý

G+ is the transitive closure of the graph G (remember that a graph is a relation where the domain and
codomain are of the same type). G* is the reflexive transitive closure of the graph G.

Formal Definition

Ex'

_+; _`: (x (+) x) --) (X (0
VG: XEHX"

G+=r) {Q: X(HXIGcQAQ°QSQ} A
G`=r1 {Q: XEHXIid[Dom(G)vCod(G)]SQAGcQAQ°QcQ}

Informal Definition

The transitive closure of a graph G is the smallest graph of the same type which is a superset of G and is
transitive. A transitive graph is one where for any a, b, c in the set from which G is generated, if (a, b) and
(b, c) are members of G, then so also is (a, c).

The reflexive transitive closure of a graph G is the union of the transitive closure of G with the set of
pairs of identical elements which are either members of the domain of G, or of the codomain of G, or of
both.

Examples

Suppose we have the graphs

G1 = {(al, a2), (al, a4), (a2, a3), (a3, a4), (a3, a5)) and
G2 = {(bl, b2), (b I, b4), (b2, b3), (b3, b4), (b5, b6), (b6, b8), (b6, b7)}

then we would have the following closures:

G1+= {(al, a2), (a1, a3), (al, a4), (al, a5), (a2, a3), (a2, a4), (a2, a5), (a3, a4), (a3, a5));
Gl* _ ((al, a2), (al, a3), (al, a4), (al, a5), (a2, a3), (a2, a4), (a2, a5), (a3, a4), (a3, a5), (al, al), (a2,

a2), (a3, a3), (a4, a4), (a5, a5)); and
G2' _ {(bl, b2), (b1, b3), (bl, b4), (b2, b3), (b2, b4), (b3, b4), (b5, b6), (b5, b7), (b5, b8), (b6, b7), (b6,
b8) J.

d: \jes\dis\wip\phd\appx. doc

16

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Using the graphical notation employed in the thesis we can represent the closures in the following
pictorial way:

G1 G2

Gn al \a2 bl b5

b2
/

b6

a3
a4

-\
a5

b3 b7 b8

b4

Gn+ al bl b5

b2

b6

ka3

a4 a5
b3 b7 b8

b4

Gn ý1

a2

bl b5

b2
/

b6

a3

G4 an

C3\
b7 b8

ýý
vv

Figure App1-2: Representation of Transitive and Reflexive-Transitive Closures

Numbers

N, N+

N symbolises the set of natural numbers. N+ symbolises the set of non-zero natural numbers.

Informal Definition

N is the set of all natural numbers: that is the positive integers and 0. N+ is the same set, but without 0.

Cardinality

#A is the cardinality of set A.

Informal Definition

The cardinality of a set is the number of distinct members contained within it.

d: \jes\dis\wip\phdlappx. doc

17

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Examples

Suppose we have the sets:

A={a, b, c, d};
B={ (a, b}, {a, b, c, d), {a}, 0); and
C=(

then

#A=4,
#B = 4, and
#C=0.

Operator Precedence

When reading the set theoretic constructions described in the thesis, it should be noted that the following
binding convention has been used: that set theoretic operators bind more tightly than logical operators.

For example

A=BUC

should be understood as

A=(BUC)

and not (the meaningless)

(A=B)UC.

In general there is no ambiguity as the expressions will only be well formed formulae with respect to
type when they are parsed in the intended way.

d: \jes\dis\wip\phcr ppx. doc

18

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Appendix 2:

The Domain Theory

d. \jes\dis\wip\phftppx. doc

19

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

This appendix records the domain theory in its latest manifestation (the 21st recorded iteration in this
form). The theory is presented in Schuman-Pitt format. Each of the type declarations, invariants,
preconditions and postconditions is numbered separately. Each of the numbered predicates and
abbreviations is described, and where appropriate commented on, following the schema in which it
appears.

The introduction of each class can be found on the following pages

ActClass 1 .. 21
ActClass2 .. 24
ActClass3 .. 26
APClass 1 ... 31
ATClass 1 ... 35
ATClass2 ... 40
ATClass3 ... 42
ATClass4 ... 46
ATClass5

... 51
ATClass6 ... 56
A'TClass7 .. 62
ClinClass ... 41
Clock ... 48
Information .. 61
PatientClass ... 30
Scheduler ... 49
TypeClass 1 .. 34
TypeClass2 .. 39
TypeClass3 .. 41
TypeC l ass4 .. 45
TypeClass5 .. 51
TypeClass6 .. 56
TypeClass7 .. 62

d: \jes\dis\wip\phd\appx. doc

20

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

The class heirarchy of the theory. is summarised in the following table:

n

-�-

ActClassl

r j: Request, Proceed, Complete, In, Out, Activities: Set[A]

I i: Request v Proceed u Complete = In u Out = Activities

12: Request n Proceed = Proceed n Complete = Complete n Request = In n Out =0

Activities' =0

" Inherit the type declarations and invariants of the class Constants (in which the carrier sets would
be defined).

Types:

" Activities is the set of patient encounters at (whatever level of generalisation) that we are concerned
with. Request is the set of requested activities that have not started or have been suspended. Proceed
is the set of activities that have been started but not since been suspended, and not completed.
Complete is the set of completed activities. In is the set of activites that can be considered to be in
the realm of the organisation we are considering. Out is the set of activities that are outside the
realm of the organisation being considered.

Invariants:

" Request, Proceed and Complete are disjoint partitions of the activities set

" In and Out are disjoint partitions of the activities set

d: \jes\dis\wip\phd\appx. doc

21

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

NB The Out set is different from the In set conceptually. Whereas the In set is a record of the state of
the organisation in terms of which activities are currently in which status, the Out set is a set of
phantom activities that record our knowledge of activities proceeding in the outside world. If an
activity is not recorded in Out, it does not mean it does not exist, merely that we do not know (or
care) about it. On the other hand, all the internal activitiea are recorded in In. Similarly, the set In
r Request is all internal activities that have been created but have not started. The set Out n
Request is all external activities that we are aware of and either we know they have not been started,
or we do not know their status - we know they must have been created at some point, possibly by us.

ActClassl. InRequest(a)

P. I: a: A\Activities

Po i: ae Activities' n In'

Preconditions:

"a is not yet an activity

Postconditions:

"a is now an internal activity

ActClassl. SuddenStart(a)

Pre: a: Activities

ro z: ae In' n Proceed'

This operation is a primitive that enables us to model unplanned activities that are created and started at
the same time.

Preconditions:

"a is not yet an activity

Postconditions:

"a is an activity internal to the organisation, and has started.

ActClassl. Start(a)

Pr ,: a: In o Request

Po 3: ae Proceed'

Preconditions:

"a is a request that is internal to the organisation

Postconditions:

"a is in proceed.

Note that the semantics of the Schuman-Pitt notation mean that in this case, if the activity starts the
operation in the set In, it will finish the operation in the set In unless this causes an invariant to be

contravened. The activity a being in In n Proceed does not contravene any invariants, so a remains in
In.

d: \jesldis\wip\phd\appx. doc

22

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ActClassl. Suspend(a)

La: a: Inn Proceed

ro 4: ae Request'

This operation enables activities to be interrupted without their being finished. Once they are
interrupted, or suspended, they become requests again, waiting to be (re) started

Preconditions:

"a is a proceeding activity that is internal to the organisation

Postconditions:

"a is moved back to Request.

ActClassl. End(a)

Pr s: a: In n Proceed

P. s: aE Complete'

Preconditions:

"a is a proceeding activity that is internal to the organisation

Postconditions:

"a is moved to Complete.

ActClassl. Cancel(a)

P. e: a: Request
[6:

ae Activities'

Preconditions:

"a is a request (either internal or external to the organisation)

Postconditions:

"a is no longer in Activities: it remains in its carrier set A, however.

ActClassl. OutRequest(a)

P,,: a: A\Activities

7a e Out' c Request'

The OutXxxxxx operations represent an 'update of the organisation's perceived environment'. They are
not operations that create or manipulate 'Out' activities - they are operations that update our
understanding of the state of these activities. Thus, for example the OutRequest operation represents the
organisation finding out about the existence of a request for an activity external to the organisation.

Preconditions:

"a is not yet an activity

d: \jes\dis\wip\phd\appx. doc

23

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Postconditions:

0a is a Request that is external to the organisation

ActClassl. OutProceed(a)

P, A: a: (A\Activities) u (Out n Request)

roe: ae Proceed'

Preconditions:

"a is either not yet an activity or is an external request.

Postconditions:

"a is a Request that is external to the organisation

ActClassl. OutComplete(a)

vr9: a: (A\Activities) u (Out\Complete)

r. 9: ae Complete'

Preconditions:

"a is either not yet an activity or is a request external to the organisation, or is a proceeding activity
external to the organisation

Postconditions:

"a is a Request that is external to the organisation

<>OUOQ<>OUO<>OOOOOOOQOOOOUOG><>UQO<> ><><><>

ActClass2

ActClassl

T2: Before, After: Activities (4) Activities

133: Before = After-1

14: After' n id[Activities] =0

1s: (im After) (Proceed u Complete) s Complete

6: Dom(After) n Out =0

" Inherit the type declarations and invariants of the class ActClassl

Types:

" Before and After are relations between activities. These represent medically meaningful orderings in

activities. Thus if a number of treatments need to be arranged in a particular order for medical
purposes, this will be recorded as values of the Before and After relations.

Invariants:

" Before is the inverse of After

" After is a directed acyclic graph (DAG). As Before is the inverse of After, Before must also be a
DAG.

dAjes\dis\wip\phftppx. doc

24

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

0 Any activity that is after a complete or proceeding activity is complete

" An external activity cannot be after any activity. This reflects the lack of control we have over
external activities: we cannot dictate that an external activity waits until a suitable moment - the
activity will commence when its own organisation is able and wants it to start.

Pr io: Ab: Set(Activities)

Pr i: ActClassl. InRequest(a)

Polo: {a} X A, c After'

Preconditions:

" Ab is a set of activities that take are to take place Before the requested activity a.

" Inherit the preconditions and postconditions of the Request operation.

Postconditions:

0a is After all activities in Ab.

ActClass2. SuddenStart(a)

If an operation is identical to one in the preceeding class in the class heirarchy, only its name is
presented - the preconditions and postconditions being the same as for the operation of the same name in
the earlier class.

ActClass2. Start(a)
[Pr

12: (im After) { a} c Complete

I eß, 3: ActClassl. Start(a)

Preconditions:

0 All activities After a must already be complete.

0 Inherit the preconditions and postconditions of the Start operation

" ActClass2. Suspend(a)

" ActClass2. End(a)

" ActClass2. Cancel(a)

" ActClass2. OutRequest(a)

NB Note that there are no'before' activities that a must succeed here. This is to preserve the invariant.

0 ActClass2. OutProceed(a)

0 ActClass2. OutComplete(a)

<><><><><><>00<><><><><><><><>000<><><><><><><><><><><><><><><>

d: yesmis\wlp\pha\appx. doc

25

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ActClass3

ActClass2

T3: During, Includes: Activities (4) Activities

17: Includes-[= During

18: During+ n id[Activities] =0

19: (im Includes) Complete c Complete

1a(im During) Proceed c Proceed

i ii: (After u Before) D Dom(During) c Includes 0 During

12: During o Out X Out =0

" Inherit the type declarations and invariants of the class ActClass2

Types:

" Includes and During are both graphs over activities. If an activity a is included in an activity b, then
a is a part of b: in delivering the service implied by b, it was decided somewhere that a must also be
delivered. The concept implies medical containment and delegated 'responsibility'.

Invariants:

" Includes in the inverse of During.

" During (and hence Includes) is a DAG

" All activities Included in activities in Complete are also in Complete

" All activities During activities in Proceed are also in Proceed.

" Any two activities that are in the After relation where at least one is Included in another activity
have a parent in common.

" An external activity can be part of an internal activity, or an internal activity can be part of an
external activity, but an external activity cannot be part of an external activity. This reflects our
knowledge rather than some objective truth. We do not know or care about the structure of activities
delivered by other departments - only their names, and whether one of our activities is a part of one
of their's (as in shared care) or one of their's is a part of one of ours (as in certain blood tests).

ActClass3. Create(Ab, a,,)

Pr 14: ActClass2. InRequest(Ab, a,,)

d: \jes\dis\wip\phd\appx, doc

26

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Pr 15: AP: Set[Activities\Complete]

Prle: A nIn#0 P

Pr n: Ab Q Dom(During (>AP)

Pr 18: ActClass2. InRequest(Ab, ad

r, »: {ar} X An c During'

Preconditions:

" AP is a set of activities in which the new activity is to be included. None of AP is complete

" One of A must be an internal activity. If we embed an internal activity in an external activity, then
there must be a 'spouse' including activity that is internal. This is because we do not care about the
activity our'top level' activity is embedded in - anything else delivered by us must be a part of our
care somehow (though as in the case of shared care it need not only be embedded in one of our
activities).

" Each of Ab must be embedded in one of A.

Inherit the preconditions and postconditions of the Request operation.

Postconditions:

0 ac (child activity) is included in each of AP.

Pr 19: Ap: Activities\Complete

p, zo: A r) In*
P

Pr21: ActClass2. SuddenStart(Ab, an)

Po 12: {ac} X Ap C. During'

Poll During'+ (ac }s Proceed'

Preconditions:

AP is a set of activities that have not been completed.

" At least one of AP is an internal activity

Inherit the preconditions and postconditions of the SuddenStart operation

Postconditions:

"a is included in each of A
Cp

" All 'ancestors' of a must be proceeding activities. This is a postcondition rather than a precondition
as we might not want to start all 'higher level' activities explicitly - the starting of a part implies that
the whole has started, and may well be that start.

ActClass3. Start(a)

Fl, u: ActClass2. Start(a)

P. 14: (im During+) { a) r- Proceed'

d: \jes\dis\wip\phd\appx. doc

27

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Preconditions:

" Invoke Start

Postconditions:

" All 'ancestors' of a must be proceeding activities

ActClass3. Suspend(a)

P, 23: (im During 0Includes) {a) c {a}

Prza: Includes (a) c Request u Complete

P, 25: ActClass2. Suspend(a)

Preconditions:

"a has no 'spouses' via the During relation. le, ie a does not have any offspring that have a parent
other than a.

" All activities that are During a are either in Request or Complete - none is in Proceed.

" Inherit the preconditions and postconditions of the Suspend operation.

ActClass3. End(a)

P 26. (im Includes) (a) s Complete

Pr n: ActClass2. End(a)

Preconditions:

" All activities that are Included in a are already complete.

" Inherit the preconditions and postconditions of the End operation

ActClass3. Cancel(a)

P, 2s: (im Includes+) {al c Request

P29: ActClass2. Cancel(a)

Po 15: (im Includes+) (a) n Activities' =0

Preconditions:

" All activities that are 'descendants' of a are in Request. This means that a suspended activity that
has completed components cannot be cancelled. An activity that has no completed descendants that
has been started and then suspended can be completed. This is an unrealistic situation and does not
convey the meaning of the operation: it is a shortcoming of the theory.

" Inherit the preconditions and postconditions of the Cancel operation.

Postconditions:

" None of the descendants of a is now an activity.

ActClass3. OutCreate(a)

N3o: ActCla%2. OutRequest(a)

d: \jes\dis\wip\phd\appx. doc

28

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Preconditions:

" Inherit the preconditions and postconditions of the operation OutRequest. This schema merely
changes the name of the operation..

ActClass3. OutEmbed(A

Pr 31: AP: Activities\Complete

Pr32: As In

Pr 33: ActClass2. OutRequest(a,)

Po16: {aC } XAD g. During'

Preconditions:

" Ap is a set of activities that have not been completed.

" All of Apis in Tn

" Inherit the preconditions and postconditions of the operation OutRequest

Postconditions:

" a, is During all of A.

ActClass3. OutProceed(a)

P, 34: ActClass2. OutProceed(a)

roil: During+ (a) c Proceed'

Preconditions:

" Inherit the preconditions and postconditions of the operation ()utProceed

Postconditions:

" Any activity that is a descendant of a is in Proceed.

ActClass3. OutComplete(a)

N 35: Includes(a) c Complete

R36: ActClass2. OutComplete(a)

eo1s: During' {a} nRequest' =0

Preconditions:

" All activities that are Included in a are in Complete

" Inherit the preconditions and postconditions of the OutComplete operation

Postconditions:

" None of the activities that a is Included in are in Request.

<><><>00<><><> <>< > <>< ><><><><><><><><><> <>< ><> <> <><><> <> <>< > <> <><>

d: \jes\dis\wip\phd\appx. doc

29

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

PatientClass

T4: Patients, PatPres: Set[P]

113: PatPres s Patients

Pats' =0

Types:

" Patients and PatPres represent sets of people. Patients is all people who are registered with the
organisation. PatPres are all registered patients who are physically present in the organisation. A
registered patient is one who is recognised by the directorate - they may or may not be registerd in
the official sense.

Invariants:

" PatPres is a subset of Patients.

PatientClass. Register(p)

F. v: p: P

I
Po 19: p: Patients'\PatPres'

Preconditions:

"p is a person (ie, an element of the carrier set P).

Postconditions:

"p is a patient who is not physically present.

PatientClass. Deregister(p)

P. ss: p: Patients

Po 2o: p0 Patients'

Preconditions:

"p is a registered patient

Postconditions:

"p is no longer a patient.

NB This operation would be used to remove a patient that had no medical contact with the clinic. It

would probably never be used.

PatientClass. Arrive(p)

P,.,: p: Patients\PatPres

P021: p: PatPres'

Preconditions:

"p is a patient who is not present

d: \jes\dis\wip\phd\appx. doc
30

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Postconditions:

"p is present in the organisation.

PatientClass. Depart(p)

aao: p: PatPres

Po 22: p 65 PatPres'

Preconditions:

"p is present

Postconditions:

"p is not present in the organisation.

0000<>000<>QO<><><>AQ<><>UUO<>QOOp<>UQ<>00<><>

APClassl

ActClass3, PatientClass

T5. ActSubject: Activities 3 Patients

T6: ActAtt: Set[Activities\Complete]

114: ActSubject ° (Includes u After) ° ActSubject-' c id[Patients]

1m Vp: Patients " ((im (ActAtt d ActSubject)'1) (p))2 Q During* v Includes*

" Inherit the type declarations and invariants of the classes ActClass3 and Patient.

Types:

" ActSubject is a function that returns the patient that is the medical recipient of the care associated
with an activity.

" ActAtt is a set of activities that have not yet ben completed. ActAtt is the set of activities that are
currently being attended by a patient (Attended Activities). These activities are ones that directly
provide care for the patient - not abstract activities such as 'healthcare'.

Invariants:

" If two activities are in the After or Includes relatiopn then they must share the same subject.

" If a patient is present at more than one activity then any two of those activities must be in an
ancestral relationship - that is, one must be the ancestor of the other through During.

Pr41: P:
P

Pr42: (im ActSubject) Ab Z {p}

Pr 43: ActClass3. Create(A., a_)

Po 23: (a., p) e ActSubject'

Po 24: PC: Patients'

d: \jes\dis\wip\phd\appx. doc

31

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Preconditions:

"p is a person - not necessarily a registered patient

" All the activities to be before the new one must have p as their subject.

" Invoke InCreate

Postconditions:

"p is the subject of the new activity

"p is a registered patient.

APClass1. Embed(Ap, Ab, ad

P, 44: Va1, a2: Ap u Ab " ActSubject(a1) = ActSubject(a2)

P, 45: ActClass3. Embed(Ap, Ab, ac)

Po 2s: a. e Dom(ActSubject')

P026: ActSubject'(aa) E (im ActSubject) Ap

Preconditions:

9 All activities in Ab and Ap must have the same subject.

9 Inherit the preconditions and postconditions of the InEmbed operation

Postconditions:

" a, has a subject

" the subject of a,, is the same as the subject of an activity in A.

APClassl. SuddenStart(Ap, aC)
1

R46: ActClass3. SuddenStart(Ap, ac)

Po 27: ac e Dom(ActSubject')

Po 28: ActSubject'(ac) E (im ActSubject) A0

Preconditions:

" Inherit the preconditions and postconditions of the SuddenStart operation

Postconditions:

" a,, has a subject

" the subject of a, is the same as the subject of an activity in A.

APCIassl. Start(a)

APCIassl. Suspend(a)

Pr47: ActClass3. Suspend(a)

Po29: ae ActAtt'

Preconditions:

" Inherit the preconditions and postconditions of the Suspend operation
d: \jes\dis\wip\phd\ ppx. doc

32

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Postconditions:

"a is not an attended activity

APC1assl. End(a)

APCIassl. Cancel(a)

APCIassl. OutCreate(p, a)

Ias: p: Patients

P, 49: ActClass3. OutCreate(a)

P. 30: (a, p) e ActSubject'

Preconditions:

"p is a registered patient. The patient must be registered as we are not interested in patients that have
no contact with our organisation.

" Inherit the preconditions and postconditions of the OutCreate operation.

Postconditions:

"p is the subject of a.

APCIassl. OutEmbed(AP, k)

P, so. `da1, a2: Ap " ActSubject(a1) = ActSubject(a2)

p s,: ActClass3. OutEmbed(Ap, ac)

eo31: ac E Dom(ActSubject')

rase: ActSubject'(a_) E (im ActSubject) A_

Preconditions:

" All activities in A. must have the same subject.

" Inherit the preconditions and postconditions of the operation OutEmbed

Postconditions:

" a, has a subject

" the subject of a,, is the same as the subject of an activity in A.

APCIassl. OutProceed(a)

APCIassl. OutComplete(a)

APCIassl. PatReg(p)

APCIassl. PatDereg(p)

APCIassl. PatArrive(p)

APClassl. PatDepart(p)

d: yes\dis\wip\phd\appx. aoc

33

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

APCIassl. PatJoin(a, p)

N 52: p: PatPres

i 53: a: In\Complete

risa: p = ActSubject(a)

I Po ri: ae ActAtt'

Preconditions:

"p is a patient present in the organisation

"a is not a complete activity

"p is the subject of a

Postconditions:

"a is an attended activity.

APCIassl. PatLeave(p)

Pr 55: p: (im ActSubject) ActAtt

Po 34: (im ActSubject't) (p) n ActAtt =0

Preconditions:

0p is a patient that is the subject of an attended activity

Postconditions:

" There are no activities that have p as their subject that are attended activities.

OUO<><>UU00000<>ODUOOUOOOOOOOOOOOOOOQOO

TypeClassl

Ti: Types, Unplanned, Access, PatReq, HomeTypes: DT EH Org

T8: Home: Set[Org]

iw Home c Cod(Types)

117: PatReq, Access, HomeTypes, Unplanned c Types

18: HomeTypes = Types Home

i i9: Access n Unplanned =0

x,: PatReq c HomeTypes

Home' = Types' =0

Types:

" Types is a pair with medical descriptions as the domain and organisations as the codomain. The
description is the medical name of a clinically relevant class of activities - for example 'Blood Test',
`Doctor Consultation', or `Diabetic Care'. Because the description is paired with organisation in the

state component Types, a Doctor Consultation conducted within the Diabetes Directorate can be

considered to be a different type of activity from a Doctor Consultation conducted within the

d: \jes\dis\wip\phd\appx. doc
34

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Obstetrics and Gynaecology Directorate. If this were the case then the pairs (Doctor Consultation,
Diabetes Directorate) and (Doctor Consultation, Obstetrics and Gynaecology Directorate) would be
elements of Types. Unplanned, Access, PatReq and HomeTypes are similarly defined. Unplanned is
the set of Types, activities of which can be started without previously having been requested (ie via
the SuddenStart operation). Access is the set of Types, activities of which can be created without
being embedded in another activity - these are the types that can be `accessed' from outside the
organisation. PatReq is the set of Types, activities of which need a patient to be present before they
can start. HomeTypes is the set of Types, activities of which can be considered to be the
responsibility of the `home' organisation.

" Home is the set of organisations that represent the administrative groupings that we are directly
interested in. This will generally be a singleton set (for example, (Diabetes and Endocrine
Directorate)).

Invariants:

" The set Types must have any Home organisation in the set Home in its codomain.

" PatReq, Access, HomeTypes and Unplanned are all subsets of Types.

" HomeTypes is the largest subset of Types that has its codomain equal to the set Home.

" No Types in Access can also be in Unplanned.

" Types in PatReq must also be in HomeTypes

In all the specialisation classes (TypeClassl, TypeClass2, TypeClass3, TypeClass4, TypeClass5,
TypeClass6, TypeClass7, Clinl, Scheduler, and even Clock) there is an implied operation that is not
specified. This might be called OrgDef (for Organisation Define), or Specialise, or some similar name.
This operation is invoked directly after the initialisation of the object of the class (or any class that
inherits properties of a specialisation class - ie all classes 'after' ActClass3): no operation can be invoked
before Specialise. The operation creates values for all the specialisation state components (those
declared in the specialisation classes) effectively `setting up' the model so that it can represent a real
domain. This operation clearly should not be interpreted into the world as it does not represent anything
real. However, equally clearly, it is necessary if a model of the theory is to be non-vacuous. Although
this operation is not specified, it would be easy to do so - one would merely provide arguments to an
operation that would become the specialisation state components after invocation, and the preconditions
would thus mirror the invariants, only existing over the arguments as opposed to the state components.

<><><>QOQ<><><><><><><><><><><>QOO<><>00000<><>OUQO<><><>

ATClassl

APClass1, TypeClassl

T9: ActType: Activities -4 Types

121: (im ActType) Inc HomeType,

22: (im ActType) Out n HomeType =0

23: ActType ° Includes+ ° ActType't n id[Types] =0

124: #(ActType ° After) = #After

125: #Cod(Access d (ActSubject ° ActType't)) = #Cod(ActSubject)

126: #ActType ° (Includes D Proceed) = #(Includes D Proceed)

127: #ActType ° (Includes D Request) = #(Includes D Request)

us: #During = #(ActType 0 During)

d: \jes\dis\wip\phd\appx. doc

35

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" Inherit the type declarations and invariants of the classes APClassl and TypeClassI

Types:

" ActType is a function which returns the type of a particular activity. Each activity must have exactly
one type. Furthermore we will see that once a type has been assigned to ab activity it cannot be
changed.

