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Abstract 

Significant advances have been achieved in the fields of medical informatics and 

artificial intelligence in medicine in the past three decades and, having demonstrated 

an ability to support clinical decisions, knowledge-based systems are becoming 

increasingly ubiquitous in various clinical settings. Nonetheless, few systems have so 
far been successful in entering routine use. On the one hand, primarily due to 

methodological difficulties and with very few exceptions, developers have failed to 

show that pertinent systems are effective in improving patient care. On the other hand, 

support systems have not been sufficiently well integrated into the routine information 

processing activity of the clinical users. As a consequence, their clinical utility is 

disputed and constructive assessment is further hindered. 

This thesis describes the development of an intelligent clinical information 

management support system designed to overcome these obstacles through the 

adoption of an integrated approach, geared toward the solution of the problems 

encountered in the acquisition, organisation, review and interpretation of the clinical 
decision supporting information utilised in the process of monitoring intensive care 

unit patients with acid-base balance disorders. The system was developed to support 

this activity incrementally, using the methods of object-oriented analysis, design and 
implementation, with the active participation of a clinical advisor who assessed the 

functional and ergonomic compatibility of the system with the supported activity and 

the integration of a previously validated prototype knowledge-based data 

interpretation system, which could not evaluated in the clinical setting for the reasons 

described above. 
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Introduction 



1.1. Background 

Medical professionals in the current high-technology health care environment, are 

under increasing pressure to improve on the quality and cost-effectiveness of their 

patient management decisions, while the volume of clinical information they are 
forced to absorb in the process is constantly expanding. Thus, there is a pressing need 

to develop usable computer-based tools for the solution of the medical decision 

support problems encountered in the presently information-overloaded health care 
delivery system. This is particularly true of the critical care environment (Price and 
Mason, 1986; Wright et al, 1991; Carson et al, 1991; Hayes-Roth et al, 1989,1992), 

especially in relation to clinical laboratory usage (Speicher and Smith, 1983; 

Bradshaw et al, 1984; Cramp and Baron, 1985; O'Moore, 1995), which can be 

regarded as an exemplar of what holds true for the wider health care system (Cramp 

and Carson, 1985; Jennett, 1986; Greenes and Shortliffe, 1990; Henkelman, 1995; 

Berleur et al, 1995; Saranummi, 1995; van der Werff, 1997). 

Medical informatics researchers have for long maintained that the effective 
introduction of information technology (IT) to the task of supporting and facilitating 

clinical decisions, will help improve the quality of patient care, optimise the cost- 
benefit equation, and ultimately transform the traditional structure of health care 

provision (Schwartz, 1970; Shortliffe, 1984; Cramp and Carson, 1985; Greenes and 

Shortliffe, 1990; Wong and Abendroth, 1996; van der Werff, 1997). Substantial 

evidence has been produced to support these claims, the strongest case being de 

Dombal's wide-spread system for computer-assisted diagnosis of acute abdominal 

pain (de Dombal et al, 1972,1974,1975; 1984,1991; Hofrocks et al, 1972,1975, 

1976; Wilson et al, 1975; Gunn, 1976,1991; Adams et al, 1986; Anderson et al, 

1988; McAdam et al, 1990), and systems designed to provide IT-based solutions to a 

variety of medical decision support problems, are becoming increasingly ubiquitous in 

the clinical setting (Miller, 1994). Nonetheless, few systems have so far been accepted 
in routine clinical practice. 
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Medical decision support problems can be broadly defined as determining, how, when, 

and in what manner to provide information to health care professionals in order to 

increase the quality of their decisions with respect to individual patients or 

populations of patients (Aliferis and Miller, 1995). In developing IT-based solutions 

to such problems, a plethora of useful strategies and techniques have been explored to 

provide assistance with all aspects of the process of clinical decision making by 

physicians, nurses and other health care professionals, which range from the 

acquisition and review of patient data to the cognitive information processing activity 

underlying diagnosis, prognosis, and therapy (Shortliffe, 1987,1989,1990; Greenes 

and Shortliffe, 1990; Pryor, 1990; Wyatt, 1991; Carson et al, 1991; Groth and 

Collinson, 1993; Grimy and Bonnin, 1995; van der Loo, 1995). To this end, 

numerous prototype knowledge-based systems (KBS) have been developed (Cramp 

and Goodyear, 1989; Talmon and van der Loo, 1995), merging techniques from the 

fields of artificial intelligence (AI) and decision science (Szolovits, 1982; Clancey and 
Shortliffe, 1984; Kulikowski, 1988; Miller, 1988; Horvitz et al, 1988; Shortliffe, 

1991,1993; Cooper, 1993). Nonetheless, successful products have not yet emerged in 

the clinical setting and the underlying technologies have not diffused (Uckun, 1992; 

Shortliffe, 1993; Miller, 1994; Saranummi, 1995; O'Moore, 1995; van der Werff, 

1977). 

Excluding liability issues (Miller et al, 1985; Miller, 1989; Brahams and Wyatt, 1989; 

Brender, 1997), the evolutionary development and the final decision to introduce into 

routine practice any type of computer system claiming to improve the quality of 

clinical decisions, depends on the results of a three-phased process which parallels the 

evaluation of pharmaceuticals (Wyatt and Spiegelhalter, 1990; Wyatt, 1992). In the 

case of evaluating the development of medical KBS, and by contrast to other 

application areas, this is a lengthy process (Ohmann et al, 1995) which involves 

considerable methodological complexity. The difficulty faced is that due to the nature 

of the decisions they are designed to support, and the inherently imprecise and 

incomplete knowledge they employ in the process, all medical KBS are to some 

extent heuristic (Aliferis and Miller, 1995). That is, their knowledge base is the result 

of the subjective experience of individuals who are expert in managing the uncertainty 
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and complexity that results from reasoning with partial belief and incomplete 

information in a particular domain. And since opinion disagreements occur often, even 

among experts (Yu et al, 1979b; Miller, 1988b), there is neither an unambiguous 

standard against which to compare the accuracy of the generated decision-supporting 

information, nor a precise and absolute method for establishing the correctness of the 

process by which it is generated (Aliferis and Miller, 1995; Talmon and Smeets, 

1995). 

Hence, it is not surprising that out of a considerable number of assessments reported 

in the literature, a large proportion are concerned only with the first phase of the 

evaluation process (van der Loo, 1995; Talmon and van der Loo, 1995; Brender, 

1997), which comprises an assessment of the validity of the knowledge contained in 

the system and an assessment of the accuracy of the results produced from its 

application to selected test cases (Engelbrecht et al, 1995; Talmon and Smeets, 1995). 

This means that most KBS have not reached the second and third phases, to be 

independently evaluated for performance in clinical environments (Uckun, 1994; 

Ohmann et al, 1995), and thus lack the evidence required to prove that they have a 

beneficial and cost-effective impact on the structure, process and outcome of patient 

care, measured in terms of respective parameters such as efficacy, efficiency and 

effectiveness, length of stay, complications, morbidity and mortality (van Gennip, 

1995; Jorgensen, 1995; Nohr, 1995; Consorti, 1995). The consequence is that by 

failing to observe and assess the systems concerned at work, developers have for long 

omitted many of the important criteria for effectiveness and acceptance in the clinical 

setting; the most important being the functional, cognitive and ergonomic 

compatibility of the support system in question with the real needs and activities of the 

clinical user (Shortliffe, 1982; Miller and Masarie, 1990; Uckun, 1992; Wielinga et al, 

1992; O'Moore, 1995; Peterson et al, 1995; Brender and McNair, 1996; Beuscart- 

Zephir et al, 1997; van der Hofstede et al, 1997; Brender, 1997). 

In order to provide the means to assess these problems and to develop effective and 

usable solutions, KBS and other clinical decision support systems must be integrated 

within the information processing activity of the clinical user, for the development of 

systems geared toward supporting the management of clinical information (Greens 
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and Shortliffe, 1990; Hunter et al, 1991; Uckun, 1992; Groth and Collinson, 1993; 

Shortliffe, 1993; Stefanelli, 1993; Wong and Abendroth, 1996; van der Werff, 1997). 

Early examples of the clinical efficacy of this approach include the MYCIN-derived 

EMYCIN-PUFF system (Aikins et al, 1983), the HELP-COMPAS-CORE hospital 

information system (HIS) integrated decision support modules (Pryor et al, 1983; 

Pryor, 1988; Sittig et al, 1989,1990; Henderson et al, 1989; 1991), and QMR (Miller 

et al, 1986a, b; Masarie and Miller, 1987), which was originally designed to function 

as a standalone consultation system (Miller and Masarie, 1990) in the pioneering 

INTERNIST-1, II and CADUCEUS Al incarnations (Pople, 1977; Pople, 1982; 

Miller et al, 1982; Miller, 1984; Masarie et al, 1985), and which became successful in 

clinical practice (Bankowitz et al, 1989a, b; Parker and Miller, 1989) and medical 

education (Miller and Masarie, 1989; Bankowitz et al, 1989a), following its 

conversion into an integrated clinical information management tool. Similar results 

were also observed in the development of the ONCOCIN system, which operates as a 

therapy critiquing tool within an integrated patient record and monitoring system 

(Langlotz and Shortliffe, 1983; Shortliffe, 1986). In fact, the few KBS that have been 

accepted in clinical practice have emerged primarily in data-intensive environments 

where they fulfil a practical and perceived need to help control the information 

overload problem (O'Moore, 1995). 

In contrast to the traditional involvement of the clinician during the initial stages of 

support system development and during the final stages of the evaluation process as a 

source and referee of knowledge and expert opinion, the recommended approach 

requires that a clinical advisor must be actively involved throughout the integration- 

development process, to assess the extent to which his or her needs are satisfied with 

respect to the above issues. This points to an iterative, incremental, and user-driven, 

life-cycle development methodology, in agreement with the concept of formative 

rather than summative assessment. In contrast to the methodology of summative 

evaluation, which aims to provide an empirical measurement of the performance and 

effectiveness of an already developed system (Engelbrecht et al, 1995; Brender, 

1997), with such a development methodology, the assessment activities can be used 

constructively as a means for making decisions actively, on directions and corrections 
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to apply during the development of a clinical decision support application (Brender et 

al, 1995; Brender, 1997). Thus in the case of constructively assessing the integration 

and evolutionary development of clinical decision support tools within routine clinical 

practice, the clinical advisor is required to operate as a source of expert opinion both 

in the sense of being a source for the elicitation of medical know-how, as well as in 

the sense of being a source for the elicitation of know when and in what manner to 

generate the decision supporting information 

1.2. Aims and Objectives 

This thesis describes the incremental, assessment-driven development of an intelligent 

clinical information management support (ICIMS) system for the critical care 

environment. The underlying aim was to overcome the aforementioned obstacles 

encountered in the development and dissemination of clinical decision support KBS, 

by designing a system that supports and facilitates the solution of the problems 

associated with the observation, interpretation, monitoring and management of 

complex clinical events, in the context of dealing with the wider problem of 

information management in the modern intensive care unit (ICU). The chosen 

problem domain for the development of a prototype system was the management of 

clinical information on patients with abnormalities of acid-base balance. The 

application domain was chosen because the management of such patients requires 

having a clear clinical picture and taking prompt action (Collinson et al, 1990), while 

the interpretation of the constantly expanding set of related parameters (Siggaard- 

Andersen et al, 1990) is subject to considerable error rates (Schreck et al, 1986). 

A prototype KBS had been developed within the research to provide tools for the 

acquisition, representation and manipulation of the domain knowledge-base required 

for interpretative decision-making in the domain of acid-base balance, and to thereby 

assess the performance of a singly connected hierarchical belief network in providing 

assistance with the interpretation of blood-gas laboratory analysis data (Chelsom, 

1990). The validated prototype, which was implemented in a logic-based environment 
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(Prolog) to function as a standalone consultation system, was retrospectively 

evaluated with 60 challenging cases and was found to perform at the level of the 

expert who designed the knowledge-base. Overall, the study showed that there was 

considerable disagreement between the human decision making participants and that, 

as expected, the system could not distinguish between the members of the represented 

classes of complex disorders. Excluding such cases, the prototype was in agreement 

with either with the expert or senior clinician involved in the study in 83% of the 

cases, using three commonly measured parameters. This performance could have been 

improved by training the network, given data in sufficient quantity and quality 
(Jorgensen, 1995b). Furthermore, the ability to recognise complex disorders could be 

developed given access to a comprehensive patient database. 

Nonetheless, as discussed above, these results are on their own insufficient as criteria 
for the decision whether to admit the system or reject it from further evaluation. It 

was therefore decided to use the knowledge contained in the prototype KBS, and its 

basic inference strategy for evidence propagation in the domain knowledge belief 

network, and to develop an integrated system geared toward the management of the 

clinical information generated in the process of monitoring the ICU patient with acid- 
base balance disorders. The objectives of the work involved in the integration of the 

KBS data interpretation prototype within the information processing activity of the 

clinical user and the development of the resultant ICIMS system architecture were: 

1. To develop a system which would combine the computer-based clinical decision 

support tasks of the acquisition, organisation, storage, update and review of the 

information generated in the process of monitoring the ICU patient, as well as 

of the domain knowledge-base required for the contextual interpretation of the 

acquired clinical information, within a singular system architecture. 

2. To use the clinical information management support system in order to develop 

and constructively assess the integration of the cognitive, clinical information 

processing tasks comprising the prototype KBS interpretative problem-solving 

task-domain into the ICIMS system, and consequentially into clinical practice, 
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in order to incorporate the computational intelligence necessary for the 
interpretation of the patient data acquired in the process being supported. 

3. To provide the means to assess specific problems encountered in the integration 

process, and to develop effective and usable solutions, by employing an 

approach which would enable the active participation of a clinical advisor who 

would act as an assessor of the functional, cognitive and ergonomic 

effectiveness of the KBS integration process, and of the overall decision support 

provided by the ICIMS system during its development. 

1.3. Thesis Outline 

Chapter 2 discusses the fundamental problem of reasoning with partial belief and 
incomplete information that characterises clinical decision making, and reviews a 

number of formal and heuristic methods of inexact reasoning which were developed 

to replace probability for the acquisition, representation and manipulation of uncertain 

medical knowledge, due to misconceived limitations of the theory for the task. This 

analysis exposes that these methods promote errors in judgement and lead to 

interpretative decision making behaviours of poorer performance and accuracy, 

thereby justifying the decision to use the system described in chapter 3, as the 

integration prototype for the incorporation of the computational intelligence required 
in the development of the ICIMS system. 

Chapter 4 describes the development of the core of the ICIMS system, that being an 

object-oriented clinical information management system designed to combine the 

tasks of acquisition, organisation, storage, update and review of the information 

generated in the process of monitoring the ICU patient, as well as of the domain 

knowledge base required for the interpretation of the acquired clinical information, 

within a single system architecture. Following that, the chapter describes the 

integration of the KBS prototype cognitive information processing task model, for the 
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incorporation of the computational intelligence required for the interpretation of the 

acquired clinical information. 

Chapter 5 presents an overall view of the ICIMS system implementation, describing 

its ergonomic features and the decision support functions it provides, justifying it 

cognitive compatibility with the information processing activity of the clinical user in a 

critical care environment. Finally, Chapter 6 presents the conclusions drawn from the 

work described in this thesis, discusses the contribution of the work to the fields of 

medical informatics and clinical medicine and summarises the recommendations made 

in Chapter 5 for further development. 
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-2- 

Medical Uncertainty Management in 
Knowledge-Based Systems 



2.1. Introduction 

As stated in the introduction to this thesis, the difficulty faced in developing and 

evaluating medical KBS is that the knowledge employed in the process of supporting 

and facilitating clinical decisions is inherently imprecise and incomplete. Therefore, the 

key element of medical KBS is the methods employed for the acquisition, 

representation, and manipulation of the interpretative uncertainty which results from 

the lack of information typically encountered when processing case evidence. 

The present chapter provides an introduction to the complex task of reasoning with 

partial belief and incomplete information, and discusses a number of methods that 

have been explored for the management of uncertainty in medical KBS. The review 

starts with the formal probabilistic approach to interpretative decision-making, and 

proceeds to review and discuss a number of alternative, heuristic methods, which 

were devised to overcome the apparent limitations of the former. It turns out that 

albeit designed to have the opposite effect, these non-probabilistic approaches have 

been based on erroneous heuristic assumptions of inexact reasoning, which appear to 

promote errors in reasoning also made by human experts. 

Having discussed these problems, the chapter discusses simulation reasoning and the 

use of causal models in supporting the management of uncertainty. Finally, the 

chapter describes belief networks as a formal probabilistic approach which, building 

on the knowledge representation methods explored in heuristic systems, supports and 

facilitates the explicit representation of domain knowledge modelling assumptions, 

thereby assisting the proper communication and management of uncertainty. 

The chapter which follows describes the structure and performance evaluation of the 

prototype knowledge-based data interpretation consultation system, which was 

developed to reason with partial belief and incomplete information for the 

interpretation of laboratory investigation data on disorders of acid-base balance, using 

a singly connected hierarchical belief network. 
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2.2. Introduction to Reasoning with Partial Belief and 
Incomplete Information 

There are a number of ways in which to characterise and categorise medical KBS, 

depending on whether their knowledge content is based on associative, behavioural, 

functional, or structural causality, the form of the selective representation of such 
dependencies among medical events, be that rules, frames, or other objects, and the 

purpose of their knowledge base, that is, automated diagnosis, explanation, tutoring, 

therapy management, critiquing, monitoring, etc. (Clancey, 1985,1989; Uckun, 1992; 

Ramoni et al, 1992; Stefanelli, 1993). Regardless of any such categorisation, all 

medical KBS are designed to model and support the information processing activities 

or tasks underlying clinical cognition (Newell, 1982; Clancey, 1992). 

From the viewpoint of medical professionals, their cognitive activity is essentially 
intuitive and thus cannot be modelled (Kassirer and Gorry, 1978; Blois, 1980). 

However, the repeated observation of certain prototypical classes of patients 
facilitates conceptual descriptions of these classes at multiple levels of a cognitive 

abstraction hierarchy (Blois, 1988), which can be used as knowledge-based inferential 

tools for the recognition and classification of patterns of evidence (Ledley and Lusted 

1959; Feinstein, 1963; Duda and Shortliffe, 1983; Blois, 1983; Chandrasekaran, 1986; 

Clancey, 1985), purporting to place the patient in some diagnostic, prognostic and 

therapeutic context (Cramp and Baron, 1985; Schmidt et al, 1990), in which 

interpretative decisions must be made as to the degree of fit of the evidence to the 

case, in order to assess alternative hypotheses, actions and outcomes, request further 

information, and eventually select the case that best matches the available evidence 

(Pople, 1982; Clancey, 1985; Szolovits et al, 1988; Horvitz et al, 1988; Clancey, 

1992). 

The difficulty faced by the clinician (Tversky and Kahneman, 1974; Blois, 1988; 

Kassirer and Kopelman, 1989; Heckerman et al, 1992) and in developing medical 

KBS (Davis, 1982; Aliferis and Miller, 1995), is that due to the vast amount of 

medical knowledge (Pauker et al, 1976; Miller, 1984) and the resultant inferential 

complexity, the exact sequence of causal events underlying the pathogenesis of an 

observed clinical problem is often implied in the form of empirical or heuristic 
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associations between findings constituting evidence and diseases. Such knowledge is 

formed at the highest levels of the cognitive abstraction hierarchy and is by definition 

imprecise and incomplete, and furthermore, due the inherent variability of human 

physiology and anatomy, not generally applicable. 

For interpretative problem domains with access to comparatively exact biological 

knowledge (Blois, 1988), allowing the causal simulation or synthesis of the behaviour, 

structure and function of the body organs involved in the pathogenesis of a problem 
being solved, it is possible to, at least in part, construct non-classificatory and thus 

non-heuristic systems (Patil et al, 1982; Patil, 1987; Szolovits et al, 1988; Miller and 
Fisher, 1988; Patil and Senyk, 1988; Clancey, 1989; Uckun, 1992,1994), which once 

verified for their internal consistency should provide accurate solutions. However, for 

the majority of medical decision support problems, primarily due to resource 
limitations (Blois, 1988; Uckun, 1992; Hayes-Roth, 1989,1992), clinicians working 

with KBS developers are forced to introduce heuristic simplifications at various 

phases of domain knowledge modelling, including elicitation, design or representation, 

and implementation (Aliferis and Miller, 1995). Consequentially, the accuracy of the 

classifications or contextual interpretations these systems perform, depends on the 

method used for the acquisition, representation, and manipulation of the uncertainty 

that results from the imprecision and incompleteness of their knowledge base, in order 

to reason with partial belief and incomplete information. 

2.3. Classification Reasoning 

2.3.1. Introduction 

This section describes classification reasoning and a number of computer-based 

methods for the acquisition, representation and manipulation of the interpretative 

uncertainty with which patient classification decisions are made. The section starts 

with the simple-Bayes model of interpretative decision-making and proceeds to 
discuss a number of heuristic methods which were devised to overcome certain 
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misconceived limitations in the application of probability theory to the task. As 

mentioned above, these heuristic models of inexact reasoning were shown to have 

both theoretical as well as practical limitations, however, their development exposed 

key issues in the acquisition, representation and manipulation of medical knowledge, 

which led to the development of qualitative modelling for KBS and belief networks, 

combining the former with the formal calculus of probability theory for the proper 

communication and management of the interpretative uncertainty encountered in 

processing clinical information. 

2.3.2. Classification using Probabilistic Inference for Interpretative 
Decision-Making 

2.3.2.1. The Complete Model 

Using the original version of Bayes' theorem for reversing the direction of 

probabilistic inference, clinical decision support KBS may solve the problem of 

contextual data interpretation in their respective domains, in the following manner 

(Heckerman et al, 1992). 

Suppose the represented or modelled domain comprises m known diseases, or patient 

classifications, and n disease features which can be used as evidence for the 

recognition of the m diseases. Let di, d2, 
..., 

d, � denote the m represented diseases, and 

Dk some instance of these diseases. If each disease d, may be present in the patient or 

absent, then Dk denotes some assignment of present or absent to each of the diseases 

d,, d2, 
..., 

d, �. Furthermore, let fi, f2, 
..., 

f, denote the domain features, and let ij denote 

the observed instance for the jth feature. Now, for simplicity suppose that the system 

has been supplied with observed instances for the first q out of the n features, and is 

required to generate the probability of each disease instance, given the observations 

feil, f2i2, ..., 
fgiq. This quantity is known as the a posteriori probability of Dk, i. e. that 

which is used for reasoning in the required diagnostic direction, or from observed 

effects to probable causes, and is denoted: 
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p(DkI J111, J212, ..., 
fg19, V V. (z. l) 

Given an expert assessment of the probabilities that the set of observations fli j, f2i2, 

..., 
fgiq will appear given a particular disease instance Dk, denoted: 

p(Il1, f212, 
..., 

fgiq Dk, E). (2.2) 

and the a priori probability of disease instances p(Dklý), i. e. that which is used for 

reasoning in the predictive direction, or from causes to effects, Bayes' theorem can be 

used to reverse the direction of inference and generate the desired a posteriori 

probability of each disease instance using the following formula, where the sum over 
Di runs over all disease instances: 

P(Dkl f tit, f si2,...,. fgiq, P(. f iil, f 2i2,..., fsiglDk, ý)P(DkI ý) 
(2.3) 

ZDIP(. f lil, f ziz,..., fgiql Di, ý)P(Dij ý) 

By far the biggest asset of the probabilistic model of interpretative decision-making 

for classification reasoning is that it is based on a well-defined formal theory of 

reasoning with partial belief and incomplete information. However, its application to 

non-trivial real-life classification problems results in a debilitating if not prohibitive 
knowledge acquisition effort. Taking into consideration that a patient may have more 

than one disease present, and the number of the possible sequences of the diagnostic 

tests generating the evidence, the number of probabilities of the form p(f i9J, fib, 
..., 

fgiqpk, ) which have to be acquired is exponential both in the number of diseases and 
in the number of features. 

2.3.2.2. The Simplified Model 

In very narrow domains the knowledge acquisition complexity which arises from the 

application of the complete model of probabilistic classification reasoning might not 
be a problem, however, to manage the complexity of the general case, researchers 

who built the first probabilistic KBS made the following two simplifying assumptions 
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(Szolovits and Pauker, 1978; Horvitz et al, 1988; Cooper, 1988; Heckerman et al, 
1992). 

The first assumption was that all findings were conditionally independent, given any 
disease instance. That is, if the true disease state of the patient was known, then the 

likelihood of making any observationfkik did not depend on observations made about 

any other features. Thus, 

p( ijiDk, fJiJ, 
..., 

fj-li'bfj+111+>> 
..., 

f919,1) 
-P(j'JPk) Y 

(2.4) 

Given this assumption it follows from the rules of probability that: 

PVIll. f2i2, 
... 9f9 gfDk, =PV, i1IDk, YP(212IDk, ý) ... PU9l9IDk, Y 

(2.5) 

The second assumption was that the represented diseases were mutually exclusive and 

collectively exhaustive. That is, each disease instance corresponded to a situation 

where only one disease was present. Given these two assumptions, the required a 

posteriori probabilities can be generated by: 

P(fui, I dk, ý)P(f 2i2 dk, ý)... p(fgiql dk, ý)P(dkJ ý) 
Pidký f ýiý, f ziz,..., 

f9ý9ýý) 
= 

lil dý, ý)P(. 1ý2i2jdr, 
,, 

P(f ý)... P(fgiejdi, ý)P(di) ý) 

(2.6) 

where dk represents the disease instance in which only disease dk is present. Thus, only 

the mit conditional probabilities p(fi, jdk, ý) and the m-I a priori probabilities p(dkjV) are 

required for the computation. 

This simplified model of interpretative decision making for classification reasoning 

was proposed nearly forty years ago (Ledley and Lusted, 1959) and is termed the 

simple-Bayes model. Early applications include the domains of congenital heart 

disease (Warner et al, 1961; 1964; Gorry, 1973), disorders of thyroid function 

(Overall and Williams, 1963), primary bone tumours (Lodwick et al, 1963; Gorry, 

1973), acute renal failure (Gorry and Barnett, 1968; Gorry et al, 1973), and the acute 

abdominal pain program cited in section 1.1. 
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2.3.2.3. Performance Evaluation of the Simple-Bayes Model 

In the 1970s, probabilistic diagnostic systems came under severe criticism for their 

reliance on oversimplified and normative methods to dissect, model and support 

clinical decisions (Feinstein, 1977). However, despite the two simplifying 

assumptions, the systems that used the simple-Bayes model performed as well, and in 

some cases better than experienced physicians. 

For example, in one of the many evaluations cited in section 1.1, the system 

developed by de Dombal and his colleagues averaged over 90% correct diagnoses of 

acute abdominal pain, where expert physicians were averaging 65-80% correct (de 

Dombal et al, 1974). In a British multi-centre evaluation performed in 1986 with the 

participation of 250 doctors and 16737 patients, the system resulted in a rise of 

diagnostic accuracy from 45.6% to 65.3%, and a fall in rate of perforation among 

patients with appendicitis and negative laparotomy, from 23.7% to 11.5%. The bad 

management error rate fell from 0.9% to 0.2%, and the observed mortality fell by 

22%. The savings made were estimated as amounting to 278 laparotomies and 8516 

bed nights during the trial period, or the equivalent of annual savings in resources 

throughout the British National Health Service worth over 20 million pounds sterling 

(Adams et al, 1986). 

