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By wisdom a house is built, 
and by understanding it is established; 
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ABSTRACT 

This thesis is concerned with an important aspect of process control design, that 

is, the synthesis of the control structures. A review of the rapidly growing process 

methodologies' literature is presented and this leads to the identification of wider issues 

and new problems which are referred to as global instrumentation and forms the main 

subject of this thesis. The main objective has been the integration of existing process 

based tools and methodologies with a much more general approach of a systems and 

control theory character. The problem of Global Process Instrumentation concerns the 

selection of systems of measurement and actuation variables, found during the 

synthesis/design and operation of large-scale industrial processes/systems. The role of 

traditional instrumentation was considered but the emphasis has been on the systems 

aspects. In fact, instrumentation leads to the shaping of the final system and thus, is 

crucial in defining the control quality properties and operability characteristics of the 

final design. The development of these system aspects led to the emergence of an 

integrated framework for Global Instrumentation. An attempt was also made to abstract 

some results and formulate generic issues and problems, that would provide a wider 

scenario for activities in the future. Development of CAD to support the selection of 

control structures has been a major task undertaken here. 

The system aspects of Global Instrumentation are demonstrated by studying two 

specific problems that involve the study of the structural properties of interconnected 

systems as a function of local selection of sensors and actuators and the problem of 

well-conditioning badly structured transfer functions. The role of selection of inputs and 

outputs, on the overall shaping of composite structure properties, at the subsystem level, 

was examined, and the significance of an assumption related to interconnections, 

referred to as the completeness assumption, was investigated. Specifically, the 

significance of the deviations from the completeness, was the subject of the 

investigation. Matrix Pencil Theory was used to examine the controllability, 

observability and zero structure related properties of composite systems under partial or 

total loss of inputs/outputs at the subsystem level. Selecting subsets of the original sets 

of inputs, outputs to guarantee full rank transfer function, was also an issue that was 
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examined. The above problems were presented as part of an integrated design 

philosophy that aims to explore the system structure. 

An integrated approach to the overall problem of control structure selection was 
formulated and open issues and problems were identified. It was based on the 

assumption that there exists a progenitor model of the linear type for the process, which, 

however, may not be well defined. Structural analysis of the system theoretic 

framework, the interaction measures and the results for evaluation of alternative 

decentralisation schemes were then used, to specify a step by step approach to the 

control structure selection. The problem of handling alternative criteria was also 

considered and basic elements of a system procedure were given. There are many open 

issues, which were identified and are still open and thus the proposed structural 

approach should be considered as the first step to the development of an integrated 

methodology that involves the following major steps: 

(a) Classification of system model variables and definition of well structured progenitor 

model. 

(b) Definition of effective input, output structure based on operability, controllability 

criteria. 

(c) Determining the structure of the control scheme by evaluation of alternative 
decentralised structures. 

An important part of the integrated methodology for control structure selection is 

the - so called - interaction analysis. It consists of a number of diagnostics and 

structural tests that help to restrict the choice of the best scheme. Several of these 

tests/methodologies were reviewed and some of them were further expanded. The 

outcomes obtained by these methodologies provided promising results. These results 

gave the motivation for the construction of a complete CAD package, the "Interaction 

Analysis Toolbox", written in MATLAB®t. This Toolbox provides many tools and 

diagnostics that can be applied during the design stages, for the evaluation of the various 

alternative control structures. 

t MATLAB® is a registered trademark of MathWorks Inc. 
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1. INTRODUCTION 

Control Systems design is a topic that has received a lot of attention and it is well 

developed [Maciej., 1], [Marlin, 1]. The fundamental assumption in traditional design is 

that the system model is fixed, i. e. it has a given set of inputs and outputs. Furthermore, 

the structure of the controller is assumed to be given, as a certain way of coupling inputs 

and outputs, and usually, also, we assume the order of controller dynamics fixed. Thus, 

traditional control design is essentially a problem of tuning the parameters of the given 

structure and possibly specifying the dynamic complexity of the controller, to satisfy 

certain control design objectives. Seeing the problem of selection of inputs, outputs, as 

well as the structuring of the controller and the selection of its dynamic complexity as 

part of the overall control design, is what we refer to as Total Control Design (TCD) and 
it is a topic that has been addressed within the area of Process Control. So far, there has 

been no systematic methodology for tackling all issues involved. The general objectives 

of this thesis are to provide: 

(a) A review of the methodologies from the Process Control area, which are relevant 
to the problem, and identification of the key issues, open for research. 

(b) Provide CAD tools for Control Structure selection based on Process Control 

Methodologies and Diagnostics. 

(c) Identify the Systems and Control Theoretic Issues involved in the Total Control 
Design problem and Introduce an integrated methodology based on System 

theoretic criteria and Process Control diagnostics and heuristics. 

The problem of control structure selection is the main focus in this thesis. The 
issues, methodologies and concepts, that have emerged within the context of specific 

applications, are also reviewed. The approach is based on examining the particular, 

application based methodologies, first, and then extend them to generic ones that may 
be applied to problems, independent from application area nature. One of the most 

active areas, within which the control structure selection has been addressed, is that of 

14 
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process control and this area serves as a focus point. However, other application areas 

are also considered. 

Articles and seminars evaluating the current status of process control and 

suggesting future research have been flourishing. A central point often raised is the 

unavailability of a systematic method for synthesising control structures for a complete 

plant. The problem is difficult because: 

1. Chemical processes have non-linear, multiple couplings among variables. 

2. The measurement and manipulation of process variables is limited to a relatively 

small number of variables. 
3. The control objectives may not be clearly stated (or even known) at the beginning of 

the control system design. 

4. Evaluation of the control system is based on a number of different objectives 
including: (a) safety, (b) reliability, (c) goodness of control (including stability), (d) 

range of control, (e) ease of start-up and shutdown, (f) cost of the control system, 

and (g) ease of operation of the system (including training). 
5. The process structure may be changed to improve control. 

6. There may be considerable uncertainty in the prediction of process behaviour. 

Considering how many papers have been written on the control of a single unit 

operation like distillation, plant control has been discussed only a few times 
[Buckley 1], [Gov. & Pow., 1], [Umed., et al., 1] because of its inherent complexity. 

A control structure is composed of the following elements: 

"a set of variables which are to be controlled to achieve a set of specified objectives. 

"a set of variables which can be measured for control purposes. 

"a set of manipulated variables, and 

"a structure interconnecting measured and manipulated variables. 

One of the key themes of process control is to develop a dynamic structure of 

measured and manipulated variables so that certain processing objectives are satisfied. 
Difficulties arise because, in certain cases, a variable will be both manipulated and 

15 
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controlled (e. g., ratio control of input streams). This implies that the various feasible 

sets of controlled, measured and manipulated variables and the interconnecting structure 

cannot be selected independently but should rather be considered simultaneously. To 

make matters more complicated, the optimal operating conditions change as a function 

of the external disturbances. [Maar. & Rij., 1) have demonstrated that the optimum 

operation of a plant switches discontinuously from one process constraint to another. 

Industrial experience also indicates that such operational policy is quite common and 

economically sound. It is clear though, that switching the operation of a plant from one 

given set of constraints to another implies a change in the plant's regulation structure. 

While regulation is the principal control objective, the adopted regulatory control 

structure may not allow smooth, safe and reliable transition of the plant's operation to a 

new point for better economic performance. This conflict can be resolved by 

systematically formulating the regulatory structure and simultaneously optimizing the 

control structure. Further, if technically possible and economically justifiable, one will 

measure the controlled variables. Otherwise, secondary measurements will be chosen, in 

conjunction with estimation techniques, to infer the value of the unmeasured control 

objectives. The estimator will be part of the structure interconnecting the measurements 

and the manipulated variables. Apart from the macroscopic structuring difficulties, one 

faces a variety of local problems. Defining the lowest degree of model complexity, 

necessary to answer the posed questions, is an important initial task. Then, the 

development of preliminary control structures, which are feasible from an engineering 

and mathematical structural point of view, takes place, followed by an evaluation where 

more detailed static or dynamic models are required. The complexity of the encountered 

physicochemical systems makes checks for interaction and effects of nonlinearity 

necessary. 

The selection of inputs, outputs and their coupling for control purposes is a 

complex problem that has to take into account a large, diverse set of requirements that 

arise within the area of process operations. Such problems are linked to quality issues, 

optimisation monitoring, fault diagnosis, overall assessment of the state of process 

operability, process flexibility etc. The process area is the subject of this review; other 

areas such as aerospace, also present similar problems. The main reason for giving 

emphasis on the process area is that, apart from its significance as an application area, it 
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is characterised by strong interactions between alternative operational modes (when 

compared to discrete manufacturing) and this gives a more global significance to control 

structure selection issues. Furthermore, the process control area is quite active and many 

approaches and heuristics have emerged, which cannot be ignored in the development of 

an integrated methodology. 

The structure of the thesis is the following: Chapter 2 is a review of background 

results and issues related to process based methodologies. The selection of control 

structures involves a number of fundamental issues. A brief, non-technical discussion of 

them is given, that includes the definition of the control objectives, the decomposition 

of the process and the selection of manipulated and controlled variables. 

In chapter 3, some theoretical background material, from systems and process 

control is given. This is necessary, since most of the methods and results that appear in 

the subsequent chapters, require theory and theorems that are assumed to be known. The 

chapter provides a quick review of the theory of control systems and notions. By 

starting from the main definitions of a control system, it goes on to describe the 

McMillan form, with the relevant system properties and invariants, such as poles, zeros 

and matrix pencils, and it also outlines the main principles behind the Singular Value 

Decomposition. Finally, the notion of process controllability - in contrast to Kalman's 

definition (1960) of system controllability - is exploited. 

Chapter 4 deals with the problem of global process instrumentation. The selection 

of systems of measurement and actuation variables is considered within the context of 

integrated design. It is now argued that, amongst the many different aspects of the 

problem, there are issues of Systems and Control Theory type which have not been 

considered before. The development of these system aspects and related methodologies 

are essential prerequisites for the emergence of an integrated framework for Global 

Instrumentation. An attempt was made to abstract the results of the review and to 

formulate generic issues and problems, that would provide a wider scenario for 

activities in the future. 

Chapter 5 provides a study of the structural properties of interconnected systems, 

and examines the role of selection of inputs, outputs at subsystem level, on the overall 

shaping of composite structure properties. The importance of an assumption related to 

interconnections, which is referred to as the completeness assumption, and the 
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significance of the deviation from that, is examined. The idea behind the work is an 

attempt to relate the structural aspects of the composite system in terms of the structural 

aspects of the subsystems and the nature of the interconnections. Of special interest is 

the investigation of the effect of changes in the structure of the composite system as the 

result of loss of inputs, outputs. 

Chapter 6 deals with the development of integrated diagnostics and CAD tools 

based on interaction analysis and structural methodologies. The various methods are 

grouped into three categories: interaction matrices, interaction measures and control 

structure and system properties. The use of structural diagnostics, in the form of Markov 

matrices, for the selection/evaluation of alternative decentralisation schemes, is also 

exploited. Also, the use of graph theory and graph-theoretic methods for the 

examination of controllability of a given model is also presented. All these methods 

provide useful diagnostics that lead to the implementation of a CAD Toolbox, presented 

in chapter 7. 

In chapter 8, an example demonstrating the developed software tools was given, 

that includes a detailed analysis of the application of the Toolbox. 

Finally, in chapter 9, an attempt is made to formulate an integrated approach to 

the overall problem of control structure selection using a combination of systems theory 

and the previously considered diagnostics and to identify the main problems. Structural 

analysis of the system theoretic framework was used, and combined with some 
interaction measures, led to a step by step approach to the control structure selection. In 

this area we consider the problem of well structuring an oriented model that is 

non-degenerate and give a solution to this, as well as consider the general issues 

involved in the orientation of implicit models. These two problems are indicative of the 

significance of theoretical approaches to the problems of control structure selection, 

dominated so far by process based diagnostics and heuristics. 

Chapter 10 provided the opportunity to summarise the main findings and point 

out the open issues. 
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2. PROCESS BASED METHODOLOGIES: REVIEW OF 

BACKGROUND RESULTS AND RELATED ISSUES 

2.1 Introduction 

In this chapter we provide a brief review of the problem areas within which the 

problem of control structure selection emerges. The main scope here is to introduce the 

main issues and provide a rather non-technical description of the fundamental issues. 

Certain aspects of the issues considered here will be examined in a greater depth later, if 

they have an impact on the general methodology, as well as the software development 

and CAD. 

2.2 Definition of the Control Objectives 

We must always start with a qualitative formulation of the control objectives for a 

given plant and any one determined by the specific nature of the process involved. In the 

first category of control objectives, we find those related to the operational feasibility. 

These objectives are always functions of process variables, which are to be kept within 

certain specified bounds, in spite of uncontrolled influences on the process. The origin 

of these requirements may be product quality specifications, safety considerations, 

operational requirements, environmental regulations etc. The second category of 

objectives is derived from economic considerations. These enter only if, after satisfying 

the first class of objectives, manipulated variables are left to adapt the operating 

conditions in order to stay at the most profitable point of operation. A feedforward 

adjustment of the manipulated variables in an optimal fashion is one such method, but it 

is relatively complex and unreliable. Along with classifying the objectives goes a 

classification of the control tasks, into regulatory and optimizing ones. 

In almost every control system, disturbances are unavoidable, and hence, 

disturbance rejection is an issue that should be taken care of, during the early stages of 

design. Controllability measures for disturbances should always be a control objective. 

By the "controllability" or "dynamic resilience" of a plant, we mean the inherent control 
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properties of a plant. That is, if a plant has poor controllability, then the responses for 

that plant will be poor, no matter what kind of controller we select to use. Some plants 

have better "built-in" disturbance rejection capabilities than others, that is, their 

dynamic resilience with respect to disturbance rejection is better. It should be noted 

however, that the general term "process controllability" is used in the process context in 

a much more general way than the classical control theoretic notion. In fact, it is used to 

denote the "potential" of a given plant to produce good performance under some 

suitable control design. 

2.3 Decomposition of the Process 

The study of large process systems always implies that the overall problem has to 

be divided, decomposed to subproblems. The decomposition of the process is not 

always dictated by computational considerations. Very frequently, it is part of the 

design strategy, very much in the same way as it was used for process flowsheet 

synthesis [Rudd & Wat., 11, optimization, optimal control etc. Process decomposition 

reveals the aggregates of unit operations and chemical reactors which must be centrally 

controlled. Note that the process decomposition can be directed towards developing the 

independently controlled groups of units, in terms of regulation or optimization. Both 

criteria can be applied to the same process simultaneously and nearly independently. 

Although this may sound contradictory, a process decomposition for regulatory 

purposes will be feasible within the bounds of the groups established from the process 
decomposition for optimizing control purposes. 

In order to split a process into subprocesses, which are optimised separately, one 

must be able to decompose the overall objective function linearly, and one part of it 

must he associated with every subsystem [Fisher et al., 1,3]. The minimal size of a 

subsystem is usually dictated by that restriction. For optimization, the magnitude of the 

subproblems has to be balanced against the effort to coordinate solutions. In addition, 

the solution should not be too sensitive to the exact satisfaction of the interconnection of 

constraints. Otherwise, the required co-ordination algorithm has to be too involved. 
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2.4 Selection of Measurements 

The first class of control objectives (product quality, safety regulations, etc. ) 

dictates directly the measurements which should be made for monitoring the process. 

The second class (economic performance) can be translated into extra requirements 

under certain conditions to be described later, thus requiring additional measurements. 

These primary theoretically desirable measurements, are not always available. Often, 

they have to be substituted by secondary ones. 

Measuring secondary variables allows us to estimate the primary ones on the 
basis of a process model. The choice of secondary measurements and the associated 

estimation problem can roughly be regarded to be independent of other decisions 

concerning the primary ones. (Loosely speaking we could invoke the separation 

principle of optimal control as a foundation of that statement). Selection criteria for 

secondary measurements and the development of a dynamic scheme for estimation and 

fault diagnosis is an active research area nowadays. 

The complete set of measured variables for a feasible control structure must 

satisfy the extended conditions of structural observability. This includes the question of 

augmenting the set of measurements to obtain a structurally observable system. From 

the above discussion, it can be seen easily that alternative sets of measured variables 

will be developed during the synthesis of control structures. Which of these sets is the 
best is the central question in selecting the control structure. 

2.5 Selection of the Manipulated and Controlled Variables 

Selecting the manipulated variables will affect response capability to the external 
disturbances and the ability to keep the control objectives at the desired levels almost 

continuously. Hence, the question is whether or not there are an adequate number of 

manipulative variables for each of the process alternatives under consideration and/or 

the costs associated with ensuring that the alternatives can be made to be operable. 

Knowing that the process will be operable over the complete (reasonable) range of the 

disturbances will also mean that the problems will be well-defined at the starting of the 
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construction of the dynamic models [Mor. et al., 1]. Normally the controlled variables 

are the state variables that we desire to maintain at constant values. However, as 

disturbances enter the process, the optimum steady-state behaviour normally will 

change, and so we might want to change the set points for the controlled variables. Of 

course, if some of the state variables always remain constant at the optimum steady state 

conditions, when disturbances enter the process, then these can be chosen as controlled 

variables. 

The more manipulated variables available, the better will be the control of the 

process. Structural aspects of the processing system and of the equations describing the 

processing units are of paramount importance in establishing feasible sets of 

manipulated variables. Certain manipulated variables will be more desirable than others, 

from an engineering point of view. [Gov & Pow., 1,2] have listed a number of 

qualitative features that the selected manipulated variables should satisfy, those being 

the product of numerous discussions with practising engineers. Among these are 

reliability, ease of operation, start-up and shutdown, avoidance of the manipulation of 

"unpleasant" streams (solids, slurries) and of variables which influence a large number 

of other variables. However, such choices also have a control theoretic dimension, 

which has not taken much attention within the process control area. 

2.6 Process Controllability Requirements 

At the preliminary stages of a process design, most plants are difficult to control. 
That is, normally there are not enough manipulative variables in the flow sheet to be 

able to satisfy all of the process constraints and to optimise all of the operating variables 

as disturbances enter the plant. There are three ways that the controllability of the plant 

can be restored: 

1. Modify the flow sheet to include more manipulative variables (e. g., add bypasses). 

2. Modify the design so that some of the process constraints never become active over 

the complete (reasonable) range of disturbances that enter the process. 
3. Neglect the least important optimisation variables. 
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In order to develop a systematic procedure for a controllability analysis, a series 

of simple controllability problems and diagnostics are considered, rather than attempting 

to evaluate the controllability of the complete flow sheet. The procedure that has 

emmerged from the process control area is the following: 

1. Identification of the input streams and their classification as disturbances or 

manipulative variables. 

2. Evaluation of the sensitivity to the disturbances. 

3. Identification of the introduced process constraints. 

4. Determination of the number of new design variables and equipment sizes that are 

specified, and calculation of the number of operating variables that can be 

optimised. 
5. If the number of manipulative variables is equal to the number of constraints plus 

operating variables, as well as if the constraints and operating variables provide a 

well-posed problem, i. e., a non-singular Jacobian, then the process is controllable 

at that level. If the answer is no, several options exist, and we want to find the 

cheapest. 

Such a methodology is largely based on rules and process based diagnostics and 

makes little use of the structural properties of the associated system model. 

2.7 Control Structure Selection Relating the Measured and Manipulative 

Variables 

Solutions to this problem will again be guided partly by engineering and cost, 

partly by control theoretical considerations [Mor. et al., 1]. For example, if one insists 

on using single loop controllers only, the sets of manipulated variables must be chosen 

to result in the minimum possible interaction between the loops. If we allow for the 

possibility of multivariable control, be it decoupling, modal or optimal control, we gain 

more freedom. 

Once we have selected a set of controlled variables and we are certain that there 

are an adequate number of manipulative variables, then we can start proposing control 
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structures. The relative gain array (RGA) and singular value decomposition (SVD) can 

be used to eliminate proposed control structures that will have significant interactions in 

the control loops. However, a dynamic analysis is required to find the best control 

structure alternative. The existing structures range from single-input, single-output, 

non-interacting loops, to multivariable control schemes such as decoupling, modal, 

optimal or robust controllers. 

2.8 The Concept of "Eigenstructure" in Process Control 

Much of the work in the control structure selection of process control has been 

directed at finding control structures that minimise interaction among loops and 

decouple the system. However, what is really important in many chemical processes is a 

structure that does the best job in rejecting load disturbances. This problem is referred in 

the process literature as "eigenstructure" (choice of controlled and manipulated 

variables and their pairing); although the term is misleading in a traditional control setup 

[Luyb., 3]. Eigenstructure is that configuration which yields a system that is naturally 

self-regulating for load disturbances and self-optimising. It is claimed to be a unifying 

concept that links several previously published approaches to the process control 

problem. This general area addresses the problem of load disturbances rejection, 

regulation, rather than minimisation of interactions and it is thus the opposite to that of 
interaction analysis. The problem of load disturbances is intimately linked to the design 

of control structures for sections of the plant and then evaluating such designs in the 

overall plant setup. The term "eigenstructure", as used in the process area, is rather 

misleading and the overall problem has no clear definition in control theoretic terms. It 

is an issue that requires attention and a proper theoretical formulation. This area should 

be distinguished from the standard eigenstructure assignment design area of linear 

systems. 
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2.9 Inferential Control Schemes - Secondary Measurements 

Control schemes utilising estimates of both unmeasured outputs and unmeasured 

input disturbances are termed Inferential Control Schemes. Significant progress has 

been accomplished in recent years towards the development of practical inferential 

control systems by Brosilow and his co-workers [Web. & Bros., 1], [Jos. & Bros., 1] 

and [Bros. & Tong, 1] and [Mor. & Steph., 1]. One of the parameters required in the 

construction of the estimator is the covariance of the input disturbance vector. Since 

accurate measurements of these statistics are rather difficult, the designer is often forced 

to estimate the input covariance matrix. 

Since any linear model is valid only over a limited operating range, it is necessary 

to select secondary measurements that lead to a model that has a moderate or low 

condition number. Ideally, one seeks the smallest set of measurements that have both a 

low relative error and a low sensitivity to modelling errors. However, the relative error 

is generally a decreasing (strictly non-increasing) function of the number of 

measurements, while the condition number is generally an increasing function of the 

number of measurements. Thus, there is frequently a trade off between estimator 

accuracy, as measured by relative error and estimator sensitivity, as measured by 

condition number. The proper selection of secondary measurements is a task of 

paramount importance for the synthesis of control structures [Mor. & Steph., 1]. The 

measurements should be selected to minimize estimation error. The error can be caused 

by differences between the real system and the process model, that forms the basis for 

the design of the estimator, or by process and measurement noise. 
If the measurement of a variable for quality regulation or optimizing control is 

desirable, it is technically and economically feasible to install a measurement device 

performing this duty. There are, however, many examples where a specific instrument is 

notoriously inaccurate, where the time lags associated with the sampling make the direct 

use of the result in a feedback loop impossible, or where a certain quantity (like catalyst 

activity) just cannot be measured on line. In those common instances, an estimation 

device is needed to infer the value of an unmeasurable variable from readily available 

measurements. Frequently, many measurements are available as inputs to the estimator. 

It is rarely technically feasible, desirable or necessary to use all of them. Intuitively it 
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might appear that the quality of the estimate would improve uniformly with the number 

of measurements. However, as shown in [Jos. & Bros., 1], not even this is necessarily 

true. The question arises, then, which measurement should be used for the best estimate 

possible of the important, but unmeasurable, process variables. Although deterministic 

state reconstruction procedures for linear dynamic systems are available (e. g. 

Luenberger observer), the question of measurement selection can also be viewed in a 

stochastic environment. This problem has attracted the attention of many researchers 

[Johnson, 11, [Mill. & Web., 1], [Luck. & Mül., 1], [Mehra, 2]. Most of these 

approaches define the performance index of the estimator as the sum of measurement 

costs and the integral square estimation error. 

In process control, state excitation noise is not only used to account for 

unmeasured process disturbances but also for the modelling error. Neglecting the state 

excitation noise would result in a design procedure of dubious value. A selection 

criterion based on this assumption will be of limited usefulness. Further, it is well 

known how difficult it is to choose a priori values for the weighting matrices in 

quadratic optimal control or for the covariance matrices for the design of a Kalman 

filter. Adding a measurement cost term, which has rarely any economic significance, 

increases the number of design parameters over which a trial and error search has to be 

performed. In addition, even for each selected cost parameter, the optimisation is an 
involved numerical procedure. Several criteria for the selection of secondary 

measurements were developed to minimise the mean square estimation error. 

2.10 Process synthesis issues of chemical processes and system 
structure 

The problem of synthesis of chemical processes is an issue that heavily depends 

on Chemical Engineering theory and practice. However, this area has structural 

implications on the overall system structure, as well as selection of control structures 

and thus we examine here briefly some of the dominant trends that affect the control 

structure selection. The techniques for the systematic synthesis of entire chemical 

processes, including reactors, separators, energy-transfer equipment, are classified into: 
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[Nish. et al., 1] (1) approaches without an initial structure, and (2) structural parameter 

or integrated approaches and these are briefly considered below: 

2.10.1 Approaches without an Initial Structure. 

[Siirola et al., 1], and [Powers, 1] developed a computer program called AIDES 

(Adaptive Initial Design Synthesizer), which utilises systematic heuristic procedures for 

process synthesis. AIDES performs the stream source/destination matching for the 

entire flowsheet in one step. It separately considers the flow of each species within the 

flowsheet, developing for each a scoring function which rates each possible source 

stream/destination stream match. The scoring attempts to account for potential 

separation costs, which might result, if the match is made. After scoring matches for all 

species, the entire stream matching is done in a single "parallel" step by solving a linear 

program to optimize the sum of match scores. [Mah. & Mot., 1] proposed a procedure 

for the synthesis of promising initial designs of chemical processing systems using the 

techniques employed for mechanical theorem proving. Underlying this method is the 

resolution principle [Robin., I], where the designer attempts to derive conflicts among a 

set of facts (premises and axioms of chemical processing systems) and the desired goals 

(desired feasible flowsheet). The procedure begins with the consideration of production 

goals (desired product streams) one at a time, and ends with a process flowsheet which 
is feasible, in terms of mass and energy balances. Using a sequential depth-first 

procedure, the following structural rules are applied: (a) use the compositionally most 

similar source process streams to generate product streams, (b) give first preference to 

by-product streams already generated, and (c) reduce the mass load on separation 

sequences. The works of [Johns, 1] and [Johns & Rom., 1] were aimed at the early 

stages of process development, to select the optimal equipment configuration to 

transform given raw material streams into desired product streams using a mixture of 

dynamic programming and branch and bound arguments. 
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2.10.2 Integrated Approaches. 

Since first proposed by [Ichik. et al., 1], a number of papers using "structural 

parameters" have appeared. These methods can be divided into three categories: (a) the 

analytic and algorithmic methods, which employ the necessary condition for the optimal 

system and then develop a specific algorithm on the basis of necessary conditions, (b) 

the decomposition and/or transformation methods, which decompose or transform the 

synthesis problem into smaller problems so that the smaller problems are solved 

separately and their solution, co-ordinated in some way to assure the final solution of 

the individual problems, coincides with that of the overall problem, and (c) the direct 

application of optimization techniques of nonlinear programming. [Ichik. & Fan, 1] 

derived necessary conditions for the optimal system using the structural parameter 

approach. An evolutionary search for the optimal structure (ESOS) was developed, 

starting from a simple feasible structure. 

Decomposition techniques may be one possible way to solve the structural 

parameter synthesis problem. To ease the difficulty of computations for structure 

optimization problems, several authors have proposed decomposition techniques. 

[Osak. & Fan, 1] used an infeasible two-level technique in conjunction with the 

structural parameter approach. Their method was applied to the synthesis problem of a 

simple reactor-separator synthesis problem. [Steph. et al., 2], [Steph. et al., 3] developed 

an infeasible two-level method, into which Hestene's method of multipliers was 

incorporated. A penalty term is used to guarantee the success of the method in the 

presence of functional non-convexities, often encountered in chemical process design 

[Steph. et al., 1]. [Nish. & Powers, 1] proposed a feasible two-level method, which 

consists of the first-level and the second-level problem. Several authors have used non- 

linear optimisation techniques to solve various synthesis problems of chemical 

engineering interest. [Umed. et al., 1] used a direct search technique namely Box's 

Complex method to synthesise a chemical process system consisting of two reactors, 

two distillation columns and several heat exchangers. 

Process synthesis methodologies generate the process flowsheet and thus specify 

the first feasible set of control structure, based entirely on process synthesis criteria. In 

29 



Chapter 2 proce, 
1.4 Gýadea! ///efýwäoloýieý: 

ýeview 
o/63achýrounq 

Reeulie 
and 

leelated Jeduee 

this sense, they provide the basis for the consideration of the overall control structure 

selection. 

2.11 Fault diagnosis & fault tolerant design 

The complex automatic systems, so widely employed in modem industry, can 

consist of hundreds of inter-dependent working parts, that are individually subject to 

malfunction or failure. Total failure of these systems can present unacceptable economic 

loss or even hazards to personnel. It is therefore necessary to provide the required 

operation of the entire system by (a) a plan of maintenance, which will replace worn 

parts before they malfunction or fail and (b) a scheme of monitoring, which detects a 

fault as it occurs, identifies the malfunction of a faulty component, and compensates for 

the fault of the component by substituting a configuration of redundant elements so that 

the system continues to operate satisfactorily [Mor. & Zaf., 1]. 

A plant, to be automated, can be considered to consist of three major types of 

subsystems, actuators, main structure (or process), and instrumentation or sensors. Early 

proposed schemes were concerned primarily with detecting sensor faults which, once 

detected, could usually be corrected by electronic switching techniques not requiring the 

reconfiguration of mechanical parts. The compensation of faults in actuators is usually 

more difficult than the re-direction of electrical signals. The compensation of 

malfunction in the main structure is even more difficult. Modern approaches for fault 

diagnosis and fault compensation tend to try to eliminate some or all of the redundant 

hardware. These new approaches to Instrument Fault Detection (IFD) are based upon 

the idea that three (or more) dissimilar sensors measuring different variables, and 

therefore producing entirely different signals, can be used in a comparison scheme. 

The rationale for this idea is that, even though the sensors are dissimilar, they are all 

driven by the same dynamic state of the system and are, therefore, functionally related. 

These newer schemes are called inherent, analytic redundancy or functional redundancy 

schemes, to distinguish them from physical or hardware redundancy [Le et al., I]. 

The functionally-redundant FDI schemes are basically signal processing 

techniques employing state estimation, parameter estimation, adaptive filtering, variable 

threshold logic, statistical decision theory, and various combinatorial and logical 
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operations. Normally, both the input signals to the actuators and the sensor signals, i. e., 

the input and the output signals of the monitored plant, are available to the FDI 

Subsystem. The FDI schemes are therefore designed under an assumption that, either 

the dynamic nature of the system being monitored is known to a reasonable degree of 

precision, or, that it is possible to determine the values of certain physical parameters by 

on-line identification techniques, applied to the input and output signals of the 

monitored plant. FDI-related information can be extracted through the direct use of a 

parametric model. The parametric model is used as an estimator of a process variable 

using other process variables as inputs [Nwok. et al., I). 

The robustness of an FDI scheme is the degree to which its performance is 

unaffected by conditions in the operating system that turn out to be different from what 

they were assumed to be in the design of the FDI scheme. However, in most operating 

plants, even those that are modelled accurately as linear and time invariant, some 

physical parameter values are known only approximately. Thus, the state estimators 

must be designed using only nominal values for the uncertain parameters or using some 

accommodating mechanism to compensate for the uncertainty. The result is that the 

state estimates are always in error, the severity of which, depends upon the deviations 

from normal operations of the monitored plant, in ways which are not easily determined. 

Dynamic plants are always subjected to inputs other than those intended by the 

system designer. These inputs, called disturbances, are usually random functions 

originating in the environment, such as fluctuations in the wind. Furthermore, the 

sensors usually have electronic noise superimposed on their signals. The above lead to 

the robustness problem with respect to disturbances and noise. The robust fault 

detection problem becomes one of disturbance decoupling by design. If an observer or 

state estimator is used, modelling errors and dynamic uncertainty can be shown to act 

like a disturbance on a linear system. The special requirements of fault detection and 

compensation, either by design, or on-line, impose additional requirements on the 

selection of control structures. The problems of additional measurements for robust state 

estimation, of unmeasured quality variables, or identification of faults, and the problem 

of design of high operational integrity (robustness to faults), as well as control 

reconfiguration (correction of faults in an on-line mode), have special requirements on 

the overall control structure selection. 
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2.12 Economic Appraisal of Control Structure Selection 

It has been recognised widely that the choice of measured and manipulated 

variables employed in a control system (the control structure) can have a strong effect 

on the performance of the process control system. Systematic methods to select the 

economically optimal control structure of a process, without designing the process 

controller, while maintaining good controllability characteristics, have been examined 

by a number of researchers. Examination of the effects of process dynamics on process 

economics, and how changes in the control structure alter these economics, is required. 

The scope of the problem so far has been limited to selecting economically optimal 

square regulatory feedback control structures for processes, whose operation is 

dominated by steady state aspects. 

Many workers [Maar. & Rij., 1]; [Mor. & Steph., 1]; [Prett & Garc., 1]; 

[Marlin et al., 1] have emphasised the role played by constraints limiting the steady 

state performance of the plant. The presence of disturbances causes plant personnel to 

choose operating points removed from the constraints determining optimum steady state 

operation in order to accommodate upsets within the feasible operating region. One 

benefit of control is to mitigate the effect of disturbances, so as to maintain feasibility 

and to allow operation closer to the key operating constraints. Different control 

structures possess differing abilities to modify the plant dynamics in this way, as well as 
having different capital and maintenance costs. It is the trade-off between 

instrumentation costs and operating benefits that accounts for the a priori assessment of 

the effect of disturbances on the economics of a given plant and control structure. 
Typically, process design is performed by choosing a set of optimum steady state 

operating values, which minimise an appropriate process objective function, subject to a 

set of equality and inequality constraints. An optimal steady state process design will 

often result in plant operation on the operational constraints. It will not actually be 

possible to operate the plant on these constraints, as some process disturbances will 

cause the plant to violate the constraints. Thus, it is necessary to move the steady state 

operating point sufficiently far into the feasible region, to ensure that no constraint 

violation occurs during plant operation. From this, it can be seen that process control 

considering economic performance will try to minimise the process variability close to 
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the active steady state constraints (the less the dynamic variability, the closer the plant 

can be operated to the constraint). An economic analysis of this type is detailed in 

[Narraw. et al., 1]. It uses a linearised state space model of the system, which permits 

generation of first-order estimates of relevant quantities. 
The analysis considers the variation in each of the variables and uses these values 

to estimate how large a step must be taken to ensure operability, and how this will affect 

the steady state economics. The economic analysis is carried out at the expected 
disturbance frequencies and amplitudes. One case of interest is to establish the effect of 
disturbances when no control action is taken (the open loop case). This effect is a 

property of the process and disturbances only. When controllers are implemented on the 

plant, the economic penalty will depend, not only on the process and disturbances, but 

also on the particular controller implemented. To avoid the need to design a controller, 

and to incorporate its effect into the plant dynamics, an estimate of the closed loop case 
is provided by assuming perfect control to the chosen control objectives. After 

calculating the open and closed loop economics over the disturbance frequency range, 
bounds on the cost of control may be found by selecting the worst economics for both 

the uncontrolled and perfectly controlled cases (i. e. the worst disturbance response for 

each case is used as one of the bounds). In addition to the consideration of economics, 

the use of the perfect control assumption, to analyse the closed loop case imposes a 

requirement to investigate the likelihood of approaching perfect control in practice. To 

do this, one may appeal to open loop indicators. An extension of the above method 

would be to use a generalised controller tuning technique like BLT tuning [Luyb. & 

Floud., 1] or H. [Mor. & Zaf., 1], to generate an implementable control system. This 

control system can then be used to supply a practical estimate of the controlled 

economics. 

A particularly convenient way to consider the economic effect of disturbances is 

to look at their impact on the variation of variables in the model measuring the violation 

of constraints active at the steady state optimum (the active constraint slack variables). 
If, under normal operation, the value of the slack variable of such a constraint takes a 

non-zero value, then that constraint will be violated. To remove the constraint violation, 

the operating point must be moved a sufficient distance into the operating region to 

ensure the constraint is no longer violated. A first-order sensitivity of the objective 
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function, to such a move, is given by the Lagrange multiplier associated with the slack 

variable. If a measure of the dynamic slack variable amplitudes is available, then an 

estimate of economics of the operating point may be obtained, using these values and 

the Lagrange multipliers of the active constraints. This procedure is the reverse of that 

discussed by [Nishida et al., 1,2], where control system synthesis is defined as starting 

with selection of the control objectives, and then determining appropriate manipulated 

and measured variables. This emphasises the point that it is preferable to determine the 

control objectives implicitly rather than explicitly, as an explicit set of control objectives 

are not guaranteed to be the optimal control objectives. 

The area of economic appraisal is still in its early stages of development. 

Although the control structure plays an important role in the overall shaping of the 

design cost, the analysis should also take into account the overall process synthesis and 

optimisation. The fact that all aspects have to be considered together makes the problem 

of economic appraisal rather difficult. 

2.13 Conclusions 

Having defined the main control objectives, the problem of control structure 

selection, with all the various issues related to that, emerges. The "controllability" of a 

plant, in a broader term that includes operational, functional and economic 

considerations, emerges as an important issue for further study. 

In this chapter, the main background issues have been presented in a rather 

non-technical form. Certain part of them will be, however, presented in a more formal 

and detailed form in the following chapters, and they will become part of a general 

methodology. The background results are also essential for the specification and 

development of a CAD Toolbox. 
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3. BACKGROUND MATERIAL FROM SYSTEMS AND PROCESS 

CONTROL NOTIONS 

3.1 Introduction 

In this chapter, we review the fundamental issues taken from linear systems and 

examine the key concept of process controllability, as it has been used in the process 

control area. We pay special attention to the latter concept, because it is fundamentally 

different from the classical linear systems notion. Usually, in the evaluation of process 

controllability, criteria are employed to guide the evolutionary development of the 

Process Design ; these are postulated on physical grounds and are used in an ad hoc 

manner. Only a few algorithmic synthesis procedures have been presented, which 

include some measure of controllability as part of the objective. The review has the 

intention to describe all the different schools of thought that have been formed during 

the last decade on the study of process controllability and extract from them the system 

notions which require special attention for further study. 

3.2 Basics from linear control theory 

The basic description of a linear multivariable system is usually taken to be a 

transfer-function matrix. This is simply a matrix G(s) of transfer functions, in which all 

i, j elements g, (s) are rational, and proper, scalar functions. For every such transfer 

function, one can find a state-space model [Kalman, 2] 

. z=Ax+Bu, y=Cx+Du (3.1) 

in which u is the vector of system inputs, y is the vector of outputs and x is a state 

vector. A, B, C and D are real matrices of appropriate dimensions, and are related to the 

transfer function G(s) by 
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G(s) = C(sI - A)-'B +D (3.2) 

The 4-tuple (A, B, C, D) is said to be a realisation of G(s), and the expression 
G(A, B, C, D) is sometimes used to denote this. 

The input/output behaviour, under zero initial conditions, of the system G in the 

frequency domain is described by 

y(s) = G(s)u(s) (3.3) 

The short-hand notations 

CD and (A, B, C, D) (3.4) G -[ I] 

are frequently used to describe a linear state-space model of a continuous system G 

given by (3.1)-(3.2). 

Given a system G with state-space realisation (A, B, C, D) where A can be 

diagonalized (A has n linearly independent eigenvectors), then G(s) can be written in 

the following partial fraction expansion 

G(s) => Cuk 1 
wk B+D 

k-I S -Pk 
(3.5) 

In (3.12) wk and uk are left and right eigenvectors corresponding to the pole pk, where 

wk and uk are scaled such that wk uk =1. 

Remark (3.1). Cuk is a vector of dimension tx1, note that Cuk indicates how much 

the k'th mode is observed in the inputs. 
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Remark (3.2). wk "B is a vector of dimension Ixm, and note similarly that ww'B 

indicates how much the k'th mode is exited by the inputs. One problem with this view 

on controllability and observability, is that we are free to scale wk and uk arbitrarily, so 

the length of the vector wk HB can be made as large as one wants by multiplying wk 

with a non-zero constant c. However, then the length of the vector Cu, becomes 

correspondingly small, since wk uk =1 is required. 

3.3 Zeros and zero directions in multivariable systems I Smith McMillan 

form and System Structure 

Every rational transfer-function can be expressed as a polynomial matrix, divided 

by a common denominator polynomial. So, every polynomial matrix can be reduced to a 

canonical form known as the Smith form [Gant., I]. 

Definition (3.1): A polynomial matrix U(s) is called unimodular if it has an 

inverse which is also a polynomial matrix. 
13 

There are three elementary operations which can be performed on polynomial 

matrices: 

" Interchange of any two rows, or columns, 

" Multiplication of one row or column by a constant, 

" Addition of a polynomial multiple of one row or column to another. 

Each of these elementary operations can be represented by multiplying a polynomial 

matrix by a suitable matrix, called an elementary matrix. It is easy to show that all 

elementary matrices are unimodular. 

Two (polynomial or rational) matrices P(s) and Q(s) are equivalent (P(s) - Q(s)) 

if there exist sequences of left and right elementary matrices {I. 
1(s),..., L, (s)} and 

{R1(s),..., R, (s)} such that 
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P(s) = L, (s)... L, (s)Q(s)R, (s)... R, (s) (3.6) 

The next result states that every polynomial matrix is equivalent to a diagonal 

polynomial matrix known as the Smith form [Gant., 1]. 

Theorem(3.2): Let P(s) be a polynomial matrix of normal rank r (i. e. of 

rankr for almost all s ). Then P(s) may be transformed by a sequence of elementary row 

and column operations into a pseudo-diagonal polynomial matrix S(s) having the form 

S(s) = ding{Et 
(S), E2 

(S),..., 
e 

, 
(S), 0, O,..., o} (3.7) 

in which each £; (s) (i =1,..., r) is a monic polynomial (i. e. has leading coefficient 1) 

satisfying the divisibility property 

e, (s)Ic, 
+i(s), i=1,..., r-1 (3.8) 

(that is, Er(s) divides c, +, 
(s) without remainder). Moreover, if we define the 

determinantal divisors 

Do(s)=1 

D, (s) = greatest common divisor of all ixi minors of P(s) 

where each greatest common divisor is normalised to be a monic polynomial, then 

ei (S) -- D, (s) 
,i =1,..., r (3.9) 

D; 
-1 

(s) 

0 

The matrix S(s) is the Smith form of P(s), and the e, (s) are called the invariant 

factors of P(s). 
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It is clear that the Smith form of a polynomial matrix is uniquely defined, and that 

two equivalent polynomial matrices have the same Smith form. The Smith form is thus 

a canonical form for a set of equivalent polynomial matrices. This can be extended to 

rational matrices: 

Theorem(3.2): Let G(s) be a rational matrix of normal rank r. Then G(s) may 

be transformed by a series of elementary row and column operations into a 

pseudo-diagonal rational matrix M(s) of the form 

M(s) = diag _' (s) 
, 

£2 ((s) 
,..., 

6(sý (3.10) 
V' (s) V'2(s) yf, (s) 

in which the monic polynomials {e, (s), yr, (s)} are coprime for each i (i. e. they have no 

common factors) and satisfy the divisibility properties 

er (S)I Er+1(S) (3.11) 

M(s) is the Smith-McMillan form of G(s). 