Invariants:

" All internal activities must be of a type in HomeType

" No external activities can be of a type in HomeType

" The relation Includes, projected onto Types via ActType is a DAG. In other words, no activity can
have an ancestor that is the same type as it is.

" An activity can be after at most one other activity of any given type.

" Any patient that is associated with an activity via ActSubject must be associated with at least one
activity of a type in Access.

" For any patient there must be only one activity of any given type proceeding at any time within the
same parent activity.

" For any patient there must be only one activity of any given type requested at any time within the
same parent activity.

" No two parents of a given activity can be of the same type.

" We do not say that Unplanned activities cannot be requests a they might be suspended.

ATClass 1. C reate(Ab, pn, tn, a,,)

P, 56: tn: Access n HomeTypes

a 57: #(im ActType) Ab = #Ab

PI ss: APClassl. Create(AD, pn, a.)

I Po 35: (a. t,,) e ActType'

Preconditions

"tn is in Access and HomeTypes

" All Ab are of different types

" Inherit the preconditions and postconditions of the InCreate operation

Postconditions

" an is now of type t. as specified by the relation ActType

d: \jes\dis\wip\phd\appx. doc

36

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

A'

Pr 39: t: HomeTypes

mow: #(im ActType) Ab = #Ab

Pr61: #(im ActType) Ap = #A
p

er62: tC o (im ActType) (im During) Ap

Pr 63. tC o (im ActType) ((im Includes) AP) Request)

N64: APClass1. Embed(Ap, Ab, ad
I

Po 36: (ac, tc) e ActType'

Preconditions:

"t is in HomeTypes

" All Ab are of different types

" All AP are of different types

" None AP or any of the ancestors of any activity in AP is of type tc.

" None of the existing children of any of AP that are in Request are of type tC.

" Inherit the preconditions and postconditions of the InEmbed operation

Postconditions:

" ac is now of type tC as specified by the relation ActType.

ATClassl. SuddenStart(AP, tc, ac)

Pr 65: tC: HomeTypes n Unplanned

rr 66: #(im ActType) AP = #A
P

r. 67: tc e (im ActType) (im During) AP

rr6s: tc e (im ActType) ((im Includes) Ap) D Proceed)

P, 69: APCIassl. SuddenStart(A
I

Po 37: (a_, t_) e ActType'

Preconditions:

"t must be in HomeTypes and Unplanned.

" All AP are of different types

" None AP or any of the ancestors of any activity in AP is of type tc.

" None of the existing children of any of AP that are in Proceed are of type tc.

" Inherit the preconditions and postconditions of the SuddenStart operation

Postconditions:

" ac is now of type t, as specified by the relation ActType.

d: \jes\dis\wip\phd\appx. doc

37

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATClassl. Start(a)

N 7o. ActType(a) e PatReq ae ActAtt

Pr 71: ActType(a) 0 (im ActType) (((im Includes ° During) (a)) n Proceed)

PT n: APCIassl. Start(a)

Preconditions:

" If a is of a type that needs patients to start then a patient must be present at its start.

" There can be no activities of the same type as a that have the same parent in Proceed

" Inherit the preconditions and postconditions of the Start operation

ATCIassl. Suspend(a)

ATC1assl. End(a)

ATC1assl. Cancel(a)

ATC1assl. OutCreate(p, t, a)

P 73: t: Access\HomeTypes

e, 74: APCIassl. OutCreate(a)

Po 38: (a, t) E ActType'

Preconditions:

"t is in Access but not HomeTypes

" Inherit the preconditions and postconditions of the OutCreate operation

Postconditions:

"a is now of type t as specified by the relation ActType.

ATClassl. OutEmbed(Ap, t

P 75: tc: Types\HomeTypes

P 76: APCIassl. OutEmbed(A, a,)

Po 39: (ac, tc) E ActType'

Preconditions:

"t is a type that is not in HomeTypes

" Inherit the preconditions and postconditions of the OutEmbed operation

Postconditions:

" ac is now of type tc as specified by the relation ActType.

ATClassl. OutProceed(a)

ATCIassl. OutComplete(a)

ATC1assl. PatReg(p)

d: \jes\dis\wip\phd\appx. doc

38

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATClassl. PatDereg(p)

ATCIassl. PatArrive(p)

ATCIassl. PatDepart(p)

ATClassl. Patjoin(a, p)

ATCIassl. PatLeave(p)

<> 00<><><> <>< ><> <><> <> <>< ><> <>< ><> <>< ><> <>< > <>< ><><><><><><><><> <>< ><>

TypeClass2

TypeClassl

r 1o: TGroupers: Set[TG R]

T, i: TypeGuide: TGroupers -) (Types E3 Types)

29: TypeGuide't e (Types EN Types) 4* TGroupers

i3o: Vtg: TGroupers " TypeGuide(tg) = Dom(TypeGuide(m)) X Cod(TypeGuide(m))

131 (U Cod(TypeGuide))+ n id[Types] =0

" Inherit the type declarations and invariants of the class TypeClassl

Types:

" TGroupers is a set. It is used in conjunction with Types to define the concept TypeGuide.

" TypeGuide is a triple. It is a function that returns a graph over Types when passed a value in
TGroupers. TypeGuide describes the allowable structures that activities can take with respect to their
types. Thus an activity of type t can have parents of types in third part of triples which have tin their
second position. Furthermore, an activity of type t must have parents of all such types that have a
single value of TGrouper in their first position. Thus if an instantiation of TypeGuide had the value
{(tg1, tl, t2), (tg2, tl, t2), (tg2, tl, t3)} then an activity of type tl must have either one parent of type
t2 or two parents of types tl and t2 respectively. In this model, an activity of type t1 could never have
one parent of type t3.

Invariants:

" The inverse of TypeGuide is a partial function from graphs over types to elements in the set
TGroupers. In other words, a graph in the codomain of TypeGuide can only be related to one value
in TGrouper.

" Any graph over Types in the codomain of TypeGuide must have every element in its domain paired
off with every element in its codomain. In other words the existence of the elements (tl, t2) and (t3,
t4) in one such graph imply the existence of the elements (t3, t2) and (ti, t4) in the same graph.

" The distributed union of the codomain of TypeGuide is a DAG.

OOOOOOUAQ<>OUOODUOOgOAAQQO00000qOUqOU

d: \jes\dis\wip\phd\appx. doc

39

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATClass2

ATClassl, TypeClass2

132: Va: Activities " 3tg: TGroupers " (ActType ° ({a) 4 During) ° ActType'I = 0) v
ActType ° ({a} 4 During) ° ActType-I = {ActType(a)} 4 TypeGuide(tg)

" Inherit the type declarations and invariants of the classes ATClassl and TypeClass2

Invariants:

" For any activity, there exists an element of the set TGroupers such that the 'parents' of the activity
are of types that are in the codomain of the graph that is returned when the member of TGrouper is

supplied to TypeGuide. Furthermore, there must be an activity with the appropriate type for each
element in the codomain of that graph.

ATC1ass2. Create(Ab, pn, tn, an)

ATClass2. Embed(A, Ab, tc, ad

77: 3tg: TGroupers " (im ActType) Ap = (im TypeGuide(tg)) {tC)

Pr78: ATClassl. Embed(A , Ab, tc, ac)

Preconditions:

" There is some member of the set TGroupers such that the types of the would be parents of the new
activity are identical to the types in the codomain of the graph returned when the element of
TGroupers is supplied to TypeGuide.

" Inherit the preconditions and postconditions of the OutEmbed operation

ATClass2. SuddenStart(A , tc, aý)

P, 79: 3m: TGroupers " (im ActType) Ap = (im TypeGuide(m)) {tý}

vrso: ATClass2. SuddenStart(A , t,, ad

Preconditions:

" There is some member of the set TGroupers such that the types of the would be parents of the new
activity are identical to the types in the codomain of the graph returned when the element of
TGroupers is supplied to TypeGuide.

" Inherit the preconditions and postconditions of the SuddenStart operation

ATClass2. Start(a)

ATCIass2. Suspend(a)

ATClass2. End(a)

ATCIass2. Cancel(a)

ATC1ass2. OutCreate(p, t, a)

d: \jes\dis\wip\phd\appx. doc

40

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATC1ass2. OutEmbed(A , tc, ac)

Pr8I: 3m: TGroupers " (im ActType) Ap = (im TypeGuide(m))-1 {t.)

Prsz: ATClassl. OutEmbed(A , tc, ac)

Preconditions:

" There is some member of the set TGroupers such that the types of the would be parents of the new
activity are identical to the types in the codomain of the graph returned when the element of
TGroupers is supplied to TypeGuide.

" Inherit the preconditions and postconditions of the OutEmbed operation

ATClass2. OutProceed(a)

ATCIass2. OutComplete(a)

ATClass2. PatReg(p)

ATCIass2. PatDereg(p)

ATClass2. PatArrive(p)

ATC1ass2. PatDepart(p)

ATClass2. PatJoin(a, p)

ATClass2. PatLeave(p)

<>OOq000<>00<>QQOO<>U000<>00<>00000<>OAOAQ<>

ClinClass

T12: HCP: Set[P]

T 13: ProfFype: HCP -i Pf

0 Inherit the type declarations and invariants of the class Constants

Types:

" HCP is a set of elements from the carrier set P (people). HCP should be interpreted as the set of
Health Care Professionals we are interested in. These will be people hence the fact that the carrier
set is the same as it was for Patients.

" ProfType is a total function from HCP to Pr. Pr should be interpreted as types of Health Care
Professionals such as Doctor, Diabetic Specialist Nurse, Dietitian, and so on. ProfType thus enables
us to determine the type of Health Care Professional we are interested in.

p00<><><><><><><><><><><><>QV<><><><><>OOQ<><><><><><><><>OQ<>

TypeClass3

TypeClass2, C1inClass

T 14: RunType: HomeTypes H Pr

133: Vtl: Unplanned; m: TGroupers " 3tc: Pr " Vt2: Types "
(m, t2, tl) e TypeGuide ((tc, tl), (tc, t2)) c RunType

" Inherit the type declarations and invariants of the classes TypeClass2 and Clinl
d: \jes\dis\wip\phd\appx. doc

41

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Types:

" RunType is a total function from types of activity that are pertinent to the home organisation to
types of clinician. RunType records which types of activities can be started by which types of
clinician.

Invariants:

" All unplanned activity types must share a running clinician type with all its parents. This invariant
is necessary to ensure that the SuddenStart operation is always possible - whereas with 'planned'
activities, we can insist on the parents of those activities having already started, this is not
appropriate for unplanned activities which must be able to start, and to start all parents if this is
necessary.

OOQ<><>OOOOUO<><><><><><><><><><>Q<><><>OU<>04<>000<><>

ATClass3

ATClass2, TypeClass3

T ts: ActRun: In \ Complete 4) HCP

134: ProfType ° ActRun 0 ActType'I c RunType

" Inherit the type declarations and invariants of the classes ATClass2 and TypeClass3.

Types:

" ActRun is a partial function from incomplete internal (to the home organisation) activities to health
care professionals. The domain of ActRun is the set that can be started, or has just been started by
the HCP that is the second element in the pair in which the activity is the first.

Invariants:

" For any pair consisting of an activity and a member of HCP that together form an element of
ActRun, the pair consisting of the type of that activity followed by the type of that member of HCP
must be in the relation RunType.

ATC1ass3. Create(Ab, p., tn, an)

ATCIass3. Embed(AP, Ab, tC, aC)

ATClass3. SuddenStart(A,, tl, hcp, a,)

yr sa: hcp: HCP

N 84 (im ActType) Ap u{ tC }s (im RunType't) { Prof Type(hcp) }

R 85: ATCIass3. SuddenStart(A , t,, a,)

Po 40: (a , hcp) E ActRun'

Preconditions:

" hcp is an element of the set HCP

" The types of the would be parents of the new activity, and the type of the new activity, must be such
that activities of those types are all capable of being run by the type of HCP that hcp is.

" Inherit the preconditions and postconditions of the SuddenStart operation

Postconditions:

" The new activity and hcp are now pairs in the ActRun function.

d: \jes\dis\wip\phd\appx. doc
42

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATCIass3. Start(a)

Nso aG Dom(ActRun)

Pr a7: ATCIass2. Start(a)

Preconditions:

"a is a member of the domain of ActRun.

" Inherit the preconditions and postconditions of the Start operation

ATClass3. Suspend(a)

yr sa: ae Dom(ActRun)

Pr 89: ATClass2. Suspend(a)

P. 41: ao Dom(ActRun')

Preconditions:

"a is a member of the domain of ActRun.

" Inherit the preconditions and postconditions of the Suspend operation

Postconditions:

"a is no longer a member of the domain of ActRun. This reflects the meaning of the Suspend
operation which is supposed to represent the withdrawal of the clinician (and patient) from the
process of the activity, meaning that both the clinician and the patient are free to become engaged in
theprocess of another activity.

ATClass3. End(a)

r. 9o: aE Dom(ActRun)

Pr 9i: ATClass2. End(a)

Preconditions:

"a is a member of the domain of ActRun.

" Inherit the preconditions and postconditions of the End operation

NB We don't need the postcondition of the Suspend activity as our insistence that the domain of ActRun
is a subset of incomplete activities means that a is automatically removed from the domain od ActRun
after the operation.

ATCIass3. Associate(a, hcp)

P, vz: a: In\(Complete u Dom(ActRun))

yr 93: hcp: HCP

Pr94: (ActType(a), ProtType(hcp)) e RunType

Po 42: (a, hcp) e ActRun'

Preconditions:

"a is an internal activity that is not complete and is not in the domain of ActRun

d: \jes\dis\wip\phd\appx. doc
43

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" hcp is an HCP

" The pair consisting of the activity type of a and the HCP type of hcp is an element of RunType.

Postconditions:

" hcp is now associated with a via the function ActRun.

ATC1ass3. Disassociate(hcp)

rss: hcp: Cod(ActRun)

Pr96. (im ActRun't) {hcp} c Request

Po a3: hcp 0 Cod(ActRun)

Preconditions:

" hcp is an element of HCP that is associated with an activity via the relation ActRun.

" All activities that hcp is currently associated with are in the set Request (an HCP cannot disassociate
from a proceeding activity).

Postconditions:

" hcp is no longer associated with any activities via ActRun. It doesn't make sense for a clinician to
disassociate from fewer than all currently associated activities. The idea behind being associated
with several activities was in case one is nested in another. If the clinician leaves one, it will be
because he or she has to attend to something else - he or she will then leave them all. The clinician
can only disassociate from requests - otherwise he or she must end, cancel or suspend them, which
has the same effect.

ATClass3. OutCreate(p, t, a)

ATCIass3. OutEmbed(Ap, tc, ac)

ATClassl. OutProceed(a)

ATClassl. OutComplete(a)

ATClass3. PatReg(p)

ATCIass3. PatDereg(p)

ATCIass3. PatArrive(p)

ATClass3. PatDepart(p)

ATClass3. PatJoin(a, p)

ATCIass3. PatLeave(p)

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

d: \jes\dis\wip\phd\appx. doc
44

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

TypeClass4

TypeClass3

T, 6: EmbedType: Pr -H 4(TGroupers -H 4(Types EH Types))

T 17: OutRefFype: Pr EH Types

135: Cod(OutReffype) s Access

, 36: Cod(EmbedType) c TypeGuide

, 37: Vtc: Pr " Vtg: Dom(EmbedType(tc)) "
Cod(EmbedType(tc)(tg)) = Cod(TypeGuide(tg)) A
Dom(EmbedType(tc)(tg)) c Dom(TypeGuide(tg)) A
(Cod(EmbedType(tc)(tg)) c Cod(RunType D (tc))) Cod(ttg) d TypeGuide) = EmbedType(tc)(tg)) A
(-(Cod(EmbedType(tc)(tg)) c Cod(RunType D {tc)))) Dom(EmbedType(tc)(tg)) n Unplanned = 0)

" Inherit the type declarations and invariants of the class TypeClass3

Types:

" EmbedType is a function from types of HCP to another relation which is in its turn a function from
the set TGroupers to a graph over types. This structure records which types of activity a particular
type of clinician can embed in which other types of activity. It does this by effectively providing
each type of HCP with a subset of TypeGuide (in fact the situation is slightly more complex than
this as we shall see).

" OutRefType is a relation which records which types of activity that are external to the home
organisation can be created by which type of clinician.

Invariants:

" The types in the codomain of OutRefType are all in the set Access.

" The codomain of EmbedType is a subset of TypeGuide

This invariant can best be explained in a number of parts. Note that the third part of the invariant

means that the clinican 'responsible' for the running of an activity will be able to embed (allowable -
via TypeGuide) component activities within it. The complexity comes from having to consider the
possibility of multiple parents for activities. For all types of HCP (which we shall call tc) and all
elements of TGrouper that are in the domain of the function returned when tc is supplied to
EmbedType:

A. if a type of clinician can embed a type of activity in another that is a permissable parent via
TypeGuide, then that type of clinician can embed that type of activity in all permissable parents;
and

B. the activity types that can be embedded in others by tc that are in the graph referenced by tg
must be in the domain of tg; and

C. if an HCP of type tc can run all the activity types that are possible parents of types in the
domain of the graph within EmbedType referenced by tg, then that type of clinician can embed
all allowable types in the types represented by that element; and

D. if an HCP of type tc cannot run all the activity types that are possible parents of types in the
domain of the graph within EmbedType referenced by tg, then none of the embeddable types
can be Unplanned.

ODU<>U<><><><>UU<><>U<>O<>O<>OU<X>U<>OOOU<><><>UO<>O

d. \jes\dis\wip\phd\apPx. doc

45

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATClass4

ATClass3, TypeClass4

138: Val, a2: Activities\Complete " (ActType(al) = ActType(a2) A ActSubject(al) = ActSubject(a2) A
ActType(al) E Cod(OutRefType) al = a2

" Inherit the type declarations and invariants of the classes ATCIass3 and TypeClass4

Invariants:

" If there are two incomplete activities that are of the same type, concern the same patient, and one of
whose type is in the codomain of OutRefType then those two activities are identical.

ATCIass4. Create(Ab, pn, tn, an)

ATClass4. Embed (Ap, Ab, t., hc

1,. 97: hcp: HCP

r, va: 3tg: TGroupers " (im ActType) Ap = (im EmbedType(ProfType(hcp))(tg)'� (t)

pr 99. ATClass3. Embed(Ap, Ab, tt, aa)

Preconditions:

" hcp is a member of the set HCP

" There is a member of TGroupers, tg, such that all the would be parents of the new activity are of the
types specified for the HCP type of hcp, the member of TGroupers tg, and the type of the new
activity, in the structure EmbedType.

" Inherit the preconditions and postconditions of the Embed operation

ATClass4. SuddenStart(A , tc, hcp, aC)

P, ioo: 3tg: TGroupers " (im ActType) AP = (im EmbedType(ProfType(hcp))(tg)) (tc)

rr ioi: ATClass3. SuddenStart(A , tc, hcp, ac)

Preconditions:

" There is a member of TGroupers, tg, such that all the would be parents of the new activity are of the
types specified for the HCP type of hcp, the member of TGroupers tg, and the type of the new
activity, in the structure EmbedType.

" Inherit the preconditions and postconditions of the SuddenStart operation

ATClass4. Start(a)

ATC1ass4. Suspend(a)

ATCIass4. End(a)

ATCIass4. Cancel(a)

ATClass4. Associate(a, hcp)

ATClass4. Disassociate(hcp)

d: \jes\dis\wip\phd\appx. doc

46

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATC1ass4. OutCreate(p,,, tn, hcp, a

r. 102: hcp: HCP

Pr 103: ((imActType'1){t, } n(imActSubject-1){p. })\Complete=0

Pr Boa: (ProfType(hcp), t.) e OutRefType

Pr pos: ATClass3. OutCreate(p, t, a)

Preconditions:

" hcp is a member of HCP

" There are no incomplete activities of the type requested concerning the patient in question.

" An HCP of the type of hcp can create an activity of type t, as specified by OutRefType.

Inherit the preconditions and postconditions of the OutCreate operation

ATC1ass4. OutEmbed(Ap, t

Pr 106: hcp: HCP

Pr m: 3tg: TGroupers " (im ActType) Ap = (im EmbedType(ProtType(hcp))(tg)) {ý}

Pr io8: ATClass3. OutEmbed(A

Preconditions:

" hcp is a member of HCP

There is a member of TGroupers, tg, such that all the would be parents of the new activity are of the
types specified for the HCP type of hcp, the member of TGroupers tg, and the type of the new
activity, in the structure EmbedType.

" Inherit the preconditions and postconditions of the OutEmbed operation

ATC1ass4. OutProceed(a)

ATClass4. OutComplete(a)

ATCIass4. PatReg(p)

ATCIass4. PatDereg(p)

ATCIass4. PatArrive(p)

ATCIass4. PatDepart(p)

ATCIass4. PatJoin(a, p)

ATC1ass4. PatLeave(p)

U<><><>U<>U<>O<><>UODUOUOUOU<><>UUOODU4U<>UUUU

d: \jes\ Iis\wip\phd\appx. doc

47

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Clock

T j8: Now: T

T19: Earlier, Later: T EH T

Tzo: Next, Previous: T)T

139: Earlier = Earlier+

iao: Earlier n id[T] =0

141: Later = Earlier-t

142: Later n Earlier =0

143: Later u Earlier u id[T] =TXT

144: Next = Previous']

145: Next c Later

144: V(t[1, ti2): Next " -3 t3: T" (T 1,, r3) E Earlier A (i2, ti3) E Later

Now' = 12: 00am, 1/1/94

Earlier = Later = Next = Previous

" Inherit the type declarations and invariants of the class Constants

Types:

" Now is a member of the carrier set T. T is the (infinite) set of times. This class defines standard
relations over times and is thus not very informative. In fact, it might have been better to map times
onto natural numbers and then had a model for the relations specified above. The direct definition
above is clear if long winded.

" Earlier and Later are graphs over times. These are similar to the relations < and > in natural
numbers. Thus the set (im After) {t} represents all times after t.

" Next and Previous are functions over times. They are similar to the successor function over natural
numbers. Thus Next(t) is the time after t.

Invariants:

" Earlier is transitive

" Earlier is a DAG

" Later is the inverse of Earlier

" The intersection of Later and Earlier is null. This means that Later and Earlier are not reflexive.

" When joined with the identity of T, the union of Later and Earlier is the cartesian product of T with
itself (ie 12). This means that any pair of times is either in Earlier, Later, or the identity function.

" Next is the inverse of Previous.

" Next is a subset of Later

" For any pair in Next, there is no time earlier than the first and later then the second.

d: \jes\dis\wip\phd\appx. doc

48

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Clock. Tick(
In

44: Now' = Next(Now)

Postconditions:

. Now is the next time after the previous Now.

NB Although this class has a specified operation - Tick - it is really a specialisation class as subsequent
classes assume that Earlier, Later, Next and Previous are set up.

00<><>OU<><><><><>00<><><><><><>0000000<><><><><>O<><><><>

Scheduler

Clock

T21: Slots: Set[S]

T22: SlotStarr SlotEnd: Slots T

T23: SlotClist: Slots -3 C

147: #(SlotStart 0 SlotEnd) ° SlotClist-I = #Slots

tae: SlotEnd ° S1otStart'I Q Later

, 49: Vc: C" Vsl, s2: (im S1otClist1) {c) "
((SlotStart(sl), SlotStart(s2)) e Later (SlotStart(s2), SlotEnd(sl)) E Later

Slots' = fö

" Inherit the type declarations and invariants of the class Clock

Types:

" Slots is the set of members of the carrier set S. A slot is a time period that can be allocated to a
clinical activity. It has a beginning and an end, but is really a pretty artificial notion. It is an
important idea and is used often when talking about bookings and appointments.

" SlotStart and SlotEnd are functions from Slots to T. SlotStart is the beginning time of the slot, and
SlotEnd the completion time.

" SlotClist is a function from Slots to the carrier set C. C is the set of Clinic Lists, a device used to

partition slots -a clinic list is a stream of slots. In this way, a single clinic can run several clinic
lists and thus several slots at the same time.

Invariants:

No two slots in the same clinic list start and end at the same time.

" All slots end at a Later time to their start.

" For any given clinic list, if one slot starts before another, then it finishes before that other also.

d: \jes\dis\wip\phd\appx. doc

49

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Scheduler. AddSlot(til, ti2, c, s)

Pr ßo9: s: S; cl,, c2: T; c: C

Pr �o: se Slots = SlotStart(s) = Tl A SlotEnd(s) =, r2 A SlotClist(s) =c

p, m: (tl, ti2) e Earlier

pr, 1z: Vs2: Im SlotClinic't {c) " ((i1, SlotStart(s2)) E Later (T1, S1otEnd(s2)) e Later) A
((i2, SlotEnd(s2)) E Earlier (t2, SlotStart(s2)) e Earlier)

Pr 113: (ti 1, Now) e Later

P. 45: SE SlotS'

Po46: S1otStart'(s) = il; S1otEnd'(s) =, 12

Po 47: S1otClist'(s) =c

Preconditions:

"s is a potential slot (although it might already exist)

" Tl and T2 are times

"c is a clinic list

" Ifs is already a slot, then til must be its start, 't2 it end, and c its clinic list.

" For any other slot in the clinic list c, if it starts before il, it finishes before r2, and if it finishes after
'r2, it starts after T2.

" The start of the slot is in the future.

Postconditions:

"s is now in Slots

" SlotStart is til

" SlotEnd is ti2

" SlotClist is c.

Scheduler. DelSlot(s)

Pr 114: s: Slots

Po48: SO .
Slots'

Preconditions:

"s is a slot

Postconditions:

"s is not a slot

Scheduler. Tick()

<><><><><><><><> <>< ><><> <>< ><>o<><><><><><><> <>< ><><> <>< ><><> <> <>< ><> <>

d: \jesldis\wip\phd\appx. doc

50

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

TypeClass5

TypeClass4

124: Bookable: Set[Types]

so: Bookable n Unplanned =0

51: Bookable n Access =0

" Inherit the type declarations and invariants of the class TypeClass4

Types:

" Bookable is a set of Types. Bookable is all those types of activity that can be booked. This does not
mean that they must be booked however.