Nonetheless, researchers argued that albeit their competent performance, the errors 

due to the assumptions of conditional independence and mutual exclusivity, would 

become unacceptable as the domains of these systems were expanded (Gorry, 1973; 

Shortliffe, 1976), and pursued alternative theories and methods for reasoning with 

partial belief and incomplete information, mostly but not always as an adjunct to Al 

techniques for knowledge representation (Szolovits and Pauker, 1978; Spiegelhalter 

and Knill-Jones, 1984; Cheeseman, 1985; Lauritzen and Spiegelhalter, 1988; Horvitz 

et al, 1988; Heckerman et al, 1992). However, none of these schemes were successful 

in overcoming the apparent limitations of probability theory. In the contrary, albeit 

designed to avoid certain misconceived limitations of probability theory (Cheeseman, 

1985), the alternative ad hoc methods described below have been shown to have a 

probabilistic basis and, moreover, to contain implicit and obscured assumptions of 

inexact reasoning, which lead to larger errors than the formal probabilistic model 
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(Horvitz et al, 1988; Heckerman and Shortliffe, 1992; Heckerman et al, 1992). 

Specifically, it has been shown that these schemes assumed evidence was conditionally 
independent, given each disease and the negation of each disease, and that when there 

are more than two mutually exclusive and exhaustive diseases in a domain, these 

assumptions are stronger than are the assumptions in the simple-Bayes model 
(Heckerman et at, 1992). 

The sections that follow describe the most significant contributions, the lessons 

learned, and the reasons that forced the research community to return to the calculus 

of probability as a system of personal belief, justifying its use both from a theoretical 

and a pragmatic perspective, in providing a flexible and operational means of 

uncertainty assessment, representation and manipulation, which helps physicians avoid 

the errors promoted during knowledge elicitation, reduces errors in reasoning with 

partial belief and incomplete information, and generates decision supporting 
information of higher accuracy. 

2.3.3. Rule-Based Systems 

Rule-based KBS were based on the Al hypothesis that an expert's knowledge can be 

represented in a large number of independent situation-specific rules of deduction, and 

that computers can simulate the problem solving behaviour of an expert by stringing 

these rules together in chains of logical implication, matching the premise or 

antecedent of one applicable rule with the conclusion or consequent of another 

(Shortliffe, 1986; Schwartz et al, 1987; Rennels and Miller, 1988; Keravnou and 

Washbrook, 1989). 

The MYCIN system described below was the first in a family of rule-based KBS 

prototypes to be applied to the field of clinical medicine (Shortliffe et al, 1973; Wraith 

et al, 1976; Shortliffe, 1976; Buchanan and Shortliffe, 1984). 

18 



2.3.3.1. The MYCIN system for heuristic classification 

MYCIN was designed to classify severe infections, such as meningitis or septicaemia, 

and to recommend treatment. The system solved the problem of identifying the 

organism causing the infection using two types of rules: rules for simple classification 

and rules for heuristic classification (Clancey, 1985). Simple classification rules were 

applied where definitional or factual features were available. For example, an 

unknown organism could be classified directly into the hierarchy depicted in Figure 2- 

1, given the supplied definitional features of gram-stain, morphology, and aerobicity 

using the following rule: 

if 1. The stain of the organism is gram-negative, and 
2. The morphology of the organism is rod, and 
3. The aerobicity of the organism is anaerobic. 

Then: There is suggestive evidence [0.6] that 
the type of the organism is bacteroids. 

BACTERIA 

G-RODS II G+RODS II G-COCCI II G+COCCI 

ENTEROBACTERIACEAE I HEMOPHILUS II DIPTHEROIDS II NEISSERIA II STAPHYLOCOCCUS II STREPTOCOCCUS 

ECOU II Ia1ýSiELLA II PROTEUS I GONOCOCCUS II MENINGOCOCCUS 

Figure 2-1. Hierarchical classification of bacteria in MYCIN (from Clancey, 1985). 

Nonetheless, definitional associations such as the one represented by the above rule, 

offered evidence on general solution classes and the inferred solution class typically 

had to be refined, by acquiring heuristic information that enabled the discrimination of 

subtypes. In doing so, MYCIN heuristically and non-hierarchically related an abstract 

characterisation of the patient to the classification of organisms represented in its rule 
base. For example the system might refine the classification made by the above rule 

using the following heuristic information: 
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if. 1. The infection is meningitis. 
2. The type of the infection is bacterial. 
3. The patient has undergone surgery. 
4. The patient has undergone neuro-surgery. 
5. The neuro-surgery-time was 2-months ago. 
6. The patient received a ventricular-ureteral-shunt. 

Tben: There is evidence that the organism which might be causing the 
infection is 1. E. coli [0.8] 

2. Klebsiella-Pneumoniae [0.75]. 

Furthermore, in cases where solution features were not supplied as data, they were 

inferred using rules for data abstraction. There were three types of rules for this 

purpose: rules for definitional abstraction, qualitative abstraction, and generalisation in 

a subtype hierarchy. Figure 2-2 depicts the implicit inference structure which resulted 

upon execution by chaining together applicable MYCIN rules in a goal-driven 

manner. 

Patient abstractions 
heuristic match Disease classes 

eg. compromised host eg. Gram-neg infection 

data 
refinement abstraction 

Patient data Diseases 
eg. WBC < 25 eg. E. coli 

Figure 2-2. Implicit inference structure for simple and heuristic classification in the 
MYCIN rule-base (from Clancey, 1985). 

Overall, basic observations about the patient were abstracted to patient categories 

which were heuristically linked to diseases and disease categories. For example, in the 

classification inference example shown in Figure 2-3, given a white blood cell count 

(WBC) of 2000, MYCIN might produce the following chain of rules, in reverse order. 

By qualitative abstraction, a WBC less than 2500 is a low WBC. Low WBC is by 

definitional abstraction leukopenia. Generalising, leukopenia is a form of 

immunosuppression, which by further generalisation is a form of compromised host. 

Finally, compromised hosts are heuristically or incidentally associated with Gram- 

negative infections, such as E. coli infection. 
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(3) (2) 
Recall general rule Generalise: 

(heuristic) heuristic association find if Gram- infection 

Compromised Host Gram-Negative Infection 

generalisation 
t 

subtype 

Immunosuppressed 
Ecoli Infaction 

generalisation 
(4) Specialise: (1) Goal: to treat infection, 

Leukopenla 
mall specific rule 

find infection. 

definitional 
Classification process 

LOW WBC 

qualitative 
t 

Rule chaining 

WBC<2.5 
(ViThite Blood Cell count) (5) Data confirms or disconfirms hypothesis 

Figure 2-3. Example of the implicit inference structure which resulted from the 
application of the MYCIN rule-based (from Clancey, 1985). 

Thus, the important link added in MYCIN was the heuristic association between 

general characterisations of the patient, for example "compromised host", and general 

categories of diseases, for example "Gram-negative infection", in the form of rules of 
inference (Clancey, 1985). However, as stated above, such associations are based on 

the assumption that there exists a chain of causal events between findings constituting 

evidence and diseases, and are therefore incomplete and uncertain. Consequentially 

there was the need to augment the rule-based knowledge representation formalism 

with a mechanism for the propagation of the uncertainty encoded in heuristic 

associations, expressed as the numeral in brackets in the example rules above, through 

the chain of logical implications. 

The rule-based approach to domain knowledge acquisition, representation, 

manipulation and explanation adopted in the development of the MYCIN system, 

required a modular approach to uncertainty management, and the Bayesian model was 
found inadequate for the task. The certainty factor (CF) model was thus designed to 

function as a modular belief updating scheme, and to thereby overcome the limitations 

imposed on the simple-Bayes model by the assumptions of conditional independence 

between pieces of evidence and diseases (Shortliffe and Buchanan, 1975) However, as 
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discussed below, the property of modularity was shown to be invalid, resulting in 

hidden non-modular interactions and sudden degradation of system performance as a 

consequence of the expansion of the system's knowledge base. In fact this was a 

problem shared by all of the AI-based modular belief updating schemes described in 

section 2.3 (Heckerman et al, 1992; Aliferis and Miller, 1995). 

2.3.3.2. The Certainty Factor Model 

In using the CF model, the domain expert was asked to attach a certainty factor to 

each if-then rule in the knowledge base. The certainty factor was meant to represent 

the expert's change of belief in the consequent of the rule, given the antecedent. A CF 

between 0 and 1 meant that the expert's belief in a consequent increased if the 

antecedent was true, whereas a CF between -1 and 0 meant that the expert's belief 

decreased. In a rule base, the consequent of one rule might serve as the antecedent of 

another. In addition, two or more rules might share the same antecedent or 

consequent. As a result, the rule base formed an inference network: a directed graph 

in which an arc from proposition A to proposition B corresponded to the rule "if A 

then B". The CF model prescribed a method for propagating certainty factors through 

such a network. That is, given an observation of an antecedent in the network, CF 

functions were used to compute the effective certainty factor for any consequent in 

the network that was a descendant of that antecedent. 

Although the CF model was designed for MYCIN, it found many applications in 

varied domains and became the most popular method for managing uncertainty in 

rule-based systems (Heckerman et al, 1992). As a result of its extensive use, there are 

many variations among the implementations of the CF model. One such 

implementation is described below (Heckerman and Shortliffe, 1992). 

Suppose a rule base contains the following simplistic rules: 

Rl : IF acute abdominal pain THEN acute abdominal infection, CF1= 0.5 
R2 : IF diarrhoea THEN acute abdominal infection, CF2= 0.7 
R3: IF acute abdominal infection THEN appendicitis, CF3= 0.5 
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CF combination functions are applied to the CFs that lie between the evidence and the 
hypothesis in question in the following manner. Firstly, CF, and CF2 are combined to 

give the CF for the new composition rule: 

R4 : IF acute abdominal pain AND diarrhoea 
THEN acute abdominal infection, CF4 

using the following function: 

CF4 = CF, + CF2 - CFICF2 if CFJ, CF2 z0 
= CFI + CF2 + CF1CF2 if CFI, CF2 <0 
= (CF1 + CF2) / (1 - MIN(ICF1I, ICF2! ) otherwise (2.7) 

Equation 2.7 is called the parallel-combination function, yielding CF4 = 0.5 + 0.7 - 
(0.5)(0.7) = 0.85. Secondly, CF3 and CF4 are combined to give the CF for the new 

composite rule R5: 

Ra : IF acute abdominal pain AND diarrhoea 
THEN appendicitis, CF5 

The combination function for this case is: 

CF5 = CF3CF4 CF3 >0 

=0 CF350 (2.8) 

Equation 2.8 is called the serial-combination function, yielding Us = (0.85)(0.5) _ 

0.425. 

The serial and parallel combination functions are applicable where the evidence and 
hypotheses in a rule base are simple propositions, as in the case of R1, R2 and R3. 

Since this is often not the case, the CF model also incorporated combination functions 

to accommodate rules that contained conjunctive and possibly disjunctive patterns of 

evidence. For example, suppose the following rule aids in the diagnosis of chest pain: 

R6 : IF chest pain AND shortness of breath 
THEN heart attack, CF6= 0.9 
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Further, suppose that there are rules that reflect indirect evidence for chest pain and 

shortness of breath: 

R7: IF patient grimaces THEN chest pain, CF7= 0.7 
Rg : IF patient clutches throat THEN shortness of breath, CFB= 0.9 

CF6, CF7, and CF8 can be combined to yield the CF for the new composite rule: 

R9 : IF patient grimaces AND patient clutches throat 
THEN heart attack, CF9 

The combination function for this case is: 

CF9 = CF6 min(CF7, CF$) = (0.9)(0.7) = 0.63. (2.9) 

Finally, for evidence in a disjunction, combined CFs are computed using the maximum 
CF. That is, if the evidence in R6 was disjunctive, the following combination function 

would be used: 

CF9 = CF6 max(CF7, CFB). (2.10) 

2.3.3.3. MYCIN's Performance Evaluation 

Upon evaluation, the MYCIN system demonstrated an ability to perform at or near 

the level of expert physicians in performing the diagnosis of isolated bacteraemias and 

meningitis. More specifically, in the domain of bacteraemia, therapy recommendations 

made by the system met the Stanford experts' standards of acceptable practice 90.9 % 

of the time, with some variation noted both among individual experts and between 

Stanford experts and others (Yu et al, 1979a). In the domain of meningitis, eight 
independent evaluators with special expertise in the management of such infections 

compared MYCIN's choice of antimicrobials with the choices of nine human 

prescribers for ten test cases of meningitis. The system received an acceptability rating 

of 65% by the evaluators; the corresponding ratings for acceptability of the regimen 

prescribed by the nine faculty specialists ranged from 42.5% to 62.5%. MYCIN's 
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meningitis treatment advice was rated as acceptable by most blinded expert reviewers 

with the same frequency as was the actual delivered therapy (Yu et al, 1979b). 

Furthermore, the system never failed to cover a treatable pathogen while 
demonstrating efficiency in minimising the number of antimicrobials prescribed. 

Despite this favourable evaluation, MYCIN never made it into routine clinical practice 
for the following reason. Rule-based KBS were designed to follow the tenets of AI 

most closely, in using symbolic reasoning and avoiding numerical assessments (Cohen, 

1985; Shortliffe, 1986). However conceptually attractive it may seem, in medical 
domains deterministic modelling is inappropriate, since it violates the inherent 

uncertain nature of medical knowledge (Aliferis and Miller, 1995). Furthermore, 

despite the success of the CF model for managing the uncertainty of MYCIN's rule 
base, its developers warned that the model had been designed for a domain with 

unusual characteristics, and that the model's performance might be sensitive to the 

domain of application (Heckerman and Shortliffe, 1992). A sensitivity analysis of the 

CF model demonstrated that MYCIN's therapy recommendations were remarkably 
insensitive to perturbations in the CF values assigned to diagnostic rules in the system 

(Buchanan and Shortliffe, 1984). Since MYCIN was primarily a therapy advice 

system, and since antibiotics often cover for many pathogens, variations in diagnostic 

hypotheses often had minimal effect on the recommended therapy. MYCIN's 

diagnostic assessments, however, showed more rapid deterioration as CF values were 

altered. 

MYCIN's developers noted that expanding the system beyond a certain level of 

complexity, led to unanticipated interactions between rules, and eventually sudden 

degradation of program performance (Clancey and Letsinger, 1981; Davis, 1982; 

Schwartz et al, 1987). The same observation was made in the development of PUFF, 

cited in section 1.1, the knowledge base of which was engineered using the EMYCIN 

(Essential-MYCIN) expert system shell (Aikins et al, 1983). PUFF is one of the few 

systems which were accepted for routine use, however, PUFF contained only a 

fraction of MYCIN's rule base. The original bacteraemia knowledge base of the 

MYCIN system comprised a combination of heuristic and factual associations. By 

contrast, the meningitis knowledge base was more complex as it could infer the 

organism class purely heuristically, from patient abstractions, without having a culture 
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result, and hence required a larger number of heuristic associations to eliminate 

uncertainty, encoded in a larger number of rules of inference (Clancey, 1985). 

In order to overcome this problem, MYCIN's designers developed NEOMYCIN 

(Clancey and Letsinger, 1981), which attempted to explicate the types of knowledge 

which were implicit in MYCIN in order to improve its performance while maintaining 

the represented domain of infectious diseases. NEOMYCIN facilitated the explicit 

representation of three types of knowledge: structural, support and strategic 

knowledge. This marked the transition from domain-specific to task-specific KBS 

architectures (Clancey, 1992). However, the above observations forced its developers 

to re-examine the CF model, thereby identifying both theoretical and practical 

limitations to its general applicability. 

2.3.3.4. Problems with the CF model 

The rule-based approach to medical knowledge modelling had appeal as providing a 

general and flexible scheme for acquiring and representing expert knowledge in a 

declarative and modular form, conferring the ability to add or remove rules from a 

knowledge base without modifying other rules (Buchanan and Shortliffe, 1984). The 

modularity of rules in a logical production system is a consequence of the 

monotonicity of logic: once asserted, the truth of a proposition cannot be changed by 

other facts. This notion of rules as modular representation of knowledge in 

deterministic production systems was carried over to rule-based methods for uncertain 

reasoning. However, analysis of modularity has demonstrated that partial beliefs are 

intrinsically less modular than beliefs held with certainty, frequently making the rule- 

based calculi inefficient for reasoning with uncertainty (Heckerman and Horvitz, 

1987; Horvitz et al, 1988; Heckerman and Shortliffe, 1992; Heckerman et al, 1992). 

In fact, researchers showed that the parallel and serial combination functions 2.7 and 

2.8 given above, imposed assumptions of conditional independence on the 

propositions involved in the combinations. Moreover, the assumptions of the parallel- 

combination function were stronger than those of the simple-Bayes model, the same 

model whose limitations motivated in part the development of the CF model 

(Heckerman and Shortliffe, 1992). 
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In addition to the theoretical difficulties of updating beliefs within the CF model, the 

model contained some serious practical problems. Specifically, the CF model required 
that rules were encoded in the direction in which they were used, thereby promoting 

errors in assessment. Tversky and Kahneman (1982) have shown that people are most 

comfortable when they assess the strength of relationships in predictive rules, i. e. if 

cause then effect, as in the case of formal probabilistic systems, rather than in 

diagnostic rules, i. e. if effect then cause. The developers of the INTERNIST family of 

systems described below have made a similar observation (Miller et al, 1982). Indeed, 

the majority of medical literature describes predictive rules for a given disease, rather 

than diagnostic rules for a given finding. 

2.3.4. Frame-Based Systems 

Following the tradition Al methods for general problem-solving, goal-driven rule- 
based systems such as MYCIN, were designed to solve problems by generating 

potential solutions and testing them; that is by searching their entire rule base for 

applicable rules. However, by contrast to MYCIN and other systems which searched 
for matching solutions exhaustively, studies of clinical cognition performed at the time 

when the system was developed, indicated that the key element in expert performance 

was the ability to limit the number of active hypotheses under active consideration at 

any one time during the process of differential diagnosis (Kassirer and Gorry, 1978). 

Overall, the exhaustive search for matching patterns of evidence, coupled with the 

imprecision and incompleteness of the evidence and the often occurring presence of 

multiple concurrent diseases with interacting mechanisms, caused the sudden 

proliferation of an unreasonable number of interpretative hypotheses. Two strategies 

were employed to control this problem in classification systems: triggering and the 

hierarchical organisation of hypotheses and aggregates (Patil, 1987; Szolovits et al, 

1988). These aspects of problem solving competence were implicitly and poorly 

encoded in MYCIN's rules (Clancey, 1985) and were made explicit (Keravnou and 
Washbrook, 1989) in the development of the NEOMYCIN system cited above and 
briefly described in section 2.4.2. However, the frame-based Present Illness Program 
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(PIP) and the INTERNIST-1 system described below, were the first medical KBS to 

explore the concepts of hierarchical classification using general and explicit control 
heuristics. 

Whereas simple classification methods were constrained to proceed hierarchically top- 

down or directly bottom-up from known data, in these systems triggers allowed 

search to non-exhaustively combine reasoning forwards from data and backwards 

from solutions. Thus, triggers made search opportunistic (Clancey, 1985). Data 

abstraction techniques were applied immediately as data became available, the 

abstractions triggered hypotheses, followed by a focused, hypothesis-directed search. 

If hypotheses were hierarchically organised, then aggregates were considered before 

the more specific hypotheses. New data might cause re-focusing and the cycle was 

repeated. Unlike MYCIN which requested information only when it was not available 

or could not be generated, most of the reasoning power represented in focused 

systems was in the information-gathering process they simulated. 

Interpretative 
Decision 
Making 

Alternative 
Hypotheses 

Abduction 

Problem 
Features 

Induction Deduction 

Abstraction 

el' Patient Data 

Observed Expe 

Data Acquisition 

Figure 2-4. Elementary KBS problem-solving strategy (from Ramoni et A, 1992). 
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If more than one hypotheses were triggered, the hypotheses were rank ordered 

according to some numerical scoring method and the program pursued some strategy 

to explore and refine the list of hypotheses by asking questions and obtaining new 

information. The overall problem-solving cycle of hypothetico-deductive reasoning is 

depicted in Figure 2-4. Figure 2-5 depicts the application of the triggering heuristic 

combined with top-down and bottom-up search strategies to process an intermixed 

hierarchy of infectious diseases in NEOMYCIN. 

DISORDER 

PROCESS 

CONGENITAL INFECTIOUS NEOPLASTIC TRAUMATIC TOXIC 

Group & Differentiate 
I ottom up) ( 

LOCATION 
BACTERAEMIA MENINGITIES CYSTITIS BRAIN-ABSCESS 

Trigger Focus 

DURATION 
.... .. ý... .... -ý.. 

ACUTE-MENINGITIES CHRONIC-MENINGITIES 

AGENT 
BACTERIAL VIRAL PARTIAL-RX TB FUNGAL 

BACTERIAL P 
Explore & Refine 

(top-down) 

GRAM-NEG SKIN-ORGS (OTHER-ORGS) CRYPTOCOCCUS COCCI 

Figure 2-5. The application of search strategies in hierarchical knowledge representation 
structures (from Clancey, 1992) 
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2.3.4.1. The Present Illness Program 

Figure 2-6 depicts one of the hypothesis frames that comprised PIP's knowledge base 

for renal disease consultation (Pauker et al, 1976). There were five classes of 
information within each frame of knowledge about renal diseases: 

1. Relation to findings. 
2. Complementary relation to other hypotheses. 
3. Competing relation to other hypotheses. 
4. Logical decision criteria. 
5. Numerical likelihood estimation. 

The system interpreted these relations to dynamically construct a patient-specific 

model (PSM) (Kulikowski, 1988; Clancey, 1992) of renal disease, through the 

instantiation of the prototypical knowledge frames that pertained to the problem 

solution state at any one time. 

In addition to general heuristic strategies for limiting the sudden proliferation of the 

hypotheses generated by the available evidence, namely the two-stage limitation 

strategy for hypotheses generation and the principle of parsimony for problem 

abstraction (Pauker et al, 1976), PIP divided prototypical findings into trigger findings 

and non-trigger findings, to focus its reasoning. If a reported finding matched one of 

the triggers for a frame, the represented hypothesis was immediately brought into 

consideration. If a reported finding matched a non-trigger finding, its relevance to that 

hypothesis was only noticed if the hypothesis was already under consideration. 

Interpretative hypotheses were also generated indirectly as complementary 

hypotheses. Complementary hypotheses identified other disorders which should be 

considered in addition to the hypothesis under consideration to account for the 

condition of the patient. This relationship might be: 

1. Associative, if the two were related by some empirical association. 

2. Complicational, if one disorder was a typical complication of the other. 
3. Causal, if the physiology of the represented disorder was well understood. 
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NAME: 
IS A TYPE OF: 

nephrotic syndrome 
clinical state 

relation to findings 
FINDINGS: low serum albumin concentration 

heavy proteinuria 
>5 gm/24Hrs proteinuria 
massive, symmetrical edema 
EITHER facial OR pen-orbital, AND symmetrical edema 
high serum cholesterol concentration 
urine lipids present 

logical decision criteria 
MUST NOT HAVE: proteinuria absent 

IS SUFFICIENT: BOTH massive edema AND > 5gm124Hrs proteinuria 

numerical likelihood estimator 
MAJOR SCORING: serum albumin concentration: 

low: 1.0 
high: -1.0 

proteinuria: 
>5 gm/24Hrs: 1.0 
heavy: 0.5 
EITHER absent OR light: -1.0 

edema: 
massive AND symmetrical: 1.0 
NOT massive BUT symmetrical: 0.3 
erythematous: -0.2 
asymmetrical: -0.5 
absent -1.0 

MINOR SCORING: serum cholesterol concentration 
high: 1.0 
NOT high: -1.0 

urine lipids: 
present: 1.0 
absent: -0.5 

complementary relation to other hypotheses 
MAY BE CAUSED BY: acute glomerulonephritis, 

chronic glomerulonephritis, 
nephrotoxic drugs, 
insect bite, 
idiopathic nephrotic syndrome, 
systemic lupus erythematosus, or diabetes mellitus 

MAY BE COMPLICATED BY: hypovolemia 
celluliäs 

MAY BE CAUSE OF: 

competing relation to other hypotheses 
DIFFERENTIAL DIAGNOSIS: 

sodium retention 

IF neck veins elevated, 
CONSIDER: constrictive pericarditis 
IF ascites present, 
CONSIDER: cirrhosis 
IF pulmonary emboli present, 
CONSIDER: renal vein thrombosis 

Figure 2-6. Frame-based knowledge representation in the Present Illness Program (from 
Pauker et al, 1976). 
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All non-complementary hypotheses were considered competitors, however, a 
differential-diagnosis relationship to other frames was specified for evaluating such a 

condition. Complementary and competing relations to other hypotheses were also 

used in controlling the activation of hypotheses. 

2.3.4.2. Interpretative Decision-Making in PIP 

During the consultation, the interpretative hypotheses generated by PIP were 

evaluated to determine the extent to which they constituted reasonable explanations 
for the patient's clinical presentation as suggested by the findings, and to eventually 

make a decision on the most accurate hypothesis. 

There were two aspects to the hypothesis testing task. First, an evaluation of the 

goodness of fit of the observed findings to the expectations of each generated 
hypothesis, facilitated decision making for the acceptance or rejection of an active 
frame on the basis of the available information, or the choice to obtain further 

information, based on the likelihood of the leading hypothesis. Second, each 

hypothesis was examined to determine the extent to which it accounted for all the 

facts in the case. The first estimate was represented in a matching score, whereas the 

second in a binding score (Szolovits and Pauker, 1978). 

By contrast to the activation or triggering of hypotheses, which was purely 

categorical, once a hypothesis was under consideration, both categorical and 

evidential mechanisms existed to test the hypothesis. Logical decision criteria were 

used by the program to make categorical decisions about the likelihood of a 

hypothesis under consideration at any one time. Is-sufficient, covered the case of 

pathognomonic findings, in which the presence of a single finding was in itself 

sufficient to confirm the presence of the hypothesised disorder. Logical combinations 

were used to specify more complex criteria. Must-have and must-not-have specified 

necessary conditions, in the absence of which a hypothesis would not be accepted as 

confirmed. In the absence of information asserting the categorical validity of an 
hypothesis, PIP estimated the likelihood of each hypothesis by combining the 

matching and the binding scores. 
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The matching score was estimated in two parts. First, a local scoring process 

estimated the numerical likelihood of each hypothesis in terms of the major and minor 
features of the disorder. The local score of an hypothesis reflected the degree to 

which the observed evidence supported the hypothesis directly. Following that, PIP 

computed the overall matching score by revising local scores to include the effects of 

propagated information deriving from related hypotheses as described in the previous 

section. The local and updated scores were computed by adding or subtracting the 

contribution of each finding to the hypothesis and normalising by the maximum 

possible total score. If the score for an hypothesis exceeded a defined upper threshold 

(Pauker and Kassirer, 1980), the frame was accepted. If the score fell below a defined 

lower threshold, the hypothesis was forced into a semi-active state. 

The evaluation of the ability of an hypothesis to account for the findings of the case, 

expressed in terms of the binding score, comprised the following process. The 

program computed for each frame in its knowledge base a value equal to the fraction 

of all findings in the patient profile which were explained by the hypothesis. This value 

and the matching score were averaged, and the hypotheses were assigned a rank order 
based on the average. 

2.3.4.3. PIP's Performance Evaluation 

Albeit its complex, combined deterministic and evidential interpretative decision 

making mechanism, PIP failed to achieve any level of competence in solving clinical 

problems. Too often, small variations in a borderline clinical case pushed the 

program's scoring just above or just below a threshold and affected its conclusions 

significantly. Furthermore, the program's questioning focus frequently shifted, as the 

scoring mechanism brought one and then another competing hypothesis to the top of 
its ranking list (Szolovits and Pauker, 1978). 