Poles and Zeros of a transfer-function matrix 

In SISO systems, the poles and zeros of the scalar transfer function 

g(s) = 
n(s) 

O 
(3.12) 

(with n(s) and d(s) coprime polynomials) are given by the roots of d(s) and n(s), 

respectively. We now define the poles and zeros of a transfer-function matrix by means 

of the Smith-McMillan form [Rosen. 2]. 

Definition(3.2): Let G(s) be a rational transfer-function matrix with Smith-McMillan 

form M(s), and define the pole polynomial and zero polynomial 
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P(s) V, (s)... V. (s) (3.13) 

Z(S) = E, (s)... s, (s) (3.14) 

The roots of p(s) and z(s) are called the poles and zeros of G(s), respectively. 

In other words, the poles of G(s) are all the roots of the denominator polynomials 

yr; (s) of the Smith-McMillan form of G(s). If po is a pole of G(s), then 

(s - po)"(v z 1) must be a factor of some yr; (s). The number v is called the 

multiplicity of the pole, and if v =1 we say that po is a simple pole. Zeros and their 

multiplicity are defined similarly, in terms of the numerator polynomials e. (s) of the 

Smith-McMillan form. 

Remark(3.3): If G(s) is square, then det G(s) =c 
z(s) for some constant c. In this 
p(s) 

case, although the pair of polynomials {e, (s), yr; (s)} is coprime for each i, it is possible 

that there exist common factors between p(s) and z(s) which cancel out in forming 

det G(s) . 

Definition(3.3): The degree of the pole polynomial p(s) is the McMillan degree of 

G(s) . 0 

Zeros defined via the Smith-McMillan form are often called transmission zeros, 
in order to distinguish them from other kinds of zeros which have been defined. It is 

obvious that the rank of G(s) drops below its normal value whenever s= zo, if zo is a 

zero of G(s). Hence, there exists a non-zero vector uo such that G(zo)uo = 0. If the 

input-signal vector has transform 

U(S) = 
uO (3.15) 

s-zo 
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then the output is given by 

y(s) = G(s)u(s) + initial condition response 

= 
G(zo)uo 

+E+ initial condition response (3.16) 
s-zo I s-Pi 

=o 

if the initial conditions are chosen so as to cancel out the second term, in which p1 

denotes a pole of G(s), R, denotes the residue of G(s) at s=p, and all the poles are 

assumed to be simple. Hence, transmission zeros have a transmission-blocking property 

[McFar. & Karc., I]. 

The significance of poles may be summarised very simply. Each pole p, of a 

transfer-function matrix G(s) must also appear as a pole of at least one of its elements. 

It is therefore possible to write G(s) in `partial fractions' as 

G(S) = (s - Pi)*' 
+ Go (3.17) 

(assuming that G(s) is proper), where G, and Go are constant matrices, and k, is some 

positive integer. Hence, the impulse-response matrix of the system, which is obtained as 

the inverse Laplace transform of G(s), is 

V 

G (t) = GGt"-'e1 it + Go8(t) (3.18) 

The relation of pole locations to system stability is therefore the same as for SISO 

systems: a system is asymptotically stable if Re{p} <0 for each i, and it is stable if 

Re{p, } <_ 0 and k, =1 whenever Re{p, } = 0. 
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Matrix-fraction description (MFD) of a transfer function 

Throughout the thesis, G(s) will denote an mx£ proper, rational transfer- 

function matrix, namely one such that G(oo) = D. Let L(s)-' and R(s)-' be the 

unimodular matrices that take G(s) to its Smith-McMillan form M(s) [Rosen. 2] 

l, 

(S) 
C'(S 

2 
e2(s) 

,..,, 
Er(s) 

, 0,.., 0 R(s) (3.19) G(s) = L(s) M(s)R(s) = L(s)diag 

The set of zeros of {s; (s), i =1, """, r} are defined as the zeros of G(s) and the 

zeros of { yr, (s), """, yr, (s)} are defined as the poles of G(s) [Rosen. 2] 

Assuming for simplicity m; -> 
t, one may write M(s) as 

M(s) = N'(s)D'(s)-' (3.20) 

where N'(s) and D'(s)-' are polynomial matrices defined as 

ýi (S) 
N'(s) -0 (3.21) 

fr(s) 

00 

D'(s) = diag{yr, (s), """, yr, (s), 1, """, 1} (3.22) 

and D'(s) is a square matrix of dimension .£xf. Substitution of the two equations 

yields: 

G(s) = L(s)N'(s)D'(s)-' R(s) 

[L(s)N'(s)][R(s)_' D'(s)1-l 
(3.23) 

= N(s)D(s)-' 
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where 

N(s) = L(s)N'(s) and D(s) = R(s)-' D'(s) (3.24) 

The representation for G(s) is called a right matrix-fraction description, and N(s) and 

D(s) are called the numerator matrix and the denominator matrix, respectively, of the 

MFD. Evidently, an MFD representation is not unique. 

We are frequently interested in removing any unnecessary common factors, so: 

Definition(3.4): Let N(s) and D(s) be polynomial matrices with the same 

number of columns. If there exist N(s) and D(s) such that 

N(s) = N(s)U(s) and D(s) = D(s)U(s) (3.25) 

only for unimodular U(s), then N(s) and D(s) are said to be right coprime. 
0 

An MFD G(s) = N(s)D-1 (s) is said to be irreducible if N(s) and D(s) are right 

coprime; otherwise it is reducible. 
The following theorem follows naturally [Kailath, 2]: 

Theorem (3.3): If G(s) = N(s)D-1(s) and N(s) and D(s) are coprime, then 

1. z is a (transmission) zero of G(s) if and only if N(s) loses rank at s=z 

2. p is a pole of G(s) if and only if D(p) is singular. 

The results for left MFDs i. e. factorisations of the type 

G(s) = D''(s)N(s) 

0 

(3.26) 

where D(s) is mxm, and N(s) is mxI polynomial matrices, follow by duality (right 

MFD's on the transposed transfer function GT(s) ) 
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Corollary (3.1): If G(s) = N(s)D-(s) = D-'(s)N(s) are right, left coprime 

MFDs, then 

(1) The zeros of G(s) are defined as the zeros of the Smith form of N(s), N(s) 

(2) The poles of G(s) are defined as the zeros of the Smith form of D(s), D(s). 

0 

3.4 System properties and invariants 

Controllability is a property of the coupling between the input and the state, and 

thus involves the matrices A and B. 

Definition 3.5: [Wonham, 1] A linear system is said to be controllable at to if it is 

possible to find some input function u(t) , 
defined over tE3, which will transfer the 

initial state x(to) to the origin at some finite time t, E 3, t, > to. That is, there exists 

some input which gives x(t, ) =0 at a finite t, E 3. If this is true for all initial 

times to and all initial states x(to), the system is completely controllable. 

The definition given above is referred to as state controllability, and it is the most 

common definition. Complete controllability is obviously a very important property. If a 

system is not completely controllable, then for some initial states no input exists which 

can drive the system to the zero state. 

Observability is a property of the coupling between the state and the output and 

thus involves the matrices A and C. 

Definition 3.2: [Wonham, 1 ]A linear system is said to be observable at to if x(t. ) can 

be determined from the output function y,,,,,, i for to r= 3 and to 5 t, , where t, is some 

finite time belonging to Z. If this is true for all to and x(to), the system is said to be 

completely observable. 
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Both controllability and observability are defined in terms of the state of the 

system. For a given physical system, there are many ways of selecting state variables. It 

is therefore possible that a given physical system will have one state model which is 

controllable but not observable and another state model which is observable but not 

controllable. These properties are characteristics of the model {A, B, C, D} rather than 

the physical system per se. However, if one nth-order state variable model is both 

controllable and observable, then all possible state variable models of order n will have 

these properties. If either property is lacking in a given nth-order state variable model, 

then every state variable model of that order will fail to have either one or the other 

property. 

Polynomial matrices play an important role in system theory and a special type 

that is often used, is called matrix pencil. Matrix Pencils are polynomial matrices of 

degree one, i. e. they have the form sF -G where F, G are real matrices. The role of 

matrix pencils in systems theory is important, since they are directly related to first 

order differential systems [Karc., 8] [Karc. & Hayt., 1 ]. The notion of strict equivalence 

for matrix pencils is defined below [Gant., I]: 

Definition 3.7: Two matrix pencils sF - G, and sF2 - G2 are called strictly equivalent 

if there exist constant non-singular matrices P, Q such that 

sF2 - G2 = P(sF, - G, )Q (3.27) 

If the pencil sF -G is square and det{sF - G} #0 then the pencil is called regular, 

otherwise it is called singular. If sF - sG and f, (s, s), i =1, """, r, r= rank{sF - G} , 

are the homogeneous invariant polynomials (obtained by reduction to Smith form), then 

elementary divisors of the type s° are referred to as infinite elementary divisors and 

those of the type (s - as)p as finite elementary divisors. If the pencil is singular, at least 

one of the following equations has a solution for polynomial vectors x(s), yT(s) 
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(sF - G)x(s) =0 and / or yT (s)(sF - G) = Or (3.28) 

If [x, (s), """, xf, (s)] and [y; (s), """, yT]T are minimal polynomial bases for the right and 

left null space of sF -G respectively and E,, i =1,. " ", p, ? 7j, j =1, """, v denote the 

corresponding degrees, then E, are known as column minimal indices and q, as row 

minimal indices of the pencil. The sets of elementary divisors and minimal indices 

uniquely characterises the strict equivalence class of sF -G and there exists a canonical 

form obtained by some appropriate transform pair (P, Q) and defined by 

P(sF - G)Q = sFk - Gk where 

09, 
h 

L, (s) 

sFk-Gk= 0 
0 

0 
0 Li(s) 

sH -I 
sI- J 

(3.29) 

where °g, h is a zero block defined by the g row minimal indices, h zero column 

minimal indices, LE(s), L,, (s) are blocks associated with nonzero column minimal 

indices and row minimal indices respectively, sH -Ia block associated with the 

infinite elementary divisors and sI -Ja block associated with the finite elementary 

divisors. The structure of these blocks is defined below: 

Le(s)=block -diag[..., Le, (s),... ], L6ý(sý=s[iý, pý_[p'z 

L,, (s) = block - diag[. " ", L (s), """], Ln, (s) =sr-T 
- n, 

sH -I =block -diag[. "", sHy, -Iq, """], Hq, =0 
I9i -1 

00 
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sI-J=block -diag[""", sJP -JP, (a), """], JP, (a)=aIP, -HPA 

The above canonical form is called Kronecker canonical form of sF - G. In the 

case where the pencil is regular, it is characterised only by the infinite and finite 

elementary divisors and the canonical form has only the blocks sI -J and sH - I. In 

this case the canonical form is called Weierstrass canonical form. 

Controllability and Observability 

The pencil [sI - A, -B] is known as input-state, or controllability pencil 

[Rosen., 1] [Karc., 5] and the invariants of [sl - A, -B] are very closely associated with 

the controllability properties of the system. A system is uncontrollable iff there exist 

finite elementary divisors in [sI- A, -B]. We have the following definition [Rosen, 2]: 

Definition (3.8): A point xc in the state-space is called controllable, if there exists 

control input u(t) such that if x(O) = x, the state may be driven to the origin in finite 

time and the trajectory x(t) is continuously differentiable. 

The pencil [sI - A, -C] is known as state-output, or observability pencil. The 

system is unobservable iff there exists finite elementary divisors of the pencil 

[sI 
- A', -C']' [Rosen., 2] which is referred to as the state-output pencil [Karc., 5]. 

Definition (3.9): A system is called observable if there exists a t, >0 such that given u 

and y on an interval [0, t] it is possible to deduce x(O). 

0 

Transmission Blocking and Zeros 

The concept of a zero is strongly connected with the physical problem of a system 

S(A, B, C, D) whose output response remains identically zero even though the system 
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input and states are themselves non-zero. This situation may be represented 

diagrammatically as [McFar. & Karc., 1] 

X, 

u eneýý) Yýt) =0 
S(A, B, C, D) 

Figure (3.1): Output zeroing Problem 

The conditions for the solution of this problem are expressed in the following 

theorem: 

Theorem (3.4): [McFar. & Karc., 1] For a proper system S(A, B, C, D) with full rank 

transfer function for which the number of inputs £ is less than or equal to the number of 

outputs m, a necessary and sufficient condition for an input 

u(t) = u, eZ1, t >_ 0 (3.30) 

to yield a rectilinear motion in the state space of the form 

x(t) = arezf ,t >_ 0 (3.31) 

and to be such that 

y(t) -0 for t>0 (3.32) 

is that 
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P(z) u, 
= 0, P(z) = 

zl C 

-D 
(3.33) 

From (3.8) we have that the solutions in z give the values of the complex 

variable s for which P(s) loses column rank. This is only possible for values of s 

which coincide with the finite elementary divisors of P(s). The frequencies z define 

the set of finite invariant zeros. The vector solutions xr, u, that correspond to the finite 

invariant zeros are called the state and input zero directions [McFar. & Karc., 1]. The 

matrix P(s) is known as the Rosenbrock's system matrix and its invariant structure 

defines the zero structure of the system [Karc. & Kouv., 1]. 

3.5 Singular Value Decomposition (SVD) 

Principal gains (singular values) 

In a SISO system the performance of a feedback loop is determined by the 

variation of the loop gain with frequency; disturbance rejection, noise transmission and 

differential sensitivity to parameter variations all depend only on the gain (assuming 

that stability is achieved). If the open-loop transfer function (return ratio) has no right 

half-plane zeros, then stability margins and the closed loop transient response are also 

determined by the open-loop gain characteristic. 

In attempting to extend this correlation to multivariable feedback, the main 

problem is that a matrix does not have a unique gain: the norm IIG(s)u(s)II depends on 

the direction of the vector u(s). However, we can bound the ratios 

IIG(S)u(s)ll 
and 

I G_ý(s)y(s)ll 
(3.34) 

ilu(s) I Ily(S)II 
using matrix norms. (G(s) is usually assumed to be square and invertible, although 

neither of these assumptions is necessary). Thus, the idea of a simple gain is replaced by 

the notion of a range of gains, this range being bounded below and above. 
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If llxll denotes any vector norm, then an induced (or subordinate) matrix norm is 

defined by 

IIGII = sup 
IIGx-I 

(3.35) X*o IIXII 

In particular, using the Euclidean vector norm (for complex vectors) 

1lxII = 
J(xh1x) (3.36) 

then the induced matrix norm is the Hilbert or spectral norm: 

JIGIIs =Q (3.37) 

where Q2 is the maximum efgenvalue of GHG (or of GGH). Here xH denotes Y', and 

similarly for GH . Now, if G has m rows and 1 columns, and m >_ 1, then the positive 

square roots of the eigenvalues of GHG are called the singular values of G. 

If instead of G we have G(s), and set s=jw (0: 5 co < oo), then the singular 

values of G(s) are functions of co, and they are then called the principal gains of G(s). 

They are denoted by {Q; (rv)} to emphasize their dependence on frequency, or by 

{a, (G)} to distinguish the principal gains of G from those of some other system. The 

ordering Q, ý Q2 z" " "? 6�, is adopted, when necessary, and a,, a. are denoted by Q 

and a respectively, when the use of the largest or smallest principal gain needs to be 

emphasized. It should be noted that 

a(G(. 1 w)) = JIG(ico)Ils (3.38) 

which is a norm on the matrix G(ja ), which changes with w. JIGIIZ and IIGII. are norms 

of the transfer function G that are independent of frequency. 
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The singular-value decomposition 

Let j=diag{6,, Q2,..., 6�ß}, and let Gbe a complex matrix. Then, G can 

always be written as 

G=Yj: UH 

where 

if m >_ t: if M: 5 . e: 
YE Cmxt yE rmxm 

l " 

E EREx1 mxm EE R 

UH ECdx[ UH EC. mx[ 

YHY =1t YHY = )TH = In, 
UHU = UUH = It UHU = Im 

(3.39) 

and C°"` denotes the set of complex matrices with m rows and f columns, and R" 

denotes the set of real matrices with these dimensions. This is known as the 

singular-value decomposition. This decomposition is not, however, unique: 

G= Y'EU'H, where Y' = Yej° and U' = Ue-'B, for any 0, also gives a singular-value 

decomposition. However, the o are unique. 

Consider H= UE-'YH 

Then 

HGH = (-IYH)(YUH)(u-Iy") (3.40) 

=H 
and 

GHG = (YZUH)(U-'YH)(YU ) (3.41) 

=G 
which shows that H is a pseudo-inverse of G. Thus we have 

Gt = n- YH (3.42) 
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where GI denotes the pseudo-inverse of G. It is assumed that rank(G) = min(., m). If 

r< min(. C, m) then instead of E-' we take 

17-; i 0 (3.43) 
00 

where E, = diag{Q,,..., Q, }. 

If G is square and non-singular, then 

G-'_ UZ-TH 

from which 

(3.44) 

IIG_ýý>wýlls = 
ý(Ct)) 

(3.45) 

We can also easily prove that 

6(c) < 
JIG(. 1 w)u(. l w)ll 

<F 7(w) 
(3.46) 

which shows that the gain of a multivariable system is sandwiched between the smallest 

and largest principal gains. 

With each principal gain, we can associate a pair of principal directions, as 

follows: Assume that m >_ 1, and let the rows of YH be yH, yz 9". ", yj , and the columns 

of U be u,, u2, """, u,. Then, we can write 

y =Gu 
i EakYkuk u (3.47) 

k=1 

Since Auk 11 =1, we have 

Iuk Ilukli IJuJI = Ilu1I (3.48) 
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the equality holding only if u= auk for some scalar a. Suppose, then, that u= au,, 

with lal = 1, so that (lull = 1. Then uk u=0 for k#i, and hence, the resulting output is 

Y=a; Y; a 

so that 

IIYII = a, 

This shows that the gain of the system is precisely a, if the input signal is in the 

direction of u,. The set {u,, u2, """, uu} is called the set of input principal directions of 

G. In particular, the greatest possible gain Q=Q, occurs if the input signal is in the 

direction of M, and the smallest possible gain q=a, occurs if it is in the direction of 

u,. Note that the principal directions are orthogonal to each other (that is 

ujuu=0 ifi# j), since UHU=I. 

If the input vector is in the direction u,, then the output vector is in the direction 

y,. The set {y,, Y2,.. , yý} is called the set of output principal directions. Again, these 

are orthogonal to each other. 

A useful characteristic of the system is its condition number, which is defined as 

cond(G) = (3.49) 

and which depends, of course, on frequency. In numerical analysis the condition number 

measures the difficulty of inverting a matrix. It also has a control-theoretic significance, 

in that it measures the inherent difficulty of controlling a given plant. 
We can also define two further functions, that are widely used for assessing 

performance, the sensitivity S(s) and the complementary sensitivity T(s) : 

S(s) = [I+ G(s)K(s)]-' (3.50) 

T(s) = S(s)G(s)K(s) (3.51) 
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To assess the disturbance-rejection (sensitivity) properties of a loop, one should 

examine the principal gains of S (see figure 3.2). If the region lying between a(S) and 

u(S) is very narrow, then we are almost back with the SISO single gain, and we can 

describe the loop's sensitivity properties very accurately. 

Usually the region will not be narrow - in this case, since we are always 
interested in keeping sensitivity as small as possible, it is the upper boundary of the 

region (that is, a) which will be important. 

To assess the propagation of measurement noise we can look at the principal 

gains of T. Again, the upper boundary is important, since we wish to minimise the 

propagation. Note that there are now two loop bandwidths: wb , the bandwidth at the 

output, and co, , the bandwidth at the input. 

1/ 

J 

Figure (3.2) Smallest and largest prinsipal gains of multivariable sensitivity function 
S (solid curves) and complementary sensitivity function T (dashed curves). 

Matrix norms and the operator norms JIG112 and DGII. 

The ̀ gain' of a transfer function is usually considered as a function of frequency 

(i. e. measured at discrete points). But it is possible, and useful, to have a cruder measure 

of the ̀ gain'. Two such measures can be defined, known as norms, denoted by IIGII2 and 

IIGII. 
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Definition (3.10): Let G(s) be a proper transfer function with no poles on the 

imaginary axis. Then 

JýGhýz = 2ýc 
f* tr[G(Jw)GT (jw)ýdw (3.52) 

and 

IIGII. = sup a(G(jw)) (3.53) 

w 

It can be shown that IIGII2 and IIGII. both satisfy the usual properties of norms. These 

norms are often referred to as operator norms, as the system represented by a transfer 

function is an operator which maps functions - input signals - into other functions - 

output signals, and these norms measure the amplification (or at least the greatest 

possible amplification) of this mapping. 

3.6 The notion of Process Controllability 

3.6.1 Introduction 

The concept of controllability as introduced by Kalman (1960), states that a linear 

system described by the state differential equation: 

zýtý = Axt) + Bu(t) (3.54) 

is completely controllable, if the state of the system can be transferred from the zero 

state at any initial time, to any terminal state x(t) = x, within a finite time t, -to, through 

the use of a piecewise continuous control input 4t). In the area of process control, the 

same term has been used with a much wider meaning. In this section, we review these 

alternative notions which dominate chemical engineering practices. 

The notion of controllability of a process structure, has a much more general 

meaning and plays a key role, if we wish to integrate effectively the design of a process 

and the control system design problem. Broadly speaking, the controllability involves 
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two aspects. The first is the performance of a process under a transient condition, where 

the operating mode of the process, or, equivalently the set point of its control system, is 

shifted from one to another; obviously, a change in the set point, usually induces a 

long-term disturbance. The second, which is probably more important than the first, is 

the stability under a given operating mode, where the normal values of the input and 

output variables of the process are fixed, but under the constant influence of various 

disturbances; any of such disturbances is usually regarded as a short-term disturbance. 

How well the synthesised process responds to these disturbances and how effective its 

control functions are, determine the process' dynamic characteristics, and consequently, 

its controllability. One aspect of the controllability of a process assessment is by 

examining the disturbance propagation in a process structure. 

3.6.2 Process Controllability and Steady State Analysis 

A series of papers by Douglas and co-workers [Fisher et al., 2,3] describe a 

systematic procedure for assessing process controllability at the preliminary stages of a 

process design, so that some of the economic penalties, associated with control, can be 

used as an additional criterion for screening process alternatives. For improving 

controllability, they consider (1) modifying the flowsheet to add more manipulative 

variables, (2) over-designing certain pieces of equipment so that the process constraints 

never become active for the complete range of process disturbances, or (3) ignoring the 

optimisation of the least important operating variables. The goal of their controllability 

analysis is to determine which of these alternatives have the smallest cost penalty. In 

another related case study, they demonstrate that for a distillation column over-design in 

terms of the number of trays is important to account for tray efficiencies, but it does not 

significantly increase the range of operability of a column. 

The controllability problem for heat exchanger networks was defined first in 

[Mars. et. al., 1], where a procedure was developed to yield designs which handle 

stream flow rate and temperature fluctuations with maximum energy efficiency. The 

problem as studied in [Linnh. & Kotj., 1] addressed the trade-offs between 

controllability and economics more effectively through a combination of "downstream 

paths" and "sensitivity tables". Recently, Georgiou and Floudas [Georg. & Floud., 3] 

57 



Ciapter 3 12achprouni Materia[/rom Spteme 
and 

Proceae Control 
//otion 

have proposed an automated synthesis procedure based on a superstructure approach, 

which will, either generate heat recovery networks with low capital costs and total 

disturbance rejection, or, if this is not possible, it will minimize disturbance 

propagation. Shinnar [Shinnar, 1] introduces a new definition of the concept of 

controllability which takes into account model uncertainty and the fact that many 

important process variables may not be measurable in practice. 

3.6.3 Controllability evaluation based on linear dynamic models 

Given a linear dynamic model of the process, some performance measures related 

to the desired closed-loop performance, and some restrictions on the controller structure 

(PI, decentralised, etc. ), the objective is to find the optimal controller parameters and to 

compare the achieved optimal performance, a measure of controllability, among 

different designs. Several difficulties are associated with this approach. The traditional 

objective function in optimal control was the integral square error (ISE). It was used to 

distinguish alternate designs, for example, by Lenhoff and Morari [Lenh. & Mor., fl. By 

itself the ISE is hardly a measure which is of direct interest in practice. [Lee el al., 1] 

used multiple performance criteria: integral square error, maximum deviation of exit 

response, maximum magnitude of control variable, and saturation magnitude. Any such 

assessment however, would become prohibitively complex in the multi-variable context. 

A further difficulty noted in the constrained-structure optimal control approach is that 

the search for the control parameters is notorious for its multiple local optima nature. 

Both previously mentioned drawbacks are alleviated to a large extent by adopting 

robust performance as a control objective [Mor. & Zaf., 1] and by removing any 

restriction on the controller structure. In the H_ context, the objective function is also 

scalar but it can be quite easily formulated to express frequency-dependent constraints 

on various outputs and manipulated variables, as well as the effect of model uncertainty. 
Usually, the structured singular value p is used as a normalised indicator, with values 
less than one signifying satisfaction of the performance specifications in the presence of 

uncertainty. Even better methods for the computation of p-optimal controllers (without 

complexity constraints) become available. Nowadays, restricting control complexity is 

hardly an issue in any new installation. [Skog. et al., 4] used p-optimal controllers to 
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distinguish various control structures for high-purity distillation columns. Jacobsen et al. 

employed p-optimal PID controllers to evaluate various designs of a homogeneous 

azeotropic distillation column. Despite these successes, it must be stated that 

formulating a meaningful robust control problem and determining the optimal robust 

controller is far from trivial. Therefore, the search for alternate, simple criteria which 

would allow a rank ordering of design alternatives, roughly consistent with that obtained 

from ap analysis, has continuing importance. Criteria such as zero and time-delay 

analysis, singular values, condition number, RGA etc. are important in this context. 

A number of process characteristics, which limit the achievable control- 

performance independently of controller design, have already been identified [Morari, 

6]: non-minimum-phase behaviour (i. e., time delays and right-half-plane zeros), actuator 

limitations and more uncertainty. Occasionally, measurement noise may have a 

dominant effect. Various researchers have proceeded to analyse the effect of time 

delays, right-half-plane zeros and model uncertainty individually on closed-loop 

performance. Multivariable delays were analysed in [Holt & Mor., 1], [Perk. & Wong, 

1]. Exact bounds on achievable performance, with and without decoupling constraints, 

were identified through a mixed integer linear programming procedure in [Psarris & 

Floud., 3]. The properties of multivariable right-half-plane transmission zeros were 

investigated in [Holt & Mor., 1], [Mor. & Zaf., 1]. Conditions under which decoupling 

is integral-square-error optimal were identified. This work was followed by a more 

complete treatment by Psarris and Floudas [Psar. & Floud., 1,2] who dealt with the case 

of an infinite number of zeros which usually arise in the presence of multivariable time 

delays. The drawback of these analysis techniques is that, in any but the simplest 

situations, it is essentially impossible to rank the order of alternatives. 

In [Psar. & Floud., 1], [Jacob. & Skog., 1], the condition number of the plant 

transfer matrix as a function of frequency was suggested as an indicator of closed-loop 

sensitivity to model error. This criterion was first applied in 1982 to a system of two 

CSTRs with heat integration [Mor. et al., 4]. In the last ten years, we have gained some 

understanding of the role of the condition number [Skog. & Mor., 2], but the basis for 

its use for controllability assessment is still somewhat tentative. The main problem is 

that all the conditions relating the condition number and closed-loop stability and 

performance [Mor. & Zaf., ] are sufficient but not necessary. While we can say with 
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certainty that the closed loop performance of low-condition-number plants tends to be 

insensitive to model error, we cannot reject high-condition-number plants with 

certainty, though there are many indications that the performance for these types of 

plants will be bad. Over the years, there has also been some discussion on the scalings 

of the plant inputs and outputs and their effect on the magnitude of the condition 

number. Our experience, supported by theory [Skog. & Mor., 2], indicates that 

minimising the condition number by input and output scaling tends to distort any 

conclusions on model error sensitivity. 

Skogestad et al. [Skog. et al., 1] make a strong case for using a combination of 

the frequency-dependent relative gain array (RGA) and the closed-loop disturbance gain 

(CLDG) to judge the relative controllability of alternate designs. These tools have been 

employed in many recent case studies. The conclusions tend to correlate well with the 

closed-loop performance obtained with p-optimal control systems. The steady-state 

RGA was introduced by [Bristol, 1] (1966) and continues to be widely used in industry 

as a controllability indicator. While the steady-state RGA is indicative of the fault 

tolerance of multivariable control systems [Grosd. et al., 1], it can be very misleading as 

a controllability indicator [Skog. et al., 2]. The CLDG was introduced by Hovd and 

Skogestad [Hovd & Skog., 2] based on the relative disturbance gain defined by McAvoy 

and co-workers [Stanl. et al., 1]. Hovd and Skogestad found that the CLDG enters 

nicely into the relation between control error and disturbances, while the RGA enters in 

a similar way into the relation between control error and set point changes. 

In the last few years, many case studies have appeared, where these concepts 

were applied. An ethyl-benzene production facility and a two-column separator system 

in styrene manufacturing is analysed at steady state in [Mizsey & Fonyo, 1]. The 

controllability of ordinary distillation columns is investigated in [Jacob. & Lar., 1]. A 

fluid catalytic cracker is studied in [Hovd & Skog., 1], heat exchanger networks in 

[Wolf et al., 1], [Mass. et al., 1], homogeneous azeotropic distillation columns in 

[Jacob. & Lar., 1], and floatation circuits in [Lear et al., 1]. It is often possible to 

interpret the behaviour of the frequency-dependent RGA and CLDG on physical 

grounds. This and their theoretical basis make the RGA and the CLDG highly appealing 

and easily applicable tools for controllability assessment. Finally, it should be 

mentioned that several researchers [Denn & Lavie, 1], [Rinard, 2], [Fisher et al., 3] have 
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studied the effect of recycle on the dynamic behaviour in linear models. Silverstein and 

Shinnar [Silo. & Shin., 1] use essentially linear techniques to analyse the nonlinear 

model of a reactor with feed-effluent heat exchanger. 

3.6.4 Controllability evaluation based on nonlinear dynamic models 

In most cases, a controllability evaluation based on linear models, as described 

above, suffices even when the system is strongly nonlinear and when a linear control 

system is inadequate. Usually, it is quite easy to design simple static nonlinear 

compensators which remove most of the process nonlinearity. The compensated system 

can then be analysed with the proposed linear techniques. As a typical example, high 

purity distillation columns can behave in quite a nonlinear fashion. However, when 

relative composition deviations are controlled or alternatively the logarithm of the 

compositions, the system is linearized sufficiently so that adequate performance is 

obtained with linear control systems [Skog. & Mor., 3]. 

In rare but very important instances, the system can exhibit nonlinear behaviour 

which is not easily correctable with simple nonlinear transformations. For example, a 

reactor may display high parametric sensitivity and the temperature may rise to 

excessively high levels when small perturbations occur [Shinnar et al., 1]. Also, the 

system may exhibit multiple steady states, limit cycles, or even chaotic behaviour. It 

was suggested recently that nonlinear characteristics should be examined at the design 

stage [Seider et al., 1], [Seider et al., 2] and that nonlinear analysis techniques, like 

bifurcation analysis and singularity theory, should be used more routinely in process 

design. Indeed, this has been done in the area of reactor design for decades. The 

question is what to do with this type of analysis. [Seider et al., 2] suggest that modem 

nonlinear control algorithms allow us to deal with almost any difficult control situation, 

and consequently regions of unusual dynamic behaviour should not be avoided in 

process design. Carried to the extreme, one could conclude that such a nonlinear 

analysis is not needed at all at the design stage because any complex nonlinear 

behaviour can be fixed later on by the control algorithm. It is possible that future 

developments may lead us somewhat in this direction (just like for linear systems, 

where the issue of control complexity became less and less important in the last decade), 
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but we should not forget that nonlinear control theory is in its infancy. Even if the 

applicability of a particular algorithm (for example, nonlinear model predictive control) 

is established in principle, the control effort required may be enormous 

[Lenh. & Mor., 1] and totally uneconomical. 

There is no doubt that increased quality standards, stricter environmental 

regulations, and economic pressures will push designs into regions which were 

previously avoided, and where unusual nonlinear behaviour occurs. Therefore nonlinear 

analysis techniques will undoubtedly be needed increasingly at the design stage. For 

chemical reactors, unusual dynamic behaviour is almost expected nowadays, but 

recently similar phenomena were discovered for other systems as well. The results 

obtained by Seader and co-workers [Chavez et al., 1 ], [Lin et al., 1] suggest that 

multiplicities may be one reason why the so-called Petlyuk distillation configuration is 

not used in industry despite established energy advantages. It is known that 

heterogeneous azeotropic distillation columns can exhibit multiple steady states 

[Magnus. et al., I], [Royal. & Doh., I]. Rovaglio et al. [Royal. et al., I] have studied the 

control problems associated with these multiplicities and the parametric sensitivity also 

found in these columns. Recently, Laroche et al. [Laroche et al., 1,2] discovered 

multiple steady states in homogeneous azeotropic distillation columns where such 

phenomena were believed not to exist. Fortunately, continuously improving software (e 

g. [Doedel, 1]) allows today's designer to carry out bifurcation analyses on large systems 

(e g., of the order of hundred differential equations in the case of the homogeneous 

azeotropic distillation columns), which was essentially infeasible a decade ago. Often, 

the bifurcation diagrams can be used to redesign the process in order to be more 

attractive from an economic and environmental point of view, while at the same time 

avoiding complex dynamics [Ray, 1], [Teym. & Ray, 1]. At typical operating conditions 

emulsion polymerisation of vinyl acetate carried out in a CSTR exhibits limit cycle 

behaviour. The bifurcation analysis shows that limit cycles can be avoided either by 

increasing the solvent fraction (a traditional technique which leads to costly recycle 

problems) or by decreasing the solvent volume fraction and increasing the initiator feed 

concentration. Another example is the novel feed system for a CSTR for continuous 

emulsion polymerisation, which was suggested by Penlidis [Penl. et al., 1], and was 

shown, in experiments, to remove the highly undesirable oscillatory (limit cycle) 
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behaviour of conventional CSTRs. More examples are discussed in the review paper by 

Seider et al. [Seider et al., 1]. 

Though a particular system may not exhibit multiple steady states, limit cycles 

and other exotic dynamic behaviour, it may be extremely sensitive to disturbances and 

small changes in its operating parameters. This has been observed in catalytic reactors, 

where runaway has been the subject of numerous studies, starting with [Wilson, 1] and 

[Lenh & Mor., 1] up to the recent work by [Balak. & Luss., 1], where some simple 

design rules to avoid runaway were derived. 

3.6.5 Algorithmic Synthesis involving Process Controllability Criteria 

Very little has been published on algorithmic synthesis techniques for processes 

which are both economical and controllable or where economics and controllability are 

traded off automatically in some intelligent manner. Apart from the early work by 

Ichikawa [Nish. & Ichik., 1], [Nish. et al., 1], there is the more recent work by Floudas 

[Lin. & Kotj., 1], [Georg. & Floud., 1], where the power of mixed integer nonlinear 

programming techniques is exploited for the synthesis of heat exchanger networks 

which exhibit minimal disturbance propagation. The same problem was studied in 

[Huang & Fan, 1], where a knowledge engineering approach is proposed and mass 

exchanger networks are also considered. In [Luyb. & Floud., 1] a multiobjective 

optimization technique is used to study the trade-off between various measures of steady 

state controllability and economics in the design of binary distillation columns. The 

experience, so far, has not clarified how useful the automatic synthesis techniques will 

be in the near future. Usually, they require a scalar performance index to be specified 

and they cannot exercise judgement on something like the behaviour of the frequency- 

dependent RCA and CLDG. The multiobjective approach introduced in 

[Luyb. & Floud., 1] looks very promising, though the controllability assessment is done 

at steady state and any implications for the dynamic behaviour are tenuous at best. 
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3.7 Conclusions 

The basis of systems and control have been examined in this chapter and a review 

of the notion of Process Controllability has been performed. The results here serve as a 

background to the following chapters. 
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4. THE PROBLEM OF GLOBAL PROCESS INSTRUMENTATION: 

EMERGING ISSUES 

4.1 Introduction 

The synthesis/design and operation of large scale industrial processes/systems 

has, as an integral part, the selection of systems of measurement and actuation variables. 

Although the way we measure individual physical variables and act upon them is 

governed by the traditional instrumentation rules, the selection of systems of 

measurement and actuation variables has a significant effect on the shaping of the final 

system and thus, it is crucial in defining the control quality properties (process 

controllability) and operability characteristics of the final design. We have reviewed so 

far the different aspects of control structure as they have emerged in the process control 

literature and use them to identify some fundamental issues related to the selection of 

systems of measurement and actuation variables; the review clearly suggests that this 

problem should be considered within the context of integrated design. It is now argued 

that, amongst the many different aspects of the problem, there are issues of Systems and 

Control Theory type which, have not been considered before. The development of these 

system aspects and related methodologies are essential prerequisites for the emergence 

of an integrated framework for Global Instrumentation [Karc., 8], [Karc. & Mil., 1], 

where traditional instrumentation, signal and communication aspects, artificial 

intelligence tools, process heuristics, and overall control performance characteristics are 

considered simultaneously, in an interactive manner, and not as independent issues. In 

this chapter, we try to abstract the results of the review so far and formulate generic 

issues and problems, which provide a wider scenario for activities in the future. 

4.2 Model, Event Identification and Input-Output Selection 

The selection of input test signals and output measurements is an integral part of 

the setting up of model identification experiments, as well as statistical experimental 

design. In fact, the identified model is always a function of the way the system is 
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excited and its behaviour is subsequently observed, that is the way the system is 

embedded in its experimental environment. Most of the work so far has concentrated on 

SISO identification techniques and on the effect of test signal characteristics on the 

identification aspects of the model. The study of effect of location of the group of 

excitation signals and corresponding group of extracted measurements on the 

identification problems has not been properly examined so far. Issues, such as how and 

whether additional excitation signals and extracted measurements may enhance the 

scope and accuracy of identifiable models, are important topics for research. Within this 

context, the selection of inputs, outputs in a system is closely related to the overall 

modelling exercise and frequently becomes indistinguishable from it. 

A similar class of problems to model identification is the family of problems, 

where the selection of measurements aims at providing information for identifying the 

occurrence of events, such as faults, or drifting of the process model from a nominal 

operating condition. The spatial distribution of sensors is of crucial importance in the 

fault diagnosis, as well as experimental design methodology. A dual problem to the fault 

diagnosis and location of measurements is the problem of adequate actuation variables 

for control rescheduling in the event of operational faults. In both problems, the effect of 

input-output structure shaping on the potential of the resulting system model to accept 

solutions either of the estimation, or the control type, is fundamental. 

4.3 Global Information Processing 

The role of sensors and actuators and their location may be viewed within the 

wider area of information machines [Finkel. & Grat., 11, [SESDIP 11. In fact, 

instruments are information machines, which sense a power or material flow from an 

object under measurement at the input, assign to it a symbol and carry out operations on 

the symbol, providing at the output, either a display symbol to a human operator, or 
finally, effectuate the information by operating actuators, or similar machines. In this 

context, an instrumentation system is an information machine, which has as its function, 

the acquisition, processing, outputting and effectuation of information from the real 

world. In information machines, information is carried by the magnitude or attributes of 

the time variations of physical variables. Viewing sensors and actuators as information 
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machines allows the linking of instrumentation to alternative aspects of process 

operations and the use of information type models of variable degree of complexity and 

abstraction. 

Information-machine systems, such as the instrumentation systems [Finkel. & 

Grat., 1], are formed by joining blocks with suitable connections, the structure of which 

is referred to as architecture. A physical system may have many components, or parts; 

each part is considered as block with its own input-output relationship. The blocks 

representing the various elements are connected in a specific way and they produce 

composite forms, architectures, realising composite functions. General modelling and 

tools from computer science, as well as general information theory, together with 

communication and data management issues, emerge as the building blocks of this 

alternative view of an instrumentation system, which may have as role, the monitoring, 

diagnosis etc. functions. The selection of input-output structures on simple, or 

composite information machines has a similar impact on the resulting model as that 

studied on dynamic models. The importance of the information viewpoint is greater 

when we consider higher level issues of the process operations hierarchy, or lower level 

problems of real time control. The information approach is a separate issue worth 

pursuing further than the current stage of the problem. 

4.4 Integrated Process and Control Design 

The problem of control structure selection is one of the important issues in 

process control area and although a variety of criteria and heuristics have been 

developed, there is up to now no systematic methodology for synthesising control 

structures for the whole plant. This area has been previously examined in detail and has 

served as a focus point for this work; in fact, the control structure selection problem 

within which the input-output scheme selection problem is embedded, has many 
different challenging aspects due to the close integration of higher and lower operational 

stages especially for continuous processes. The overall problem for continuous process 

presents a number of challenges due to that: 
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(i) The processes have non linear multiple couplings among the variables. 

(ii) The measurement and manipulation of process variables is limited to a relatively 

small number of variables. 

(iii) The control objectives may not be clearly stated (or even known) at the beginning 

of control design. 

(iv) Evaluation of the control system is based on a variety of objectives such as: 
(a) safety, (b) reliability, (c) quality of control (including stability), (d) flexibility 

of process operations, i. e. range of control, (e) ease of start-up and shutdown, 

(f) cost of the control system, and (g) ease of operation of the system (including 

training). 

(v) The process structure may be changed to improve control. 

(vi) There may be considerable uncertainty in the prediction of process behaviour. 

(vii) Control structure selection issues may have to be addressed at early stages of 
design with rough models and limited information on the exact objectives. 

(viii) For processes with no buffers between layers of the operational hierarchy, such as 
the continuous processes, control structure selection has either to take into account 

the translated higher level requirements, or become itself an aspect of the solution 

of the higher level problem (such as optimisation). 
(ix) Very frequently, the main features and choices in control structure are determined 

during process synthesis and, thus, the range of possible solutions is significantly 

affected by modelling considerations. 

The problem we consider here is in a sense part of the extended control design 

problem which has the following main parts: 

(a) Selection of process inputs and outputs. 

(b) Selection of coupling of controlled (outputs) and manipulated (inputs) variables, as 

well as specification of controller dynamics. 

(c) Design of the control scheme specified in (b) with a variety of control performance 

objectives and criteria. 
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So far, Control Design has addressed predominantly the area (c) and has assumed 

that both the input-output structure and the coupling of variables have been previously 

decided. In the process control area, the issues in (b) have been previously considered, 

but there is no systematic methodology emerging yet that covers all different aspects. 

Area (b) has also been addressed within Control theory and Design, but not as a design 

of decentralisation schemes. In fact, the study of solvability of types of decentralised 

problems always assumes that the decentralisation scheme is given; however, the 

derived results may be used to parametrise the schemes which allow solvability of 

certain problems and thus, traditional interaction analysis is complementary to the 

parametrisation of decentralisation schemes. [SESDIP 1]. 

The requirements of integrated design imply that issues related to design of 

input-output structures for processes have to be seen together with the selection of 

control structure, as well as control design. The evolution of properties, as we go 

through the successive design stages, has to be properly understood and - if possible - to 

direct such an evolutionary process. An additional issue, arising due to integration, is 

that the overall problem has to be addressed within the context of wider operational 

requirements, well beyond those of traditional control design. Issues, such as safety, 

have implications on aspects such as design with high integrity, fault diagnosability and 

ability to provide redesign of the control structure. The flexibility of operations 

requirements implies that operational requirements, such as optimisation, are essential 

ingredients of the solution and that one solution for each of the problems (a), (b), (c) 

may not be adequate for a wide range of operational conditions. Important problems that 

arise within this context are: 

(P. 1) Classification of the operating regimes (which include start-up, shut-down, 

emergencies and smooth transition from one operating condition to another) for which 

we require alternative solutions for (a), (b), (c) areas of problems. 

(P. 2) Simultaneous, Robust design of either of the (a), (b), (c) areas, when common 

solutions are feasible for groupings of operating points. 