Invariants:

" No Bookable activity type can also be in Unplanned

" No Bookable activity type can be directly accessed from outside the clinic (?).

<>< > <>< > <>< ><><> <>< ><><><><><><><> <>< ><> <> <>< ><><>OOq<><><><><><> <>< >

ATClass5

ATC1ass5, Scheduler, TypeClass6

T25: ActSlot: Activities -) Slots

T26: ActStart, ActEnd: Activities EH T

Try: ActReq: Activities -H T

132: (ActReq ° ActStart-t) u (ActStart ° ActEnd-1) s Later v id[T]

153: In s Dom(ActReq)

, sa: Dom(During) c Dom(ActReq)

, 55: (Im ActType) Dom(ActSlot) a Bookable

, 56: `da: Complete r In " #(Im ActStart {a)) = #(Im ActEnd (a))

" Inherit the type declarations and invariants of the classes ATClass5, Scheduler, and TypeClass6.

Types:

" ActSlot is a partial function from activities to slots. This records the slot that an activity is assigend
to.

" ActStart is the time when an activity started.

" ActEnd is the time when an activity ended.

" ActReq is the time when an activity was requested.

Invariants:

" An activity's start time is always later than (or at the same time as) its request time, and its end time
is always later than (or at the same time as) its start time.

" In is a subset of the domain of ActReq. All internal activities have their requests recorded. It might
be that not all external activities do.

d: \jes\dis\wip\phd\appx. doc

51

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" All activities that are during others have their request times recorded.

" All activities that have slots associated with them are of a type in Bookable.

" All completed internal activities started as many times as they ended.

NB although an activity cannot be associated with more than one slot, more than one activity can be
associated with a slot. Thus patient several patient education sessions may be associated with the same
slot: they all start and end at the same time in the same room, run by the same professionals.

ATCIass5. Create(Ab, pn, tn, an)

Pr us: ATCIass4. Create(Ab, pn, tn, a.)

P. 49: (an, now) e ActReq'

Preconditions:

" Inherit the preconditions and postconditions of the Create operation

Postconditions:

" The new activity has the time now recorded as its time of request.

ATClass5. Embed(A, Ab, tc, hcp, aC)

Pr 116: ATCIass4. Embed(A , Ab, tc, hcp, a,)

Po so: (a,,, now) e ActReq'

Preconditions:

" Inherit the preconditions and postconditions of the Embed operation

Postconditions:

" The new activity has the time now recorded as its time of request.

ATClassS. Book(A,, Ab, tc, hcp, c, Tb, tiC, aC, s)

11. n: te Bookable
C

Pr 1s: ATClass5. Embed(AP, Ab, tC, hcp, aC)

Pr 1i9: ATClassS. AddSlot(c, 2,, i_, s)

Po s,: (ac, now) e ActReq'

P. sz: (aa, s) e ActSlot'

Preconditions:

" The activity to be created is of a type in Bookable

" Inherit the preconditions and postconditions of the Embed operation

" Inherit the preconditions and postconditions of the AddSlot operation

Postconditions:

" The new activity has the time now recorded as its time of request.

" The new activity has the (possibly newly created slot) s allocated to it via ActSlot

d: \jes\dis\wip\phdlappx. doc
52

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATC1ass5. Book(c, tib, ti

r. i2o: a.: Request\Dom(ActSlot)

Pr 121: ActType(ac) E Bookable

Pr 122: ATClass4. AddSlot(c, tib, tie, s)

P053: (a , s) e ActSlot'

Preconditions:

" The activity to be assigned a slot (ie, the activity to be booked) must be a request that has not
already been assigned to a slot

" The type of the activity being booked must be in Bookable

" Inherit the preconditions and postconditions of the AddSlot operation

Postconditions:

" The new activity has the (possibly newly created slot) s allocated to it via ActSlot

ATClassS. Unbook(a)

Pr 123: a: Request n Dom(ActSlot)

rosa: a v- Dom(ActSlot')

Preconditions:

. The activity to be unbooked must be in Request and already be assigned to a slot.

Postconditions:

. The activity is no longer assigned to a slot.

ATClass5. SuddenStart(A , tc, hcp, ac)

Pr 124: ATC1ass4. SuddenStart(A , t,, hcp, ac)

rom. (a, now) e ActStart' n ActReq'

Preconditions:

" Inherit the preconditions and postconditions of the SuddentStart operation

Postconditions:

" The new activity has the time now recorded as its time of request and its time of start

ATClass5. Start(a)

P, 25: ATCIass4. Start(a)

P. s6: (a, now) E ActStart'

Preconditions:

" Inherit the preconditions and postconditions of the Start operation

d: \jes\dis\wip\phd\appx. doc
53

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Postconditions:

" The started activity has the time now recorded as its time of start

ATClass5. Suspend(a)

Pr im: ATCIass4. Suspend(a)

Po 57: (a, now) e ActEnd'

Preconditions:

0 Inherit the preconditions and postconditions of the Suspend operation

Postconditions:

" The suspended activity has the time now recorded as its time of completion

ATCIass5. End(a)

Pr 127: ATCIass4. End(a)

Po ss: (a, now) e ActEnd'

Preconditions:

" Inherit the preconditions and postconditions of the End operation

Postconditions:

" The completed activity has the time now recorded as its time of completion

ATC1ass5. Cancel(a)

P, izs: (im Includes) { a) r Dom(ActStart) =0

w i2,: ATC1ass4. Cancel(a)

Preconditions:

" Neither the activity to be cancelled, nor any of its parents, can have been started.

" Inherit the preconditions and postconditions of the Cancel operation.

ATClass5. Associate(a, hcp)

ATClass5. Disassociate(hcp)

ATClass5. OutCreate(p,,, t,,, hcp, a.)

I P, I3o: ATClass4. OutCreate(p,,, t,, hcp, a')

P. s9: (a,,, now) e ActReq'

Preconditions:

" Inherit the preconditions and postconditions of the OutCreate operation

Postconditions:

" The new activity has the time now recorded as its time of request

dAjm\dis\wip\. phdVVpx. doc

54

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATCIass5. OutEmbed(A , tC, hcp, ad

er 131: ATC1ass4. OutEmbed(A , tc, hcp, aC)

P. 6o: (a , now) E ActReq'

Preconditions:

" Inherit the preconditions and postconditions of the OutEmbed operation

Postconditions:

" The new activity has the time now recorded as its time of request

ATCIass5. OutProceed(a)

Pr 132: ATClass4. OutProceed(a)

[o61:
(a, flOW) e ActStart'

" Inherit the preconditions and postconditions of the OutEmbed operation

Postconditions:

" The started activity has the time now recorded as its time of commencement

ATCIass5. OutComplete(a)

P. 133: ATClass4. OutComplete(a)

LPo
62: (a, now) e ActEnd'

Preconditions:

" Inherit the preconditions and postconditions of the OutComplete operation

Postconditions:

" The completed activity has the time now recorded as its time of completion

ATC1ass5. PatReg(p)

ATClass5. PatDereg(p)

ATCIass5. PatArrive(p)

ATC1ass5. PatDepart(p)

ATClass5. PatJoin(a, p)

ATClass5. PatLeave(p)

UU<>U<><>UO<><>UO<>ODUUUU<>UU<><>U<><>O<>U<><>U<>G><>

d: \jes\dis\wip\phd\appx. doc

55

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

TypeClass6

TypeClasss

Tee: FollowGuide: Types 43 (Types -) Types)

157: Cod(UCod(FollowGuide)) C. Bookable

, 58: Vtl, t2, t3, t4: Types " (tl, t2, t3) e FollowGuide 3m: TGroupers "
{ (m, t2, tl), (m, t3, tl) }c TypeGuide A ({ (m, t2, t4), (m, t3, t4)) n TypeGuide *0 t4 = tl)

159: Vm: TGroupers, tl, t2, t3: Types " Vt4, t5: (im TypeGuide(m)) {tl }"
{ (t4, t2, t 1), (t5, t3, t 1) }c FollowGuide t4 = t5

16o. V(tl, t2, t3): FollowGuide " (im RunType) {t1 }n (im RunType) {t2) n (im RunType) {t3} #0

" Inherit the type declarations and invariants of the class TypeClass5

Types:

" FollowGuide is a function which returns a tree over Types when supplied with a member of Types.
The first type is a parent type: the second a child of that parent, and the third the type of followups
allowed for activities of the second type with parents of the first type.

Invariants:

" The subset of Types composed of the third element of the all the triples in FollowGuide is a subset
of Bookable. In other words, the followup activity must always be of a type in bookable

" There must be an element of TGroupers such that for that element, the first of a triple in
FollowGuide must be the only `parent' type in TypeGuide for both the second type of the triple and
the third

" For every graph in the codomain of TypeGuide that is not a tree (ie the child activity is embedded in
multiple parents) that has tI in its domain, only one of the possible parent types has followup
components

" There must be some clinician type that can run activities of every type in any given triple in
FollowGuide

<><><><><>UAAAA00<>U<>UUUU<>ODUU<><>UU00<><>U<><><>

ATClass6

ATClassS, TypeClass6

T29: Followsup: Activities -H Activities

161: Followsup (Z After

162: (Cod(Followsup) C During) E Activities -H Activities

163: ActType ° Followsup ° ActType s Cod(FollowGuide)

164: V(al, a2): Followsup " 3a3: Activities "
{(al, a3), (a2, a3)} s During A (ActType(a3), ActType(al), ActType(a2)) E FollowGuide

161: Val, a2: Activities\Complete " (ActType(al) = ActType(a2) A ActSubject(al) = ActSubject(a2) A
ActType(al) e Dom(FollowGuide)) = al = a2

0 Inherit the type declarations and invariants of the classes ATClass5 and TypeClass6

d: \jes\dis\wip\phd\appx. doc

56

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Types:

" Followsup is a tree over activities. The activity on the domain of the function is the followup of the
activity in the codomain

Invariants:

" Followsup is a subset of After

" Activities in the domain of Followsup (ie the followup activities) can only have one parent

" The type of the follow up activity and the type of the followed up activity are a pair in the codomain
of FollowGuide

" For every pair of activities, al and a2, in Followsup, they must both have the same parent and the
triple formed by the type of the parent, the type of the followup and the type of the followed up form
a triple in FollowGuide

" No more than one activity of a given type that has allowable component types which are followups

can be incomplete at the same time for any given patient. This means that there cannot be a
requested Dr Care at the same time as a Proceeding Dr Care. These are largely defined by the
followups - one Dr Care must finish before another can be requested.

NB In this class not all of the operations change the state of the system. This is because the purpose of
this class is to categorise operations and give them `realistic' names. Thus a familiar operation (eg

referral) is specified, and the times when it invokes a previously introduced operation described.
Although at other times it may invoke no previously introduced operation, state changes to the system
might be introduced at a future date and placed in a postcondition to a refeinement of this operation.

ATCIass6. Introduce(pn, tn, ad

R 134: t" e Dom(FollowGuide) ((im ActType't) (tn) n (im ActSubject-I) {p, })\Complete) =0

Pr 135: ATCIassS. Create(0, pn, t., a,,)

Preconditions:

" If to is of a type whose ̀ children' have followups, then there are no incomplete activities of type t,
that are associated with the patient pn.

" Inherit the preconditions and postconditions of the Create operation

NB This operation introduces a patient to the clinic.

NewTreat: component of activity run by hcp that has component parts then Generate

ATC1ass6. NewTreatment(AD, Ab, tC, hcp, ac)

Pr 136: ProfType(hcp) e (im RunType) It
C}

Pr isr te Dom(Cod(TypeGuide))

Pr 138: te Dom(FollowGuide) =
((im ActType-1) {t. } n (im ActSubject't ° ActSubject) {AP})\Complete) =0

Pr t39: ATClass5. Embed(Ap, Ab, tc, hcp, ac)

Preconditions:

" hcp must be of a type that can run activities of the type tC.

" tc is of a type that can have child activities.

d: \jes\dis\wip\phd\appx. doc

57

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" If to is of a type whose `children' have followups, then there are no incomplete activities of type t,
that are associated with the patient associated with the parents of the new activity.

" Inherit the preconditions and postconditions of the Embed operation.

NB This operation creates a new treatment for an existing patient. A new treatment is defined as an
activity that can have children.

ATCIass6. ReferInt(A_, t_, hcp, k)

P, 140: Ap: Set[Activities\Complete]; tC: HomeTypes; hcp: HCP; ac: A

Pr 141: ProfType(hcp) et (im RunType) 1 tC)

Pr 142: ((im ActType't) (tr} n (im ActSubject't ° ActSubject) (AP))\Complete) = LegaltcActs

Pr 143: Legal tCActs -0 aC e LegaltCActs

Pr 144: LegaltCActs =0= ATClass5. Embed(Ap, 0, tc, hcp, ac)

Preconditions:

" Ap is a set of incomplete activities; tc is a type in HomeTypes; hcp is a member of HCP; ac is a
member of the carrier set A.

" hcp is not of a profession type that can ̀ run' activities of type tc.

" Let the set of incomplete activities that are of type tc and are associated with the same patient as the
parents of the new activity be known as LegaltcActs (All the legal activities that the patient could be
referred to)

" If LegalttActs is not empty, then the activity the patient is referred to is one of those `legal'

activities.

" If LegaltCActs is empty, then inherit the preconditions and postconditions of the Embed operation
(the referral creates a new activity).

NB This activity creates an internal referral.

ATC1ass6. ReferExt(p,,, t., hcp, a

Pr las: pn: Patients; t.: Types\HomeTypes; hcp: HCP; a,,: A

1 1an e Activities\Complete A ActType(an) = t" A ActSubject(an) = pn A to e Dom(OutRefType)

2i 147: (im ActSubject-') { p. }\ Complete n (im ActType't) { tj =0

Pr 148: ATClassS. OutCreate(O, p,,, t,, hcp, a,,)

Preconditions:

" p� is a patient; t,, is a type that is not in HomeTypes; hcp is a member of HCP; a,, is in the carrier set
A.

Case 1:

Preconditions

d: \jes\dis\wip\phd\appx. doc

58

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" a� is an incomplete activity, and t,, is the type of a,,, and p� is the subject of a,,, and t� is in the
domain of OutRefType.

Case 2:

Preconditions

" There are no incomplete activities that have p� as their subject and are of the type t,,.

9 Inherit the preconditions and postconditions of the OutCreate operation.

NB This operation creates an external referral.

ATClass6. Order(Ap, Ab, tc, hcp, a

ft 149: (tC, ProfType(hcp)) 0 RunType

vim: to Dom(FollowGuide)
c

r151: t, e HomeTypes = ATCIass5. Embed(Ap, A
b , tc, hcp, ac)

P. 152: tc o HomeTypes ATCIass5. OutEmbed(A,, Ab, t,, hcp, a,)

Preconditions:

" hcp is not of a type that can run activities of type tc.

" tt is not in the domain of FollwoGuide (it is not the name for a `course' of treatment)

" If t, is in HomeTypes then inherit the preconditions and postconditions of the Embed operation

" If t, is not in HomeTypes then inherit the preconditions and postconditions of the OutEmbed
operation

NB This operation creates an activity that is a component of activity (/ies) run by hcp that is not itself
run by hcp and has no followups. This would be invoked to, say, order a test.

ATC1ass6. Arrange(AD, Ab, tC, hcp, aC)

P, 153. (tc, Profrype(hcp)) e RunType

Pr Asa: tc o Dom(Cod(TypeGuide))

yr iss: ATC1ass5. Embed(A , Ab, tC, hcp, aC)

Preconditions:

" hcp is of a type that can run activities of the type t,

" Activities of type t. may not have children

" Inherit the preconditions and postconditions of the Embed operation

NB This operation creates an activity that is a component of activity (/ies) run by hcp that is also run by
hcp and has no possible children. This would be invoked to, say, arrange an Initial Doctor Consultation.

ATCIass6. Book(AP, AWtc, hcp, c,, rbjti , a,, s)

ATCIass6. Book(c, tib, tic, ac, s)

d: \jes\dis\wip\phdlappx. doc

59

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

A cý

P 156: (ap, ab) E Includes

Pr 157: (ActType(ap), tc, ActType(ab)) e FollowGuide

rr 158: (ActType(ap), tc, ActType(ab) }c Dom(RunType D{ ProfType(hcp) })

Pr 159: ATClass5. Embed((ap }, { ab), FollowGuide(ActType(ap))(ActType(ab)), hcp, a.)

Po 63: (ac, ab) E Followsup'

Preconditions:

" ab is During ap

" The type of the parent activity (ar) is in the domain of FollowGuide, and t, is the type that follows
the type of ab when both are components of aP.

" Each of the types of ap and ab, and the type of the new activity (ie tc) are types that can be run by
members of HCP of the same type as hcp.

" Inherit the preconditions and postconditions of the Embed operation

Postconditions:

" ac is now the followup activity of ab

NB This operation creates followup activities.

ATCIass6. SuddenStart(AP, tc, hcp, aa)

ATClass6. Start(a)

ATCIass6. Suspend(a)

ATCIass6. End(a)

ATCIass6. Cancel(a)

ATCIass6. Associate(a, hcp)

ATClass6. Disassociate(hcp)

ATCIass6. OutProceed(a)

ATClass6. OutComplete(a)

ATCIass6. PatReg(p)

ATCIass6. PatDereg(p)

ATCIass6. PatArrive(p)

ATC1ass6. PatDepart(p)

ATClass6. Patjoin(a, p)

ATCIass6. PatLeave(p)

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

d: \jes\dis\wip\phd\appx. doc

60

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Information

T30 Records: Set[R]

T31: RecCont: Records

Records' =0

Types:

" Records is a set of elements taken from a carrier set R. It is the set of identifiers of `items' of
information.

" RecCont is a total function from Records to a carrier set I. The value returned from RecCont when
supplied with a member of Records is the `information', in whatever form it might be, contained in
the record identified by the element of Records.

NB The existence of the Information class enables us to talk about the contents of medical records in a
totally abstract way, without worrying about what the information is. If we were to expand this class and
develop it further, we would probably nbot call it Information as it should refl.: ct our understanding of
the patient, not our understanding of the record of the patient's condition (the implemented record
system is not interpreted as a record, but as a statement of the patient's state of health). The class is

extremely simple at present and only acts as a placeholder for further development.

Information. Add(i, r)

Pr Abo: i: I

Pr 161: r: R\Records

rosa: (r, i) e RecCont'

Preconditions:

"i is a member of the carrier set I.

"r is a member of the carrier set R, but not of Records.

Postconditions:

"i is now the information referred to by r in the function RecCont.

Information. Delete(r)

P, 162; r: Records

Po 6s: r0 Records'

Preconditions:

"r is a member of Records.

Postconditions:

"r is not a member of Records (the entry has been removed).

<><><><><><><><><><><>00<>00<><><>00<>00<><><><><><><>00<><><>

d: \jes\dis\wip\phd\3PPx. doc

61

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

TypeClass7

TypeClass6

T32: OutNonCont: Set[Types)

166: OutNonCont c Types\(HomeTypes u Access)

Types:

" OutNonCont is a set of Types. OutNonCont is the set of externally run activity types that are known
to be completed as soon as information is available for them. An example of this would be the blood
test - as soon as we get the results of the test, we know that the test has been completed.

Invariants:

" OutNonCont is a subset of external activity types, and it cannot contain any types in Access.

<>Q<><><><><><><>OU<>OQ<>OUOOUA00<>OQOU<><><><>UUUO

ATC1ass7

Information, ATClass6, TypeClass7

T33: RecSource: Records -i Activities

" Inherit the type declarations and invariants of the classes Information, ATClass6, and TypeClass7

Types:

" RecSource is the function which links any record with one activity. This linked activity is the one
during which the record was created.

ATCIass7. Introduce(p

er 163: Information. Add(i, r)

pr 164: ATCIass6. Introduce(p,,, t,,, a,,)

P. 66: (r, an) e RecSource'

Preconditions:

" Inherit the preconditions and postconditions of the Add operation.

" Inherit the preconditions and postconditions of the Introduce operation.

Postconditions: is

"an is the activity that r is linked to via RecSource.

ATCIass7. NewTreatment(Ap, A
b, tc, hcp, ac)

Some operations are invoked from activities, but some are not. referrals for example are invoked from an
activity, but creating new treatments does not have to be. We would not refer a patient without seeing
them, but we might create new treatments before we see them - if we know they need to go to the MARS
clinic for example.

dAjes\dis\wip\phd\appx. doc

62

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

ATCIass7. Referlnt(a., A_, t_, hcp, i, r, a_)

ft 165 a: Proceed
6

yr 166: ActSubject(a6) e (im ActSubject) Ap

r. 167: (a8, hcp) e ActRun

Pr 68: -3a: (im ActRun-1) { hcp) " (a, ag) e During

yr i6q: Information. Add(i, r)

Pr no: ATCIass6. ReferInt(as, A , tý, hcp, i, r, aC)

1
Po 61: (r, a_) e RecSource'

Preconditions:

"a is a proceeding activity (it is the activity from which the internal referral was made - the source of
the record)

" The subject of as is the same as that of the parent activities.

" The invoker of the operation must be running the source activity.

" The source activity cannot be during another activity that the invoker is running.

" Inherit the preconditions and postconditions of the Add operation

" Inherit the preconditions and postconditions of the ReferInt operation

Postconditions:

" a6 is the activity that r is linked to via RecSource.

ATClass7. ReferExt(a , p_, t_, hcp, i, r, a_)

ý. nº: a: Proceed

Pr ºn: ActSubject(a8) = pn

Pr 173: (aa, hcp) E ActRun

Pr na: -3a: (im ActRun-1) { hcp }. (a, ae) e During

a ns: Information. Add(i, r)

Pr 176: ATC1ass6. ReferExt(O

I
P. bs: (r, a) E RecSource'

Preconditions:

"a is a proceeding activity (it is the activity from which the internal referral was made - the source of
the record)

pn is the subject of a$.

The invoker of the operation must be running the source activity.

The source activity cannot be during another activity that the invoker is running.

Inherit the preconditions and postconditions of the . Add operation

" Inherit the preconditions and postconditions of the ReferExt operation

d: \jes\dis\wip\phd\appx. doc
63

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Postconditions:

"as is the activity that r is linked to via RecSource.

ATClass7. Order(Ap, A
b , tc, hcp, ac)

ATC1ass7. Arrange(Ap, Ab, t,, hcp, aC)

ATCIass7. Book(AP, Ab, tc, hcp, c, tib, te, ac, s)

ATCIass7. Book(c,, rb, tic, aC, s)

ATCIass7. Followup(ap, ab, hcp, ad

ATClass7. SuddenStart(AP, tc, hcp, aC)

ATClass7. NoteTake(hcp, a, i, r)

i m: a: Proceed n In; hcp: HCP

Pr na: (a, hcp) e ActRun

Prim: -3b: (im ActRun'1) (hcp) " (a, b) E During

Pr 180: Information. Add(i, r)
I

Po 69: (r, a) e RecSource'

Preconditions:

"a is an internal proceeding activity.

" hcp is a member of the set HCP.

" hcp is the health care professional running a.

"a cannot be during another activity that hcp is running

" Inherit the preconditions and postconditions of the Add operation

Postconditions:

"a is the activity that r is linked to via RecSource.

ATClass7. GetOutData(a, i, r)

Pr 1si: a: Out\Complete

Pr 182: ActType(a) e OutNonCont = ATClass6. OutComplete(a)

Pr 183: ActType 0 OutNonCont = ATCIass6. OutProceed(a)

Pr X84: Information. Add(i, r)

Preconditions:

"a is an incomplete external activity.

" If the type of a is in OutNonCont then inherit the preconditions and postconditions of the

. OutComplete operation (we know that the activity must have finished).

" If the type of a is in OutNonCont then inherit the preconditions and postconditions of the

. OutProceed operation (we know that the activity must have started).

d: \jes\dis\wip\phdýappz. doc
04

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" Inherit the preconditions and postconditions of the Add operation

ATC1ass7. Start(a)

ATClass7. Suspend(a)

ATC1ass7. End(a)

ATClass7. Cancel(a)

ATClass7. Associate(a, hcp)

ATC1ass7. Disassociate(hcp)

ATC1ass7. OutComplete(a)

ATClass7. PatReg(p)

ATClass7. PatDereg(p)

ATC1ass7. PatArrive(p)

ATClass7. PatDepart(p)

ATC1ass7. PatJoin(a, p)

ATC1ass7. PatLeave(p)

d: \jes\dis\wip\phd\appx. doc

65

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

d: \jes\dis\wip\phd\appx. doc

66

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Appendix 3:

A Specialisation of the
Domain Theory - The Diabetes &

Endocrine Day-Centre

d: \jes\dis\wip\phd\appx. doc

67

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

This appendix presents a typical specialisation of the domain theory (Class ATClass7). In it the
spceialisation state components of the domain theory are given values. The specialisation is that found to
be appropriate for the Diabetes & Endocrine Day-Centre, the organisation this thesis has been mainly
concerned with.