Blois (1980) analysed the task undertaken by PIP, the INTERNIST-1 system 
described in the section that follows, and other similar programs, and concluded that it 

would be unlikely to deliver a computer program that emulates human expert 
behaviour in taking the history of a disease. However, the biggest limitation of the 
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Present Illness Program was that of any system that proceeded it. All disease entities 

were assumed to be competitors, i. e. mutually exclusive and collectively exhaustive, 

and as a consequence its performance degraded significantly when more than two 

diseases coexisted (Schwartz et al, 1987). 

2.3.4.4. The INTERNIST-1 System 

INTERNIST-1 was the first prototype system to be developed as part of a long 

standing project cited in section 1.1, which was initiated in the early 1970s at the 

University of Pittsburgh in the USA, with the ambitious goal (Blois, 1980) of 

encoding the whole of internal medicine in a frame-based KBS to support clinical 
decisions. 

The INTERNIST-1 knowledge base, which by 1984 covered 75% of internal 

medicine, by containing 600 disease profiles, 4000 independent manifestations of 

disease, and a number of conditional dependencies between manifestations, (Miller, 

1984), was organised in a tree-structured hierarchy of disease profiles, maintained as 

frames. General descriptions of diseases, or aggregates, were maintained toward the 

top of the hierarchy, or toward the root of the problem taxonomy, whereas refined 

descriptions of diseases were obtained by traversing the hierarchy towards the leafs, 

or the ultimate aetiology. Figure 2-7 depicts a section of the top of the hierarchy. 

Initially, it was attempted to represent all diseases in a hierarchy of mutually exclusive 

and collectively exhaustive sets of diagnostic hypotheses which would be formulated 

on the basis of probabilistic evidence. This simple hierarchy could be used to implicitly 

represent the reasoning processes involved in the diagnostic task, but simple 

hierarchical classification was found to be impossible due to the vast amount of 

general medical knowledge the system was built to represent, and the fact that so 

much knowledge exposed a lack of organisation that generally characterises medicine. 

Instead heuristic reasoning programs were built to create mutually exclusive and 

collectively exhaustive sets of differential diagnoses, from sets of findings assembled 

into independent problem areas (Miller et al, 1982). Thus, a problem area was defined 

as a selected group of observed findings, the differential diagnosis of which formed 
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what was assumed to be a mutually exclusive and exhaustive set of diagnoses. By 

constructing specific differential diagnoses to address identified problem areas, 

INTERNIST-1 could narrow the set of possible diagnoses from all known diseases to 

well-defined collections of competing diagnoses in a small number of categories. 

Heuristic principles would then be applied to resolve each differential diagnosis. Thus 

in a sense, problem areas were used to construct virtual hierarchies of mutually 

exclusive and collectively exhaustive diagnoses which could then be refined by 

evaluating the actual independent hierarchies using data of a probabilistic nature. 

Disease 
Taxonomy 

............... ............ 
Disease of Hepato-Biliary Kidney and Urinary Pulmonary 

FEndocnne 

System System Disease Tract Disease Disease 
......... 

i t......... 

Gallbladder Hepatic Hepatic Parenchymal Hereditary 

Disease Vascular Disease Disease 
CholestasI IHyperbihrubinaemia 

Focal Hepatic 
Parenchymal Disease 

Toxic Hepato- 
cellular Disease 

Diffuse hepatic 
parenchymal diseases 

Hepatocellular Immune Hepeto- 
Intection cellular Disease 

Infectious Hepatitis Ascending Hepatic 
Mononucleosis Acute Viral Cholangits Leptospirosis 

.......... 

Figure 2-7. Organisation of disease profiles represented in frames which form a 
hierarchy of disease taxonomy (from Miller et al, 1982 and Miller et al, 1986). 
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DISPLAY WHICH MANIFESTATION LIST? 
ALCOHOLIC HEPATITIS 

AGE16TO25... 01 
AGE 26 TO55... 03 
AGE GTR THAN 55... 02 
ALCOHOL INGESTION RECENT HX ... 24 
ALCOHOLISM CHRONIC HX ... 24 
SEX FEMALE ... 02 
SEX MALE ... 04 
URINE DARK HX... 13 
WEIGHT LOSS GTR THAN 10 PERCENT ... 03 
ABDOMEN PAIN ACUTE ... 12 
ABDOMEN PAIN COLICKY ... 11 
ABDOMEN PAIN EPIGASTRIUM ... 1 
ABDOMEN PAIN NON COLICKY ... 12 
ABDOMEN PAIN RIGHT UPPER QUADRANT... 13 
ANOREXIA... 04 
DIARRHEA ACUTE ... 12 
MYALGIA... 03 
VOMITING RECENT ... 04 
ABDOMEN BRUIT CONTINUOUS RIGHT UPPER QUADRANT... 12 

BILIRUBIN BLOOD CONJUGATED INCREASED ... 24 
BILIRUBIN URINE PRESENT... 24 
CHOLESTEROL BLOOD DECREASED ... 22 
CHOLESTEROL BLOOD INCREASED ... 

12 
HAEMATOCRIT BLOOD LESS THAN 35 

... 
13 

HEMOGLOBIN BLOOD LESS THAN 12 ... 
13 

KETONURIA... 12 
PROTEINURIA... 12 
SGOT 120 TO 400 ... 23 

LIVER BIOPSY BILE PLUGGING ... 12 
LIVER BIOPSY FATTY METAMORPHOSIS ... 2 
LIVER BIOPSY FOCAL NECROSIS AND INFLAMMATION ... 2 
LIVER BIOPSY HEPATOCELLULAR NECROSIS MARKED ... 2 
LIVER BIOPSY PERIPORTAL FIBROSIS MILD ... 1 

LINKS FOR ALCOHOLIC HEPATITIS: 
Predisposes tcMALLORY WEISS SYNDROME ... I Causes SINUSOIDAL OR POSTSINUSOIDAL 

PORTAL HYPERTENSION ... 12 
Causes HEPATIC ENCEPHALOPATHY ... 22 
Causes RENAL FAILURE SECONDARY TO 

LIVER DISEASE <HEPATORENAL 
SYNDROME> ... 22 

Coincident with PANCREATITIS ACUTE ... 22 
Precedes MICRONODAL CIRRHOSIS 

<LAENNECS> ... 23 

Figure 2-8. Excerpt from a sample manifestations list maintained by INTERNIST-1 
(From Miller et al, 1982). The first number after each manifestation is its evoking 

strength for the diagnosis; the second is the frequency of the manifestation in the disease. 
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The main information stored in the INTERNIST-1 knowledge frames, an example 
being shown in Figure 2-8, was a list of manifestations expected to appear in a patient 

with a given disease. Each manifestation was accompanied by two clinical parameters: 

the evoking strength and the frequency of manifestation. The evoking strength of a 

manifestation was meant to be analogous to the predictive value of that manifestation 
for the particular disease, whereas the frequency of a finding in a particular disease 

was analogous to the sensitivity of that finding for the particular disease (Bankowitz 

et al, 1989). In probabilistic terms, these two parameters correspond to the a 

posteriori probability of a disease given the finding has been observed and the 

probability of the finding being observed in the disease. The latter measure has two 

interpretations in probability theory, namely the frequency of manifestation and 

personal belief, and is the source of dispute concerning its proper use (Feinstein, 

1977; Cheeseman, 1985; Horvitz et al, 1988; Aliferis and Miller, 1995). Their 

particular interpretation and use for interpretative decision making in the 

INTERNIST-1 system is described in the section that follows and further discussed in 

Section 2.7. 

2.3.4.5. Interpretative Decision Making in INTERNIST-1 

At the beginning of the consultation, the user would supply the system with a list of 

manifestations present in the patient and findings denied. The following steps were 

then taken by the program to provide a differential diagnosis of the supplied findings. 

As each positive manifestation was encountered, the program retrieved its complete 
differential diagnosis list from the inverted disease profiles stored in the knowledge 

base and added it to a master differential diagnosis list. Higher-level concepts from the 

classification hierarchy were retained on the list as long as the diagnoses they 

subsumed were indistinguishable in their ability to explain the observations. The 

manifestation-based differential diagnosis lists obtained in this manner were part of the 

solution state of the diagnostic problem (PSM), and as such were also maintained in 

the knowledge base to provide information for subsequent stages in the diagnostic 

process. 
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For each disease hypothesis in the master list, four further lists were maintained: 

1. All positive manifestations in the patient that were explained by the disease 
hypothesis. 

2. All manifestations that might occur in a patient with the disease but were known to 
be absent, or were findings denied, in the patient considered. 

3. All manifestations that were present in the patient but were not explained by the 
disease hypothesis, possibly because there was a second underlying disorder. 

4. All manifestations that were on the disease's profile but about which nothing was 
known and should therefore be asked. 

During a diagnostic consultation, the program reasoned about a given diagnostic 

problem in two stages: problem-space formulation and problem-space structuring and 

resolution (Pople, 1982). Following the initial formulation of the problem space 

(PSM) in the form of the lists described above, INTERNIST-1 proceeded by 

evaluating the constituent hypotheses. Each hypothesis on the master list of diagnoses 

was given a score which was the sum of a positive and a negative component, as well 

a bonus score. The positive component included the weights of all manifestations that 

were explained by the hypothesis (List 1), based on the evoking strengths listed in 

Table 2-1. The negative component included the weight of all manifestations that 

were expected to occur in patients with the disease but were absent in the patient 

under consideration (List 2). This component was based on the frequency of 

manifestation classified in Table 2-2. Also included were the weights of all 

manifestations present in the patient but not explained by the hypothesised diagnosis 

(List 3). This was based on the clinical importance or import of each manifestation. 

Table 2-3 lists the interpretations of the import variable. A threshold value was used 

to decide which of the hypotheses to pursue further or to temporarily discard. 
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Evoking Strength Interpretation 

............................. ......... ................. ....... .............. ........... ................ ..................... 0 Non-specific association. 
Manifestation occurs too commonly to be used to construct a differential 
diagnosis. 

1 Rare association. 
Diagnosis is a rare or unusual cause of listed manifestation. 

2 Non-dominant cause. 
Diagnosis causes a substantial minority of instances of listed manifestation. 

3 Equivocal cause. 
Diagnosis is the most common but not the overwhelming cause of listed 
manifestation. 

4 Dominant cause. 
Diagnosis is the overwhelming cause of listed manifestation. 

5 Pathognomonic association 
Listed manifestation is th omonic for the di osis. 

Table 2-1. Interpretation of the Evoking Strength clinical parameter quantifying the 
relationship between a finding and a disease in INTERNIST-1 (from Miller et al, 1982 
and Miller et al, 1986). 

Frequency of Interpretation 
Manifestation Estimate 

I Manifestation occurs rarely in the disease 
2 Manifestation occurs in a substantial minority of cases of the disease. 
3 Manifestation occurs in roughly half the cases. 
4 Manifestation occurs in the substantial majority of cases. 
5 Manifestation occurs in essentially all cases and is therefore a prerequisite for 

the diagnosis. 

Table 2-2. Interpretation of the Frequency of Manifestation clinical parameter 
quantifying the relationship between a finding and a disease in INTERNIST-1 (from 
Miller et a), 1982 and Miller et al, 1986). 

Following the evaluation of the initially generated hypotheses, problem area 

construction was carried out by a simple partitioning heuristic rule. If any two 

diseases taken together could explain no more observations than either one did alone, 

the diseases were classified as competitors. The problem area at any one time was 
formed by the top-most ranking diagnosis and the competitors. Once the problem area 

containing the most attractive diagnosis was formed and selected, criteria for 

establishing a conclusive diagnosis were applied. Failing that, the program selected 

one of three questioning strategies to obtain the information required to further 
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explore the problem. Three heuristics were available for such cases: pursue, rule-out 

and discriminate. Finally, when a conclusive diagnosis was possible, all observed 

manifestations explained by the diagnosis were removed from future consideration 

and the cycle repeated using the remaining unexplained findings. Unexplained findings 

were assumed to be due to misinterpretation, or a concurrent disease. If not, then the 

program listed the top ranking hypotheses based on a threshold value. 

Import Interpretation 

1 Manifestation is usually unimportant, occurs commonly in normal persons, and 
is easily disregarded. 

2 Manifestation may be of importance, but can often be ignored; context is 
important, 

3 Manifestation is of medium importance, but may be an unreliable indicator of 
any specific disease. 

4 Manifestation is of high importance and can only rarely be disregarded as, for 
example, a false-positive result. 

5 Manifestation absolutely must be explained by one of the final diagnoses 

Table 2-3. Interpretation of the Import clinical parameter quantifying the relationship 
between a finding and a disease in INTERNIST-1 (from Miller et al, 1982). 

2.3.4.6. Performance Evaluation of the INTERNIST-1 System 

Following the validation of the INTERNIST-1 knowledge base, the system was 

retrospectively evaluated using data from clinicopathological conferences published in 

the New England Journal of Medicine as case records of the Massachusetts General 

Hospital. The INTERNIST-1 knowledge base was not altered during the course of 

this trial. The results of the evaluation indicated that the accuracy of the system was 

comparable to that of the clinicians caring for the patients, but not as good as that of 

the invited expert case discussants (Miller et al, 1982; Bankowitz et al, 1989). The 

developers also noted that because INTERNIST-1 defined problem areas in the above 

ad hoc manner, its differential diagnoses did not always resemble those constructed by 

clinicians. Furthermore, they observed that although the system included an ad hoc 

scoring scheme for evidential reasoning, the program's problem solving behaviour 

40 



resulted primarily from the application of the two heuristic principles of the formation 

of problem areas through the partitioning algorithm and the conclusion of diagnoses 

within problem areas, using strategies such as diagnosis by exclusion (Szolovits and 
Pauker, 1978; Miller et al, 1982). In fact, in a study of the INTERNIST-1 and PIP 

diagnostic algorithms at MIT, the partitioning heuristic was found to be a key to 

INTERNIST-1's superior performance over the Present Illness Program (Sherman, 

1981). However, although designed to overcome the problem of multiple coexisting 

diseases with interacting mechanisms, the partitioning heuristic failed to deal 

adequately with the problem (Patil, 1987). 

2.3.5. Summary and Conclusion 

Summarising the above, classification KBS solve the problem of recognising an 

unknown clinical problem observed in a patient, by classifying the patient as a member 

of one or more known classes of patients. These classes can be thought of as disease 

stereotypes which are hierarchically organised, and the process of identification is one 

of matching features of an observed clinical problem against those of known classes of 

patients which are explicitly represented in a knowledge base. Thus, classification 
KBS essentially select the problem solution that best matches the data from a set of 

pre-enumerated and explicitly represented solutions (Clancey, 1985). 

Since by definition both the knowledge as well as the evidential information employed 
in classification reasoning are imperfect and incomplete, the real-life to expected or 

represented case pattern matches are only partial, resulting in a list of uncertain 
interpretative hypotheses. Given that the method employed for the acquisition, 

representation and manipulation of the inherent interpretative uncertainty produces 

accurate results, it should suffice to select the top-most ranking hypothesis. However, 

since there may be more than one diseases present in the patient, and since these 

diseases may interact in their presentation, researchers attempted to develop ad hoc 

heuristic models of differential diagnosis, which combined deterministic and evidential 

reasoning strategies, in guiding the system to the acquisition of the information 
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required to refine the problem solution by reducing the list of interpretative 

hypotheses based on the likelihood of the top-most ranking hypothesis. 

As discussed above, these strategies led to problem solving behaviours that were too 

unfocused and consequentially erratic. The triggering heuristic was found useful for 

limiting hypothesis activation in abductive reasoning, especially when combined with 

the hierarchical organisation of hypotheses. Nevertheless, even with a cluster size of 

two or three ordered findings, simple triggering often led to the generation of an 

unmanageably large set of hypotheses in broad domains (Sherman, 1981). In some 

cases, the resultant interpretative problem solving behaviour was a sole consequence 

of the heuristically defined measures of uncertainty they employed, while the 

underlying formal AI methodologies provided some form of program organisation. In 

other cases, the ad hoc methods for inexact reasoning were passive observers and the 

categorical behaviour that resulted was the sole consequence of the logical structure 

of the formal AI methods employed (Szolovits and Pauker, 1978). 

In theory these hybrid models were designed to function as modular belief updating 

schemes, thereby facilitating the construction and maintenance of a knowledge base. 

However, it was shown that in reality they did not satisfy the property of modularity, 

that is the assumption that the observation of a new piece of evidence bearing on 

some hypothesis under consideration did not depend on previous observations. This is 

because in general, logical relationships represent complete models of interaction 

between knowledge modules. In contrast, uncertain relationships encoded invisible 

interactions which were summarised with numerical measures such as the certainty 
factors or evoking strengths. In the process of such summarisation, information was 
lost about the detailed categorical interaction. Therefore, when uncertain information 

was combined, unexpected non-modular interactions occurred (Heckerman et al, 

1992; Aliferis and Miller, 1995). Furthermore, most of the programs discussed above 

focused their efforts on identifying the single most likely diagnosis that explained the 

majority of observations. Only after the first diagnosis was confirmed did they attempt 

to make a second diagnosis based on any residual findings, and the process repeated 

until either all findings were exhausted or the user explicitly terminated the diagnostic 

process. As a consequence, these systems failed to recognise diseases with interacting 

pathological mechanisms or diseases whose presentation overlapped. These problems 
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were addressed further by means of the method of causal simulation reasoning which 
is described below. 

2.4. Causal Simulation Systems 

2.4.1. Introduction 

In order to solve the problem of recognising the presence of multiple coexisting 

diseases with interacting mechanisms, KBS developers pursued the use of improved 

structural rather than numerical methods for reasoning with partial belief and 

incomplete information. The new improved knowledge representations invariably 

exploited causality as causal models generally require a reduced number of the often 

erroneous assumptions encountered in classification reasoning as described above 
(Kuipers and Kassirer, 1984; Aliferis and Miller, 1995). 

In the Present Illness Program causality was used both in the diagnostic direction as 

well as in the predictive inference direction. In the diagnostic or effect-to-cause 
direction, PIP reasoned causally for the instantiation of complementary hypotheses 

which identified other disorders that should be considered in addition to the 

hypothesis under consideration to account for the condition of the patient. 

Furthermore, this relationship was causal if the physiology of the represented disorder 

was well understood, complicational if one disorder was a typical complication of the 

other, or associative if the two were related by some empirical association. In the 

predictive or cause-to-effect direction, causality was exploited for hypothesis testing. 

Similarly, in the INTERNIST-1 system causal links represented non-hierarchical 

associations between disease frames which were quantified by an evoking strength 

and a frequency measure. However, the explicit use of causality as a pivotal 

mechanism in interpretative decision making was first explored in the systems 

described below. 
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2.4.2. CASNET 

CASNET (Weiss et al, 1978; Kulikowski and Weiss, 1982), which was designed to 

assist in the management of the eye disease glaucoma, reasoned about an observed 

clinical problem using a variant of the heuristic classification method summarised in 

Figure 2-2, termed causal-process classification (Clancey, 1985). The variation in 

causal-process classification, which is summarised in Figure 2-9, is that patient data 

are linked to solution classes via dysfunctional processes which cause the observed 

disease manifestations. Thus, building on the method of simple hierarchical and 

heuristic classification, systems employing causal-process classification can support 
hypothetical solutions by an external process involving interlinked dysfunctional 

states. In this case, the inferred causal model of the disease, or the diagnosis, is said to 

explain the findings. Figure 2-10 depicts the use of causal-process classification to 

support NEOMYCIN's inference structure. Figure 2-11 depicts the use of causal links 

to support and explain the classification process in CASKET. 

heuristic heuristic 
(caused by) (caused by) 

States 
l Patient abstractions s 

ses 
II Disease classes States and nd Classes 

data 
abstraction 

Patient data 

refinement 

Diseases 

Figure 2-9. The inference structure of causal-process classification (from Clancey, 1985). 

As in the case of heuristic classification systems, problem solutions were pre- 

enumerated, however, by contrast to other classification systems, the paths to them 

were constructed rather than selected. Since multiple causal explanations could be 

constructed for a given set of symptoms, an inference strategy was required that did 

not realise every possible association but reasoned about alternative chains of 

inference. Even though diagnostic solutions were pre-enumerated by definition, 

assertions could in principle be taken back, so reasoning was non-monotonic. 
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However, the most well-known programs that solved diagnostic problems by causal- 

process classification were monotonic, dealing with alternative lines of reasoning by 

assigning weights to the paths. Indeed, many programs did not even compare 

alternative explanations, but simply listed all solutions, rank-ordered (Clancey, 1985). 

Aetiological Taxonomy 
(Structural Knowledge) 

trigger 
rules 

object rules 
(for establishing and 

refining) 

Ultimate 
Aetiologies 

Causal Network 
(Support Knowledge) 

Figure 2-10. Representation of domain knowledge in NEOMYCIN (from Keravnou and 
Washbrook, 1989). 

CASNET generated its causal pathways by calculating a likelihood value for each 

node in each plausible pathway. This likelihood value was a function of the confidence 

of an observation and of a heuristically derived weight for the associated causal link. 

In this way, CASKET had compiled into its knowledge base a set of disease indices 

that steered the causal pathway generator to the most probable causal links. The 

program used threshold values to determine whether a particular node's status was 

confirmed, denied, or uncertain. Again, the set of confirmed dysfunctional nodes in 

CASNET was viewed as an explanation of the patient's pathophysiology. In addition, 

CASNET took into consideration the temporal progression of an illness and used the 

notion of causal consistency in its diagnostic reasoning. However, because of 

CASNET's limited mechanism for manipulating causal relations, the program did not 

deal with multiple co-occurring disorders (Uckun, 1992). 
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Figure 2-11. CASNET's use of causal relations in supporting classification reasoning 
(adapted from Weiss et al, 1978). 

2.4.3. CADUCEUS 

To improve the performance of INTERNIST-I, its designers explored new ways of 

reasoning about the causal relations already present in its knowledge base. This study 
led to the experimental implementation of a second prototype called INTERNIST-II 
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(Pople, 1977). The new prototype attempted to group the evoked hypotheses into 

causally related clusters of complementary hypotheses. However, INTERNIST-1, 

NEOMYCIN and the MDX hierarchical classification system (Chandrasekaran and 
Mittal, 1983) employed intermixed hierarchies for domain knowledge representation 
(eg. Figure 2-5); each level was organised around a different disease attribute such as 

duration, anatomical site, aetiology, pathophysiology, severity, and clinical 

presentation. It soon became apparent that processing the large causal network 

required to model a broad domain in such a manner using an intermixed hierarchy was 

computationally intractable without more sophisticated representational support and 

search strategies. To overcome the limitations of intermixed hierarchies (Patil, 1987; 

Szolovits et al, 1988), research emphasis was placed on the development of strategies 
for reasoning with multiple pure hierarchies, each of which facilitated problem analysis 

along one of the above orthogonal dimensions of a pathological process. 

A substantially more sophisticated use of causal relations in forming composite 
hypotheses from individual hierarchies was proposed by Pople in the development of 

CADUCEUS (Pople, 1982). CADUCEUS used a number of hierarchies each 

organised around a different concept and which, unlike the INTERNIST systems, had 

the form of lattice structures, allowing each disease in the hierarchy to have more than 

one parent thereby permitting the representation of multi-system diseases. 

Superimposed on these taxonomic hierarchies were a number of different types of 

links that related nodes within each hierarchy and across different hierarchies. These 

links formed the basis for the synthesis operators, which constructed composite 

hypotheses, or causally connected graphs, through an appropriate choice of level of 

disease abstraction and causal constraints. Each such composite hypothesis consisted 

of a collection of diseases, clinical states, and causal relations that attempted to 

provide a causal explanation of the observed findings (PSM). The synthesis operators 

employed abductive reasoning to support existing hypotheses by extending them 

causally toward their ultimate aetiologies, while attempting to refine a composite 

hypothesis taxonomically, moving from general to more specific disease descriptions. 

This process is depicted in Figure 2-12. 
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Figure 2-12. Two possible refinements of the causal relation between anaemia and 
hepatobiliary disease in CADUCEUS (from Path, 1987). Numbers indicate the sequence 
of refinements (a and b). The resultant composite hypotheses are depicted in the lower 

section (c). 
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The following types of links were used in CADUCEUS for the exploration of 

composite hypotheses (Patil and Senyk, 1988): 

1. Causal links were used to represent pathophysiological relations among nodes in 

the taxonomic hierarchies. One of the major uses of causal links was for forming 

aggregates in a differential diagnosis. 

2. Planning links represented high-level causal relations. Planning links were used to 

summarise other planning links and chains of causal links. Unlike causal links, 

planning links represented possible causal relations. That is they were existentially 

quantified over the nodes in the hierarchy. The primary purpose of the planning 
links was the formation of causal hypotheses at an abstract level. These were 

subsequently refined in the process described above. 

3. Spanning links were used in a manner similar to ABEL's composite links described 

below, to summarise chains of causal reasoning. Spanning links allowed the 

synthesis operators to limit the scope of causal search and to introduce additional 
hypothesised clinical states into a composite hypothesis. 

4. Constrictor relations stood for strong or pathognomonic associations between 

observable manifestations and pathophysiological states. The use of such relations 
in CADUCEUS is the same as any triggering relation. 

Although the composite hypotheses in CASKET and CADUCEUS were similar in 

form, the fundamental difference between the two programs is that CASNET used a 

static causal model to select alternative, weighted causal process paths. In other 

words CASNET was a classification or analytic system. By contrast, CADUCEUS 

was capable of hypothesising the presence or absence of a causal relation between any 

two states and as a result construct or synthesise alternate composite hypotheses 

providing different causal interpretations of the same set of pathophysiological states. 

However, in the final analysis, although both programs facilitated the recognition of 

multiple simultaneous diseases, neither of the programs addressed the problem of 

interactions among the diseases (Patil, 1987; Patil and Senyk, 1988). This problem 

was addressed for the first time in the development of ABEL, described below. 
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2.4.4. ABEL 

The ABEL system (Patil et al, 1981,1982) attempted to solve the problem of co- 

occurring diseases with interacting mechanisms by reasoning about clinical scenarios 

that arise from the disease interactions. Instead of pursuing each hypothesis 

separately, ABEL collected them into problem sets, and then applied planning 

techniques to extract a proposed sequence of information queries that optimally and 

systematically reduced uncertainty in each problem area. Problem solving plans were 

generated in a manner similar to NEOMYCIN, by decomposing the top-level 

information-gathering goal within each problem area into subgoals in the context of 

the evolving PSM. 

Medical knowledge in ABEL consisted of hierarchical representations of anatomical, 

physiological, aetiological, and temporal knowledge about disorders of acid-base 
balance. The program described its knowledge of pathophysiology in terms of clinical 

states and causal relations at five different levels of detail, the most significant of 

which are shown in Figure 2-13. The most detailed level dealt explicitly with stores of 

electrolytes in various body compartments and with their movement from one 

compartment to another. Each state contained a number of attributes such as severity 

and duration. Each link describing a possible causal relation between two states also 

specified a set of constraints between the attributes of the cause and effect nodes. 

Finally each causal relation at a given level of detail was described at the next, more 

detailed level using a causal network to elaborate its underlying mechanisms. 

Composite hypotheses in ABEL were described by a set of PSMs that attempted to 

explain all the facts known about the patient. Each of these PSMs was itself a 

multilevel structure which contained descriptions of the same diagnostic hypothesis at 

levels varying from a clinical summary to the detailed pathophysiological explanation 

of the patient's disorders. 
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Figure 2-13. Causal relations in the domain of acid-base and electrolyte disorders, 
modelled in ABEL at multiple levels of detail (from Patil, 1981). 
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There were several differences between the representation of causal relations in 

ABEL and those used in CADUCEUS and CASKET (Patil and Senyk, 1988). In 

ABEL each causal relation represented a functional constraint between the attributes 

of the cause and effect nodes. Furthermore, each aggregate causal link was described 

at several levels of detail. As mentioned above, the critical feature of ABEL was its 

ability to determine and represent situations where a hypothesis is capable of 

explaining only part of an observed finding. This was achieved through ABEL's PSM 

construction operators. Component summation combined the effects of multiple 

causes, taking into account possible interactions among them. Component 

decomposition identified the components of a finding that had not been accounted for. 