(P. 3) When more than one grouping of operating regimes emerges, which implies 

switching, there is a need for an appropriate supervisory strategy for running effectively 

and safely such schemes. 
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(P. 4) Taking into account operational criteria (i. e. optimisation on plant level, total 

quality) in the design or redesign of sections of the process and evaluating the impact of 

local designs on the general performance indices referred to sections, or whole plant. 

4.5 Process Modelling and Input-Output Selection 

The selection and classification of process variables is an integral part of the 

overall exercise and it is influenced by (a) the purpose which the model is to serve and 

(b) the boundaries of the system to be modelled. The purpose of the model clearly 

influences the choice of relevant variables to be included in the model, the detail and 

accuracy desired of the model and the procedures necessary to derive it. Given the 

purpose of the model, the next step is to specify the boundaries of the system, which is 

to be modelled. For example, we may be concerned with developing a mathematical 

model of an entire corporation, of a refinery or an integrated plant, of a processing 

system, of a unit process, such as an individual heat exchanger, or we may desire a 

model of the flow pattern in the elbow joint of a pipe; each of these is an appropriate 

subject for modelling. The location of boundaries determines the particular variables 

which must be taken into consideration, as well as their status as independent and 

dependent quantities in the model. The above two factors are instrumental in the overall 

classification of variables and are considered as external modelling factors in the 

classification process. 

From the point of view of control, the typical process can be looked upon as a 

multivariable system with a number of input and output variables. The inputs are the 

independent variables of the process; they may be considered as casual factors, in the 

sense that the dependent variables, the outputs may be considered as effects, or 

responses to inputs. A diagram summarising the classification of variables is shown in 

Figure (4.1), where the independent and dependent variables are classified further into 

controlled-uncontrolled and performance-intermediate respectively. Such a 

classification is intimately related to the purpose and boundaries of the modelling 

exercise. 

71 



Chapter !i,. lie 
Frohem 

o/ 
ce tal procem inotrureniation: 6meryin9 iieued 

INDEPENDENT UNCONTROLLED 

CONTROLLED PERFORMANCE 

INTERMEDIATE --- DEPENDENT 

Figure (4.1): Classification of model variables 

(a) Uncontrolled Variables: An uncontrolled variable, also called a disturbance, 

is a quantity which affects the process operation, but over which the operator has no 

direct control; its value is often determined by some known, or unknown agency 

external to the process boundary. Uncontrolled variables may be classified into five 

categories, those with (1) raw materials, (2) ambient conditions, (3) equipment 

condition, (4) economic factors, and (5) loading effects. 

(b) Controlled Variables: These are variables over which the operator can 

exercise control. Such variables may be classified to basic control variables and 

transformed control variables. The first are primary variables, which the operator can 

handle set. Usually, in analysing the process variables and formulating a model for 

control purposes, it is more convenient to think, not in terms of the basic control 

variables, but rather in terms of a set of transformed control variables linked to some 

fundamental properties of the process. It is clear thät the transformed independent 

controlled variables do not form a unique set, but depend on the preferences, approach 

of the designer. However, each model must be internally consistent and the number of 

transformed independent variables must be equal to the number of basic control 

variable. Given the past and present values of the independent variables, the dependent 

quantities are completely determined. Dependent variables enter the model for two 
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reasons; either they are directly related to process performance or they arise as 
intermediate variables, which indirectly affect the operation of the process. Thus, we 

distinguish: 

(c) Performance Variables: Performance variables are those which serve to 

evaluate directly the performance, or condition of the process. In practise, these are the 

variables which the operator should constantly bear in mind while running the process. 

We may classify these variables into: 

(1) Economic variables, (2) Constrained variables. The first family include those which 

provide a direct measure of the economic performance of the process. According to the 

nature of the process and the management policy, a number of such variables are 

specified. The second category, the constrained variables, include quantities, which are 

restricted, or limited to a certain range of values. Constrained variables are further 

classified to physical and managerial types. Physical constraints are imposed principally 

by capacity, safety etc., considerations, whereas managerial constraints relate to policy 

decisions. In the latter family, we distinguish those related to product quality and size of 

production. In general, these are many quality and quantity constraints on process and 

their nature is limited to the particular physical and operational characteristics of them. 

(d) Intermediate Variables: Intermediate dependent variables constitute the 

remainder of the pertinent process variables. They are not of direct, immediate or 

explicit use in evaluating the performance and conditions of the process, in the sense 

that they do not have direct economic impact, nor are they explicitly constrained. Their 

role however may be significant in the overall control of the process, as well as the 

development of advanced schemes for evaluating key quality variables, which cannot be 

directly measured. 

4.6 The Global Instrumentation within the Field of Integrated Design 

The specific role of the selection of measurement and actuation variables in the 

context of overall process design is examined in this section. This also serves to 
illustrate the general philosophical approach on integrated design previously stated. 
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The main Design Stages and the need for Integration 

The selection of systems of actuation, sensor variables, referred to here as Global 

Instrumentation, is part of three main engineering stages represented in Figure (4.2). 

The general features of the technological stages are briefly considered first, before we 

focus on the significance of Global Instrumentation. 

RECOGNITION I STAGE (A) OF A NEED 

DEFINITION OF PROBLEM 
SPECIFICATIONS 

ENGINEERING CONSTRAINTS 
STAGE 

SYNTHESIS OF 
SUBPROCESSES, MODELLING: STAGE (1) FLOWSHEETING, 

EVALUATION etc. 

PROCESS 
INSTRUMENTATION: STAGE (II) SELECTION OF SENSORS 

AND ACTUATORS 

CONTROL SYSTEMS STAGE DESIGN 

EVALUATION I STAGE (C) 

PRESENTATION STAGE (D) 
DOCUMENTATION 

Figure (4.2): Simplified form of Engineering Design Process 

The exchange of information, illustrated in the above diagram, between the different 

design stages has a short prediction horizon, as far as the impact on the subsequent 

design stages are concerned, and it is of a local character. This local character is 

dominated by the specialised skills, theory and techniques needed for a given 
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engineering task. The ability to translate local decisions as actions assigning certain 

structure to the stage model is currently missing. The common engineering practice is 

dominated by simulations, trial and error and finally the overall design is tested on a 

pilot plant. Accelerating this design process, with the obvious advantages on financial 

costs, performance, operability, safety etc., is an important task; this may be helped by 

developing a Global Co-ordination Theory for the above design process. Such a 

development may also help in the effort to modify existing designs by moderate 

redesign of them. 

Our attention is focused on the purely technological nature stages of design, that is : 

STAGE I: Process Synthesis 

STAGE (II) : Process Instrumentation 

STAGE (III) : Process Control. 

Each of the above stages operates under a set of engineering specifications and 

constraints, which together with the economic constraints, define the boundaries of the 

local decision making. Experience from building similar processes provides rules and 

guidelines of what to do and what to avoid. This body of knowledge is indispensable, 

but not sufficient for the fulfilment of the original task, that is, deriving final designs, 

which have desirable performance characteristics, with the minimal effort and economic 

cost. The problem of control structure selection is within the overall problem of global 

process instrumentation. In fact, we may view this empirical knowledge and rules as an 

intermediate stage co-ordination layer with a rather short prediction horizon. GCT aims 

at enlarging the knowledge required for an improved process synthesis by introducing 

system and control based criteria, rules and techniques. 

In summary, the general aims and objectives of Global Co-ordination are to 

provide the theory, tools, rules and criteria for: 

(i) Understanding and where possible, control the model evolution process through the 

different design stages 

(ii) Shaping sets of feasible and compatible specifications 
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4.7 Generic Issues and Problems Associated with Global Instrumentation 

The traditional role of instrumentation is well developed and deals with the 

problem of measurements, or implementation of action upon given physical variables 

[Ekh., 1]. This is closely related to the physics of the particular problem and issues 

related to signal processing, are also crucial. The focus point in traditional 

instrumentation is the particular variable, whereas the effect and significance of such a 

selection on the shaping of the overall process model is not considered. It has been 

noted [McFar. & Kouv., 1], [Kouv. & McFar., 1], [Rosen. & Power, 1] that the selection 

of sensors and actuators (their location, as well as the way we measure, implement and 

act) plays a decisive role in the formation of the characteristics of the final design. These 

aspects are those which have been examined here and they refer to the selection of 

locations and the properties of the set of actuation and sensing variables on the resulting 

model. Aspects, such as communications, information theory etc., although important, 

they do require separate consideration, and are beyond the scope of this thesis. The 

current dominant theme is the model shaping role of global instrumentation. The 

internal process characteristics and dynamics (the result of the process synthesis design 

stage) are essential, since they determine the progenitor basic characteristics of the final 

design; however, the manner we observe and try to act upon the variables of the 

progenitor system, determines the final characteristics of the system. The final system 

model is the product of interaction of the internal dynamics and its environment; the 

role of instrumentation lies in the building of bridges between the internal mechanism of 

the process and its environment. 

The main tasks involved in the development of concepts, methodology and tools for 

Global Instrumentation are: 

(i) Translating a variety of requirements for different operational modes and for 

technical specifications on the process model, as well as interpreting technical 

features of the design in the different operational indices. 
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(ii) Characterising the desirable and undesirable performance characteristics of the 

overall system, and the limits of the best results that can be achieved under 

compensation. 

(iii) Relate the best achievable performance, or undesirable performance 

characteristics to the system model structural type characteristics and their 

values. 

(iv) Establishing the functional relations between model parameters and structural 

characteristics. 

(v) Formulating and solving suitable structure formation problems. 

The overall problem, which is considered here, is an attempt to shape the final 

characteristics of the process model that emerges from the process synthesis and process 

instrumentation stage. This attempt would make the final control design problem as 

simple as possible, with natural consequences on costs, operability, safety etc. of the 

final process. The formation of the structural characteristics of the overall process is 

reminiscent of an evolution process. In fact, each design stage starts with a model 

(parent gene) and decisions, taken there, contribute to the gradual shaping of the final 

structural characteristics, but only within a range of possible options; thus, structural 

properties and characteristics evolve, but not in a simple manner. The main objective is 

to drive the model evolution along certain paths, so as to avoid the formation of 

undesirable structural characteristics and - where possible - to assign desirable ones. 

Most of the approaches deal with diagnostics, rather than trying to define a synthesis 

methodology based on both aspects of structure, that is, graph and parameter dependent 

invariants. The area is extremely important and involves the translation of requirements 

and specifications from the higher levels of the operational hierarchy to the lower level 

technical requirements, which shape the specific problem; inversely, translating lower 

level issues, technical achievement in terms of variables affecting higher level indices is 

a similar problem area. 
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The long term objective of the current work is to establish a conceptual 
framework and appropriate tools which will allow the eventual integration of global 

process instrumentation with control operability criteria. This is seen as the backbone of 

a Coordination Methodology that is required for directing the process synthesis, global 

instrumentation and control design. The desirable features of such a methodology are: 

Desirable Features of Global Coordination Theory 

The general desirable features of co-ordination theory, described in the previous section, 

take the following more specific form: 

(a) The general common language of the co-ordinator has to be that of the signals, 
information and system model and thus, systems theory is predominant. Specifications 

may then be interpreted as constraints, and alternative designs as possible models. 

(b) Each element of the family of local possible models has a different potential, as far 

as the subsequent design at the following stages is predominant. This potential is 

expressed by the structural characteristics of the model and the values, shape of design 

indicators associated with it. The interpretation of the effect of alternative local designs 

on the shaping of the structure and of the possible values of design indicators, is an 

essential task of GCT. 

(c) The range of possible alternative structural characteristics and possible values of 

design indicators may be communicated between different design stages. Each one of 

them has a different depth prediction horizon, as far as the possible further shaping of 

process model at subsequent design stages is concerned. The depth of the prediction 

horizon of a structural characteristic, design indicator, depends on its nature and 

functional dependence to model parameters. It is this predictive property of structural 

characteristics and indicators that will allow the enrichment of previous stages design 

decisions with successively broader and, finally, global criteria. 
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(d) Deriving global criteria, as far as the desirability, of the types and values of 

structural characteristics is concerned, is one of the tasks, but not the final of GCT. 

Assigning desirable structural features, or shapes to property indicators and more 

generally avoiding the formation of undesirable properties is of paramount importance. 

These features heavily rely on the understanding of dependence between system 

structure, property indicators and model parameters. 

(e) The ability to translate global criteria to the local design level and to evaluate the 

impact of local optimality to the global one, is also important. 

4.8 Conclusions 

The general area of Global Process Instrumentation has been examined and the 

needs for a general integrating methodology of the system type have been specified. The 

overall area is clearly multidisciplinary and will require considerable effort for many 

years to come, as well as the synergy of many specialisations and disciplines. The 

requirements of this very important area were pointed out, as well as the specifications 

of a Systems and Control Methodology framework. The Control Theory and Design 

framework stems from the general requirements considered here, as well as the 

problems and issues of the application areas previously examined. 
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5. The role of Input, Output Selection in the formation of Composite 

Systems Structure. 

5.1 Introduction 

This chapter provides a study of the structural properties of interconnected 

systems and examines the role of selection of inputs, outputs at subsystem level on the 

overall shaping of composite structure properties. In particular, the significance of an 

assumption related to interconnections, which is referred to as the completeness 

assumption, is examined. The significance of the deviations from the completeness is a 

subject of investigation in this chapter. This initial study is restricted on the examination 

of controllability, observability and zero structure related properties and the adopted 

approach is based on Matrix Pencil Theory. The controllability (observability) 

properties of composite systems under partial, or total lose of inputs (outputs) at the 

subsystem level takes special attention. 
The theory of structural properties of composite systems has attracted a lot of 

attention in recent years [Rosen., 1] [Cal. & Dos., 1] [Pugh & Kafai, 11 [Kailath, 1] etc. 

The main idea behind the work here is to try to relate the structural aspects of the 

composite system in terms of the structural aspects of the subsystems and the nature of 

the interconnections. Of special interest is the investigation of the effect of changes in 

the structure of the composite system as the result of loss of inputs, outputs. The present 

approach relies on the use of the restricted pencils [Karc. & McBean, 1], 

[Karc. & Kouv, 1] for the composite system; this analysis leads to the computation of 

the restricted pencils of the composite systems which are expressed in a simple way in 

terms of the restriction pencils of the subsystems. Some basic assumptions in dealing 

with composite system are that the transfer function of each subsystem provides a 

representation for the subsystem, that is, each subsystem is both controllable and 

observable. 

The general case of input-state restricted pencil of composite and aggregate 

systems with full inputs and outputs is considered first and then the approach is 

extended to the cases where one or more inputs or outputs are lost at the subsystem 
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level. It will be shown that, controllability, observability and zero structure properties of 

composite system under full input, output structure are simply given as aggregates 

(direct sum) of corresponding properties of subsystems if the interconnection scheme 

uses all available subsystem inputs, outputs. The use of all available inputs, outputs for 

interconnections at the subsystem level is what we refer to here as the completeness 

assumption of the composite scheme. In this case, it emerges that the interconnection 

graph is of little importance for such properties. 

In the case of systems where the idealistic assumption of completeness does not 

hold true, i. e. where there is a loss of inputs, outputs at the subsystem level, the 

dependency of the results on the underlying graph is very explicit; most of the ideas 

presented here are illustrated in terms of examples. Three examples are used to illustrate 

the above ideas, that is the effects of loss of inputs, outputs on the structural properties 

of the composite system. We shall concentrate on one of the examples with 4 

subsystems where the first input is lost. As a result, it will be shown that total loss of 

input (output) channels for any of the 4 subsystems results in structural uncontrollability 

(unobservability). It will also be shown that the observability structure of the subsystem 

where we have lost its inputs, enters into the zero structure of the aggregate system. 

General results are derived for cases of total loss of inputs, outputs at subsystem level, 

whereas for cases outside completeness and total subsystem loss we have to use graph 

analysis. We summarise first some results on the role of pencils in the characterisation 

of the system properties. 

5.2 Matrix pencils and structural properties 

In this section, the basic definitions and properties of matrix pencils related to 

system fundamental properties will be reviewed. These properties will later be used to 

describe the structural properties of composite systems. 
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5.2.1 Input-state pencil 

The pencil [sl - A, -B] is known as input-state, or controllability pencil 

[Rosen., 1] [Karc., 5] and the invariants of [sl - A, -B] are very closely associated with 

the controllability properties of the system. A system is uncontrollable iff there exist 

finite elementary divisors in [sl - A, -B] . This implies the existence of a non-zero 

constant vector E' and a frequency so such that 

v_'[so1- A, -B] =0 (5.1) 

Let N be a left annihilator of B (a basis matrix for N1(B)) and Bt be a left 

inverse of B, i. e. 

NB = 0, BtB = It (5.2) 

we may now write v' = 
[_;, v_2][ 

] 
where 

1N1 
is a full rank matrix and thus it may 

be readily shown that (5.1) is equivalent to 

v_; (s(, N-NA)=O (5.3) 

The last equation implies that there exist finite elementary divisors of the pencil 

sN - NA iff the system S(A, B) is uncontrollable. The pencil sN - NA is known as the 

restricted input-state pencil [Karc., 5] [Karc., 6]. It can be proved that a controllable 

system yields an input-state pencil characterised only by a set of column minimal 

indices {s, + 1= ort_;;,, iE £} , where Qk denotes the controllability indices of the pair 

(A, B) and c, are the c. m. i. of the restricted input-state pencil sN - NA . For 

uncontrollable systems the canonical form of sN - NA contains additional blocks to 

those corresponding to the column minimal indices [Karc. & McBean, 1]; these new 

blocks correspond to finite elementary divisors, which in turn define the input 
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decoupling zeros of the system [Rosen., I]. The pencils [sl -A, B] and sN - NA have 

the same fe. d, but their c. m. i. are related by the "plus one" property described above. 

It was shown that if T is the co-ordinate transformation bringing the pair (A, B) 

in the Luenberger controllable companion form [Karc., 6], then a mere multiplication of 

sN - NA on the right by T-' brings the pencil in the Kronecker canonical form. The 

transformation T"` belongs to the class of strict equivalent transformations [Gant., 11 

and, as such, does not affect the Kronecker invariants. Another important set of 

transformations on the pair (A, B) , is the set of state feedback transformations; the 

input-state pencil that corresponds to a closed loop pair (A - BL, B) is 

sN - N(A - BL) = sN - NA , since NB =0 and thus we are led to the following 

theorem: 

Theorem (5.1): [Karc., 6] The input-state pencil sN - NA corresponding to the pair 

(A, B) and thus also its Kronecker canonical form, are invariant under state feedback. 

5.2.2 State output pencil 

In the previous section we have considered a pencil with reduced dimensions than 

those of [sI - A, -B], which characterised the equivalence class of the systems S(A, B) 

under state feedback. In this section we shall repeat the analysis for the S(A, C) pair 

using the concepts of observability and/or unobservability, instead of those of 

controllability. Note that a system is unobservable if there exists finite elementary 

divisors of the pencil [sI 
- A', -C']' [Rosen., 2] which is referred to as the state-output 

pencil [Karc., 5]. This implies the existence of a non-zero vector u and a frequency 

so c= C such that 

1'410 
-C (5.4) 
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Let M'be a right annihilator of C (i. e. a basis matrix for N, (C)) and Ct be a 

right inverse of C, i. e. 

CM = O, CCt = Im (5.5) 

we may always write 

u_[MI c]ul uz (5.6) 

then the system (5.4) may be expressed as 

[si_C A [M Ic][: 
z= 

0 

which leads to u2 =0 and thus we have the equivalent condition 

(soM-AM)u, =0 (5.7) 

Condition (5.7) implies that there exist finite elementary divisors of the pencil 

sM - AM if the system S(A, C) is unobservable. The pencil sM - AM is known as 

the restricted state-output pencil [Karc. & McBean, 1] [Karc., 5]. 

It can be proved [Karc. & McBean, 1] that observable systems yield a 

state-output pencil characterised only by a set of row minimal indices 

{m +1 = p, �_; +,, 
iE m}, where pk denotes the controllability indices of the pair (A, C) 

and q, are the r. m. i. of sM - AM . For unobservable systems the canonical form of 

sM - AM contains additional blocks to those corresponding to the row minimal 
indices; these new blocks correspond to finite elementary divisors, which in turn define 

the output decoupling zeros of the system. Once more the state-output and restricted 

state-output pencils have the same fe. d. and their r. m. i. are characterised by the 
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"plus one" property described above. It was shown [Karc. & McBean, 1] that if V is the 

coordinate transformation bringing the pair (A, C) to the Luenberger observable form, 

then a mere multiplication of sM- AM on the right by V"' brings the pencil into 

Kronecker form. Note that V'' belongs to the class of strict equivalence transformations 

and, as such, preserves the Kronecker canonical form. 

5.3 The zero pencil 

The finite zeros and zero directions are related to the finite elementary divisors on 

the system matrix pencil P(s). In the study of the properties of zeros and zero directions 

a simpler form than P(s) has also being used [Karc. & Kouv., 1]. A new pencil is 

derived of reduced dimensions, which simplifies the study of the zero behaviour, since it 

is restricted only to the properties of state; this pencil is known as the zero pencil and 

may be defined from the conditions characterising the output zeroing problem for a 

strictly proper system as shown next. We should first note that condition (3.8) for 

strictly proper systems 

P(z) zr 
=0 P(z) = 

zl -A -B (5.8) by, ] 
-C -D 

implies: 

(zl - 4)x, = By. (5.9) 

Cx, =0 (5.10) 

The last equation implies that x, E ker C, so that 

x, = Mv_, (5.11) 

where M is a basis matrix representation of ker C and v, is an appropriate constant 

vector. Substitution of equation (5.11) into (5.8) and premultiplication by the full rank 
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transformation 
Bt 

, where N is a left annihilator of B and Bt is a left inverse of B 

gives 

(zNM - NAM)v, =0 (5.12) 

u, = Bt (zI - A)x, (5.13) 

since equations (5.11), (5.12) and (5.13) are equivalent to (5.8). These conditions lead to 

the definition of frequencies z and vectors u, and x, , which are the zeros and the zero 

directions of the system. The matrix pencil sNM - NAM is known as the zero pencil 

[Karc. & Kouv., 1] and its structure characterises the zero structure of the system, which 

is also the structure that remains invariant under the general set of state space 

transformations. These transformations are those of the Kronecker group which 

involves state feedback, output injection, and state, input, output coordinate 

transformations [Morse, 11. Under these transformations the system S(A, B, C, D) may 

be reduced to a canonical form, S(Ak, Bk, Ck, Dk) known as the Kronecker canonical 

form [Morse, 1] [Thorp, 1] [Karc. & McBean, 1]. The relationship between the 

Kronecker canonical form S(Ak, Bk, Ck, Dk) and the Kronecker form of the zero pencil 

is established by the following result [Karc. & McBean, 1]: 

Theorem (5.2): Let S(A, B, C) be a strictly proper linear system with the following set 

of invariants, defined by the system matrix pencil P(s) . 

i) (s-s, )r ', i =1,..., r finite elementary divisors 

0< q1 S" ""< q1 infinite elementary divisors 

iii) 0: 5 E1 < C2 <... < Ep column minimal indices 

iv) 0< 171 < q2 <... < q, row minimal indices. 

Then, 
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(a) If B, C have full rank and G(s) has full normal rank, then e, > 0, rll >0 and 

q1 ? 2. 

(b) Let Sk (Ak, B, k, Ck) be the Kronecker canonical form [Karc. & McBean, 1] of the 

system S(A, B, C) . The zero pencil Zk(s) computed on the system Sk (Äk, bk, Ck) is 

in Kronecker canonical form with blocks corresponding to the infinite elementary 

divisors and the row minimal indices rearranged. The invariants of Zk(s) are related 

to the invariants of S(A, B, C) in the following manner: 

1) The finite elementary divisors of Zk (s) are equal to the finite elementary divisors of 

S(A, B, C) . 

2) The infinite elementary divisors of zk (s), sq' are defined by q; = q, - 2, i =1,..., p 

3) The column and row minimal indices of zk (s) are defined by 

s, =sf-1, i=1,2,..., P 
77; =77J-1, j =1,2,..., t 

The results of this section are used in the following section to establish links 

between the structural properties of composite systems and those of the subsystems. 

5.4 Composite System: The Equivalent Feedback Configuration 

5.4.1 Basic Interconnection Schemes 

A process is always synthesised by connecting subprocesses (subsystems). The 

aim here is to investigate the links between the structural aspects of the composite 

system, the structural aspects of the subsystems and the interconnection graph. This 

problem is of immense importance, especially in the early stages of designing systems 

by interconnecting subprocesses, since it has important implications on the synthesis of 

composite structures with desirable control structure characteristics. 
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Some basic assumptions in dealing with composite systems, represented by their 

transfer function matrices, or by their minimal state space descriptions are summarised 

below: 

(i) These is no loading effect in any connection of two subsystems; that is, the 

transfer function of each subsystem remains unchanged after the connection 

[Chen, 1]. 

(ii) A system is represented by its transfer function matrix (that is, it is controllable 

and observable), or more generally, the system is stabilisable and detectable 

[Wonham, 11. It will be also assumed that the transfer functions are rational and 

proper. 

Note that the assumption that the subsystems are completely characterised by their 

transfer functions, does not imply that the composite systems are completely 

characterised by their transfer functions. 

We consider proper systems S; (A;, B,, C;, D; ) with transfer function matrices 

G1(s) = C, (sI - A; )-' B; + D,, i=1,2,.... An interconnected system consisting of a 

number of subsystems S, will be denoted by J: 
c . The composite system will be 

called well formed, if all closed-loop transfer functions are well-defined and well posed 

if all closed-loop transfer functions are well defined and proper [Cal. & Des., 1]. The 

basic interconnection schemes for two systems are shown below: 

u ut Yiu2 Y2 fY 
SI S2 

Figure (5.1). Cascade or Tandem Connection 
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Figure (5.2). Parallel Connection 

Figure (5.3). Feedback Connection 

The composite systems described above are defined by the composite state space 
descriptions, and whether the composite transfer functions describe these systems 

depends on the relationships between poles and zeros of the subsystems [Rosen, 2], 

[Chen, 1] etc. Note that the above connections are well posed under the following 

conditions: 

(a) Tandem connection: Always 

(b) Parallel connection: If G, (s) * -G2(s) 

(c) Feedback connection: If II + G, (oo)G2 (oo)I = II + D, DZ I* 0 

For two systems S1 , S2 which are completely characterised by their proper transfer 

function matrices G, (s), G2(s), any composite well posed connection of S, and S2 is 

completely characterised by its composite transfer matrix G12(s), if and only if 

[Chen, 1] 
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Sm (G12 (S)) Sm (GI (s)) + Sm (G2 (S)) (5.14) 

For the different types of connections described above, the latter condition for the 

representation of the composite system by its composite transfer function matrix may 

become more explicit as conditions for coprimeness of the polynomial matrices defined 

by the R[s]-irreducible MFDs of GI(s) and G2(s) (see [Chen, 1], [Kailath, 1] etc. ). For 

the simple case of single-input, single-output (SISO) systems S, which are completely 

characterised by their proper rational functions g; (s), i =1,2 we have the following: 

(a) The tandem connection of S, and S2 is completely characterised by 

912 (s) = g2 (s)g, (s) 
, 

if and only if there is no pole-zero cancellation between g, (s) 

and g2(s). 

(b) The parallel connection of S, and S2 is completely characterised by 

9,2(s) = g, (s)'+ g2 (s) 
, 

if and only if g, (s) and g2 (s) do not have any pole in 

common. 

(c) The feedback connection of S, and S2 is completely characterised by 

g12 (s) = (1 + g1 (s)g2 (s)ý-' gl (s) 
, if and only if there is no pole of g2 (s) cancelled by 

any zero of g, (s) 
. 

The problem of representation of composite systems by the composite transfer 

function is always related to controllability and observability of the composite system. 

The feedback configuration of figures (5.1 - 5.3) does not always have these two 

properties. Controllability and observability of a system always depend on the selection 

of the inputs and outputs. An enlarged feedback configuration, denoted in figure (5.4) 

always has the property of controllability and observability for the composite input 

vector [r, ̀, r, ]' and output vector [y,, y2]' and will be called the complete feedback 

con k uration. Such configuration will be used again in the discussion of the general 

control design problem and it is well posed if II+ Gj (oo)GZ (oo)I #0. For such a 

configuration we may define: 
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1ui (s) 
- 

() r, (s) 
= 

I, G2 (s) -1 
(5.15) 

u2(s) 
Hs 

r2(S) ' where H(s) - 
[G1s) 

Iz 

Figure (5.4) Z: Complete feedback configuration 

and H(s) exists under the well posedness assumption and it is known as error transfer 

function (other transfer functions may also be defined). If Z ZF denotes the composite 

state space equations and assume that G; (s) are complete representations of S,, then 

H(s) completely describes the 2F composite system [Chen, 1], [Vidyas., 1]. 

5.4.2 The General Configuration of Composite Systems 

The feedback configuration above is a natural representation of general 
interconnected systems [Cal. & Des., 1]. Thus assume that the interconnected system 

is obtained by coupling p subsystems, Sk , each one of them described completely 

by their proper transfer functions G; (s), i. e. Gk(s) E RR, (s)m`xrt For example, consider 

the interconnection shown in figure (5.5). (In the following, we work in the s-domain 

(Laplace transforms) and thus we omit (s)). The following assumptions are made 

[Cal. & Des., 1] as far as the nature of the interconnections is concerned: 
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Figure (5.5). Interconnected system 

Assumptions: For each subsystem Sk(Gk E Rpr(S)n1k X 'k )k 
=1,... p we have the 

interconnection structure shown in figure (5.7) which is characterised by the properties: 

to each subsystem Sk with input ek and output yk we associate a summing node with 

the following characteristics: 

a: Well Structuring [Cal. & Des., 1] 

i) Its outputs are defined by the subsystem outputs yk , i. e. y=[ yl,..., y'' 
l, 

or a 

subset of them. 

ii) Its inputs at the subsystem level are: 

a) an exogenous input uk (arbitrarily assignable, or disturbance signal) 

b) other inputs which are feedbacks of the form FV y1, j =1,2,..., p where 

F, j E RR, (s)t"'m` denotes a proper dynamic matrix from yi to the k`h summing 

node (very frequency Fkj may be real and some of them may be zero). 

b: Completeness [Karc., 10] 

c) uk has as many independent coordinates as those needed to define a basis for 

col. sp{[F l; "" "; Fk, ]} and has subsystems outputs yk = Zk *where zk 

contains all subsystems Ek variables which feed to the other subsystems. 

O 
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An interconnected system satisfying (i), (ii)a, (ii)b will be called well structured 
and if also (ii)c holds true, then it will be called a complete composite system and shall 

be denoted by (T, F) . In the present thesis, we restrict ourselves to the case where 

all subsystems are represented by proper transfer functions; note that the definition of 

completeness is also valid in the case where we have non-proper transfer functions, or 

singular subsystems. 

Yk 

yp 

Yi 

Yi 
Figure (5.6). 

In the following, we shall assume that the interconnection matrices are constant, 

since, in the general case, they can always be treated by considering the interconnection 

matrices as subsystem themselves. The implications of the above assumptions are that 

the subsystems Sk, k =1,..., p are interconnected according to the equations 

(5.16) ek = uk +F, c/ y1, Yk = Gk ek 
; _º 

Hence, by aggregation, i. e. by defining global quantities 
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pp 

m=I: mk, L=ELk 
k=1 k=1 

y1 peL uý,..., up R 

y= 
[yß,...,: 

11 
f 

4ER' 
(5.17) 

rtl el,..., ep, ER 
lx F= I F]k, 

jE<p> ERpr 
m(s) 

G= block - diag{Gk }k 
1E 

Rp; l (s) 

then (5.16) may be equivalently written as 

e=u+Fy, y=Ge (5.18) 

which describes the feedback system shown in figure (5.6). 

For the example of figure (5.5), we have 

G, UUým, rU 0 -11 21 

G= [o G1 0] "ý F= 10 -1 £2 
00 G3 rn3 L0 10 23 
el e2 £3 ml m2 m3 

i 

Because of the above configuration, we shall refer to u, e, y as the input, error 

and output respectively of E. The matrix F will be called the gain, or 

interconnection matrix of and G the open-loop, or aggregate transfer function of 

E 

The above representation of composite systems (as a feedback configuration) has 

important implications for the present work: 

(i) It provides a systematic method for representing composite systems (with 

implications on the transition from process configurations to process transfer 

functions). 
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(ii) It allows the formulation of the process synthesis problem (interconnection of 

subprocesses) as a feedback design problem. 

Equation (5.18) shows that the interconnected system has the transfer 

function matrices 

H1,: u --ý e and Hy,,: u -+ y (5.19) 

which are defined as long as II - FGJ #0 (well-formedness assumption) and are called 

the input-error and input-output transfer functions respectively. These transfer functions 

are defined by 

H�. =(I-FG)-'ER(s)"', HY, = G(I - FG)-' ER(s)"'"` (5.20) 

where the two transfer functions are related by: 

Hey =1 + FHS, (5.21) 

Note that under the well-formedness assumption, all closed-loop transfer 

functions of , 
i. e. from u --> e, y, Fy respectively, exist and they are given by Heu, 

Hy., FHy, = He� -1. 

Remark (5.1): [Vidyas., 1] If F, G are proper transfer functions, then the complete 

feedback configuration is well-posed if 

II+ F(oo)G(oo)l = II+ G(oo)F(oo)l *0 

For a complete system, the interconnections are equivalent to output feedback and thus 

we have the following representation of the action of system composition: 
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Figure (5.7). Interconnected System E 
under the Completeness assumption. 

Lack of completeness implies that the numbers of free variables in u are fewer 

than those in e and/or that we do not measure all interconnection variables. 

5.5 General State Space Description of Well-posed Complete Composite 

Systems 

The complete composite system may be represented as a feedback structure as 

shown in figure (5.7). Under the assumption of well-posedness, all transfer functions 

H0 , Heu are proper. The state space form description of the composite system is 

considered next. Note that if the system equations are defined by 

ii ; 1j: 11 e, S;: i =1,2,..., k 
y. = C; x, + Die, (5.22) 

where 

e, ty y, xi 

e2 U2 xZ 
e= ,u= ,y= " 'x_ 

" - (5.23) 
ek -uk- 

. 
Yk xk 

then the aggregate system is described by 
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. z, A, 0 x, B, 0 e, - 
' '2 A2 x2 B2 e2 

+ 

zk 0 Ak xk 0 Bk ek 
sX .4 ý3 .B ý£ 

or 

where 

x=Ax+Be 

yI 
u2 

+F 
y2 

-uk 
Yk 

where F is a matrix expressing interconnections. Furthermore 

y, 
22 

- 

y 
.y 

or 

D, 0 e1 
x2 D2 eZ 

+ 

& 0 Dk Lek 
 z  $  e 

y=Cx+De 

Thus, the composite system equations become 

and 

Jx=Ax+Be 

ly=Cx+De 
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e= u+Fy (5.30) 

where F is a matrix expressing interconnections. From the above (i. e. (5.29) and 

(5.30)) we have e=u+ Fy =u+ F(C x+D e) or 

e=u+FCx+FDe 
(1-FD)e=u+FCx (5.31) 

Assume that the feedback configuration is well formed i. e. II 
- FDJ #0 then we may 

define 

0=ý1-FDý-' 

From (5.31), (5.32) we have 

e=Ou+AF'Cx 

and thus z=Ax+Be=Ax+BAu+BOFCz or 

(5.32) 

(5.33) 

z= (A + BOF'C)z + ffAu (5.34) 

and y=Cx+DAe=Cx+DOu+DAFCx or 

y=(r+5 F)cx+Deu (5.35) 

We may summarise the above analysis as follows: 

Proposition (5.11: The composite system state equations of the well-posed system are 

given by: 
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z=(. 4 + BAFC)z + Beu (5.36) 

y=(I+Th F)Cx+Dzu 

where A= (I - PD-)-', II 
- PD -1 #0 and A, B, C and 5 are the state space parameters 

describing the aggregate model. 

We assume, as before, that the component subsystems S, (A,, Bi, Cl, D, ) are both 

controllable and observable (or stabilisable and detectable) for all i =1,2,..., k. The 

problem we consider next is the investigation of the controllability properties of the 

composite system under the partial, or total loss of inputs at the subsystem level. The 

results for observability are of similar character. 

5.6 Input-state Restriction Pencil of Complete Composite and Aggregate 

Systems 

Consider the composite system described by equation (5.36) and let N be a left 

annihilator of N, where 

IN, 0 
N2 

(5.37) 

0 Nk 

and N, are left annihilators for B;. The input state Restriction Pencil of the composite 

system is sN - NA and may be expressed as shown below. We first note that the pencil 

100 



CI 
pler 5 �1is 

U 
o/Jnpui, 

Qutpul &Lciion 
in ih. /ormation 

o/Composite 
Syden14 S/. 

ruclure 

sN, -NIA 

sN -NA 
sN2 - N2A2 

= 

0 

0 

sNk - NkAk 

(5.38) 

is the Input-state Restriction pencil of the aggregate system without the interconnection. 

Given that NBA = 0, then the restriction pencil of the composite system is: 

sN, - N, A, 0 

sN - 
NA = sN - NýA + BOFZ )= sNZ - N2A2 

(5.39) 

0 sN, E - N* Ak 

and this leads to the following result: 

Theorem 5.4): If S; (A;, B; ), i =1,..., k are controllable and the composite system is 

well formed, then the composite system with full inputs, that is, the complete composite 

system, is also controllable. 

Proof: Since the input-state restriction pencil of the composite system is the direct sum 

of the input-state restriction pencils of the subsystems, controllability properties are 

expressed as the aggregates of the corresponding properties defined on the subsystems. 
0 

Corollary (5.1): If the composite system is complete, then uncontrollability of a 

subsystem results in uncontrollability of the composite system. Furthermore, the 

dimension of the controllable space of the composite system is the sum of the 

dimensions of the controllable subspaces of subsystems. 

0 

101 



C 
+pler 3 �h4 

IM 
0/it, 

Output &Lcfion in Elie ormation o1Compoiiýa 
Syýleme Structure 

Corollary (5.2): The set of controllability indices of the composite system is given as 

the union of the controllability indices of the subsystems. Furthermore, the set of input 

decoupling zeros of the composite system is given as the union of the set of input 

decoupling zeros of the subsystems. 
0 

The above Corollaries follow in a straightforward manner from condition (5.39) which 

is a direct consequence of the completeness assumption. 

Now we investigate the controllability properties of the composite system under 

total loss of subsystem inputs. 

5.7 Input-state Restriction Pencils under Total Loss of Subsystem inputs 

Consider a complete composite system and assume that all the i-th subsystem 

external inputs are not used (i. e. this occurs when interconnection elements are dynamic 

and no assignable input is available for them). In this case, the corresponding subsystem 

has as inputs those coming from the interconnections only and it does not possess any 

more the completeness property. The composite system description with total loss of 

subsystem inputs is described by: 

(A+BOC)x+BL 

DOu y=(1+D i)+ 

where for the case of strictly proper systems (A = I), we have 

(. 4+BAC)x+Bü� u', = 0 (5.40) 

uk 

and 
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z=(ARAE )x+B; ü, (5.41) 

where 

Bi 0 
ul 

Bi-, 
(5.42) 

ur+l 

uk 0 Bk 

i. e. the block containing B, has been deleted. We may define the left annihilator of 

B;, Ni by solving the equation NjB, = 0. It is obvious that 

NJ0B, 0 

" Nr-1 Bi-, 

1"' -0 (5.43) N; 
+1 

B; 
+, 

0 Nk 0 Bk 

and thus the corresponding restriction pencil is 

R; (s)=sN, -Nj(A+BFC)=s , -NA-NIBFC 
(5.44) 

The controllability properties are investigated by examining the above pencil, 

where 
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sN, - N, 4 

sN, - N, A = 

0 

0 

sN, _1 - 
N, 

-, 
A; 

_1 
sl - A, 

sNk - Nk Ak 

(5.45) 

The problem of computing R; (s) is thus reduced to the computation of N, RFC. 

Note that 

0 

0 
NIB =0 """ 0 B, 0 """ 0, 

0 

0 

and thus 

N; BFC = B, F� 

F, F2 ... F� ... F, k 

F= F1 F2 ... Fr ... F, k 

Fkl Fk2 ... Fk, ... Fkk 

0 

0 
... BIFI ... B, Fk 

0 

0 
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N, BFC = B; F., q 

0 

0 
... B, F1Cj ... 

BiJkCk 

0 

0 

(5.48) 

From (5.45) and (5.48) we have that the input-state restricted pencil R, (s) is given by 

R; (s)=sN, -j -N, BFC = 

sN, - NIA, 
0 

-B, F. 4 C, """ -BF., _, 
C, 

_, sl - A; - B, F.; C, 

0 

0 

"". -BjFjjCk 
(5.49) 

0 
sNk - NkAk 

The above expression may be generalised for every i and extended to any 

combination of indices i, j, etc. The expression for R, (s) may be used for: 

(i) Studying the effect of the structure F on the loss of controllability, when total 

loss of subsystem inputs occurs, as well as the location of the formed input 

decoupling zeros. 

(ii) Distinguish the phenomena depending on the parameters of subsystems 

S, (A;, B;, C, ) and those depending only on F structure. 

It should now be pointed that loss of external inputs results in a pencil R, (s), 

whose Kronecker structure is no longer expressed as a direct sum of the Kronecker 

structure of the subsystems. The role of the matrix F expressing the interconnections is 

now crucial in determining the composite system properties. 
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5.8 State-Output Restriction Pencil of Composite and Aggregate Systems 

with Full Outputs 

Consider the composite system described by equation (5.36) and let M be a right 

annihilator of E, where 

IM, 0 

M= 
M2 

(5.50) 

0 Mk 

where M, are right annihilators for C,. The state-output restriction pencil is sM - AM 

and may be expressed as shown below. We first note that the pencil 

IsM, -Am, 0 

sm -; 
im = 

sM2 - A2 M2 
(5.51) 

0 sMk - Ak Mk 

is the state-output restriction pencil of the aggregate system without the interconnection. 

Given that ACM = 0, then the restriction pencil of the composite system is: 

sM-AM=sM-(A+BOFC)M 
(5.52) 

SM, -AM, 0 

sM2 - A2 M2 

0 sMk - Ak Mk 

The above leads to the following result: 
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Theorem (5.4): If S; (A;, C, ), i =1,..., k are observable and composite system is well 

formed, then the composite system with full outputs or equivalently, the complete 

composite system, is also observable. 

Proof: Since the state-output restriction pencil of the composite system is the direct sum 

of the state-output restriction pencils of the subsystems, observability properties are 

expressed as the aggregates of the corresponding properties defined on the subsystems. 

Corollary (5.3): Unobservability of a subsystem results in a unobservable composite 

system. Furthermore, the dimension of the unobservable space of the composite system 

is the sum of the dimensions of the unobservable subspaces of subsystems. 

O 
Corollary (5.4): The set of observability indices of the composite system is given by 

the union of the observability indices of the subsystems. Furthermore, the set of output 

decoupling zeros of the composite system is given as the union of the set of output 

decoupling zeros of the subsystems. 
0 

Now we investigate the observability properties of the composite system under 

total loss of subsystem outputs. 

5.9 State-Output Restriction Pencils under Total Loss of Subsystem 

Outputs. 