The following table records values for the state components Types (which is a pair composed of a
member of DT and of Org), Unplanned, Access, Bookable, PatReq, and OutNonCont (introduced in
TypeClass7)

Descriptive Term (DT) Organisation (Or q) Unplanned Access Bookable PatReq OutNonCont

Accident & Ernergancy A&E Yes
Antenatal Care Obs & Gynae Yes
Auto Neuro Test DDC Yes
Chiropodist Care DDC Yes
Chiropodist Cons DDC Yes Yes
Chiropodist Telephone DDC Yes
DECS Care DDC Yes
DECS Cons DDC Yes Yes
DECS Telephone DDC Yes
Diabetic Care DDC Yes
Dietitian Care DDC
Dietitian Cons DDC Yes Yes
Dietitian Telephone DDC Yes
Dr Care DDC
Dr EDM Care DDC
Dr GDM Care DDC
Dr MARS Care DDC
Dr Po in DDC Yes Yes
DrTelephone DDC Yes
DSN Care DDC
DSN Cons DDC Yes Yes Yes
DSN Telephone DDC Yes
DSN Edcn Session I DDC Yes Yes
DSN Edcn Session 2 DDC Yes Yes
EDM PreCare DDC
Finer Prick Test DDC
First Dr Cons DDC Yes Yes
Followup Dr Cons DDC Yes Yes
GDM PreCare DDC
GP Care GP
Infection Test Chem Path Yes Yes
Lipid Test Chem Path Yes Yes
MARS Care DDC
MARS Cons DDC Yes Yes
Obs Clin Cons DDC Yes Yes
OGTT DDC Yes
Preg Counsel DDC Yes
Vascular Surgery Surgeons Yes
Vene puncture Test Chem Path Yes
Vene puncture Test Haem Yes

For clarity's sake, we will only specify the organisation of the type from now on when it is not the DDC.

d: \jes\dis\wip\phd\appx. doc

68

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

The following table records values for the state component TypeGuide. This is effectively a triple each
member of which is composed of a member from the set TGrouper followed by a member of Types
followed by another member of Types

TGrou er x Types x Types
tgl Chiropodist Care GP Care

-!
&] DECS Care GP Care

tg2 Dr Care Diabetic Care
tg2 DSN Care Diabetic Care
tg2 Dietitian Care Diabetic Care
tg2 Chiropodist Care Diabetic Care
tg2 DECS Care Diabetic Care
tg2 EDM Preg Care Diabetic Care
tg2 GDM Preg Care Diabetic Care
t g2 MARS Care Diabetic Care
tg3 First Dr Cons Dr Care
tg3 Followup Dr Cons Dr Cam

tg3 Dr Telephone Dr Care
tg3 Finger Prick Test Dr Care
tg3 Vene puncture Test: Chem Path Dr Care

t g3 Vene puncture Test: Haem Dr Care
tg4 DSN Cons DSN Care
tg4 DSN Telephone DSN Care

tg4 Finger Prick Test DSN Care
tg4 DSN Edcn Session I DSN Care
t g4 DSN Edcn Session 2 DSN Care
tg5 Dietitian Cons Dietitian Care

tg5 Dietitian Telephone Dietitian Care
tg5 Fin er Prick Test Dietitian Care
t&5 Lipid Test: Chem Path Dietitian Care

_ tg6 Chiropodist Cons Chiropodist Care
tg6 Chiropodist Telephone Chiropodist Care
tg6 Finger Prick Test Chiropodist Care
t g6 Infection Test: Chem Path Chiropodist Care
tg7 DECS Cons DECS Care
tg7 DECS Telephone DECS Care
! Z7 Finger Prick Test DECS Care

_ tg8 DSN Cons DSN Care
t g8 DSN Cons GP Care
tg9 Dietitian Cons Dietitian Care
t9 Dietitian Cons GP Care
tg 10 Chiropodist Cons Chiropodist Care
t R10 Chiropodist Cons GP Care
tg II DECS Cons DECS Care
tell DECS Cons GP Care
t%! 12 Dr Po in Chiropody Cons
tg 13 Dr EDM Care EDM Preg Care
tgl3 Dr EDM Care Dr Care
! 213 Dr EDM Care Antenatal Care: Ohs & Gynae

_ tg 14 Obs Clin Cons Dr EDM Care
t 14 PreCounsel Dr EDM Care
tg 15 Dr GDM Care GDM Pre Care
tgl5 Dr GDM Care Dr Care
t R15 Dr GDM Care Antenatal Care: Obs & Gynae
tgl6 Ohs Clin Cons Dr GDM Care
t 16 OGTT GDM Preg
tg 17 Dr MARS Care MARS Care
tg 17 Dr MARS Care Dr Care
tg 18 MARS Cons Dr MARS Care
tl8 Auto Neuro Test Dr MARS Care

d: \jes\dis\wip\phd\appx. doc

69

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

The following table records values for the primitive set ProfType.

The following table records values for the state component RunType which is a function from the set
Types to the carrier set Pr.

Types x Pr
Chiropodist Care chiropodist
Chiropodist Cons chiropodist
Chiropodist Telephone chiropodist
Finer Prick Test clinic nurse
OGTT clinic nurse
Diabetic Care diabetic doctor
Dr Care diabetic doctor
Dr EDM Care diabetic doctor
Dr GDM Care diabetic doctor

Dr MARS Care diabetic doctor
Dr Po in diabetic doctor

Dr Telephone diabetic doctor
EDM Preg Care diabetic doctor
First Dr Cons diabetic doctor
Followup Dr Cons diabetic doctor
GDM Preg Care diabetic doctor
MARS Care diabetic doctor
MARS Cons diabetic doctor
Obs Clin Cons diabetic doctor
Preg Counsel diabetic doctor
Dietitian Care dietitian
Dietitian Cons dietitian
Dietitian Telephone dietitian
DSN Care DSN
DSN Cons DSN
DSN Telephone DSN
DSN Edcn Session I DSN
DSN Edcn Session 2 DSN
Auto Neuro Test physiologist
DECS Care Physiologist
DECS Cons physiologist
DECS Telephone physiologist

d: \jes\dis\wip\phd\appx. doc

70

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

The following table records values for the state component EmbedType which is a 4-tuple. Each member
of the set is a quartet of elelemts from: Pr, TGrouper, Types, and Types.

Pr TGrou r Types Types
diabetic doctor m2 Diabetic Care Dr Care

m2 Diabetic Care DSN Care
m2 Diabetic Care Dietitian Care
m2 Diabetic Care Chiropodist Care
m2 Diabetic Care DECS Care
m2 Diabetic Care EDM Preg Care
m2 Diabetic Care GDM Preg Care
m2 Diabetic Care MARS Care
m3 Dr Care First Dr Cons
m3 Dr Care Followup Dr Cons
m3 Dr Care Dr Telephone
m3 Dr Care Finger Prick Test
m3 Dr Care Vene puncture Test: Chem Path
m3 Dr Care Vene puncture Test: Haem
m4 DSN Care DSN Cons
m4 DSN Care DSN Edcn Session 1
m4 DSN Care DSN Edcn Session 2
m5 Dietitian Care Dietitian Cons
m13 EDM Pre Care Dr EDM Care
m13 Dr Care Dr EDM Care
ml3 Antenatal Care: Obs & Gynae Dr EDM Care
m14 Dr EDM Care Obs Clin Cons
m14 Dr EDM Care Pre Counsel
m15 GDM Pre Care Dr GDM Care
m15 Dr Care Dr GDM Care
m15 Antenatal Care: Obs & Gynae Dr GDM Care
m16 Dr GDM Care Obs Clin Cons
m16 GDM PreCare OGTT
m17 MARS Care Dr MARS Care
m17 Dr Care Dr MARS Care
ml 8 Dr MARS Care MARS Cons
m18 Dr MARS Care Auto Neuro Test

DSN m2 Diabetic Care Dr Care
m2 Diabetic Care DSN Care
m2 Diabetic Care Dietitian Care
m2 Diabetic Care Chiropodist Care
m2 Diabetic Care DECS Care
m4 DSN Care DSN Cons
m4 DSN Care DSN Edcn Session I
m4 DSN Care DSN Edcn Session 2
m5 Dietitian Care Dietitian Cons
m8 DSN Care DSN Cons
m8 GP Care DSN Cons

Dietitian m2 Diabetic Care Dr Care
Diabetic Care DSN Care

t

Diabetic Care Dietitian Care
Diabetic Care Chiroist Care
Diabetic Care DECS Care

m4 DSN Care DSN Cons
m5 Dietitian Care Dietitian Cons
in5 Dietitian Care Dietitian Telephone
m5 Dietitian Care Finger Prick Test
m5 Dietitian Care Livid Test: Chem Path
m9 Dietitian Care Dietitian Cons
M9 GP Care Dietitian Con-

Chiropodist m2 Diabetic Care Dr Care
m2 Diabetic Care DSN Care
m2 Diabetic Care Dietitian Care
m2 Diabetic Care Chiro ist Care
m2 Diabetic Care DECS Care

ywý 11 IwiN T... -WF-. uw

71

Jeremy DH Holland Volume II: Anoendicec
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

m4 DSN Care DSN Cons

m4 DSN Care DSN Eden Session I
m4 DSN Care DSN Edcn Session 2
m5 Dietitian Care Dietitian Cons
m6 Chiropodist Care Chiropodist Cons
m6 Chiropodist Care Chiropodist Telephone
m6 Chiropodist Care Finger Prick Test

m6 Chiropodist Care Infection Test: Chem Path
m7 DECS Care DECS Cons
m8 DSN Care DSN Cons
M10 Chiropodist Care Chiropodist Cons
M10 GP Care Chiropodist Cons
m12 Chiropody Cons Dr Pop-in

physiologist m2 Diabetic Care Dr Care
m2 Diabetic Care DSN Care
m2 Diabetic Care Dietitian Care
m2 Diabetic Care Chiropodist Care
m2 Diabetic Care DECS Care
m4 DSN Care DSN Cons
m5 Dietitian Care Dietitian Cons
m6 Chiropodist Care Chiropodist Cons
m7 DECS Care DECS Cons
m7 DECS Care DECS Telephone
m7 DECS Care Finger Prick Test
mll DECS Care DECS Cons
ml l GP Care DECS Cons

d: \jes\dis\wip\phd\appx. doc
72

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

The following table records values for the state components HCP (a simple set) and ProfType (a fuction
from HCP to ProfType).

HCP ProfType
Peter (Peter, diabetic doctor)
Clara (Clara, diabetic doctor)
Charles (Charles, diabetic doctor)
Andrew (Andrew, diabetic doctor)
David (David, diabetic doctor)

Sara (Sara, DSN)
Julia (Julia, DSN)
Gill Mouth Gill, dietitian)
Penny (Penny, dietitian)
Shirley (Shirley, physiologist)
Jill Foot Jill, chiropodist)
Barbara (Barbara, staff nurse)
Karen (Karen, staff nurse)

The following table records values for the state components Follow-guide. This is a triple over Types.

Type x Type x Type

Dr Care Followup Dr Cons First Dr Cons
Dr Care Followup Dr Cons Followup Dr Cons

DSN Care DSN Cons DSN Cons
Dietitian Care DSN Cons DSN Cons
Chiropodist Care Chiropodist Cons Chiropodist Cons

DECS Care DECS Cons DECS Cons
Dr GDM Care Obs Clin Cons Obs Clin Cons
Dr EDM Care Obs Clin Cons Obs Clin Cons
Dr MARS Care MARS Cons MARS Cons

d: \jes\dis\wip\phd\aPpX. dOc

73

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

d: \jes\dis\wip\phd\appx. doc

74

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Appendix 4:

A Theory of the Diabeta CRS and
its Interaction with the Domain

d: \jes\dis\wip\phd\appx. doc

75

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

This appendix introduces and describes, in an abstract manner, the structure of a departmental clinical
record system similar to that being written for the Diabetes and Endocrine Day Centre (Diabeta IV). It
then describes how that system is interpreted into the domain with the help of an interaction theory.

The classes CRSCIassl, CRSClass2, CRSCIass3, CRSTypeClass, and CRSClass4 describe the CRS. The
classes CRSTypelnteraction and CRSlnteraction comprise the interaction theory for the system.

CRSCIass1

cm-r i: crs-Proceed, crs-Complete, crs-Visit: Set[crs-V]

cR-i i: crs-Proceed n crs-Complete = (ö

cm-i 2: crs-Proceed u crs-Complete = crs-Visit

CTS-visit' =0

Types:

" crs-Proceed, crs-Complete, and crs-Visit are all sets with elements of the type crs-V.
Invariants:

" crs-Proceed and crs-Complete are disjoint.

" crs-Proceed and crs-Complete together form crs-Visit.

CRSCIassl. CreVis(v)

c,, -Pr i: v: crs-V\crs-Visit

c�_Po i: ve crs-Proceed'

Preconditions:

"v is a member of crs-V that has not been transferred to crs-Visit.

Postconditions:

"v is now a member of crs-Proceed.

CRSClassl. FinVis(v)

crs. r 2: v: crs-Proceed

cr,. Po 2VE crs-Complete'

Preconditions:

"v is a member of crs-Proceed.

Postconditions:

"v is now a member of crs-Complete.

d: \jes\dis\wip\phd\appx. doc
76

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

<><><><><>00<><><><><><>000<><><><><><><><><><><><><><><><><><><><>

CRSClass2

CRSCIass1

-T 2: crs-VisRel: crs-Visit H crs-Visit

crs-I 3: Cod(crs-VisRel) g crs-Proceed

crs-I 4: crs-VisRel+ n id[crs-Visit] =0

" Inherit the type declarations and invariants of the class CRSClassI

Types:

" crs-VisRel is a tree over crs-Visit

Invariants:

" All members of crs-Visit that are in the codomain of crs-VisRel are in crs-Proceed.

" crs-VisRel is a DAG.

CRSCIass2. CreVis(v)

CRSClass2. EmbInOld(V,,, vo)

c-Pr3: V,,: Set[crs-V\crs-Visit]

-ft ": v0: crs-Proceed

cmPrs: Vv,,: V,, " CRSC1assl. CreVis(v�)

-Po 3: RestVisRe1' = ({vo) u V�) d crs-VisRel' > ({vo) v V�)

crs-Po 4: #RestVisRel' = #V.,

-Po s: Dom(RestVisRel') = V,,

Preconditions:

" V� is a subset of crs-V that is disjoint wrt crs-Visit (the set of new visit records).

" vo is a member of crs-Proceed (the existing visit record).

" For each member of the set of new visit records, inherit the preconditions and postconditions of the

. CreVis operation

Postconditions:

" RestVisRel is the subset of crs-VisRel that has any of the new and old visit records in its domain or

codomain.

" The number of elements in RestVisRel is the same as that in the set of new visit records.

" The domain of RestVisRel is the set of new visit records

NB The postcondition ensures that additions to the tree crs-VisRel comprise only one branch. IE. every

member of V� has one parent, and that is either in V, or is vo and vo has no parent in V,.

d: \jes\dis\wip\phd\appx. doc

77

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

CRSC1ass2. EmbinNew(V)

-Pr6: V: Set[crs-V\crs-Visit]

-Pr 7: #V >1

cn-pra: Vv: V" CRSCIassl. CreVis(v)

crs-Po 6: RestVisRel' =Vd crs-VisRel' DV

-Po 7: #RestVisRel' = #V-1

cn-Po 8: Cod(RestVisRel') v Dom(RestVisRel') =V

Preconditions:

"V is a subset of crs-V that is disjoint wrt crs-Visit (the set of new visit records).

"V is not the empty set.

" For each member of the set of new visit records, inherit the preconditions anc postconditions of the

. CreVis operation

Postconditions:

" RestVisRel is the subset of crs-VisRel that has any of the new visit records in its domain or
codomain.

" The number of elements in RestVisRel is one less than the number in V.

" There are no elements in either the domain or codomain of RestVisRel that are not in V, and vice-
versa.

NB This operation is similar to the previous one except that it does not embed the finished structure in
an existing activity, but rather creates a new, isolated single branch of crs-VisRel.

CRSCIass2. FinVis(v)

r. -Pr 9: viz Cod(crs-VisRel)

«s-Pr io: CRSCIassl. FinVis(v)

Preconditions:

"v is not in the codomain of crs-VisRel

" Inherit the preconditions and postconditions of the FinVis operation

<><>OUOq<><><><>UQU<><><><><><><><><><><><><>Oq<><><><><><><><>

CRSC1ass3

CRSClass2

m-r: +: crs-Pid: Set[crs-ID]

cn-T4: crs-VisPid: crs-Visit 9 crs-Pid

c-i 5: crs-VisPid ° crs-VisRel ° crs-VisPid't s id[crs-Pid]

9 Inherit the type declarations and invariants of the class CRSClass2

d: \jes\dis\wip\phd\apPx. doc
78

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Types:

" crs-Pid is a set of members of the carrier set crs-I D.

" crs-VisPid is a total function from the set crs-Visit to the set crs-Pid. Every visit record must be
associated with a patient ID record.

Invariants:

" The projection of the crs-VisRel tree into crs-Pid space is a subset of the identity function for crs-
Pid. Every visit record is related to the same patient ID record as its parent (through crs-Pid)

CRSC1ass3. Register(pid)

cm-Pr i i: pid: crs-I D\crs-Pid

cm-rogpid E crs-Pid'

Preconditions:

" pid is a member of crs-I D, but not yet of crs-Pid.

Postconditions:

" pid is now a member of crs-Pid.

CRSCIass3. CreV is(v, pid)

vs-Pr 12: pid: crs-Pid

as-Pr 13: CRSCIass2. CreVis(v)

m-Po io: (v, pid) E crs-VisPid'

Preconditions:

" pid is a registered patient ID - it belongs to the set crs-Pid.

" Inherit the preconditions and postconditions of the CreVis operation.

Postconditions:

" pid is now the patient id associated with the visit record v.

CRSClass3. EmbInOld(V., va, pid)

cm-Pr 14: pid: crs-Pid

en-Pr is: crs-VisPid(vo) = pid

cm-Pr 16: CRSC1ass2. EmbInOld(V,,, vo)

cmPo ii: V� X {pid} r- crs-VisPid'

Preconditions:

" pid is a registered patient ID - it belongs to the set crs-Pid.

" va is associated with the patient ID pid.

" Inherit the preconditions and postconditions of the EmbInOld operation

d: \jes\dis\wip\phd\appx. doc

79

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Postconditions:

0 All of V� are now associated with the patient ID pid via crs-VisPid

CRSC1ass3. EmbinNew(V, pid)

c, s-Pr 17: pid: crs-Pid

as-Pr 1e: CRSC1ass2. EmbinNew(V)

ors-Po 12 VX {pid) C crs-VisPid'

Preconditions:

" pid is a registered patient ID - it belongs to the set crs-Pid.

" Inherit the preconditions and postconditions of the EmbinNew operation

Postconditions:

" All of V are now associated with the patient ID pid via crs-VisPid

CRSClass3. FinVis(v)

cm-Pr i9: pid: crs-Pid

cm-Pr CRSC1ass2. FinVis(v)

Preconditions:

" pid is a registered patient ID - it belongs to the set crs-Pid.

" Inherit the preconditions and postconditions of the FinVis operation

OOAAOOAOAOAA0000<>OOAOOOOA <>O<><>

CRSTypeClass

crs-T5: crs-Types: Set[crs-T]

cn-T 6: crs-TypeParent: crs-Types 4) crs-Types

crz-1 6: crs-TypeParent +n id[crs-Types] =0

Types:

" crs-Types is a set of records of type crs-T.

" crs-TypeParent is a tree over crs-Types

Invariants:

" crs-TypeParent is a DAG

<><><><><><><><><><><><><><><><>UUO<>0000<>QQbO<><><><><><><>

d: \jes\dis\wip\phd\appx. doc

80

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

CRSCIass4

CRSClass3, CRSTypeClassl

-T1: crs-VisitType: crs-Visit 3 crs-Types

crs-l 7: crs-VisitType ° crs-VisRel ° crs-VisitType-t s crs-TypeParent

Ursa 8: (im crs-VisitType't) Cod(crs-TypeParent) Cod(crs-VisRel)

" Inherit the type declarations and invariants of the classes CRSClass3 and CRSTypeClassl.

Types:

" crs-VisitType is a total function from crs-Visit to crs-Types

Invariants:

"A projection of the tree crs-VisRel into crs-Type space via the function crs-VisitType is a subset of
crs-TypeParent.

" Any visit record that is of a type record that can have a child (through crs-TypeParent) must have
such a child visit record.

d: \jes\dis\wip\phd'appx. doc

81

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

CRSClass4. CreVis(t, pid-+v�)

crs-Pr 2t: t: crs-Types

crs-P. 22: to Cod(crs-TypeParent)

I cr -pr ,: CRSClass3. CreVis(pid-* v�)

cr-Pr 24: to Dom(crs-TypeParent)

crs-Po 13: crs-VisitType'(v,,) =t

cn-Pr 25: CRSC1ass3. EmbInOld(pid, vo-4 V�)

cr-Pr26: V0 E (im crs-VisPid-t) (pid) n (im crs-VisitType't) (im crs-TypeParent+ {t})

cn-i n: (im crs-VisitType) (im crs-VisRel't+) { v0 }n crs-Proceed n (im crs-TypeParent+) { t) =0

-Pr 28: #Vn = #((im crs-TypeParent+) {t} n (im crs-TypeParent't') (crs-VisitType(vo)})

cn-Pr 29: Vn r= Vn

cn-Po 14: (im crs-TypeParent*) {t} \ (im crs-TypeParent* {crs-VisitType(vo)} = (im crs-VisitType) V�

cis-Po 15: v, fE Cod(V. 1 1 crs-VisRel' t> V0)

crs-Pr 30: CRSClass3. EmbinNew(pid--9V)

crs-Pr3l: (iMVisPid-1) (pid) n (im crs-VisitType-1) (im TypeParent+ {t}) n crs-Proceed =0

m-P. 32: #V= #(im TypeParent*) { t)

crs-Pr 33: Vn EV

cr. -Po 16: (im crs-TypeParent') {t} = (im crs-VisitType) V

-Po n: v� E Cod(V 4 crs-VisRel' D V)

Preconditions:

"t is a record in the set crs-Types

"t is not in the codomain of the tree crs-TypeParent. That is, it does not have any `children' through
crs-TypeParent.

Case 1

Preconditions

" Inherit the preconditions and postconditions of the CreVis operation

"t is not in the domain of crs-TypeParent - thus it does not feature in the tree at all.

Postconditions

" the record type of the visit record vo is now t

Case 2

Preconditions

" Inherit the preconditions and postconditions of the EmbInOld operation.

d: \jes\dis\wip\phd\appx. doc
82

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" Vo is associated with the patient ID pid and is associated with a type record that is an ancestor
of type record t (through crs-TypeParent).

" There are no descendants of Vo that fulfil the criteria above and are in the set crs-Proceed.

" The number of elements in Vn is the same as the number of `ancestors' of t that are also
'descendants' of the type of vo (including vo itself)

Postconditions

" The set of all ancestor types of t, excluding all ancestor types of vo (including the type of vo), is
the same as the set of types of Vn.

" vn is not in the codomain of that part of crs-VisRel that is constructed of elements in Vn.

Case 3

Preconditions

" Inherit the preconditions and postconditions of the EmbinNew operation.

" There are no visit records that are of a type that is ancestral to t, that are associated with pid,
and are in the set crs-Proceed.

" The number of elements in Vn is the same as the number of `ancestors' of t.

" vn is in V

Postconditions

" The set of all ancestor types oft is the same as the set of types of V.

" vn is not in the codomain of that part of crs-VisRel that is constructed of elements in V.

CRSVTClassl. FinVis(v)

00<>000OgO<><> G><>00<><>OQO<>QQOO<><><><><>OU<><><><>

CRSTypelnteraction

Typest, CRSTypeClassl

c-ißt r i: IntT: crs-Types -3 Types

as-ißt-T 2: RepT: Types -H crs-Types

n-in(-I i: IntT = RepT t

cn-irl-I 2: IntT ° crs-TypeParent ° RepT c Cod(TypeGuide)

c�-, nn-I 3: (im Intl) crs-Types C HomeTypes

c�-ißt-I 4: (im IntT) (crs-Types\Dom(TypeParent)) g. Access

" Inherit the type declarations and invariants of the classes Types2 and CRSTypeClass I

Types:

IntT is a total function from crs-Types to Types (each type record is associated with a type).

RepT is a partial function from Types to crs-Types (some types are represented as type records)

Invariants:

" The projection of the tree over crs-Types into Type space is a subset of the codomain of the structure
TypeGuide.

" All members of crs-Types are to be interpreted as types in HomeTypes

d: \jes\dis\wip\phdWpx. doc

83

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" All members of crs-Types that are not in the domain of crs-TypeParent are to be interpreted as types
in Access

O<>O<>OG>O<>O<>O<>G><>O<><>UO<><><><>G><>000<>O<>00000

CRSlnteraction

CRSCIass4, ATCIass2

-zit-T 3: IntV: crs-Visit) Activities

c-ißt-r 4: RepA: Activities crs-Visit

crs-inI-T5: IntP: crs-Pid -i Patients

c-ißt-r 6: RepP: Patients -H 4crs-Pid

cn-ißt-I s: IntV = RepA-t; IntP = RepP-t

cr-int-l 6: Cod(IntV) s Activities\Out

au-mnI-I 7: ((im IntV) crs-Proceed) \ Cod(crs-VisRel) c Proceed u Request

cn-inn-I 8: (im IntV) crs-Complete s Complete

cr -ißt-I 9: IntV ° crs-VisRel ° RepA c During

cm-ißt-i io: IntP ° (crs-VisPid) ° RepA = Dom(RepA) d ActSubject

crs-int-I rn: IntT 0 VisitType 0 RepA = Dom(RepA) 4 ActType

" Inherit the type declarations and invariants of the classes CRSC1ass4 and ATClass2

Types:

" IntV is a total function from crs-Visit to Activities (every visit is interpreted as an activity)

" RepA is a partial function from Activities to crs-Visit (some activities are represented as visits)

" IntP is a total function from the set of patient ID records to patients (every patient ID record is
interpreted as a patient)

" RepP is a partial function from patients to the set of patient ID records (some patients are
represented as patient ID records)

Invariants:

" IntV is the inverse of RepA, and IntP is the inverse of RepP.

" The codomain of IntV (all represented activities) is a subset of internal activities that are not
requests.

" Records in crs-Proceed that have no children are representations of activities in either Proceed or
Request

" All records in crs-Complete are to be interpreted as completed activities

" The projection of the tree crs-VisRel onto Activity space is a subset of During.

" The interpretation of crs-VisPid (constructed by replacing each element of the domain of the
relation with its interpretation, and each element in the codomain with its interpretation) is the
function ActSubject restiricted to those activities that are represented.