This was achieved by taking the difference between the attributes of the finding, such 

as severity and duration, and those predicted by the known and hypothesised diseases 

in the composite hypothesis. ABEL's operators worked by translating the interactions 

perceived at the clinical level to the pathophysiological level, where they were 

analysed or elaborated. The results were then translated back, or aggregated, to the 

clinical level. 

The diagnostic scenarios or diagnostic closures, such as the one depicted in Figure 2- 

14, were constructed by projecting the states of a PSM forward hypothetically, 

identifying the consequences predicted by these states, with a concomitant backward 

projection from the unexplained states of the PSM to identify diseases that could not 

account for them. In an informal analysis of the efficiency of various components of 

ABEL, it was found that nearly three-fourths of the time was spent constructing 

scenarios or closures, with the remainder of the time delegated to all other aspects of 

model construction and information gathering. For this reason, the developers 

proceeded with the design of a new system which used several types of links to 

capture possible relations among disease entities and manifestations, ranging from 

purely syndromic associations to detailed quantitative functional relations, thereby 

reasoning at different levels of granularity (Uckun, 1992), and compiled causal links 

to express clinical pathophysiological relations in order to achieve component 

summation and decomposition without the use of computationally expensive multiple 

levels of reasoning (Patil and Senyk, 1988). The Guardian system described below 

solves the problem of resource limitations for causal simulation reasoning by 

52 



employing both taxonomical as well as causal models for reactive and reasoned 

responses respectively. 
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Figure 2-14. Use of diagnostic closures or scenarios in ABEL (from Patil, 1987). 

2.4.5. GUARDIAN 

The Guardian system was developed to function as a proof-of-concept prototype 

intelligent agent for the critical care environment (Hayes-Roth, 1990; Hayes-Roth, 

1992). The aim was to develop a generic AI architecture for intelligent monitoring 

and control (IMC), suitable for application in multiple domains (Hayes-Roth et al, 

1989). The chosen IMC application domain was patient monitoring in the surgical 

intensive care unit (SICU). Guardian has been characterised by its developers as a 

work in progress. In other words Guardian is an evolving intelligent agent and must 
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handle a growing variety of critical care scenarios. The Guardian Demonstration 4 

scenario was completed in June, 1990 (Hayes-Roth et al, 1992). 

Being a proof-of-concept system, Guardian monitors a simulated surgical ICU 

patient-ventilator-laboratory system. Thus, the primary objective underlying the 

development of Guardian was not to build a practical system suitable for near-term 
integration with existing information management systems but to develop an advanced 

prototype critical care consultant that demonstrably performed and co-ordinated the 

full range of intelligent behaviour required for effective critical care monitoring, did so 

reliably in a significant range of medical situations, and would arguably scale up to 

meet the comprehensive set of practical requirements with an appropriate 
development effort. 

SICU patients have been subjected to major surgery and suffer temporary failure of 

one or more organ systems. Therefore, life-support devices assume the fundamental 

functions of the ailing organ system until it can heal and resume its normal function. 

Because life-support devices injure as well as sustain patients, one objective of SICU 

monitoring is to wean the patient from the device as rapidly as possible and consistent 

with other therapeutic objectives (Hayes-Roth et al, 1992). 

Based on a model of the patient's physiological impairment and expected rate of 

recovery, partially based on the APACHE-H severity of disease classification system 

(Knaus et al, 1985), the physician orders an initial configuration of device settings that 

substantially augment the patient's own function, followed by a program of 

modifications to those settings that gradually reduce the level of assistance to zero, 

followed by device withdrawal. ICU staff monitors the patient's response to the 

prescribed treatment by observation of biomedical measurements to validate the 

pathophysiological assumptions underlying the weaning plan, refine the plan when the 

underlying assumptions are proven incorrect, and perform additional actions to 

diagnose and correct other unanticipated problems. In supporting such activity 

Guardian would have to interact with ICU team members in a number of ways, for 

example to: 
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1. Summarise the patient's progress and condition for clinicians and physicians on 

rounds. 
2. Alert clinicians to imminent problems before they might otherwise be noticed. 
3. Suggest and critique alternative therapies. 

In doing so, the system would have to satisfy the following reasoning requirements: 

1. Reasoning about complex time-varying behaviours. 

2. Integration of multiple reasoning activities for interpretation of patient data, 

diagnosis of observed signs and symptoms, prediction and explanation of the 

patient's progress, reaction to urgent patient conditions, and planning of longer- 

term actions. 

3. Integration of perception, reasoning, and action. 

4. Dynamic allocation of limited computational resources. 
5. Co-ordination of multiple response modes: immediate reactive responses to 

emergencies, prompt associative responses where clinical knowledge is applicable, 

and deliberate reasoned responses to complex or evolving patient conditions. 

Guardian's reasoning system instantiates a domain-independent dynamic control 

architecture, implemented as the BB I blackboard system (Hayes-Roth, 1985,1990), 

to interpret perceived information from the environment, perform all knowledge- 

based reasoning and problem solving, that is detection, diagnosis, prediction, 

planning, explanation, and decide what actions to perform. The reasoning system also 

constructs and modifies dynamic global control plans to co-ordinate its perception, 

reasoning, and action. Each monitored datum, if passed to the reasoning system for 

being non-physiological, will trigger several reasoning operations whose execution 

produces several cognitive events and triggers new operations, and so on. Guardian's 

cognitive state at any one time is determined by the state of a global memory of facts. 

The global memory includes the knowledge base and the transient information used to 

drive reasoning processes. Reasoning operations are triggered by clinical events, 

signified by changes to the global memory, and, when executed, make new changes to 

the global memory and produce new events. Reasoning results include the 

intermediate and final products of reasoning tasks, such as observations, hypotheses, 
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diagnoses, predictions, plans, etc. These are related temporally and in relation to each 

other. A task scheduler decides which task to perform when, based on the current 

cognitive state, real-time constraints on the utility of actions, information stored in the 

knowledge base on instantiations of such constraints, and the strategy pursued as a 

result of these considerations, ie. reaction, associative reasoning, reasoned response, 

etc. Action systems control the execution of actions to affect the environment based 

on perception and reasoning. In 1992, Guardian's actions included: directly changing 

some ventilator settings, recommending other interventions to correct diagnosed 

problems or avoid predicted problems, and giving explanations of its monitoring 

strategy, its reasoning about particular problems, and the biological and physical 

phenomena underlying the patient's conditions. 

Guardian's knowledge base is summarised in Table 2-4. It is organised in 

interconnected layers and divided into epistemological and generic reasoning 
knowledge. Clinical knowledge represents common diagnoses of disorders and 

diseases in a classification hierarchy, a part of which is depicted in Figure 2-15 for the 

case of hypoxia (02 delivery disorder). Diagnoses have attributes for: 

1. Credibility: conditional probability given current evidence. 
2. Criticality: cost of not correcting a problem when it exists. 

3. Urgency: rate of decrease in utility of corrective action over time. 

Factual Knowledge 

........ ...... _ _ ... _ ............. _ _. ý... _ ._ Clinical knowledge . .... _.. - _ ..... _. _ ý.... _ ._... _ ............. ..... _-.... -................ hypoxia problems 
Biological and device knowledge respiratory, circulation, pulmonary exchange tissue 

metabolism, tissue exchange, ventilator 
First-principles knowledge flow, diffusion, exchange, equilibrium, metabolism 

Generic Reasoning Knowledge 

Associative reasoning diagnosis, reaction, prediction, planning, explanation 
Model-based reasoning diagnosis, reaction, prediction, inference, planning, 

explanation 
Control reasoning prioritisation, focus of attention, task co-ordination, 

reasoning strategies, real-time performance 

Table 2-4. Summary of Guardian's knowledge base (from Hayes-Roth et al, 1992). 
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Each diagnosis is connected by probabilistic links via intervening variables to relevant 

types of evidence, and standard therapy actions, with attributes for: 

1. Observability: frequency, or cost of gathering the evidence. 

2. Resources: time and other resources required to execute an action. 

3. Consequences: predictable effects of executing the action. 

4. Reversibility: capability and cost of reversing the action. 

02 Delivery Problem I 

Anemic Hypoxia Hypoxaemic Hypoxia Oligaemic Hypoxia 
Transfuse Blood Increase F102 Increase Cardiac OP 

Vent. Perf Mismatch II Diffusion Defects II Hypoventilation II 02 Malfunction 
Increase PEEP Increase F102 Increase MV Check 02 Gauges 

Drug Effect Pneumothorax 
Review Drug List Insert Chest Tube 

Tubing Problem II Inadequate Rate I 
Check Tube Increase Rate 

Kinked Tube Rt MS Intubation 
Unkink Tube Pull Back Tube 

Disconnection 
Check Connection 

Figure 2-15. Excerpt from Guardian's hierarchical representation of knowledge about 
Hypoxia problems (from Hayes-Roth et al, 1992). 

Biological and device knowledge represents anatomy and physiology in the 

isomorphic symbolic form of implication. For example in its structure-function 

knowledge base a section of which is depicted in Figure 2-16, Guardian includes 

anatomical facts such as: the lung is a respiratory structure; the lung includes the 

bronchi and alveoli; the bronchi and alveoli are structurally connected. It also includes 
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Figure 2-16. Excerpt from Guardian's knowledge of 02-transportation physiology 
represented in a semantic structure-function network (from Hayes-Roth et al, 1992). 
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physiological facts such as: breathing is a respiratory process; breathing includes 

inhaling and exhaling; breathing occurs in the respiratory system structures; inhaling 

through the mouth precedes inhaling through the throat, and so on. First-principles 

knowledge is represented in similar relational graph structures which model the 

normal and abnormal structure and function of known types of physical systems, such 

as relations that hold among pressure, resistance, and flow in flow systems, and 
blockages or leaks causing predictable changes. 

Generic reasoning knowledge represents potential reasoning operations and strategies 
for organising sequences of operations to achieve goals. Guardian has reasoning 
knowledge for several tasks: diagnosis of observed signs and symptoms; reaction to 

problems; prediction of patient condition; causal inference of precursors and 

consequences of observations and problems; planning of longer-term course of action; 

explanation of underlying causal phenomena. Furthermore, Guardian can perform 

each of these tasks using associative or model-based reasoning methods. Associative 

diagnosis involves the propagation of asynchronously arriving evidence through a 
diagnosis hierarchy. For example, Guardian responds to an observed rise in PIP by 

quickly diagnosing a hypoventilation problem and increasing the patient's ventilation. 

2.4.6. Summary and Conclusion 

There are three types of causal simulation models: behavioural, functional and 

structural simulation models (Uckun, 1992). By contrast to classification models 

which simply classify an observed behaviour, causal simulation models describe how 

organ systems produce an observed behaviour (Clancey, 1989). On the other hand, 

classification and behavioural simulation models do not characterise on any analysis 

level the full state of a system being reasoned about, but rather describe hidden 

internal states, observed manifestations, and causal relations among these attributes, 

without complete descriptions of the purpose of transitions or how transitions follow 

from system structure. By contrast, functional models provide a complete explanation 

or system description, since they capture the system's purpose procedurally on 

multiple abstraction levels. Thus, functional models can relate states to functional 
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goals. Furthermore, a structure-function model fully accounts for each organ system 

component in terms of that component's role in fulfilling the design or simulation 

system's function. 

Simulation models offer a number of advantages over classification models, including: 

1. Better handling of the problems in the periphery of the knowledge base, therefore, 

robustness and graceful degradation. 

2. Better explanation of reasoning processes. 
3. Prediction of future states. 

4. Easier truth maintenance. 
5. Being able to determine what is happening in a situation at a particular time. 

Although simulation systems are expected to outperform classification systems based 

on associative knowledge in complicated situations, disadvantages of these systems 

are also pointed out (Uckun, 1992): 

1. Increased knowledge acquisition load. 

2. Lack of detailed domain knowledge. 

3. Inherent uncertainty resulting in increased ambiguity. 
4. Computational overheads of simulating complex domain models. 
5. Introduction of undue complexity in simple problem-solving cases. 

However, taxonomical classification and causal simulation are orthogonal knowledge 

representations and systems have been developed to exploit either or both to varied 
degrees (Clancey, 1985,1989,1992; Uckun, 1992; Ramoni et al, 1992; Stefanelli, 

1993; Uckun, 1994). 
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2.5. Belief Networks 

2.5.1. Introduction 

Section 2.3 discussed the reasons why both early probabilistic as well as heuristic Al- 

based methods failed to provide effective solutions to the problem of reasoning with 

partial belief and incomplete information in classification KBS. Section 2.4 described 

what may be termed the pure Al approach to the support of classification reasoning, 

which employs qualitative causal models of disease processes for the de novo 

construction of alternative scenarios of behavioural, functional and structural 
dependencies among clinical events, linking patient data to the underlying taxonomical 

structures, thereby avoiding the use of numerical information. However, because of 

resource limitations such an approach may not be feasible for certain medical decision 

support problems. 

An alternative approach emerged in the 1980s, when medical Al researchers united 

methodologically the two aspects of reasoning with partial belief and incomplete 

information and developed methods for the acquisition, representation, manipulation 

and explanation of uncertain medical knowledge that combined the structure of the 

formal Al representations described in this chapter and summarised in Table 2-5, with 

the formal uncertainty calculus provided by probability theory. The resultant 
knowledge representation structures were termed belief networks and are described 

below. This section describes hierarchical classification belief networks, however, a 

number of methods of inference with belief networks have been explored which 

permit more complex structural representations (Horvitz et al, 1988). 
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Representation Reasoning & Strategic Patient-Specific 
Epistemology Knowledge Model 

MYCIN Definitional and 
heuristic associations 
between goals. 

Implicit inference 
structure of simple and 
heuristic classification. 

Assertions organised 
in a context tree for 
the application of rules. 

CASKET Hierarchical taxonomy Explicit bottom-up Symptom explanations 
of disease categories linked (data-driven) causal- as alternative causal- 
to causal network of process classification. process pathways with 
dysfunctional states Prediction (reversal). assigned weights. 
(observations, empirical 
associations, treatment plan). 
Multi-level representation. 

NEOMYCIN Hierarchical taxonomy Task-specific architecture Differential diagnosis 
of aetiologies (triggers, (explicates MYCIN's plan for task 
observations, heuristic inference structure). instantiation. 
associations, temporal). Focusing strategy. 
Causal network linking Abstract hierarchical 
observations to aetiologies operators use backward 
via dysfunctional states deduction to confirm a 
(caused-by). hypothesised solution. 

INTERNIST-1 Single intermixed hierarchy 
of diseases with basic 
causal relations (causes, 
precedes, predisposes-to 
coincident with). 

Heuristic reasoning 
strategies (problem area 
formation and partitioning) 
directed focusing and 
information acquisition. 

Lists of hypotheses 
and manifestations 
with associated scores 
directed focusing on 
problem areas. 

CADUCEUS Multiple orthogonal pure Dynamic synthesis Differential diagnosis. 
hierarchies (organ system operators constructed Graphs as models of 
involvement, aetiology, etc) alternative composite processes. Composite 
with superimposed causal hypotheses. hypotheses without 
network links (causal, Searching the PSM interactive analysis. 
planning, spanning, space. 
constrictors). 

ABEL Causal networks on Dynamic synthesis Subgraphs treated as 
multiple levels of detail operators on different new process descriptions 
(pathophysiological, levels of detail (aggregation, related to each other. 
intermediate, clinical). elaboration, summation, 

projection, decomposition). 
Prediction. 

Table 2-5. Overview of KBS models for the acquisition, representation and manipulation 
of uncertain knowledge (from Keravnou and Washbrook, 1989 and Clancey, 1992). 

2.5.2. Probabilistic Interpretative Decision-Making Revisited 

Until the early 1990s, the most popular of the heuristic uncertain knowledge 

engineering environments described in section 2.3 was the rule-based CF model 
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(Lauritzen and Spiegelhalter, 1988; Heckerman et al, 1992). As discussed in section 
2.3.3, the particular approach to medical knowledge modelling had appeal as 

providing a general and flexible scheme for acquiring and representing expert 
knowledge in a declarative and modular form, conferring the ability to add or remove 

rules from a knowledge base without modifying other rules. Furthermore, the CF 

model was meant to represent, combine, and propagate the effects of multiple sources 

of evidence in terms of their joint degree of confirmation or disconfirmation of each 
hypothesis of interest. Thus, certainty factors were meant to represent an update or 

change in belief induced by the evidence, rather than an absolute degree of belief, as 
did probability (Horvitz et al, 1988). Thus, the approach avoided the need for a priori 
information, which was believed to assume more information than given and to be 

hard to acquire. Instead, the CF model and the other schemes described in section 2.3 

assumed equal a priori probabilities (Heckerman and Miller, 1986). The handling of a 

priori probabilistic knowledge in the CF and INTERNIST models was meant to be 

consistent with studies which showed that people tend to ignore priors (Tversky and 
Kahneman, 1974; Kahneman et al, 1982). 

Section 2.3.3.4 cited and briefly discussed evaluations of the CF and other heuristic 

models of inexact reasoning which have indicated that, although designed as such, 

these schemes did not satisfy the property of modularity. In fact the assumptions 

underlying these models were obscured and stronger than those of the simple-Bayes 

model, thereby promoting errors in judgement, computer-based reasoning, and 
leading to overall less accuracy. Furthermore, the errors that accrue from assuming 

equal a priori probabilities may be less serious in domains where the quantity and 

quality of evidence typically overwhelms the a priori knowledge, however, in general, 

even approximate information about a priori probabilities may be valuable knowledge 

and discarding this information may lead to serious errors. In addition to these 

theoretical problems, section 2.3.3.4 also discussed a serious practical limitation 

common to these models, regarding the acquisition of belief estimates and the 

direction in which they must be specified. Another practical limitation of the CF 

model was that the model did not provide a basis for consistent management of 

evidence bearing on hypotheses that are hierarchically related, and thus did not 
facilitate the narrowing of focus, i. e. the currently considered set of hypotheses, with 
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accumulation of evidence; a process which characterises diagnostic reasoning in 

medicine and expert reasoning in general (Gordon and Shortliffe, 1985). 

Finally, in response to Feinstein's criticism, researchers have argued that logic-based 

reasoning methods may also be considered normative in that they prescribe a set of 

rules for correct inference under uncertainty; that is, a system that reasons or makes 

recommendations using these rules may be viewed as normative with respect to 

deterministic knowledge. By contrast, decision theory is not generally proposed as a 

descriptive theory; it does not purport to provide a description of how people actually 

behave when reasoning under uncertainty. Indeed, Tversky and Kahneman have 

demonstrated that people frequently do not behave in accordance with decision 

theory. In fact, the characteristic biases exhibited in intuitive judgement are part of the 

justification for applying decision sciences to assist people with decision making 

(Horvitz et al, 1988; Heckerman et al, 1992). 

For these reasons, the research community has abandoned the use of heuristic models 

of inexact reasoning in preference to belief networks which employ probability theory 

as a system of personal belief, in providing a flexible and operational means of 

uncertainty assessment, representation and manipulation, which helps physicians avoid 

the errors promoted during knowledge elicitation, reduces errors in reasoning with 

partial belief and incomplete information, and generates decision supporting 
information of higher accuracy. Belief networks, also known as causal probabilistic 

networks (Andreassen et al, 1991), are directed, acyclic graphs which support local 

computations for uncertain inference by means of evidence propagation. A key 

advantage of belief networks over the early formal probabilistic approaches is their 

ability to represent probabilistic relationships precisely and concisely, while preserving 

the rich representational semantics of more structured AI methods. The new 

representations can facilitate assessment of coherent a priori probability distributions, 

make assumptions explicit, and allow assumptions to be manipulated easily by 

knowledge engineers and experts (Horvitz et al, 1988). 
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2.5.3. Evidence Propagation in Hierarchical Belief Networks 

A formal probabilistic method for handling the impact and propagation of evidence on 
the belief of hypotheses which avoids the problems discussed above was suggested by 

Kim and Pearl (1983), provided the hypotheses were organised in a strict or singly 

connected hierarchy. A strict hierarchy is a tree structured hierarchy, in which the root 

node describes a class of diagnoses, and leaf nodes form a mutually exclusive and 

collectively exhaustive set of hypotheses, H= {h,, h2, h, �}, for that class. Any 

intermediate-level hypothesis, S, is the disjunction of its immediate descendants and 

can be thought of as a subset of H, whose members are the leaf nodes, or singleton 
hypotheses, or one-element subsets, which are descendants of S. 

Initially, each singleton hypothesis h, is quantified with a measure of belief Bel(h), 

reflecting the probability that h; is true given all previous evidence. By mutual 

exclusivity, the belief in each intermediate-level hypothesis is the sum of the beliefs 

given to its constituents. Furthermore, given the assumption of conditional 
independence between elements of each subset, each new piece of evidence bearing 

directly upon one of the subsets, contributes no information about its individual 

elements. Now, suppose that a new piece of evidence e arrives which directly bears 

upon one of the subsets, say S, but says nothing about its constituents. The impact of 

e on the belief of every hypothesis in the hierarchy can be calculated with the 

following three-step process, based on the simple-Bayes model described in section 
2.3.2 (Pearl, 1986). 

Step 1: Estimation. An expert determines the hypothesis set S upon which the 

evidence bears directly, and estimates the degree X to which the evidence confirms or 
disconfirms S. A is the likelihood ratio: 

As = 
p(el S) (2.11) 

p(eI -, S) 

Confirmation is expressed by), >I and disconfirmation by ?<1. 

Step 2: Weight distribution. Each singleton hypothesis h, r= S obtains the weight 
W1 X while every hypothesis outside S receives a unity weight W, = 1. 

65 



Step 3: Belief updating. The belief in each singleton hypothesis h, is updated from the 
initial value of Bel(h, ) to: 

Bel'(h, ) = p(h; Ie) = aW; Bel(h, ) (2.12) 

where a5 is a normalising factor: 

as = 
[F; W, Bel'(hj)] -1 (2.13) 

The belief in each intermediate-level hypothesis is computed from the sum of the 

beliefs of its singleton elements. 

This three phased process may be conducted recursively, where the updated beliefs 

calculated for evidence ek serve as a priori beliefs for the next evidence ek+,. The 

normalisation phase can be postponed until several pieces of evidence e,, e2, ..., en 

exert their impacts on their corresponding hypotheses SI, S2, 
..., 

S. In this case, the 

weights are combined multiplicatively via W, (ej, e2, ..., e�) = W, ' W12... W, , where 

W, k = ksk, if h; E Sk 
=1, if h; E -, Sk (2.14) 

An implementation of this method for evidence impact, propagation and aggregation 
in hierarchical belief networks is described in the chapter which follows, applied to the 

interpretation of evidence on disorders of acid-base metabolism. 

2.6. Conclusion 

This chapter described the fundamental problem of reasoning with partial belief and 

incomplete information that characterises clinical decision making, and a number of 

methods for uncertainty management in medical KBS. Section 2.3 was a critical 

review of heuristic AI-based methods designed to replace probability theory for the 

acquisition, representation and manipulation of uncertain medical knowledge, due to 

misconceived limitations of the theory for the task. The review exposed that in fact 

these methods promote errors in judgement and lead to interpretative decision making 

of poorer performance and accuracy. Following that, section 2.4 described what may 
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be termed the pure Al approach to the support of classification reasoning, which 

employs causal models of disease processes for the simulation of alternative scenarios 

of organ system behaviour, function and structure given a set of observations, 

avoiding the use of numerical information. Finally, section 2.5 described belief 

networks as a method of inexact reasoning which unites the two aspects of reasoning 

with partial belief and incomplete information by combining the structure of formal Al 

representations with the formal uncertainty calculus provided by probability theory as 

a system of personal belief, justifying its use both from a theoretical and a pragmatic 

perspective, in providing a flexible and operational means of uncertainty assessment, 

representation and manipulation, which helps physicians avoid the errors promoted 

during knowledge elicitation, reduces errors in reasoning with partial belief and 

incomplete information, and generates decision supporting information of higher 

accuracy. 

The chapter which follows describes the implementation of the method described 

above for evidence propagation in a hierarchical belief network, used for the 

interpretation of laboratory investigation data and in particular those concerning 

disorders of acid-base balance. The particular implementation was used as the KBS 

integration prototype for the development of the ICIMS system. 
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-3- 

The Prototype Knowledge-Based Clinical Evidence 
Interpretation System 



3.1. Introduction 

The previous chapter discussed the reasons why the medical AI research community 
has returned to the calculus of probability theory as a system of belief for the 

acquisition, representation and manipulation of uncertain medical knowledge in the 

form of belief networks. This chapter describes an application of the method described 

in section 2.5.3, to the interpretation of laboratory investigation data regarding 

abnormalities of acid-base balance, which was used as the KBS integration prototype 
for the incorporation of the computational intelligence required for the development 

of the ICIMS system. The chapter which follows describes the development of an 

object-oriented clinical information management system which was designed to 

combine the tasks of acquisition, organisation, storage, update and review of the 

domain knowledge base required for the interpretation of the clinical information 

acquired in the process of monitoring the ICU patient with disturbed acid-base 
homeostasis, as well as of the information generated in the process, within a singular 

system architecture. 

3.2. System Architecture 

3.2.1. Purpose 

The KBS integration prototype, named Bgas (Chelsom, 1990), was developed in a 
logic-based environment (Prolog) to provide tools for the acquisition, representation 

and manipulation of the domain knowledge-base required for interpretative decision- 

making in the domain of acid-base balance, and to thereby assess the performance of a 

singly connected hierarchical belief network in providing assistance with the 

interpretation of blood-gas laboratory analysis data. 
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3.2.2. System Organisation 

A knowledge-base editing environment named Framebuilder, was developed to enable 

clinicians to construct a strict hierarchy of probabilistic classification knowledge 

frames, and to specify expected patterns of evidence for the recognition of 16 simple 

and complex disorders of acid-base metabolism, by choosing clinical parameters from 

a vocabulary of laboratory data, signs and symptoms, relations between data variables 

and clinical history. Figure 3-1 depicts the prototype belief network which was 

constructed using Framebuilder for the probabilistic classification of the evidential 
information generated by blood-gas analyses. 

Figure 3-1. The prototype KBS knowledge-base for interpretative decision-making 
support in acid-base balance, organised in a strict hierarchy of disorder profile frames. 

Each clinical parameter specified in the disorder profile frames was accompanied by 

the conditional probability of the particular piece of evidence being observed, given 

the disorder represented in the frame. Furthermore, each frame was assigned an a 

priori value of the probability of the occurrence of the represented disorder given no 

evidence had been observed. Table 3-1 lists the 16 disorder profiles represented in the 

prototype knowledge base, with their basic definitional features (Section 2.3.3.1). The 

relationship between these features, namely acidity (pH), partial pressure of carbon 
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dioxide (pCO2), and bicarbonate ion concentration ([HC03 ]), is given by the 
Henderson-Hasselbach equation: 

pH = 6.1+log 
[HCO3-] 

a(pCO2) 

where a=0.3 (mmol/L)/mmHg at 38°C. 

(3.1) 

The hierarchical belief network constructed using Framebuilder was processed in the 

manner suggested by Pearl (Section 2.5.3), in order to assess and propagate the effect 

of each piece of evidence given in a case, using a blackboard controlled, task-specific 

reasoning module for the construction of patient-specific models (PSM) of 

probabilistic classification, from the general hierarchical model (Clancey, 1992). 