We consider here the composite system and shall examine the case where all the 

i-th subsystem outputs are not measured. The composite system description is described 

by: 

(A +BOFC)x+BOu 
(I+DAF) x+Th y 

where for the case of strictly proper systems (e =1) 
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jr 

. z=(A+BC)x+BAu 

y=Cx 
(5.53) 

Under the assumption that the output associated with the i-th subsystem is not 

measured, then the new output is written as y=C; z, where 

q 

C, = 

0 

C, 
-i 0 

C; +i 

0 

Ck 

(5.54) 

i. e. the block containing C, has been deleted. We may define the right annihilator of 

Cj, M, by solving the equation C, Mý = 0. It is obvious that 

o M, o 

cl_I 0 Mi-t 

0 (5.55) 
0c Mi+t 

0 Ck 0 Mk 
 ,, 

and thus the corresponding restriction pencil is 

T, (s)=sM, -AM, =sM, -(. 4+BFC)M, =sM, -AM, -BFCM, (5.56) 

The observability properties are investigated by examining the above pencil, 

where 
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sM, -. 41 M, 

sM, - AM, = 
sm; -1 - A; 

_, 
M, 

_I 
sl - A; 

(5.57) 

sMk - Ak Mk 

The problem of computing T. (s) is thus reduced to the computation of BFCM,. 

Note that 

0 
Fl FZ ... F� ... F, k 

CM, = 0 """ 0 C; 0 """ 0, F=F., F, 2 """ F, """ F. k 
0 

Fk1 Fkz ... F, ... Fik 

0 

and thus 

F,; C, 

BFCM, =B0F,; C, 0 

0 

FjrCi 

B, F,; C, 

BFCM, =0B; F.; C, 0 

Bk kk, C, 

(5.58) 

(5.59) 

(5.60) 
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From (5.57) and (5.60) we have that the state-output restricted pencil T , 
(s) is 

given by 

7 (s)=sM, -AM, -BFCM, 

sM, - A, M, -B, F,; C; 0 

sI-Ai -B; F; C; 
(5.61) 

0 
-BkFk; 

CI SMk - Ak Mk 

The above expression can be generalised for every i and extended to any combination 

of indices i, j, etc. The expression for T, (s) may be used for: 

(i) Studying the effect of the structure F on the loss of observability, when total 
loss of subsystem outputs occurs, as well as the location of the formed output 

decoupling zeros. 

(ii) Distinguishing the phenomena depending on the parameters of subsystems 

S, (A;, B,, C, ) and those depending only on F structure. 

It should now be pointed that loss of outputs results in a pencil T, (s), whose 

Kronecker structure is no longer expressed as a direct sum of the Kronecker structure of 

the subsystems. The role of the matrix F expressing the interconnections is now crucial 

in determining the composite system properties. 

5.10 The Zero Pencil of Composite and Aggregate Systems with Full 

Inputs and Outputs 

Consider the composite system described by equation (5.36) and let N, M be 

left and right annihilators of B, C respectively, where N, Al are as in (5.37) and (5.50). 
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The zero pencil is sNM- NAM and may be expressed as shown below. We first note 

that the pencil 

sN, - NJ A, 

sNM-NAM= sN, -N, A; 

0 

0 M, 0 

M, 

sNk - NkAk 0 Mk 

sN, M, - N, A, M, 0 

= sN; M, -NAM, (5.62) 

0 sNkMk -NkAkA 

is the zero pencil of the aggregate system without the interconnection. Given that 

NBA = 0, ACM = 0, then the zero pencil of the composite system is 

sNM-NAM=sNM-N(A+BAF )M= 

sN, - NIA, 0 M, 0 

= sN, - NSA, M, 

0 sNk - NkAkj 1_ 0 Mk 

sN, M, -NAM, 0 

= sN, M, -N, A; M, (5.63) 

0 sNk Mk - NkAk Mk 

Theorem (5.5): The zero pencil of the composite system is the direct sum of the zero 

pencils of the subsystems, and thus the zero properties are expressed as the aggregate of 

the corresponding properties defined on the subsystems. 
0 
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The study of the zero pencil expressed in the form of equation (5.63) provides all 

the necessary insight for the analysis of the zero structure of the composite system. We 

may now investigate the zero properties of the composite system under total loss of 

subsystem inputs and/or outputs. 

5.11 The Zero Pencil under Total Loss of Subsystem Inputs 

Consider the composite system and assume that all the i-th subsystem external 

inputs are not used (i. e. this occurs when interconnection elements are dynamic and no 

assignable input is available for them). In this case, the corresponding subsystem has as 

inputs those coming from the interconnection only. The zero pencil of the composite 

system is described by: 

sN, - N, 4 

0 

""" sN, M-N, AM= -B, F, C1 
0 

0 

sl-A, -B, F�C, """ 

0 

0 

-B, F,,, Ck 
0 

0 

sN, - NIA, 

0 

Mk 

sN1M, -N14M, 0 

= sM; - A; M, (5.64) 

0 sNk Mk - NkAk Mk 

where N, has been defined by equation (5.43). 

Remark (5.2): The above pencil may be generalised for every i and extended to any 

combination of indices i, j etc. 
0 
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The above matrix may be used to study the location of the zeros when total loss 

of subsystem inputs occurs. It should now be pointed out that loss of external input 

results in the zero pencil, whose Kronecker structure is again expressed as a direct sum 

of the Kronecker structures originating from the subsystems. The role of the matrix F 

in expressing the interconnection is not crucial in determining the zero properties of the 

composite system. In connection with the above statement, we have the following 

theorem. 

Theorem (5.6): The observability structure of the subsystem where we lost its inputs, as 
defined by the corresponding state output pencil, enters into the zero structure of the 

composite system, where by observability structure we mean the structure of output 
decoupling zeros and r. m. I of the state-output pencil. 

0 

Now we investigate the zero properties of the composite system under the total 
loss of subsystem outputs. 

5.12 The Zero Pencil under Total Loss of Subsystem Outputs 

Consider the composite system and assume that all the i-th subsystem outputs are 

not measured. The zero pencil of the composite system with total loss of subsystem 

outputs is described by: 

N, 0 SM, - M, A, 

sN, M, - N, AMj = N, 

0 Nk 0 

sN, M, -NAM, 

0 

sN, - N, A, 
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Remark (5.3): The above pencil may be generalised for every i and extended to any 

combination of indices i, j etc. 
0 

The above matrix may be used to study the zero system structure when total loss of 

subsystem outputs occurs. In previous sections the role of matrix F in expressing the 

interconnection was highlighted. A similar argument can be used when total loss of 

subsystem outputs occurs, to characterise the resulting zero structure. 

Theorem (5.7): The controllability structure of the subsystem where we lost its outputs, 

enters into the zero structure of the composite system, where by controllability structure 

we mean the structure defined by the input decoupling zeros and c. m. L of the input-state 

pencil. 
0 

We illustrate the above statements by means of the following examples: 

Example (1): COMPOSITE STRUCTURE (I) 

The following figure shows the block diagram of a composite system with two 

subsystems. 

Figure (5.8): Composite Structure (I) 

The system equations derived from the above figure are: 
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e, =u, -Y2 1e, u, 0 -I y1 

e2=uZ-yi eZ uZ 10 y2 
 F 

A, 0 & Bý 0 e, 
+ z2 0 AZ x2 0 BZ e2 

.A B 

, _C 
o X, 

Z 

Y 
o C2 12 

.C 

Thus, the composite state matrix equations are 

A+BFC = 
ALo' 

[A, 
0 

[A, 

0 

or 

0 B, 0 110 -1 C, 0 

A2 +0 BZ 100 C2 
0 ]+[ 

B0 
-B, C, 0 

A2 20 
j[o C2 

00 -B C2 

A2+B2 G0 

A+BFC =A 
-ACZ 

BZCl AZ 

Therefore, the composite system description can be written as: 

z, 
- 

A, - B, C2 ,+B, 0 u, 

. z2 BZC, AZ xZ 0 BZ u2 
.AB 

y, 
- 

C1 0 x, 
y2 0 C2][121 

BE 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

Consider next the restriction pencils of the composite system. In this example, 

three input-output cases are considered. First, the full input, full output case is given. 
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We first note that given the system, we associate the input state restriction pencil, state 

output restriction pencil and zero pencil as shown below: 

S, (A,, B,, Cl): --> sN, - N, A,, sM, - A, M,, sN, M, - N, A, M, 
is2 (A Bz Cý) 

(5.70) 
Z, : -+ sN2 - N2AZ, sM2 - AZ M2, sN2 MZ - NZAZ M2 

Consider the composite system described above and let N and M be left and 

right annihilators of B and C such that 

NB =0 where N= 
O' 0 

CM =0 where M= 
M10 

(5.71) 
zz 

To study the controllability properties of the system with full input, full output, the 

input-state restriction pencil is derived as follows: 

sN - NA = 
[N, 0 sI - A, B, CZ 

0 N2 -BBC, sI - AZ 

= 
[SN1 - NIA, 0 (5.72) 

0 sN2 - NZA2 

For an insight into the observability properties, the state output restriction pencil is 

given by: 

sN-AM 
[si_Ai B1C2 1[Mi 0 

-BZC, sI - A2 0 MZ 

_ 
[sMJ_A1M1 0 (5.73) 

0 sM2 -A M2 

To investigate the zero properties of the system, from either of the above pencils 

the zero pencil can be derived: 
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sNM - NAM - 
sN, M, 

0 
N, A, M, 

sNz Mz zz NAMz 
(5.74) 

we have therefore verify the results previously stated and summarised as: 

Remark (5.4): The controllability, observability, zero structure properties of the 

composite system (I) under full input, output structure are simply given as aggregates 

(direct sum) of corresponding properties of two subsystems. 
0 

We consider next the case where the total loss of subsystem input structure has 

occurred. Assume that u2 =0 without loss of generality. This leads to the following 

reduced composite system description: 

z, 
= 

A, -B, C2 x, B, 0][111] 
(5.75) 

z2 [B2C, AZ x2 

]+[ 

0 BZ 0 

or 
C2 0 

z= 
A' -B' x 

]+[' ]YI, 
y=x (5.76) 

B2C, A2 -00 C2 

Let 

A= 
OI 

(5.77) 

To study the controllability properties of the system when there is a loss of 

input, the input state restriction pencil is derived as follows: 

s1V, - N, A=N, 
0 sl-A, ACZ 

01 -B2C, sI-AZ 

_ 
sN, - N, A, 0 

-B2q sI-AZ 

(5.78) 
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Equation (5.78) shows that the loss of inputs of one of the subsystems may result 

in the presence of finite elementary divisors in the input-state restriction pencil. 
Therefore, the system may become uncontrollable; however the later property depends 

on -B q matrix. 

Remark (5.5): Total loss of input channels for any of the two subsystems may result in 

structural uncontrollability for the resulting system. 
0 

To investigate the zero properties of the system when there is a loss of input, we derive 

the zero pencil as follows: 

SR, M- RIAM = 
sN, - NIA, 0 M, 0 

-B2C, sl - A2 0 M2 
(5.79) 

_ 
sN, M, -0N, AM, 

sMZ 

0- 
AZ M2 

which verifies the general result previously derived. 

Last, let us assume that only the first output is measured. This leads to the total loss of 

subsystem output, and the reduced composite system description is given by: 

IA, -B1C2 B, 0 
xB 

2C, 
x+ 0 B21 

zG 2- (5.80) [C�0]x 
C, 

Let 

A= o' 1 
(5.81) 

To investigate the zero structure properties, when there is a loss of output, we 

may define the state-output restriction pencil as follows: 
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[si_Al 
Z M, 0 

s- A, _ 
BC 

-BZC, sI - AZ 0I 

= 
[SMI_AIMI 0 

(5'82) 

0 sl-AZ 

Equation (5.82) shows that the loss of output of one of the subsystems may result in the 

presence of finite elementary divisors in the state-output restriction pencil. Therefore, 

the system may become unobservable; however, the later property depends on the B1C2 

matrix. 

Remark (5.6): Loss of outputs of one of the subsystems may result in system 

unobservability. 

To obtain the zero properties of the system when there is a loss of output, we defined the 

zero pencil as follows: 

N, 0 [SM, 

0-A, 
M, 

slB, -A2 01 2 (5.83) 

0 sN2 - N2AZ _ Es'n'A'M' 0 

The above verifies the previously worked out result. 

Example (2): COMPOSITE STRUCTURE (II) 

The following figure shows the block diagram of a complete composite system with 

three subsystems. 
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Figure (5.9): Example of composite system (II) 

The system equations as derived from the above figure are: 

el = ul - 
. 
Y3 el ul 00 -1 

.y 

eZ = u2 + y3 - y3 e2 = Y2 +101 Y2 (5.84) 
e1=u3-y2 

-93- 
U3 010 113 

This leads to the aggregate system equations 

. z, A, 0 0 X, B, 00e, 
z2 = 0 A2 0 X2 +0 B2 0 e2 
X3 0 0 A3 X, 00 B3 e3 

" 'B (5.85) 
G 0 0 X, 

y2 =0 C2 0 X2 
y3 0 0 C3 X3 

Thus, the composite state matrix equations are: 

A, 0 0 A 0 0 0 0 -1 C, 0 0- 
;i+ BFC = 0 A2 0 + 0 B2 0 1 0 -I 0 C2 0 

0 0 A3 0 0 B3- 
-0 

1 0. 
-0 

0 C3 

or 

120 



Chapter 5 
-7/ l'oL o/Jnput, 

Output &%ction 
in ih formation 

o/Composite 
Sptenu Structure 

Al 
A+ BFC = B2C, 

0 

0 -B, C3 
AZ -B2C3 

B3C2 A3 
(5.86) 

Therefore the composite system description can be written as: 

A, 0 -B1C3 X, B, 00u, 
XZ = B2 Cl A2 

-B2 3 x2 +0 B2 0 u2 

x3 0 B3C2 A3 X3 00 B3 u3 
. i! B 

C00x, 
y2 =0 C2 0 X2 

y3 00 C3 X3 

It- 
 C 

(5.87) 

Consider next the restriction pencil of the composite system. In this example, 
three different cases are considered. First, the full input-full output case is given. We 

first note that given the system, we associate the input-state restriction pencil, 

state-output restriction pencil, zero pencil as shown below for each subsystem: 

S, (A,, B,, q ): --ý sN, - N, A,, sM, - A, M1, sN1 M, - N1A, M, 

S2 (AZ, BZ)C2 ): --ý sN2 - N2A2, sM2 - A2 M2, sN2 M2 - NZA2 M2 
S3(A3, B3, C3): -> sN3-N3A3, sM3-A3 M3, sN3M3-N3A3M3 

For the composite system described by the above figure (5.9), let N and M be 

left and right annihilators of B and C respectively such that 

N, 0 0 M, 0 0 
NB = 0, where N= 0 N2 0 , CM =0 where M= 0 M2 0 

0 0 N3 0 0 M3 

To study the controllability properties of the system with full input, full output, 
the input-state restriction pencil is derived as follows: 
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N, 0 

sN-NA =0 N2 

00 
sN1-N, 

=0 
0 

0 sl -. A, 0 -B, C3 
0 B2C1 sI - AZ -B2 C3 

N3 0 B3C2 sI - A3 
(5.88) A, 00 

sN2 - N2A2 0 
0 sN3 - N3A3 

To investigate the observability properties of the system, the state-output 

restriction pencil is given by: 

s1 - A, 0 

sN-AM = B2C1 sI-A2 
0 B3C2 

[SM, -A, M, 

=0 sM2 - A2 M2 

L00 SM3 

0 
-A3M3 

-B, C3 M, 00 
B2 C3 0 M2 0 

sl - A3 00 M3- 
001 (5.89) 

To obtain the zero properties of the system, with full input, full output, the zero 

pencil is defined by: 

sN1M, -N1AM, 00 

sNM - NAM =0 sN2 M2 - N2 A2 M2 0 (5.90) 
00 sN3M3 - N3A3M3 

The above verifies the previously given general results. Consider next the case 

where total loss of subsystem input structure has occurred. Assume that u, =0 (without 

loss of generality). This leads to the following reduced composite system description: 

z, A, 0 -B1C3 x, B, 000 
x2 = B2C1 A2 -B2C3 x2 +0 B2 0 u2 (5.91) 
X3 0 B3C2 

`43 X3 00 B3 U3 

or 
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A, 0 -B1C3 00 
z= B2 A2 -B2C3 x+ B2 0 u2 (5.92) 

0 B, CZ A3 0 B3 u3 

Then, 

100 
IV1 =0 N2 0 (5.93) 

00 N3 

To investigate the controllability properties when there is a total loss of 

subsystem input, we may define the input-state restriction pencil as follows: 

I0 

sg, -N, A =0 N2 
00 
sI - A, 

=0 
0 

o sI-A, 
0 BZC, 

N3 0 
0 

sN2 - N2A2 
0 

0 -B, C3 

sl-Az -B2C3 
B3C2 sl - A3 

-B1C3 
0 

sN3 - N3A3 

(5.94) 

Equation (5.94) shows that the loss of inputs of one of the subsystems may result in the 

presence of finite elementary divisors in the input-state restriction pencil. Therefore, the 

system may become uncontrollable; however the later property depends on -B, C3 

matrix. 

To demonstrate that now the properties of controllability depend on the 

interconnection graph, we observe the following: 

(a) The pencil R(s) = sNl - N1A in (5.94) is strict equivalent by permutation of blocks 

to 

s Ti _N2AZ ;0[! n2-N2 A0 
- 

T----------B, C---- i R'(s) sl- 0.4-, ------+-- 0R (s) 
0 sN, N3A3 
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The above suggests that part of the controllability structure, that is, that connected with 

2" subsystem, is part of the resulting controllability structure of the resulting system. 

The rest of the properties depend on the structure of the reduced pencil T(s). 

(b) If (Q, T) is a pair that reduces sN3 - N3A3 to its standard form 

Q(sN3 - N3A3 )T = s[1,0] - [P, PZ ] and -B, C3T = -[E1, E2 ] (compatible partitioning 

with that of Q(sN3 - N3A3)T ), then R (s) is strict equivalent to 

R(s) _ 
sI-4 -E, -E2 

0 sl-P -PZ 

The controllability properties of the remaining subsystem are those of the pair 

A'= 
A' E' 

B'= 
E2 

0P' P2 

and thus clearly affected by the graph of the system. We summarise as: 

Remark (5.7): Total loss of input channels for any of the three subsystems may result 

in structural uncontrollability. This however, is a property entirely dependent on the 

system graph and the location of the deviation from completeness. 
11 

To investigate the zero properties of the system, when there is a loss of input, we 

derive the zero pencil as follows: 

sl - A, 0 -B1C3 M, 00 

0 sNZ - N2A2 0I0 M2 0 
00 sN, - N3A3 00 M3 

(5.95) 
sM, - A, M, 00 

=0 sN2 M2 - N2A2 M2 0 
00 sN3M3 -N3A3M3 
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which once more verifies the previously stated general result. 

Last, let us assume that the first and second outputs are measured (again without loss of 

generality). This leads to the total loss of subsystem output, and the reduced composite 

system description is given by: 

A, 0 
BSG AZ 

0B 3C2 
C, 00 

y0 Cz 0x 

BE 

and a right annihilator of C, is given by 

-B1C3 B, 00 

-B2C3 x+0 B2 0u 
A3 00 B3 

M, 00 
M, = 0 M2 0 

001 

(5.96) 

(5.97) 

To investigate the observability properties, when there is a loss of output, we 

may define the state-output restriction pencil as follows: 

s1-A, 

-BZC, 
0 

sM, -. 
=0 

0 

0 B, C3 

sI-A2 B2C3 

-B3C2 sI-A3 
4 M, 0 

sM2 - A2 M2 
0 

M, 00 
0 M2 0 
001 

(5.98) BIC3 
B2C3 

sI - A, 

Equation (5.98) shows that the loss of output of one of the subsystems may 

result in the presence of finite elementary divisors in the state-output restriction pencil. 

Therefore, the system may become unobservable; however the later property depends on 

B, C3 , B2C3 matrices. 
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Remark (5.8): Loss of outputs of one of the subsystems may result in system 

unobservability. 

To obtain the zero properties of the system when there is a loss of output, we 

define the zero pencil as 

sl - A, 

sM, - AM, _ -BZC, 
0 

sM, - 
=0 

0 

0 B1C3 

sl - A2 B2C3 

-B3C2 sl - A3 
A, M, 0 

sM2 - A2 M2 

0 

Ml 00 
0 M2 0 
001 

(5.99) 
B1C3 
B2C3 

sl - A3 

The above verifies the previously derived result. 

Let us now consider the following example which extends the composite system 

by a further subsystem. 

Example (3): COMPOSITE STRUCTURE (III) 

The following figure shows the block diagram of a complete composite system 

with four subsystems: 

Figure (5.10): Example of composite system (III) 
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The system equations, as derived from the above figure, are: 

e, = u, - y4 000 -1 y, 

e2 = Y2 + yI -b e2 u2 10 -I 0 y2 
e3 = u3 + y2 e3 u3 0I00 y3 
eq = U4 + y3 e4 u4 0010 y4 

This leads to the following aggregate system equation: 

A, 0 
z2 0 A2 

z 0 0 

z4 0 0 

G 0 
yZ 0 c2 
y3 0 0 

y4 0 0 

0 0 xt B, 0 0 0 e1 
0 0 x2 0 B2 0 0 e2 

+ 
A3 0 x3 0 0 B3 0 e3 

o A4JLx4J Lo 00 B4 Le4J 
00x, - 

00 x2 
C3 0 x3 
0 C, x, 

Thus, the composite state matrix equation is: 

or 

(5.1 ooh 

(5.10 1) 

A+BFC = 
A, 00 0B, 0 0 00 00 -1 C, 000 

0 A2 0 00 B2 0 01 0 -1 00 C2 00 
00 A3 0+ 00 B3 00 10 000 C3 0 
000 A, 00 0 B4 0 01 0000C, 

A, 0 0 -B, C4 

A+ BFC = 
B2C' A2 B2C3 0 

(5.102) 
0 B3C2 A3 0 
0 0 B4 C3 A4 

Therefore, the composite system description can be written as: 
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z, A, 0 0 
x2 B2C1 A2 B2C3 

xg 0 B3C2 A3 

4J L0 0 B4C3 

y, C, 0 0 
A 

0 x, 
y2 0 C2 0 0 x2 
y3 00 C3 0 x3 

LLJ 
1- 

00 0 C44 
Y 

/C 

 B (5.103) 

Consider next the restriction pencils of the composite system. In this example, 
two input-output cases are considered. We first note that given the system we associate 
input-state restriction pencil, state-output restriction pencil and zero pencil as shown 
below: 

S; (A;, B,, C; ): -- sN, -NSA;, sM; -A; M,, sN, M, -N, A; M,, i=1,2,3,4 

The total loss of subsystem input structure is occurred now. Assume that uj = 0, 

without loss of generality. This leads to the following reduced composite system 

description: 

z, Al 0 0 - B, C4 x, B, 0 000 
zZ 

_ 
BZC, A2 B2C3 0 xZ + 

0 B2 00 u2 (5.104) 
X3 0 B3C2 A3 0 X3 0 0 B3 0 u3 

X4 0 0 B4C3 A4 i L4] Lo 0 0 B4 u4 

or 

A, 0 0 -B, C4 0 0 0 

BZG AZ B2 3 0 B2 0 0 
u2 

0 B3C2 3A 0x +0 B3 0 u; (5.105) 

0 B4 C3 A4 Lo 0 B4 _ua 

It is clear that a left annihilator is defined by 

-B, c4irx-1 rB, oo oiru. 0 x2 0 B2 0 0 u2 
0 X3 0 0 B3 0 U3 
A4 x4 0 0 0 B4 u4 
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1000 

_0 
N2 00 

N' 
00N0 

(5.106) 
3 

Lo 00N, 

To investigate the controllability properties of the system, when there is a loss of 

input, we may define the input-state restriction pencil as follows: 

11 000 sI - A, 00 -B1C4 
0 N2 00II B2C, sI - A2 B2C3 0 

sN, -N, A= 
00 N3 00 B3C2 sI-A3 0 

Lo 00 N4 000 sI-A4 

sl -A00 -B, C4 

_ 
BZC, sN2 - N2A2 B2C3 0 

0 B3C2 sN3 - N3A3 0 
000 sN4 - N4A4 

The above matrix can be rearranged in order to get 

sN2 - NZA2 000 
0 sN3 - N3A3 00 

----0---------Ö ---, sl-Ai -----BiC 
s 

000 sNa - N4Aa 

(5.107) 

This shows the rearranged matrix partitioned into four blocks. It is obvious that 

the canonical form of sNl - N1A contains an additional block to those corresponding to 

the column minimal indices. This block has to be further investigated to find out about 

the existence of uncontrollable modes. This can be achieved through a rank test. Note 

that a system is uncontrollable, iff there exists finite elementary divisors in 
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1s1- A, -B1C4 
0 sN4 - N4A4 

This implies the existence of a nonzero constant vector v' and an eigenvalue A 

such that 

rvý vi ] 
AI - A, -B C4 

=0 L'2J0 
. 1N4 - N, A4 

or 

v_j(2I-A) =0 

--v; B, C4+v_2(AN4 -N4A4)=0 

We have to test (5.110) for the left eigenvalues and eigenvectors of Ai . 

(5.108) 

(5.109) 

(5.1 10) 

Consider next the case when there is a total loss of subsystem input and output. 

Assume that u, =0 and first output is not measured. To investigate the zero properties 

of the system, from matrix (5.107), the zero pencil can be derived: 

sN, M, - N, AM, _ 
sI-A, 00 

0 sN2 - N2A2 0 
00 SN3 - N3A3 
000 L 

sl-A, 0 
0 sN2 M2 - N2A2 M2 
00 
00 

-B1C4 100 0- 
0 

110 
M2 00 

000 M3 0 
(5.111) 

sN4 - N4A4 000 M4 

o0 
o0 

sN3M3 - N3A3M3 0 
0 sN4M4 -N4A4M4 

Theorem (5.8): Internal dynamics, as defined by the eigenvalues of corresponding 

subsystem, become part of the zero structure of the composite system under the total 

loss of input and output of corresponding subsystem. 

0 
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There are some cases where two or more inputs are lost, in which case the 

procedure for solving the problem is more complex. The above three examples 

demonstrate that when there is partial loss of inputs, or outputs, then the interconnection 

structure plays a crucial role in defining the controllability, observability properties of 

the resulted system. The characterisation of the resulting structural properties then 

depends on the properties of the interconnection graph manifested in the structure of the 

matrix F. 

Although we have considered cases of total loss of inputs, outputs at subsystem 

level, the approach may be extended to partial losses, i. e. more generic forms of 

deviations from completeness. Such cases may be treated as cases of squaring down at 

subsystem inputs, and/or outputs. Such analysis becomes much more complicated. 

5.13 Conclusions 

The different types of Restriction pencils nave been used for studying the effect 

of the structure F on the loss of controllability, observability and changes in zero 

structure, when total loss of subsystem input, output, occurs. It was shown that 

controllability, observability, zero structure properties of composite system under full 

input, output structure or under the completeness assumption are simply given as 

aggregates (direct sum) of corresponding properties of subsystems. It was also shown 

that total loss of input (output) channels for any of the subsystems may result in 

structural uncontrollability, unobservability. A number of examples have demonstrated 

that there is a need for further work in obtaining general criteria for system 

controllability, observability under partial loss of input, output channels at the 

subsystem level, which corresponds to forms of input and/or output squaring down. 

Exploring further the role of system graph in determining the properties of systems 

deviating from the completeness assumption is an issue that requires further work. 
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6. Interaction Analysis and Structural Methodologies 

6.1 Introduction 

An important part of the integrated methodology for control structure selection is 

the so-called interaction analysis which is made up of a number of diagnostics and 

structural tests that help to restrict the choice of the best scheme: Here we provide a 

brief review that underpins the software development following in the successive 

chapter. 

The design of decentralised controllers involves the control structure selection 

problem as an integral part. It has to be decided, which set of measurements will affect 

which set of inputs and, thus, the problem of interaction between different control loops 

has to be analysed. Interaction analysis methods can be divided into three groups: 

" Interaction matrices 

" Interaction measures 

" Control structure and system properties 

The first group of methods, referred to as interaction matrices, help the control 

system designer to find possible control structure candidates. The number of possible 

control structures rapidly increases as the number of inputs and outputs increases. If a 

process with p inputs and m outputs is to be controlled using m SISO controllers, then 

the number of possible control structures is m!. It is clear that control structure selection 

for large multivariable systems is a tedious task, if all possible structures have to be 

tested. A faster method than the exhaustive search of all possible structures is needed. 

Interaction matrices are a group of methods that offer a solution to this problem. If we 

are considering a process with p inputs and m outputs, then an interaction matrix is an 

mxp matrix in which each element describes interaction between the corresponding 

input and output. The control structure should be selected so that the inputs and outputs 

that strongly interact with each other are connected in the feedback controller. Control 

structures including weakly interacting input-output pairs do not deserve any further 

study. In this way the number of control structures to be tested can be reduced. 
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The best-known interaction matrix is the Relative Gain Array proposed by Bristol 

(1966). It is easy to compute, and only the steady state gain matrix of the process under 

study is needed. Because the Relative Gain Array reveals only static interactions in a 

process, extensions to it have been proposed, which include dynamic interaction effects 

too, for example in [Wit. & McAvoy, 1] and [Tung & Edgar, 1]. [Lau et al., 2] use a 

different approach in defining an interaction matrix. Their method is based on the 

singular value decomposition (SVD) of the process model. The problem with this SVD 

based method is that the results are dependent upon the scaling of the process model. 

The Scaled Gain Matrix proposed by [Liesl., 1] is based on the scaling of input and 

output variables. 

The second group of methods, interaction measures, help the designer to analyse 

and compare the quality of the selected control structure candidates. They measure the 

performance loss caused by different control structures compared to the system with a 

full controller matrix. A unified treatment of different interaction measures is given in 

[Grosd. & Mor., I]. Manousiouthakis has also produced a method for selection of 

decentralisation, using a similar approach. The developed tools are very general and 

easy to implement. The technique can be effectively used in making comparative 

assessment of different designs. 

Another important aspect in decentralised control design is fault tolerance. It is 

desirable to select a control structure so that separate controllers can be detuned or taken 

out of service, while maintaining the stability of the overall system. A system with these 

properties is said to be Decentralised Integral Controllable. A set of simple, but only 

necessary, conditions for DIC is given in [Mor. & Zaf., 1]. A more complex DIC 

screening method, that is based on a sufficient condition, is proposed by [Le et al., 1], 

and [Nwok. et al., 1]. 

Finally, last but not least, (Lev. & Karc. 3) present a method that extends the 

results previously derived for the properties of the centralised pole placement map under 

complex and real output feedback (Lev. & Karc, 2) to the case of decentralised constant 

output feedback and investigate some general properties related to measuring the size of 

the set of polynomials for a given system that can be assigned. Instrumental in the above 

study is the differential of the decentralised pole placement map (DPPM), which 

provides a measure of the size of the set at a generic decentralised feedback Kdec. The 
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differential of DPPM is computed and this provides a link with the decentralised 

Plucker matrix of the problem [Karc. et al. 1] and a set of state space based parameters 

which incorporate the decentralisation structure and are referred to as decentralised 

Markov Parameters (DMP). The study of pole assignability under decentralised control 

schemes provides criteria that link the control structure selection to the underlying 

invariant system structure. In fact, the Markov matrix arising as the representation of the 

differential of the pole placement map characterises both pole assignability as well as 

absence of fixed modes for the system. An additional advantage of the Markov 

Parameter framework, centralised or decentralised, is that due to its direct link to the 

state space description, it provides the means for modifying the selection of the C, or B, 

matrices, such that the centralised or decentralised Markov matrix has full rank and thus 

achieve the very important linear assignment property which excludes the presence of 

fixed and almost fixed modes and preconditions well the system to accept a certain type 

of control solution. 

The above fundamental methodologies provide the basics of a CAD package for 

Control Structure Selection, which has been developed in this thesis. A summary of 

these techniques, which have been implemented, are given here. 

6.2 Interaction Matrices 

6.2.1 Relative Gain Array 

The relative gain array (RGA) proposed by Bristol [Bristol, 1] is probably the best 

known and most widely used interaction matrix. The element A,, in the matrix A is a 

measure of the relative gain between y, and u,. The relative gain is the ratio of the 

transfer function between the two variables, with all other outputs uncontrolled, and the 

transfer function between the same variables, when all other outputs are perfectly 

controlled. The only information needed for the calculation of the Relative Gain array is 

the steady state gain matrix u,. 

The basic strategy of the static RGA is to choose a control loop in which the 

manipulated variable uj and the controlled variable y, are most sensitive to each other 
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and hence less sensitive to other input-output pairs. Because of interaction effects, one 

must consider the so-called open loop sensitivity: 

1uk, 
ksJ 

as well as the closed loop sensitivity: 

°. '' (6.2) 
yk, ksl 

where uk, k,, j indicates all controllers except uu are held constant. A measure of relative 

sensitivity is given by the relative gain array, whose elements are defined as follows: 

Juk, 
k*1 (6.3) 

yk. kvl 

Bristol has shown that the proper input-output pair for single loop control is the one 

having the nearest to one A, value. 

For the interpretation of the RGA, Bristol gives the following two pairing rules: 

1. Pair together inputs and outputs indicated by positive RGA elements that are closest 

to unity. 

2. Avoid pairing together inputs and outputs indicated by negative RGA elements, 

because such pairings result in, either an unstable system, or an inverse responding 

system. 
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Always pair on positive relative gains that are closest to unity and check the 

resulting pairings for stability using Niederlinski's theorem; if the pairings are unstable, 

choose other possible pairings with values closest to unity, avoiding negative pairings if 

possible. 

Theorem (6.1) (Niederlinski Stability Theorem): 

The closed loop system under investigation is unstable if : 

JAI 
<o n 

all 

i=1 

where IAI is the determinant of A. 

(6.4) 

This theorem is particularly powerful. All that it requires for its use is steady-state 

gain information and the assumption that perfect steady-state control is achieved in all 

loops. Niederlinski's theorem is actually equivalent to pairing on a negative RGA 

element. 
Interactions in a multivariable control system have implications beyond merely 

propagation of disturbances between loops. Consider for example a two input-output 

system where the controllers have been tuned independently. Even though the 

individual performance of the two controllers, when tuned, may be quite satisfactory, 

the overall system will sometimes go unstable, when both loops are operated together. 

The interacting controllers, therefore, create conditions which can destabilise an 

otherwise stable system. Thus, it appears that the RGA can be used not just as a measure 

of variable interactions but also as a measure of system stability. Since in the derivation 

of the RGA it was assumed that the output variables were subject to perfect steady-state 

control, it seems natural to seek a relationship between the RGA and systems under 

integral control and it is an issue considered in section 6.4.2. 
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6.2.2 Dynamic Relative Gain Array 

The relative gain array is a steady-state analysis method and does not explicitly 
include dynamic effects. Several extensions, which include dynamic effects, have been 

proposed. The dynamic relative gain array proposed by [Tung & Edgar, 2] is one such 

extension. Several investigators have proposed different definitions for a dynamic RGA. 

In some cases, these definitions require that the feedback controller be designed. Since 

the RGA is most valuable in screening alternative control system designs, the 

requirement that the controller must be designed, limits the utility of these definitions. 

The approach often used, does not require that the controllers must be specified. Starting 

with zero initial conditions, it is desired to bring the process output y to the new set 

point ro . The basic idea behind this method is to divide the change in the output y into 

parts, caused by the different elements of the input vector, going from 0 to u,.: 

Let a linear dynamic process be described by: 

z=Ax+Bu 

y=Cx 
(6.5) 

The system is assumed to be controllable and observable. Consider a change in set point 

from zero to y0, and let the required control change necessary to bring about this set 

point change be u= uo . At steady state, 

0= Axo + Buo (6.6) 

Assuming the system is stable, then the above equation can be solved for x0, 

xo = (-A)-' Bu� (6.7) 

but 

yo = Cxo = C(- A)-' Buo (6.8) 

therefore, for y and u of the same dimension, 
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uo = 
[c(_A)'Bf1y0 (6.9) 

With zero initial conditions, the output response is, in the s-domain, 

AS) = Cx(s) 
= C(sl - A)-' Buo "'s 

= C(sI - A)-'B o 
[C(-A)-' B]- yo "y 

= G(s) o [G(0)]-' yo - Y, 

where G(s) is the process transfer function matrix and o denotes the element by 

element multiplication. The last equation can be written in more detail: 

Y1(s) GII(s) GIZ(s) ... Gim(s) ri1 '2... rimYI1 

Y2 (S) 
_ 

G21(S) G22(s) ... Gzm(s) 
o 

rzl ''22 ... I'2m Y2,1 (6.11) 
S 

LYm (s) GG,, (s) Gm2 (s) ... G��n (s) Lr, 
1 rrn2 ... rmm Ymo 

that is, 

Yi (s) =E Gi, k 
(s)rkj 

)Yi. 

, i=1,2, --., m (6.12) 
j-1 k-I S 

where G,,, (s) and I'k j are elements of the C(sI -A)-' B matrix and the [c(_4)-' B]-' 

matrix G"'(0), respectively. 

Now consider a step change in y,. only. The response of y, is simply: 

AS) _ 
(EG,, 

k(3)rk, 
Yio (6.13) 

k-I s 
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Note that the kth term in the summation results from the kth controller. The above 

equation indicates that if y, is to be controlled by controller u,, the term G,., I',,, Is 

should be the dominant term. This equation can lead to the formation of a dynamic RGA 

matrix: 

m U2 ... U, 

Y, a11(s) a12 (S) ... aim(s) 
Y2 a21(S) a22(S) .. * a2m(s) (6.14) 

Y. a 
, 1(s) a,, 2 

(s) 
... aeim 

(S) 

where 

a, j 
(s) = Gu (s)r', " Y, 

j 1,2,. ., m (6.15) 
j=1,2, ..., m 

Having presented a frequency domain version of the dynamic RGA, a time domain 

interpretation can easily be defined. Such a procedure will finally lead us to the 

following result: 

UI ... Nm 

Oj 
y ym nný y 

om 

CIA 
a 

iii 
y 

Ain 
w 

A, 
m y 

Therefore, the notion of the static RGA can then be derived from a detailed dynamic 

analysis. 
Tung and Edgar propose that a proper control structure can be selected by finding 

the dominant terms in the dynamic relative gain array. The elements of the dynamic 

relative gain array having large absolute values indicate the recommended feedback 

loops. It is possible that different loop pairings are recommended at low and high 
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frequencies. The use of a multivariable controller could be beneficial in such cases. 

Because this interpretation is based on gains only, one should analyse the effect of 

delays separately. 

6.2.3 Performance - Relative Gain Matrix (P-RGA) 

The notion of the D-RGA has already been presented and its use as a screening 

tool for alternative control structures has already been established. However, the RGA 

was never considered to be a panacea. It can be very handy in numerous cases but it has 

its limitations. Lets look at it in more detail: 

The RGA matrix, as already defined, has some interesting algebraic properties 

(e. g. [Grosd. et al., I]): 

(a) It is scaling independent. Mathematically, A(D, GD2) = AG where y, and D2 are 

diagonal matrices. 

(b) All row and column sums equal one. 

(c) Any permutation of rows or columns in G results in the same permutation in the 

RGA. 

(d) If G(s) is triangular (and hence also if it is diagonal), A(G) = I. 

(e) Relative perturbations in elements of G and in its inverse are related by 

d[G"']jjIG" 
j, = -Audgulg 

One inadequacy of the RGA is that it, because of property d, may indicate that 

interaction is no problem, but significant one-way coupling may exist. To overcome this 

problem, the performance relative gain array (P-RGA) can be introduced 

[Hoed. & Skog., 2]. The PRGA-matrix is defined as 

P(s) = G(s)G(s)-' 
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where d(s) is the matrix consisting of only the diagonal elements of G(s), i. e. 

G= diag{g;; }. The matrix P was originally introduced at steady-state by [Grosd., 1] in 

order to understand the effect of directions under decentralised control. The elements of 

P are given by 

P;; = g;, (s)ýGý'ly _ 
Týý5ý Z , 

(5) 
J 

,, 
() 

Note that the diagonal elements of RGA and PRGA are identical, but otherwise PRGA 

does not have all the algebraic properties of the RGA. PRGA must be recomputed 

whenever G is rearranged, whereas RGA only needs to be rearranged in the same way 

as G. PRGA is independent of input scaling, that is P(GD2) = P(G), but it depends on 

output scaling. This is reasonable since performance is defined in terms of the 

magnitude of the outputs. 

The measures above may be extended to non-square systems by introducing the 

pseudoinverse. However, the usefulness of the measures, at least for analysing 

decentralised control, then seems limited. 

6.2.4 Scaled Gain Matrix (SGM) 

This method was first proposed by [Liesl., 1]. The method aims to provide a 

control system designer useful information on interactions in a form that is easy to 

interpret. It is based on the scaling of input and output variables. Although a large gain 

between an input and an output indicates strong interaction, the process gain matrix can 

not be directly used for interaction analysis, because it depends on the scaling of input 

and output variables. In this method the input and output variables are resealed, so that 

in the new gain matrix, corresponding to the rescaled variables, the elements are directly 

comparable with each other. 

Consider an mxn process transfer function matrix G(s). The basic idea behind 

the method is to scale input and output variables in such a way that the average gain in 
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each row and column of the process model is one at a given frequency. This is achieved 

using the following iterative procedure: 

Step I. Calculate the gain matrix at the desired frequency co*, I G(jw' )I 
. This is the 

first estimate of the scaled gain matrix `Y , i. e. for k =1 set 

vi*v = 
lgd(jcoo)l 

Step 2. Scale the rows of `ik in such a way that in each row the average value of the 

elements is equal to one. 

k 
k+I n-l 

ýy __ ^k ýj-l 
VJ 

Sten 3" Scale the columns of 'P in such a way that in each column the average 

value of the elements is equal to one. 

k+l 
k+2 

_ 
M. ii 

wý - '" k+1 
Lýf. 1 

Y /Y 

Std Stop if the changes between t'` and `i'k+Z are sufficiently small. Otherwise 

set k +- k+2, and go to step 2. 

The procedure converges towards the scaled gain matrix (SGM) that is unique 

for each matrix. 

In the Scaled Gain Matrix, the average value of the elements in each row and 

column is one. The interpretation of this interaction matrix is simple: values larger than 

one indicate strong interaction and values smaller than one indicate weak interaction. 

The largest elements in `Y then indicate the inputs and outputs, which should be 

connected in the feedback controller. The SGM, unlike the RGA, can be used even when 

143 



C--ter 6 interaction 
-Aalpis and 

Structural 
///atIwa9ia. 4 

the number of inputs and outputs is unequal. The SGM is also applicable to the analysis 

of dynamic effects without any special extensions. 
The SGM is a method for finding possible control structure candidates. Stability 

and performance constraints imposed by these control structures have to be analysed 

using alternative measures. 

6.2.5 Block Relative Gain (BRG) 

Because of its many useful properties, the RGA has found wide applications 

among engineers. However, at the same time, its original development as a scalar and its 

presentation in a single array, unnecessarily limited its applicability exclusively to SISO 

control loops. By formulating and extending the relative gain concept and its properties 

from a scalar to a matrix, a more powerful synthesis framework is formed, that can 

address a broader class of control problems, such as the synthesis of decentralised 

control structures that are not restricted to SISO control loops. This new concept is 

referred to as Block Relative Gain. 

Control system synthesis starts with a given set of measurements, y, and 

manipulated variables, u. The input-output model y(s) = G(s)u(s) is usually assumed 

to be the one to describe the plant dynamics, with the transfer function matrix G(s) 

considered to be square. In decentralised plant control, different subsets of outputs are 

assigned to different subsets of inputs and each such assignment forms a subsystem G,,. 

In classical feedback terms this implies that output measurements of an individual 

subsystem will affect the manipulated inputs of that subsystem only via its own control 

law. Alternative subsystems and, thus, decentralised control structures can be 

systematically generated by partitioning G(s) into blocks of different dimensions and 

also due to alternative ways of assigning inputs and outputs to the blocks, figure (6.1). 
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Figure 6.1. Partitioning of G(s) into blocks of different dimensions. 