" The interpretation of crs-VisitType is the function ActType restiricted to those activities that are
represented.

d: \jes\dis\wip\phd\appx. doc
84

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

CRSlnteraction1. InCreate(Ab, p f, tn"ia,,)

c-ißt-Pr i ATClass2. InCreate(Ab, pf, t�-aao)

NB This operation is not represented in the IS

CRSInteractionl. Embed(AP, Ab, tc-ac)

crs-in'-i 2: ATC1ass2. Embed(AP, Ab, tc-ac)

NB This operation is not represented in the IS

CRSInteractionl. SuddenStart(AP, t,, ac)

I --mnt-Pr 3: ATClass2. SuddenStart(Ap, t,, ac)

NB This operation is not represented in the IS

CRSlnteractionl. Start(a)

cr-rat-P. 4: ATClass2. Start(a)

.1I cn_; n, _Pr 5: ActType(a) e Dom(RepT)

cm-ißt-Pr6: IntT ° ((Cod({RepT(ActType(a))) 4 crs-TypeParent*)) 4 crs-TypeParent) ° RepT c
ActType 0 ((Cod((a) 4 During)) 4 During) 0 ActType-t

CRSVTC1assl. CreVis(RepT(ActType(a)), RepP(ActSubject(a))-+v,,)

i: (v,,, a) E IntV'

Preconditions:

" Inherit the preconditions and postconditions of the ATC1ass2. Start operation

Case I

Preconditions

" The type of a is represented in the IS

" The structure that is created as a result of calling CreVis must be capable of being matched up
with an existing structure in the domain that has a as its most junior member.

" Inherit the preconditions and postconditions of the CRSVTClassl. CreVis operation.

Postconditions

"a is now the interpretation of v,

CRSlnteractionl. Suspend(a)

cB-ino-er 8: ATClass2. Suspend(a)

NB This operation is not represented in the IS

d: \jes\dis\wip\phd\appx. doc

85

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

CRSlnteraction 1. End (a)

rs-ißt-Pr 9: ATCIass2. End(a)

.1,. -ißt-P. io: CRS. FinVis(RepA(a))

Preconditions:

" Inherit the preconditions and postconditions of the ATC1ass2. End operation

Case 1

Preconditions

" Inherit the preconditions and postconditions of the CRS. FinVis operation

CRSlnteractionl. Cancel(a)

an-un-pr i i: ATClass2. Cancel(a)

NB This operation is not represented in the IS

CRSlnteraction 1. OutCreate(p, t-ýa)

c-ißt-Pr12: ATC1ass2. OutCreate(p, t-4a)

NB This operation is not represented in the IS

CRSInteractionl. OutEmbed(AP, t, -aa,)

f cr-ißt-Pr 13: ATCIass2. OutEmbed(Ap, tc-)ac)

NB This operation is not represented in the IS

CRSlnteractionl. PatReg(p)

c�-; nn-Pr 14: CRSVTC1assl. Register(pid)

cr-ino-Pr 15: ATCIass2. PatReg(p)

c, x-irl-Po 2: (p, pid) e RepP'

Preconditions:

" Inherit the preconditions and postconditions of the CRSVTC1assl. Register operation

" Inherit the preconditions and postconditions of the ATClass2. PatReg operation

Postconditions:

"p is now represented by pid.

CRSlnteractionl. PatDereg(p)
[crs4nt-Pt

16: ATCIass2. PatDereg(p)

d: \jes\dis\wip\phdlappx. doc
86

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

NB This operation is not represented in the IS

CRSlnteractionl. PatArrive(p)

c, s-ißt-rr n: ATCIass2. PatArrive(p)

NB This operation is not represented in the IS

CRSlnteraction 1. PatDepart(p)

cr3-mnt-Pr i8: ATCIass2. PatDepart(p)

NB This operation is not represented in the IS

CRSlnteractionl. PatJoin(a, p)

-i t-Pr iv: ATClass2. Patjoin(a, p)

NB This operation is not represented in the IS

CRSlnteractionl. PatLeave(p)

-i, L-prso: ATC1ass2. PatLeave(p)

NB This operation is not represented in the IS

d: \jes\dis\wiP\Phd\aPPx. doc

87

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

d: \jes\dis\wip\phd\appx. doc

88

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Appendix 5:

A Theory of the DIS1 System
and its Interaction with the Domain

d: \jes\dis\wip\phd\uppx. doc

89

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

This appendix introduces and describes, in an abstract manner, the structure of the proposed first
fragment of the Directorate Information System - DIS1. It shows how this is composed of the Outpatient
Appointment System (OPAS) and the Clinical Record System (CRS - described in the previous
appendix). It then describes how the DIS1 system is interpreted into the domain with the help of an
interaction theory.

The classes OPASClock, OPASSIots, OPASConfig, OPASClinics, and OPASAppt describe the OPAS.
The classes DISiTypeClassl and DISiClassl describe how the OPAS and CRS have been mutually
constrained to produce the DISI system. The classes Clocklnteraction, DIS1TypeInteractionl and
DIS 1Interaction comprise the interaction theory for the system.

OPASClock

&., T i: as-FirstT, as-LastT, as-NowT: as-TofD

a-T z: as-NowD: as-Days

as-r 3: as-Precedes_T, as-Follows_T: as-TOf D -H as-TOf D

as-T+: as-Precedes_D, as-Follows_D: as-Days) as-Days

as-i5: as-Duration: as-TOfD X as-TofD N

. s-, i: as-Precedes_T-t = as-Follows_T; as-Precedes-D-1 = as-Follows_D

as-i 2: as-Precedes_T* n id[as-TOfD] = 0; as-Precedes-D+ n id[as-Days] =0

as-I3: Dom(as-Precedes_T) = as-TOED\{as-LastT)

as-I 4: Dom(as-Follows_T) = as-TOf D\{ as-FirstT)

., -I s: Dom(as-Duration) = as-Precedes_r

�-16. V(t1, t2): Dom(as-Duration) " as-Duration((t1, t2)) = 1+#((im as-Precedes_T) {t1 }n (im as-
Follows_T) {t2})

as-NowT = as-FirstT = 00: 00; as-LastT = 23: 59

as-NowD' = 1st January 1994

Types:

NB All the times and the ordering of the times are assumed to be set up by a 'specialisation' operation
not described here. This is similar to the specialisation operations of the other theories and puts values
into the relevant sets that comply with the invariants.

" as-FirstT, as-LastT, and as-NowT are members of the set as-TofD. This last set represents times of
day - as-FirstT and as-LastT the beginning and end of the day respectively, and as-NowT is the
current time.

" as-NowD is a member of the set as-Days. This last (infinite) set represents dates - as-NowD the
current date.

" as-Precedes_T and as-Follows _T are trees over the set as-TofD.

" as-Precedes_D and as_Follows_D are total trees over the set as-Days. This is possible as as-Days is
an infinite set.

" as-Duration is a partial function from the Cartesian product of as-TofD with itself to the set of
natural numbers. In other words, when supplied with with a pair of records from as-TofD as an

d: \ jes\dis\wip\phdlappx. doc
90

Jeremy DH Holland Volume lt: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

argument, the function will return a number. This number is intended to represent the number of
'ticks' between the times represented by the first and second parts of the pair.

Invariants:

" as-Follows_T is the inverse of as-Precedes_T. as-Follows_D is the inverse of as-Precedes_D.

" as-Precedes_T and as_Precedes_D are directed acyclic graphs. This with the other type declarations
and invariants tell us that as-Precedes_T and as-Precedes_D are totally ordered.

" The domain of as-Precedes_T is the set of time records excluding the 'last' time record.

" The codomain of as-Precedes_T is the set of time records excluding the 'first' time record.

" The domain of as-Duration is identical to the transitive closure of as-Precedes_T. This means that
pairs in the domain of as-Duration must be such that the first part is 'before' the second part as
specified by as-Precedes. _T.

" For all pairs in the domain of as-Duration, the returned number is one greater than the intersection
of all time records 'after' the first time, and 'before' the second time.

OPASC1ock. Tick(

1 as-Pr i: as-NowT # as-LastT

as-Po i: as-NowT = as-Precedes_T(as-NowT)

2 as-P. 2: as-NowT = as-LastT

a, -Po 2: as-NowT = as-FirstT

,. -Pos: as-NowD' = as-Precedes_D(as-NowD)

Case 1:

Preconditions:

" The current time record is not the time record representing the end of the day

Postconditions:

" The new current time record is the one immediately after the old one as defined by the total
arder as-Precedes T.

Case 2:

Preconditions:

" The current time record is the time record representing the end of the day.

Postconditions:

" The new current time record is the one representing the beginning of the day.

" The new current day record is the one immediately after the old one as defined by the total
arder as-Precedes_D.

<>OOOOAUU<X>OOOpVOOQOQUODU<><><><><>UU<>UQU<>

d: \jes\dis\wip\phd\appx. doc

91

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

OPASSIots

OPASCIock

v-r 6: as-Slots: Set[as-S]

as-T 7: as-Streams: Set[as-Str]

as. T8: as-SlotDay: as-Slots) as-Days

as-T9: as-StreamDay: as-Stream -) as-Days

as-Iio: as-SlotStart, as-SlotEnd: as-Slots ---) as-TOfD

as-T ii . as-SlotLength: as-Slots .9N

as-T 12: as-SlotStream: as-Slots -i as-Streams

as-r 13: as-Precedes_Si: as-Slots 4 as-Slots

as-17: as-StreamDay ° as-SlotStream ° as-SlotDay t id[as-Days]

as-i e: as-Precedes_Sl+ o id[as-Slots] =0

as-I9: as-SlotStream 0 as-Precedes_SI 0 as-SlotStream't g id[as-Streams]

as-I io: as-SlotEnd ° as-SlotStart-I c as-Precedes_T+

as--I i i: as-SlotLength = as-Duration ° (as-SlotStart 0 as-SlotEnd)

as4 12, as-SlotEnd 0 as-Precedes_Sl 0 as-SlotStart-1 c as-Precedes_T`

as-i 13: #as-Slots\Cod(as-Precedes_Sl) 4 as-SlotStream = #as-Slots\Dom(as-Precedes_Sl) 4 as-SlotStream =
#Cod(as-SlotStream)

as-Slots'=as-Streams'=0

" Inherit the type declarations and invariants of the class OPASClock

Types:

" Slots is a subset of as-S. It represents a set of clinic slots

" Streams is a subset of as-Str. It represents the set of 'sessions' which are divided into slots

" Each slot record is associated with a particular date record through the function as-SlotDay. This

represents the date when the slot is scheduled to happen.

" Each stream record is associated with a particular date record through the function as-StreamDay.
This represents the date when the stream is scheduled to happen.

" Each slot record is associated with a particular time record through the functions as-SlotStart and
as-SlotEnd. These represent the start and stop times of the slot.

" Each slot record is associated with a natural number through the function as-SlotLength. This
number is intended to represent the duration of the slot.

" Each slot record is associated with a single stream record through the function as-SlotStream.

" Slot records are (partially) ordered through the function as-Precedes_Sl. Thus one slot record can
directly precede another.

Invariants:

"A slot record's 'day' is the same as the 'day' of the stream record that the slot record is associated
with.

d: \jes\dis\wip\phd\aPPX. d0C
92

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" as-Precedes_Slis a directed acyclic graph.

" If one slot record precedes another, then they are both associated with the same stream record.

" The 'time' associated with a slot record's start is the same as that associated with its end.

" The length of a slot record is the duration between its 'start' and its 'end'.

" The 'end' of one slot record is always 'before' (according to as-Precedes_Sl) the beginning of the
next slot record (or is at the same time).

" For any given stream record, there is only ever one slot record that precedes no other, and one that
is preceded by no other.

NB We have not said that all the slot records in a stream are contiguous for a given clinic: gaps such as
evenings, days off, illnesses and the like might be represented in the appointment system.

OPASSIots. StreamCreate(d, n-ýSt)

as-Pr3: d: as-Days; n: N; St: Set[as-Str\as-Streams]

�-Pro:
#St=n

u-Po4: St c as-Streams'

as-Pos: (im as-StreamDay') St = {d)

Preconditions:

"d is a member of as-Days. n is a natural number. St is a set of stream records that have not yet been
created.

" The cardinality of St is n.

Postconditions:

" St is now a set of created streams.

" The day (member of as-Days) that all the stream records are associated with is d.

OPASSIots. StreamCancel(st)

is-Pr s: st: as-Streams

. s-Po 6: st e as-Streams'

u-Po 7: (im as-SlotStream-1) (st) n as-Slots' =0

Preconditions:

" st is a single (previously created) stream record.

Postconditions:

" st is no longer a member of as-Streams.

The slot records that were associated with the stream record through the original as-SlotStream
function are no longer in as-Slots.

d: \jes\dis\wip\phd\appx. doc

93

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

OPASSIots. SlotsCreate(TN, st -+ SI, SIB, SIN, SIE, SISI)

as-Pr 6: TN: TOf D -H N; st: as-Streams

as-pr1: Sl: as-S\as-Slots

as-rrs: SIB, SIE: as-S\as-Slots 43 as-TOfD; Si: Set[as-S\as-Slots]

u-Pr9: S1N: as-S\as-Slots -+) N; SISI: as-S\as-Slots -H as-S\as-Slots

as-Prio: (im as-SlotStream-1) (st) =0

as-Pr I I: (as-NowD, as-StreamDay(st)) e as-Precedes_D+

as-Pr 12: Dom(SIB) = SI; Cod(SIB) = Dom(TN)

as-Pr 13: SIN = (TN ° SIB)'t

as-Pr w: as-Duration ° (S1B 0 SIE)-' = SIN

as-PrIs: SIE ° SIB-' c; as-Precedes-TI

as-Pr 16: SISI-1 E as-S\as-Slots -H as-S\as-Slots

v-Pr $7: SISI+ n id[as-S] =0

as-rr 1a: SIB ° SISI ° SIB-' c as-Precedes_T+

as-Pr iv: #Sl\Dom(SiS1) = #Sl\Cod(SISI) =1

. s-Po 8: SIB c as-SlotStart'; SIE c as-SlotEnd'

. s-Po9: SISI s as-Precedes_Sl; SIN c as-S1otLength'

as-Po io: SI X (st} as-SlotStream'

u-Po II: SI X {as-StreamDay(st)} c as-SlotDay'

Preconditions:

NB This operation is not as complex as it appears. What it does is set up a number of clinic slot records
for a particular stream. Thus most of the parameters are of the same type and will, after the operation, be
subsumed within the state components defined in the state schema. The arguments passed are st which is
the stream record which is to have slots allocated to it. TN is a function which defines the new slots -
their start times and durations. Si can be thought of as a prototype of a the as-Slots set; SIB and SIE as
as-SlotStart and as-SlotStart and as-SlotEnd respectively; SIN as as-SlotLength; and SISI as as-
Precedes_Sl. The preconditions ensure that these 'returned' parameters are such that they can be joined
with the main state components according to their intended meaning.

" TN is a partial function from time records to natural numbers. st is a stream record.

" Sl is a set of uncreated slot records.

" SIB and SIE are functions from uncreated slot records to time records. SI is a set of uncreated set
records.

" SIN is a partial function from uncreated slot records to natural numbers. S1S1 is a tree over
uncreated slot records.

" st has no slot records associated with it yet.

" The current day record must precede that associated with the stream record.

" The domain of S1B is the set of uncreated slots Sl. The codomain of SIB is the time records which
are the domain of TN.

d: \jes\dis\wip\phd\appx. doc
94

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" SIN (which will be the duration of slots in SI) is the composition of TN and SIB (which gives the
natural numbers associated with the slots in the domain of SIB).

" SIN is equal to the slots in SI associated with the number which represent their duration as deduced
from SIB (the beginning of the slots), SIE (the end of the slots) and as-Duration which enable us to
turn pairs of time records into natural numbers representing the duration of the gap between them.

" The time record associated with a slot in SIB must be 'before' the time record associated with the
same slot in SIE.

" The inverse of S1S1 is a tree over uncreated slot records. This means, assuming that SISI is to
represent the 'ordering' of slot records, that a slot record can be after at most one other, and before at
most one other.

" SISI is a directed acyclic graph.

" The 'beginnings' of pairs of slots in SISI must be ordered - the 'beginning' of the first slot record
must be 'before' (as defined by as-Precedes_T) the 'beginning' of the second.

" There is one slot record in Sl that is not in the domain of SISI - similarly there is one slot record in
Si that is not in the codomain of S1S1. This final precondition together with the others means that
S1Sl must be represent a totally ordered set (or at least SISI` must be - depending on the definition of
total ordering used): it is a single chain of uncreated slot records.

Postconditions:

" SIB is now is as-SlotStart. SIE is now is as-SlotEnd.

" S1Sl is now in the ordering tree as-Precedes_SI. SIN is now in the function as-SlotLength.

" All of Sl is now associated with the stream record st through the function as-SlotStream.

" All of SI is now, through as-SlotDay, associated with the day record that st was associated with
through as-StreamDay.

NB This operation schema means that we must create all the slot records for a given stream record 'in
one go'.

qQ000<><><>U00000<X><>UUUO<><>OqU<><><><><><><>gOA

OPASConfig

... T 14: as-CTypes: Set[CT]

as. T 15: as-ApptMode: Set[M]

as-r 16: as-CTypeModes: as-CTypes H as-ApptMode

as. T n: as-CModeLength: as-CTypeModes --4 N

Preconditions:

NB This is the class that defines the sorts of clinics that may be supported by the OPAS. There are a
number of types of clinics that can be run - these are enumerated in the set CTypes. Each clinic might
run more than one sort of session - for example some DEDC clinics run consultations for both new and
followup patients. The set of different sorts, or modes, of appointment is listed in the set ApptMode. The
modes pertaining to a particular type of clinic are given by the total relation CTypeModes. Each mode of
appointment, for each clinic type, has a typical duration. Thus an initial Dr Consultation in the DEDC
will have a typical duration of 60 minutes (or just 60 as we are representing duration through the use of
the natural numbers).

d: \jes\dis\wip\phd\appx. doc

95

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" as-CTypes is a set of elements of type CT. This records the types of clinics supported by this
specialisation of the application.

" as-ApptMode is a set of elements of type M. This records the 'modes' that a particular clinic
supports - this might be new visit, followup, review and so on.

" as-CTypeModes is a relation between clinc type records and appointment mode records. Certain
clinic type support certain appointment modes - not all appointment modes are supported by all
clinics however (specialist nurses do not have 'review' visits.

" as_CModeLength is a function from pairs in as-CTypeModes to natural numbers. These numbers
represent the duration that a visit to a particular clinic, of a particular mode, is scheduled to last.

ooo<><><>o<><>v<><>non<><><><><><><><><><><><>o<>o<><><><><><>

OPASClinics

OPASConfig, OPASSIots

w-T is: as-Clinics: Set[C]

a, -T i9: as-ClinicType: as-Clinics -4 as-CTypes

wTnas-ClinicCons: as-Clinics -i Cons

, s-T21: as-StreamClinic: as-Streams -H as-Clinics

. s-T22: as-ClinicDay: as-Clinics 9 as-Days

, s-I 14: as-SlotMode: as-Slots -i as-ApptMode

as-i , s: ((as-ClinicType ° as-StreamClinic ° as-SlotStream) 0 as-SlotMode) ° as-SlotLength-I c as-
CModeLength-4

as-I 16: as-ClinicDay ° as-StreamClinic = as-StreamDay

u-] n: #(as-ClinicCons 0 as-ClinicDay) = #Cod(as-ClinicCons 0 as-ClinicDay)

as-Clinics' =0

" Inherit the type declarations and invariants of the classes OPASConfig and OPASSlots.

Types:

" as-Clinics is a set of elements of the type C. This set represents clinic sessions.

" as-ClinicType is a function from clinic session records to records of clinic type.

" as-ClinicCons is a function from clinic session records to members of the carrier set Cons. This
last set represents consultants.

" as-StreamClinic is a function from stream records to clinic records. Thus each stream record is
associated with a particular clinic session record.

" as-ClinicDay is a function from stream records to day records.

" as-SlotMode is a function from slot records to appointment mode records.

Invariants:

" The duration of a particular slot is the same as the duration associated with that slots clinic type and
appointment mode records through as-CModeLength.

" The day record that a clinic session record is associated with (through as-ClinicDay) is the same as
the day record that that clinic session's stream record is associated with (through as-StreamDay).

d: \jesdis\wip\phd4appx. doc
96

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

0 The same consultant record cannot be associated with two clinic sessions on the same day.

OPASClinics. ClinicSetUp(ct, D, Dn -4C1)

u-N». D: Set[as-Days]; Dn: as-Days -H N; ct: as-CType; Cl: Set[C\as-Clinics]

as-Pr 21: Dom(Dn) =D

as-Pr u: Vd: D" OPASSIots. StreamCreate(d, Dn(d)-NSt)

as-Po 12: Cl c as-Clinics'

as-Po 13: Cl X (ct) s as-ClinicType'

as-Po 14: (im as-ClinicDay') Cl =D

as-Po 1s: `dcl: Cl " #(im as-StreamClinic''t) (cl) = Dn(as-ClinicDay(cl))

as-Po 16: (im as-StreamClinic'-1) (Cl) g as-Streamslas-Streams

Preconditions:

NB This operation 'sets up' a clinic. The clinic type, days, and numbers ascociated with those days are
provided as parameters and a set of clinic session records is returned. A clinic session is created for each
of the days, and the number of newly created streams, given by the appropriate number in Dn, is

associated with each clinic session.

"D is a set of day records. Dn is a partial function from day records to natural numbers. ct is a clinic
type record. Cl is a set of uncreated clinic session records.

" The domain of Dn is D.

" For all day records in D, Inherit the preconditions and postconditions of the StreamCreate operation
(taking each member of D as an argument).

Postconditions:

" Cl is now a set of clinic session records.

" All the records in Cl are now associated with the clinic type record ct throught the function as-
ClinicType.

" The records in Cl are now associated with day records in D.

" The number of stream records associated with a given clinic session record is given by the number
returned by Dn when given the day record associated with that clinic session as an argument.

" The streams now associated with clinic session records in Cl are all new stream records.

OPASClinics. StreamCancel(st)

as-P. z3: OPASSIots. StreamCancel(st)

Preconditions:

" Inherit the preconditions and postconditions of the StreamCancel operation

d: \jes\dis\wip\phd\aPPx. doc

97

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

OPASCIinics. SlotsCreate(TAm, st -4 SI, SIAm, SIB, SIN, SIE, SISI)

u-Pr 2A: OPASS1ots. SlotsCreate(TN, st -ý SI, SIB, SIN, SIE, SISI)

, s-r. zs: TAm: as-TOf D -H as-ApptMode

w-Pr : Cod(TAm) s (im as-CTypeModes) (as-ClinicType(as-StreamClinic(st)))

u-Pr r7: TN = (as-CModeLength ° (Dom(TAm) x{ as-ClinicType(as-StreamClinic(st)))) 0 TAm))

as-r128: SIAm = (TAm ° SIB)-'

u-Po ,,: SIAm c as-SlotMode'

Preconditions:

NB This operation is similar to the earlier SlotCreate one except that the parameter TAm is passed
which gives an appointment mode for each time. From this the start of the sessions, and their length can
be deduced, hence giving us the TN of the previous schema. The operation allows us to set up all the
slots for a stream at a time.

" Inherit the preconditions and postconditions of the SlotsCreate operation.

" TAm is a partial function from time records to appointment mode records.

" The appointment mode records in the codomain of the parameter TAm must be valid appointment
modes for the clinic type of the clinic session record of the stream record st.

" TN is a function from time records to numbers calculated by taking a time record from TAm and
associating it with a number derived from the function as-CModeLength. To this end the function is
passed a pair: the clinic type of the clinic session record associated with the stream st, followed by
the appointment mode - from this pair and the function as-CModeLength the standard duration of
the slot can be calculated and passed to the earlier operation as TN.

" SlAm is a function which takes the (uncreated) slot record in the domain of S1B and associates it
with the appointment mode linked to the same time in TAm as the slot is in SIB.

Postconditions:

" SlAm is now a subset of as-SlotMode

UUUUUUO<><>U<>O<>00<><>OOü0000000<><><>O<>OOOU

dAjesis\wip\phd\appx. doc
98

Jeremy DH Holland Volume Il: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

OPASCIock

OPASSIots

OPASConfig

OPASCIinics

OPASAppt

Figure App5-1: Class structure of the first five classes in OPAS

OPASAppt

OPASCIinics

as-T23: as-Pid: Set[as-P]

as-r24: as-Appointment: as-Slots -H as-Pid

as-ru: as-ArrivalTime, as-StartTime, as-EndTime, as-ApptTimes: as-Slots -+» as-TOfD

as-I is: Dom(as-ArrivalTime) s Dom(as-Appointment)

as-I 19: Domas-StartTime) c Dom(as-ArrivalTime)

as-I m Dom(as-EndTime) c Dom(as-StartTime)

as-I 21: Cod(as-Appointment) = as-Pid

as-I 22: as-ApptTimes = as-ArrivalTime u as-StartTime u as-EndTime

as-I 23: Cod(Dom(as-ApptTimes) 4 as-SlotDays) s (im as-Precedes_D*) { as-NowD)

as- 24: Cod(Dom(as-S1otDays as-NowD}) 4 as-ApptTimes) c (im as-Precedes_T*) (as-NowT)

as-Pid' =0

" Inherit the type declarations and invariants of the class OPASClinics

Types:

" as-Pid is a set of records of type as-P. A record in this set is a patient identifier and hence
represents a patient.

" as-Appointment is a partial function from slot records to patient identifiers. This is intended to
represent appointments.

d. \jes\dis\wip\phd\appx. doc

99

Jeremy DH Holland Volume H: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" as-ArrivalTime, as-StartTime, as-EndTime, and as-ApptTimes are all partial functions from slot
records to time records. These functions are intended to represent patient arrival time, appointment
start time, appointment end time, and the union of all those functions respectively.

Invariants:

" The slot records in the domain of as-ArrivalTime are all in the domain of as-Appointment.

" The slot records in the domain of as-StartTime are all in the domain of as-ArrivalTime.

" The slot records in the domain of as-EndTime are all in the domain of as-StartTime.