Figure 3-2 depicts the resultant dual-panelled blackboard architecture with its 

associated interpretative task-domain knowledge sources. PSM blackboard entries 

were split into five levels of abstraction for the physiological diagnosis panel and four 

levels of abstraction for the clinical diagnosis panel. The physiological diagnosis panel 

was designed to function in a bottom-up manner, starting from raw patient data and 

proceeding up toward the root of the virtual PSM hierarchy, to produce a differential 

diagnosis of disorders of acid-base metabolism. The clinical diagnosis panel was 
designed to work in the opposite direction, starting with a clinical diagnosis entered 
by the user and proceeding down toward the leafs of the virtual PSM hierarchy to 

generate expected consequences, which were latter used to critique the results from 

the physiological diagnosis panel in order to refine complex interpretative hypotheses 

which could not be differentiated in the light of measurement data alone. 

The following section describes the implementation of the cognitive information 

processing knowledge sources used in the Bgas system. Figure 3-3 depicts an 

example PSM of interpretative decision-making, represented in terms of multi-level 

blackboard entries. Table 3-2 provides a summary of the knowledge sources (KS), 

specifying the blackboard (BB) levels at which each was triggered, the levels on 

which it operated, and further actions caused by its instantiation. 
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Clinical Diagnosis Panel 
From Knowledge 
Database 

Input 
Diagnosis DIAGNOSIS Source 

0 

Predict PREDICTION 
co m 

Disorders ä 

Diagnosis 
CRITIQUE Database 

To 
Database 

Transfer MANIFESTATIONS 
Data 

Physiological Diagnosis Panel 

Sum SUB-DIAGNOSIS Rank 
Hypotheses Hypotheses 

Evidence HYPOTHESIS Laboratory 
Data 

Truth SUB-HYPOTHESIS Numerical 
Maintenance Relationships 

Database Write Default PROCESSED DATA Classify 
Data Raw Data 

From 
Database Write Data RAW DATA Data 

Derivation 

To 
Database 

Figure 3-2. Implementation of the blackboard model of problem-solving task-domain 
organisation and representation in the KBS prototype (from Chelsom, 1990). 

3.2.3. Task-Domain Knowledge-Sources 

3.2.3.1. Data Transfer from Database to Blackboard 

During a consultation session, apart from the BB entries, the system maintained a 

patient-specific database which comprised four data types: laboratory data variables, 

signs and symptoms, history and diseases. The RawData KS monitored the database 

for these data types and was triggered by any such data encountered in the database 

but not on the BB. The WriteRawData KS replaced any existing value of the data at 

the RawData BB level with the new value found in the database. The 

WriteDiseaseDiagnosis KS operated in the same way, monitoring the database for 
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data of the disease type and transferring them to the Diagnosis BB level. The 

WriteDefaultData KS monitored laboratory data variables which had default values 

specified in the knowledge base and was triggered after the WriteRawData KS and 

the DeriveData KS if neither had been able to provide a data value. 

Disease Diagnosis Pleural Effusion 

Disease, Disorder Prediction 
pleural effusion, compensated respiratory acidosis 

Disease, Disorder, Critique Critique 
pleural effusion, comp respiratory acidosis, expected 

Disorder 
compensated metabolic acidosis Manifestations 

partially compensated metabolic acidosis 

Disorder, Belief 
compensated metabolic acidosis, 0.5 SubDiagnosis 

partially compensated metabolic acidosis, 0.5 

Hypothesis, Belief 
compensated metabolic acidosis, 1.525 Hypothesis 

partially compensated metabolic acidosis, 1.525 

Hypothesis, Evidence, Belief 
dominant acidosis, pH, 1.024 SubHypothesis 

compensated metabolic acidosis, HCO3, pCO2.1.007 
compensated metabolic acidosis, coma, 1.115 

Data Name, Classification, Probability 
pH, high, 0.000 ClassifiedData 

pH, usual, 0.655 
pH, low, 0.355 

Data Type, Data Name, Value, Status 
variable, pH, 7.350, measurement 

variable, Base Excess, -2.000, derivation RawData 
variable, F102,21.000, default 

symptom, coma, present, measurement 

Figure 3-3. Example of a patient-specific model of interpretative decision-making in the 
domain of acid-base balance, represented in terms of blackboard entries in the KBS 

prototype (from Chelsom, 1990). 
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3.2.3.2. Truth Maintenance 

Any changes in the values of data in the database were detected by the WriteRawData 

KS and the entries at the RawData BB level were updated accordingly. Entries at the 

ClassifiedData and SubHypothesis BB levels were automatically updated because the 

KSs that produced them were re-triggered by the changes at the RawData BB level. 

Similarly, any necessary changes to default or derived data were made by simple re- 

triggering of the appropriate KS. Thus, truth maintenance was largely achieved by a 

passive process of KS re-triggering. If, however, the user changed a data value to 

unknown, then it was completely removed from the database and the WriteRawData 

KS did not detect the change. This problem was solved by the TruthMaintenance KS, 

which was triggered by data that had entries as RawData on the BB but no 

corresponding entry in the database. The TruthMaintenance KS removed any relevant 

entries from the ClassifiedData and SubHypothesis BB levels and also removed 

RawData entries that had been derived using data that were not known any more. 

3.2.3.3. Data Derivation 

The Bgas knowledge base contained expressions of the relationships between 

variables that could be used to derive data values to support interpretative decisions. 

The DataDerivation KS was triggered when all of the variables involved in the right- 

hand side of the data derivation expression appeared as entries at the RawData BB 

level and the result was written at the same level. For example, given the equation: 

Anion Gap = [N, +] + [K+] - [HCO31- [Cl j (3.2) 

and values of [N, +], [K+], [HCO3 ]2 [Cl'] specified at the RawData BB level, 

DataDerivation calculated Anion Gap and made an appropriate entry at the RawData 

level. 
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3.2.3.4. Data Transfer from Blackboard to Database 

Default and derived data were written to the database, as well as to the BB, by the 

appropriate KS. The only other transfer of data from the BB to the database was 

achieved by the TransferData KS. The TransferData KS took each diagnosed disorder 

from the SubDiagnosis BB level and wrote it at the Manifestation level of the clinical 

diagnosis BB panel. In addition, any disorders that had been diagnosed with a belief 

greater than 0.95 were written to the database as patient history. 

3.2.3.5. Data Classification 

The Bgas knowledge base contained probability assignments regarding the expected 

level of data variables for particular interpretative hypotheses, as shown in Table 3-1, 

against which the available patient data should be matched. Thus, for some laboratory 

data variable V being a feature of some hypothesis H, the following conditional 

probability assignments were stored in the knowledge base: 

p(V is lowlH), p(V is normalIH), p(V is high(H) (3.3) 

For example, in the case of partially compensated metabolic alkalaemia, the expected 

definitional features are shown in Table 3-1 as, high pH (alkalaemia), high [HCO3-] 

(metabolic), and high pCO2 (partial respiratory compensation). However, since 

patient data were supplied in the form of instrumentation measurements, these 

definitional features had to inferred by qualitative abstraction classification (Section 

2.3.3.1). 

In order to calculate the probability that a particular measurement being classified as 

evidence into the hierarchy of Figure 3-1, for the recognition of the underlying 
disorder, was low, normal or high, the ClassifyRawData KS implemented the 

following method of qualitative abstraction classification. Assuming that the 

probability distribution of V is known for a reference population of healthy 

individuals, a measurement V was defined as low if it fell further than two standard 

deviations (2o) below the mean value (µ), high if it fell further than 2a above the 

mean and normal if it lied between these limits. 
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Thus, if for example, the normal value of V for a particular patient when healthy, was 

more than 20 above a measurement value X for that patient, then X had fallen by more 

than 2Q and it was classified as low. The probability that X was high was given by the 

area of the probability distribution more than 2Q below X, and the probability that X 

was normal was given by the area within +/- 2Q of X. That is, 

p(Xislow) =p(uluzX+2Q) 

X+2a-, u) 
Q 

p(X is normal) = p(uW -2a5u SX+26) 

(3.4) 

(D(X+2Q-p)-(D(X-2Q-fit) (3.5) 
aa 

p(X is high) = p(uju <_ X-2Q) 

=(D(x-ZQ-p) 
cr 

(3.6) 

where 4) is the standard Gaussian distribution, which was stored in the Bgas 

knowledge base in the form of a look-up table. The ClassifyRawData KS calculated 

these probabilities and made an appropriate entry at the ClassifiedData BB level 

shown in Figure 3-3. These entries were subsequently used as evidence as described 

below. 

3.2.3.6. Evidence Impact on Interpretative Hypotheses 

Three knowledge sources, collectively called evidence handlers, implemented the 

method of belief propagation described in section 2.5.3. These were the Evidence, 

VariableEvidence and RelationEvidence KSs, which calculated the updating factors 

W, (2.14) for each hypothesis h; which had a probability assignment p(e l h, ) (3.3) for 

the particular piece of evidence ej under consideration. 

Figure 3-4 depicts an example hierarchical belief propagation network indicating the 

interpretative hypotheses which have evidence, i. e. p(eiIh, ), assigned in a knowledge 

77 



hn. Z 

ý Sm+t ho-t 

Sm hn 

Sm Nodes with assignment p(eISm) in a knowledge base. 

H= {h,, h2, ..., hý} 
S2 = {h,, h2} 

Figure 3-4. Example of a hierarchical belief network indicating interpretative hypotheses 
with assigned evidence (adapted from Chelsom, 1990). 

The required updating factors were calculated in the following manner. Since there 

was no indication in the knowledge base about how to treat unassigned nodes hu, 

given evidence e, it was assumed that the observation of e had no effect on the belief 

in h,,. Hence, 

P(hLI e) = p(h,, ) (3.7) 

where p(h�) is the probability of h� prior to the evidence e. 

Bayes' theorem states (2.6): 

p(h. l e) = 
p(el h. )p(h., ) 

1.1 to n leaf nodes. (3.8) j: 
rp(ejh, 

)p(ha) 
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Combining (3.7) and (3.8): 

p(e l hu) =li p(e l h, )P(h+) (3.9) 

which implies that p(elh�) is constant for all unassigned nodes. The summation in (3.9) 

can be split into the summation over the assigned nodes, denoted by Ea, and the sum 

over the unassigned nodes, denoted by Eu, so that (3.9) can be rewritten as: 

p(el h,, ) = EaP(eI h, )P(h, ) +I up(el h1)p(h; ) (3.10) 

Since p(eIh. ) is constant, the summation of p(eIh, )p(h, ) over the unassigned nodes is 

given by: 

I: 
uP(el h, )P(h, ) =p(eI hv) Fu p(hi) (3.11) 

=P(eIhu)(1- 2ap(h, )) 

since the leaf nodes are mutually exclusive and collectively exhaustive within each 

subset of hypotheses, and so Eu p(h) = 1- Ea p(h). 

Substituting for p(eIh�) from (3.10) and rearranging: 

(EP(e)h+)P(hi))(1- P(hi)) (3.12) ý�P(eI h)P(h) =aa Eap(ha) 

Regarding the impact of evidence e on an assigned node, Bayes' theorem states: 

p(hase) = 
p(ejh°) p(h°) i=1 to n leaf nodes. (3.13) 

1:; p(el h, )p(h, ) 

where p(h, ) is the probability of hQ prior to the evidence e. 

Splitting the summation in the denominator of (3.13), as before, into summation over 

the assigned and unassigned nodes: 

P(h. l e) = 
P(el h4)P(ha) 

(3.14) E. p(Q)h. )P(h, )+j:. P(el h. )P(h, ) 

Substituting for Eup(eIh, )p(hf) from (3.12): 
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P(hat e) = 1: 
P(eI ha)Pýha) 

(3.15) 
aP(el 

h7)P(h, )+iý, P(elh, )P(h, ))(1-ýQP(hý)ýP(hý)) 

So, 

P(h. l e) = 
P(el ha)I: 

op(hf) P(hi) 
(3.16) 

I 
ap(el 

h1)p(hi) 

or Bel'(ha) = w. Bel(ha) 

where, 

P(el ha)I:, P(hh) (3.17) 
,, P(el h1)P(h1) 

Figure 3-5 shows the algorithm used to implement the updating function in (3.16). 

Operating separately on each hypothesis class, the algorithm first formed a list of all 
hypotheses that had a probability assignment in the knowledge base for the piece of 

evidence under consideration. The a priori probability of each hypothesis, p(h), were 

then summed to S1, the probability of the evidence given each hypothesis, p(ejh, ), 

were found and the products p(elh, )p(h, ) were summed to S2. The updating factor in 

(3.17) was then calculated as w; =p(elh, ). S1/S2 and an appropriate entry was then 

made at the SubHypothesis BB level. 

For variable evidence, p(e1h) was derived from: 

p(elh, ) =p(1owlh, )p(1owle) +p(normallh, )p(normalle) +p(highlh1)p(highle) (3.18) 

where p(lowle), p(normalle) and p(highle) were found at the ClassifiedData BB level, 

derived by (3.4) to (3.6), and p(1owlh; ), p(normallh, ) and p(highlh; ) were stored in the 
knowledge base as in (3.3). 

The a priori belief in each singleton hypothesis before any evidence had been impacted 

on the hierarchy was calculated by multiplying the a priori weights assigned to the 

nodes leading from the root to the hypothesis concerned. For example, assuming 

equal weights were assigned to the members of each set of hypotheses, i. e. no 
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prevalence information is used, the a priori weight for uncompensated respiratory 

alkalaemia in Figure 3-1 would be: 0.2500 x 0.3330 x 0.5000 = 0.0416. 

START 

Find all nodes which have evidence assigned 

Sum a priori probabilities for assigned nodes, S1= Z. p(hl) 

Find the probability of the evidence given each hypothesis, p(elk) 

Form the sum S2 = E. P(hi)P(. Iki) for all assigned nodes 

I 
For each assigned node, calculate the updating factor ws= P(ejIm)S1 I 

S2 

I For each assigned node, make SubHypothesis blackboard entry: I 
Hypothesis, Evidence, W, 

Figure 3-5. Algorithm for handling the impact of evidence on interpretative hypotheses in 
the KBS prototype (from Chelsom, 1990). 

3.2.3.7. Evidence Aggregation and Propagation 

The three KSs described in the previous section calculated the updating factors for the 

belief in the interpretative hypotheses generated by the evidence and wrote them to 

the SubHypothesis BB level. This is because the generated hypotheses may originate 

from any level in the domain hierarchy and there may be more than one entry for each 

hypothesis, that is, a piece of evidence may bear directly on more than one 

hypotheses. The SumHypotheses KS was triggered by such entries and wrote the 

81 



updated belief of leaf nodes in the hierarchy at the Hypothesis BB level. The algorithm 

used by SumHypotheses for the aggregation of evidence and the propagation of belief 

to the leaf nodes is shown in Figure 3-6. 

START 

For each entry at the SubHypothesis level, with updating factor W1 

I Find the set of mutually exclusive and collectively exaustive leaf 
node hypotheses 

For each leaf node hypothesis 

Get the belief B from Get the a priori belief 
the Hypothesis level in the hypothesis as B 

Update the belief so that B' w. B and make blackboard 
entry at the Hypothesis level: 

Hypothesis, Belief 

Figure 3-6. Algorithm for evidence aggregation and propagation in the KBS prototype 
(from Chelsom, 1990). 

For each hypothesis at the SubHypothesis BB level, with associated updating factor 

W, the belief in each of its descendent leaf nodes was updated by W. If an entry for 

the leaf node already existed at the Hypothesis BB level, then it was the belief 

specified there that was updated (section 2.5.3). Otherwise, the a priori belief was 

updated and written to the Hypothesis level. This method of updating ensured that 
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however high its a priori probability might be, a hypothesis did not appear at the 
Hypothesis level until some evidence was observed that affected its belief. 

The RankHypotheses KS was triggered by entries at the Hypothesis BB level and 

reported interpretative hypotheses in rank order at the SubDiagnosis level. 

RankHypotheses ensured that interpretations were reported at the most appropriate 
level of abstraction in the disorder class hierarchy. If each of the descendent leaf 

nodes of an hypothesis appeared at the Hypothesis level with belief increased from its 

a priori value, then they were combined to form a single interpretative hypothesis with 
belief equal to the sum of the beliefs of the leaf nodes, since the singleton descendants 

of each class of hypotheses are mutually exclusive and collectively exhaustive. 

3.3. Summative Evaluation 

3.3.1. Evaluation Method 

Following a series of tests performed in order to evaluate the translation of the 

theoretical design into a working prototype, Bgas was retrospectively evaluated with 
60 cases of disturbed acid-base metabolism, of which 51 were selected from records 

of patients in the ICU of the West Middlesex Hospital, London, and 9 were selected 
from the literature to include the more unusual cases. These 60 cases were transcribed 

to a standard format, which displayed the patient data and the list of the 17 

interpretative decisions represented in the system, and presented to the expert 

responsible for the knowledge base, a group of three senior clinicians (senior 

registrars), and a group of three junior clinicians (senior house officers). For the 

groups of senior and junior clinicians, the evaluation was split into three sets of 20 

cases and one set was given to each clinician. In this way, a representative diagnosis 

was obtained for each case from a senior and a junior clinician , 
but each participant 

was only required to diagnose 20 cases. The details of each case and the 

corresponding interpretations may be found in Chelsom (1990). 
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3.3.2. Evaluation Results 

Chapter 2 described classification reasoning and its limitations in solving interpretative 

problems which involve complex disorders with interacting mechanisms. However 

fundamental to the development of medical knowledge-bases and interpretative 

decision support systems, classification reasoning on its own has been shown to be 

insufficient for the task of recognising multiple coexisting disorders with overlapping 

presentations. This expected performance was verified in the retrospective evaluation 

of the BGAS system, which failed to distinguish between the members of the two 

classes of complex disorders shown in Figure 3-1 based on measurement classification 

data alone (Table 3-1). This is because the sets of disorders (d1l, d12, d13) and {d14, 

d15, d16} have no evidence assigned in terms of the fundamental definitional features. 

Table 3-3 provides a summary of the interpretative decisions made by the system and 

the human decision makers involved in the study. 

INTERPRETATION SYSTEM EXPERT SENIOR JUNIOR 

Uncomp metabolic acidosis 1 5 2 3 
Part comp metabolic acidosis 6 5 9 12 
Compensated metabolic acidosis 0 4 2 2 
Metabolic acidosis 3 - - - 
Uncomp metabolic alkalosis 4 5 5 2 
Part comp metabolic alkalosis 2 2 2 1 
Compensated metabolic alkalosis 0 0 0 1 
Metabolic alkalosis 0 - - - 
Uncomp respiratory alkalosis 6 5 5 10 
But comp respiratory alkalosis 3 4 6 2 
Compensated respiratory alkalosis 4 4 3 4 
Respiratory alkalosis 4 - - - 
Uncomp respiratory acidosis 4 5 6 4 
Part comp respiratory acidosis 1 1 1 2 
Compensated respiratory acidosis 0 1 1 0 
Respiratory acidosis I - - - 
Resp acidosis & met alkalosis 1 0 0 2 
Resp alkalosis & met alkalosis 3 0 0 3 
Resp alkalosis & met acidosis 0 3 2 3 
Resp acidosis & met acidosis 11 10 10 7 
Normal blood gases 4 6 6 2 
Low HCO3' With PCO2 2 - - - 
TOTAL 60 60 60 60 

Table 3-3. Summary of interpretative decisions made by the KBS prototype and human 
decision makers in the domain of acid-base balance (from Chelsom, 1990). 
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Bgas attempted to solve the problem of recognising and classifying complex disorders 

using derived data as evidence. However, the evidence provided by such data 

contributes no more information than the three definitional features listed in Table 3- 

1. Another mechanism which could solve the problem was implemented in the form of 

CritiqueDiagnosis KS. CritiqueDiagnosis, the action of which is depicted in Figure 3- 

7, operated in the following manner. 

START 

For each disorder dass at the Manifestation level 

Is a disorder listed at the Prediction level ? 

Typed critique is I 
'consistent' 

Form the list of I 
consistent disorders 

Type of critique is I 
'exýed+ 

Form fe list of 
expected disorders 

Figure 3-7. Action of the CritiqueDiagnosis Knowledge Source (from Chelsom, 1990). 

The aetiology of the patient's underlying clinical condition was entered into the 

system and the WriteDiseaseDiagnosis KS made an appropriate entry at the Diagnosis 

BB level. Furthermore, the TransferData KS transferred the final data interpretations 

from the SubDiagnosis level to the Manifestations level of the clinical diagnosis panel. 

The PredictDisorders KS searched the knowledge base for any disorders that were 
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associated with the patient's disease(s) and wrote them at the Prediction BB level 

(Figure 3-3). The CritiqueDiagnoses KS then compared the Prediction and 

Manifestations levels, and produced a list of consistent disorders and a list of expected 
disorders which were not found at the Manifestations level. Thus, in the example of 

Figure 3-8, the complex interpretative hypothesis of high pCO2 and [HC03 ], 

representing the combined states of euphaemia, hypercapnia and 

hyperbicarbonataemia, could be refined given the information that the patient is 

accidentally hypoventilated (high pCO2) and is being administered diuretic therapy for 

an underlying cardiac, renal or hepatic disorder. The first clinical feature causes an 

expected respiratory acidosis, whereas the second causes an expected metabolic 

alkalosis. By projecting the interpretative hypothesis of hyperdynamic compensation 

onto this clinical context, the system could select the case of combined respiratory 

acidosis and metabolic alkalosis from the set (d11, d12, d13). However, this 

performance was not evaluated in the KBS prototype. 

PArowsome 
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RatYiadodim 
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MM). lbmd 140 q3 Rif Y PI#9aDOCýý ýý i bb Malvin 
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Figure 3-8. The use of clinical features to refine a complex interpretative hypothesis in 
the form of causal-process classification. 
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The summative evaluation study, also as expected, showed that overall there was 

considerable disagreement between the human decision makers, even between the 

expert and the senior clinicians. More specifically, the system was in agreement with 

the expert clinician in 55% of the cases, and 53% of the cases with the senior 

clinicians, where the agreement between the expert and the senior clinicians was only 
55%. Thus, the KBS prototype performed at the level of the expert who designed the 

knowledge-base. Table 3-4 shows the agreement between the decision makers. 

EXPERT SENIOR JUNIOR SYSTEM 

EXPERT 33 24 33(39) 
SENIOR 55 % 23 32(38) 
JUNIOR 40% 37 % 26 (35) 
SYSTEM 55% (65%) 53% (63%) 43% (58%) 

Table 3-4. Agreement on interpretation (from Chelsom, 1990). The figures in parentheses 
include cases in which the clinician's interpretation was subsumed by the less specific 

interpretation in the system (see Section 3.2.2.7). 

These results are further analysed in Table 3-5 and Table 3-6, which display the 

performance of the system broken down by diagnosis. In cases where the system 

made an interpretation at an intermediate level of the hypothesis hierarchy which 

subsumed the clinician's diagnosis, a false +ve was recorded. When it did not subsume 

the clinician's interpretation, a false +ve was recorded for each of the descendent leaf 

node interpretations. 

DISORDER CASES TRUE FALSE TRUE FALSE senddvlty specificity diagnostic 
±ve -ve -ye +v'e lndei 

Uncomp met acid 5 2 3 .. 54ý .. ... 1 ». 0,40 0,98 1,38 
Part comp met acid 5 4 1 52 3 0,80 0,95 1,75 
Comp met acid 4 0 4 54 2 0,00 0,96 0,96 
Uncomp met alk 5 3 2 54 1 0,60 0,98 1,58 
Part comp met alk 2 2 0 58 0 1,00 1,00 2,00 
Uncomp resp alk 5 5 0 51 4 1,00 0,93 1,93 
Part comp resp alk 4 2 2 51 5 0,50 0,91 1,41 
Comp resp alk 4 2 2 52 4 0,50 0,93 1,43 
Uncomp resp acid 5 5 0 55 0 1,00 1,00 2,00 
Part comp resp acid 1 0 1 58 1 0,00 0,98 0,98 
Comp resp acid 1 0 1 59 0 0,00 1,00 1,00 
Resp alk & met acid 3 0 1 57 2 0,00 0,96 0,96 
Resp acid & met acid 10 9 1 48 2 0,90 0,96 1,86 
Normal blood gases 6 4 2 54 0 0,66 1,00 1,66 

Table 3-5. Accuracy with development expert as gold standard (from Chelsom, 1990). 
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DISORDER CASES TRUE 
+ve 

FALSE 
-ve 

TRUE 
-ve 

FALSE 
+ve 

sensitivity specificity diagnostic 
index 

Uncomp met acid 2 2 1 57 1 1,00 0,98 1,98 
Part comp met acid 9 5 5 48 3 0,55 0,94 1,49 
Comp met acid 2 1 2 57 1 0,50 0,98 1,48 
Uncomp met alk 5 2 3 53 2 0,40 0,96 1,36 
Part comp met alk 2 1 1 57 1 0,50 0,98 1,48 
Uncomp resp alk 5 3 4 50 5 0,60 0,91 1,51 
Part comp resp alk 6 3 3 52 2 0,50 0,96 1,46 
Comp resp alk 3 1 2 54 3 0,33 0,95 1,28 
Uncomp resp acid 6 5 2 54 0 0,83 1,00 1,83 
Part comp resp acid 1 1 0 59 0 1,00 1,00 2,00 
Comp resp acid 1 0 1 59 0 0,00 1,00 1,00 
Resp alk & met acid 2 0 2 57 1 0,00 0,98 0,98 
Resp acid & met acid 10 10 0 49 1 1,00 0,98 1,98 
Normal blood gases 6 4 2 54 0 0,66 1,00 1,66 

Table 3-6. Accuracy with senior clinician as gold standard (from Chelsom, 1990). 

The only significant difference between the pattern of interpretations made by the 

expert and senior clinicians is that senior clinicians tended to make more diagnoses of 

partially compensated metabolic acidosis than the expert, whose interpretations of 

metabolic acidosis were split fairly evenly between compensated, partially 

compensated and uncompensated. 

Overall, not counting the cases of complex disorders, the evaluation study showed 

that BGAS was in agreement with either the expert or senior clinician involved in the 

study in 44 of the 53 cases (83%). Nonetheless, as discussed above, these results are 

on their own insufficient as criteria for the decision whether to admit the system or 

reject it from further evaluation. 

3.4. Conclusion 

This chapter described an application of the method described in section 2.5.3 for 

belief propagation in a tree structured hierarchical belief network, to interpretative 

decision-making in the domain of acid-base metabolism. The evaluation study 

summarised in section 3.3, indicated that the KBS prototype was in agreement with 

the expert or senior clinicians involved in the study in 83% of the cases. However, the 

prototype failed to recognise complex disorders, that is, disorders which are fully 

compensated or accompanied by a second disorder of another organ system involved 
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in acid-base homeostasis. The prototype included a version of the method of causal- 

process classification described in section 2.4.2, to support its interpretative decisions 

when presented with such cases, however this performance was not evaluated. 