Note that in this type of partitioning, subsystems are viewed as aggregates of control 

loops and not as groups of process units. Thus, block partitioning of G(s) may not 

necessarily correspond to a particular process decomposition and the resulting 

decentralised control system does not have to be compatible with any arrangement of 

subsystems of process unit operations. However, this does not preclude the possibility 

of specifying the process decomposition first and then structuring the decentralised 

control systems within the boundaries of the individual process subsystems. In some 

cases, this may eliminate the synthesis of undesirable decentralised control structures 

right from the beginning and reduce the potential combinatorial problems encountered 

in the block partitioning procedure. 

To better understand the concept of BRG, one has to consider a square (n xn) 

transfer function matrix G(s), partitioned as follows (the s is dropped for convenience): 

m n-m 
G11 : GI M [ 
G21 . G22 n-m 

with 
y(6.16) 
Y2 U2 

The plant is to be controlled by a decentralised control structure in which the first m 

outputs yi are interconnected with the first m inputs u1 and the last n-m outputs y2 

are interconnected with the last n-m inputs u2 . The corresponding feedback 

configuration is shown in figure 6.2. The controller K and the filter F are given by: 
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m n-m 
K, 0m 

0; K2 n-m 

m n-m 
Fim 

01 FZ n-m 

(6.17) 

I 

Figure 6.2. Decentralised feedback system. 

The following relations hold: 

y=Gu 

u=G"'y 

Then 

63,, =G� 

(assuming G"' exists) 

(6.18) 

(6.19) 

(6.20) 

o= 
([G'' ],, ) = G11- Gl2GZ' GG, (if G22 is nonsingular) (6.21) 

diý .0 

where 
[G-'],, is the first mxm block of G-: 

G-' = 
[[G-'], 

>I J12 (6.22) 
[G-1121 IG-1122 
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According to eq. (6.20), G� denotes the block gain between y, and u, when all the 

loops are open, i. e. F=0. Similarly, ([G"], 
t)i 

is the block gain between y, and ut 

when the first m loops are open, i. e. F, = 0, and the last n-m loops are closed, i. e., 

FZ. = I, and under perfect control, i. e., y2 =0. 
The m-dimensional Block Relative Gain (left and right) can then be defined as: 

BRG IP' 

=(6.23) 
,. i 

BRG, 

1={G-']11 

, Gi1 (6.24) 

11, .0 iaý no h2=, 

Note that in the case of one-dimensional BRG, left and right BRG's become identical 

(since G� is scalar) and reduce to the classical Bristol's RGA. In the case of 

n-dimensional BRG, BRG1= BRG, = I. 

The significance of the BRG in relation to the closed-loop performance can be 

derived from a study of the following three cases: 

Case 1: F=0, FZ =0 (no feedback). 

Case 2: F, = 0, FZ =I (feedback of the last n-m outputs to the last n-m inputs). 

Case 3: F, = 0, FZ =0 (feedback of the first m [last n- m] outputs to the first 

m [last n- m] inputs, respectively). 

From the results (the extensive calculations can be found in [Manous. et al, 2], one can 

find the answer to the question: What is the significance of the relative gain for the 

performance of the closed-loop system? The answer is: The closed-loop performance of 

the mxm block under consideration, when the other n-m outputs are under perfect 

control, is a continuous function of BRG,. When BRG, = I, which implies BRG, = I, 
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the closed-loop performance of the mxm block is as if this block was isolated from the 

rest of the plant and operating under the influence only of its own control law. This 

makes it clear what kind of information one should expect from BRG and in what sense 

it can be considered as a measure of interaction. 

6.2.6 Dynamic Block Relative Gain (D-BRG) 

When defining the block relative gain and deriving its relation to the closed-loop 

performance, the usual assumption of perfect control for the plant outputs has been 

made. This assumption always holds at zero frequency (i. e., at steady state) by the use 

of integral control action. However, it may not hold for all the frequencies especially 

when non-minimum phase and/or strictly proper blocks are present. For such cases, the 

assumption of perfect control over the whole frequency range can be relaxed, 

[Manous. et al., 1]. If one wished to investigate interactions over the whole frequency 

range, BRG could be extended to a Dynamic-BRG and become a frequency-dependent 

interaction measure, that need not be modified, if there are no right half-plane 

transmission zeros in the complementary subsystem, which is supposed to work under 

perfect control. On the other hand, when RHP zeros exist, one either evaluates the 

equations at steady state only or, if interested in all the frequencies, one can use an 

appropriately modified D-BRG as given in [Manous. et al., I]. 

BRG, as it was previously defined, is related to the first m outputs and m inputs 

of the plant. As a result, it will depend on how the n outputs and n inputs are ordered 

in G(s). Since the number of all possible rearrangements of n objects is n!, n outputs 

and n inputs can be ordered in (n! ). (n! ) possible combinations. Calculating an 

m-dimensional BRG for each such combination would result to a total of (n! )2 BRG 

computations, which would be an enormous task for large n's. In order to resolve this 

combinatorial problem, certain theorems were presented [Manous. et al., 2]. The results 

were the following: 

" BRG, (BRG, ) is not affected at all by the ordering of the last n-m inputs and 

n-m outputs and the ordering of the first m inputs (outputs). Furthermore, for all 
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G's that contain the same first m inputs and m outputs but different arrangements, 

corresponding BRG's turn out to be trivial rearrangements of each other. 

Consequently, they can be considered equivalent. Thus for an m-dimensional 

subsystem containing a unique group of inputs and outputs, only one of the 

equivalent BRG's needs to be examined. This means that for an n-dimensional 

system, the number of calculations for an n-dimensional BRG drops from (n ! )2 to 

(nJ{n) 
whi ch is a significant reduction for large systems. 

" BRG, (BRG, ) does not depend on the scaling of the last n-m inputs and outputs 

and the first m inputs (outputs), but it does depend on the scaling of the first m 

outputs (inputs). However, if the first m outputs (inputs) are all scaled in the same 

way, then BRG, (BRG, ) is not affected at all. 

" The diagonal elements of BRG 's are well-defined, i. e. they remain on the diagonal 

but not necessarily at the same locations when G is trivially rearranged. This 

implies that, for all the BRGs corresponding to a particular group of m inputs and 

outputs, the designer needs to examine only m diagonal terms. 

" The well-known property of the RGA, that elements of each row and each column 

add to 1, also applies to BRGs. This is a direct consequence of the previous result 

and also of the fact that the n-dimensional BRG is the identity matrix. 

The aim of the DBRG is to provide an acceptable block partitioning of the plant 

matrix G(s). Such a task is considered to be accomplished if all the BRG 's of different 

dimensions corresponding to the diagonal blocks of different dimensions G,, (s)'s, are 

close to an identity matrix. To quantify this closeness and define the set of viable 

BRG's, the following procedure is necessary: 

Let B(1, c) denote a neighbourhood in the complex plane with centre at (1,0) and 

radius e= E(co). Then we say that a BRG is viable (i. e. close to identity) if its diagonal 
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elements and eigenvalues belong to neighbourhoods B(l, s, ) and B(1, e2), respectively, 

for all frequencies w. The selection process is the following: 

First consider the highest degree of decentralisation - i. e. 1x1 block partitioning 

of G- that would yield a total of N SISO assignments (or pairings). For this, all the 

one-dimensional BRGs are first evaluated at s=0. Among the viable ones, those which 

establish a 1-1 correspondence between the plant's inputs and outputs are selected. If 

such alternatives do not exist, then there is no acceptable partitioning using 1-1 blocks 

only. In that case, assignment is not complete and one proceeds with two-dimensional 

BRGs. In case there exists an acceptable 1-1 block partitioning for s=0 but viability 

and/or acceptance are violated at frequencies other than w=0, the study of 

two-dimensional BRGs is again necessary. 

The next step in the process is the study of two-dimensional BRGs. We first study 

only BRG¬ s. The BRG1 s, whose diagonal elements are not close to 1, are screened out 

first. Among the remaining BRG, s, only those with eigenvalues close to 1 are retained 

since these are the BRG1 s that are close to the identity matrix. Since the eigenvalues of 

BRG, and BRG1 are the same, a detailed study of BRG, s is deemed unnecessary, in 

case the eigenvalues of BRG1 are close to 1. If this is not the case, the diagonal 

elements of BRG, s should be calculated from the RGA and their closeness to one 

should be examined as a final screening criteria. 

The diagonal terms of all the two-dimensional BRG s are the elements of the 

column vectors that result from every possible addition of two columns of the RGA. 

Thus if one of these column vectors has p>2 elements within B(1, c, ) this implies that 

there exist only P V2 
p_ 2) il two-dimensional BRG s that should be further 

considered. Among these BRG, s, those with eigenvalues outside B(1, -2) are rejected. 

The remaining BRG¬ s are the two-dimensional viable BRGt s for s=0 and for one of 

the column vectors discussed above. The screening process is repeated for all the 

possible column vectors and for all frequencies other than co =0 and ultimately gives 

all viable two-dimensional BRGe s. 
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Searching for an acceptable partitioning over the sets of both two- and 

one-dimensional viable BRG, s is the next step. If one is found, the procedure 

concludes; otherwise it continues with the study of BRG, s of higher dimension, in the 

same manner, until a solution is achieved. The process is guaranteed to conclude since, 

in the worst case, it will lead to a centralised full control structure that corresponds to an 

n-dimensional BRG. It should be mentioned that E, (w), e2(co) are free parameters 

through which the designer can affect the screening process and establish what an 

acceptable degree of interaction is. 

Having presented the procedure, one can easily understand the advantages of the 

DBRG. Different block partitioning of input and output sets leads to alternative 

decentralised control structures, among which the best are selected by the systematic 

screening procedure that utilises various important properties of BRG. These properties 

effectively reduce the combinatorial problems and make the analysis of large-scale 

systems feasible. 

6.2.7 Gershgorin Analysis 

Multivariable frequency response techniques are some of the most promising 

modem control techniques for analysing interaction and designing controllers. 

Rosenbrock [Rosen., 2] developed and used both the Direct Nyquist Array (DNA) and 

the Inverse Nyquist Array (INA). Since these two techniques are similar, only the INA is 

discussed here. 

To use the INA, the G matrix is arranged so that a diagonal pairing of loops 

results. Next, the inverse of the matrix of process transfer functions, G'' , is calculated as 

a function of frequency. The elements of G-' will be denoted as G,,. A complex plane 

plot of the diagonal elements of G-, G� 
, is made as a function of frequency, w. Next, 

the radii of circles, called Gershgorin bands, are calculated as a function of w as: 

n 

r, _ 
ýIG, 

/I 
1., 
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These radii measure the importance of off-diagonal (interacting) elements relative to the 

diagonal elements. Circles with these radii are then superimposed on the previous 

curves. 

The goal of the INA is to achieve a system that is diagonally dominant. This is 

similar to a decoupled system but less restrictive. We first start with the definition for a 
diagonally row dominant matrix: 

Definition 6.1: A rational kxk matrix Z(s) is said to be diagonally row dominant on 

the contour D if z,, (s) has no pole on D, i=1,2, " " ", k, and 

k for i =1,2, """, k Izu(S)I-2: Iz#(s)I> 0 

J_, and all s on D 
j*i 

Definition 6.2: A rational kxk matrix Z(s) is said to be diagonally column dominant 

on the contour D if z;; (s) has no pole on D, i =1,2, ---, k, and 

(k for i =1,2, """, k IZii`S)I 
- 

IZji(S)J>0 

j_, and all s on D 
j*i 

Diagonal dominance on D is defined as follows: 

either Iz,; (s)l - 
IZu (s)l >0i =1,2, """, k 

:r 
For each s on D 

or l a; r 
(s)l -I 

(zi, (s)l >01,2,... ,k 
i=I 
j*1 

In a diagonally dominant system, the off-diagonal elements of G taken together 

are less important than the diagonal elements. If none of the Gershgorin bands encircles 

the origin, the system is diagonally dominant. Before the analysis can proceed further, it 
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is necessary to make the system dominant. The first step is to try different pairings. 

Next, one can try using combinations of manipulative and/or controlled variables. For 

example, one might try a steady-state decoupler. It is important to note that the INA 

does not require perfect decoupling. The INA only requires that the system be 

diagonally dominant. Once a dominant system is achieved, the rigorous stability 

theorems can be used to design feedback controllers. In essence, once diagonal 

dominance is achieved, one can treat the design of each controller as a single-loop 

problem and this suggests possible pairings on the original system. If a system is not 

dominant, one should be able to try various changes of manipulated and/or controlled 

variables in a simple, straightforward manner. A methodology for using dominance 

ideas in the control structure selection has been recently developed in [McAvoy, 1], 

which may allow alternative systematic procedures. A drawback of this setup is the need 

to achieve dominance before we apply the selection procedure, which may not always 

be feasible. 

6.2.8 Process Instrumentation Matrix (PIM) 

Advanced process design leads to more complicated flowsheets, hence it requires 

an early assessment of process operability & controllability. Many tools can be used for 

selecting control structures and for designing control systems. To visualise these 

structures, the PIM (Process Instrumentation Matrix) table can be used. This constitutes 

one of the main viewpoint in the EPIC (Early Process design Integrated with Control) 

user interface package [Epic, 1]. In its simplest form, it has columns for correcting 

variables (locations for actuators) and rows for candidate controlled, variables 

(associated with sensors), from which the controlled variables have to be selected. The 

cell can display control functions, process and control data, and other information 

pertaining to the relationship. Usually, control power (the static sensitivity of the 

controlled variable to a change in the correcting variable) and control speed (the 

bandwidth concept in servomechanism design, corresponds to the resonance frequency 

of the control loop for a well-tuned PID-controller) are included in a PIM. 

The latter two measures of control quality refer directly to the frequency domain. 

Although this is not a limitation, straight forward computation can be made, that yield 
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graphs of control errors as a function of frequency for the various inputs. 

Transformations to the time domain (by inverse Fourier transform) can be planned., so 

as to find the maximum deviation in case of "hard" constraints. For critical control 

tasks, better performance allows a more favourable compromise between economy and 

reliability of process operation, as the margin between set point and critical constraint 

can be decreased. 

6.3 Interaction Measures 

Modelling uncertainties and constantly changing operating conditions make it 

very difficult to develop reliable dynamic models for chemical processes. Often, only 

steady-state gain information is available. In multi-input-multi-output (MIMO) systems, 

these data may be represented as a matrix of steady-state gains G(0) . Since this matrix 

G(O) is often the only information available on the system, any method, that will allow 

the extraction of useful feedback properties from it, is clearly of great practical 

importance. Very important closed-loop properties can easily be extracted from the 

steady-state gain matrix. Such techniques include closed-loop stability, sensor and 

actuator failure tolerance, feasibility of decentralised control structures and robustness 

with respect to modelling errors. Instead of using matrices, scalar indicators expressing 

the cumulative effect of different performance aspects may be used to express 

interaction properties in selecting the appropriate pairings. Alternatively, pairing may be 

decided on the basis of guaranteeing specific system properties. 

6.3.1 Singular Value Analysis 

Singular Value Decomposition (SVD) is a promising tool in the structural analysis 

of multivariable systems [Lau et al., 2]. The method can provide a powerful and 

computationally efficient tool for analysing matrix systems [Fors., 2] and it is the basis 

for many diagnostics for control system design. 

A systematic approach to the synthesis of regulatory process control structure can 

be formulated. The analysis can be performed over the frequency range that is of 
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practical importance for the particular process, so that both static and dynamic aspects 

can be considered. An additional important feature of the SVD strategy is its ability to 

identify modelling aspects, such as model mismatch, which affect the performance of 

the resulting process control structure. Also, the strategy can show whether or not a 

structural decoupler will be effective in minimising interactions between loops. A 

compensator can be designed for the range of frequencies most likely to affect the 

process. Since we are primarily interested in the control structure, rather than in the 

actual controller design, the analysis is based on the open loop transfer function. The 

approach provides insights into important closed loop system properties: stability 

(Post. et al., 1), sensitivity [Weber & Bros., I], and invertibility [Morari, 3]. 

An option for SVD Analysis was implemented in the CAD Toolbox. It is based on 

the singular values of the open-loop transfer function. The magnitude of the singular 

values measures the sensitivity of MIMO systems in the same manner as the amplitude 

ratio is employed in SISO systems. In order to encompass both static and dynamic 

features, the analysis is carried out over a range of frequencies of practical significance 

for a given process. The theory behind the method is presented in the following lines. 

The application of the SVD to the mxn transfer function matrix G(s) leads to 

the equation 

G(s) = Z(s)A(S)VT(S) 

where 

A(s) = 
[e-(S! 

L: 
0p 

0; 6 m-p 
p n-p 

p= rank G(s) <_ min(m, n) 

and (")T denotes transposition. 0(s) is a diagonal matrix whose entries are the singular 

values of G(s) . This decomposition implies that (m - p) measurements and (n - p) 

manipulated variables can be deleted without altering the input-output accessibility and 

manipulability of the system. However, a preliminary system analysis should include all 

the input and output variables. 
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Suppose 61(s), Q2 (s), """, QP(s) are distinct singular values of G(s), then Z(s) 

and V (S) can be partitioned as Z(s) = 
[zI (s) : z2 (s): """: zp (s): ZP, I 

(s), """, z, (s)] 
, 

V(s) =[v, (s): v2(s): """: vP(s): vP+, (s), """v�(s)] where z, (s) and v, (s) (i =1, """, p) are the 

singular decomposition vectors which correspond to the i-th singular value and z, (s) 

and of (s) (j =p+1, """, n) are the remaining decomposition vectors which correspond 

to the zero singular values. An alternative expression would be to write G(s) as a sum 

of dyads: 

G(s) = 2: c; (s)z (s)vi (s) 
1 
P 

=L Qr (s)W. (s) 
1 

The above equations do not contain ap+1 term because it is multiplied by a zero 

singular value. Thus, a singular value decomposition of the matrix G(s) defines an 

input space spanned by a set of orthonormal basis vectors {v, (s)}P, and a gain space 

defined by the set of singular values {a, (s)}, '. Furthermore, a one-to-one 

correspondence is established between these spaces as it is illustrated in figure (6.3). 

vI o1 zi 
uvz 

2 ý2 

v` 
" 

cr z 

INPUT INPUT SCALING OUTPUT' OUTPUT 
ROTATION ROTATION 

u(jw) y+ijw) Aliw) Z(jwl ytjw) 

Figure (6.3) Geometric interpretation of the SVD. [Lau et al., 2] 
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It is now possible to interpret the transfer function matrix geometrically. An input 

vector in the direction of vT(s) propagates through the input space, is scaled by the gain 

Q; (s), and reappears in the output direction z; (s). 

From the above, it is easy to express G(s) in terms of the singular values: 

P1 
ýaj(s)z(s)vi(S) AS) 

iu(S) 

By expanding y(s) and u(s) in the standard basis vectors {ek }k 1 and {e, }ßi1, where 

the superscripts refer to the vector dimension, we finally obtain: 

y, (S) =Za, (s)2], uj (s)\W (S), Ekf l 

where 
(W (s), E) = (e; 'Tz1(s))(vT(s)e; ). The product (W. (s), Ekg) may be interpreted 

geometrically as a measure of the alignment of the singular decomposition vectors z, (s) 

and v, (s) to the standard basis vectors in the appropriate space, as is illustrated in figure 

(6.4): 

83 
02 f V, 

It 

1 
1! 
1 

GAIN 
e 

V! 

of 
INPUT SPACE OUTPUT SPACE 

Figure (6.4) Pictorial representation of alignments between singular value vectors 
and standard basis vectors for a 3-input X 2-input system. 
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Suppose that for some io and for s= jw 

Kw,, (1 w), EAI)I =1 

This implies that the io dyad is aligned closely with the basis dyad defined by the kth 

output and the . nth input, or alternatively defined the (k,. e)th loop. Since the basis 

vectors {v; (jo))}, and {z; (jw)}1 are orthonormal sets, we have 

( (jw), E, ) 
-0 

`d j# i0 

I(jw), E., j-0 
Pß1, sek 

thus, we can conclude that except when the system is poorly conditioned, the (k, Q)th 

loop interacts minimally with other loops which we may select to control the system. 

Therefore, the (k, t)th loop is called the natural loop of the system. 

The SVD can also be used for directional analysis. This can be formalised by 

starting with the following definition: 

0, = arccosl(W, EJ) 

where 9, 
o 

is the angle between the dyad, W,., and the basis dyad Eke 
. When 0,. is less 

than 15°, over 95% in magnitude of the is dyad comes from the (k,. e)th term and 

consequently the (k,. e)th loop is defined to have good directional property. Also 0, is 

restricted between 0° and 90° by definition. The derivation of the interaction measure 

can be found in [Lau et al., 2]. 
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To obtain a measure of how different the transfer function matrix G is from that 

of a completely decoupled system, the following total interaction measure can be 

used: 

± 
ai Cos' 0, 

B= arccos 
p 

a2 

1 

where the individual angles 0, are defined by B; = arccosl(W,, EE¬)I. 

The physical interpretation of this total interaction measure is the ratio between 

the sums of the squares of the alignment of each dyad with a certain loop, weighted by 

the appropriate squared singular values and the perfect alignment (cos0=1), weighted 
by the squared singular values. It can also be viewed as a geometric average of the 

contributions to the interaction by each node. If the maximum singular value is much 

greater than any other singular value and the corresponding alignment angle 0 is of the 

same order of magnitude as the other alignment angles, then 0-:! -.: 0% 

By using singular value analysis and the angles defined above, many system 

properties can be characterised by plots similar to Bode diagrams (see chapter 8 for 

graphs/results). The singular values and the directional angles can be plotted as 
functions of frequency. The same applies to the condition number and the total 

interaction measure. Note that the condition number can be visualised by taking the 

distance between the maximum and minimum singular value in the first set of plots. The 

two sets are complementary because the former indicates the sensitivity and 

directionality of components in the system, whereas the latter depicts total system 

properties. 
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Singular values of the transfer function matrix may be used to evaluate stability 

margins for multi-input-multi-output (MIMO) systems in the same manner as the 

amplitude ratio is used in single-input/single-output (SISO) systems [Doyle & Stein, 1]. 

[Smith et al., 1] have adapted SVD to the loop selection in a steady-state system. 

However, no measure of interaction or systematic search procedure is considered. 

[Morari, 2] used the SVD to quantify the control performance attainable in a process and 

interpreted implementability and sensitivity of the plant, concepts, which quantify the 

resiliency of the plant, in terms of the norms of the transfer function operator. It is 

interesting that two problems, at opposite ends of the hierarchy in process design and 

control structure synthesis, emerge closely related after the appropriate analysis. In 

addition, the SVD strategy can be used to identify modelling aspects, such as model 

mismatch, which affect the performance of the resulting control structure. 

As a first attempt to design a control configuration, one could choose to 

synthesise a multi-loop control system. This approach is attractive because it is 

relatively easy to implement. However, it is well-known that interactions between loops 

may lead to tuning and stability problems. The key decision in this simple multi-loop 

control is the proper pairing of measured and manipulated variables. In some instance, 

there may exist natural interactions within the system, which should be exploited by the 

proper combination of variables [Foss, 1 ]; [Mor. & Stef., I]. Moreover, the performance 

of the control system should be satisfactory over the frequency band of characteristic 

disturbances. Thus, the strategy to synthesise a control configuration should include a 

frequency domain analysis, particularly emphasising the frequency spectrum of 

disturbances, which affect the system. Since we are primarily interested in the control 

structure, rather than in the actual controller design, the analysis is based on the open 

loop transfer function. The singular value analysis provides a variety of indicators for 

selection of control structures, but it is far from being a complete methodology. 
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6.3.2 Robustness and the Relative Gain Array 

Controllers are designed on the basis of inaccurate models and must be tuned 

such that stability is preserved, even when the system changes due to changes in 

operating conditions, for example. The ability of a closed-loop system to remain stable 

in the presence of model/plant mismatch is referred to as robustness. Though apparently 

the RGA cannot be used as a tool to determine when a closed-loop system will become 

unstable if the plant and model do not agree, it might provide some information on 

when a system is particularly "sensitive"; "ill conditioned" matrices display this 

sensitivity. 

The search for a relationship between the condition number and the RGA of a 

process transfer matrix is spurred by the following observations. (1) The condition 

number is rigorously related to system sensitivity and robustness but is scale dependent. 

(2) A relationship between the RGA and sensitivity has only been demonstrated 

empirically, but the RGA has the advantage of being scale independent. (3) The 

elements of the RGA and the condition number display a striking mathematical 

resemblance. Indeed, the condition number can be related to the RGA (Grosdidier & 

Moran, 1985). This shows that the RGA is itself a measure of error sensitivity, a result 

which has been argued for in the past [Bristol, 1]; [Shinskey, 3]; [McAvoy, 1]. A 

difficulty, in attempting to link the RGA to the condition number, is the fact that, 

whereas the RGA is scale independent, the condition number is not. The latter is 

therefore a function of the units of the transfer matrix G. This problem can be 

circumvented by scaling the transfer matrix G with diagonal matrices, in such a way 

that a minimum or "optimal" condition number is obtained. Optimal scaling simply 

ensures that the least conservative value of the condition number is obtained and it 

should not be given a physical interpretation. 
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6.4 Control Structure and System Properties 

6.4.1 Integral Controllers and Integral Stabilizability. 

The term integral controller is used to designate PI and PID controllers or any 

multivariable feedback controller, which includes integral action. All such controllers 

can be decomposed into a matrix of integrators 
k 

*I and a compensator matrix C(s). 
S 

Such controllers are widely used, due to their ability to guarantee zero error for step 

tracking and disturbance rejection. 
Conditionally stable systems are clearly undesirable from a practical point of 

view. Not only is it difficult to determine the range of gains for which the closed loop 

system is stable, but this range is likely to change with evolving process operating 

conditions. The concepts of integral controllability and fault tolerance are based on this 

idea [Moran, 6]. An open-loop stable system H(s) is called integral controllable, if there 

exists a k' >0 such that the closed-loop system is stable for all values of k satisfying 

0<k< k' and has zero tracking error, for asymptotically constant disturbances. 

In this definition, the emphasis is placed on the existence of a range of positive 

gains starting from zero rather than any exact value. A practical consequence of this 

definition is that integral controllable systems can be tuned on-line, starting with a very 

low gain for which stability is guaranteed, and then increasing the gain, until acceptable 

performance is achieved. 

Integral controllable systems are very desirable in practice. The control loops can 

be tuned starting from very small gains, and unstable closed-loop systems can easily be 

stabilised by decreasing the gain. On the other hand, for systems which are only integral 

stabilizable, increasing the gain might be necessary for stability and stability might only 

be maintained for a narrow range of gains. Using the newly introduced idea of integral 

controllability, it is also possible to strengthen the concept of failure sensitivity. The 

behaviour of such schemes under failure conditions is an important indicator, in 

deciding the nature of control structure. 
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The concepts of sensor and actuator failure designate actual hardware failure, as 

well as the saturation of a manipulated variable. Both sensor and actuator failure can 

have adverse consequences on a control system. The failure of a sensor, for example, 

means that an erratic electrical signal is sent to the controller. When this happens the 

integral controller will take action, with the aim of eliminating the offset between the 

received signal and the setpoint. Because the action of the controller is based on an 

erroneous input signal, it may be totally inappropriate for the system and ultimately lead 

to instabilities. Actuator failure, on the other hand, brings an end to all control action - 

an equally dangerous situation. 

The control problems, created by the failure of a sensor or an actuator can be 

remedied by placing the controller in the failure loop in the off-line mode. In such a 

situation, it is desirable that without readjustments to the other parts of the control 

system, system stability be preserved. 

A system is j-sensor failure sensitive (j-SFS) [Morari, 6], if the complete system 

is integral stabilizable but the reduced system, with the jth sensor removed (kj = 0), is 

not. To make this definition meaningful, we assume that the failure has been recognised 

and that the loop, with the faulty sensor, has been taken out of service; i. e., kj has been 

set to zero. The practical implications of this definition are straightforward. If the 

complete system is integral stabilizable, there exists a k>0, such that the closed loop 

system is stable. If the system isj-SFS, then the system will become unstable as soon as 

thejth sensor is removed (kj = 0), regardless of controller tuning, i. e. regardless of how 

k> 0 was chosen. More care has to be used in the definition of actuator failure 

sensitivity. If only (n-1) actuators are operating, only (n-1) variables can be controlled in 

an offset-free manner. Thus, any actuator failure requires that one controlled variable be 

left uncontrolled. The selection of control structure affects the above property, but it is 

not yet clear how to systematically explore it, without going through all possible 

alternatives. 

6.4.2 Decentralised Integral Controllability 

If it is desirable to select a control structure, so that separate controllers can be 

de-tuned or taken out of service, while maintaining the stability of the overall system, 
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then the system has the property of Decentralised Integral Controllability (DIC). This 

topic was considered by [Mor. & Zaf., 1] and subsequently by [Nwok. et al., 1], who 

have given some useful tests for Decentralised Integral Controllability. 

Such tests are based on properties of G(O) and, in particular, the positivity of such 

elements, as well as the existence of a diagonal controller of the form K(s)D*s-' with 

integral action satisfying k, (0) > 0, d, * > 0, i=1,2, ..., n such that: 

1. the zeros of det (I+G(s)K(s)D*s ') =0 are in the left half of the complex plane; 

2. these same zeros continue to remain in the left half plane, for all real positive 

diagonal, D= diag(d,, d2, """, d�) satisfying 0: d, s d, * . 

The assumption, that the diagonal elements of G(O) are all positive, does not 

restrict the generality of the test, because it is possible to multiply each column with +1 

or -1, so that all diagonal elements become positive. 

The overall philosophy in the study of this problem is to derive necessary 

conditions and if possible, also some sufficient conditions based on the steady state 

value G(O) of the open loop transfer function, as well as relative error matrix and 

relative gain array, such that for the scheme of fig. (6.5) there exists a diagonal controller 

K(s) which satisfies the condition of Decentralised Integral Controllability. 

r 

Figure (6.5) 
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6.4.3 Selection of Control Structure for Load Disturbance Attenuation. 

Many researchers have concentrated on choosing the structure, such that 

interaction among the control loops is minimised. The use of decouplers assumes 

coupling is undesirable. The much-used Relative Gain Array (RGA) method and the 

Inverse Nyquist Array (INA) method are based on the assumption that control loop 

interaction is bad. This may be true in systems, where set-point changes are the principal 

disturbance. But set-point disturbances are usually much less frequent in chemical 

process control, than load disturbances. Most industrial applications require a control 

system that can hold the process at desired values of performance (composition, yield, 

etc. ) in the face of load disturbances, such as variations in feed composition and 

throughput. In fact, as [Nied., 2] pointed out over two decades ago, designing control 

systems, such that they are noninteracting, can degrade the performance of the system in 

rejecting load disturbances. 

Each process has an intrinsically self-regulating control structure, which makes 

the system as insensitive as possible to load disturbances and is self-optimizing. An 

alternative control system design philosophy has been proposed, that contain as its first 

step the use of the notion of eigenstructure, which deals with control structure selection, 

based on load disturbance rejection properties, rather than noninteraction. Several 

researchers have dealt with this problem, such as [Buckley, 1], dealing with this overall 

plant control strategy, [Luyben, 2] examining the impact of steady-state energy 

consumption on control system structure, [Douglas, 1], [Fisher et al., 2], dealing with 

steady-state plant-wide control issues, [Stanley et al., 1] considering the Relative 

Disturbance Gain, [Tyreus, 1], with his integration of steady-state optimization into the 

regulatory control structure; [Georgk., 1], with his reaction rate or extensive variable 

control. 

[Buckley, 1] approached the problem of plant-wide control by splitting the 

problem horizontally, i. e., considering the slow material-balance control structure of the 

entire plant, first, and then, later, establishing the faster composition control structure of 

each individual unit. This two-level approach is in contrast to the vertical splitting of the 

plant-wide control problem, that most academics attempt to employ, i. e., slicing the 

plant up into many little sub-units in series. Buckley's material-balance control structure 
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(slow liquid level and gas pressure loops) produced a plant, that intrinsically handled 

disturbances well. The effects of load changes were attenuated, as they worked their 

way through the process. This slow material-balance control is a component of what it is 

referred to as eigenstructure. 

[Luyben, 2] pointed out that the optimum control structure, that minimised energy 

consumption in distillation columns, required controlling product compositions at both 

ends of the column (dual composition control). However, he suggested that a more 

simple, single-end control structure, that used very little additional energy, could often 

be found. Steady-state rating programs were used to calculate how the manipulated 

variables (vapour boil-up reflux, and reflux ratio) had to change at steady state as feed 

composition changed, over the expected range of variability, to keep product 

compositions constant at their specified values. If one of these manipulated variables 

was found to vary only slightly, a simple control structure was recommended to hold 

this variable constant at its maximum value and manipulate the other variable to control 

the composition of only one product. Feed rate disturbances could be effectively 

handled by ratio schemes in a feed-forward sense. This is one of the first examples of 

finding an eigenstructure that yields a self-optimizing and more stable control system. 

This same basic notion was extended to an entire chemical plant by Douglas. The paper 

by [Fisher et al., 2] proposed the use of steady-state rating programs to find the 

optimum operating conditions of the overall plant for different disturbances. Then 

simple relationships were found between controlled and manipulated variables, such 

that the system was inherently held at or near the optimum point. 

Load disturbances are considered in the search for an eigenstructure. [Tyreus, 1] 

has recently proposed a design procedure that combines the concepts of Buckley, 

Douglas, and Luyben. [Georgk., 1] has proposed the control of calculated "extensive" 

variables, such as reaction rate, total energy content, or total light component content, 

instead of the traditional intensive variables (temperature, pressure, etc. ). Manipulated 

variables can also be chosen to be sums, differences, or ratios of flow rates. The 

resulting eigenstructure handles disturbances more effectively. 
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6.4.4 Nyquist arrays and Gershgorin Bands - Diagonal Dominance. 

The Nyquist array of G(s) is an array of graphs, the (i, j)t graph being the Nyquist 

locus of ge(s). The inverse Nyquist array (defined only when G(jw)is square) is the 

array of graphs of Nyquist loci of the elements of G-' (s) 
. 

If the Gershgorin bands of G(s) exclude the origin, then G(s) is said to be 

diagonally dominant (row dominant or column dominant, if applicable). Note that for 

stability [I +G(s)] must be diagonally dominant. 

The greater the degree of dominance (of G(s) or of I+ G(s)) - that is, the 

narrower the Gershgorin bands - the more closely does G(s) resemble m 

non-interacting SISO transfer functions. 

These Nyquist-array-based tests check sufficient, but not necessary, conditions 

for stability (or instability). If any Gershgorin band does overlap the point -1, in other 

words if I+ G(or I +G-') is not diagonally dominant, then we cannot infer whether the 

system is stable or not. But suppose that we replace G by 

G= XGX'' 

This is a similarity transformation, so the characteristic loci of d must be the same as 

those of G, and hence we can check stability by displaying Gershgorin bands of d 

(or d-1) just as well as we can with those of G. Physically, the last equation 

corresponds to inserting a system X at the output of G, and X'' at the input of G, as 

shown in the following figure: 
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Figure(6.6): Feedback loop containing the system defined by system equation. 

The point of doing this is that a may be diagonally dominant, even if G is not, for 

some choices of X X. 

A method for finding a suitable X [Mees, 1], is the following: For any matrix 

M with elements m,, j, we define 

abs M= [Im;, I] 

that is, the elements of abs M are Im1 
jI . Such a matrix is called positive. If M is 

square, let the eigenvalues of abs M be {2, 
I A2,..., A,, }, and let them be ordered so that 

lall > 1221 Z""". M is called primitive if (abs M)' has positive entries only for some 

integer r. For primitive positive matrices A is real and A, > I2; I for i#1; A, is called 

the Perron-Frobenius eigenvalue of M, and we shall denote it by 2(M). The 

corresponding left and right eigenvectors of abs M are called the Perron-Frobenius 

eigenvectors of M (and are also real and positive). 

Now, let 

Mdag = diag{rrthI, m22,... Imnm} 

[Mees, I] proves the following theorem: 

Theorem (6.11: If G is square and primitive, then there exists a diagonal matrix X 

such that 
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G=XGX-' 

is diagonally dominant, if and only if 

2p(GGdog)<2 

If the last condition is satisfied, and the Perron-Frobenious left eigenvector of GGdag is 

(x1, x2,..., x,, )T 
, then an X which achieves diagonal dominance is 

X= diag{xl, x.,..., x�} 

Note that the X found by this theorem can be interpreted as a scaling of the outputs of 

G, and X"' as a scaling of the inputs of G, since X is diagonal and real. A different 

X is required at each frequency, of course; this is no problem if we are using X only 

for analysis, since X does not correspond to a system that has to be built. This theory 

can also be used for design, and in that case, we shall have to build systems whose gain 

behaviour approximates that of X as frequency varies. 

The Perron-Frobenious theory allows us to check whether a plant can be made 

diagonally dominant by input and output scaling. This can clearly be applied to design, 

but with a proviso: in general, we must be careful about using output scaling as part of 

the strategy for achieving diagonal dominance. On the face of it, output scaling 

corresponds to inserting a post-compensator (that is, inserting a compensator between 

the outputs and the variables being controlled). This is physically impossible, since the 

meaningful plant outputs (which are variables such as velocity, or thickness of steel 

strip) cannot be affected by mathematical operations. It is certainly possible to change 

the scaling of the measurements of the output variables, however, by placing the 

post-compensator in the feedback path. 

One can use the scalings S-1, at the plant input, and S, in the feedback path, to 

obtain a diagonally dominant return ratio. But we must be wary of falling into the trap 
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of believing that this return ratio tells us anything about interaction at the plant output. 

The output variables may be interacting with each other to a considerable extend, and 

this interaction may be being hidden by the measurement scaling S. Thus the choice of 

measurement scaling is really part of the specification of the feedback design problem, 

and changing this scaling is not usually admissible as a step in a design technique. The 

output scaling is, in effect, built into the definition of the plant. If the specification is 

rather loose, however (for example, that closed-loop stability and good long-term 

following of set points are to be achieved, with no specification on interaction), then 

output scaling may be considered. Fortunately, the Perron-Frobenius theory gives useful 

results, even if only pre-compensation (input scaling) is allowed. 

6.4.5 Structural Diagnostics 

The selection of control structure is an important problem within the area of 

integrated systems and control design [Karc., 3] that has not taken much attention in the 

mainstream control literature so far. This problem involves two important subproblems: 

the first deals with the selection of input output structure of the system model and the 

second with the structuring of the control scheme, i. e. deciding on centralisation versus 

decentralisation and if decentralised solutions are sought, then defining the nature of 

decentralisation. The study of pole assignability under decentralised control schemes 

provides criteria that link the control structure selection to the underlying invariant 

system structure. In fact, the Markov matrix arising as the representation of the 

differential of the pole placement map, characterises both pole assignability as well as 

absence of fixed modes for the system. As for different decentralisation schemes, we get 

different submatrices of the same full Markov Matrix, we have thus, the means for a 

simple evaluation of the alternative decentralisation schemes by choosing that scheme 

corresponding to the best conditioned submatrix. This selection can be based on criteria 

that guarantee avoidance of fixed modes and well conditioning for arbitrary pole 

assignability. 

[Lev. & Karc., 1] present a method that extends the results previously derived for 

the properties of the centralised pole placement map under complex and real output 

feedback [Lev. & Karc., 3] to the case of decentralised constant output feedback and 
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investigate some general properties related to measuring the size of the set of 

polynomials for a given system that can be assigned. Instrumental in the above study is 

the differential of the decentralised pole placement map (DPPM), which provides a 

measure of the size of the set at a generic decentralised feedback KdeC. The differential 

of DPPM is computed and this provides a link with the decentralised Plucker matrix of 

the problem [Karc., et al., 1] and a set of state space based parameters which incorporate 

the decentralisation structure and are referred to as decentralised Markov Parameters 

(DMP). In fact, it is shown that the matrix formed by the DMPs is a submatrix in the 

decentralised Plucker matrix. By ensuring that, the matrix formed by the DMPs and 

referred to as the decentralised Markov Parameter Matrix (DMPM), has full rank n (n is 

the number of states), we ensure the absence of fixed modes, as well as the good 

conditioning for the Plucker matrix to have full rank; the latter property guarantees that 

we also avoid the formation of almost fixed modes and satisfy the necessary condition 

for complete assignment by decentralised output feedback [Karc., et al., 11. The link of 

DMPM to the decentralised Plucker matrix enables the tackling of two important 

problems: 

(i) The screening of all possible decentralisation alternatives and 

(ii) The introduction of a natural set up for design, redesign of C, B matrices to 

guarantee certain important properties for the system. 

In fact, the computation of DMPMs for the different decentralisation schemes is 

straightforward, avoids exterior algebra computations and requires only knowledge of 

the system Markov Parameters. The link of Markov parameters to the Plucker matrices 

provides a mechanism for affecting the shaping of the properties of Plucker matrices by 

intervening appropriately in the shaping of the properties of the Markov parameters. The 

results which were originally presented for the decentralised constant output feedback 

were then extended to the case of decentralised PI compensation. 
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The pole placement map under the decentralisation assumption [Lev. & Karc., 3] 

The centralised pole placement map assigns, to every feedback compensator, the 

closed loop poles or coefficient vector of the closed loop polynomial (modulo scaling) 

or any other quantity corresponding uniquely to the close loop poles. Therefore, the 

centralised pole placement map (excluding infinite poles) X` is a map of the form 

X`: F"P -+ F". A central role in the study of assignability properties of a system, as 

well as the determination of fixed modes plays the differential of the pole placement 

map. This can be calculated by first rewriting the closed loop polynomial as: 

p(s) = det(D(s)(I+ KG(s))) (6.25) 

and then expanding the above as: 

p(s) =f (s) I+1: (- 1)'+j keg f 
(s) + higher order terms (6.25) 

or equivalently: 

p(s) = f(s)+E(-1)"jku ff; (s)+h. o. t (6.26) 

where f (s) = det D(s). The highest order coefficient of p(s) is equal to: 

p� =1+ (-1)'+' kiifji� + h. o. t =1+k' "f+h. o. t (6.27) 
ij 

where f1; (s) =f (s)gg; (s) 
, gj; (s) are the elements of G(s) and f,,, is the n-th order 

coefficient of f f; 
(s) (Coefficient of s"). This analysis leads to: 
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Proposition (6.1): The differential of X° at K=O is equal to 

D\n c/K60 
_£- 

fn (6.28) 

where 2, is the coefficient matrix of the polynomial vector {f.; (s)} 
, fT is the 

_n 

coefficient vector of s" of { f'; (s)} and f is the coefficient vector of f (s) 
. 

A state-space representation of this differential is given by: 

Proposition (6.2): A matrix representation of (Dx, )K_o, denoted by R(X')K, with 

respect to the basis (-1)'+' -- of T(F"'") (a ES2), is anx mp matrix given by: 

r QT [COICB, coICAB,..., coICA"-'B] (6.29) 

where `col' maps an mxp matrix to the mp x1 matrix formed by superimposing its 

columns, and Q is given by: 

A ... f 
01 fn-2 

(6.30) 
0 

00... 1 

where the f 's are the coefficients of the open loop pole polynomial f (s) 
. 

The above analysis for the centralised case has been extended in [Lev. & Karc., 2] 

to the decentralised case and this in turn provides systematic procedures for screening 

alternative decentralisation structures. 

0 
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Any structured pole placement map XJ with characteristic Xs can be viewed as a 

restriction of the centralised pole placement map X' on FIn'I and can be factored as 

F"'XP Xf ) F" X3: Fl"" --L-> (6.31) 

where E is the natural injection of the set of structured gains into the set of all gains. 