" All members of the codomain of as-Appointment are patient identifiers.

" as-AppTimes is defined to be the union of as-ArrivalTime, as-StartTime, and as-EndTime.

" All the day records that are associated with slot records that have an entry in as-ApptTimes must
either be 'before' or equal to the 'current' day record.

" All the time records that are associated with slot records that have an entry in as-ApptTimes and are
linked to the 'current' day record must be equal to or'before' the current time record.

OPASAppt. BookKnownP(pid, sl)

as-r. z9. pid: as-Pid

as-Pr 30: si: as-S1ots\Dom(as-Appointment)

.. -rr3!: as-S1otDay(s1) e (im as-Precedes, -D+)(as-NowD)

as-Po 18: (sl, pid) e as-Appointment'

Preconditions:

" pid is a patient identifier.

" sl is a slot record that has not yet been assigned a patient identifier.

" The day record that sl is assciated with is 'after' the 'current' one.

Postconditions:

" sl is now associated with pid through the function as-Appointment

OPASAppt. BookUnknownP(sl-*pid)

u-Pr32: pid: as-P\as-Pid

as-P33: sI: as-Slots\Dom(as-Appointment)

m-Pr 34: as-S1otDay(s1) E (im as-Precedes_D+) (as-NowD)

�-Po 19: pid E as-Pid'

as-Po 20: (sl, pid) E as-Appointment'

Preconditions:

pid is an uncreated patient identifier

" sl is a slot record that has not yet been assigned a patient identifier.

The day record that sl is assciated with is 'after' the 'current' one.

d: \jes\dis\wip\phd\appx. doc
100

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Postconditions:

" pid is now a patient identifier.

" sl is now associated with pid through the function as-Appointment

OPASAppt. ChangeBooking(s1o, s1�)

as-Pr 35: s10, sln: Dom(as-SlotDay t> (im as-Precedes-D+ (as-NowD)))

as-I36: s10 e Dom(as-Appointment)

, s-rr 37: sl� g Dom(as-Appointment)

--Po 21: s10 0 as-Appointment'

. 3-Po 22: (s1., as-Appointment(s1o)) E as-Appointment'

Preconditions:

NB This operation changes an appointment record insofar as it removes a patient identifier from
association with one slot record and associates it with another.

" slo (old slot record) and sl� (new slot record) are both slot records that are associated with day
records that are 'after' the 'current' one.

" s10 is a slot record that is associated with a patient identifier through as-Appointment.

" sl� is a slot record that is not associated with a patient identifier through as-Appointment (we can
thus see that slo and sl. must be distinct).

Postconditions:

" slo is no longer associated with a patient identifier through as-Appointment.

" sl� is now associated with a patient identifier through as-Appointment. The patient identifier is the
same as the one that sla was associated with before the operation.

OPASAppt. CancelBooking(sl)

as-Pr38: sl: Dom(as-SlotDay D (im as-Precedes_D+ {as-NowD))) n Dom(as-Appointment)

. -Po 23: sl 0 as-Appointment'

Preconditions:

" sl is a slot record that is associated with a day record that is 'after' the 'current' one, and is also
associated with a patient id via the as-Appointment relation.

Postconditions:

" sl is no longer associated with a patient id via the relation as-Appointment

OPASAppt. StreamCancel(st)

as-I 39: st e Dom(as-StreamDay t> (im as-Precedes_D+ (as-NowD }))

rrao: OPASCIinics. StreamCancel(st)

a -Po 24: (im as-SlotStream-t) { st }n Dom(as-Appointments') =0

Preconditions:

" st is a stream record that is associated with a day record that is 'after' the 'current' one.
d: \jes\dis\wip\phd\appx. doc

101

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" Inherit the preconditions and postconditions of the StreamCancel operation

Postconditions:

" None of the slots associated with the stream record st through the as-SlotStream relation is now
associated with a patient id via the relation as-Appointment

OPASAppt. PatArrive(sl, ti)

as-Pray: sl: (Dom(as-SlotDay D {as-NowD}) \ Dom(as-ArrivalTime)) n Dom(as-Appointment)

. s-Po z,: (sl, t) E as-ArrivalTime'

Preconditions:

sl is a slot record that is associated with a day record that is 'after' the 'current' one, and is also
associated with a patient id via the as-Appointment relation, but is not a slot record that has an
'arrival' time recorded for it.

Postconditions:

" The time record ti is now associated with the slot record sl through the relation as-ArrivalTime.

NB This operation is supplied with ti as an argument so that details of when the patient arrived can be
entered after the event.

OPASAppt. ApptStart(sl)

a3-Pr 42: sl: (Dom(as-SlotDay as-NowD)) \ Dom(as-StartTime)) n Dom(as-ArrivalTime)

u"Po w: (sl, as-NowT) E as-StartTime'

Preconditions:

" sl is a slot record that: is associated with a day record that is 'after' the 'current' one; has had an
'arrival' time record associated with it; and has not had a'start' time record associated with it.

Postconditions:

" The current time record is now associated with the slot record sl through the relation as-StartTime

OPASAppt. ApptEnd(sl)

as-Pr 43: sI: (Dom(as-SlotDay D{ as-NowD)) \ Dom(as-EndTime)) n Dom(as-StartTime)

as-Po 27: (sl, as-NowT) e as-EndTime'

Preconditions:

" sl is a slot record that: is associated with a day record that is 'after' the 'current' one; has had a 'start'
time record associated with it; and has not had an'end' time record associated with it.

Postconditions:

" The current time record is now associated with the slot record sl through the relation as-EndTime

OPASAppt. ClinicSetup(ct, D, Dn-3 C1)

�-Pr 44: OPASClinics. ClinicSetup(ct, D, Dn-4CI)

d: jjes\dis\wiP\Ph&PPx. doc
102

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Preconditions:

0 Inherit the preconditions and postconditions of the ClinicSetup operation

OPASAppt. SlotsCreate(TAm, st)

F F, 45: OPASCIinics. SlotsCreate(TAm, st-*SI, SIAm, SIB, S1N, SIE, SISI)

Preconditions:

" Inherit the preconditions and postconditions of the SlotsCreate operation

000<>OOgOU00<>QUUUU00< <>000000<>40<>000OU

DIS1TypeClassl

OPASConfig, CRSTypeClass

dis-T I: dis-Bookable, dis-Accessible, dis-Unplanned: crs-Types

dis-T2: dis-TypeL. ink: crs-Types 4 as-CTypeModes

dis-i i: Dom(dis-TypeLink) = dis-Bookable

dis-I 2: dis-Bookable n dis-Accessible =0

dis-i 3: dis-Unplanned n dis-Accessible =0

dis-I 4: crs-Types\Dom(crs-TypeParent) c dis-Accessible

NB DIS I specifies the integration of the Outpatient Appointment System and the Clinical Record
System. It does this in two classes: DISiTypeClassl, which sets up the specialisation state components
of the integrated information system, and DIS1Class1 which sets up the operational state components.
These are defined either de novo or in terms of specialisation and operation state components from
either the OPAS specification or the CRS specification.

" Inherit the type declarations and invariants of the classes OPASConfig and CRSTypeClass

Types:

" dis-Bookable, dis-Accessible, and dis-Unplanned are all subsets of the set crs-Types. dis-Bookable is
a set of the types of visit record that can be booked; dis-Accessible is a set of the types of visit record
that can be created without having to be a 'child' of another; dis-Unplanned is a set of the types of
visit record that can be created without having to have been booked.

" dis-TypeLink is a partial function from crs-Types to as-CTypeModes. It only exists this way round
as the recording of clinical types in the CRS is more detailed than in the OPAS.

Invariants:

" All visit type records that are associated with members of as-CTypeModes through dis-TypeLink are
members of dis-Bookable.

" No members of dis-Bookable are also in dis-Accessible.

" No members of dis-Unplanned are also in dis-Accessible.

" Any member of crs-Types that does not have a'parent' must be in dis-Accessible.

OOOG>OOUOOOg40QOOQ04000G>04AQAOQOOOOQU

d: \jes\dis\wip\phd\appx. doc

103

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DIS1Class1

DIS1TypeClassl, OPASAppt, CRSClass4

dis-T3: dis-Activities, dis-Request: Set[crs-V]

dis-T4: dis-VisRel: dis-Activities -H dis-Activities

dis-T5: dis-Clist: Set[dis-CI]

dis-T6: dis-ActSubject: dis-Activities -4 crs-Pid; dis-ActType: dis-Activities --) crs-Types

dis-T7: dis-ActSlot: dis-Activities -H as-Slots; dis-Pidas: crs-Pid -H as-Pid

dis-T8: dis-StreamClist: as-Streams --9 dis-Clist

dis-i 5: dis-Request = dis-Activities \ crs-Visits

dis-16: crs-Visits 4 dis-ActSubject = crs-VisPid; crs-Visits 4 dis-ActType = crs-VisitType

dis-I 7: Cod(crs-VisRel) c crs-Proceed

dis-I s: crs-VisRel c dis-VisRel A dis-VisRel+ n id[dis-Activity] =0

di -I 9: dis-ActType ° dis-VisRel ° crs-VisitType-t s crs-TypeParent

d�-! io: (im dis-ActType-t) Cod(crs-TypeParent) c Cod(dis-VisRel)

d�-l u: Dom(dis-VisRel\crs-VisRel) S dis-Request A Cod(dis-VisRel\crs-VisRel) n crs-Proceed c Cod(crs-
VisRel)

dis-I 12: dis-ActSlot-t e Dom(as-Appointments) -i dis-Activities

dig- u: dis-Pidas-t e as-Pid --) crs-Pid

dis-I 14: (dis-StreamClist 0 as-StreamDay)-t E (dis-Clist X as-Day -H as-Stream)

di. i mClinicType ° StreamClinic ° StreamClist E dis-Clint -H as-Ctypes

dig-I 16: Dom(as-Appointments) 4 ((as-ClinicType ° as-StreamClinic ° as-SlotStream) 0 as-SlotMode) = dis-
TypeLink ° dis-ActType ° dis-ActSlort

dis-I 17: as-Appointment ° dis-ActSlot ° dis-ActSubject-i c dis-Pidas

di -I j8: (im dis-ActType) Dom(dis-ActSlot) c dis-Bookable

dis-I i9: dis-ActType ° dis-VisRel ° dis-ActType-1 c crs-TypeParent

ills-i so: #(dis-Request 4 dis-ActSubject) = #(dis-Request 4 dis-ActSubject) ° dis-ActType-I

dig-I21: #(crs-Proceed Cl crs-VisPid) = #(crs-Proceed 4 crs-VisPid) ° crs-VisitType-t

dis-I 2: (im dis-ActSlott) Dom(as-SlotStart) c crs-Visits

dis-Activities' =0

Types:

" The sets dis-Activities and dis-Request are of the same type as crs-Visits. dis-Activities is (loosely) a
record of activities; dis-Request (loosely) of requests.

" The relation dis-VisRel is a tree over dis-Activities.

" The set dis-Clist stores the DIS representation of clinic lists

" dis-ActSubject links every activity record with a patient id: dis-ActType links every activity record
with a (visit) type from the CRS

d: \jes\dis\wip\phdlappx. doc
104

Jeremy DH Holland Volume il: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" dis-ActSlot is a partial function that returns, for any activity record (that is in the function), the
corresponding slot record from OPAS: dis-Pidas is a function that returns, for any patient id in the
CRS, the corresponding patient id in OPAS.

" dis-StreamClist is a function that returns, for any stream record it is given, the corresponding clinic
list record in DIS.

Invariants

" dis-Request is all activity records that are stored in the DIS but not in the CRS.

" The function crs-Vispid is the same as dis-ActSubject for all non-requests; the function crs-
VisitType is the same as dis-ActType for all non-requests.

" The codomain of crs-VisRel is a subset of crs-Proceed. 'Parent' visit records cannot be completed -
only those that can have no children may be. Similarly request records cannot be members of crs-
Visit and so cannot be in crs-VisRel.

" crs-VisRel is a subset of dis-VisRel and dis-VisRel is a directed acyclic graph.

"A projection of the tree dis-VisRel into crs-Type space via the function dis-ActType is a subset of
crs-TypeParent.

" Any activity record that is of a type record that can have a child (through crs-TypeParent) must have

such a child activity record. If the parent is a visit record, then so must the child be: if it the parent
is a request record then so must the child be.

" The domain of the difference between dis-VisRel and crs-VisRel must be a subset of dis-Request (if
it has started it is a visit record and so therefore is its parent meaning that the pair is in crs-VisRel);
if an activity record in the codomain has started then there must be a corresponding child for that
activity record in crs-VisRel.

" The inverse of dis-ActSlot is a total function from all slot records associated with patient ids to dis-
Activities.

" The inverse of dis-Pidas is a total function - for any patient id in OPAS, there is exactly one
corresponding one in DIS.

" Each clinic list has at most one stream associated with it on any one day

"A clinic list is associated with one clinic type only.

" The clinic type and mode record for a particular slot record that has a patient id associated with it is

the same as the value obtained by taking the clinic type and mode record linked to the type of the
activity record associated with that slot.

" The pair (pdis, pu) where pdig is the patient id associated (in the DIS) with an activity record, and p.
is the patient id associated (in the OPAS) with the slot record which is related to that activity record,
are in the relation dis-Pidas.

" The type of any activity that is related to a slot is a bookable type.

" Only activity record hierarchies allowable through TypeParent are allowed (cf case for CRS).

" Only one request record of a particular type is allowed for one patient id.

" Only one proceeding activity record of a particular type is allowed for one patient id.

" Any slot record that has 'started' corresponds to an activity that has started - ie a member of crs-
Visits.

dAjes\dis\wip\Phd\aPPx. dOC

105

Jeremy DH Holland Volume Il: Appendices

The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DIS 1 Class 1. Create(p,,, t. --ia.)

dis-Pr I: t.: dis-Accessible; a,,: crs-V\dis-Activities; p.: crs-Pid

dis-Pr 2: (imdis-ActType-t) {t�} n (dis-ActSubject-1) {pj ndis-Request =0

dis-Po i: a� e dis-Request'

dis-Poi: (an, p,) e dis-ActSubject'

dis-Po 3: (a,,, t�) e dis-ActType'

Preconditions:

" t� is an accessible type: a� is not yet an activity: p� is a registered patient id.

" There is currently no request of type t� that has p� as its subject

Postconditions:

" a� is now a request record.

" a� is now asociated with the patient id p� through the function dis-ActSubject.

" a,, is now asociated with the activity type record t,, through the function dis-ActType.

DIS 1 Class 1. SuddenStart(tc,, pid-4a,)

direr 3: t,: dis-Unplanned; pid: crs-Pid

dis-Pr a: (im dis-ActType't) dis-Accessible n (im dis-ActSubject'') {pid} n (im dis-ActType't) (im crs-
TypeParent+) { to }#0

das-Pr s: (im dis-ActType-1) {tv} n (im dis-ActSubject-1) {pid} n crs-Proceed =0

dis-Pre: CRSClass4. CreVis(t�pid-aa,)

Preconditions:

" t. is an unplanned activity; pid is a registered patient id.

" There is an activity record that can be a parent of the new activity record and is in dis-Accessible.

" There are no activity records of the same type as the new one that are associated with the same
patient id that are in the set crs-Proceed.

" Inherit the preconditions and postconditions of the CreVis operation

d: \jes\dis\wip\phdlappx. dOc
106

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DIS1C1assl. Generate(t,, pid-+a,)

d, s-Pr7: t.: crs-Types; pid: crs-Pid

dis-Pr8: a,: crs-V\dis-Activities; A�: Set[crs-V\dis-Activities]

di, -P19: ap: dis-Activities\crs-Complete n (im dis-ActSubjectt) {pid} n (im dis-ActType-t) (im crs-
TypeParent+) it,)

dis-Pr , o: (im dis-ActType'') {t, } n (im dis-ActSubjecrt) {pid} o dis-Request =0

dii-Pr ii: -3a: dis-Activities\ crs-Complete n (im dis-ActType't) (im crs-TypeParent+) { t, }" (a, ap) e dis-
VisRel+

dis-Pi 12: #A� = #((im crs-TypeParent+) {tc}\ (im crs-TypeParent*) {dis-ActType(ap)})

a�-Po e: { aj v A� s dis-Request'

aas-Po 5: (im dis-VisRel') { at }uA. = A� u (aP }

di -P06: dis-ActType' ° ({a,, ap} u A� d dis-VisRel' D {a,, ap} u A�) ° dis-ActType'-t c crs- TypeParent

dis-Po 7: (ac, tc) e dis-ActType'

dis-Po 8: (im dis-ActSubject') { aj u A0 ={ pid }

Preconditions:

" t, is a type record; pid is a patient id.

" a, is an uncreated activity record; A, is a set of uncreated activity records.

" ap is an uncomplete activity record that is associated with the same patient id and is a possible
parent of the new activity record (through crs-TypeParent).

" There are no activity records of the same type as the new one that are associated with the same
patient id that are in the set dis-Request.

" There is no uncompleted activity record that is a possible parent of the new activity record and is a
child of ap

" The number of elements in A,, is the same as the number of 'ancestors' of tc that are also
'descendants' of the type of ap (including ap itself).

Postconditions:

" All the newly created activity records (all of a, and A�) are now requests.

" The parent activity record of any of the newly created record is either in A,, or the parent activity
record ap.

" The projection of that part of dis-VisRel which contains domain and codomain purely from any of
the activities referred to in the operation onto the set of type records is a subset of crs-TypeParent.

" a, is now of the type t,

" The patient id associated with all the newly created activity records is pid.

d: \jes\dis\wip\phd4px. doc

107

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DIS 1Classl. Book(tt, pid, c, d, ýb-*aý, s)

dis-Pr 13: pid: crs-Pid; t,: dis-Bookable; c: dis-Clists; d: (im as-Precedes_D+ {as-NowD}); Tb: TofD

dis-Pr 14: ac: crs-V\dis-Activities; A,,: Set[crs-V\dis-Activities]

dis-Pi is: ap: dis-Activities\Complete n (im dis-ActSubjectt) {pid) n (im dis-ActType-1) (im crs-
TypeParent+) lt. }

dis-Pr i6: (im dis-ActType-1) {t, } In (im dis-ActSubjecr') (pid) n dis-Request =0

dis-r. 17: ~3a: dis-Activities\crs-Complete n (im dis-ActType-1) (im crs-TypeParent+) {t, } " (a, ap) e dis-
VisRel+

dis-Pr 18: #A� = #((im crs-TypeParent*) {tt)\ (im crs-TypeParent*) {dis-ActType(aP)})

dis-pr i9: s E (im as-SlotStream-1) ((dis-StreamClist 0 as-StreamDay)-1 (c, d)}

dis-Pr20: S e (as-SlotStart-1) {Tb)

dis-Pr 21: dis-TypeLink(te) = ((as-ClinicType ° as-StreamClinic ° as-SlotStream) 0 as-SlotMode) (s)

dis-Pr 22: pid E Dom(dis-Pidas) = aspid = dis-Pidas(pid) A OPASAppt. BookKnownl'(dis-Pidas(pid), s)

dis-Pr22: pid o Dom(dis-Pidas) = OPASAppt. BookUnknownP(s--*aspid)

dis-Po9: {aj u A� c dis-Request'

dis-Po io: (im dis-VisRel') (a,) u A,, = A,, u {ap)

dis-Po ll: dis-ACtType' ° ({a,, ap} u A,, 4 dis-VisRel' D {a,, ap} u Aj ° dis-ActType'-l c crs-TypeParent

dis-Po 12: (ac, tc) e dis-ActType'

dis-Po 13: (im dis-ActSubject') {aj ' A,, = {pid}

dis-Po 14: (ac, s) e dis-ActSlot'

dis-Po 15: (pid, aspid) e dis-Pidas'

Preconditions:

" pid is a patent id; t, is a type record from dis-Bookable; c is a clinic list record; d is a day record
after the current one; Tb is a time of day.

" a, is an uncreated activity record; A� is a set of uncreated activity records.

" ap is an uncomplete activity record that is associated with the same patient id and is a possible
parent of the new activity record (through crs-TypeParent).

" There are no activity records of the same type as the new one that are associated with the same
patient id that are in the set dis-Request.

" There is no uncompleted activity record that is a possible parent of the new activity record and is a
child of ap

" The number of elements in A. is the same as the number of `ancestors' of tc that are also
'descendants' of the type of ap (including ap itself).

"s is a slot that is associated with a stream that is in its turn associated with the clinic list recoird c
and the day record d.

" The 'start' of s is tib.

d: \jes\dis\wip\phd\appx. doc
108

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" The clinic type and mode pair returned by dis-TypeLink when it is passed tc as an argument is the
same as that obtained from knowing the clinic type of the clinic list associated with the stream
associated with the slot, and the mode associated with the slot.

" If pid is known to OPAS and associated with an appointment then aspid is the appropriate OPAS
patient id (ie that linked with pid through dis-Pidas) and inherit the preconditions and
postconditions of the BookKnownP operation.

" If pid is not known to OPAS and associated with an appointment then inherit the preconditions and
postconditions of the BookUnknownP operation.

Postconditions:

" All the newly created activity records (all of a, and A�) are now requests.

" The parent activity record of any of the newly created record is either in A,, or the parent activity
record ap.

" The projection of that part of dis-VisRel which contains domain and codomain purely from any of
the activities referred to in the operation onto the set of type records is a subset of crs-TypeParent.

" a, is now of the type tý.

" The patient id associated with all the newly created activity records is pid.

" a, is now associated with the slot s through the relation dis-ActSlot.

" pid and aspid are now related to each other via dis-Pidas.

DIS1C1assl. Schedule(a, c, d, tib-*s)

dis-Pr 24: a: dis-Request

ai, -p, zs: c: dis-Clists; d: (im as-Precedes_D+) {as-NowD}; Tb: as-TOfD

dis-Pr u: dis-ActType(a) E dis-Bookable

dis-Pr n: SE (im SlotStream't) { (dis-StreamClist 0 as-StreamDay)-t (c, d) }

dis-Pr28: S E (SlotStart-t) {tb)

d1, -Pr 29: dis-TypeLink(dis-ActType(a)) _
((as-ClinicType ° as-StreamClinic ° as-SlotStream)0 as-SlotMode) (s)

dis-Pr 3o: OPASAppt. MakeBooking(dis-Pidas(dis-ActSubject(a)), s)

dis-Po 16: (a, s) E dis-ActSlot'

Types

"a is a request record

"c is a clinic list; d is a day after today; Tb is a time of day

Preconditions

" The type of a is in dis-Bookable

"s is a associated with a stream that is associated with clinic list c and takes place on day d

"s is a slot that starts at time rb

" The clinic type and appointment mode of s have the same values as those associated with t, through
TypeLink

" then inherit the preconditions and postconditions of the MakeBooking operation.

d: \jes\dis\wip\phd\appx. doc

109

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Postconditions

"s is now the slot associated with a,

DIS lC lass 1. Unbook(a)

dis-Pr3l: a: Dom(dis-ActSlot)

dis-Pr32: OPASAppt. CancelBooking(di s-Acts Iot(a))

dis-Po 17: (a, s) v dis-ActSlot'

Types

"a is an activity record associated with a slot record through dis-ActSlot

Preconditions

" then inherit the preconditions and postconditions of the CancelBooking operation

Postconditions

"s is no longer associated with ac through dis-ActSlot

DISICIassl. Start(a)

a�-Pr33: a: dis-Request

dis-Pr 34: CRSClass4. CreVis(dis-ActType(a), dis-ActSubject(a)-->a)

dis-Pr 35: aE Dom(dis-ActSlot) = OPASAppt. ApptStart(dis-ActSlot(a))

Preconditions

"a is a request record

" Invoke CRSCIass4. CreVis

If a is associated with a slot record through dis-ActSlot, then inherit the preconditions and
postconditions of the ApptStart operation.

DISlClassl. End(a)

dis-Pr 36: CRSCIass4. FinVis(a)

dis-Pr 7: ae Dom(dis-ActSlot) OPASAppt. ApptEnd(dis-ActSlot(a))

Preconditions

" Invoke CRSCIass4. FinVis

" If a is associated with a slot record through dis-ActSlot, then then inherit the preconditions and
postconditions of the ApptEnd operation.

DIS1Classl. Cancel(a)

dis-Pr 38: a: dis-Request

a�-Po is: ae dis-Activities

Preconditions

"a is a request record

d: \jes\dis\wip\phd\appx. doc
110

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Postconditions

0a is no longer an activity record
DIS1Classl. PatArrive(pid, t)

aý. -p . ýv: pid: crs-Pid

a�-ft, a: Vs: (as-Appointment-1) {dis-Pidas(pid)} n (im S1otDay-l)(as NowD} " OPASAppt. PatArrive(s, t)

Types

" pid is the id of a registered patient

Preconditions

" For every slot record associated with patient id pid on todays date, inherit the preconditions and
postconditions of (a separate instance of) the PatArrive operation.

DIS1 CIass1. Register(pd-apid)
F&s-llr4l,

CR-SClass4. Register(pd-4pid)

Preconditions

0 Inherit the preconditions and postconditions of the CRSCIass4 operation.

DIS1CIassl. ClinicSetup(ct, D, Dn, DClist-4Cl)

d114'r42: DClist: as-Days e dis-CI

a, -w43: Dom(DClist) = Dom(Dn) =D

ai, -pae: Vd: De C im DClist) {d} = Dn(d)

, u, -r. as: OPASAppt. ClinicSetup(ct, D, Dn-.)CI)

dis-Po 19: Cod(DClist) (Z dis-Clist'

dis-Po 21): Cod(dis-StreamClist t> (as-Streams' \ as-Streams)) = Cod(DClist)

d; 3-Po2I: Vd: D, Vlist: Cod(DClist) " #(im as-StreamClist'-t) {list} n (im as-StreamDay''t) (d): 5 1

dis-PO 22: (im as-ClinicType' 0 as-StreamClinic' 0 as-StreamClist') Cod(DClist) = {ct}

Preconditions:

" DClist is a relation between day records and clinic list records (which may be created or uncreated).