Nonetheless, it was assumed that the system's performance could be improved by 

training the belief network, given data in sufficient quantity and quality, which was not 

possible since the prototype was not allowed in routine use for the reasons described 

in chapter 1. Furthermore, the integration of the KBS prototype into the clinical 

information processing activity of the user, would facilitate an analysis of the activity 

involved in recognising the presence of complex disorders and the development of an 

extended task domain to perform this task. The chapter which follows describes the 

development of a clinical information management environment, designed to support 

the integration of the KBS prototype into the routine information processing activity 

of the clinician-user, by combining the acquisition, organisation, storage, update and 

review of the knowledge and patient data required for interpretative decision support 

in the domain of monitoring the ICU patient with disturbed acid-base homeostasis. 
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-4- 

Object-Oriented Design of an Intelligent ICU 
Clinical Information Management Support System 



4.1. Introduction 

Chapter 1 described how albeit having demonstrated an ability to perform at or near 

the level of human decision-makers, the overwhelming majority of medical KBS 

prototypes have failed to provide effective solutions to key medical decision support 

problems. More specifically, the chapter discussed the methodological inadequacies in 

the evaluation and dissemination of knowledge-based and other clinical opinion and 

decision support tools, the criteria by which the introduction of support systems into 

routine clinical practice is assessed and decided, and the necessity for a well designed 

approach to the integration of pertinent tools within the users' routine information 

processing activity. Following this background material, a subsequent analysis of the 

clinical decision-making task and methods for reasoning with partial belief and 

incomplete information in Chapter 2, and a knowledge description of the KBS 

prototype which was to be integrated within routine clinical practice in Chapter 3, this 

chapter describes an incremental, object-oriented approach to the functional 

integration of the KBS prototype, geared toward the solution of the problems 

encountered in the combined management of the clinical information generated and 

utilised in the process of monitoring and supporting the ICU patient with acid-base 
balance disorders. 

4.2. Functional Integration Requirements 

Figure 4-1 depicts the process of formative and constructive assessment by which, as 

discussed in Chapter 1, the prototype KBS described in the last chapter should 

integrated into the cognitive information processing activity observed in the ICU in 

order to deliver effective solutions to actual medical decision support problems. The 

indicates the incremental, iterative nature of the approach and its role in guiding the 

integration development process. More specifically, as discussed in Chapter 1, the 

figure shows that beta-testing focuses on assessing the compatibility of the integrated 

system with the functional requirements elicited during the phase of exploration, 
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which are discussed in this section. The object-oriented system development and 

integration techniques and methods employed in the process are described in the 

section which follows. 

User requirements 
and prototypes - 

/i 

i 
exploration I validity 

Need & Requirements alpha-test 

System development 
and integration techniques 

1.11: and method 

: A) J Integration process 
Integrated prototype 
in clinical practice 

Evaluation process 

Evaluation techniques 
and methods 

functionality impact 
beta-test 

I 
field trial 

Figure 4-1. Constructive assessment in the clinical decision-support system integration- 
development process (from Brender et al, 1995). 

4.2.1. The Critical Care Environment 

Half way through the 18th century, Florence Nightingale expressed the need for a 

place in the hospital where post-operative and other patients needing close attention 

could be watched. Almost a century later, an American Anaesthesia Study 

Commission concluded that one-third of post-operative deaths in the first 24-hours of 

recovery could have been prevented by better nursing care (Jennett, 1986). By 1960, 

ICUs were still almost unknown in the US, yet by 1979 there were 55,000 ICU beds 
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(Jennett, 1986). By the mid-1980s this figure had risen to 75,000 beds (Gardner, 

1990). 

Thus, the purpose of the ICU is to reduce mortality and morbidity and they are used 
for the management of several quite distinct kinds of hospitalised patients who are in a 

critical condition (Jennett, 1986; Gardner, 1990). To manage these patients, an ICU 

uses a range of high technology measurement instrumentation and requires specialised 

staff. Consequentially, an ICU has a high cost and limited availability. In the mid- 

1980s, in US hospitals ICU beds accounted for as many as 15% of the total number of 

beds. In the UK the proportion at the time was 1%. It was estimated that more than 

half the difference between the cost of hospital care in the two countries derived from 

the difference in the provision of intensive care (Jennett, 1986). 

Since, by contrast to the activity observed in other hospital units, the majority of what 

goes on in an ICU is intensive nursing care, the majority of the technology 

encountered there is for patient monitoring and life support, not therapy (Jennett, 

1986). Patient monitoring is defined as "the repeated and continuous observation or 

measurement of the patient parameters, his or her physiological function, and the 

function of life support equipment, for the purpose of guiding management decisions, 

including when to make therapeutic interventions, and assessment of those 

interventions" (Hudson, 1985). Changes in vital patient parameters can indicate the 

progression of a condition, response to therapy, development of complications, and 

the need for further action. Thus, patient monitoring is regarded as a subset of clinical 
investigation, contributing not only to initial diagnosis but also to prognosis and 

management. The aim of monitoring the ICU patient is to detect the advent of 

significant pathophysiological events and prevent their consequences by timely 

intervention, thereby buying time until an underlying disease process can be reversed. 

In this context, monitoring is prevention on a short time scale, preventing 

complications rather than diseases, but contributing significantly to the reduction of 

avoidable mortality and morbidity (Jennett, 1986). 

In the process of monitoring the ICU patient, clinical information indicating the 

patient's state must be collected from a multitude of sources, integrated, recorded, 

and interpreted within the clinical context to provide interpretations appropriate to the 
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context. Finally, patient data along with their contextual interpretations must be made 

available to the clinician decision-maker in a timely fashion in order to effect 

appropriate patient-state control decisions. Clinical information may be acquired from 

vital-sign monitoring equipment (ie. temperature, respiratory rate, heart rate, and 

arterial blood pressure monitors), life-support and therapeutic equipment (ie. 

ventilators, dialysis machines and drug infusion pumps), nurse observations, and the 

clinical laboratory, including the rapidly evolving class of off -site point-of-care clinical 

laboratory instrumentation, for example blood-gas analysers and blood oxymeters. 

Following acquisition, the available information forms the input to patient 

management decision-making processes involving the prescription and adjustment of 

ventilation, drug infusion, and nutrition regimes, to ensure maintenance of body fluid 

volume, circulatory stability and metabolic homeostasis, together with optimisation of 

oxygen delivery (Carson, 1989). 

4.2.2. The Need for Decision Support in the Data-Overloaded ICU 

As new high technology medical procedures become available for routine use, the 

number of management alternatives increases and complex integration of information 

is implicit in many patient management decisions (Speicher and Smith, 1983). For 

example, advanced life-support equipment may have many controls that must be 

regulated in co-ordination with other interventions. As a consequence, the 

management strategies adopted in current critical care clinical practice are rarely 

optimal. The difficulty faced by the clinician is that of integrating and interpreting a 

range of monitored variables which span the respiratory, circulatory, and metabolic 

systems of the patient in the context of the indicated higher level processes (Carson et 

al, 1988; Blois, 1988), and because of the resultant complexity of monitoring and 

controlling the ICU patient, even skilled clinicians may make errors that limit the 

quality of care and which may cause life-threatening occurrences. Thus, although the 

availability of patient data from the available sources aims to improve the quality of 

care, the large number of variables and frequency of measurement can overwhelm 

clinicians (Blois, 1984; Fallat and Osborn, 1984; Price and Mason, 1986). 
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At the beginning of 1990s, a study published in the Lancet indicated that 80% of 

preventable critical incidents in a British ICU were found to be due to human error, 

while only 20% could be ascribed to equipment failure (Wright et al, 1991). 

Transcription and execution errors were found to be significant factors contributing to 

preventable mishaps in the unit, however, errors frequently also occurred in the 

interpretation of data. The factors felt to contribute to the detection of incidents 

included increased vigilance, presence of alarms on equipment and the presence of 

experienced staff. Failing to suspect more than one cause was one of the most 

common errors that lead to the misinterpretation of an observed clinical problem. For 

instance, in relation to laboratory medicine and particularly in the context of managing 

the patient with disturbed acid-base homeostasis, although the chemical pathology of 

the disorders is well understood by experienced clinicians, the correct interpretation of 

the clinical data is subject to individual success rates as low as 20% (Schreck et al, 

1986). 

4.2.3. Required ICU Decision Support Functions 

In order to assist decision-making in the data-overloaded, high-technology critical 

care environment described above, IMC systems such as the proof-of-concept system 

described in Section 2.4.5 should perform the following decision support functions: 

1. Summarise the patient's progress and condition for clinicians and physicians on 

rounds. 

2. Alert clinicians to imminent problems before they might otherwise be noticed. 

3. Suggest, critique and possibly execute alternative therapies. 

Figure 4-2 depicts the tasks required for the execution of the above described decision 

support functions required to assist in monitoring and supporting the ICU patient. 

Interpretative inference is inference in the effect-to-cause direction of causality and 

was extensively described in Chapter 2. Predictive inference is inference in the cause- 

to-effect direction, leading from the set of interpretative hypotheses to plausible 

explanations of the data available in a case, or to corresponding disease prognoses. 
The latter refer to a set of plausible predictive inferences of outcome expressed in 
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terms of expected consequences, complications and overall disease progression, with 

or without intervention. By contrast to explanatory predictive inferences which are 

used for the static justification of interpretative hypotheses, as shown in Figure 2-4 for 

the case of consultation systems, temporal prognostic predictive inferences are used 

primarily for treatment planning and management, including evaluation and 

optimisation of patient-state control plans and predictive alarming (Uckun, 1994). 

Interpretation Prediction 

PATIENT DATA DIFFERENTIAL PROGNOSIS 

(Clinical Evidence) DIAGNOSIS (Expected Consequences 
(Interpretative Hypotheses) with or without Intervention) 

Explanation 

Acquisition 

PATIENT 
Control 

INTERVENTION 
(Alternative Control Plans) 

Monitoring 

Figure 4-2. Clinical activity observed in the process of monitoring and supporting the 
ICU patient. 

There are two ways in which to support patient-state control plans: open-loop and 

closed loop (Carson, 1989; Uckun, 1994). Open-loop control or execution monitoring 

involves the temporal confirmation of constructed PSMs from continued observation 

of patient state, primarily to assist in planning and management. Closed-loop control 

means a system is able to execute control plans directly, for example, by modifying 

ventilator settings and drip infusion rates. For ethical and legal reasons, there are very 

few clinical systems that operate in closed-loop mode either in clinical use or under 

evaluation (Uckun, 1994). An interesting approach to ICU patient management is the 

use of the critiquing model to generate action-oriented alarms (van der Lei et al, 1990; 

van der Lei and Musen, 1991). Action-oriented alarms or suggestions such as 

changing a drip rate of a drug, changing the rate of volume of ventilator, and 

detecting adverse drug interactions, are considered the ultimate in critical care 
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decision support, as at this level, change in medical care can best be initiated and 

consequentially, evaluation of the assistance offered by the computer can be assessed. 

Finally, in order for these tasks to performed in the context of IMC as shown in 

Figure 4-2 and described in Section 2.4.5, support systems must provide the means 
for communication with environment, including facilities for the acquisition, temporal 

organisation, maintenance, update and review of the information generated in the 

process of monitoring the ICU patient. 

4.3. Elements of the Object-Oriented Development 
Methodology 

The increase in the modelling complexity that computer programs have been dealing 

with, as manifested in the medical Al research described in this thesis and the 

development of generic task-specific KBS architectures (Clancey, 1992), such as the 

one described in Section 2.4.5, has prompted a significant amount of applied research 

in software engineering, particularly with regard to decomposition, abstraction, 

encapsulation and hierarchy (Factor et al, 1989,1991; Stefanelli, 1993). The 

development of increasingly more expressive and modular programming languages 

has complemented these advances. Overall, the trend has been a move away from 

imperative languages and algorithms that tell the computer what to do, toward 

declarative languages that describe the key abstractions in the problem domain 

(Booch, 1991; Graham, 1994). This trend of abstraction-object-orientation 

corresponds to the paradigm shift away from the underlying machine and closer to the 

problem space (Newell, 1982). 

Object-oriented software engineering provides methods for the analysis, design, and 

implementation of computer systems, based on the principles of abstraction, 

encapsulation, modularity, hierarchy, typing, concurrency, and persistence, which are 

described below in this section. What makes object-orientation particularly suited to 

the implementation of complex integrated systems is that the methodology brings 

these elements together into an incremental, unified decomposition, representation 
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and implementation framework för modelling complex systems, with a structure- 

preserving transformation of concepts to maintainable implementations (Booch, 

1991). Such an application is described in the section which follows. 

4.3.1. Abstraction 

Object-oriented systems are organised as co-operative collections of objects, each of 

which represents an instance of some class of objects, which in turn corresponds to 

some problem domain abstraction and which is a member of a hierarchy of classes 

united via inheritance relationships. 

Once instantiated, objects exist for some time, during which time they can act on 

other objects and be acted upon by other objects, thereby be changed, shared and 
destroyed. Thus, objects encompass two types of abstraction: entity abstractions and 

action abstractions. These correspond, respectively, to an object that represents a 

useful model of a problem domain entity and to an object that provides generalised 

sets of operations, all of which perform the same kind of function. In other words, 

objects have a structure and thus a state, a behaviour, and an identity. The structure 

and behaviour of similar objects are defined in their common class. The identity of an 

object is defined upon the creation of a class instance. 

The fact that every object has a state means that it takes up some space, be it in the 

physical world or in computer memory; i. e. all objects within a system encapsulate 

some state, and all of the state within a system is encapsulated by objects. The state of 

an object encompasses all of the static properties of the object, inherited from its 

class, plus the current dynamic values of each of these properties. The behaviour of an 

object is defined by its actions, or how an object acts and reacts, in terms of its state 

changes and message passing. Any object that uses the resources or expertise of 

another object is termed a client. For a given class there are usually two kinds of 

clients: objects that invoke operations upon instances of the class by message passing, 

and subclasses that inherit from the class. In the latter case, objects are related by 

structural relationships, which are described below, whereas in the former by using 

relationships. There are three types of uses for an object: 
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1. Actor. An object is an actor when it can operate upon other objects but is never 
operated upon by other objects. 

2. Server. An object is a server when it never operates upon other objects but is 

only operated upon by other objects. 

3. Agent. An object is an agent when it can both operate upon other objects and be 

operated upon by other objects. An agent is usually created to do some work on 
behalf of an actor or another agent. 

4.3.2. Encapsulation 

In order that an abstraction contributes effectively to the decomposition of a problem 
domain, its implementation details must be encapsulated so that no part of a complex 

system should depend on the internal details of another part. Thus abstraction and 

encapsulation are complementary concepts. Abstraction focuses upon the outside 

view of an object, and encapsulation, also known as the principle of information 

hiding, prevents clients from seeing the inside view. In practice, this means that each 

class must have two parts. These are the interface to the class and the implementation 

of the class. The interface of a class captures only its outside view, encompassing the 

designer's abstraction of the behaviour common to all instances of the class. The 

implementation of a class comprises the representation of the abstraction as well as 

the mechanisms that achieve the desired behaviour. Thus, encapsulation is the process 

of hiding all of the details of an object that do not contribute to its essential 

characteristics. 

The abstraction of an object should precede the decisions about its implementation. 

Once an implementation is selected, it should be treated as a secret of the abstraction 

and hidden from the object's clients. The interface of a class is the one place where 

the designer asserts all of the assumptions that a client may make about any instances 

of the class. The implementation encapsulates details about which no client may make 

assumptions. It is through this property of encapsulation that object-orientation allows 

the development of open systems. Another benefit is the ability to change the 

representation of an abstraction without disturbing any of its clients, whether internal 
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or external. Thus, object-oriented systems are maintainable and can evolve through 

their use and re-use. 

In object-oriented languages, operations that clients may perform upon an object are 

typically declared as methods, which are part of the interface and the implementation 

of the class. C++ uses the term member function to denote this concept. An object's 
behaviour is determined by the implementation of its class. Furthermore, the access to 

an object's behaviour is determined by the level of the member method's declaration 

in the class' interface. In C++ there are three levels of encapsulation: 

1. Private. A member of an object (method or attribute) is declared private if it is 

meant to be available to the class's own methods and cannot be accessed by 

other objects, but only those created from that class. 

2. Protected. A member of an object is declared protected when it is not visible to 

any other classes except its subclasses. 

3. Public. A member is declared public if it is meant to be available to any other 
object. 

4.3.3. Modularity 

A software architecture comprises a logical as well as a physical structure. In the same 

way that abstractions, classes and objects, provide a means of decomposing the 

problem space and form the logical structure or architecture of a system, program 

modules provide a means for decomposing the system's physical architecture. 
Modularisation consists of dividing a program into modules which can be compiled 

separately, but which have connections with other modules. As with abstractions, the 

connections between the modules are the assumptions which the modules make about 

each other. As with classes of objects, most languages that support the program 

module as a separate concept also distinguish between the interface of a module and 
its implementation. Again, program modules communicate through their interfaces. 

One program module does not have to now the implementation of the other. Thus 

modularity and encapsulation are nested levels of abstraction. 
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In complex applications the use of modules is essential for managing complexity. In 

production languages and systems rules play a fundamental role in the modularity of 

the KBS (Section 2.3.3). For example, modules may comprise top-level goals and one 

module needs to only know the top-level goal of the module, rather than its whole 
logical structure. In object-oriented C, for example in C++, modules are connected by 

declaring in one module the file containing the interface to another module, or the 

header file. The overall goal of the decomposition into modules is the reduction of 

development effort by allowing modules to be designed and revised independently. 

However, it is often the case that at the beginning of the design stage modules are not 

clear distinctions and they are only formed after the key abstractions of the 

represented domain have been identified. Modularity is the property of a system that 

has been decomposed into a set of cohesive and loosely coupled modules. Cohesive 

means grouping logically related abstractions and loosely coupled means there are 

minimal dependencies among modules. Furthermore, modularisation should make a 

system reusable. For example, generic tasks are reusable. In fact, abstraction, 

encapsulation and modularisation, are the key advantage of the blackboard 

architecture. 

4.3.4. Hierarchy 

Abstraction, encapsulation, and modularity are three ways in which to deal with 

complexity in software systems. As discussed in Chapter 2, hierarchy is the backbone 

of structural organisation because it provides a ranking or ordering of abstractions in 

such a way that greatly facilitates the process and effectiveness of abstraction. The 

two most important hierarchies in a complex system are its class structure, which 

takes the form of a kind-of hierarchy, and its object structure, which takes the form of 

a part-of hierarchy. 

Inheritance is the most important kind-of hierarchy. As stated above, inheritance 

defines a relationship among classes, wherein one class shares the structure or 

behaviour defined in one or more classes. A one-to-many relationship between classes 
is termed single inheritance, which is the defining characteristic of tree structured 
hierarchies such as the one shown in Figure 3-1. A many-to-one relationship is termed 
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multiple inheritance. Whereas kind-of hierarchies denote generalisation-specialisation 

relationships, part-of hierarchies describe decomposition-aggregation relationships. 

Inheritance relationships are essentially class relationships and aggregation, or 

composition, relationships are essentially object relationships. Aggregation or 

composition hierarchies are said to be defined on multiple levels of abstraction. The 

solution blackboard, or the short term memory, is essentially an aggregation hierarchy 

which also reflects the original kind-of decomposition of the problem domain. 

Operators decompose a problem by posting solutions on such a hierarchy, the 

aggregation of which should reveal the final solution. 
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Figure 4-3. The organisation of classes and objects as orthogonal structures (adapted 
from Booch, 1991) 

The organisation of classes and objects as orthogonal structures is depicted in Figure 

4-3. The diagram depicts a hierarchy of disorder hypotheses, represented as classes 

(Dl, D2i ... , D7) united via inheritance or kind-of relationships, as for example in 
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Figure 3-1, and an orthogonal PSM hierarchy of object aggregates {E1, El. 1, ..., 
E1.2.2}, representing evidence planes on a PSM blackboard, as for example in Figure 

3-3, which may be instantiated by message passing between interpretative classes or 
by a separate blackboard-controlled reasoning module (Figure 3-2). A multilevel 

object aggregation hierarchy formed by the instantiation of classes continues to reflect 

the class structure only the inheritance relationships are implicit and weaker than 

aggregation relationships. 

4.3.5. Persistence 

A software object of some type, once created, takes up a certain amount of space and 

exists for a particular amount of time, until it is destroyed. There is a range of object 

persistence, ranging from transitory objects that arise within the evaluation of a simple 

expression or statement, to objects in a database that outlive the execution of a single 

program. The spectrum of object persistence encompasses the following (Booch, 

1991): 

l. Transient results in expression or statement evaluation. 
2. Local variables in procedure activation. 
3. Global variables and heap items whose extent is different from their scope. 
4. Data that exist between executions of a program. 
5. Data that exist between various versions of a program. 
6. Data that outlive the program. 

Traditional programming languages usually address only the first three kinds of object 

persistence. Persistence of the last three kinds is typically the domain of database 

technology. Introducing the concept of persistence to the object model, gives rise to 

object-oriented databases, and enables the development of integrated systems with 

superior performance in data handling both in terms of representational as well as 

reasoning power and efficiency (Graham, 1994). In practice, such databases build 

upon proven technology, such as sequential, indexed, hierarchical, network, or 

relational data bases or knowledge bases, but then offer to the programmer the 

abstraction of an object-oriented interface, through which database queries and other 
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operations, such as KBS reasoning, are completed in terms of objects whose lifetime 

transcends the lifetime of an individual program. Furthermore, object persistence deals 

with more than just the lifetime of data. In object-oriented databases, not only does 

the state of an object persist, but its class must also transcend any individual program 

so that every program interprets this saved state in the same way. 

4.4. Top-Level View of the Integrated System 

The ICIMS system was developed using the above described methodological elements 

of object-oriented design and implementation, in order to adopt a layered, incremental 

development approach to the integration of the KBS prototype, in accordance to the 

functional requirements specified in Section 4.2. This process, which is depicted in 

Figure 4-1, started with the design of an object handling system and proceeded 

upwards and closer to the user, guided by the constructive assessment of a clinical 

advisor, to eventually include the cognitive task-domain model of the KBS prototype, 

which was described in Chapter 3, and ergonomic interfaces for the management of 

the clinical information acquired and generated in the process of monitoring the ICU 

patient. 

ICIMS was developed within the Borland object-oriented C++ environment, using the 

standard Windows Application Programmers Interface (API) for the construction of 

the users' access interfaces. C++ is an object-oriented software development 

environment, however, it does not in itself provide mechanisms for creating and 

handling persistent objects, that is, as described above, objects whose class 

instantiation inheritance, class structure inheritance, and state is saved, and transcends 

the lifetime of an individual program, thereby providing the ability to create and 

manipulate persistent world models. This property of object-oriented system 

development was added by means of the POET pre-compiler (Persistent Objects 

Extended Database Technology), which reads class interfaces and creates persistent 

objects from classes and class structures, or models, which are declared persistent. 
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Figure 4-4 presents a top-level view of the layered, modular ICIMS system 

architecture. The clinical object base (COB) module shown in the middle, forms the 

kernel of the domain abstraction and support system integration process, by 

functioning as a global memory of persistent model-derived objects. There are three 

types of persistent model or persistent class structures in the system. The patient 

record model (PRM) class structure was designed for the derivation of the persistent 

objects required to support the management of the clinical information generated in 

the process of monitoring the ICU patient. The domain knowledge model (DKM) 

class structure was designed for the derivation of the persistent objects required to 

support the management of the knowledge-base utilised in the interpretation of the 

acquired clinical information. Finally, the patient-specific model (PSM) class structure 

was designed for the derivation of the blackboard objects required to support the 

application of the task-domain model (TDM) for evidence propagation in the 

hierarchical belief network contained in the COB. 
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Figure 4-4. Top-level view of the Intelligent Clinical Information Management Support 
System modular architecture. 
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The object management system (OMS), which includes an object communication 

system (OCS) module and the knowledge-based data interpretation system (DIS) 

module, was designed to monitor the sources of patient data connected to the ICIMS 

system via serial data communication interfaces, integrate, store and organise the 

acquired patient data, in this case the results of the blood-gas analysis, by creating 
instances of the PRM class structure, interpret the data stored in the PRM model- 
derived object structures, and display their contents in a manner which converts it to 

information, thereby providing the clinical decision support required to avoid the 

misinterpretation and consequentially mismanagement of an observed clinical problem 

under conditions of information overload and contextual complexity. 

Thus, for each set of evidence generated by the blood-gas analyser, the DIS module 

will instantiate a PSM class structure, by applying the reasoning operators that 

comprise the TDM of the KBS prototype (Figure 2). So, as shown in Figure 3, for 

patient [X], ICIMS will construct the patient-specific model [X. 1] of the patient's 
interpretative hypothesis space for disorders of acid-base metabolism, given the set 

[E. 1 ] of the patient's blood-gas measurements, and so on. 

Finally, the OMS module may also be used in order to update and review the 

information contained in each patient record as well as the knowledge contained in the 

hierarchically connected frames that comprise the DKM, as depicted in Figure 1. As in 

the case of the patient records, each knowledge frame is an instantiation of the DKM 

persistent class structure. 

4.5. Entity Models for the Derivation of 
the Clinical Object Base 

As stated in the previous section, the COB which forms the heart of the incremental 

KBS integration process and of the development of the resultant modular ICIMS 

system architecture, comprises a number of persistent objects which are derived from 

three models or class structures represented in the system. These are the PRM which 

corresponds to a prototypical data base schema, the DKM which corresponds to a 
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prototypical knowledge base schema, and the PSM which corresponds to the 
interpretative problem solution blackboard of the KBS prototype. This section shows 
the class structure of these models and the interfaces to the model classes, by which 

objects are created and maintained. The sections which follow describe the OMS 

modules which were designed for the acquisition, update and review of the 
information stored in these objects, and the TDM for the instantiation of the 

knowledge-based clinical information processing tasks required for the interpretation 

of the acquired clinical information. The diagrams included in this section and the 

sections which follow show only the segments of the ICIMS class structure which are 

required to gain an understanding of the integration-development process. 
Furthermore, the class interfaces that accompany the class diagrams are meant to 

indicate the attribute and method members of the classes and are therefore shown in 

pseudo-code, thereby concealing much of the C++ interface and implementation 

detail. Figure 4-5 shows the key to the class diagrams which follow. 

Super Class 
Cl 

Class C2 (subclass) Inherits properties 
of class C1 (superclass). 

Class C2 Class of objects 
(name of the class Inside the rectangle). 

Class C2 contains or "has" n classes C3 
(cardinality number, n, is dynamic). 

n 

Class C3 

Class C3 uses class C4. 

Class C4 

Figure 4-5. Key to the Intelligent Clinical Information Management Support System 
class structure diagrams. 
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4.5.1. The Persistent Class Administration System 

Each class of objects in the ICIMS system which is declared and made persistent 

using the POET pre-compiler inherits the properties of the class of COB objects 

which are constructed and managed by the POET persistent class administration 

system (PCAS) whose class structure is depicted in Figure 4-6. 

Windows 
Application 

ICIMS System 
(COB) 

PtObject II PtBase ii PtObjectSet 

PtCaIlBack RUM 

Figure 4-6. Class diagram of the persistent class administration system. 

The class PtBase is used to construct an object which represents the object base itself. 

Thus, PtBase is the class which defines methods for opening and closing a number of 

concurrent object bases and contains data which POET uses for internal management. 

Once an object base has been opened, PtBase is used to assign other objects to the 

object base. The public PtBase methods are shown in Table 4-1. 

The class PtObjectSet, whose object handling methods are shown in Table 4-2, is the 

base container class for all sets of persistent objects. The PtAllSet class provides the 

means for accessing the objects contained in the object base. As shown in Figure 4-6, 

AiSets are derived from PtObjectSet and thus inherit the methods listed in Table 4-2. 

The POET pre-compiler creates an Al1Set for each persistent class it encounters. 
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Thus, for example, the declaration `persistent class patient' will result in the 

generation of a patientAiSet, which may be used to retrieve an object from the COB, 

insert an object, append an object, and in doing so may be searched sequentially, or by 

performing a query, etc. 

class PtBase Function 
public member methods 

PtBase Constructor 

-PtBase Destructor 
Open Opens an object base 
Close Closes the object base 
Connect Establishes a connection to the object server 
DisConnect Breaks off the connection to the server 

Table 4-1. Member methods declared as public in the PCAS PtBase class interface. 

class PtObjectSet Function 
public member methods 

PtObjectSet Constructor 
ptObjectSet Destructor 
Append Append an element to the end of the set 
Assign Assign the set to an object base 
Clear Delete all elements from the set 
Delete Delete the element at the current position 
Get Get an element from the set 
GetNum Return the number of elements in the set 
Insert Insert an element at the current position 
Put Overwrite the element at the current position 
Query Perform a query 
Seek Change the internal position within the set 
Unget Clean up after Get 

Table 4-2. Member methods declared as public in the PCAS PtObjectSet class interface. 