Therefore, the differential XS at K is given by: 

D(XS)K = D(X" )E(K) 
o D(E)K (6.31) 

The differential D(E)K has a very simple structure induced by the natural injection 

F"11-* FnIX", i. e. 

D(E)K J: x. e0 E x. ee, + Zoe. 
wen, w id), 

(6.32) 

where {ej,., 
ý 

are the bases for the tangent spaces TK (F"n"l) 
c TE(K)Fmxp 

respectively. In other words, D(XS)K can be represented as a submatrix of the 

representation of D(X`)E(K) formed by those columns corresponding to to e O, . The 

above analysis may be summarised as follows: 

Theorem (6.2): A representation of the differential at K=0 of the structured pole 

placement map X3 corresponding to Sts is given by: 

T QT col CB, coICÄB, """, col CÄ"-' B] (6.33) 

where co1CÄ'B denotes the reduced column obtained from co1CA'B after eliminating 

all the entries that do not correspond to the set of indices SZs. 
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Remark (6.1): The Markov parameter corresponding to constant term D, does not 

enter the definition of the Markov matrix and thus does not affect its properties. 

Corollary (6.1): The rank of the differential of the pole placement map D(X`) 
Ki0 

is 

equal to: 

rank{col B, co1CÄB, " " ", co1C ' B] (6.34) 

The matrix Md = 
{coIB, co1CÄB, " " ", colCÄ"-'B] = [m,; i; """; m"] is referred to as 

Structured or Decentralised Markov Matrix. The rank of the structured (decentralised) 

Markov matrix may be used as an estimate of the size of the set of assignable 

polynomials via static (structured) decentralised output feedback. The definition of the 

Decentralised Markov Parameters can provide alternative simple tests for avoiding 

fixed modes and for satisfying the linear assignment condition for decentralised constant 

output feedback. The simple method for constructing the DMP from the centralised and 

the structure of the decentralised feedback suggests that the screening of all possible 

decentralisation schemes may be achieved in a very efficient way from the set of 

standard Markov parameters. Thus, the alternative exterior algebra tests, based on the 

rank of the Decentralised Plucker matrix may be avoided in the first instance. The 

Decentralised Plucker matrix requires exterior algebra computations that can be carried 

out with the use of the corresponding toolbox [Mitr. & Karc., 1] and its full rank 

provides a necessary and sufficient condition for avoiding the presence of fixed modes; 

this matrix can be used for further testing fixed modes, if all DMPs are rank deficient. 

The testing for fixed modes depends on the decentralisation structure of the 

compensator and it is independent of its dynamics; however the rank of the 

corresponding dynamic decentralised Plucker matrix is a function of the compensator 

dynamics. The main steps of the procedure are summarised below: 

(1) Define the physical decentralisation set and from this all feasible sets. 

(2) Starting from the set of Markov parameters [D, CB, CAB, """, CA"-'B] form 

the Markov matrix: M= [colCB, colCAB, """, CA"-'B]. 
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(3) Calculate the matrix: M, = MQ[e" (s, ), """, e" (sk )] where e" (s) = [s", 
""", 1]' and 

s1, """, s, F are the unstable eigenvalues of A. 

(4) Calculate the minimum column norm of the submatrices of M, 

corresponding to all feasible sets whose cardinality is equal to n. The column 

norms indicate how far from zero these are and as each column correspond to 

an unstable pole, these norms provide a measure for the absence of fixed 

modes [Karc. et al, 1]. For every submatrix, the minimum of the norms of its 

columns corresponds to that unstable pole who is closer to being fixed. 

Taking the maximum of these minimum numbers over all selections will 

provide us with that selection which is the "least worse", as far as the 

existence of a fixed unstable pole is concerned. 

The procedure for selection of decentralisation, based on Markov parameters uses 

the numerical values of the model parameters. Generic solvability conditions such as 

those developed in [Lev. & Karc., 1] may be used to provide a first listing of possible 

decentralisation schemes; such a combination of results may limit the large number of 

possible combinations to be tested. An additional advantage of the Markov Parameter 

framework, centralised, or decentralised, is that due to its direct link to the state space 

description, it provides the means for modifying the selection of the B, or C, matrices, 

such that the centralised or decentralised Markov matrix has full rank and thus achieve 

the very important linear assignment property which excludes the presence of fixed and 

almost fixed modes and preconditions well the system to accept a certain type of control 

solution. The current results establish a framework and provide the tools for affecting 

the shaping of properties of centralised, or decentralised Plucker matrices at early design 

stages. 
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6.5. GRAPH TYPE METHODOLOGIES 

6.5.1 Graphs and Process Flowsheets 

Process systems are composite structures made from different types of units and 

connected in a certain way, usually referred to as process flowsheet. According to the 

degree of modelling, the composite structure takes different forms, but the general 

interconnection rule evolves within this new set-up. Graph methodologies describe the 

main features of this evolving composite structure and play a significant role in 

determining properties of decomposition and control structure selection. In this section, 

we review the methodologies of the graph type, as these have appeared in the process 

literature. 

Synthesis of configuration, using the static input-output characteristics of the 

process, has been explored by [Bristol, 1] and [Weber & Bros., 11, the latter including 

also the effects of measurement errors. However, an approach that does not include the 

effects of process dynamics is not sufficient for synthesising process control systems. 

[Nied. 1] proposed that control links could be selected from a multivariable 

generalisation of the simple loop gain-bandwidth criterion. [Gov. & Pow., 4], have 

addressed a basic problem of converting a steady-state process flowsheet into a piping 

and instrument diagram. A flowsheet defines the equipment in the process and the 

streams which interconnect them. Also, the control objectives must be stated for the 

process. A large variety of methods have emerged, which are based on the concept of 

graphs and they are examined here. 

The "graph theoretic approach" is an attempt to model a large scale system by a 

suitably chosen graph representation. Based on this representation, important properties 

such as decomposability, structural controllability, and observability can be checked. 

The problems of pole placement, disturbance rejection, and decoupling by static state 

feedback can be investigated from the graph theoretic point of view. The graph 

approach is based on a mapping of state space equations into a directed graph, 

represented as Boolean matrices in the computer. Many authors have presented various 

methods related to control structure synthesis. Some of them are being dealt within the 
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following paragraphs, with the main points of their respective methodologies in 

perspective. 

6.5.2. Piping and Instrumentation Diagrams 

[Gov. & Pow., 4], have proposed a systematic procedure to generate alternative 

control structures, based on the cause-and-effect representation of a process. The final 

product is a set of control schemes from which the final system may be selected or 

evolved. The work is significant in that it is the first attempt to apply non-numerical 

problem-solving techniques to the problem of synthesising process control structures. 

The approach is based on three main ideas: 

1. The models used in the synthesis of control systems, must be simple. 

2. The propagation of control constraints through the process flow diagram will 

generate the candidate control structures. 

3. Evaluation of alternate control structures will depend primarily on: (a) the feasibility 

and simplicity of measuring and manipulating candidate control structure variables; 

and (b) the steady-state interactions which occur between control substructures 

within the process. Detailed dynamic performance needs to be considered only when 

the alternate control structures have strong dynamic interactions or the dynamic 

achievements of the control objective are questionable. 

Hence, this approach has a strong component of steady-state control [Buckley, I]; 

[Shinskey, 1], integrated with dynamic considerations, when it is indicated. The 

alternate structures are evaluated using heuristics derived from both theoretical and 

practical considerations. The final product is a set of control schemes (say 5 to 10) from 

which the final system may be selected or evolved. The control objectives must be 

stated for the process. The safety parameters, operational constraints, production 

specifications, and environmental regulations can be specified relatively easily. 

However, the variables that govern the economic performance are not so easily specified 

as control objectives. In fact, the statement of the economic objectives is tantamount to 

writing the objective function (both steady-state and dynamic) for the complete system. 
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These control objectives place constraints on the variables within the process. If 

properly stated, objectives can be the starting points for the synthesis of control 

structures. The control objective is firstly translated into the process variables that might 

be controlled. In cases where the control objective directly translates into variables 

which can be sensed, the problem is to find the appropriate set of variables, which must 

be sensed or manipulated. In other cases where it may not be feasible or economical to 

measure the control objective variable, secondary variables related to the objective 

variables have to be measured. The important point is to know the structural and 

dynamic relationships between the control objective and the secondary variables. The 

sensed variable selection algorithm generates ways in which the constraint variable can 

be computed or estimated from other process variable measurements. This results in a 

set of derived constraints, each of which have to be satisfied in order to satisfy the 

primary constraint. Algorithms for the synthesis of feedback, feedforward and cascade 

control structures are then executed for the derived constraint to obtain structures for 

controlling the primary constraint. Finally, an evaluation function is used to screen the 

possibilities to obtain a small set of potential control structures for the process. 

Graph Modelling 

The chemical process is represented by a directed graph called the Process 

Flowsheet Graph (PFG). The Process Flowsheet Graph represents the material flow in 

the process, wherein the nodes designate the stream flow-rates and the directed edges, 

the units in the process. A directed edge exists from node i to node j, if material flows 

from the stream represented by node i to the stream designated by node j. Figure 6.7 

illustrates a simple liquid-liquid heat exchange process, and its process flowsheet graph 

is shown in Figure 6.8. 

The structure of the Process Flowsheet Graph (PFG) directly reflects the 

structure of the process. A recycle loop in the process is represented by a feedback loop 

in the PFG and a bypass, in the process, results in a feedforward loop in the graph. 

The unit operations in the chemical process are represented at two levels: 1. 

equation level, and 2. cause-and-effect level. At the equation level, each unit operation 

is represented by its transfer function, that relates each output variable to the input 
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variables. The transfer function, which is in the Laplace domain, designates the 

steady-state gain and dynamics, associated with the cause-and-effects between the input 

and output variables. In general, a unit operator can be represented by the following 

algebraic equations: 

0" 
0, (s)= G, (s)jl(s) iEn 

l=1 

where 

O; (s) = ith output variable in the Laplace domain, 

Gy(s) = transfer function between the input variable Jj(s) and output variable Ol(s), 

Ij(s) = jth input variable in the Laplace domain, 

m= number of input variables, 

n= number of output variables. 

The structure of the equations is represented by a table called the "structural 

array" (Rudd & Watson, 1]. The columns in the array correspond to all the variables and 

the rows correspond to all the equations. An X is placed whenever a variable appears in 

an equation. The direction of the edges in the cause-and-effect graph indicates the 

causality of the process and are derived from the process transfer function equations. 

Heuristically, the notion of causality is intended as the property that the present value of 

the output (effect) of a physical system is not affected by future values of the input 

(cause). Based on this notion, the input variables on the right hand side of a dynamic 

equation in the Laplace domain affect the output variable on the left-hand side. 
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Figure 6.6. Algorithm to transform a steady-state flowsheet into a piping & instrument diagram [Gov. & 

Pow., 4]. 
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Figure 6.7. Heat exchanger process [Gov. & Pow., 4]. 

Figure 6.8. Process flowsheet graph [Gov. & Pow., 4]. 

The cause-and-effect graph is derived directly from the process dynamic 

equations in the Laplace domain. The direction of the edges, corresponding to 

steady-state equations, are drawn from a physical understanding of the unit operations. 

It is important to note that a cause-and-effect graph is different from a signal now graph, 

since an edge on the signal flow graph does not represent causality. It simply indicates 

that the output variable can be computed from the input variables. The cause-and-effect 

graph allows easy detection of variable interactions that would normally be difficult to 

derive from the process equations. The structure of the graph also has a very important 

bearing on the controllability and stability of the system [Lin, 1]; [Gov. & Pow., 2]. An 

edge on the cause-and-effect graph is associated with a transfer function that relates the 

output variable to the input variable. This transfer function gives the steady-state gain, 
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time constants and dead time associated with the cause-and-effect. These parameters can 

also be identified experimentally, if the process already exists. Simple methods for 

defining the effective lag and time constants of the process have been presented in the 

literature [Gilib. and Lees, 1]. 

Given the steady-state flowsheet for a process, it is possible to combine the 

structural arrays for individual units in the process to obtain the system array for the 

complete process. The cause-and-effect graph for the individual units in the process are 

also interconnected to obtain the system cause-and-effect graph for the process. This 

system graph gives all known interactions between the process variables. The system 

array and the system cause-and-effect graph represent different aspects of the process 

and can be used in the synthesis of process control systems. Following the generation of 

the system array and cause-and-effect graph, the control objectives may be specified. 

These objectives define the variables that need to be maintained within a certain error 

bound around the steady-state value. 

The problem of sensed variable selection involves (1) finding the correct 

variables to measure; and (2) measuring or calculating a true representation of the 

variable. The sensed variable possibilities are expressed by the Sensed Variable Tree 

consisting of AND-OR gates. A set of variables are ANDed with respect to a constraint 

variable on the tree if all the variables have to be measured in order to obtain the value 

of the constraint variable. If a single variable alone is sufficient to obtain the constraint, 

then the variable is ORed on the Sensed Variable Tree. The sensed variable possibilities 

vary in their degree of inference. No variable is ever directly measured. There is always 

an inference mode. 

In addition to the degree of inference, the measurement of the constraint variable 

is limited by several factors that affect the overall accuracy. These factors are: 

(a) Transducer characteristics - nonlinearity, irreproducibility, hysteresis, deadband 

response time, environmental effects, 

(b) Installation characteristics - physical location of the sensor and noise. 

The overall accuracy of the measurement is considered with respect to its cost, 

i. e., cost of the sensor. If the cost to attain a desired accuracy is high, other sensed 

variable possibilities may have to be considered. Inferential measurements are only used 

in instances when a "direct" measurement is not available or prohibitively expensive. 
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An important aspect of control system design - synthesis of the control structure is 

addressed. Process cause-and-effects are assumed to be deterministic and in order for 

control to exist, there must be a causal path between the controlling and the controlled 

variables. The synthesis problem is subdivided into three sub-tasks: 

1. Find possible ways of measuring the process constraint variable 
2. Find possible ways of manipulating the constraint variable 

3. Combine solutions of subtasks I and 2 to generate feedback, feedforward, and 

cascade control structures. 

6.5.3 Structural Design - Decomposition of Process Subsystems 

Synthesis of control structures, based on aspects of structural controllability and 

observability to yield a controllable and observable system, have been presented [Mor. 

& Steph., 1]. The structural design of alternative regulatory control schemes has also 

been dealt with. Within the framework of hierarchical control, criteria are developed for 

the further decomposition of the process subsystems, reducing the combinatorial 

problem, while not eliminating feasible control structures. Structural models are used to 

describe the interactions among the units of a plant and the physicochemical phenomena 

occurring in the various units. The relevance of controllability and observability in the 

synthesis of control structures is discussed, and modified versions are used to develop 

all the alternative feasible regulatory structures in an algorithmic fashion. During the 

structure of controllers, the following problems are addressed: 

1. Development of a suitable type of system representation (model), requiring a 

minimal amount of information. 

2. Formulation of mathematical criteria to be satisfied by every feasible control 

structure. 

3. Development of guidelines for decomposing problem into manageable subproblems. 

4. Algorithmic procedure to develop alternative control structures. 
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An approach can be based on the structural characteristics describing (a) the 

interactions among the units of a chemical process and (b) the logical dependence (of 

the Boolean type) among the variables used to model the dynamic behaviour of the 

various units. Thus, detailed dynamic modelling at an early stage is avoided. The 

mathematical feasibility criteria for the generated alternative control structures are based 

on the concepts of controllability and observability. Systems are represented as 

structured matrices and extended versions of the conditions for structural controllability 

and observability can be used as feasibility criteria. Mainly feedback control structures 

are addressed, and feedforward compensation is developed as a logical extension. This 

way, a theory-based method for developing alternative control structures - excluding the 

possibility of singularities, overspecifications and undetectable local instabilities is 

accomplished. Engineering heuristic criteria can enter at any stage of the synthesis 

procedure. Also, the discontinuity between the employed, completely heuristic, 

structuring procedures and the available sophisticated, detailed design techniques for 

multivariable control loops, is reduced. 

As a first step, the variables that have to be measured and controlled to guarantee 

smooth plant operation, have to be determined. Before the actual control algorithms can 

be designed, the alternative sets of manipulated variables, which can be used in a 

feedback arrangement, must be developed. Establishing suitable process models offers 

great difficulties. The underlying philosophy is to make initial decisions based on a 

crude model and refine the model appropriately after each design step. The use of a 

simple model at the start can be adopted. The most primitive model for control purposes 

is one which displays the structural dependencies of the variables only, showing if the 

time derivative of one variable depends on another or not. The most efficient way to 

determine feasible sets of measured and manipulated variables, and to keep the model as 

simple as possible, is to use criteria of structural controllability and observability 

[Lin, 1]. These properties, however, are neither necessary nor sufficient for a control 

system to work in practice. Extended concepts of output structural controllability and 

observability have been formulated to remedy these deficiencies [Mor. & Steph., I]. 

A graph can be associated with the system matrix, which shows the mutual 

influence of the variables. The system variables form the state-nodes of the graph. There 

is a directed edge from node j to node i, if the structural system matrix has a nonzero 
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entry in the i' row and they`'' column. Each manipulated variable and disturbance can be 

represented by a node, and its influence on the state variables shown graphically. The 

structural representation of a staged system gives rise to large matrices with repeated 

common structural elements. The generic rank pg of a structural matrix is defined to be 

the maximal rank, a matrix achieves, as a function of its free parameters. 

The synthesis problem is very complex. A computer program, which checks for 

an entire plant the feasibility of the different possible sets of manipulated and controlled 

variables, according to the structural rank and accessibility criteria, can be created. The 

number of resulting solutions would however, be enormous, and screening them would 

represent an almost insurmountable task. [Gov. & Pow., 3] use essentially this approach 

employing heuristics to screen, in addition to known control-theoretical considerations 

like speed of response, time lags and structural criteria. Instead of eliminating the 

majority of the alternatives after they have been synthesised, it appears preferable not to 

generate them at all. This can be achieved by decomposing the process, synthesising the 

regulators only within the subsystem's boundaries, and finally combining the 

subsystems appropriately. Guiding principles for the decomposition must be estab- 

lished. Decomposition has to be performed along arguments involving system 

dynamics. It is not reasonable to generate control structures which suggest manipulating 

a variable at the first stage of a process, in order to influence a variable in the last stage. 

This can be easily avoided if decomposition precedes the synthesis, and if the control 

objectives of a subsystem are met - as much as possible - through the manipulation of 

variables located in the same subsystem. The following, operations can be applied to the 

integrated plant: 

1. Precedence order and grouping of the units (e. g. [Sarg. & Wester., 1]. Through that 

algorithm, a chain of groups in sequential order is obtained. 

2. Determine the minimum number of "torn streams" in the irreducible groups [Bark. 

& Mot., 1], [Pho & Lap., 1] and break up the irreducible groups into chains of func- 

tional units. 

3. Generate the control structures for each of the sequentially arranged functional units 

separately. 
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At this point, all the primary regulatory control objectives and all the secondary 

regulatory control objectives arising from the development of feedback optimising 

control structures have been defined. Synthesising the alternative regulatory schemes 

can be done at the level of the units resulting from the decomposition. For each unit i 

proceed to synthesise the feasible control structures. Finally, a test for accessibility is 

performed, and, if it is not satisfied, the set of manipulated variables selected is not 

feasible and it is rejected. If it is satisfied, then the set of manipulated variables selected 

is retained for further screening. 

6.5.4 Graphs and Control Theoretic Methods 

This section summarises the fundamentals of graph theory tools that allow the 

structural analysis of control systems to be undertaken. This analysis can be carried out 

on the so-called linear state-space model representation of systems. This model 

represents the system as a set of linear first order differential equations. The model 

consists of a set of inputs, outputs, states and, optionally, disturbances. The matrix- 

vector equations making up this model are as follows, 

x(t) = Ax(t) + Bu(t) + Dv(t) 

y(t) = Cx(t) 

Structural analysis of the model considers only the structure of the A, B, C and D 

matrices. By structure in this case we mean the matrices formed by assigning an 

arbitrary symbol to elements of these matrices known to be non-zero and keeping zero 

those known to be zero due to physical constraints. A numerical realisation of a 

structure matrix is defined as any matrix with numerical values replacing the non-zero 

elements. This approach is particularly useful, considering the fact that in most practical 

situations some elements of these matrices will have a level of uncertainty as to their 

actual values, while others will be precisely zero due to the physical properties of the 

system. Hence a structural or structure matrix can be precisely known for the system 

while the usual case for a numerical matrix is that it will have some degree of 

uncertainty associated with it. 

187 



0-pler 6 interaction 
-A. 

4ij 
and 

ýfruclura[ 
///adoafo[o9iee 

The structural matrices are used as a basis for the graph representation of the 

model. A graph or more precisely a digraph consists of a set of vertices and a set of 

directed edges connecting the vertices together. The graph model of the system will 

consist of a separate vertex to represent each of the states, inputs, outputs and 

disturbances. The vertices are connected by edges; a separate edge representing each of 

the non-zero elements of the matrices. Each matrix will contribute the following edges 

to the graph: 

1) The A matrix an edge from state vertex j to state vertex i for each non-zero ay. 

2) The B matrix an edge from input vertex j to state vertex 1 for each non-zero by. 

3) The C matrix an edge from a state vertex j to output vertex i for each non-zero c y. 
4) The D matrix an edge from a disturbance vertex j to a state vertex i for each non-zero 
dy 

Figure 6.9 gives an example of a state-space model and its equivalent graph 

representation. 

a� 00 b� 0c0 0] 0 

a2,0 a� B= 0 b22 'c 
[0 

c 0D= 0 
0 a32 000 22 d� 

ul 
b11 

xl 
011 

yl 

2 

Figure 6.9 - Example of a state-space model and its equivalent graph representation 

It should be noted that the graph representation of the model implicitly ignores 

non-zero elements in the matrices. Using the graph representation of the state-space 

model the very rich mathematics of graph theory can be applied to give a very different 

approach to the analysis than the classical, heavily numeric, matrix based approach. 
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A graph, as defined in [Harary, 1], is an abstract structure that consists of a set of 

vertices, denoted by V, and a set of edges, denoted by E. An edge is a line or arc whose 

two endpoints are vertices. G(V, E) is the symbol used for a graph consisting of a vertex 

set V and an edge set E. If we have a graph that the edges have a direction associated 

with them then this graph is called directed graph or digraph. In this text, we will only 

consider graphs with directed edges and may frequently use the term graph instead of 

the more precise term digraph. The following figure gives an example of a digraph. 

-A 
v2 

v4 

An edge may be specified by the vertices at each end. The vertex an edge is 

directed to is denoted the final vertex and the vertex an edge is directed from the initial 

vertex. Vertices at either end of an edge are said to be adjacent to or incident with one 

another. A vertex is said to have an in-degree n if it has n incoming edges and out- 

degree n if it has n outgoing edges. Hence, in figure 6.11, vertices v3 and v4 have in- 

degree 1 and out-degree 1, v, has in-degree 1 and out-degree 2 and v2 has in-degree 2 

and out-degree 1. Sometimes it is appropriate to assign numbers or weights to each of 

the edges of the digraph. In this case the graph is called a weighted digraph. 

Paths, Cycles, Cutsets and Trees 

A path is a sequence of-edges such that the final vertex of the preceding edge is 

the initial vertex of the succeeding edge [Christof., 1]. Some authors allow the edges of 

the path not to be necessarily distinct; however, in this text we use the definition of the 

sometimes called simple path which does not use the same edge more than once. If the 

initial vertex of a path is the same as the final vertex then the path is called a cycle (or 

circuit). Figure 6.12 shows an example of a path and a cycle. 
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V1 
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v5 v2 v3 

Figure 6.12 Example of a path and a cycle 

If in a digraph there is a path from vertex v, to vertex v2, then vertices v, and v2 are said 

to be connected. In addition, two vertices, v, and v2 are said to be strongly connected if 

there is a directed path from v, to v2 and a directed path from v2 to v,. If there exists only 

one of these two paths then v, and v2 are said to be weakly connected. A group of 

vertices are said to be strongly connected if every pair of vertices are strongly 

connected. 
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Another property is the easy extraction of the original model equations from the 

digraph representation. For example, if we consider the graph in figure 6.13 we can see 

190 

Figure 6.13. Example of a state-space model and its Q4 digraph representation 



O-pler 6 inleraclion 
_A. lyeis anälruclurai 

VelLLl 
yia. 4 

that vertex yi has one input edge (an in-degree of 1) with weight c11 from state vertex x,. 
In an equation form this becomes 

yi = X1 c� 
State vertex x, has three inputs one from vertex x2, one from input u, and another 

from itself. This means 
x, = a�x, + a, 2x2 + b�u, 

In this way we can built up the original matrix equations of the model. A 

significant feature of the graph representation of the model is the implicit exclusion of 

the zeros from the system matrices. This makes for a more compact model and in some 

cases a clearer representation of the input, state and output dependencies would be 

obtained from the matrix notation. Basically, the structural representation of the system 

is equivalent to the unweighted digraph representations of the system described above. 

Structural Analysis and Structure Matrix 

When modelling a system using the state space approach, the entries of the A, B, 

C and D matrices will usually fall into two classes. 
i) Those whose values are strictly zero due to physical constraints. 

ii) Those whose values are non-zero but have some (maybe small) degree of 

uncertainty as to their actual value. 

Properties of state space models can easily be sensitive to small numerical 

perturbations in these matrix entries. Structural Analysis allows all entries with any 

degree of uncertainty to vary independently of one another. The elements of a structure 

matrix [Q] are either fixed zero or indeterminate value, usually denoted by L, which are 

assumed to be independent of one another. A numerically given matrix Q is called an 

admissible numerical realisation (with respect to [Q]) if it can be obtained by fixing all 

indeterminate entries of [Q] at some particular values. Two matrices Q and Q" are 

called structurally equivalent if both Q and Q" are admissible numerical realisations of 

the same structure matrix [Q]. A property holds structurally within a class of structurally 

equivalent systems if the property under investigation holds numerically on `almost all' 

admissible numerical realisations [Rein., 2]. 
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An example of a property of matrices that is important in control theory is what is 

known as rank. The rank of a matrix is defined as the dimension of the largest minor 

having a non-zero determinant. The structural rank (s-rank, term rank or generic rank) 

of a structure matrix is defined as the maximal number of elements contained in at least 

one set of independent entries. As an example consider the following matrix A and its 

equivalent structure matrix [A] [Jantzen, 1]. 

102L0L 
A= 204 [A] =L0L 

0500L0 

The determinant of the matrix A is given by IAA = 2x2x5 - 5x4x 1= 0. Thus, it is 

obvious that matrix A is rank deficient, i. e. its rank is less than 3. This is because the 

numbers are such that some summands cancel each other; it is not because of its 

structure. The rank of A actually increases to 3 if say A(l, 1) increases by ten percent. In 

the structural domain the rank of A is 3, since there are three entries (marked with an 

underscore) that exist in different rows and columns. 

It is now important to summarise some useful results that structural analysis give 

an engineer [Rein., 2]: 

i) If a property does not hold structurally then no numerical realisation can have 

that property. 

ii) If a property holds structurally and the varying entries of the structure matrix 

are independent then this property will hold for almost all numerical realisations. 

iii) If a property holds structurally but the varying entries are dependent then the 

space of all numerical realisations having this property is undetermined. It is even 

possible that no numerical realisation has this property. 

Structural Controllability and Observability 

Controllability of a system means that the manipulation of the inputs should be 

able to cause the states to behave in any way desired. From this definition it can be seen 

that in the time-invariant linear state space model of a system only the A and B matrices 
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are needed to determine controllability. The numerical rank condition for controllability 

(and observability) depends on the fortuitous selection of parameter values and for well 

behaved physical systems, it fails at isolated points only. Thus it does not provide any 

useful, global information about the behaviour of a controlled system. It is this last 

aspect which dictates that any meaningful information should depend on the invariant 

structural aspects of a dynamic systems. Indeed, structural controllability concerns only 

the structure matrix pair ([A], [B]). 

An obvious precondition of controllability is that the system inputs are able to 

influence all state variables. Said in graph theoretic terms, there must exist paths from 

input vertices to all state vertices; the definition of input connectability follows 

[Rein., 2] 

Definition 6.3: 

"A class of systems is said to be input connectable (or input reachable) if in the digraph 

of G(QI) there is, for each state vertex, a path from at least one of the input vertices to 

the chosen vertex state. " 

The concept of structural controllability was first introduced for the single input 

case ([Lin, 1]); many authors extended this work to the multi-input case ([Shields & 

Pear., I], [Dav., 2] and many others). 

Observability and controllability are known as dual concepts. Controllability 

concerns the interaction of inputs to states whilst observability concerns the equivalent 

interaction between states and outputs. Therefore, theorems concerning controllability 

can be changed to their dual theorems concerning observability by simply replacing 

input with output and the B matrix with the C matrix. 

The duality of observability and controllability can also be interpreted by stating 

that the structural pair (C, A) is observable, if, and only if, the structural pair (AT, CT) is 

controllable. 
Finally, the important concept of structural completeness should be introduced 

[Rein., 2]. 
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Definition 6.4: 

"A class of systems being both s-controllable and s-observable is said to be structurally 

complete. " 

Disturbance Rejection by means of State Feedback 

A more realistic model of a dynamical system would include disturbances as 

additional inputs to the system. Disturbance inputs are unwanted effects, and typically 

reflect such physical phenomena as electrical noise and external vibrations. Graph 

theory can be used as a useful tool in the problem of rejection of these disturbances. In 

the graph theoretic approach, the disturbance rejection problem can be approached from 

what is, in effect, a simple set theoretic approach related to the digraph. 

[Rein., 2] discusses two types of analysis for disturbance rejection, namely, the 

rejection of the full variety of disturbances and the rejection of actual disturbances. The 

first analysis finds a subset of state vertices that definitely cannot have disturbances 

attached and assumes disturbances are attached to all other vertices. It then sees if 

simultaneous rejection of all these disturbances can be achieved. If it is possible then the 

analysis defines a set of state vertices at which disturbances can be attached and a state 

feedback matrix capable of their rejection. If, however, it is not possible then this does 

not mean all disturbance rejection is impossible. 

A second analysis can be done where actual disturbances are attached to the 

system, a disturbance output cutset is found, and then it is assessed whether the 

simultaneous compensation of this cutset is feasible. If it is not then another outset can 
be looked for and rejection using this new cutset attempted. Only when all cutsets have 

been tried and failed can we say that rejection of these disturbances is impossible. 

Vertex Decomposition 

A very common feature of nearly all large-scale systems is the high degree of 

sparsity in their system matrices. Sparsity means the number of zero entries is greater 

than the number of non-zero entries. This will also be reflected in the adjacency 

matrices of any graph representation. Decomposition of graph into subgraphs should 
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always be considered when investigating a system; it involves the sorting of the vertices 

into individual subgraphs, or vertex groups, based on the connectivity of the graph. In a 

decomposable system the eigenvalues of the components are also the eigenvalues of the 

whole system. Thus, a controller design can sometimes be performed locally on the 

components rather than taking the whole system into consideration. 

Not all systems are decomposable. If the system is one big cyclic (strongly 

connected) component, it is not decomposable. A matrix model with many small 

uncertain elements may not be decomposable. These `almost zero elements' could result 

from rounding errors during matrix inversion in a computer. However, large scale 

systems are often decomposable. 

Generally, decomposition is related to matrix reduction [Jantzen, 1]. That is, after 

decomposition the original matrix is reordered in such a way that it becomes a lower (or 

upper) block triangular matrix, with square blocks along the diagonal and zeros above 

(or below) the block diagonal. The blocks on the diagonal are themselves irreducible; 

they correspond to the cyclic components of the graph. 

Fixed Modes under Decentralised Control 

In large scale systems, e. g. flexible space structures, electric power networks, and 

chemical processes, the requirement for decentralised control structure is common, due 

to physical constraints and/or economic factors. Sometimes, a constraint on information 

exchange between various control agents is imposed due to geographical separation, 

transport delay, etc. However, in most control applications, decentralisation arises 

because of the cost of communication links and the reliability of maintaining a 

centralised control system. The decentralised control of such large-scale systems, whose 

essential characteristics are a very large number of variables and a spatial distribution, 

generally requires some restriction on the output-input pairs which the controller may 

connect. With such a structurally constrained information flow, the problems of 

stabilisation and pole placement are to be considered outside the classical framework. 

For example, the output feedback matrix F for a plant with 100 inputs and 100 outputs 

consists of 10000 elements for a centralised control system, whereas the corresponding 

matrix for a decentralised system may have only 100 elements or less. In this case, the 
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selection of a feasible decentralised structure is critical to the design and operation of 

the closed-loop system. 
The fundamental concept in the study of this problem is that of fixed modes 

which was introduced by Wang and Davison [Wang & Davis., 1]. The existence of a 

solution for the stabilisation or the pole placement problem using a structurally 

constrained controller depends critically on the properties of this set. The algebraic 

characterisation of fixed modes using exterior algebra tools [Karc. et al., 1], provides 

the means to relate their formation to the structure system invariants, as discussed 

previously in the section with decentralised Markov parameters [Lev. & Karc., 2]. When 

considering time-invariant regulators, the presence of unstable fixed modes indicates 

that stabilisation is impossible, while the absence of any sort of fixed modes rules out 

arbitrary pole placement. Consequently, the concept of fixed modes appears as an 

extension of the concept of uncontrollable and unobservable modes which exists in 

classic control problems. In the classical framework, it was shown that relevant results 

can be obtained by carrying out a purely structural study [Lin, 1], which is particularly 

appropriate when dealing with large scale systems. The concept of structurally 

controllable and observable modes was then introduced. The same approach was 

developed by Sezer and Siljak [Siljak et al., 2] for structurally constrained control 

problems giving rise to the concept of structurally fixed modes whose existence depends 

only on the structure of the system. Structurally fixed modes are thus generic property 

of the system with respect to a specified feedback structure. Therefore, structurally fixed 

modes have an essential part in those control problems concerned with large-scale 

systems because parameter values are generally subject to uncertainty; an obvious 

advantage offered by the concept of structurally fixed modes is numerical. Since 

existence of such modes is a qualitative property of the system, it can be characterised in 

terms of directed graphs leading to computationally attractive tests involving binary 

computations only. 

The concept of Vulnerability [Pichai, 11 

A great deal of system theory is concerned with problems of uncertainty, with 

emphasis on solutions that ensure a satisfactory performance despite significant changes 
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in the system structure. Examples of this trend are the studies of stability and optimality 

under structural perturbations whereby a number of variables, or a part of the system, is 

disconnected and again connected during operation. It has been possible to identify 

structures that are basic to the design of reliable control, subject to plant and controller 

failures. A missing ingredient in these studies, however, has been the consideration of 

the effects of disconnections of variables on controllability and observability properties 

of the system, which are crucial in reliability design of control and estimation schemes 

for complex dynamic processes. 

A graph is considered vulnerable at a line or a point if a removal of that line or 

point destroys connectivity of the graph [Harary, 2]. When a graph is associated with a 

linear dynamic system, the role of connectivity is taken by input reachability or 

structural controllability. As we have already mentioned, a system is input reachable if 

each state variable can be influenced by an input variable either directly or via other 

state variables. In terms of the corresponding digraph this means that to each state point 

there is a path from at least one input point. A question of vulnerability arises: Does a 

removal of a line or a point from the digraph destroys input reachability ? It is obvious 

that the essential part of controllability (observability) is input (output) reachability, and 

if by a line or point removal the system becomes input (output) unreachable, it becomes 

uncontrollable (unobservable) independently of the size of the existing interconnections 

among the system variables. By using the concept of structural controllability instead of 

input reachability, the vulnerability analysis of controllability can be refined at the price 

of a more extensive analysis; we require to find the, minimal inputs of a given system 

which are sufficient to preserve the property of s-controllability. 

A brute force approach to the vulnerability problem would be to determine input 

reachability for each possible structural perturbation of the corresponding digraph 

G(V, E). This simplistic approach becomes inefficient when the size of the system 

increases. To assess vulnerability of input reachable systems in a more efficient way, a 

different approach is required [Pichai et al., 1]. 
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Structural Controllability and Observability 

A possible refinement of the concept of vulnerability of dynamic systems, is to 

consider structural controllability instead of input reachability. As we have already 

mentioned: "A class of systems characterised by the nx(n+m) structure matrix [A, B] is 

s-controllable if and only if the digraph G([QI]), meets the following conditions. 

(a) For each state vertex in G([Q jJ) there is at least one path from one of the m 

input vertices to the chosen state vertex. 

(b) There is at least one cycle family of width n in G([QIJ). " 

Therefore an obvious way of finding the minimal inputs and outputs in order to preserve 

the properties of controllability and observability can be outlined as follows : 

i) Find the input line basis for the given system i. e. the set of the minimal 

inputs/outputs required to preserve input reachability. 

ii) Check among these inputs/outputs to find those that satisfy the second 

criterion for structural controllability/observability 

This procedure was implemented in software by mainly using the cutsets routine 

[Econ., 1]. That is, it tries to find a minimal set of input edges whose removal from the 

graph will disconnect all paths from the set of input vertices to the set of state vertices. 

By minimal set of edges we mean a set of edges such that their removal would be the 

minimal sufficient conditions to disconnect all the required paths from the input vertices 

to the state vertices. 

6.6 Discussion 

The relative gain array (RGA) is currently the principal tool for interaction 

analysis. The RGA has proven to be a useful method, although it has its shortcomings. 

Its interpretation is unambiguous, only in the case of a two input, two output process. 

The SGM of a large system with several inputs and outputs is, in general, easier to 

interpret than the corresponding RGA. 
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The input-output pairings that seem to be promising, based on the analysis of 

interaction matrices, should be further analysed using interaction measures. However, 

the definition of interaction measures given in Section 6.3 has some limitations and, 

therefore, the results should be interpreted with caution. The reason is that the 

interaction measures are based on the block diagonal closed-loop system that might or 

might not be indicative of the actual full closed-loop system. The definition guarantees 

the system to be stable, but the performance can be poor, even if the interaction 

measures indicate small interactions. 

The application of the tests for decentralised integral controllability (DIC) can 

sometimes be problematic in actual practice. The conditions involved are easy to check, 

but they are only necessary. A systematic procedure that goes through the various steps 

and criteria and, for each case employs the most efficient test, is currently missing. 

Furthermore, most of the tests have a heuristic basis and lack a systematic theoretic 

foundation. 

The Singular Value Decomposition can provide a powerful and computationally 

efficient tool for analysing matrix systems and it is the basis for many diagnostics for 

control system design. The analysis can be performed over the frequency range that is of 

practical importance for the particular process, so that both static and dynamic aspects 

can be considered. An additional important feature of the SVD strategy is its ability to 

identify modelling aspects, such as model mismatch, which affect the performance of 

the resulting process control structure. Also, the strategy can show whether or not a 

structural decoupler will be effective in minimising interactions between loops. A 

compensator can be designed for the range of frequencies most likely to affect the 

process. The approach can provide insights into important closed loop system properties 

such as stability, sensitivity and invertibility [Morari, 3]. 

The procedure for selection of decentralisation, based on Markov parameters, 

uses the numerical values of the model parameters. Generic solvability conditions may 

be used to provide a first listing of possible decentralisation schemes; such a 

combination of results may limit the large number of possible combinations to be tested. 

An additional advantage of the Markov Parameter framework, centralised, or 

decentralised, is that due to its direct link to the state space description, it provides the 

means for modifying the selection of the B, or C, matrices, such that the centralised or 
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decentralised Markov matrix has full rank and thus achieve the very important linear 

assignment property which excludes the presence of fixed and almost fixed modes and 

preconditions well the system to accept a certain type of control solution. The current 

results establish a framework and provide the tools for affecting the shaping of 

properties of centralised, or decentralised Plucker matrices at early design stages. 

The `graph theoretic approach' is another useful tool. The control system under 
investigation is modelled by a suitably chosen graph representation. Therefore, the 

investigator obtains a better visual insight and feeling for the system and its properties. 

Provided he succeeds in showing that a desired property holds generically i. e. 

independently of numerical parameter values, the indeterminate parameters may be 

considered to be degrees of freedom during further steps of design or optimisation. If 

the graph theoretic approach shows that a specific property does not hold, the 

investigator is able to suggest system modifications with the aid of which the desired 

property could be fulfilled. 
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7. SOFTWARE DEVELOPMENT 

7.1 Introduction : Interaction Analysis Toolbox. 

In this chapter, a number of control theories are brought together to develop 

systematic methods for control structure selection. They form a CAD Toolbox that can 
be used to provide inside information of a control structure and draw some useful results 

that can lead to improvements and probably, to a complete restructuring of the model. 

Many different methodologies exist, that deal with the interaction analysis and 

the process controllability notion of a system. However, most of them rely on heuristics, 

and some others, are case dependent. An attempt was made to unify most of them under 

a single CAD package, so that the complementary nature of these methodologies can be 

fully exploited, and, hence, provide some useful indicators/measures of the likely 

performance of the control structure under observation. No single method is suitable for 

every control problem, nor every method can be applied to every problem. 

The software developed here addresses the interaction indicators, a list of which 

is given below: 

1. RGA 

2. D-RGA 

3. PRGA 

4. D-PRGA 

5. SGM 

6. D-SGM 

7. BRG 

8. D-BRG 

9. SVD 

A detailed description of the above methods has been given in the previous 

chapter. Here we summarise those aspects linked to software development. The testing 

of the software is considered in terms of examples, in the following chapter. 
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7.2 RGA 

Purpose: Evaluate coupling of inputs, outputs based on single loop controllers. 

Description: The Interaction Analysis Toolbox provides an option for (static) RGA 

analysis. This option uses the steady-state gain matrix of a process. The relative gain is 

the ratio of the transfer function between two variables, with all other outputs 

uncontrolled, and the transfer function between the same variables, when all other 

outputs are perfectly controlled. The only information needed for the calculation of the 

Relative Gain array is the steady state gain matrix G(0) . 

For the interpretation of the RGA, the following two pairing rules are used 

[Bristol, 1]: 

1. Pair together inputs and outputs indicated by positive RGA elements that are closest 

to unity. 

2. Avoid pairing together inputs and outputs indicated by negative RGA elements, 

because such pairings result in, either an unstable system, or an inverse responding 

system. 

The resulting pairings are checked for stability using Niederlinski's theorem; if 

the pairings are unstable, other possible pairings with values closest to unity should be 

used; negative pairings should be avoided, if possible. 

Algorithm: This option uses the frga function of the Matlab MFD Toolbox. It also uses 

the inv to find the inverse of the steady-state gain matrix G. They are all included in 

the emrga, where provision was made to embody the routines necessary for the 

checking of the Niederlinski condition. 

Diagnostics: The function provides diagnostics for a square system. It computes the 

interactions among system's input-output pairs. Also, is uses the Niederlinski theorem. 

This theorem is particularly powerful. All that it requires for its use is steady-state gain 
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information and the assumption that perfect steady-state control is achieved in all loops. 

Niederlinski's theorem is actually equivalent to pairing on a negative RGA element. 

The use of the gain matrix means that the RGA is based on local linearisation 

around steady state. The RGA can be applied to non-linear systems but one has to make 

sure that accurate process gains are calculated. 

References: [Bristol, 1], [Grosd. et al., 1], [Liang, 1]. 

7.3 Dynamic-RGA (D-RGA) 

Purpose: Evaluate frequency-dependent coupling of inputs, outputs based on single 

loop controllers. 

Description: D-RGA is an extension of the traditional RGA so that dynamic effects are 

included. Several investigators have proposed many different definitions for a dynamic 

RGA. In some cases, these definitions require that the feedback controller be designed. 

Since the RGA is most valuable in screening alternative control system designs, the 

requirement that the controller must be designed, limits the utility of these definitions. 

The approach used here does not require that the controllers must be specified. Starting 

with zero initial conditions, it is desired to bring the process output to a new set point. 