" Each day record in D is represented in the domain of DClist and the domain of Dn

" For any day record in D, there are as many clinic list records associated with that day as there are
stream records (through Dn).

" Inherit the preconditions and postconditions of the ClinicSetup operation.

Postconditions:

" All clinic list records referred to in the argument are now in dis-Clist

d: \jes\dis\wip\phdluppx. doc

111

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" Stream records created as a result of this operation are associated with the clinic list records referred
to in the operation's parameters.

" On any given day, a given clinic list record can have at most one stream record associated with it.

" All clinic list records referred to in the operation's parameters are associated with stream records
that are in turn associated with clinic records that are all of type et.

DISl Classl. StreamCancel(st)

a s-p, a6: OPASAppt. StreamCancel(st)

Preconditions:

" Inherit the preconditions and postconditions of the StreamCancel operation from the OPASAppt

class.

DIS 1 Class 1. S1otsCreate(TAm, st)

dis-eras OPASAppt. SlotsCreate(TAm, st)

Preconditions:

" Inherit the preconditions and postconditions of the SlotsCreate operation from the OPASAppt

class..

<><><><><><><><><><><><><><><><><><><><><><><>O<>O<>0000<><><><><>

C1ockInteraction

OPASCIock; Clock

dis-ißt-T i: IntTime: as-TOfD H T; IntDay: as-Days (-) T

d; 8-int-r 2: RepDay: T -4 as-Days; RepTime: T -i as-TOfD

dis-int-I i: RepDay = IntDay't; RepTime = IntTime-I

dis-inta2: (RepTime 0 RepDay)-t E (as-TOfD X as-Days) ->T

dis-int-I 3: RepDay(Now) = as-NowD; RepTime(Now) = as-NowT

dis-int-I 4: V (tl, t2): Next " (RepTime(t 1), RepTime(t2)) E as-Precedes_T v
(RepTime(tl) = as-LastT A RepTime(t2) = as-FirstT A (RepDay(tl), RepDay(t2)) e as-Precedes_D

NB This class is the first of the three interaction classes: Clocklnteraction, DIS1Typelnteraction, and
DIS I Interaction. They all describe one theory of how components of the information system will be
interpreted into the domain. This class deals with the interpretation of the appointment system's
representation of time. It does not cast any valuable light on the information system as a whole, but is a
necessary precursor to understanding the overall interpretation. For this reason it has been presented as a

separate class. All Int... (Interpretation) functions map information system components onto domain

state components: Rep... (Representation) functions map domain state components onto information

system components.

Types

" IntTime is a total relation from time records in the OPAS to time in the domain

" IntDay is a relation from day records in the OPAS to time in the domain

" RepDay is a total function from time in the domain to day records in the OPAS

d: \jes\dis\wip\phd\apPx. doc
112

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" RepTime is a total function from time in the domain to time records in the OPAS

Invariants

" RepDay is the inverse of IntDay; RepTime is the inverse of IntTime.

" Any pair of day and time records from the OPAS points to a single time in the domain.

" Now is represented in the information system partly by as-NowD, and partly by as-NowT.

" If time t2 is Next after time tl, then either the representation of tl precedes the representation of t2,
or tl is the last time record for one day record, t2 is the first time record for another day record, and
the first day record precedes the second.

Clocklnteraction. Tick()
[lrnIPrt: DIS1C1ock. Tick()

d�-iii-Pr z: Clock. Tick()

Preconditions:

" Inherit the preconditions and postconditions of the Tick operation from the class DIS I Clock.

" Inherit the preconditions and postconditions of the Tick operation from the class Clock.

<><><><><><><><><><><><><>UQ<>UOQ<>U<><><>OU<><><><><><><><><><>

DIS1Typelnteraction

CRSTypeClassl, TypeClass5

di -int-T 3: IntT: crs-Types -4 Types; RepT: Types -H crs-Types

a�-iM-T4: SupTypes, SupBook, SupAccess, FuliRepTypes: Set[Types]

a�-ißt-I s: IntT = RepTt

dis-rat-I 6: IntT ° crs-TypeParent ° RepT r- Cod(TypeGuide)

dis-lnf-I 7: SupTypes = Dom(RepT); SupBook = (im IntT) (crs-Bookable); SupAccess = (im IntT) (crs-
Accessible)

a�-irl-I e: Ful1RepTypes SupTypes c HomeTypes

ass-ißt-I 9: (im RepT) FullRepTypes c crs-Types \ Cod(crs-TypeParent)

a�-+nt-I io: SupBook = SupType r Bookable; SupAccess = SupType n Access

dis4nt-I i i: (im IntT) (crs-Types\Cod(crs-TypeParent)) c PatReq

disino a Vt: SupTypes " -3tg1, tg2: TGroupers " tgl * tg2 Ate Dom(TypeGuide(tg1) n TypeGuide(tg2))

NB The state components that start with the prefix Sup- are all subsets of state components from the
domain. In particular they are members of domain state components that are represented, or Wported
in the information system: thus SupTypes is the set of all members of Types that are represented in
DIS 1.

Types

" IntT is a function from types as represented in the CRS to types in the domain

" RepT is a partial function from types in the domain to their representation in the CRS

" SupTypes, SupBook and SupAccess, and FullRepTypes are all sets of types. FuliRepTypes is the set
of types all of whose activities are represented in the DIS. More specifically it is the set of types such

d: \jes\dis\wip\phdwppx. doc
113

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

that the start of an activity of this type in the domain is always accompanied by the creation and
'start' of a corresponding activity record in the information system.

Invariants

" IntT is the inverse of RepT.

" The function TypeParent, interpreted into the domain, is a subset of the codomain of TypeGuide.
There is no representation of TGrouper as multiple embedding of visit records is not allowed in the
CRS or DIS 1.

" SupTypes is the set of types that are suported by the DIS; SupBook is the interpretation of the set
Bookable in the CRS; SupAccess is the interpretation of the set Accessible in the CRS.

" All members of FullRepTypes are supported types, and all supported types are home types.

" Each member of FullRepTypes is represented by a 'childless' type record in the information system.
This is to ensure that a started activity of a type in FullRepTypes can always be represented. If we
did not have this invariant then we could start a child activity unbeknownst to the information
system which would start a parent of a type that we are trying to ensure is represented.

" SupBook is all supported types that are bookable; SupAccess is all supported types that are in
Access.

" All types that have no children through crs-TypeParent are representations of types in PatReq.

" Any type in SupTypes only appears in one relation pointed at by a member of TGrouper. Thus blood
tests and similar activities are not supported (in fact they are supported by the CRS, but in a
completely different manner - as attributes of clinical activities and not as clinical activities in their
own right.

<><><>QQ<><><><><><><><><><>U00<><><>000<><> >00<><>

d: \jes\dis\wip\phd\appx. doc
114

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DISlInteraction

DIS1Class1, DIS1Typelnteraction, Clocklnteraction, ATClassS

a;: -ißt-T5: IntA: dis-Activities -9 Activities; RepA: Activities -H dis-Activities

dis-iii-T 6: IntP: crs-Pid -i Patients; RepP: Patients -H crs-Pid

a -int-T7: RepSlot: Slots -H as-Slots; IntSlot: as-Slots -H Slots

dis-ißt-re: IntClist: dis-Clist -4 C; RepClist: C -H dis-Clint

ais-ißt-T9: SupAct: Set[Activities]; SupPat: Set[Patients]; SupSlots: Set[Slots]

dis-4nt-I 13: IntA = RepA-1; IntP = RepP-t; IntSlot = RepSlot 1; IntClist = RepClist-,

dis-int-1 14: SupAct = Dom(RepA); SupPat = Dom(RepP); SupSlot = Dom(RepSlot)

di -ißt-l 15: SupAct c (im ActType-1) SupTypes

d, s-int-1 16: IntA ° dis-VisRel ° RepA s During

dis-inn-I n: IntT ° dis-ActType ° RepA = SupAct 4 ActType

dis-int-l is: IntP ° dis-ActSubject ° RepA = SupAct 4 ActSubject

as-ins-1 i9: IntSlot ° dis-ActSlot ° RepA = SupAct 4 ActSlot

dis-ißt-l 2o: (im ActType-t) FullRepTypes n Proceed cg (im IntA) crs-Proceed

dis-im-1 21: SupAct n Proceed \ (im IntA) Cod(dis-VisRel) s (im IntA) crs-Proceed

dis-int-a u: SupAct n Complete \ (im IntA) Cod(dis-VisRel) = (im IntA) crs-Complete

dis-iii-I23: RepT ° ((ActType D ((im IntT) dis-Bookable)) ° dis-ActSlot-I ° as-SlotClist-t) ° IntClist c
dis-TypeLink-I ° (id[as-CTypes] 0 as-CTypeModes) ° (ClinicType ° StreamClinic ° StreamClist)

dis-ißt-I 24: Cod(RepSlot) = Dom(as-Appointments)

dis-ißt-I zs: RepDay ° (SupSlot 4 SlotStart)-I ° (SupSlot 4 SlotEnd) ° IntDay c id[as-Days]

di -ißt-I 26: as-SlotDay = RepDay ° (SupSlot 4 SlotStart) ° IntSlot

dis-int. a n: RepTime ° (SupSlot 4 SlotStart) ° IntSlot = as-SlotStart

dis-ißt-I 28: RepTime ° (SupSlot 4 SlotEnd) ° IntSlot = as-SlotEnd

dis-int-I 29: as-StartTime s RepTime ° (SupSlot 4 (ActStart ° ActSlot-1)) ° IntSlot

dis-int-I w: as-EndTime g RepTime ° (SupSlot 4 (ActEnd ° ActSlot 1)) ° IntSlot

" Inherit the type declarations and invariants of the classes DIS1Classl, DIS1Typelnteraction,
Clocklnteraction, and ATClass5

Types:

" IntA is a total function from activity records in DIS1 to activities in the domain; RepA is a partial
function from activities in the domain to activity records in the DIS.

" IntP is a total function from patient ids to patients; RepP is a partial function from patients to
patient ids.

" RepSlot is a partial function from slots in the domain to slot records in the OPAS; IntSlot is a
partial function from slot records in the OPAS to slots in the domain.

" IntClist is a total function from clinic list records in DISI to clinic lists in the domain; RepClist is a
partial function from clinic lists in the domain to clinic list records in the DIS I.

d: \jes\dis\wip\phd\aPpLdoc

115

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" SupAct is a set of activities; SupPat is a set of patients; SupSlots is a set of slots.

Invariants

" IntA is the inverse of RepA; IntP is the inverse of RepP; IntSlot is the inverse of RepSlot; IntClist is
the inverse of RepClist.

" SupAct is all activities represented in DIS I; SupPat is all patients represented in DISI; SupSlot is
all slots represented in DIS 1.

" Any activity in SupAct is of a type in SupTypes.

" The projection of the tree dis-VisRel onto Activity space is a subset of During.

" The projection of dis-ActType onto domain space (ie state components from the domain theory) is
that subset of ActType that has SupAct as its domain.

" The projection of dis-ActSubject onto domain space is that subset of ActSubject that has SupAct as
its domain.

" The projection of dis-ActSlot onto domain space is that subset of dis-ActSlot that has SupAct as its
domain.

" The start of all activities of a type in FullRepTypes is recorded in the information system.

" The start of all requests represented by a 'childless' activity record is recorded.

" The completion of all activities represented by a 'childless' activity record is recorded: the
completion of no other activities is recorded.

" All complete supported activities are represented as members of the set Complete in the DIS

" The various types associated with a particular clinic list (through activities associated with the clinic
list) are allowable types. We can see if they are allowable by looking at the dis-Clist record the
particular clinic list is associated with (through IntClist) and seeing what types can be feasibly
associated with it. What this invariant means is that if the activity is supported, then, if it is to be
booked, it must be booked on the appointment system. This in turn imposes constraints on the
domain, as we are not free to associate a clinic list with any type of activity on the information
system.

" All slots that have patients associated with them in the OPAS represent slots in the domain through
the function RepSlot.

" All supported slots begin and end on the same day

" The day record the representation of a slot is stated as starting on is interpreted as the day that the
slot in the domain is booked to start on.

" The scheduled start of a slot in the OPAS can be translated to the start of the (interpreted) slot in the
domain.

" The scheduled end of a slot in the OPAS can be translated to the end of the (interpreted) slot in the
domain.

" The actual start of the slot in the OPAS can be translated as the start of the relevant activity in the
domain.

" The actual end of the slot in the OPAS can be translated as the end of the relevant activity in the
domain.

DISlInteraction. NonRecCreate(Ab, Pn, tn 4an)

[i.
nIPr3: ATClass5. Create(Ab, pn, tn-'fan)

d: \jes\dis\wip\phd\appx. doc
116

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Preconditions:

0 Inherit the preconditions and postconditions of the the Create operation from the ATClass5 class.

DIS1Interaction. RecCreate(Ab, pn, tn-3an)

dis-int-PT 4: ATC1ass5. Create(Ab, pn, tn'+an)

di. -int-Pr s: DIS1CIassl. Create(pn, RepT(t�)-*v�)

dis-int-Po i: (vn, an) e IntA'

Preconditions:

" Inherit the preconditions and postconditions of the Create operation from the ATClass5 class.

" Inherit the preconditions and postconditions of the Create operation from the DISiClass1 class
(note that one of the preconditions inherited by this operation tells us that RepT(t�): crs-Types - thus
t,, must be in SupTypes).

Postconditions:

" v, (returned from the invoked information system operation) is now the representation of a,,.

DIS1Interaction. NonRecGenerate(Ap, Ab, tC, hcp-*ac)

d -in1-Pr 6: ATC1ass5. Generate(AP, Ab, tc, hcp-aac)

Preconditions:

0 Inherit the preconditions and postconditions of the Generate operation from the ATClass5 class.

DIS1Interaction. RecGenerate(AP, Ab, tc, hcp-*ac)

arg-ißt-Pr7: p: (im ActSubject) Ap

a�-ißt-Pr 8: DIS1C1as51. Generate(RepT(tý), RepP(p)-->v,)

di, -ißt-erg: ATCIass5. Generate(AP, Ab, tC, hcp-5a,)

ass-ißt-Pr io: IntT ° ((Cod({ RepT(ActType(a))) 4 crs-TypeParent`)) 4 crs-TypeParent) ° RepT c
ActType 0 ((Cod({a}4 During)) 4 During) 0 ActType-1

,, a) e IntA' dis-int-Po 2: (vc

Preconditions:

"p is one of the subjects of the set of 'parent' activities Ap (the set of such subjects is specified as a
singleton set in one of the invariants of the domain theory).

" Inherit the preconditions and postconditions of the Generate operation from the DISIClassI class.

" Inherit the preconditions and postconditions of the Generate operation from the ATClass5 class.

" The structure that is created as a result of calling Generate from the DISiClassl class must be
capable of being matched up with an existing structure in the domain that has a as its most junior
member.

Postconditions:

"a is now the interpretation of vc.

d: \jes\dis\wip\phd\appx. doc

117

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DIS 1Interaction. NonRecSuddenStart(A,, tt, hcp-4ac)

ahs-ina-i. II: ATClassS. SuddenStart(AP, tc, hcp-4ac)

dis-ißt-Pr 12: tc e Fu11RepTypes

Preconditions:

" Inherit the preconditions and postconditions of the the Create operation from the ATClass5 class.

" t, is not a member of FullRepTypes.

DIS 1Interaction. RecSuddenStart(AP, tý, hcp- *ac)

dis-int-Pr 13: p: (im ActSubject) AP

dis-int-Pr 14: ATClass5. SuddenStart(Ap, t,, hcp-ýa,)

dis-int-Pr 15: DIS1C1assl. SuddenStart(RepT(tý), RepP(p)9v,)

dis-ißt-Pr 16: IntT ° ((Cod({RepT(ActType(a)) }4 crs-TypeParent`)) 4 crs-TypeParent) ° RepT C.
ActType ° ((Cod({a}4 During)) 4 During) ° ActType-

des-irr-Po 3: (vc , a) e IntA'

Preconditions:

0p is one of the subjects of the set of 'parent' activities A.

" Inherit the preconditions and postconditions of the SuddenStart operation from the ATClassS class.

" Inherit the preconditions and postconditions of the SuddenStart operation from the DIS1Class1
class.

" The structure that is created as a result of calling Generate from the DISIClassl class must be
capable of being matched up with an existing structure in the domain that has a as its most junior
member.

Postconditions:

"a is now the interpretation of v,

d: \jes\dis\wip\phdlappx. doc
118

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DIS1Interaction. Book(AP, Ab, tc, hcp, c, Tb, tC-4ac, s)

dis-ißt-Pr 17: ATCIassS. Book(AP, Ab, tC, hcp, C, tb, tiC-4ac, s)

dis-Int-Pr 18: p: (im ActSubject) Ap

1 a�-ant-Pr 19: t, 95 (im IntT) dis-Bookable

.2 dis-ißt-Prm: t. E (im IntT) dis-Bookable

ass-inl-Pr 21 VP e (im RepA) Ap n (im dis-ActType-1) {TypeParent(tc)}

dig-int-p, zz: c e Dom(RepClist) = dis-c = RepClist(c)

dis-ißt-Pr 23: e Dom(RepClist) dis-c e dis-CI\Cod(RepClist)

dis-int-Pr24: C e Dom(RepClist) t, e (im dis-TypeLink-1 ° (id[as-CTypes] 0 as-CTypeModes) °

(ClinicType ° StreamClinic 0 StreamClist)) (dis-c}

dis-int-Pr u: RepDay(tib) = RepDay(te)

di. inn-Pr26: asI: dis-Slots " as-SlotStart(sl) = RepTime(tib) A as-5IotEnd(sl) = RepTime(tie) A dis-

TypeLink(RepT(t)) = ((as-ClinicType ° as-StreamClinic ° as-SlotStream) 0 as-SlotMode) (sl)

di. -int-Prr,:
IntT ° ((Cod((RepT(ActType(a))) 4 crs-TypeParent')) 4 crs-TypeParent) 0 RepT c

ActType ° ((Cod({a}4 During)) 4 During) ° ActType'I

di, -int-P zs: DIS1CIassl. Book(RepT(t,), RepP(p), dis-c, RepDay(tib), RepTime(tb)-*vc, s)

dis-int-Po 4: (c, dis-c) e RepClist'

dis-int-Po 5: t, e (im dis-TypeLink-t 0 (id[as-CTypes] 0 as-CTypeModes) 0 (ClinicType 0 StreamClinic 0

StreamClist')) (dis-c}

dis-Int-Po 6: (v,, a) e IntA'

Preconditions:

" Inherit the preconditions and postconditions of the Book operation from the ATClass5 class.

"p is one of the subjects of the set of 'parent' activities A.

Case l:

Preconditions:

" t, is not represented by a type in dis-Bookable.

Case 2:

Preconditions:

" t, is represented by a type in dis-Bookable (This condition is the one that insists that all

supported activity types that are booked must be booked through the information system).

" vp is the representation of one of the activities in Ap - the one that is of a type that is the parent

of the representation of tc.

" If the clinic list c is represented in the DIS then dis-c is its representation

" If the clinic list c is not represented in the DIS then dis-c is of the same type as representations
of clinic lists, but is not itself such a representation

d: \jes\dis\wip\ph Mppx. doc

119

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" tý is the interpretation of one of the allowable types that can be associated with the 'list' dis-c. If
dis-c is known (c is represented in the DIS), then we can work out whether t, is an allowable
type by looking at: the clinic type associated with all clinics associated with all streams
associated with the list; and all allowable modes associated with the clinic type. From the clinic
type and mode, the type can be calculated through TypeLink.

" The slot starts on the same day as it ends

" Thre is an available slot in the OPAS that starts at the right time, ends at the right time, and is
associated with clinics of an allowable type.

" The structure that is created as a result of calling Book from the DISIClassl class must be
capable of being matched up with an existing structure in the domain that has a as its most
junior member.

" Inherit the preconditions and postconditions of the Book operation from the DIS1Class I class.
Postconditions

" dis-c is now the representation of c.

" tc is an allowable type to be associated with dis-c (which is important if we didn't know what c
was before the operation).

"a is now the interpretation of v,

DIS lInteraction. Schedule(c, tb, tiC, a, s)

a. -mit-er 29: ATC1ass5. Book(c, Tb, T,, a, s)

1 dis-int-Pr 3o aý SupAct

.21 dis-jet-pr 31: ae SupAct

32: cE Dom(RepClist) dis-c = RepClist(c)

33: Co Dom(RepClist) dis-c e dis-Clist%Cod(RepClist)

dis-ißt-Pr 34: CE Dom(RepClist) = ActType(a) E (im dis-TypeLink-1 ° (id[as-CTypes] 0 as-CTypeModes) °
(ClinicType ° StreamClinic ° StreamClist)) (dis-c)

35: RepDay(Tb) = RepDay(ti,)

dis-ißt-Pr 36: 3s1: dis-Slots " as-SlotStart(sl) = RepTime(Tb) A as-SlotEnd(sl) = RepTime(t.) A dis-
TypeLink(RepT(t)) = ((as-ClinicType ° as-StreamClinic 0 as-S1otStream) 0 as-SlotMode) (sl)

dis-ißt-Pr 37: DISlCIassl. Schedule(RepA(a), dis-c, RepDay(tb), RepTime(tcb)-4s)

dis-int-Po 7: (c, dis-c) e RepClist'

dis-ißt-po 8: ActType(a) e (im dis-TypeLink'1 ° (id[as-CTypesl 0 as-CTypeModes) ° (ClinicType °
StreamClinic ° StreamClist)) {dis-c}

Preconditions:

0 Inherit the preconditions and postconditions of the Book operation from the ATClass5 class.

Case 1:

Preconditions:

0 a, is not a supported activity.

d: \jes\dis\wip\phd\appx. doc
120

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Case 2:

Preconditions:

" t, is a supported type.

" If the clinic list c is represented in the DIS then dis-c is its representation.

" If the clinic list c is not represented in the DIS then dis-c is of the same type as representations
of clinic lists, but is not itself such a representation.

" The type of a is the interpretation of one of the allowable types that can be associated with the
clinic list record dis-c.

" The slot starts on the same day as it ends

" There is an available slot in the OPAS that starts at the right time, ends at the right time, and is
associated with clinics of an allowable type.

" Inherit the preconditions and postconditions of the Book operation from the DIS1Class1 class,
with dis-c as the clinic list record.

Postconditions

" dis-c is now the representation of c

" The type of a is an allowable type to be associated with dis-c (which is important if we didn't
know what c was before the operation)

DIS llnteraction. NonRecStart(a)

ass-ißt-Pr 38: ATC1ass5. Start(a)

I ass-ißt-Pr 39: ActType(a) te Ful1RepTypes

aia-ißt-Pr ao: a 9 SupAct \ (im IntA) Cod(dis-VisRel)

.2 dis. int-Pr 4t: Rep(a) e crs-Proceed

Preconditions:

Inherit the preconditions and postconditions of the Start operation from the ATClass5 class.

Case 1:

Preconditions:

"a is not of a type in FuliRepTypes

" The only time a can be a supported activity is when it is 'parent' activity record (as defined
through dis-VisRel).

Case 2:

"a is represented by an activity record in crs-Proceed. This represents the case when the activity
has been suspended in the domain and restarted -a domain operation that is not supported by
the information system.

d: yes\dis\wip\pha\appx. doc

121

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DIS1Interaction. RecStart(a)

air-ißt-Pr 42: ATClassS. Start(a)

dis-int-Pr43: ActType(a) e SupTypes

I dis-int-Pr 44: a0 SupAct

dis-int-Pr45: IntT ° ((Cod((RepT(ActType(a))) G crs-TypeParent)) 4 crs-TypeParent) ° RepT c
ActType ° ((Cod({a}d During)) d During) ° ActType-I

dis-int-Prm: DIS1CIassl. SuddenStart(RepT(ActType(a)), RepP(ActSubject(a))-ova)

dis-int-Po 9: (v�a) e IntA'

2 dis-4nt-Pr 47: ae SupAct

dis-ißt-Pr 48: DISIClassl. Start(RepA(a))

Preconditions:

" Inherit the preconditions and postconditions of the Start operation from the ATClass5 class.

"a is of a type supported by the information system.

Case 1:

Preconditions:

"a is not currently represented in the information system.

" The structure that is created as a result of calling SuddenStart from the DISIClass I class must
be capable of being matched up with an existing structure in the domain that has a as its most
junior member.

" Inherit the preconditions and postconditions of the SuddenStart operation from the DIS I Class I
class.

Postconditions:

"a is now the interpretation of vs.

Case 2:

"a is an activity represented in the information system.

" Inherit the preconditions and postconditions of the Start operation from the DIS I Class I class.

DIS l Interaction. S uspend(a)

di -rnt-P. 49: ATClass5. Suspend(a)

NB This operation is not represented in the IS

DIS llnteraction. End(a)

d -ißt-Pr5o: a E SupAct DIS1Classl. End(RepA(a))

dis-int-Pr 51: ATC1ass5. End(a))

d: \jes\dis\wip\phd\appx. doc
122

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Preconditions:

" If a is represented in the information system then inherit the preconditions and postconditions of the
. End operation from the DIS 1 Class 1 class.

" Inherit the preconditions and postconditions of the End operation from the ATClass5 class.

DIS llnteraction. Cancel(a)

a�-ißt-Pr52: a e SupAct DIS1C1assl. Cancel(RepA(a))

dis-jet-Pr53: ATClass5. Cancel(a)

Preconditions:

" If a is represented in the information system then inherit the preconditions and postconditions of the

. Cancel operation from the DISIClass I class.

" Inherit the preconditions and postconditions of the Cancel operation from the ATClass5 class.