Finally, PtObject is a class which contains data members for object identity and link 

counts, and the methods needed to assign objects to an object base, store them, delete 

them, lock them, watch them, or manage the object's link count. These methods are 

inherited by each and every persistent class. The methods derived from PtObject for 
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handling persistent objects are listed in Table 4-3. The use of these methods in the 

ICIMS system is described in the sections which follow. 

class PtObject Function 

_pubtic 
member methods 

PtObject Constructor 
PtObjeot Destructor 
Assign Gives an object an identity and assigns it to an object base 
Delete Deletes the object from the object base 
Forget Decrements the object's link count; if the object link count is zero it 

calls the object's destructor to remove it from the memory. 
Remember Increments the objects link count 
Store Stores the object 

Table 4-3. Member methods declared as public in the PCAS PtObject class interface. 

4.5.2. The Patient Record Model 

Figure 4-7 shows the class diagram of the PRM, used for the derivation of the 

persistent object structure required to support the management of the clinical 

information generated in the process of monitoring the ICU patient. Section 4.4 

briefly described how the OMS module, which apart from updating and reviewing the 

information stored in the COB is also responsible for raw data acquisition by means of 

the OCS module, monitors the sources of patient data and creates instances of the 

PRM class structure, which are identified by means of the name and hospital number 

of the patient whose information is stored in each derived persistent object structure. 

As shown in Figure 4-7, each patient object is a kind-of COB object and is linked via 

a containment relationship to a number of clinical feature objects and a number of 

blood-gas analysis objects. The latter is one of the sets of patient parameters which 

may be required to monitor a particular ICU patient. Other sets may include electro- 

cardiograph data, blood oxygenation data, etc. Once these objects are created by the 

COB PCAS described above, they are filled-in either automatically by the OCS 

module or manually by means of the OMS module dialogues described below, which 

make use of the methods described in Section 4.5.1 for this purpose. 
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Figure 4-7. Class diagram of the patient record model for the derivation of the persistent 
object structures required to support the management of the clinical information 

generated in the process of monitoring the ICU patient. 

Listing 4-1 shows the class interface used by the OMS module to derive and manage 

persistent patient object structures via the PCAS. As described in Section 4.3, the 

patient class encapsulates only the behaviour of the total system which is pertinent to 

the abstraction it represents. Thus, any client object wishing to manipulate patient 

objects may do no more than to construct a patient object structure using the public 

patient constructor method, initialise the object attributes using the InitialiseObject 

method, including the contained sets created automatically by the instantiation of the 

patient class, destroy the object structure using the -patient destructor method, 

display the private object attributes using the DisplayObject method, and finally set 

and retrieve its private members using SetMember and GetMember methods 

respectively. 

persistent class patient 
{ 
private: 

name, firstName, hospNumber, ward; 
protected: 

cset<bloodGasAnalysis*> bloodGases; 
cset<clinicalFeature*> patientFeature; 

public: 
patient{); 
-patient(); 
SetMember(); 
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GetMember(); 
InitialiseObject(); 
Displayobject Q; 

Listing 4-1. Class interface for the construction and manipulation of persistent patient 
object structures. 

Apart from the private attributes required to identify each object derived from this 

class, the patient class interface also specifies containment links to the two sets of 

objects as shown in Figure 4-7. The behaviour of these two sets is specified in their 

respective interfaces. Listing 4-2 shows the interface to the class of blood-gas analysis 

objects and Listing 4-3 the interface to the class of clinical feature objects. Although 

these two classes have their own identifiers, their behaviour is the same as that of the 

patient class. However, the implementation of this seemingly common behaviour may 
differ. Furthermore, as stated in Section 4.3, the implementations may be changed 

without affecting any other parts of the system. So for example, in creating 
bloodGasAnalysis objects, the SetMembers method implementation may be altered so 

that the OMS module which uses it, does not specify a value for the AnGap 

parameter, but instead the object calculates that value from the other values it 

contains, as described in Section 3.2.2.3. In fact, even if the private members of the 

class are altered, the POET PCAS provides a mechanism for versioning the COB, so 

that no data is lost, provided no member is deleted. 

persistent class bloodGasAnalyaia 
{ 
private: 

dataSource, accNumber; date, time; 
pH, pCO2, p02, HCO3, BP, Fi02, Hct, 
Beecf, AnGap, Ca, Cl, K, Na, ...; 
interpretation; 

public: 
bloodGasAnalysis(; 
-bloodGasAnalysisfl; 

Listing 4-2. Class interface for the construction and manipulation of persistent blood-gas 
analysis objects. 
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persistent class clinicalFeature 
{ 
private: 

feature; 
public: 

clinicalFeature(; 
-clinicalFeature 0; 

Listing 4-3. Class interface for the construction and manipulation of persistent clinical 
feature objects. 

4.5.3. The Domain Knowledge Model Structure 

The DKM class structure, designed for the derivation of the persistent object 

structure required to support the management of the knowledge base utilised for the 

interpretation of the acquired clinical information, is shown in Figure 4-8. This class 

structure reflects the frame structure used by the KBS prototype for the 

representation of the belief network shown in Figure 3-1, and is augmented by the 

methods required to access its attribute members. The class interfaces are shown in 

Listings 4-4 to 4-7. 

persistent class disorder 
{ 
private: 

disorderName; 
parentTaxonomy; 
aPrioriProbability; 
set<linkedDisorder> descendentDisorder; 
set<evidence*> expectedLevelOfParameter; 
set<aetiology*> patientFeatureEvidence; 

public: 

Listing 4-4. Class interface for the construction and manipulation of persistent disorder 
object structures. 
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Figure 4-8. Class diagram of the domain knowledge model for the derivation of the 
persistent object structures required to support the management of the knowledge base 

utilised for the interpretation of the acquired clinical information. 

Listing 4-4 states that disorder objects belong to some general class of disorders, in 

this case acid-base metabolism, and are assigned an a priori probability of their 

occurrence given no evidence has been observed. Furthermore, each disorder object 

contains a number of disorder names which are linked to it as shown in Figure 3-1, a 

number of objects containing probability assignments for each piece of evidence being 

observed at a given level given the disorder (Section 3.2.2.5), and a set of aetiologies. 

Listings 4-5 and 4-6 show the class interfaces for these two classes of objects. Listing 

4-7 shows the class interface for the parameter profile objects which are used for the 

classification of patient measurements. 

persistent class evidence 
{ 
private: 

parameter; 
probLowGivenDisorder; 
probNormalGivenDisorder; 
probHighGivenDisorder; 

public: 
evidence (; 
-evidence(); 
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}; 

Listing 4-5. Class interface for the construction and manipulation of persistent disorder 
evidence objects. 

persistent class aetiology 
{ 
private: 

feature; 
public: 

aetiology(}; 
-aetiology(); 

Listing 4-6. Class interface for the construction and manipulation of persistent disorder 

aetiology objects. 

persistent class parameterProfile 
{ 
public: 

PtString name; 
PtString upperLimit; 
PtString lowerLimit; 
PtString mean; 
PtString standardDeviation; 
PtString default; 

public: 

Listing 4-7. Class interface for the construction and manipulation of persistent parameter 
profile objects. 

The set of recognised aetiologies contains the vocabulary of terms and since its 

interface is identical with Listing 4-6, it is not shown here. Again, the public interface 

of these classes is the same as with patient objects and is therefore also not shown 

here. 

4.5.4. The Patient Specific Model Structure 

The patient-specific model (PSM) class structure was designed for the derivation of 

the persistent blackboard objects required to support the application of the task- 

domain model (TDM) for evidence propagation in the hierarchical belief network as 
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described in Section 3.2.2. Figure 4-9 shows the ICIMS version of the prototype 
blackboard shown in Figure 3-3. The class interfaces to the persistent blackboard 

objects derived from the general PSM for the construction of situation-specific PSMs 

are identical with those shown in the previous two sections. Their private members 

were designed to contain the information specified in Figure 3-3. The objects which 

use these classes of blackboard objects in the process of interpreting acquired patient 

data are described in the Section 4.7. 

COB 

interpretation 

(composite) 
hypothesis 

(triggered) 
sub hypothesis 

processed expected 
data disorder r 

raw data patient 
feature 

Figure 4-9. Class diagram of the patient-specific model for the derivation of the 
blackboard objects required to support the application of the prototype task-domain 

model. 
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4.6. The Object Management System 

In the ICIMS system, the persistent object structures contained in the COB constitute 

the majority of the entity abstractions required to support the integration-development 

process. This architectural feature confers the required ability to develop, append, and 

constructively assess layers of action abstractions, which make use of the underlying 

COB entities in order to provide the required clinical information management and 

decision support functionality, in a manner which is ergonomically and cognitively 

compatible with the patient care activity of the user, without affecting the underlying 

object structures or their contents in the process. 

Thus, as shown in Figure 4-4, the first layer of the incremental ICIMS system 
development comprises the COB module, which uses the PCAS for handling the 

persistent object structures derived and maintained by means of the second layer, 

which comprises the object derivation models. Similarly, the OMS module is one level 

closer to the user since it provides the required functionality of patient data and 

domain knowledge acquisition, update and review, and a step closer to the integration 

of the KBS prototype, since it is at this stage that most of the clinical advisor's 

constructive assessment is translated into the evolutionary modifications pertaining to 

the KBS prototype integration process. 

The first layer of action modelling which was appended onto the basic object handling 

system was the OMS module. As stated above, the OMS module of the ICIMS 

system performs the instantiation, update and review of the persistent object 

structures described above via the PCAS. The class interfaces shown in Section 4.5 

indicate that apart from constructing and destroying objects, each class of objects 

provides methods for initialising, setting, and retrieving the information stored in each 

object derived from that class. During the initial stages of the integration development 

process, these interfaces were used to test the data acquisition process as well as the 

data base and knowledge base schemata. Following that, the OMS module was 
developed to use these methods in order to manipulate the persistent objects 

contained in the COB and derived from the models described above, via Windows 
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API dialogues with the user, which were designed to reflect the anatomy of the 

persistent object structures contained in the COB, thereby facilitating the review and 

update of their contents. 
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Figure 4-10. Class structure diagram linking the ICIMS Clinical Object Base to the 
Object Management System module for the acquisition, update and review of the data 

and knowledge model derived objects. 
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Figure 4-10 shows the class structure diagram of the OMS module of the ICIMS 

system. The module comprises the main ICIMS window class, which upon 

constructing and displaying a system window object using the 

ICIMSSystemWindowo method shown in Listing 4-8, uses the methods inherited 

from its Windows window superclass to control the main system menu. 

class ICIMSSystemWindow: public WindowsWindow 

protected: 
; Commands o; 

public: 
ICIMSSystemWindowop 
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I; 

Listing 4-8. Class interface for the construction and manipulation of ICIMS system 
windows. 

The class of dialogue window objects also inherits the properties of the Windows 

window class in order to instantiate, display and control dialogues with the user, 

which are superimposed on the main window for the purpose of providing access to 

the COB objects. As the diagram shows, there are two types of dialogue windows in 

the system. Those which inherit the properties of a standard Windows dialogue 

window and those which inherit the properties of the class of ICIMS object 

management dialogues. The interface to the latter class of objects is shown in Listing 

4-9. 

class objectManagementDialogue : public dialogueWindow 
( 
protected: 

Commands o; ; 
Init(); 

; Show o; 
Fill(); 
InitObject(); 
NextObject(); 
PrevObject(); 
StepObject(); 
GetPtObject(; 
GetAccessCode(); 

public: 
objectManagementDialogue() : dialogueWindowC) 

Listing 4-9. Class interface for the construction and manipulation of object management 
dialogue objects. 

Thus, objectManagementDialogue objects are responsible for creating, initialising and 

displaying dialogue screens, filling in the COB objects, and processing a number of 

pertinent menu commands which include showing, storing and deleting an object, and 

the sequential search through the object AliSets described above. As described in 

Section 4.5.1, the class of ICIMS system applications shown in Figure 4-6 uses 

PtBase and the member methods listed in Table 4-1 to open and close a COB. Once 

this is done, the class of objectManagementDialogue objects uses the PtObject 

member methods listed in Table 4-3 to store and delete the objects contained in the 
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COB. The dialogue window classes which directly inherit the properties of the 
dialogueWindow class do not require the PtObject methods for storing and deleting 

objects since they are used to modify objects which are linked with those modified by 

object-ManagementDialogue objects and are hence stored automatically by the PCAS. 

Finally, since the class objectManagementDialogue objects provides the means for 

displaying, storing and deleting COB objects, the method GetAccessCode is used to 

control access privileges. 

The 9 dialogue windows shown in Figure 4-10 belong to one of the three general 

categories of OMS function described in Section 4.5. These are the OCS dialogue for 

data acquisition, the data base management dialogues and the knowledge base 

management dialogues for updating and reviewing the information stored in the data 

and knowledge COB objects respectively. The OCS module dialogue displays in a 

separate window the information acquired by the system module via the RS232 

interfaces. The user has no control over this dialogue, apart from supplying the 

information required for registering the acquired patient measurements. Once this is 

done, the OCS dialogue creates, initialises, fills-in and stores the acquired and 

supplied patient information using PRM derived objects. The other two types of 
dialogue are described in the following two sections. 

4.6.1. Data Base Management Dialogues 

Listing 4-10 shows the class interface used by the OMS module in order to create a 

patient dialogue object for the purpose described above, upon receiving an 

appropriate message from the ICIMSSystemWindow menu Commands method 

shown in Listing 4-8. Since patient dialogue objects inherit the properties of the class 

of objectManagementDialogue objects, the methods declared in the protected 

interface of Listing 4-9 are declared as virtual, meaning that their implementation is 

defined in the superclass. The class of patient dialogue objects also contains a number 

of EditBox and ListBox members which are used to display and modify the contents 

of members of the object being updated and reviewed. 
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class patientDialogue : public objectManagementDialogue 
{ 
private: 

EditBox accessCode; 
EditBox numberOfPatients; 

protected: 
patient *pPatient; 
recognisedAetiology *pRecognisedAetiology 
patient. AllSet *pSetOfAllPatients; 
recognisedAetiologyAllSet *pSetOfAl1RecognisedAetiologies; 

protected: 
EditBox name; 
EditBox firstName; 
EditBox hospNumber; 

ListBox patientFeatureList; 
ListBox systemFeatureList; 
virtual Show(); 
virtual Fill(); 
virtual Commands o; ; 
virtual Init(); 
virtual InitObject(); 
virtual NextObject(); 
virtual PrevObject(); 

public: 
patientDialogue () : objectManagementDialogue(), 

virtual -patientDialogue (); 
); 

Listing 4-10. Class interface for the construction and manipulation of patient dialogue 
objects. 

Furthermore, by means of pointers to objects, denoted by the asterisk which is used in 

the C programming language for this purpose, patientDialogue objects may use 

patient objects to review and update their members, recognisedAetiology objects to 

specify the patient's clinical features from the available persistent vocabulary objects, 

and the corresponding AilSets which are required to search through the COB as 
described in Section 4.5.1. These relationships are depicted in Figure 4-11, which also 

shows the PCAS link between patient and data dialogues as described below. The 

data base management module of the OMS also contains dialogue classes for updating 

and reviewing the blood-gas analysis objects contained in patient objects as shown in 

Figure 4-7. Again, the interface of this dialogue class reflects the contents of the 

blood-gas analysis object it is designed to update and review, with the exception of its 

window control inheritance as described above. Finally, as shown in Listing 4-10, the 

patient's clinical features are supplied directly via the patient dialogue. 
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Figure 4-11. Class diagram of the patient data dialogue object structure created by the 
object management system. 

4.6.2. Knowledge Base Management Dialogues 

Listing 4-11 shows the class interface used by the OMS module in order to create 

disorder knowledge dialogue objects. The disorderDialogue class interface is identical 

to that of patientDialogue objects, in the sense that it reflects the contents of disorder 

objects and it inherits the properties of the objectManagementDialogue class. The 

class diagram of disorder dialogues is shown in Figure 4-12. 

class disorderDialogne: public objectManagementDialogue 
{ 
private: 

SingleEdit 
protected: 

disorderAllSet 
disorder 

protected: 
EditBox name; 

accessCode; 

*allDisorders; 
*disorder; 

virtual Show () ; 

public: 
disorderDialogue (): objectManagementDialogue 0, 
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virtual -disorderDialogue (); 
}; 

Listing 4-11. Class interface for the construction and manipulation of disorder dialogue 
objects. 
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dialogue I dialogue 
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PCAS 
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aetiology in disorder disorderAll3et 

Figure 4-12. Class diagram of the disorder knowledge dialogue object structure created 
by the object management system. 

Listing 4-12 shows the class interface for evidence dialogue objects. That is, dialogue 

objects which were designed to update and review the information stored in the 

evidence objects contained in disorder objects as shown in Figure 4-8. Again, the class 
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of evidence dialogue objects contains the members required for editing the evidence 

members shown in Listing 4-5. However, since the particular dialogue is not 

responsible for registering any changes made to the corresponding COB object 

contents, as described above, it directly inherits the properties of dialogue window 

objects as shown in Figure 4-10. For this reason the class of evidenceDialogue objects 

specifies its own user interface commands, as do all dialogue objects with the same 

inheritance. 

class evidenceDialoque: public dialogueWindow 
{ 
private: 

EditBox variable; 
EditBox plow; 
EditBox pnormal; 
EditBox phigh; 

protected: 
virtual Init(); 
virtual Commands o; ; 

public: 
evidence evidenceöbject; 
evidenceDialogue 0: dialogueWindow (}, 

Listing 4-12. Class interface for the construction and manipulation of evidence dialogue 
objects. 

Finally, as shown in Figure 4-12, the knowledge base management module of the 

OMS also contains the class of recognised aetiology dialogue objects for the 

maintenance of a vocabulary of clinical terms recognised by the system, the class of 

aetiology dialogue objects, used by the OMS to construct and maintain known patient 

features as causes of the represented disorders, and the class of parameter profile 

dialogue objects for specifying the expected level of monitored parameters given each 

represented disorder. 
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4.7. The Data Interpretation System 

As stated above, the OMS module layer was appended onto the COB layer in order to 

satisfy the user's fundamental requirements for clinical information management and 
decision support. More specifically, the OMS module was designed to generate 

ergonomic dialogues with the user, examples of which are shown in the next chapter, 

in order to create the persistent data and knowledge object structures contained in the 

COB, by deriving such object structures from the patient record and domain 

knowledge models, and to thereby also support and facilitate the integration of the 

prototype interpretative TDM required for the contextual interpretation of the data 

acquired in the process of monitoring patients with disorders of acid-base balance. 

This corresponds to the third and final stage of the prototype KBS integration 

process. 

The DIS module was thus designed to be appended onto the OMS ICIMS system 
layer, in order to instantiate a number of interpretative dialogues with the user, which 
dialogues represent the cognitive information processing tasks comprising the 

prototype TDM (Section 3.2.3), and to thereby derive the third class of persistent 

object structure, that of the PSM, which as described above was designed to take the 

place of the prototype KBS blackboard. 

4.7.1. Data Classification Dialogue 

Data classification dialogues display the operations performed by the classification 

knowledge source of the prototype KBS task domain described in Section 3.2.2.5 for 

the qualitative abstraction of the acquired raw patient data. Figure 4-13 shows the 

class diagram of classification dialogue objects and Listing 4-13 the class interface. 

class classificationDialogue : public dialogueWindow 
{ 
protected: 

ListBox classificationBox; 
rawData *pRawData; 
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processedData *pProcessedData; 
parameterProfile *pProfile; 
rawDataAllSet *pSetOfAllRawData; 
parameterProfileAllSet *pSetOfAllProfiles; 

protected: 
Classify(); 
virtual 
virtual 

public: 
classificationDialogue (): dialogueWindow(), 

virtual -classificationDialogue(); 
}; 

Listing 4-13. Class interface for the construction and manipulation of data 
classification dialogue objects. 

dialogue 
window 

raw data classification parameter 
dialogue profile 

raw data processed parameter HI19 

data profile AllSet AllSet 

Figure 4-13. Class diagram of data classification dialogues. 

As shown in Figure 4-13, since classification dialogues are a kind of dialogue window, 

once a data classification dialogue object is created, it inherits the properties of the 

general class of dialogue windows for display and user control. Furthermore, the 

classification dialogue class uses persistent objects from the rawData class of the 

blackboard object base and persistent parameterProfile objects from the knowledge 

object base. The class of processedData of the blackboard object base is used to 

create corresponding objects and to store the results of the classification operation. 

The initialisation method clears the contents of the display box used by the object to 

show the results of the data processing it performs and creates the rawData and 

Init(); 
; Commands o; 
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parameterProfile AllSets used by the object to search the spaces of the corresponding 
blackboard and knowledge-base persistent objects maintained in the COB and 

required for the operation represented in this class of objects. Once this is done, the 

Init method calls the Classify method, which incidentally cannot be called by other 

objects since it is not public, in order to carry out the data classification process. 

Again the Commands method processes the dialogue control messages used by the 

Windows API system. One of these messages is the cancel message, which calls the 

object destructor -classificationDialogue to destroy the AilSets created by the 

initialisation method. 

Again, following the principles of abstraction, encapsulation or information-hiding, 

and modularity, for the development of open, maintainable and re-usable systems, the 

classes of interpretative behaviour abstraction for raw data classification, and evidence 
impact, aggregation and propagation, were designed so that their client objects (the 

DIS module or other interpretative KS objects) are not required to know any of the 

implementation details of the represented behaviour. For example, classification 

dialogue objects declare in their class interface 1) as public (ie. visible to client 

objects), only the object's constructor and destructor, and 2) as private (ie. visible 

only to the objects constructed from the class), the parts of the COB accessed by the 

represented KS and the methods the class uses internally in order to perform the 

represented interpretative action. Thus, the DIS is called to construct the required KS 

object using its class description, and to destroy the object following its application. In 

the meantime, the state of the system's problem-solving behaviour is encapsulated 

within the KS object. This means that although implemented to support and facilitate 

the integration validation of the BGAS TDM within the ICIMS system and its 

environment, by progressively generating and consolidating interpretative hypotheses 

given the evidence available in a case, the classes of objects comprising the ICIMS 

TDM may be re-implemented without disturbing any parts of the system, and thus 

evolve into an integrated intelligent monitoring and control (IMC) TDM (Sections 

2.4.5 & 4.2.3). 
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4.7.2. Evidence Impact Dialogue 

The operation of the evidence impact knowledge source of the KBS prototype TDM 

as described in Section 3.2.2.6, is represented in the ICIMS system by the class of 

evidence dialogue objects depicted in Figure 4-14. This class of dialogue objects is 

slightly more complicated than that of classification dialogue objects since calculating 

the weight of evidence on the interpretative hypotheses contained in the knowledge 

object base involves a number of object Al1Set searches. More specifically, as shown 

in Figure 4-14 and Listing 4-14, evidence dialogue objects use disorder A11Set objects 

to search the belief network shown in Figure 3-1, and disorder objects to retrieve the 

information stored in each node and required in order to calculate the weight of the 

evidence given by processed data objects. The class of evidence dialogue objects uses 

two methods to search the disorder AlSet. The first method is the sequential search 

which performed using the Seek method shown in Table 4-1 and the second is the 

Query method also shown in Table 4-1. 

dialogue 
window 

disorder evidence 

disorder evidence evidence 
AiISet dialogue query 

disorder 
query processed data 

sub hypnäiesIs 

rder set processed data diso aisec 
sub hypotlýesis 

aiSet 

Figure 4-14. Class diagram of evidence impact dialogues. 

128 



class evidenceDialogue : public dialogueWindow 
{ 
protected: 

ListBox subHypothesesBox; 
EditBox countBox; 
disorder *pDisorder ; 
disorderAllSet *pAllDisorders ; 
disorderQuery *pTheQSpec ; 
disorderSet *pTheResultSet ; 
evidenceQueryCondition; 
evidenceQuery *pTheQDataSpec; 
evidence *pEvidence; 
processedData *pProcessedData; 
processedDataAllSet *pSetOfAllProcessedData; 
subHypothesis *pSubHypothesis; 
subHypothesisAllSet *pSetOfAllSubHypotheses; 
sl; 
s2; 

protected: 
SetEvidenceQueryCondition(); 
SetEvidenceQuerySpec(); 
SetDisQuerySpec(); 
CreateResultSet(); 
FindAssignedDisorders(); 
GenerateSubHypotheses 0; 
UpdateWeights(); 
ProcessEvidence(); 

; Show o; 
virtual Init(); 
virtual Commands(); 

public: 
evidenceDialogue (): dialogueWindow(), 

virtual -evidenceDialogue(); 

Listing 4-14. Class interface for the construction and manipulation of evidence impact 
dialogue objects. 

In order to search the disorder AllSet using the Query method, evidence dialogue 

objects construct and use the following PCAS objects. Disorder query objects 

perform a query to satisfy certain conditions within the disorder AllSet, some of 

which pertain to disorder objects, such as the disorder name and linked disorders, and 

some to evidence objects. The latter are satisfied via evidence query objects. The 

results of the query, comprising pointers to knowledge objects, are stored in disorder 

set objects. Finally, evidence dialogue objects use processed data objects to retrieve 

the qualitative abstractions of raw data evidence they contain and create sub 

hypothesis objects to store the results of the application of the knowledge source 

represented in the particular dialogue. 
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As with the classification dialogue objects, the object initialisation method constructs 

the necessary AiSet objects in memory for searching the problem space, and 

subsequently calls the constructed object's protected ProcessEvidence method in 

order to perform the represented knowledge source operations. These comprise the 

query methods SetEvidenceQueryCondition, SetEvidenceQuerySpec, 

SetDisQuerySpec and CreateResultSet, as well as the methods 
FindAssignedDisorders, GenerateSub-Hypotheses and UpdateWeights, described in 

Section 3.2.2.6. The Show method displays the results of the application of the 

knowledge source in the subHypothesis ListBox. 

4.7.3. Evidence Aggregation and Propagation Dialogue 

The operation of the evidence aggregation and propagation knowledge source of the 

KBS prototype TDM described in Section 3.2.2.7, is represented in the ICIMS 

system by the class of sum hypotheses dialogue objects depicted in Figure 4-15. 

Listing 4-15 shows the class interface used by the DIS to generate sum hypotheses 

dialogues with the user and to thereby apply the represented operator to the solution 

of an interpretative problem. 

class sumHypothesesDialoque : public dialogueWindow 
{ 
protected: 

belief; 
leaf; 
ListBox hypothesesBox; 
disorder *pDisorder; 
disorderAllSet *pSetOfAllDisorders; 
disorder *pChild; 
disorderAllSet *pSetOfAllChildren; 
subHypothesis *pSubHypothesis; 
subHypothesisAllSet *pSetOfAllSubHypotheses; 
hypothesis *pHypothesis; 
hypothesisAllSet *pSetOfAllHypotheses; 
interpretation *pInterpretation; 
interpretationAllSet *pSetOfAllInterpretations; 

protected: 
RetrieveDisorder(i; 
RetrieveChild{); 
RetrieveHypothesis(i; 
SumHypotheses(; 
ShowAndCopy(; 
virtual Init{); 
virtual Commands{); 

public: 
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sumHypothesesDialogue(): dialogueWindowt), 

virtual -sumHypothesesDialogue 0; 
}; 

Listing 4-15. Class interface for the construction and manipulation of evidence 
aggregation and propagation dialogue objects. 
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Figure 4-15. Class diagram of sum hypotheses dialogues. 