For the interpretation of the D-RGA, the pairing rules used are similar to the ones used 

for the static-RGA (see RGA). 

Algorithm: This option uses the frga function of the Matlab MFD Toolbox. It also uses 

the inv to find the inverse of the gain matrix G. The emdrga function is used to 

encompass all the various procedures. Note that if g, is the i-th component matrix of G 

t 
then the relative gain array at frequency w(i) is defined as g, o 

[(g, ) I. 

Diagnostics: The function provides diagnostics for a square system. The usual 

limitations due to linearisation - for non-linear systems - also apply (see also RGA). 
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Much empirical evidence suggests that feedback loops associated with large elements of 

the relative gain array are inherently difficult to control. Hence, examination of the array 

can aid the decision on the pairing of sensors and actuators in a decentralised control 

scheme. 

References: [Bristol, 1], [Tung & Edg., 1], [Skog. et al., 3], [Hagg., 1], [Cao & Biss, 1]. 

7.4 Performance Relative Gain Array (PRGA) 

Purpose: Indicate (one-way) couplings of inputs to output. 

Description: P-RGA is a slightly different definition of the traditional DRGA. It tries to 

overcome a problem sometimes encountered with DRGA, the wrong indication of no 

severe interaction, while, at the same time, significant one-way couplings may exist. It 

is defined in a quite similar way to the DRGA, i. e. P(s) = 
d(s)G(s)-', but in this case, 

G(s) is a matrix consisting of only the diagonal elements of G(s), i. e. G= diag{g�}. 

Algorithm: This option uses the frga function of the Matlab MFD Toolbox. It also uses 

the inv to find the inverse of the gain matrix G and the diag to extract the necessary 

diagonal elements of G. The emprga function is used to encompass all the various 

procedures. The elements of P (the PRGA matrix) are given by: 

P; = S;; (s)[G" ]ý 
= 2;; (s) 

S;; (s) 

Diagnostics: The function provides diagnostics for a square system. It should be noted 

that although the diagonal elements of the RGA and the PRGA are identical, the PRGA 

does not have all the algebraic properties of the RGA. PRGA must be recomputed 

whenever G is rearranged, whereas RGA only needs to be rearranged in the same way 

as G. PRGA is independent of input scaling, but it depends on output scaling. This is 

reasonable since performance in defined in terms of the magnitude of the outputs. The 
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measures above may also be extended to non-square systems by introducing the 

pseudoinverse. 

References: [Hoed & Skog., 3]. 

7.5 Scaled Gain Matrix (SGM). 

Purpose: Scaling of inputs, outputs provides direct comparison with each other. 

Description: The method aims to provide useful information on interactions, in a form 

that is easy to interpret. It is based on the scaling of input and output variables. A large 

gain between an input and an output can indicate strong interaction. However, this can 

not be directly used for interaction analysis, because the process gain matrix depends on 

the scaling of input and output variables. In this method the input and output variables 

are resealed, so that in the new gain matrix, corresponding to the resealed variables, the 

elements are directly comparable with each other. 

The iterative procedure used is the following: 

Stea 1. Calculate the gain matrix. This is the first estimate of the scaled gain matrix 

LY, i. e. for k=1 set 

Igul 

Step 2. Scale the rows of pk in such a way that in each row the average value of the 

elements is equal to one. 

k+l 
ýi 

nk 

Ste 3. Scale the columns of Yk4 in such a way that in each column the average 

value of the elements is equal to one. 

206 



Ciapler 7 So/iwar. 2evelopmer+i 

k+l 
k+2 

_ 
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V/ J k+l 

jýl 
ýJ 

Step 4. Stop if the changes between pk and `P 2 are sufficiently small. Otherwise 

set k +- k+2, and go to step 2. 

The procedure converges towards the scaled gain matrix (SGA) that is unique 

for each matrix. 

Algorithm: This option uses matrix manipulation functions. It produces the results with 

the use of emsgm function. 

Diagnostics: In the Scaled Gain Matrix the average value of the elements in each row 

and column is one. The interpretation of this interaction matrix is simple: values larger 

than one indicate strong interaction and values smaller than one indicate weak 

interaction. The largest elements in T then indicate the inputs and outputs, which 

should be connected in the feedback controller. 

References: 

[Lies!., 1]. 

7.6 Dynamic Scaled Gain Matrix (D-SGM). 

Purpose: Scaling of inputs, outputs provides direct comparison with each other, over 

the desired frequency range. 

Description: This method (an extension of the previously presented static-SGM), aims 

to provide information on interactions in a form that is easy to interpret. It is based on 

the scaling of input and output variables. In this method the input and output variables 
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are rescaled, so that in the new gain matrix, corresponding to the rescaled variables, the 

elements are directly comparable with each other. 

Consider an mxn process transfer function matrix G(s). The basic idea behind 

the method is to scale input and output variables in such a way that the average gain in 

each row and column of the process model is one at a given frequency. This is achieved 

using the same iterative procedure that was used for the static-SGM, but in this case, the 

elements change with frequency, i. e. yr;, =I where w' is the desired 

frequency. The procedure again, converges towards the scaled gain matrix (SGM) that is 

unique for each matrix. 

Algorithm: This option utilises many different functions. Extensive matrix 

manipulation is used. The function emdsgm presents the resulting SGM in the form of 

a MVFR matrix, i. e. the values of the matrix, alongside the corresponding frequency 

vector. The results are also presented in a graph, with the use of the plot command. 

Diagn ostics: In the Scaled Gain Matrix the average value of the elements in each row 

and column is one. So, values larger than one indicate strong interaction and values 

smaller than one indicate weak interaction. The largest elements in `I' then indicate the 

inputs and outputs, which should be connected in the feedback controller. The SGM, 

unlike the RGA, can be used even when the number of inputs and outputs is unequal. 

References: [Liesl., 1]. 

7.7 Block Relative Gain (BRG) 

Purpose: Evaluate SISO or small order MIMO couplings of inputs, outputs. 

Description: By formulating and extending the RGA concept and its properties from a 

scalar to a matrix, a more powerful synthesis framework is formed, that can address a 

broader class of control problems, such as the synthesis of decentralised control 
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structures that are not restricted to SISO control loops. This concept is referred to as 

Block Relative Gain. According to this method, decentralised control structures can be 

systematically generated by partitioning G(s) into blocks of different dimensions. To 

extend this method further, alternatives can also be generated due to the alternative ways 

of assigning inputs and outputs to the blocks. It should be noted that in this type of 

partitioning, subsystems are viewed as aggregates of control loops and not as groups of 

process units. Thus, block partitioning of G(s) may not necessarily correspond to a 

particular process decomposition and the resulting decentralised control system does not 

have to be compatible with any arrangement of subsystems of process unit operations. 

However, this does not preclude the possibility of specifying the process decomposition 

first and then structuring the decentralised control systems within the boundaries of the 

individual process subsystems. In some cases, this may eliminate the synthesis of 

undesirable decentralised control structures right from the beginning and reduce the 

potential combinatorial problems encountered in the block partitioning procedure. The 

main steps of the procedure are the following: 

First we consider the highest degree of decentralisation - i. e. IxI block 

partitioning of G- that would yield a total of N SISO assignments (or pairings). For 

this, all the one-dimensional BRGs are evaluated. Among the viable ones, those which 

establish a 1-1 correspondence between the plant's inputs and outputs are selected. If 

such alternatives do not exist, then there is no acceptable partitioning using 1-1 blocks 

only. In that case, assignment is not complete and one proceeds with two-dimensional 

BRGs. The next step in the process is the study of two-dimensional BRGs. This 

ultimately gives all viable two-dimensional BRGs. Searching for an acceptable 

partitioning over the sets of both two- and one-dimensional viable BRGs is the next step. 

If one is found, the procedure concludes; otherwise it continues with the study of BRGs 

of higher dimension, in the same manner, until a solution is achieved. The process is 

guaranteed 'to conclude since, in the worst case, it will lead to a centralised full control 

structure that corresponds to an n-dimensional BRG. 

phm: This option uses the fbrga built-in function of the MFD toolbox and also 

the purpose-built embrga, to formulate the recursive procedure. 
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Diagnostics: The function provides diagnostics for a square system. Also, the results 

are not difficult to interpret. The significance of the BRG for the performance of the 

closed-loop system is the following: The closed-loop performance of an mxm block, 

when the other n-m outputs are under perfect control, is a continuous function of 

BRG. The closed-loop performance of the mxm block is as if this block was isolated 

from the rest of the plant and operating under the influence only of its own control law. 

This makes it clear what kind of information one should expect from BRG and in what 

sense it can be considered as a measure of interaction. 

References: 

[Manous. et al, 2]. 

7.8 Dynamic Block Relative Gain (D-BRG) 

Purpose: Evaluate frequency-dependent SISO or small order MIMO couplings of 

inputs, outputs. 

Description: When defining the block relative gain and deriving its relation to the 

closed-loop performance, the usual assumption of perfect control for the plant outputs 

has been made. This assumption always holds at zero frequency (i. e., at steady state) by 

the use of integral control action. However, it may not hold for all the frequencies. To 

investigate interactions over the whole frequency range, BRG could be extended to a 

Dynamic-BRG and become a frequency-dependent interaction measure. 

The aim of the DBRG is to provide an acceptable block partitioning of the plant 

matrix G(s). Such a task is considered to be accomplished if all the BRG 's of different 

dimensions corresponding to the diagonal blocks of different dimensions G1, (s)'s, are 

close to an identity matrix. To quantify this closeness and define the set of viable 

BRG's, the following procedure is necessary: 
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First consider the highest degree of decentralisation - i. e. 1x1 block partitioning 

of G- that would yield a total of N SISO assignments (or pairings). For this, all the 

one-dimensional BRGs are first evaluated at s=0. Among the viable ones, those which 

establish a 1-1 correspondence between the plant's inputs and outputs are selected. If 

such alternatives do not exist, then there is no acceptable partitioning using 1-1 blocks 

only. In that case, assignment is not complete and one proceeds with two-dimensional 

BRGs. In case there exists an acceptable 1-1 block partitioning for s=0 but viability 

and/or acceptance are violated at frequencies other than co = 0, the study of 

two-dimensional BRGs is again necessary. Otherwise, the procedure can conclude at 

this point with the resulting 1-1 block partitioning and the corresponding control 

structures. 

The next step in the process is the study of two-dimensional BRGs. The BRGs, 

whose diagonal elements are not close to 1, are screened out first. The screening process 

is repeated for all the possible column vectors and for all frequencies other than w=0 

and ultimately gives all viable two-dimensional BRGs. 

Searching for an acceptable partitioning over the sets of both two- and 

one-dimensional viable BRGs is the next step. If one is found, the procedure concludes; 

otherwise it continues with the study of BRGs of higher dimension, in the same manner, 

until a solution is achieved. The process is guaranteed to conclude since, in the worst 

case, it will lead to a centralised full control structure that corresponds to an 

n-dimensional BRG. It should be mentioned that e, (a ), c2(w) are two free parameters 

that are used in the procedure, through which the designer can affect the screening 

process and establish what an acceptable degree of interaction is. 

Algorithm: This option uses the fbrga built-in function of the MFD toolbox and also 

the purpose-built emdbrga, to formulate the recursive procedure. 

Diagnostics: The function provides diagnostics for a square system. The elements of 

each row and each column of a DBRG add to 1. Having presented the procedure, one 

can easily understand the advantages of the DBRG. Different block partitioning of input 

and output sets leads to alternative decentralised control structures, among which the 

best are selected by the systematic screening procedure that utilises various important 
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properties of BRG. These properties effectively reduce the combinatorial problems and 

make the analysis of large-scale systems feasible. 

References: 

[Manous. et al, I], [Manous. et al, 2], [flagg., I], [Reev. & Ark., I]. 

7.9 Singular Value Decomposition (SVD) 

Purpose: To provide insights into important closed loop properties: stability, 

sensitivity, invertibility. Model mismatch can also be indicated. 

Description: The Interaction Analysis Toolbox provides an option for SVD analysis. 

This option actually, activates a second window (figure 7.1) that provides the user with 

four choices. There are three tests that can be executed, and there is also a fourth option, 

for the simultaneous depiction of all the results on the same figure-window. 
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The first one presents the singular values, as a function of frequency. The 

magnitude of the minimum singular value is a measure of the minimum distance to the 

nearest singular matrix and hence also a measure of the invertibility of the system. Thus, 

Q discloses potential difficulties when implementing feedback control. The best 

performance can be achieved when s is large. 

The second one, is the condition number, i. e. the ratio of the largest and the 

smallest singular value. This number can be used to quantify the sensitivity of the 

system. 

The third one calculates the misalignment angle (see 6.3.1). 

Based on the theoretical analysis of the system, one can develop strategies for 

the control structure. Four different cases can be identified: 

(1) Case 1. Good condition and good directional property. 

r(iw) < io 
0, (. i» <15 

where wE [av,, (v�] and G (s) 
. 

In this situation, modelling uncertainties can 

be tolerated and a natural loop structure exists. The good condition number of 

the system implies that the system will be well-behaved with the selected control 

structure for moderate modelling inaccuracies. 

(2) Case 2. Good condition and poor directional property. 

y(jc)<10 
e, (jw)> IF 

A natural loop structure does not exist. However, a structural compensator can 

be used to improve the directional property. The system's condition number is 

good, so that compensation can actually be beneficial. 
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(3) Case 3. Poor condition and good directional property. 

y(j&)>10 
O. (jw) <150 

The system exhibits a good direction property but its condition number is poor. 

As a consequence, it is conceivable that small misalignments between the input 

and output spaces could be amplified because of the large differences in the 

magnitudes of the singular values. However, a gain compensator can easily be 

designed, since each singular value of G(jo)) can be changed by the appropriate 

gain without altering the other singular values. One should bear in mind, though, 

that the compensator's performance may be strongly affected by system 

perturbations. Also, the magnitude of the gains that can be implemented on the 

system may be limited by physical restrictions such as control valve saturations. 

(4) Case 4. Poor condition and poor directional property. 

y(jw)>10 
9, (jw)>15° 

Theoretically, a combination of a structural and a gain compensator can be used, so as to 

develop a control interconnection structure. However, both compensators are 

model-dependent and one should proceed with extreme caution. 

Algorithm: This option uses many different functions. Some were built-in functions of 

the MFD toolbox (fsvd, fmisalg) and some others were purpose-built (fcond, emsvd, 

emsvdsv). 

Diagnostics: The function provides diagnostics for a square system. It also uses a 

Quasi-Newton optimisation algorithm (due to fssv). From svd, if the limit of 75 QR step 
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iterations is exhausted while seeking a singular value, the following message will 

appear: 

Solution will not converge 

It should be noted that the function automatically optimises the scaling of the axis, so 

that the best screen output can be obtained and the results can easily be compared. 

In summary, this approach provides a diagnosis of the system. For the cases with 

good condition number, the strategy selected is less dependent on model accuracies. For 

the cases with poor condition, the control synthesis is more difficult. This function 

demonstrates how SVD analysis can yield structural information of the open-loop 

system and enables one to design a structural compensator to minimise loop interactions 

without changing the system sensitivity. It decouples the interaction and sensitivity 

analysis so that they can be handled independently. Consequently, the feedback control 

system can easily be designed once the analysis and the proper compensations have 

been performed. 

References: [Lee & Mor., 1], [Lau et al., 2], [Lee et al., 2], [Hauv. & Skog., 1], 

[Hoed & Skog., 3]. 

7.10 Conclusions 

The various methodologies for interaction analysis have been presented. They are 

all based on interaction matrices (with the exception of SVD). Although they all share a 

common task, i. e. the analysis of interactions in the system, the way to do it and the 

various diagnostics all serve to form a toolbox that is as complete as possible. Not all 

methods can be applied to any problem, nor can all of them have the same weighting. 

The RGA (and D-RGA) are well known, the P-RGA can be used when 

independence of input scaling is important and SGM is very useful when input and 

output scaling is a problem and when we deal with non-square systems (unequal number 

of inputs and outputs). The BRG and D-BRG provide an interesting alternative to the 
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SISO model, and can be applied when a low-order MIMO controller is not a problem. 

Finally, SVD is a very handy tool when one deals with multivariable systems. It can 

indicate sensitivity or model mismatch problems and can be applied over the frequency 

range that is of practical importance. 

To conclude, no single method can be seen as a panacea, but they all contribute 

towards the formation of an - almost complete - Interaction Analysis Toolbox. The use 

of the toolbox will be presented with the use of an example in the following chapter. 
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S. EXAMPLES 

8.1 Introduction 

The various methodologies presented in chapter 6, led to the creation of an 

accompanying Matlabt Toolbox. The CAD Toolbox that was developed, deals with the 

interactions that are present between the various control loops. It supports both a 

transfer function and state-space models as an input. The analysis can be performed 

either for 0 frequency (static) or for a range of frequencies (dynamic), since each 

methodology provides options for both. 

8.2 The Toolbox 

The Toolbox was implemented in Matlabt v4.2 for Windowst. It can be installed 

as an additional toolbox, under the directory C: \matlab\toolbox\interact 
. 

When first run (by typing "mmenu"), the user is presented with a welcome screen 
(figure 8.1). The screen that follows, includes the main options of the toolbox, i. e. it 

prompts for the insertion of the system data and then the various methods can be applied 

to it (figure 8.2). 

t MAILAB" is a registered trademark of MathWorks Inc. 

= Windows is a registered trademark of Microsoft Corporation 
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INTERACTION ANALYSIS TOOLBOX 

CITY UNIVERSITY 

EMMANOUIL NISTAZAKIS 

CONTROL THEORY & DESIGN GROUP 

Figure 8.1. Introductory screen. 

Figure 8.2. Interaction Analysis Toolbox - Main Menu. 
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8.3 The Example (model) 

To demonstrate the capabilities of the toolbox, an example was used. It is a 

well-known problem that deals with a boiler furnace. It was first presented by 

Rosenbrock [Rosen., 2].. 

Boiler furnace 

This problem arose in the control of a boiler. Four sets of heating coils were 

enclosed in a common furnace enclosure, and four sets of burners were inserted into the 

furnace. Each set of burners was directed at one of the sets of heating coils, but heat 

naturally spilled over to adjacent coils. Figure 8.3 shows a sketch of the system, which 

was symmetrical. 

Figure 8.3. Diagrammatic sketch of boiler furnace. 

In the plant as built, the outlet temperature of each of the heating coils was 

measured, and the heat input to the system from each set of burners was manipulated. 

This gave a four-input four-output system. When the plant was designed, experience 

with a previous boiler led to the conclusion that interaction would prevent stable control 

with four independent loops. Accordingly, one measured temperature was used to 

control all four sets of burners. Manual trims were provided for three of the sets of 

burners, and the operator used these, as best as he could, to control the three remaining 

temperatures. With this arrangement control was poor, and an investigation was 

required in order to improve it. 

To start dealing with the system, an appropriate model was required. A 

linearised model was proposed, that used mid-range responses and these were fitted by 
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first-order transfer functions. In this way, the elements of G(s) were found, and the 

result was: 

c(s)=I 

1.0 0.7 03 0.2 
1+4s 1+4s 1+4s 1+4s 

0.6 1.0 0.4 035 
1+4s 1+5s 1+5s 1+5s 

035 0.4 1.0 0.6 

1+5s 1+4s 1+5s 1+5s 

02 03 0.7 1.0 
1+5s 1+5s 1+5s 1+4s. 

(8.1) 

No great accuracy was justified in view of the nonlinearity, and the values shown are 

rounded. The model was inserted in the Interaction Analysis Toolbox and the results are 

presented in the following pages. 

8.4 RGA 

RGA is probably the most widely used interaction measure. The relative gains 

between the various inputs and outputs are represented in this array. For the above 

mentioned example, the following results were obtained: 

RGA = 

1.6402 -0.7959 0.2871 -0.1314 

-0.6025 2.1757 -1.0711 0.4979 

-0.0644 -0.2678 2.1757 -0.8435 

0.0268 -0.1120 -0.3917 1.4770 

According to Niederlinski stability theorem, 

the system is stable. 

Figure 8.4. RGA results 
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One may say that the results are somewhat expected. Indeed, the highlighted 

diagonal elements are the most appropriate ones for pairing. They are positive and 

dominant, compared with the rest. However, their values are far from the ideal one of 

"unity". The Niederlinski stability theorem was also applied to the system (for details 

see 6.2.1). Although this is normally used to reject a solution - as unstable - in this 

case, the system appears to be stable. The outcome is that strong interactions require 

further study of the system. 

8.5 D-RGA 

The D-RGA, an extension of the RGA which includes dynamics, can be used to 

track the changes of the interactions with frequency. In real life, the appropriate 

frequency range (bandwidth) would be known beforehand. For our example, the range 

is taken to be 0.01 to 10 rad/sec. The outcome, in this case, is the following: 

Dynamic RGA 

0 

102 

Frequency 

Figure 8.5. Dynamic-RGA results 
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The figure discloses the behaviour of the four proposed loops. The interactions 

seem to be quite high for low frequencies, although they settle down, as frequency goes 

up. 

Note that since the analysis is based on gains only, the effect of any possible 
delays should be analysed separately. 

8.6 Performance RGA (PRGA) 

The notion of the RGA has already been presented and its use as a screening tool 

for alternative control structures has already been established. However, due to the 
limitations already presented in 6.2.4, a screening with the PRGA tool seems necessary. 

ans = 

1.6402 -0.7959 0.2871 -0.1314 

-0.6025 2.1757 -1.0711 0.4979 

-0.0644 -0.2678 2.1757 -0.8435 

0.0268 -0.1120 -0.3917 1.4770 

Figure 8.6. P-RGA results 

It is obvious that the diagonal elements are similar to those of the RGA, although 

the off-diagonal ones are not. The next step is the frequency response of the PRGA, for 

the bandwidth under investigation. 

The results, again, (figure 8.7), resemble those of. the RGA. However, the real 

advantage of the method is that PRGA is independent of input scaling. This can be 

proved to be very handy, especially when G is rearranged, during the design process. 
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Dynamic P-RGA 
2 

1. 
c 

(7 

1. 

1. 

8.7 SGM 

ry -. (2,2) 

(3,3 ) 

(1,1) 

6- 
(4,4) 

ý ý-_ý 4. w. _w fruMtuuu 

1 ö-' 100 101 Frequency 

Figure 8.7. Dynamic P-RGA results 

In this method, the input and output variables are resealed, so that in the new 

matrix, corresponding to the resealed variables, the elements are directly comparable 

with each other. In the Scaled Gain Matrix, the average value of the elements in each 

row and column is one. By utilising the Matlab-based SGM routine (emsgm. m), we are 

presented with the following results: 

The SGM is: 

1.9723 1.0390 0.5730 0.4149 

1.1384 1.4278 0.7350 0.6985 

0.5181 1.1141 1.4337 0.9343 

0.3712 0.4191 1.2583 1.9523 

1.2- 
102 
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The interpretation of this interaction matrix is simple: values larger than one 

indicate strong interaction and values smaller than one indicate weak interaction. The 

largest elements then indicate the inputs and outputs, which should be connected in a 

feedback controller. Indeed, the pairing recommended by the RGA is confirmed by the 

results. The (1,1), (2,2), (3,3) and (4,4) pairs, have the four biggest values, well above 

the value of unity. However, there are also strong interactions amongst other pairs, e. g. 

the (4,3) and (2,1) pairs. To further elaborate the findings, a dynamic-SGM routine is 

used. This is presented next. 

8.8 Dynamic SGM 

An extension of the SGM method, that includes dynamics, is the D-SGM. This 

method is based on the same rules about scaling and produces similar results, but, since 

they are now frequency-linked, they can be plotted in a graph, as gain against 

frequency. A first attempt, that presents the SGM values for all the possible pairs (16), is 

the following: 

2.5 

2 

1.5 

1- 

0.5 - 

D 
1ü2 10-' 100 101 

Frequency 

Dynamic SGM 

__ __ -- - 

Figure 8.8. Dynamic-SGM results for all 16 pairs. 
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Although this might seem as a bit complicated, it is a good starting point, since the 

various trends can easily be seen. For example, the off-diagonal pairs (4,3) and (2,1) 

that - according to (static) SGM - appeared to have strong interactions, do not pose a 

big threat. These interactions seem to die out with frequency. On the other hand, the 

(1,2) pair, that seemed O. K. for 0 frequency, seems to play a greater role, as frequency 

goes up. To further analyse the system, the same graph, but focusing only on the pairs 

under test, was obtained: 

Dynamic SGM (Detailed) 
4. G 

2 

C 

1.8 

1.6 

1.4 

(3,3) 
(2.2 ) 

10-2 10-I 100 10 
Frequency 

Figure 8.9. Dynamic-SGM results for pairs under observation. 

From the graph, one can see the interactions between the pairs in question. It is 

quite clear, that these interactions become stronger, as frequency goes up, and hence, 

this enhances the viability of their choice. 
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8.9 BRG 

One method that resembles RGA but extends its concept even further, is the 

BRG. In this method, first. we consider the highest degree of decentralisation - i. e. 1xI 

block partitioning of G- that would yield a total of N SISO assignments (or pairings). 

For this, all the one-dimensional BRGs are evaluated. Among the viable ones, those 

which establish aI-I correspondence between the plant's inputs and outputs are 

selected. It should be mentioned that c#o), e, (uo) are two free parameters that are 

used in the procedure, through which one can affect the screening process and establish 

what an acceptable degree of interaction is. By arbitrarily selecting values of 

c, (co) = 0.15 and Ez (CO) = 0.45, that correspond to the diagonal elements and the 

eigenvalues of BRG respectively, we get the following results: 

uj 

yi 
1 

2 

3 

4 

One-dimensional BRG's 

1234 

1.6402 

-0.6025 

-0.0644 

0.0268 

-0.7959 

2.1757 

-0.2678 

-0.1120 

0.2871 

-1.0711 

2.1757 

-0.3917 

-0.1314 

0.4979 

-0.8435 

1.4770 

By inspecting the one-dimensional BRG's, (shown in the RGA form), it is apparent that 

no viable ones exist for our choice of E� E-, . 
It is interesting to note that the highlighted 

ones are the closest ones to the unity. However, due to the restriction of interaction with 

the use of E,, e2, they are rejected. If one is happy with a greater degree of interaction 

(e. g. for E, (w) = 0.4770 or e, (w) = 0.6402), then the (4,4) or (1,1) pairs would be 

accepted, respectively. 

Since no one-dimensional BRG's are selected, the procedure should move to 

two-dimensional ones. The diagonal elements in this case are available when all 

possible additions of two columns of the above RGA are performed. The resulting 

column vectors are shown below: 
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T«wo-dimensional BRG's 
U, 

1+2 1+3 1+4 2+3 2+4 3+4 
1 0.844 1.927 1.509 -0.509 -0.927 0.156 

2 1.573 -1.674 -0.105 1.105 2.674 -0.573 

3 -0.332 2.111 -0.908 1.908 -1.111 1.332 

4 -0.085 -0.365 1.504 -0.504 1.365 1.085 

The only promising elements are those marked in columns 1+2,3+4. The corresponding 

two-dimensional BRG's are the following: 

Uj Uj 

yl2y34 

] 0.844 0 . S19 1.332 0.327 

2i -0.153 1.573 4 0.117 1.085 

Working in the same Way, one can verify that no viable three-dimensional 1RG's exist. 

The resulting table is the following: 

Three-dimensional BRG's 
U, U, 

Y 
1 2 3 

y 
2 3 4 

1 1.131 -0.285 0.281 1.603 0.111 -0.081 

2 0.230 0.502 0.492 3 0.352 1.064 -0.047 

3 0.394 -0.854 1.844 4 0.201 0.037 0.973 

The highlighted pairs are the most promising ones. although they do require a relaxation 

of the restrictions, i. e. an increase of to 0.6402 (see RGA). 

Having found the detailed one, two and three-dimensional BRG's, it is now easy 

to understand the overall process of BRG. This process can be further automated, and 

this was actually done by the embrg. m procedure. This tries to brake the system to the 
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simplest possible sub-systems, given the c, c2, i. e. the acceptable degree of interaction. 

For the example under investigation, this procedure would give the following results: 

Please input desired value for error step : 0.0001 

w=0 

error = 1.0000e-004 

system =4 

error = 0.5733 

system =22 

error = 0.6402 

system =13 

error = 0.9080 

system= 121 

--- 

error= 1.1757 

system =1111 

The interpretation of these results is the following: 

At the beginning, the program prompts for the desirable error step value. This 

represents the step increase of the value of e,, (i. e. e, = 0, el = 0.0001, el/I = 0.0002). 

Then, the procedure tries to find the simplest mix of sub-systems, for the given error. 

For error=0, the result is "system = 4", which means we have a4x4 MIMO system. 

If the condition is relaxed, then when it reaches the point of error=0.5733, (i. e. 

g1 = 0.5733 ), the system can be split in two 2x2 subsystems: 
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u; 

\ 1 2 3 4 
Y. 
1 x x 
2 x x 

3 x x 
4 x x 

As the procedure continues and the error condition reaches the point of 0.6402, then the 

system can be split in one SISO and one 3x3 MIMO, a result that agrees with the 

previous findings: 

uj 

1 2 3 4 Y. 
1 x 

2 x x x 

3 x x x 
4 x x x 

If one is happy with an even greater degree of interaction, but wants a smaller-degree 

system, then for E, = 0.9080 the system can be split as "system =121", i. e. 

two 1x1 and one 2x2 systems. Attention should be paid to the ordering of the inputs 

and the outputs: 
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The procedure concludes when the most decentralised system is found (i. e. n SISO 

systems). In this case though, c, =1.1757, a result that corresponds with the 2.1757 

element of our BRG. The proposed system is the following: 

This procedure has produced some useful results. However, to fully explit the method, 

one should proceed with the D-BRG, so that the frequency response of the system is 

also evaluated. 

8.10 Dynamic BRG 

Having found the 0-frequency pairs, it is important to establish their behaviour 

at high frequencies. The emdbrga procedure provides this kind of information. The 

same pairs that were found from the BRG are treated for frequency response. The results 

are the following (figure 8.10). 

It is interesting to note that the results are the expected ones and also that - due 

to symmetry - the pairs terminate to the same final values. 

Next, the eigenvalues are examined. From figure 8.11, one can easily see that 

they belong to (1 ± £Z) space, and thus they are viable. Note again, that because of the 

physical symmetry, the eigenvalues of the two BRGs are identical. The first set is 

printed with lines and the second is superimposed in the form of small circles. 
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Dynamic BRG (2-D) 
1.6 

(2,2) 

1.4 

1.2 

1 

1.5 

1.4 

1.3 

(3,3) 

0.8 1 
102 101 10-1 10° 

Frequency 

Figure 8.10. Dynamic-BRG results for two-dimensional BRGs. 

Eigenvalues (2-D) 

Eigenvalue I 

C 
ý. 

[ 

I 
.1 

1 

0.91- 
102 

Eigenvalue 2 

10' 100 
Frequency 

Figure 8.11. Eigenvalue results for two-dimensional BRGs. 
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Having finished the scanning of all the possible two-dimensional BRGs, one 

proceeds to the three-dimensional ones. The static 3-D BRGs have already been found 

in 8.8. The frequency response of them, however, appears in the following graphs 

(figure 8.12 & figure 8.13): 

1) 

1. E 

c 

0 

1 

0.5'-- 
10,2 

Dynamic BRG (3-D) 

Frequency 

Figure 8.12. First three-dimensional D-BRG. 

Again, the proposed pairs seem to improve their response as the frequency goes up. 

However, it is difficult to judge which three-dimensional BRGs are the optimum ones. 

So, the two graphs are plotted again, but now with one on top of the other (figure 8.14): 
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Dynamic BRG (3-D) 
2 

1.8 

1.6 

1.4 

1.2 

1 

nsz 

2_(2,2) 

2_(3,3) 

2_(4,4) 

W .V 

10-2 

2 

1. F 

C 

10-i 100 
Frequency 

Figure 8.13. Second three-dimensional D-BRG. 

Dynamic BRG (3-D) 

101 

1 
2_(4,4) 
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_(22) 

2_(2,2) 

- -- 
ý-mot 1 

v 102 10I 10 0 10 
Frequency 

Figure 8.14. Dynamic-BRG results for three-dimensional BRGs. 
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It is now easy to see that both three-dimensional BRGs require the same relaxation of 

restrictions. The value of c, should be 0.6402 if we want any of them to be accepted. 

Because of large values of e1, e2, some of the alternatives are not so viable as 

one might think. The two-dimensional BRGs seem more attractive than the 

three-dimensional ones. 
Interestingly enough, for this example, the above decentralised control structures 

also correspond to particular process decompositions. For example, SISO decentralised 

controllers correspond to decomposition of the boiler furnace into four similar 

compartments and the 2x2 decentralised structure corresponds to decomposition of the 

furnace into two symmetric compartments. 

8.11 SVD 

By using singular value analysis, many system properties can be characterised. 

The singular values and the directional angles can be plotted as functions of frequency. 

The same also applies to the condition number, although this can be visualised by taking 

the distance between the maximum and minimum singular value in the first set of plots. 
Since at this stage, the main interest lies in the control structure, rather than in the actual 

controller design, the analysis is based on the open loop transfer function. 

The familiar boiler furnace model was again used, to test the functions. All three 

methods were applied, throughout the needed bandwidth. The results appear in the 

following figures: 
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Figure 8.15. Singular Values of the system. 
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Figure 8.16. Condition number. 
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Misalignment Angle 
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Figure 8.17. Misalignment Angle. 

101 

Figure 8.15 shows the singular values o,, figure 8.16 gives the corresponding condition 

number y, and figure 8.17 shows the total measure of interaction as functions of 

frequency w. The graphical representation is similar to that employed in Bode plots and 

the singular values are multivariable analogs to the gain in a SISO system. Therefore, it 

is not surprising to find that the er - plots remain constant at low frequency and 

decrease linearly at high frequency. Furthermore, since the singular values are 

represented on a log-log scale, the distance between the 6 and the a curve is the 

logarithm of the condition number, which decreases slightly as frequency goes up. 

Consequently, the sensitivity of the system deteriorates at high frequency. Fortunately, 

the condition number has not decreased significantly in the frequency range of interest 

and especially around w =1 . Therefore the system has adequate sensitivity for an 

attempt to design a structural compensator for example. 
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Figure 8.18. The collection of all three results. 

The angle of alignment (figure 8.17) by far exceeds 15° for all frequencies, so the 

system has no natural loop structure and compensators must be introduced to reduce the 

interactions within the system (see 6.3.1 and 7.10). Figure 8.18 represents a collection 

of all three diagnostics, so that results can easily be drawn for the system. 

This example demonstrates how SVD analysis yields structural information on 

the open-loop system. The current approach also has the advantage of decoupling the 

interaction and sensitivity analysis, so that they can be handled independently. 

Consequently, a feedback control system can easily be designed once the analysis and 

the proper compensations have been performed. 
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8.12 Conclusions 

Having gone through all the available methodologies that appear in the 

Interaction Analysis Toolbox, one can easily evaluate the usability of each one. Every 

method offers a different viewing angle, as far as, the characteristics of the model, under 

examination, are concerned. 

The RGA confirmed our suspicions regarding the suitability of the proposed 

pairings. Indeed, although they seem as the most appropriate ones, they are far from 

ideal. The D-RGA slightly relaxed our concerns regarding the suitability of the pairs at 

high frequencies. The P-RGA did not provide us with anything new, although this 

method comes into its own, when one starts rearranging G and messes around with 

input scaling. The SGM and D-SGM further questioned the viability of our choice and 

indicated the strong interactions among the various couplings. One interesting method, 

the BRG (and D-BRG, its frequency-related counterpart) appeared to produce some 

really useful results. It proposed - amongst other alternatives -a 4xSISO decentralised 

controller structure, that corresponds to a decomposition of the boiler furnace into four 

similar compartments and a 2x2 decentralised structure that corresponds to the 

decomposition of the furnace into two symmetric compartments. Finally, SVD analysis 

was unable to produce results related to the sensitivity of the system and provide some 

insights for the possible use of compensators. 

It is well-known that no single method can deal with every control structure 

selection related problem. The solutions also tend to be very case dependent. However, 

the constructed Interaction Analysis Toolbox uses a complete set of diagnostics, so that 

the designer can pick and match from all the available results and indicators. 

Our intention was not to automate the control structure selection process - an 

almost impossible mission - but rather to present a tool that can be applied in almost 

every case and provide the richest possible set of diagnostics. 

239 



Chapter 9 

INTEGRATED STRUCTURAL METHODOLOGY 

Use inference to narrow suspects. 



Chapter 9 inleyration 
///eiwdoto9iee 

/or Control &ruclure Selection 
anai$y31. m 

Coneideralione 

9. INTEGRATION METHODOLOGIES FOR CONTROL STRUCTURE 

SELECTION AND SYSTEM CONSIDERATIONS 

9.1 Introduction 

The problem of control structure selection may be seen as involving three major 

steps: (a) Classification of variables and definition of system progenitor models; (b) 

Definition of effective sets of inputs, outputs and; (c) Structuring of the feedback 

coupling of the control scheme. The overall structural methodology, that has been 

adopted in SESDIP project [SESDIP, 1] and used here, suggests a natural procedure for 

the study of the above three problems and poses a number of concrete problems for each 

of the three areas. The ordering of subproblems, we address in each of the above 

families, is based on the generality of the issues and the progression from simple models 

to more detailed dynamic models. The current approach is based on linear models only. 

Apart from specifying tests, that may help answering questions which are part of the 

future developments in the area, we address a few representative problems here to 

demonstrate the issues. However, the proper development of the field is a topic of 

longer-term research. 
The classification of variables is a problem that is not always solved using 

physical modelling arguments. Very frequently, it may lead to progenitor models, which 

are not well defined. The specific issues involved in the selection of a well-defined 

progenitor model and the procedure, that can be used to define a well-behaved model, 

are considered in section 9.2. The structuring of an effective input, output structure is 

considered in section 9.3, where a procedure progressing from generic properties on 

unstructured models, to graph properties, parameter dependent invariants and 

performance indicators is suggested, which reflects the overall structural philosophy we 

have introduced. Having decided the required input, output structure of the feedback 

scheme, the issue that has to be decided is that of structure of the feedback scheme i. e. 

centralised versus decentralised, and if decentralised, then the exact nature of 

decentralisation. The latter involves the partitioning and the pairing, as well as order of 

dynamics, for the particular channels. The methodology and diagnostics are based on 

the use of simple models first that progressively move to more detailed models and 

more detailed structural criteria. The current emphasis in the approach is the screening 
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of the bad choices. Then, the final selection is left to performance dependent criteria and 

multi-objective optimisation. A procedure for sorting out various criteria is based on 

specifying first the structure, then use optimisation for the fine-tuning of parameters. 

9.2 Classification of Variables and Definition of Well-Structured Progenitor 

Models 

We assume that we are given a linearised model with a large number of 

exogenous variables, potential measurements and controlled variables and a given 

number of states. Very frequently, we may start with a matrix pencil, or auto-regressive 

model. 

General problem: Define an oriented effective model that has the "best" possible 

properties and a control structure that allows the solvability of a number of important 

control problems that may be posed. 
13 

The model that is given is partially non-oriented, since the exogenous variables are not 

classified to control variables and disturbances. Approaches, that may be followed to 

tackle the above mentioned problem, are of the following type: 

(i) Physical approach. 

(ii) Structure Assignment on implicit models approach. 

(iii) Hybrid approach. 

Here we consider the fundamental issues of the first two, whereas the third is based on 

the composition of the first two. 

9.2.1 Conditioning of an Oriented Model Derived by Engineering Considerations 

The starting point of our investigation may be an implicit model of the matrix 

pencil type [Karc. & Hay., 1]: 
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Fps=Gý, F, GE91"* (9.1) 

where ýE9 is a mixed variable vector, or more generally auto-regressive forms of the 

behavioural type [Wil., I] 

T (p)ý = 0, T (p) E'9 "x" [p], ýE 91" (9.2) 

The classification of variables may be based on engineering arguments and it is 

summarised below: 

Problem (11: Using knowledge of the physics, chemistry of the problem, as well as 

assuming a given system boundary (see report on Global Instrumentation [SESDIP fl), 

we can provide a classification of the exogenous variables into: (a) potential control 

variables and (b) disturbances. 

11 

Remark (9.1): Resolving the issues involved above we use physical modelling 

arguments (knowledge of process) and knowledge, specification of the system 

boundaries (design scope, assumption). 

The result of this step is an oriented model (separation of control, disturbance variables 

and outputs), but not necessarily well defined. In fact, the inputs, outputs may not be 

independent and the input, output transfer function may not be of full rank. We, thus, 

consider the system descriptions: 

z= Ax + By. AE f"x", BE 91""' (9.3) 

y= Cx + Du, CC q%n, DE 9gxr (9.4) 

with corresponding transfer function H(s) = C(sl - A)-' B+De flax' (s) 
. 

Problem 2: Devise a methodology for the selection of a well structured, progenitor 

model (or a family of well structured models) such that the matrices B, C, or the 
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corresponding input, output matrices for proper systems have full rank and the transfer 

function H(s) has full rank. 
0 

This procedure implies the need to compute the normal rank of H(s). For a 

number of distinct frequencies (randomly) selected, use SVD to compute rank of 

H(jav). This leads to the definition of the normal rank p of the transfer function. 

Remark (9.2): p defines the maximal number of output variables that may be 

independently controlled (output function controllability criterion). Furthermore, p 

defines the minimal number of independent inputs required for control of p outputs (if 

it is less than p, then we control fewer variables). 
0 

The number p emerges as one of the most basic structural characteristics that determine 

fundamental problems of the final model. Some important structural properties related 

to degeneracy follow from the study of the Kronecker structure of system matrices 

[Karc. & McBean, 1] and some of the properties are summarised below: 

Remark (9.31: If H(s) E91gx'(s) and rankl(, ){H(s)} = p< min(q, r), then 

N1{H(s)} : p, - {0} and N, {H(s)} * {0} 

a) If N, {H(s)} # {0} and there exist constant vectors in it, then 

rank 
D<r 

and rank(B) <r (9.5) 

Furthermore, if 

D =r-P (9.6) 
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then all right indices of H(s) are zero, then the system is called totally input degenerate. 

Similarly: 

b) If N! {H(s)} # {0} and there exist constant vectors in it, then 

rank{[C D]} <q and rank(C) <q (9.7) 

Furthermore, if 

n, {[C D]} =q-p (9.8) 

then all the left indices of H(s) are zero and the system is called totally output 

degenerate. 

For (S) general system H(s) E 91qx'(s) we define the numbers of 0-right and 0-left 

(nulling) indices (0-cmi, O-rmi of the system matrix) as 

tr=r-rank{[B' D']'}Sr-P (9.9) 

tj=q-rank{[C D]}<q-p (9.10) 

and we refer to them as the input-output redundancy indices of the H(s) model; with 

this notation, total input (output) degeneracy t, =r-p, (t, =q- p), implies that all 

right (left) indices of the system are of the 0-type. Alternatively, these conditions imply 

that degeneracy of the transfer function is entirely due to redundancy in the input or 

output scheme. 
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The above discussion suggests that an important problem that has to be solved at 

this stage is the following: 

Full Rank Conditioning Problem (FRCP): Consider a system with rank deficient 

transfer function and possibly having nonzero redundancy indices. Define maximal 

subsets of the existing input, output variables, such that the resulting system is non- 
degenerate and has full rank input and output structure. 

0 

Note that implicit in the above problem formulation is the assumption that the 

original model inputs and outputs are physical variables and thus we want to select a 

maximal subset of them rather than carrying out general transformations of the input, 

output sets. This additional condition influences considerably the study of the problem. 

The rest of this section deals with the study of solutions to the above problem. 