DIS1Interactionion. PatReg(p)

dis-iii-Pr 54: ATCIass5. PatReg(p)

NB This operation is not explicitly represented in the IS

DIS1Interaction. PatArrive(p)

a�-ißt-Pr 55: ATClassS. PatArrive(p)

NB This operation is not represented in the IS

DIS1Interaction. NotePatArrive(pid, T)

dis. inl-ß56: DISIClassl. PatArrive(pid, ti)

a�-inl-Pr 7:: IntP(pid) e PatPres

Preconditions:

Inherit the preconditions and postconditions of the PatArrive operation from the DIS 1 Class! class.

pid is the patient id of a patient who is currently present

DIS1Interaction. PatDepart(p)

a,, -+n, -Pr 58: ATClassS. PatDepart(p)

NB This operation is not represented in the IS

DIS 1Interaction. OutCreate(p,,, t,,, hcp-)a,,)

ATClass5. OutCreate(p,,, t, �hcp-4a�)

NB This operation is not represented in the IS

d: \jes\lis\wip\phd\appx. doc

123

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DIS1Interaction. OutGenerate(AP, t,, hcp-->a,)

dis-ißt-Pr c, o: ATClass5. OutGenerate(AP, t,, hcp-a,)

NB This operation is not represented in the IS

DISlInteraction. Associate(a, hcp)

dis-ißt-Pr 61: ATClass5. Associate(a, hcp)

NB This operation is not represented in the IS

DIS1lnteraction. Disassociate(hcp)

dis-int-Pr 62: ATC1ass5. Disassociate(hcp)

NB This operation is not represented in the IS

DIS l Inte raction. OutProceed(a)

dis-ißt-Pr 63: ATClassS. OutProceed(a)

NB This operation is not represented in the IS

DIS1Interaction. OutComplete(a)

dis-ißt-Pi 64: ATCIass5. OutComplete(a)

NB This operation is not represented in the IS

DIS l Interaction. PatJoin(a, p)

dis-int-Pr 65: ATClass5. Patjoin(a, p)

NB This operation is not represented in the IS

DIS1lnteraction. PatLeave(p)

ais-int-P 66: ATClassS. PatLeave(p)

NB This operation is not represented in the IS

DIS1Interaction. ClinicSetup(ct, D, Dn, DClist-*CI)

dis-, nt-Pr 67: DISiClassl. ClinicSetup(ct, D, Dn-+CI)

NB Not representative of an operation in the domain

d: \jes\dis\wip\ph S appx. doc
124

Jeremy DH Holland Volume H: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

DIS1Interaction. StreamCancel(st)

dis-ißt-Pr 69: DIS1Classl. StreamCancel(st)

NB Not representative of an operation in the domain

DIS1Interaction. SlotsCreate(TAm, st)

dis-ißt-Pr 69: DIS lClassl. SlotsCreate(TAm, st)

NB Not representative of an operation in the domain

DIS1Interaction. Tick()

dis-ißt-Pr 70: Clocklnteraction. Tick()

Preconditions:

0 Inherit the preconditions and postconditions of the Tick operation from the Clocklnteraction class.

d: \jes\dis\wip\phd\appx. doc

125

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

d: \jes\dis\wip\phd\appx. doc
126

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Appendix 6:

The Extension of the Domain Theory to
a Hypothetical Domain:
Out-patient Contracting

d: \jes\dis\wip\phd\appx, doc

127

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

This appendix presents a refinement of ATClass5 of the domain theory. The new theory describes the
behaviour of the directorate as it might be following the introduction of more efficient contracting
procedures. In order to represent the new organisation a number of new state components have been
introduced. However, mutual constraints mean that the ratio of forbidden to permitted behaviours is
increased so the theory is an emboldening of the original.

The envisaged behaviour was recorded after discussions with the directorate manager (Mrs Kay
Checkley) and the hospital contracts manager (Mr Ray Franklin). A more detailed description of the
analysis process is recorded in [Sangh94].

PackageTypeClass

TypeClass5

PType, PTClass_Time, PTClass_No: Set[pT]

PT_Duration: PType -H N+

PTypeAType: PType H Type

PTATNo: PTypeAType * N*

PTClass_Time u PTClass_No = PType; PTClass_Time rn PTClass_No =0
Dom(PT_Duration) = PTClass_Time

Cod(PTypeAType) Q Bookable

Dom(Dom(PTATNo)) = PTClass_No

Declarations

" PType (a set of package types), PTClass_Time (the subset of types that deliver activities for a fixed
time), PTClass_No (the subset of types that deliver a fixed number of activities) are all sets of the
same type.

" PT_Duration is a function that returns a positive number (the time duration of packages of this type)
when supplied with a package type.

" PTypeAType is a relation that associates package types with activity types

" PTATNo is a function that returns a positive number (the number of activities of the activity type
that can be associated with a package of the package type) when supplied with an activity type -
package type pair.

Invariants

" PTClass_Time and PTClass_No completely partition he set and are disjoint.

" All package types that have a duration are in the set PTClass_Time.

" All activity types that are associated with package types are elements of the set Bookable - the set of
bookable activity types.

" All package types that appear in the 'triple' PTATNo are in the set PTClass_No.

d: \jes\dis\wip\phd\appx. doc
128

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Examples of the sets PTypeAType and PTATNo are given below:

PTypeAType:
Diabetes Package (Year) Init Dr Cons

Diabetes Package (Year) Followup Dr Cons

First Diabetes Package (Activity) Init Dr Cons

First Diabetes Package (Activity) Followup Dr Cons

Subsequent Diabetes Package (Activity) Followup Dr Cons

First Single Visit Package Init Dr Cons

Subsequent Single Visit Activity Followup Dr Cons

PTATNo:

First Diabetes Package (Activity) Init Dr Cons 1

First Diabetes Package (Activity) Followup Dr Cons 2

Subsequent Diabetes Package (Activity) Followup Dr Cons 3

First Single Visit Package Init Dr Cons 1

Subsequent Single Visit Activity Followup Dr Cons I

d: \jes\dis\wip\phd\appx. doc

129

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

PackageClassi

PackageTypeClass

Packages, Pack_Secured, Pack_Pending, Pack_Refused, Pack_Delivered, Pack_Terminated,
Pack_Complete: Set[Pk]

PackType: Packages -i PType

ActPack: Activities -H Packages

PackPat: Packages -) Patients

PackStart: Packages -H T

PatPType: Patients *f* PType

PackAType: Packages H Types

PatPkAType: Patients % Types

ActPackAType: Activities -H (Pack X Types)

Pack_Secured u Pack_Pending u Pack_Refused = Packages

Pack_Secured n Pack_Pending = Pack_Pending n Pack_Refused = Pack_Refused n Pack_Secured =0

Pack_Delivered v Pack_Terminated = Pack_Complete; Pack_Delivered n Pack_Terminated =0

PackPat ° ActPack c ActSubject

Dom(ActPack D Pack_Complete) c Complete

PatPType = PackType ° PackPat't; PackAType = PTypeAType ° PackType

PatPkAType = PackAType ° PackPat't; ActPackAType = ActPack 0 ActType

Vpk: Dom(PackType D PTClass_No) " Vt: (im PackAType) {pk} " #(im ActPackAType't) {(pk, t)} 5
PTATNo((PackType(p), t))

Vpk: Dom(PackType D PTClass_No) " pk e Pack_Delivered c* Vt: (im PackAType) {pk} " #(im
ActPackAType-1) { (pk, t) }\Request = PTATNo((PackType(p), t))

Vp: Patients " bit: (im PatPkAType) { p) "
Vpkl, pk,): (im PackPat-1)(p) n (im PackAType-t) {t) \ Pack-Complete e
(PackType(pk1) E PTClass_No A #(im ActPackAType-1) {(pk1, t)} = PTATNo((PackType(pk1), t))) v
(PackType(pk,) e PTClass_No A #(im ActPackAType-1) {(pk,, t)} = PTATNo((PackType(pk,)), t))) v pk,
= pk2

Packages' =0

Declarations

" Packages, Pack_Secured (the set of packages for which contracts have been secured), Pack_Pending
(the set of packages for which a contract is being awaited), Pack_Refused (the set of packages for
which a contract has been refused by the purchaser), Pack_Delivered (the set of packages
successfully and completely delivered), Pack_Terminated (the set of packages that have been
abnormally terminated), and Pack_Complete (the set of packages that have bee completed normally
or abnormally) are sets of the same type.

" PackType records the package type of every package

" ActPack records the package (if any) that an activity has contributed towards the completion of.

" PackPat records the patient that a package has been created for

d: \jes\lis\wip\phd\appx. doc
130

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" PackStart records the time of commencement of all packages that have started

" PatPType is a relation that records the package types of the packages associated with a particular
patient

" PackAType is a relation from Packages to activity types. For a particular package, only visits of
types listed in the image of that package through the relation can be associated with the package

" PatPkAType is a relation from patients to activity types. The image of a patient through this relation
records the allowable types that can be associated with packages associated with the patient

" ActPackAType is a function from activities to a pair of packages and activity types. When supplied

with an activity, the function returns the package and activity type associated with that activity.

Invariants

" Pack_Secured, Pack_Pending and Pack_Refused partition the set of packages

" Pack_Secured, Pack_Pending and Pack_Refused are disjoint

" Pack_Complete is the union of Pack-Delivered and Pack. Terminated

" Pack_Delivered and Pack_Refused are disjoint

" The patient that a package is associated with is the same as the-patient that all that package's

activities are associated with

" All activities that a completed (normally or abnormally) package is associated with are themselves

complete.

" PatPType gives the set of types of packages associated with a patient

" PackAType gives the allowable activity types that can be associated with a package

" PatPkAType gives the allowable activity types that can be associated with all packages associated
with a patient

" ActPackAType returns the package identifier and activity type associated with an activity

" For any package that is of a package type in PTClass_No, for any activity type that might describe

activities feasibly associated with that package, the number of activities of that type that are
associated with the package must be less than the maximum allowed number as defined by PTATNo

" For any package that is of a package type in PTClass_No, if the package is delivered, then for any
activity type that might describe activities feasibly associated with that package, the number of
activities of that type that are associated with the package must be equal to the maximum allowed
number as defined by PTATNo, and vice versa

" For all patients, for all allowable activity types that can be associated with packages associated with
that patient, suppose there are two distinct, non-complete, packages which support activities of that
type, and are assigned to that patient: one of the packages must be complete with respect to that
type. We know if a package is complete with respect to a type if it is of a package type in
PTClass_No and the number of activities of the type in question associated with the package is the
maximum number as defined by PTATNo. A package cannot be complete wrt a particular activity
type if it is of a package type that is in PTClass_Time

d: \jes\dis\wip\phd\appx. doc

131

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

PackageClassl. PackCreate(pt, p - pk)

pt: PType; p: Patients; pk: Pk\Packages

Vt: (im PTypeAType) {pt} . -3pk,,: (im PackPat-t){p} n (im PackAType-1) {t} \ Pack-Complete *
(PackType(pk,,) E PTClass_Time) v (PackType(pk�) E PTClass_No A #(im ActPackAType-1) {(pk,,, t)} <
PTATNo((PackType(pko), t)))

pk e Pack_Pending' v Pack_Secured'

(pk, pt) E PackType'

(pk, p) e PackPat'

Types

" pt is a package type

"p is a (registered) patient

" pk is of the same type as Packages but is not a package

Preconditions

" For all the activity types that can be associated with the type of the new package, there is no non-
complete package that is associated with the patient and can support activities of the type in
question where that package has a package type in PTClass_Time or where that package is not
complete wrt that activity type

Postconditions

" The new package, pk, is either in Pack_Pending or Pack-Secured

" The new package is now of package type pt.

" The new package is now associated with the patient p

PackageClassl. PackActAss(pk, p, t-*a)

pk: Packages \ (Pack_Delivered u Pack_Terminated)

p: Patients; t: Bookable; a: A

p= PackPat(pk)

tE (im PTypeAType) {PackType(pk)}

PackType(pk) e PTCIass_No = #((im ActPack't) {p}) 4 ActType D {t} <PTATNo((PackType(p), t))

(a, pk) e ActPack'

Types

" pk is a package that has not been completed

"p is a patient

"t is a bookable activity type

"a is of the same type as Activities, but might not be one yet

Preconditions

p is the patient associated with the package pk

"t is a type that is associated with the package type through PTypeAType

d: \jes\dis\wip\phd\appx. doc
132

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" If the package is of a package type in PTClass_No then the number of activities associated with pk
that are of type t is less than the maximum that can be associated before the package is complete

Postconditions

" pk is now associated with a through the function ActPack. a must now be in Activities (it cannot be
in A\Activities) as the range of ActPack is a subset of Activities.

PackageClassl. PackSecure(pk)

pk: Pack-Pending

pk e Pack_Secured'

Types

pk is a package in Pack_Pending

Postconditions

pk is now in Pack-Secured

PackageClassl. PackStart(pk, ti)

pk: Packages \ (Pack_Delivered u Pack_Terminated)

ti: T

pk v- Dom(PackStart)

(pk, T) e PackStart'

Types

" pk is an incomplete package

"i is a time

Preconditions

" the package pk has not started

Postconditions

" The start time of pk is now T.

PackageClassl. PackTerminate(pk)

pk: Packages \ (Pack_Delivered u Pack_Terminated)

pk e Pack_Terminated'

Types

" pk is an incomplete package

Postconditions

" pk is now in Pack_Terminated

d: \jes\dis\wip\phd\appx. doc

133

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

PackageClassl. PackRefuse(pk)

pk: Pack_Pending

pk e Pack_Refused'

Types

" pk is a pending package

Postconditions

" pk is now refused

PackageClassl. PackEnd(pk)

pk: Packages \ (Pack_Delivered u Pack_Terminated)

pk E Pack_Delivered'

Types

" pk is an incomplete package

Postconditions

" pk is now a delivered package

Other operations, inherited unchanged from ATClass5.

" PackageClassl. Create(Ab, pn, t,,, a�)

" PackageClassl. InGenerate(AP, Ab, tc, hcp, ac)

" PackageClassl. Book(AP, Ab, tc, hcp, c, tib, ie, ac, s)

" PackageClassl. Book(c, tb, Te, ac, s)

" PackageClassl. Unbook(a)

" PackageClassl. SuddenStart(AP, tc, hcp, ac)

" PackageClassl. Start(a)

" PackageClassl. Suspend(a)

" PackageClassl. End(a)

" PackageClassl. Cancel(a)

" PackageClassl. Associate(a, hcp)

" PackageClassl. Disassociate(hcp)

" PackageClassl. OutCreate(pn, tn, hcp, all)

" PackageClassl. OutGenerate(AP, tc, hcp, ac)

" PackageClassl. OutProceed(a)

" PackageClassl. OutComplete(a)

" Package Class1. PatReg(p)

" PackageClassl. PatDereg(p)

" PackageClassl. PatArrive(p)

d: \jes\dis\wiP\Phd\aPPX. doc
134

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" PackageClassl. PatDepart(p)

" PackageClassl. Patjoin(a, p)

" PackageClassl. PatLeave(p)

<><><>000000<>OOOU000<>00<><><><>00000<><><><><><><>

ContractConfig

DHA, ContDHA: Set[DHA]

GP, GPFH, GPFHBC: Set[GP]

ContDHA c DHA

GPFHBC r_ GPFH C GP

Declarations

" DHA (District Health Authorities) and ContDHA (DHAs with which the centre has a contract) are
both sets of the same type (DHA)

" GP (General Practitioners), GPFH (GP Fund-Holders), and GPFHBC (GP Fund-Holders with whom
the centre has a block contract) are all sets of the same type (GP)

Invariants

" ContDHA is a subset of DHA

" GPFHBC is a subset of GPFH which is a subset of GP

OOUOOQO<><><>00<><><>UA<>OOq<><><>OU<>QOOODU<>Oq

PackageClass2

PackageClassl, ContractConfig

Cont_ECR, Cont_GPFH, Cont_BC, Cont_GPFHBC: Set[Packages]

PackDHA: Packages -3 DHA; PackGP: Packages -i GP

PatDHA: Patients -i DHA; PatGP: Patients -) GP

VA, B: {Cont_ECR, Cont_GPFH, Cont_BC, Cont_GPFHBC} .A0B=0vA=B

U {Cont_ECR, Cont_GPFH, Cont_BC, Cont_GPFI-B3C} = Packages

Cont_GPFH = Dom(PackGP D GPFH \ GPFHBC)

Cont_GPFHBC = Dom(PackGP D GPFHBC)

Cont_BC = Dom(PackDHA D ContDHA) \ (Cont GPFH u Cont_GPFHBC)

Cont_ECR = Packages \ (Cont_GPFH v Cont_BC u Cont_GPFHBC)

Cont_GPFH y Cont_BC u Cont_GPFHBC Q Pack_Secured

Declarations

" Cont_ECR (the set of packages that are extra-contractual), Cont_GPFH (the set of packages that are
authorised by GP Fund-Holders that we do not have a block contract with), Cont BC (the set of
packages that are authorised by DHAs with whom we have a block contract), Cont_GPFHBC (the

set of packages that are authorised by GP Fund-Holders that we have a block contract with) are all
sets of packages.

d: yes'dis\wip\phd\appx. doc

135

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" PackDHA returns the health authority that a supplied package is associated with

" PackGP returns the GP that a supplied package is associated with

" PatDHA returns the health authority that a supplied patient is associated with

" PatGP returns the GP that a supplied patient is associated with
Invariants

" The sets Cont_ECR, Cont_GPFH, Cont_BC, Cont_GPFHBC are disjoint

" The sets Cont_ECR, Cont_GPFH, Cont_BC, Cont_GPFHBC partition Packages

" Cont_GPFH is the set of packages that are associated with GP Fund-Holders that we do not have
block contracts with

" Cont_GPFHBC is the set of packages that are associated with GP Fund-Holders that we have block
contracts with

" Cont_BC is the set of packages that are associated with DHAs with whom we have a block contract,
and not associated with GPs that are fundholders

" Cont_ECR is all packages that are not in Cont_GPFH, Cont_GPFHBC or Cont_BC.

" All packages in Cont_GPFH, Cont_BC or Cont_GPFHBC are automatically secured

PackageClass2. Register(gp, dha-+p)

gp: GP; dha: DHA

PackageClassl. Register(-4p)

(p, gp) E PatGP'; (p, dha) e PatDHA'

Types

" gpisaGP

" dha is a DHA

Preconditions

" Invoke PackageClassl. Register

Postconditions

" gp is now the patient's assigned GP

" dha is now the patient's assigned DHA

PackageClass2. ChangeDemog(p, gp, dha)

p: Patients; gp: GP; dha: DHA

(p, gp) e PatGP'; (p, dha) e PatDHA'

Types

"p is a registered patient

gp is a GP

" dha is a DHA

Postconditions

. gp is now the patient's assigned GP

d: \jes\dis\wip\phd\appx. doc
136

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" dha is now the patient's assigned DHA

PackageClass2. PackCreate(pt, p -4 pk)

PackageClassl. PackCreate(pt, p -+ pk)

1 PatGP(p) e GPFHBC

pk E Cont_GPFHBC' n Pack_Secured'

2 PatGP(p) e GPFH \ GPFHBC

pk e Cont_GPFH' n Pack_Secured'

3 PatGP(p) 0 GPFH A PatDHA(p) e ContDHA

pk e Cont_BC n Pack_Secured'

4 PatGP(p) 9 GPFH A PatDHA(p) o ContDHA

pk e Cont_ECR' o Pack_Pending'

(pk, PatGP(gp)) e PackGP'

(pk, PatDHA(dha)) e PackDHA'

Preconditions

0 invoke PackageClassl. PackCreate

Case 1

Preconditions

" The patient's current GP is a GP Fund-Holder with whom we have a block contract

Postconditions

" the new package is in Cont_GPFHBC and is secured

Case 2

Preconditions

9 The patient's current GP is a GP Fund-Holder with whom we do not have a block contract

Postconditions

" the new package is in Cont_GPFH and is secured

Case 3

Preconditions

d: \jes\dis\wip\phd\appx. doc

137

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" The patient's GP is not a Fund-Holder and we have a contract with their DHA

Postconditions

" the new package is in Cont_BC and is secured

Case 4

Preconditions

" The patient's GP is not a Fund-Holder and we do not have a contract with their DHA

Postconditions

0 The new package is in Cont_ECR and is pending contract secural

Postconditions

" The GP now associated with the package is the same as that associated with the patient

" The DHA now associated with the package is the same as that associated with the patient

PackageClass2. Create(Ay, pn, tn, an)

PackageClassl. Create(Ab, Pn, tn, an)

1 pk: Packages

toe Cod(PTypeAType)

PackageClassl. PackActAss(pk, pn, tn-, an)

.2 to 14 Cod(PTypeAType)

Preconditions

" Invoke PackageClassl. Create

Case I

Types

" pk is a package

Preconditions

" to is an activity type which is associated with a package type

" Invoke PackageClassl. PackActAss

Case 2

9 to is not an activity type which is associated with a package type

d: \jes\dis\wip\phd\appx. doc
138

Jeremy DH Holland Volume Il: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

t,, hcp, a.)

tc, hcp, ac)

I pk: Packages

to e Cod(PTypeAType)

PackageClassl. PackActAss(pk, pn, t, -4an)

2 too Cod(PTypeAType)

Preconditions

" Invoke PackageClassl. InGenerate

Case I

Types

" pk is a package

Preconditions

" to is an activity type which is associated with a package type

" Invoke PackageClassl. PackActAss

Case 2

" to is not an activity type which is associated with a package type

cageClass2. Book(AP, Ab, tc, hcp, c, tib, tie, ac, s)

PackageClassl. Book(AP, Ab, tc, hcp, c, Tb, Te, ac, s)

I pk: Packages

to e Cod(PTypeAType)

PackageClassl. PackActAss(pk, pn, tn-4an)

.2 t� 4E Cod(PTypeAType)

Preconditions

" Invoke PackageClassl. Book (The version which generates a new activity)

Case 1

Types

" pk is a package

Preconditions

" t� is an activity type which is associated with a package type

" Invoke PackageClassl. PackActAss
d: \jes\dis\wip\phd\appx. doc

139

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

Case 2

" to is not an activity type which is associated with a package type

PackageClass2. GoodStart(a)

ae Dom(ActPack) A ActPack(a) e Dom(ActStart) PackageClassl. PackStart(ActPack(a), now)

ae Dom(ActPack) ActPack(a) r= Pack-Secured

PackageClassl. Start(a)

1 pk: Packages; t: Types

aE Dom(ActPack)

pk = ActPack(a); t= ActType(a)

PackType(pk) E PTCIass_No

PTATNo((PackType(pk), t)) - #((im ActPack-t) {pk}) n (im ActType-t) (t) =1

`dt�k: (im PTypeAType) (PackType(ActPack(a))} " PTATNo((PackType(pk), t�k)) = #((im ActPack-t)
{pk}) n (im ActType-t) (t) V tpk =t

PackageClassl. PackEnd(pk)

Preconditions

" If the activity to be started is associated with a package, and that package has not yet started then
invoke PackageClassl. PackStart

" If the activity to be started is associated with a package then that package must be secured

" Invoke PackageClassl. Start

Case 1

Types

" pk is a package, t is an activity type

Preconditions

" The activity to be started is associated with a package

" pk is the package the activity is associated with

"t is the activity type of the activity

" The package type of pk is in PTClass_No

" The package, pk, is one activity short of completion with respect to t

" The package is already complete with respect to all (appropriate) types other than t

" Invoke PackageClassl. PackEnd

d: \jes\dis\wip\phd\appx. doc
140

Jeremy DH Holland Volume II: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

PackageClass2. BadStart(a)

pk: Packages; t: Types

aE Dom(ActPack)

pk = ActPack(a); t= ActType(a)

pk e Pack-Secured

ActPack(a) 0- Dom(ActStart) = PackageClassl. PackStart(ActPack(a), now)

PackageClassl. Start(a)

PackType(pk) E PTCIass_No

PTATNo((PackType(pk), t)) - #((im ActPack-1) { pk }) n (im ActType-1) {t}=1

`dt�k: (im PTypeAType) {PackType(ActPack(a))} " PTATNo((PackType(pk), t�k)) = #((im ActPack-t)
{pk}) n (im ActType-1) (t) v tpk =t

PackageClassl. PackEnd(pk)

Types

" pk is a package, t is an activity type

Preconditions

" The activity to be started is associated with a package

" pk is the package the activity is associated with

"t is the activity type of the activity

" pk has not been secured

" If the package has not yet started then invoke PackageClassl. PackStart

" Invoke PackageClassl. Start

Case 1

" The package type of pk is in PTClass_No

" The package, pk, is one activity short of completion with respect to t

" The package is already complete with respect to all (appropriate) types other than t

" Invoke PackageClassl. PackEnd

PackageClass2. Tick()

PackageClassl. Tick()

Vpk: ((im PackType') PTClass_Time) \ Pack_Complete "
#(im Earlier) (now) n (im Later) IPackStart(pk)} > PT_Duration(PackType(pk)) = pk e Pack_Delivered'

Preconditions

" Invoke PackageClassl. Tick

Postconditions
d: \jes\dis\wip\phd\appx. doc

141

Jeremy DH Holland Volume 11: Appendices
The Requirements Analysis & Design for a Clinical Information System: A Formal Approach

" Any package that is of a type in PTClass_Time and is not complete that started longer ago than is
permitted by the function PT_Duration, becomes an element of Pack_Delivered.

" PackageClass2. PackSecure(pk)

" PackageClass2. PackTerminate(pk)

" PackageClass2. PackRefuse(pk)

" PackageClass2. Book(c, tib,, re, ac, s)

" PackageClass2. SuddenStart(AP, tc, hcp, ac)

" PackageClass2. End(a)

" PackageClass2. Suspend(a)

" PackageClass2. Cancel(a)

" PackageClass2. Associate(a, hcp)

" PackageClass2. Disassociate(hcp)

" PackageClass2. OutCreate(p,,, tn, hcp. a�)

" PackageClass2. OutGenerate(AP, tc, hcp, ac)

" PackageClass2. OutProceed(a)

" PackageClass2. OutComplete(a)

" PackageClass2. PatReg(p)

" PackageClass2. PatDereg(p)

" PackageClass2. PatArrive(p)

" PackageClass2. PatDepart(p)

" PackageClass2. Patioin(a, p)

" PackageClass2. PatLeave(p)

<><>00<><><><><><><><><>O<><>U<>OOUOG>000<><>OO0000<><>

d: \jes\dis\wip\phd\appx. doc
142