For the sake of simplicity, we shall consider the case of systems with qzr and 

shall assume that p= rank, (s){H(s)} <r. The analysis for the q <r case follows by 

transposed duality arguments. We start the analysis by considering the case first of 

0-right (0-ri), 0-left indices (0-1i). 

9.2.1a Zero Indices case 

If P(s) is the Rosenbrock's system matrix 

P(s) - 
sl -A -B E 9, ("")'("") Is] 

-C -D 

then we have: 

such that (a) There exists a 0-right index (0-ri) if there exists a vector [0', u']' 

sl-A -B 0 

-C -D u 

B 
--* D lu=o 

(9.11) 

(9.12) 
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(b) There exists a 0-left index (0-li), if there exists a vector [0', y'] such that 

sI-A -B [ýI 
' Y' ý 

-C -D 

]=o 
-a y` [C D] =0 (9.13) 

Remark (9.4): If qzr, then the presence of 0-ri implies that H(s) is degenerate and 

is equivalent to redundancy in the actuator scheme. The presence of 0-li is equivalent to 

redundancy in the actuator scheme, but does not necessarily imply system degeneracy, 

unless q=r. The reverse holds for the q: 5 r case. 

Let us now denote by 

11 

F= 
D= 

[fj-J E ct(�+q)xr, rank(F)=zo (9.14) 

Ih H= [C D]= :E gtgx(n+r) , rank(H) = Qo (9.15) 
hq 

The selection of a maximal ro -cardinality subset of {f 
ý, """, 

f 
r} , or ao -cardinality 

subset of {h,, """, h, } to guarantee ranks ra, o0 respectively does not have a unique 

solution. Selection of the most orthogonal zo (on) cardinality subset of {f'} ({h, }) is 

a problem that can be solved by using the "Best Uncorrupted Basis Algorithm" 

[Mitr. & Karc., 2]. A description of this Algorithm will be given at the end of this 

section. The result of applying this algorithm is that we obtain a smaller dimension 

model 

q' q H'(s) E fe xe (s), 
r' 

5r 
(9.16) 

<_ 

-4 
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where rank{[C' D'] } 
and rank{[B" C" III are full and thus, there are no zero 

minimal indices in N, {H'(s)} and N, {H'(s)}. However, we might have 

rank{H'(s)} = p' < min{q', r'} (9.17) 

9.2.1b Nonzero Indices Case 

We consider now the case where qýr, p<r and assume that the system has a 

right index with value k. Then, there exists a pair of polynomial vectors x(s), u(s) 

such that 

X(S) = xo +s x, + ... +s`-'zk_i (9.18a) 

u(s)=uo+s u, +... +s'-'uk_, (9.18b) 

(sl - A)x(s) = Bu(s) (9.19) 

Cx(s) + Du(s) =0 (9.20) 

The above lead to the following result 

Proposition (9.1): The system S(A, B, C, D) with qzr and p<r has a right index 

with value k, if and only if there exists a set of vectors {uo, u� """, uk } such that the 

following conditions are satisfied: 
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AkB Ak-'B A&-ZB ".. A2B AB B uk 
CAk-'B CAk-2B CAk-3B ... CAB CB D uk_, 
CA`-2B CAk-3B CAk-4B ... CB D 0 uk_Z 

CAB CB D """ 0 0 0 u2 
CB D 0 """ 0 0 0 

_u, 
D 0 0 """ 0 0 0 YO 

Proof 

(9.21) 

Substituting the expressions of x(s), u(s) from (9.18a), (9.18b) into (9.19), 

(9.20) we have 

(sI-A)(X0+sx +"""+sk-'. Xk_, 
)=B(yp+SU, +"""+Sk1! k) 

C(xo+sx, +"""+sk'txk_, )+D(uo+su, +"""+skUk)=0 

By equating coefficients of equal powers, it follows that 

xk-1 = Byk 

Xk-2 = ABuk + BZlk-1 

&= Ak-'Buk + Ak-2Buk_j +"""+ ABu2 + But 

0= AkBuk + Ak_l BUk_1 +"""+ A2Bu2 + ABu, + Buo 

and 

Cxo + Duo =0= CAk-1 Buk + CAk-2Buk-1 +"""+ CABu2 + CBu, + Duo 

Cx1 + Du1 =0= CA"`-2 Buk + CA"r-3BUk-, +"""+ CABu3 + CBu2 + Dul 

Cxk-1 + Dyk-1 =0= CBuk + DUk-1 

Duk =0 

By combining (9.23) and (9.22b), condition (9.21) follows. 

(9.22a) 

(9.22b) 

(9.23) 
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The above condition may now be used to derive conditions for non-degeneracy 

of transfer functions and thus also procedures for redesign of the system to guarantee 

non-degeneracy. For the given system, we define the following set of matrices: 

A2B AB B 
AB B 

CA B CB D 
Mo = 

[DB], 
MI = CB D, M2 = CB D0 

D0 
D00 

A*B Ak-'B """ AB B 
CAk-'B CAA-2B """ CB D 

AkB �" AB iB CAk-2B k-3B 
... D 0 --+-- 'D 

Nk 
CAB CB ... 0 0 
CB D """ 0 0 
D 0 """ 0 0 

In terms of the above matrices, we may state the following result: 

(9.24) 

Theorem (9.1): For the system S(A, B, C, D) with qzr, the following properties hold 

true: 

(i) If Mo has full rank, then the system has no right indices of any value and it is 

thus non-degenerate. 

(ii) If r is the smallest integer for which M, has full rank, then the maximal 

possible value of a right index is r -1. The existence of such indices is 

determined by the solutions of the following equation 

A"B AT-2B AB iB ur_, 

1D' =o (9.25) 
Nom, ; u, 

'0 Yo 
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Proof 

(i) From Proposition (9.1), it follows that if rank(D)=r, then from the last of 

(9.21) we have that Duk = 0. Clearly, this implies u, =0 and this in turn (from 

(9.21)) yields Duk_, = 0; again we have uk_! =0 and by obvious induction, 

uk =0 for all k=0,1,2, """. It is now clear that since there is no u(s) and thus no 

x(s) satisfying (9.19) and (9.20), the system is non-degenerate. 

(ii) Once more, if r is the smallest integer for which M, is full rank, then for any 

k>z we have from (9.21) that 

uk 
mi. =0 

uk_t_I 

from which u� _"""=u, _t_, =0 and thus, if indices exist, then their values 

cannot be larger than -r. 
0 

For the case of strictly proper systems, we may define the matrices: 

A*B """ AZB AB B 
CA'-'B """ CAB CB 0 

AZB AB B 
AB B CAk-ZB ... CB 00 

_ 
], 

M2= CAB CB 0 ""Mk= M' 
CB 0 

CB 00 
CAB """ 000 
CB """ 000 

(9.26) 

and Theorem (9.1) leads to the following corollary: 

Corollary (9.1): For the system S(A, B, C, D) with qzr, the following properties hold 

true: 

(i) If k, is full rank, then the system has no right indices and the system is 

non-degenerate. 

251 



C/uzpler 9 inlegralion 
/I%tiodoloyiee /or (fonlro[ Structure 

election and 
3y. 

4(em ifondileralione 

(ii) If r is the smallest integer for which A has full rank, then the maximal 

possible value of a right index is r -l. The existence of such indices is 
determined by the solutions of 

A`-'B A`-2B """ AB iB 

(9.27) 

'0 

11 

Proof: 

(i) From (9.21) we have that there exists a 0-right index if the matrix [B', 0]' or 

equivalently B looses rank. However, if rank(CB) = r, then it is necessary that 

rank(B) = r, because, otherwise 3v: v#0 and Bv =0 -+ CBv =0 and this 
leads to a contradiction. Thus, there is no 0-right index. Following similar 

arguments to those in the proof of the Theorem, it follows also that there is no 

other right index of any value k. 

(ii) Part (ii) follows along similar lines. 

13 

The above results provide for formulating redesign procedures for H(s), which 

can lead to transfer functions with non-degeneracy and non-redundancy in the input, 

output structure. Redesign that may lead to the minimal possible reduction of the 

numbers q, r has to be based on the investigation of conditions of the type (9.25), 

(9.27). In fact, what we are aiming at is the reduction of the number of inputs such that 

the above conditions are not satisfied. Such investigations are possible, but quite 

complicated. An alternative simpler approach for redesign is to rely on sufficient 

conditions. This is summarised below: 
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Remark (9.5): If the system S(A, B, C, D) with q >_ r is degenerate, a redesign 

procedure leading to S(A, ff, C, D) with D' full rank guarantees the creation of a 

system which is non-degenerate and has full rank input structure. Some redesign of the 

output structure may be required if [C D] is rank deficient. 

0 

Remark (9.6): If the system S(A, B, C) with q >_ r is degenerate, a redesign procedure 

leading to S (A, B, C) with CB' full rank guarantees the creation of a system which is 

non-degenerate and has full rank input structure. Some redesign of the output structure 

may be required if C is rank deficient. 

0 

The meaning of redesign of D, or CB is that we aim to define a maximal subset of the 

columns of D, or CB that guarantee the maximal full rank. This procedure is clearly 

sufficient, but not necessary and leads to a system of smaller dimensions, as far as input, 

output structure is concerned. The procedure is described below: 

Redesign procedure: Let TE Jfgx', qzr be a matrix (which may be D, CB, or nay 

other) with rank(T) = po, and let 

T_ [t1, t2,..., t, ] (9.28) 

If {?,, i2, """, ipo } is the subset of column indices that corresponds to the "best uncorrupted 

base" selection of the set {tý, """, t, }, than {i,, i2, """, I} defines the required selection that 

leads to a matrix 

9xpu (9.29) 

13 

If the rank po is too small, then the sufficient procedure above has to be avoided and 

the full conditions have to be used. Clearly, all the above mentioned results apply also 
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to the q: 5 r case by use of transposed duality. We close this section by summarising the 

procedure for selection of the "best uncorrupted basis" of a set of vectors. 

9.2.1c Selection of Best Uncorrupted Basis 

If {xj, iE m} is a set of vectors of 93", X= sp{x,, ie m} and dim X<m, then 

the selection of a basis for X is a problem [Mit. & Karc., I] that may be handled by the 

Gram-Schmidt orthogonalisation procedure, or use of the Singular Value 

Decomposition. Such procedures yield orthogonal bases, but transform the original data. 

In many applications, such as the problems considered above and in problems of 

"non-generic computations" ([Karc. & Mit., 1]) it is essential to select a subset of the 

existing set, without transforming the original set. This may be done according to some 

rule, and in this case we may consider the "degrees of orthogonality" of the 

orthogonality. This problem may be referred to as selection of the "best uncorrupted 

basis". The approach presented here for the selection of the best uncorrupted basis is 

based on the properties of the Gram matrix and uses tools from the theory of compound 

matrices (Mar. & Minc, 1]. Some useful definitions and tools are considered first. 

Definition (9.1): [Gant., 1]: Let x,, x2, " " ", x,,, be vectors e 91' . The matrix defined by 

(a1'XI) ('x1 2) ... 
N. zm) 

G_ 
(12 "xI) (z2 "x2) ... (x2 "xn, ) (9.30) 

(xm 
ýxll 

(Xm 
ýx2) ... 

is called the Gram matrix of the vectors x1,12, """, xm and the determinant 

Gm = G(x,, x2, """, x, �)=jGI 
is called their Gramian. 

0 

Note [Gant., 1] that the vectors xI'2' """, x, � are linearly independent, if and only if their 

Gramian is nonzero; in general we have that IGI z0 and we have the following property 

that holds true (Hadamard's inequality): 
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G(x�x2, - " ", xm) S G(x, ) " G(x2)" " "G(x,,, ) (9.31) 

Note that G(x, ) _ lkLJ12 and if the vectors are of unit length (i. e. 11- II2 =1,1=1,2, " " ", m), 

then 

Remark (9.7): An alternative test for closeness to normality of a normalised selected 

set can be based on the condition number of the corresponding matrix. In fact, the 

deviation from unity of the condition number is a measure of proximity to 

orthogonality. 

0 

0: 5 G(x,, XZ,..., Xm) <1 (9.32) 

If A=[rý, rZ, """, r, �]` E91J"Kn, then the normalisation of A is a matrix 

AN = [v� vZ, """, 3 m]` E 9t'"x" with the property: v; = r; /jjr; Ij2 
,i =1,2, """, m; it is obvious 

that v, i=1,2, ---, m are unit length vectors (II_v; 112 =1). The test on closeness to 

normality defined by condition (9.32) provides a solution to the problem of selection of 

an uncorrupted basis as shown below: 

Proposition (9.2): Let A=[r�r2,. E91mxn , p(A) = r. -5 min{m, n}, 

AN E 
mxn the normalisation of A. Suppose 

G= G(vI, v2, " " ", v,, ) E 9V Xr the Gram matrix of the vectors {v_� v_2, -, v_�} and 

C, (G) = 
[c, 

j] E 9t(` x( ") the r-th compound matrix of G. If c,, = det{G[a/a]}, 

a= 
(1ý, IZ, " "" , 

1, ý E Q,, 
m 

is the maximum diagonal element of C, (G), then a most 

orthogonal uncorrupted base for the row space of A, consists from the vectors 

{i''2'«'}' 

13 
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The proof of the above mentioned result readily follows from the relationship 

between C, (G) and the Gramian. This result provides a procedure for selection of the 

most orthogonal set of rows, which is rather simple. An alternative procedure based on 

the condition number is more complicated since it involves the computation of 

condition number on all possible combinations of r-sets of vectors. 

9.2.2 Model Orientation Problems for Implicit Systems 

Implicit equations of the type (9.1), (9.2) occur naturally as system models in a 

number of practical situations, such as [Aple, I), [Karc. & Hay, I]: 

" Modelling of composite systems using linear subsystem models. 

" Linear system identification. 

" Solution of operating points (the `load-flow' problem in electric power systems 

analysis or the `D. C. analysis' problem for non-linear circuits). 

" Simulation of possibly large and sparse non-linear systems. 

" Design of controllers for multivariable systems using algebraic or frequency domain 

performance specifications. 

" Study of dynamics of linear systems, in the context of geometric theory. 

System descriptions of the (9.1), (9.2) type are referred to as matrix pencil and 

polynomial model implicit descriptions respectively. The characteristic of both (9.1), 

(9.2) descriptions is that the vector of system behaviour fi(t), 47(t), referred to as 

im licit vector contains all the variables of importance to the study of the system, 

without making a distinction between control, observation and internal dynamic 

variables and without making any assumption on the independence of them. 

Descriptions with the above properties are called non-oriented [Aple, 1], [Karc., 3]. For 

a number of processes, the classification of the variables in the implicit vectors, referred 

to as implicit variables is not known a priori [Wil., 1]. Although the study of dynamics 

may be carried out on implicit non-oriented forms [Wil., 1], when it comes to observing 

(measuring), controlling, or trying to connect the process as part of a composite 

structure, the classification of the implicit co-ordinates into inputs, outputs and internal 

variables arises naturally. The problem of classifying the implicit variables into inputs, 
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outputs and internal variables is called Model Orientation Problem (MOP) and it is 

considered here as a problem of algebraic assignment or structure assignment. A 

summary of the objectives of such a problem (considered within the ESPRIT project 

SESDIP [SESDIP, 1]) is given below. The proper study of this problem has been 

outside the scope of this thesis. 

9.2.2a Issues and Problems in Model Orientation 

For most of the applications, the nature of the problem defines part of the 

partitioning exercise, but there are degrees of freedom in the overall problem and these 

have to be explored. We consider two types of MOP, the realistic version, where part of 

the classification is defined by the nature of the problem and referred to as restricted 
MOP and the idealistic case where all implicit variables are unconstrained, as far as 

orientation is concerned, and it is called the free MOP. The issues involved in the study 

of the free MOP are also present in the restricted version of the problem. Thus, in the 

following, we examine the free version. The free MOP versions are defined as: 

Definition (9.2): (i) Given the matrix pencil implicit model of equation (9.1), define a 

transformation Q: =Q, 
QE 9jkxk, IQI 0, such that it is equivalent to 

pt-A^ -B x(1) 
=[- 

0 

-C 0 u(1) Y(1 
(9.33) 

and where xE9, uE9 and yE 91'. The system S(E, Ä, B, C) is called an 

orientation of the (pF- G) and j: (F, G) denotes the family of all such systems. 

(ii) Given the polynomial implicit model of equation (9.2), define a transformation 

R(p): = R(p)ý, R(p) E R"x"[p], JR(p)I #0 such as (9.2) is equivalent to 

T (P) U(P)t) 
-0 (9.34) 

-V(P) W(P) u(t) [-(t)j 
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and [w', u', y']' , where w E'9', U E911, y E'91 ' and p=v+£+m. The system 

described by the system matrix [Ros, 1] in equation (9.34), is called 
(v, £, m) -Rosenbrock orientation and will be denoted by L(T, U, V, W) and the family of 

such models will be denoted by (H). 

0 

The families Z (FG) G) or Z (H) contain more than one solution. Such solutions may 
be classified according to the invariant structural characteristics of the corresponding 

orientation, as well as the input, output type properties of the resulting oriented model. 

Furthermore, we might have a variety of solutions due to the variability of the number 

of inputs, outputs we specify, as well as the selection of alternative sets. For the case of 

polynomial implicit descriptions, the current definition of orientation is based on 

equivalence that preserves only the smooth space of solutions of the original and 

oriented model. Alternative orientation problems may also be defined, which preserve 

also impulsive behaviour, if specialised transformations of the type described in 

[Pug. et. al., 1] are used. An important issue in selecting oriented models is the issue of 

model minimality [kni & Sch., 1] [Bont & Mal., 1] which is equivalent to selecting a 

minimal number of internal variables. Issues of minimality, as well as assignment of 
desirable structural characteristics are important criteria which have to be used in the 

parametrisation of the (F, G), (H) families. A problem that is similar in nature to 

MOP, is that of invariant realisation presented in [Karc, 8]; the results there provide a 

useful methodology for the study of MOP. 
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9.3 Definition of Effective Input-Output Structure on Well structured 
Models 

We consider a well-structured Progenitor Model represented by the transfer 

function matrix H(s) E 9iglr(s) . Such a model may be of excessively large dimensions 

and the problem, which is considered here, is the definition of a smaller dimension 

model, 

H(s) E 91"'xP(s), m: 5 q, p5r (9.35) 

which has adequate input, output structure for the control and measurement 

requirements of the problem. The selection of the effective input, output structure is 

based on criteria using system properties on models which are progressively more 

detailed. Such a framework involves the following steps: 

Problem (3): Determine the minimal required cardinality of the input, output structure, 

which is required to guarantee certain control and measurement properties. 

If m, p are the effective numbers of outputs, inputs respectively, then assuming that n 

is the McMillan degree of the H(s) progenitor model, we can use the results on the 

generic solvability of control problems derived in Control Theory and summarised in 

report [SESDIP, SDCU046], as well as any structural information, such as Segrd Index 

to define desirable values for m, p. These results may be used as theoretical 

background information, which can be used to well-condition the model. A brief 

summary of some of these results is given below to indicate the nature of these criteria. 

9.3.1 Criteria for selection of numbers of inputs, outputs based on Generic 

Solvability of Control Problems. 

In this section, we will review the generic solvability conditions for exact 

synthesis problems in terms of discrete, as well as continuous system invariants, with 

the aim to characterise the desirable properties of invariants form the viewpoint of 

characterising the potential of systems for accepting certain types of control solutions. 
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These results provide means to exclude bad choices in the initial phase of the design of 

the system and aim to well-condition it. Here, we provide a representation sample of 

criteria, which may become part of a theory library for control structure selection. 

Results: Sogre Index and Frequency Assignment [Karc., 111. 

I) Let K(A) be the maximum of the geometric multiplicities of the eigenvalues of 

A, known as Segre Index, then if K(A) > p, then the pair (A, B) is uncontrollable, 

for any choice of the parameters in A, B that preserve the above assumption. 

Furthermore, 

II) For a given A, if ic(A) <_ p, then for a generic B, (A, B) is controllable. 

As far as the pole shifting property via static state feedback, we have: 

Necessary condition for eigenvalue placement: 

Let Kc, be the geometric multiplicity of the i-th eigenvalue of A, then if K, >p then 

this eigenvalue cannot be shifted via static state feedback. 

The following table summarises the previous results including the dual problem of 

observer design: 

Desirable 
Generic Structural 

Problem Compensation 
Solvability 

Values for 
Characteristics 

Scheme 
Condition 

Structural 
to be avoided 

Characteristics 

Large 
Pole Static State 

K(A)< p K(A) =1 eigenvalue 
Assignment Feedback 

multiplicities 

Large 
Observer Static Output 

x(A) <p x(A) =1 eigenvalue 
Design Injection 

multiplicities 
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Results: Static Output Feedback Pole-Assignment 

If N(s)D(s)-' is a right MFD of the transfer function C(sI - A)-' B then the equation: 

det [I,, K] 
N(S) 

= p(s) 

has to be solved with respect to K. 

A necessary condition for the solvability of the above problem for every polynomial 

p(s) of degree n is that [Lev. & Kar., 1] 

Necessary condition: mp >_ n and rank(P) =n+1 

where P is the so called Plucker matrix, which is the coefficient matrix of the 

compound Cpl [D(s)', N(s)', '). It was also proven that the following is a sufficient 

condition for generic pole placement: 

Generic Sufficient condition: mp> n 

The special structure of the matrix A, as defined by the Segrd Index has the following 

implications [Kar. 10]: 

it x(A) be the maximum of the geometric multiplicities of the eigenvalues of A then 

if x(A) > min(p, m) then the Plucker matrix of the system has rank less than n+1 and 

therefore the system is not arbitrarily assignable by static output feedback. 

The following table summarises the above results: 
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Desirable 
Generic Structural 

Compensation Values for 
Problem Solvability Characteristics 

Scheme Structural 
Condition to be avoided Characteristics 

Pole Static Output mp> n Small "n" 
Large K(A) Assignment Feedback rank(P) = n+ 1 x(A) 5 min (m, p) 

Results: Dynamic Output Feedback Pole Assignment 

Given a system of n -states represented by amxp transfer function 

G(s) = N(s)D(s)-' , find a feedback controller K(s) = D, (s)-' N, (s) of degree n, such 

that the closed loop characteristic polynomial is equal to a given one P(s). In other 

words, the equation: 

det [D, (s)Ni (s)] 
N(S) - p(s) (9.36) )-j 

has to be solved with respect to [D, (s) N, (s)]. The solvability conditions of the above 

problem depend again on the rank of a generalised Plucker matrix related to the 

problem. We define the n, Toeplitz-Plucker matrix [Lev. & Kar., 2] [Lev. & Kar., 4] 

n+n1+1 

T=1 

where the A's satisfy 

- pn pn-, .. PC 0 ... 0 

0 pn p�-I ... po ... 0 

0 pn 

" po 

0 ... 0 Pn pn-ý ... Po 

(9.37) 
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C, 
N(s) = s" P,, + s"-I pn-1 +... +p 0 

(9.38) (s) 

(in other words the A's are the columns of the Plucker matrix P). Based on this matrix 

we have the following two necessary conditions for the solvability of the arbitrary pole 

placement via feedback controllers of degree n, : 

Necessary conditions: 

1. rank(T)=n+nj =1 

2. mp+M(m+p)>_n+rn 

Remark (9.8) 

(a) According to the above, given a system of p -inputs, m -outputs and n -states, one 

has to choose a controller of degree at least (n - mp)/(m +p -1) . If the rank of 

Plucker matrix P is n+1, then the rank of T is generally n+ nj +I and thus 

condition 1. is satisfied. In the other case (rank(P) <n+ 1) for T to have full rank 

n, must be greater than or equal to (n + 1- rank(P))/(rank(P) -1) . To summarise: 

n-mp n+1-rank(P) 9.39 n` max 
m+p -1 

' rank(P) -1 
) 

is a necessary condition for achieving arbitrary pole assignability using controllers 

of degree M. 

(b) The above conditions do not always ensure arbitrary pole assignability for a generic 

system and in some cases higher degree controllers have to be selected. In fact 

arbitrary pole assignability holds true (for a generic system satisfying mz p) if r; 

is greater than or equal to the smallest multiple of p exceeding (n - mp)/(m +p -1) 

(for p >_ m we have a dual result). The selection of such a degree guarantees that T 

has full rank (at least for a generic system); there are however nongeneric cases of 

plants that T may be rank deficient. 
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Desirable 
Generic Structural 

Compensation Values for 
Problem Solvability Characteristics 

Scheme Structural 
Condition to be avoided Characteristics 

Pole Output Feedback � ,,. FI. -(ý Small "n" Large n, 
'Assignment of degree n, 

f 

ic(A) s min(p, m) Large K(A) 

Results: Simultaneous Pole Assignment, Stabilisation 

The issue of simultaneous stabilisation or pole assignment arises when a plant is 

subject to a discrete change. In this case the problem is to find a feedback controller 

k(s) that simultaneously assigns poles and stabilises all plants G, (s) in a given family. 

For the simultaneous pole assignment we have: 

Simultaneous pole placement via static controllers: 

Consider k generic systems G, of p -inputs, m-outputs and n, -states respectively then 

if: 
k 

m>_k+c, (9.40) 

where c, is the smallest controllability index of the i -th system, then their poles can be 

shifted arbitrarily via the same static controller. 

The work so far has been representative of the type of results that may be used, 

but by no means exhaustive. An important emerging future task is: 

Task fl): Develop a library of structural conditions and a procedure for working out the 

optimal values of m, p given the control and measurement requirements. 
13 
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The integral part of the above analysis is the solution of the following problem: 

Problem (4): Identify robustly the basic structural characteristics, such as McMillan 

degree, orders of infinite zeros, Segre characteristic, etc. on early models which may be 

characterised by uncertainty in dynamics and parameters. 
13 

The problem of structural identification, defined in [Kar. & Mil., 1], is related to the 

above; however, the area is still in its early stages of development. It is worth noting 

that in this step we require the least possible information from the progenitor model to 

decide on the required number of inputs and outputs. 

9.3.2 Use of Structural Graph Analysis. 

The type of analysis used above makes no assumption on the progenitor model, 

apart from the basic structural features considered above (numbers of inputs, outputs, 

states, Segre index, etc. ). Assuming a bit more about the underlying model leads to the 

following problem: 

problem (5): Define all possible pairs of subsets of the input, output structure which are 

needed to guarantee basic structural properties, such as structural controllability, 

observability, system vulnerability, etc. 
O 

In this step, we exploit the fundamental underlying graph structure of the progenitor 

model, which requires some more detailed information. We use graph theory for such 

an evaluation and some of the first results in this area are presented in [SDCU058, 

SESDIP] report. The aim of this investigation is to produce more well structured 

alternatives than those specified by the investigation previously, which then have to be 

further investigated with criteria which are more detailed than those of the graph type 

structure. An important issue here is the use of existing and development of new graph 

type diagnostics for the selection of input, output structures of interconnected system for 

which there is an explicit knowledge of the underlying interconnection graph. This topic 

has been considered in a previous chapter and a systematic approach has been presented 

in [SESDIP, SDCU058]. 
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9.3.3 Parameter dependent invariants and diagnostics 

Progressing from models described from dimensions and graph structural 

information on the interconnections to models, having fixed numerical parameters, we 

consider problems of invariant structure assignment, which may be described as: 

Problem (6): Evaluate the pairs of input, output structures produced by the previous 

step and specify new alternatives using parameter depended structural invariants such as 

zeros, specific values, controllability, observability indices, properties of Plucker 

matrices, Forney orders, etc. 

At this stage, we use linear models and rely on problems of the general structural 

family of model projection [Karc., 10] to assign desirable structural characteristics, or 

avoid the formation of undesirable ones. The area of assignment of invariants has not 

been properly studied with the exception of the problem of zero assignment by squaring 

down [Kar. & Gia., 1] the fundamentals of which are described below. 

9.3.3a Squaring down and zero Assignment 

For a non-square plant whose number of measured output variables is greater 

than the number of control inputs (m > p), the problem of combining all outputs 

together into a new set of outputs, whose number is equal to the number of control 

-inputs has been called the "squaring down" problem [Kar. & Gia., 1 ]. It is evident that 

the control of the general squaring down problem has significant consequences on the 

zero structure of the corresponding loop transmission transfer function matrix and 

therefore, it vitally affects the final control design process. 
We consider a system S whose input-output behaviour is described by the 

transfer function G(s) = N(s)D(s)-' where m>p. Under the coprimeness assumption, 

the zeros of the system S are given by the zeros of the numerator N(s) . Squaring down 

at the plant outputs makes sense as a post-compensation with dynamics representing 

those, of the sensors used, or constant. 
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u(s) G(5) ? (s) K y(s) 

Figure 9.1. 

Then the zeros of the overall system are given by the zeros of KN(s) and its invariant 

zero polynomial is given by: 

zr(s) = det(KN(s)) = det(KN(s))det(Z(s)) (9.41) 

where Z(s) is a -greatest right divisor of N(s) and where N(s) is the least degree 

polynomial matrix of the rational vector space colsp{G(s)}. It is clear that det(Z(s)) is 

a fixed divisor of z(s) for all K (invariance of existing zeros under squaring down). 

The newly introduced zeros, are the zeros of the polynomial: 

f (s) = det(KN(s)) (9.42) 

where f (s) is a polynomial with degree equal to the Forney's dynamical order S 

[For., 11 of the previous rational vector space. The problem of zero assignment by 

squaring down, can be defined as defining a full rank K that assigns the zeros of (9.42) 

arbitrarily. 

For this problem we have the following generic result [Karc. & Gia., I]: 

Generic result: 

If p(m - p) >, 5, then a generic system, the zeros can be placed to arbitrary positions. 
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Summary: 

Generic Desirable Values Structural 
Compensation 

Problem Solvability for Structural Characteristics 
Scheme 

Condition Characteristics to be avoided 

Zero Assignment Static 
p(m _ p) > Small n Right half plane 

postcompensator zeros 

Algorithmic procedures for solving this problem are of similar nature to those 
developed in [Lev. & Karc., 2]. 

The overall area of structure assignment using Model Projection Problems is in 

its early stages of development. The generic solvability results may become part of the 

structural library for design. The results of such an investigation lead to smaller sets of 
input, output structure alternatives, which probably have to be further evaluated with 

some additional criteria. In fact, the definition of certain structure assignment problems 

may lead to a parametrisation of the possible solutions from this set. The alternative 

means required, can be provided through the following alternative step: 

9.3.4 Input, output selection and Performance Indicators 

Structure assignment is one way of affecting the potential of a system model to 

have an easy control problem. An alternative is to use the freedom available in the 

Model Projection Problems to Shape System Performance indicators. In general, 

Performance Indicators are affected by Control Design, but here we consider this 

alternative design. We may summarise as: 

Problem (71: Specify the free parameters, or use the free variables in the parameters 

form of solution of structure assignment, or structure avoidance of the previous step by 

exploiting criteria based on the values of performance indicators, such as energy 

transfer, or requirements, degree of controllability, observability, robustness of 

properties under system uncertainty, etc. 
1: 1 
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At this stage, we deal with a well-structured linear model, or a family with free 

parameters, which satisfy certain structural conditions. The problem we face is to retain 

the achieved structural features and achieve some additional properties for the input, 

output structure by tuning parameters. We may use a great variety of performance tests 

and criteria, such as energy requirements for control and observation, condition number 

of G(s), as well as other properties such as maximising the degree of controllability, 

observability, reduction of sensitivity to parameter uncertainty, etc. The current stage of 

development of this area is dominated by the effort to define meaningful tests and 

criteria. The next stage has to do with the formulation of appropriate optimisation 

problems for achieving the best possible tuning. 

It should be noticed that the analysis, so far, is based on structural characteristics 
first, which determine the potential for control performance and progressively move to 

performance indicators shaping, after having specified the basic structure. The overall 

philosophy, which underlines this approach, is to sort out first the structure formation by 

solving well defined synthesis problems, define families of such solutions and then use 

multi-objective optimisation for selection of free parameters in the available 

alternatives. The result of this procedure is a well-structured model H(s) e 91"(s), on 

which the control design problem has to be addressed. The important subproblem of this 

major activity is the definition of the structure of the control scheme, i. e., sorting out 

issues on decentralisation, versus centralisation. 

9.4 Structuring Of Control Scheme: Evaluation Of Decentralised Options 

The problem, we now address, is the selection of the structure of the 

compensation scheme that involves answering questions on whether we have to use 

centralised, or decentralised schemes and if decentralisation is needed, then to decide on 

the partitioning of the input, output channels, as well as the way we have to couple them 

in a feedback, or precompensation configuration. An integral part of this design stage is 

also the specification of the required order of dynamics. The problem of selection of the 

coupling (interaction analysis, structure analysis, etc. ) has been considered in the 

previous chapters. We may summarise the overall approach by specifying a number of 

important problems, steps. 
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Problem (8): Use knowledge on the process, geographical location of process units and 

operational requirements to define a first appraisal of options as far as centralisation 

versus decentralisation. 

0 

This step aims to take into account the particulars of the applications area and nature of 

the problem. This knowledge is indispensable and it is part of the overall problem 

specification. What is expected at this stage is the development of the first structuring of 

the schemes in terms of superblocks, which themselves may require some further 

structuring subsequently. It is worth mentioning that the requirements of the overall 

problem decomposition, based either on performance optimisation (operational), or on 

sub-problem design need to be taken into account here. This area is dominated by the 

process dependent specifics, heuristics, but there is also need for work which has to be 

based on the systematic study of the problem decomposition (operational and design 

aspects). This area of work may be considered as a part of the control structure selection 

on a whole plant. 

Problem (9): Use results on the generic solvability of decentralised control problems to 

produce a first parameterisation of alternatives. 
0 

The study of decentralised control problems has produced some results characterising 

generic solvability of control problems, which lead to parameterisation of possible 

partitions of input, output channels, which permit solvability of control problems. These 

results depend on structural characteristics such as the McMillan degree and the 

numbers of inputs, outputs. A review of this methodology and available results arc 

given [Karc. & Mil., 2]. This analysis is the first of the analytical steps in the evaluation 

of the alternative schemes. 

Problem (10): Use of graph analysis methodology and the concept of structural fixed 

modes for evaluation of alternatives defined by the previous step. 
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For. systems, which have an explicit graph structure, a procedure for evaluating 

alternatives based on the exclusion of structural fixed modes may be used as a first 

structural methodology that uses the most basic structural aspect, the system graph. It is 

clear that the results have exploited deeper structural characteristics based on the graph 

rather than those of the previous step. 

Problem (11): Use of interaction analysis diagnostics based on steady state models, or 

simple dynamic models to evaluate the alternatives produced at the previous stage. 
13 

Progressing from graph models to steady state, or simple dynamic models, we may use 

the large number of diagnostics of the RGA, BRGA type to evaluate further the options 

specified in the last step. The previous chapters contain a variety of tests for interaction 

analysis. After this stage we progress to the further evaluation described below. 

- Problem (12): Advanced structure selection diagnostics based on linear dynamic 

models and parameter dependent structural characteristics. 

0 

At this stage, we proceed with the evaluation of the available options using linear 

models and parameter dependent properties such as fixed modes (non structural), almost 

fixed modes under various dynamic modes, properties of the rank of decentralised 

Plucker matrices, strong instability and minimum phase phenomena, etc. A set of 

exterior algebra based diagnostics is described in [SESDIP, SDCU 53]. Within this 

family, the Decentralised Markov parameters are first used, since the computations 

involved are relatively simple, and then we proceed to the more complex algebra tests. 

In all these studies, we use as a test the avoidance of formation of undesirable 

characteristics (fixed, almost fixed modes, loss of rank of Plucker matrices) or 

preconditioning of properties (full rank of Plucker matrices). In fact, the decentralised 

Markov parameter test also provides the means to modify the centralised input, output 

structure in order to guarantee certain properties. 
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Problem 1131: On a full dynamics linear model, use diagnostics based on performance 
indicators to evaluate the alte native decentralisation schemes, which have been 

specified by the pre. ious stc. 

Having cxhaustcd all structural methodologies and tests to reduce the set of options 
(necessary conditions have been mostly used) we now use computationally intensive 

methodologies such as singular value analysis, structural singular values, properties of 

cost balanced realisations, energy requirements for coupling, etc. This area of 
diagnostics is quite rich, but there is still need for improvement, as well as sorting out 

alternative rritcria. 

9.5 Multiobjective Criteria and Control Structure Selection 

According to the previous sections, selection of inputs and outputs, as well as 

the control structure selection depends on a variety of criteria, which can be accordingly 

imposed on the non-oriented or oriented Progenitor model. The majority of the tests are 

rank tests on matrices related to the model data and the specific input-output or control 

structure selection. As the dimension of the matrices for these types of problems is large 

and the rank is not a well-defined numerical quantity, the condition number may be 

used instead. For a given criterion. ur can calculate a vector consisting of condition 

numbers each one related to a specific input-output or control structure selection. The 

condition number is a measure of the extent to which the property exists for a specific 

input-output selection. These vectors therefore may be used for the derivation of a total 

index, which will classify the input-output or the control structure selection. This can be 

done in two steps: 

1. Use factor analysis or singular value decomposition to produce a small number of 

vectors (rclmed to propcrtics) ii ich they sufficiently represent the others. 
2. Use an appropriately weighted linear combination of the last vectors to produce a 

single one. 

jRemark 
(9.9): The first step depends on how accurately we would like to represent the 

properties or how many dominant factors we would like to have. The second depends 

on the importance that is assigned to cvcry property. 
13 
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Having calculated a single vector, we then may select the input-output group that 

corresponds to the minimum entry of the vector. This vector provides a classification of 

all input-output groups of interest, as to each of these, a single index is assigned. 

9.6 CONCLUSIONS 

An attempt has been made, for the first time, to provide an integrated 

methodology for selection, classification of process variables, shaping of the input, 

output structure and evaluation of alternative decentralisation schemes. The overall 

approach has been based on exploiting the different aspects of the underlying system 

structure going progressively from unstructured model diagnostics, to graph structure 

based results, to model parameter dependent invariants and finally, performance 

indicators. This structural methodology reflects the overall structural philosophy and it 

is quite logical for the overall problem. In fact, starting with a large number of options, 

we first use simple theory and criteria and progressively by reducing the set of options 

we start using more detailed and meaningful criteria, which however are associated with 

more computationally intensive procedures. What we have provided so far is an overall 

methodology and in the various steps, new, as well as known results are used. There arc 

many areas which need development if we are to move to an integrated and substantial 

structure selection diagnostics framework. Generating the different alternatives in a 

systematic, and not in an ad hoc manner, sorting out the multiobjective decision 

problem of alternative criteria and finally, moving from evaluation to design, are open 

challenges for the future. So far, we have relied on the structural approach which is 

quite meaningful at early stages and for sorting out many options. At the later stages, 

there is a need to develop optimisation methodologies for tuning parameters within a 

given selected structure. This is also an important area for future research, where tools 

from the H. optimisation methodology may be combined with the structural 

approaches to provide powerful hybrid methodologies. 
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10. CONCLUSIONS - (Ideas for future work) 

A thorough investigation of the methodologies, heuristics and approaches for the 

selection of control structures which originate from the process area has been 

performed. This has revealed a number of important diagnostic tools for selection of 

control structures, as well as a large number of open issues. We have produced software 

for the different type of diagnostics, which in a sense provides some way towards 

integration of them. However, more work is needed to classify them, link them, and 

provide a mechanism for weighting their significance. Some optimisation technique 

incorporating these diagnostics and heuristics is needed and it is an important direction 

for research. The extended review and presentation of the process based diagnostics 

given here serves as an assisting tool to the use of the software toolbox. 

An attempt to divert from the traditional process based methodologies was made 
by defining an overall systems based framework for Global Instrumentation, by 

considering a few typical problems within that and then providing the elements of an 

integrated philosophy that combines systems and process based tools. The problem of 

conditioning degenerate transfer functions has been solved and the general model 

orientation has been formulated. However, its solution, especially of the restricted type, 

is still open and subject for future work. 

The role of selection of inputs, outputs at subsystem level, has been examined 

with respect to the completeness assumption. Further work is needed here to relate the 

general structure of the underlined system graph and the selection of the required set of 
inputs, outputs. Integral part in such an investigation is making the analysis independent 

of the state-space setup, i. e. moving to transfer function subsystem descriptions. 

An alternative philosophy in the overall design has been presented here, in terms 

of use of theoretical properties parametrising families of systems. This together with the 

graph methodology offer a new insight in to how we structure systems with desirable 

properties at the initial stages of design. Integrating heuristics, theoretical properties and 

analytic diagnostics remains a challenge. 
The area of Global Process Instrumentation, as we describe the cluster of 

problems related to the classification of process variables, the definition of inputs, 

outputs and the selection of coupling of input, output variables (i. e. the structuring of the 
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control scheme) are issues which have been very prominent in areas such as process and 

control design of chemical processes and aerospace areas, such as flexible space 

structures. This cluster of problems, has not however been seen as one problem and 

there is very little interaction between the different issues. The whole area is dominated 

by partial results, borrowed from the Control Design area and by heuristics. It is not 

clear what is the type of applications, or systems where the heuristics are valid and what 

are the more general implications of the Control Design indicators, since it is difficult to 

relate them to procedures linked to process or control redesign. The current dominant 

practice of listing all possible alternatives and then trying on them the various heuristics 

and partial results in an unguided manner is time consuming and not satisfactory as far 

as linking the failure to the modifications needed. The current practice is to link the 

control structure selection to the lower level of controllability criteria; it becomes, 

however, evident nowadays that wider criteria from the overall process operations area 

(higher layers of the process operations hierarchy) have also to be taken into 

consideration. This links the local process we are currently addressing to the global 

problem of Control Structure Selection and Control Design for the overall plant. Issues 

related to the economic appraisal of resulting structure selection, have been identified as 
important, but they are still in their early developments. It emerges clearly from the 

systematic reviewing of many issues so far, that there is a strong need for further work 
in areas such as: 

(i) Development of a unifying system based methodology for control structure 

selection that allows the integration of diagnostics and their linking to design, or 
redesign issues. 

(ii) Unification of existing criteria and heuristics, classification of systems where 

particular heuristics are valid and development of methodology tuned for specific 

applications. 
(iii) Embedding of the control structure selection problem in the wider problem of total 

control design of a plant and evaluation of technical alternatives in financial terms. 

There is a need to develop a structural methodology that may act as a unifying 
basis for structure evaluation diagnostics, linking with issues of design, or redesign and 
provide the means for integrating alternative non-structural diagnostics and heuristics. 
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The underlying philosophy of this structural approach, is motivated by the early efforts 

in the process area for predicting properties of full designs at early stages. Given that 

only structure information of process models has such a predictive capability, motivates 

the suggestion that a structural framework for the study of the problem is necessary. The 

initial work has to be based on simple and rich, as far as results are concerned, theory 

and thus restriction mainly to linear models, at the beginning, is essential. 

In the second area, the emphasis is on the unification of the different diagnostics 

for control structure selection as well as their enrichment with alternative new ones, 

coming from the control theory area. This will lead to the development of a systematic 

procedure for using such a diagnostics framework and then tackle issues related to 

difficult real life processes, where dedicated tools, such as neural networks may become 

useful. The overall appraisal of heuristics and their link to the other diagnostics is an 

important issue which has to be examined. The third area is also important, but it is 

considered as a much longer horizon area, which requires the development of the first 

two. In the first instance, there is a need for considerable effort in the following main 

directions: 

(i) Unification and Classification of existing results and heuristics. 

(ii) Development of the Systems and Control based framework and methodology. 
(iii) Development of methodology and tools to address the specifics of application 

areas. 

(iv) Expansion of the Systems based theoretical framework into a general framework 

for Global Process Instrumentation. 

(v) Exploring the impact of emerging technologies on the shaping of strategies, 

methodology and tools for GPI. 
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