As before, the class of dialogues uses the subHypothesis Al1Set to search for solution 

elements at the sub-hypothesis blackboard level shown in Figure 4-9, and 

subHypothesis objects in order to retrieve the information stored in such objects at the 

level concerned. The results of the application of the knowledge source to that level 

of the blackboard are written one level higher and closer to the solution, by 

instantiating and storing hypothesis objects. In order to perform the represented 

cognitive information processing task, depicted in Figure 3-6, the SumHypotheses 

method of the class of sumHypothesesDialogue objects calls RetrieveDisorder for 

each subHypothesis object, and RetrieveChild to search the disorder Al1Set and to 

retrieve the names of the descendent leaf node disorder hypotheses and to thereby 

propagate the effect of evidence on the set of mutually exclusive and collectively 

exhaustive hypothesis set. For each leaf node disorder of each sub-hypothesis object, 

the SumHypotheses method searches the hypothesis AllSet to find out if entries have 
131 



been made and to therefore aggregate the effect of various pieces of evidence bearing 

on the same hypothesis. Finally, the ShowAndCopy method displays the results of the 

application of the represented knowledge source and copies the blackboard entries 

made by the knowledge source to the interpretation level AiSet for the application of 

the knowledge source dialogue which follows. All other member methods are the 

same as before. 

4.7.4. Hypotheses Ranking Dialogue 

Following the aggregation and propagation of the acquired evidence in the 

hierarchical belief network as described in the previous section, the DIS will 
instantiate the rank hypotheses dialogue class, the interface to its objects being shown 
in Listing 4-16. As shown in the class interface and Figure 4-16, rank hypotheses 

dialogues use hypothesis objects in order to retrieve the results of the application of 

the sum hypotheses dialogues to the sub hypothesis level of the blackboard, and 
interpretation objects in order to make appropriate entries at the interpretation level. 

The corresponding AiSet objects are used to search the COB as before. Disorder 

objects and disorderAiSets are used by the dialogue objects in order to search and 

retrieve the leaf disorders of each disorder. 

As before, the Init method creates the required A1lSet objects and calls the 

RankHypotheses member method. The RankHypotheses method searches the 

interpretation All Set to check if at any stage in the interpretation process the belief in 

each of the singleton descendants of an hypothesis is the same. If so, the hypotheses 

are aggregated, removed from the interpretation level, and an entry is made to replace 

the set with the aggregated belief in the parent hypothesis. This process corresponds 

to the rank hypotheses knowledge of the KBS prototype, which ensures that 

interpretative hypotheses are reported at the most appropriate level of abstraction in 

the disorder class hierarchies. Finally, the Show method is used to display the contents 

of the interpretation A11Set in the appropriate dialogue window. Init and Commands 

are the same as before. 
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Figure 4-16. Class diagram of rank hypotheses dialogues. 

class rankHypothesesDialoque : public dialogueWindow 
{ 

protected: 

ListBox interpretationsBox; 

Hypothesis *pHypothesis; 
Interpretation *pInterpretation; 
Disorder *pDisorder; 
DisorderAllSet *pSetOfAllDisorders; 
HypothesisAllSet *pSetOfA11Hypotheses; 
InterpretationAllSet *pSetOfAlllnterpretations; 

protected: 
RankHypotheses(); 
Searchlnterpretations(); 
Aggregate(); 
Removelnterpretation(); 
Show(); 
virtual Init(); 
virtual Commands(); 

public: 
rankHypothesesDialogue() : dialogueWindow(), 

virtual -rankHypothesesDialogue U; 
}; 

Listing 4-16. Class interface for the construction and manipulation of normalisation and 
interpretation selection dialogue objects. 

133 



4.7.5. Interpretation Selection Dialogue 

Figure 4-17 shows the class diagram of DIS dialogues for the normalisation and 

selection of interpretative hypotheses from the set generated in the manner described 

in the last section. More specifically, as shown in Listing 4-17, selectInterpretation- 

Dialogue objects use the protected Normalise method, via the public Init method, in 

order to perform the normalisation step described in Section 2.5.3 and implied in the 

development of the prototype TDM. The class of normalisation dialogue objects will 

finally select the two top-most ranking hypotheses and store them in the 

corresponding blood-gas analysis object of the patient data base using the two 

methods listed in the class interface. 

class selectInterpretationDialogue : public dialogueWindow 
{ 

protected: 

ListBox finalInterpretationBox; 
Interpretation *pInterpretation; 
InterpretationAllSet *pSetOfAlllnterpretations; 

protected: 
Normalise(); 
Select(; 
virtual Init(); 
virtual Co=ands(; 

public: 
selectInterpretationDialogue(): dialogueWindow(), 

virtual -selectlnterpretationDialogue 0; 
GetPrimaryDiagnosis 0; 
GetSecondaryDiagnosis U; 

}; 

Listing 4-17. Class interface for the construction and manipulation of normalisation and 
interpretation selection dialogue objects. 
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Figure 4-17. Class diagram of select interpretation dialogues. 
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At this stage, as discussed in Section 3.3, the KBS integration prototype will not be 

able to resolve complex interpretative hypotheses in order to distinguish their 

components. The representation and application of the tasks required for this purpose 
is described in the chapter which follows. 

4.8. Conclusion 

Following the description of the KBS integration prototype, which implemented a 

method for the interpretation of blood-gas data using a hierarchical belief 

classification network, this chapter proceeded to describe the incremental object- 

oriented design and development process by which the KBS prototype cognitive task- 

domain model was integrated into the information processing activity of the clinician 

user. This was achieved by means of the development of global memory system of 

persistent model derived object structures which were designed to support the 

management of the clinical information generated in the process of monitoring the 

ICU patient with disturbed acid-base metabolism, and of the knowledge utilised in the 

process of interpreting such information in order to support the patient. 

The particular approach allowed the development of a uniform information 

management support structure, which was used to acquire and maintain the data and 

knowledge required for the functional integration of the KBS prototype, a process 

which was completed by appending layers for interaction with the clinical advisor, 

who then constructively assessed the functional, cognitive and ergonomic 

compatibility of the integrated system with the activity observed in the ICU. The 

chapter which follows describes these features along with the underlying 

implementation details of the system's class structure, which was designed as 

described in the present chapter to facilitate the evolution of such features. 
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Implementation of the Intelligent ICU Clinical 
Information Management Support System 



5.1. Introduction 

In the last chapter, this thesis described the design of an object-oriented clinical 
information management support system, which was developed to support and 
facilitate the incremental functional, cognitive and ergonomic integration of the KBS 

prototype described in the previous chapter, into the clinical information processing 

activity observed in the data-overloaded ICU, guided by the constructive assessment 

of the clinician-user-advisor. 

Instead of focusing onto the entity abstractions required to support the integration- 

development process, as did the last chapter, this chapter describes some of the 

ICIMS system implementation detail, particularly the parts concerning those system 
features which were developed to make the integrated system functionally, cognitively 

and ergonomically compatible with the aforementioned activity. The chapter also 

describes the ways in which the integration-development process may proceed further 

toward satisfying the user's requirements for clinical information management and 

decision making support. 

5.2. Patient Data Acquisition 

5.2.1. User Requirements 

As described in Section 4.2, in the process of monitoring and supporting the ICU 

patient, -clinical information bearing evidence as to the patient's state must be 

collected from a multitude of sources, integrated, recorded, and interpreted within the 

wider clinical context, in order to provide interpretations. appropriate to the context, 

and thereby guide the clinician decision-maker to effect appropriate patient-state 

control decisions. Thus, as shown in Figure 4-2 and described further in this chapter, 
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patient data acquisition is a primary functional requirement for the development of 
integrated and thus useful ICU clinical decision support KBS. 

5.2.2. Integration Implementation 

In the ICIMS system, patient data acquisition is performed by the OCS module of the 

OMS, which, as shown in the top-level architectural view of Figure 4-4 and further in 

the class diagram of Figure 4-10, was designed to generate dialogues with the user in 

order to display and control the process of object communication between the 

available measurement instrumentation, in this case the off site blood-gas analyser, 

and the ICIMS COB, via RS232 interfaces. 

Figure 5-1 shows the dialogue window generated by the OCS for this purpose. As 

shown in the figure, the standard Windows WIMP (Windows, Icons, Mice and Pull- 

down menus) API interface OCS menu bar displays the following five options. If 

selected, the File option will display a pull-down menu with one further option: Exit; 

the View option will display the blood-gas analysis assay results shown in the View 

display window, and Registration the corresponding dialogue window for entering the 

assay registration details. The Communication Setup menu option displays a pull- 
down menu with further options for setting up the communication protocol between 

the ICIMS system and the sources of patient data. Since the ICIMS system was 
developed for the integration of the blood-gas analysis interpretation KBS prototype, 

the OCS module monitors only one RS232 line connected to an off-site blood-gas 

analyser. Finally, as is the case with all ICIMS system modules, the Help option has 

not yet been implemented. 

As soon as the results of the analysis of a patient blood sample are made available by 

the off-site blood-gas analyser, the OCS will display the View window shown with the 

communicated results along with the Registration dialogue. Once the details have 

been supplied, the user clicks the OK button with the mouse and the screen is reset. In 

order to ensure that no data. is lost by failing to specify the patient details 
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corresponding to the blood sample results being acquired by the OCS, the system 

checks to see if at least the name and or the hospital number have been specified. 

ICIPIS Object Communication Syst em 

FBe Y1eV+ $eGretration ýýp 

Set Access Password 
,, 5etbngs.. 
jermmal Emulation... 
Full puplex 
Error Handling Method... View: Blood-Gas Anal ysis Display Error Count.. 
Events... 
Flow Control... 
Qommumcabons Method... Accession number : pAtm : T: 

Date : F102 : pH : 
Time : Hct : PCO2 : 

602: [HCO3 ] ad : 
ctHb : IH00 ] std : 

AnGap. Ca": 

Patient Last Name : Smith BE[E] : 
ecfl BEl 

Cl- : 
K*: Patent Initials : J. Na*: Hospital Number : 03432746 

Ward : Intensive Care Unit 
Physician 

Figure 5-1. The Object Communication System module user-interface window. 

Following the registration of the acquired blood-gas analysis results, the OCS will 

construct a Store object, the implementation details of which are described below, 

which will perform the necessary actions in order to connect to the PCAS object 

server, open the ICIMS COB, store the acquired blood-gas analysis results in a 

patient object structure which it will create for this purpose, close the COB, and 

finally disconnect from the server. The Store object will then self-destruct and pass 

control back to the OCS which will await the arrival of further patient data. 

class ObjectBase 
( 
private: 

PtBase *pObjectBase; 
public: 

ObjectBase(); 
virtual -ObjectBase(); 
virtual Execute(); 
OpenCOB(); 
CloseCOBO; 
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class Store : public ObjectBase 
{ 
private: 

patient *pPatient; 
bloodGasAnalysis *pAnalysis; 
patientAllSet *pSetOfAllPatients; 

public: 
Store (); 
-Store(); 
Execute(); 

Listing 5-1. Class interface for Store and ObjectBase objects of the object 
communication system module. 

The class interface of Store objects is shown in Listing 5-1. Again, for simplicity, the 

ICIMS system program listings shown in this chapter are not complete. Furthermore, 

as stated in Section 5.1, the implementation details are meant to link the decision 

support functions of the integrated system with the ICIMS class design described in 

Chapter 4. As shown in Listing 5-1, the class of Store objects inherits the properties 

of the class of ObjectBase objects and thus an object of the latter class will be 

constructed before the former. The ObjectBase object's constructor is called as soon 

as the class is instantiated, resulting in the execution of the ObjectBase constructor 

method, the implementation of which is shown in Listing 5-2. 

ObjectBase :: ObjectBase() 
{ 

pObjectBase = new PtBase; 
OpenCOBO; 

ObjectBase :: -ObjectBase() 
{ 

CloseCOB(); 
delete pObjectBase ; 

} 
int ObjectBase :: OpenCOB() 
{ 

pObjectBase -> Connect(); 
pObjectBase -> Open(; 

} 
int ObjectBase :: CloseCOB() 
{ 

pObjectBase -> Close(); 
pObjectBase -> DisConnect(); 

} 

Listing 5-2. Class implementation for ObjectBase objects. 
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The ObjectBase object constructor will assign a pointer to the COB, declared as a 

private member in the class interface, via the PtBase class shown in Figure 4-6 and 

then call the OpenCOB method. The OpenCOB method will then use the PtBase 

methods listed in Table 4-1 in order to connect to the PCAS object server and open 

the COB. Following its construction, the OCS ObjectBase object will initialise the 

subclass of Store objects. The implementation details of the latter are shown in Listing 

5-3. The Store object constructor will create a patient All Set, required for searching 

the COB for a previous registration, and the OCS will then call the Execute method, 

which for this reason is declared in the public class interface. As shown in Listing 5-3 

for the case of a new registration, the Execute member method uses the PtObjectSet 

and PtObject methods shown in Tables 4-2 and 4-3, as well as the constructed patient 

object structure's methods, in order to create a patient object structure, initialise it, 

assign it to the object base, set the registration details, and then proceed to do the 

same with a blood-gas analysis object which will be appended at the end of the 

ObjectSet contained in the patient object being created. 

Store :: Store() 
{ 

pSetOfAllPatients = new PatientAllSet(); 
} 
Store :: -Store o ) 
{ 

delete pSetOfAllPatients; 
} 
int Store :: Execute() 
{ 

pPatient = new patient; 
pPatient -> Init(); 
pPatient -> Assign(); 
pPatient -> SetMembers(); 

pAnalysis = new bloodGasAnalysis; 
pAnalysis -> Assign(); 
pAnalysis -> SetMembers(); 
pPatient -> bloodGasAnalyses. Append ( pAnalysis ); 
pPatient -> Store(); 

delete pPatient; 
delete pAnalysis; 

Listing 5-3. Class implementation for Store objects. 
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Finally, the Store object will store the new, in this case, patient object structure, and 
delete the temporary objects used during the construction in order to free the memory 

used in the process. As stated above, control then passes onto the ObjectStore 

destructor method and subsequently to the OCS module. 

5.2.3. Further Development 

Due to the vast amount of development effort involved in the integration process, the 

ICIMS system decision supporting functions were implemented to satisfy base 

requirements. In the context of supporting the process of collecting and collating 

patient data, the ICIMS system may be further developed so that the OCS may 
function independently of other system operations. If so, the OCS module may 

monitor the execution of the various clinical information management support tasks, 

and interrupt any process upon the arrival of further data, in order to update the state 

of the system at any one time. However, such a clinical information processing 
behaviour would have to be co-ordinated with a blackboard module KBS task- 

scheduler, as in the case of the Guardian IMC system described in section 2.4.5, with 

real-time constraints on the application of the represented cognitive task-domain. 

Furthermore, since most operations performed by the ICIMS system involve 

accessing the COB, the OMS module would have to be further developed to 

introduce concurrency, transaction management and event handling, using the 

available advanced PCAS methods. 

5.3. Clinical Information Management 

5.3.1. User Requirements 

By the definition which emerges from the material presented in this thesis, an 
integrated clinical decision support KBS is a system which provides facilities for the 

management of the clinical information comprising the knowledge base required for 
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the application of the represented cognitive task-domain, as well as of the clinical 
information acquired in order to perform the represented decision supporting 

functions and the decision supporting information generated in the process. 

As described in the thesis introduction, such system architectures have a number of 

advantages over the traditional standalone consultation systems. Firstly, they are 

developed to provide essential and effective solutions to actual medical decision 

support problems, encountered in the data-overloaded environment of high- 

technology medicine, rather than to function as human expert consultation 

replacements. This is so, both in the sense of gearing the application of the underlying 

knowledge-based techniques toward this objective, as well as in the sense that they 

are designed to integrate, record, organise, and display the clinical information 

acquired and generated in the process, in a manner which provides further valuable 

clinical decision support. Secondly, by means of the provision of effective decision 

support in the latter sense, integrated KBS prototypes can justify their introduction 

into routine clinical practice, thereby being exposed to the clinical information 

processing environment and the amount and quality of data required for formatively 

and constructively assessing the evolution of the represented knowledge base and 

cognitive task-domain. Thirdly, by being able to maintain temporal records of the 

patient's progression and of the results of the application of the represented task- 

domain, integrated systems provide the framework for the development, 

representation, application and evaluation of advanced cognitive task-domains, as for 

example in the case of the Guardian system. 

5.3.2. Integration Implementation 

Figure 5-2 shows the ICIMS system main window screen, which, as described in 

Section 4.6 and shown in Figure 4-10, forms the link between the user, the OMS 

module, and the underlying persistent COB structure. Thus, there are options for 

generating patient data management dialogues with the user, in order to update and 

review the information stored in the persistent patient COB object structures 

described in Section 4.5.2, and disorder knowledge management dialogues, in order 
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to update and review the information stored in the persistent disorder COB object 

structures described in Section 4.5.3. 

ICIMSWindowsApp :: ICIMSWindowsApp() : WindowsApplication() 
{ 

ObjectServer = new PtBase(; 
ObjectServer -> Connect(); 
ObjectServer -> Open(COB); 

ICIMSWindowsApp :: -ICIMSWindowsAppC) 
{ 

ObjectServer -> Close (COB); 
ObjectServer -> DisConnect(); 

ICIMSSystemWindow :: Commands () 
{ 

case EDIT PATIENT: 
patientDialogue editPatientObject(); 
editPatientObject. Execute(); 

case EDIT DISORDER: 
disorderDialogue editDisorderObject(); 
editDisorderObject. Execute(); 

case EDIT PROFILE: 
parameterProfileDialogue editProfileObject(); 
editProfileObject. Execute(); 

case EDIT AETIOLOGY VOCABULARY: 
recognisedAetiologyDialogue editVocabulary(); 
editVocabulary. Execute(); 

case STATE TREND: 
trendDialogue trend(); 
trend. Execute (); 

Listing 5-4. Implementation of the ICIMS system superclasses. 

Once the system is started, the main control thread of the Windows application 

environment will create instances of the two top-level ICIMS superclasses. The main 

ICIMS system window shown in Figure 5-2 is the result of the construction of an 

ICIMS system superclass instance, the interface of which class is shown in Listing 4- 

8. The other superclass, shown in Figure 4-6, is the ICIMS system COB superclass. 

The implementation of both superclasses is shown in Listing 5-4. As shown in Listing 

5-4, upon construction, the COB superclass will assign a new pointer to the object 

base server via the PtBase class described in Section 4.5.1, and proceed to connect to 

the server and open the COB using the methods shown in Table 4-1. At the same 

time, the Windows system will create an instance of the main ICIMS windows display 
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and dialogue control superclass and await for the user commands shown in pull-down 

windows in Figure 5-2. 

Figure 5-2. The Object Management System main user-interface window. 

objectManagementDialogue :: Commands() 
{ 

case STORE: 
if GetAccessCode() = correct 
Fill(); 
GetPtObject() -> Store(; 

case DELETE: 
if GetAccessCode() = correct 
GetPtObject() -> Delete(; 

case CLEAR: 
if GetAccessCode() = correct 
InitObject(); 
GetPtObject() -> UnAssign(; 
GetPtObject() -> Assign(); 
Show(); 

case NEXT: 
NextObject(; 
Show(); 

case PREVIOUS: 
PrevObject(); 
Show(); 

case STEP: 
StepObject(; 
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Show O; 
} 

Listing 5-5. Class implementation for persistent object management dialogues. 

The dialogue objects created by the various options or cases in the Commands 

method of the class ICIMSSystemWindow were described in Section 4.6. The 

implementation of the classes and the generated dialogues are described below, along 

with the new class of patient state trend dialogues. 

As described in Section 4.6, each class of persistent object review and update 
dialogues, whether of the data base or the knowledge base OMS module, inherits the 

properties of the persistent object management dialogue class, the implementation of 

which is shown in Listing 5-5. Thus, patient, disorder, parameter profile, and 

recognised aetiology dialogue windows will display and process command buttons 

which respond as shown in Listing 5-5. 

5.3.2.1. Patient Data Management Dialogue 

An example dialogue generated by the OMS to reflect the anatomy of the persistent 

patient data object structures contained in the ICIMS COB, and to thereby facilitate 

the review and update of the contents of such object structures, is shown in Figure 5- 

3. The vertically arranged buttons on the right correspond to the command cases 
described above. The top of the patient dialogue pop-up window shown in the figure, 

displays the contents of the private members shown in the patient class interface in 

Section 4.5.2, within edit boxes as shown in the dialogue class interface of Listing 4- 

10. Finally, there are list boxes which list the contents of the aetiologies vocabulary, 

the patient's clinical features, the acquired blood-gas analysis results, and the 

interpretation of the acquired patient data. The aetiologies vocabulary is part of the 

knowledge COB and is used here to add recognised aetiologies to the list of clinical 

features for each patient. The other list boxes reflect the contents of the sets of objects 

contained in each patient object as shown in Figure 4-7. By pressing the New, Update 

and Delete buttons, the user may append a new set of patient data manually, update 

an existing set, or delete an existing set, respectively, if granted access to the COB by 
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entering the correct code using the access code edit box shown at the bottom right- 
hand corner of the window. Finally, the Evaluation button calls the DIS in order to 

instantiate the TDM as described in Section 4.7, in order to interpret a particular data 

set. This is done by selecting one of the lines in the list box, as shown in the figure by 

the shaded area, and pressing the Evaluate button. The same holds for the Update and 
Delete buttons. Figure 5-4 shows the pop-up window which appears upon selecting a 

set of blood-gas analysis results and pressing the update button. Again, this dialogue 

window screen reflects the contents of the blood-gas analysis objects, the class 
interface of which is shown in Listing 4-2. 
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5 Acid-Base ( 10/10/95 - 14 00 ] NORMAL BLOOD GASES 
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7 Pulmonary 

Access Code 0 

Figure 5-3. Patient dialogue window. 

patientDialogue :: Init() 
{ 

accessCode. DeleteContent O; 
pSetOfAllPatients = new patientAllSet(); 
pSetOfAllRecognisedAetiologies = new 

recognisedAetiologyAllset(; 

pSetOfAllPatients -> Seek(last patient); 
pSetOfAllPatients -> Get(pPatient); 
if patientAllSet empty 
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pPatient = new Patient(); 
InitObject(); 
pPatient -> Assign(; 

Show(); 

void patientDialogue :: InitObject() 
{ 

pPatient -> InitialiseObject(); 
} 

Listing 5-6. Implementation of the object initialisation method for the class of patient 
data management dialogues. 
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Figure 5-4. Blood-gas analysis dialogue window. 

Listing 5-6 shows the implementation details of the patient dialogue object 
initialisation method shown in the class interface of Listing 4-10. As shown in the 

method implementation, upon construction of the dialogue object by the OMS and the 

corresponding menu selection user command shown in Figure 5-2 and Listing 5-4, the 

initialisation method will construct the two A1lSet objects declared as protected in the 

class interface, namely the patientAllSet required to search the patient COB and the 

clinicalFeatures-AllSet required to display the patient features recognised by the 
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system. If the patientAllSet is empty, then the dialogue object will construct a new 

patient object as described above, initialise the object by indirectly calling the object's 

method shown in Listing 4-1, and assign the new object to the object base. Finally, the 

dialogue object will use the Show method described below to display the contents of 

the new patient object, or the last patient object for the case where the patientAllSet 

was not empty. Listing 5-7 shows the implementation of the patient dialogue Show 

method. 

void patientDialogue :: Show() 

name. DeleteContent (); 
firstName. DeleteContent (); 
hospNumber. DeleteContent (); 
ward. DeleteContent (); 
patientFeatureList. DeleteContent(); 
systemFeatureList. DeleteContent(); 
analysisListBox. DeleteContent(); 
analysisLogBox. DeleteContent(); 
name. SetString (pPatient -> GetName()); 
firstName. SetString (pPatient -> GetFirstName()); 
hospNumber. SetString (pPatient -> GetHospNumber()); 
ward. SetString (pPatient -> GetWard()); 

loop for all 
pPatient -> patientFeature. Seek (1L, PtSTART); 
pPatient -> clinicalFeature. Get (pfeature); 
patientFeatureList. AddString (pfeature); 
pPatient -> clinicalFeature. Unget (pfeature); 

loop for all 
pSetOfAllRecognisedAetiologies -> Seek (1L, PtSTART); 
pSetOfAllRecognisedAetiologies -> Get 

(pRecognisedAetiology); 
systemFeatureList. AddString (pClinicalFeature -> 

GetFeatureC)); 
pSetOfAllRecognisedAetiologies -> Unget 

(pRecognisedAetiology); 

B1oodGasAnalysis *pAnalysis; 
loop for all 

pPatient -> bloodGases. Seek (1L, PtSTART); 
pPatient -> bloodGases. Get (pAnalysis); 
analysisListBox. AddString (pAnalysis -> 
DisplayOBject()); 
analysisLogBox. AddString (pAnalysis -> PrintLabel()); 
pPatient -> bloodGasAnalyses. Unget ( pAnalysis ), 

Listing 5-7. Implementation of the patient data management dialogue Show method. 

As shown in Listing 4-10, the Show method was declared virtual in the class interface 

since its implementation was to be defined in one of the persistent object management 
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dialogues. Listing 5-7 shows the particular implementation. The Show method will 
first clear the contents of all the edit boxes and list boxes used by the class of OMS 

dialogues and display the reviewed object's contents. Following that, the dialogue 

object will loop through the patient feature and recognised aetiology AiSets in order 

to display the two list boxes shown at the top of Figure 5-3. Finally, using a pointer to 

blood-gas analysis objects, the method will loop through the corresponding AllSet and 
display the other two list boxes shown in Figure 5-3. Finally, Listing 5-8 shows the 

implementation of the Fill, NextObject, PrevObject methods used in the 

implementation of the object management dialogues as shown in Listing 5-5, declared 

in Listing 4-9, and re-declared in Listing 4-10. 

void patientDialogue :: Fill() 
{ 

pPatient -> SetMembers(Editbox, GetContents()); 
pPatient -> patientFeatures. Clear(); 
for all features in the list box 

patientFeaturesList. GetString(); 
pPatient -> patientFeatures. Append(feature); 

patientDialogue :: NextObject() 
{ 

pSetOfAllPatients -> Seek (1L, PtCURRENT); 
pPatient -> Forget (); 
pSetOfAllPatients -> Get (pPatient); 
} 

patientDialogue :: Prevobject() 
{ 

pSetOfAllPatients 
pPatient -> Forget 
pSetOfAllPatients 
} 

patientDialogue :: 
{ 
pSetOfAl1Patients 
pPatient -> Forget 
pSetOfAllPatients 
1 

-> Seek (-1L, PtCURRENT); 
(); 

-> Get (pPatient); 

StepObject() 

-> Seek (step); 
O; 

-> Get (pPatient); 

Listing S-8. Implementation of the patient data management dialogue Fill, NeztObject, 
PreviousObject and StepObject methods. 
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The user commands implementation for controlling the access to the objects 

contained within patient objects is shown in Listing 5-9. 

patientDialogue :: Commands() 
{ 

case FEATURE DEL: 
item = patientFeatureList. SelectedItem 
patientFeatureList. DeleteItem (); 
pPatient -> clinicalFeatures. Seek (item, PtSTART ); 
pPatient -> clinicalFeatures. Delete (); 

case FEATURE NEW: 
item = systemFeatureList. SelectedItem 
systemFeatureList. GetString (buffer, 

systemFeatureList. SelectedItem()); 
patientFeatureList. AddString (buffer); 

case BLOODGASDATA_NEW: 
bloodGasAnalysisDialogue analysisDialogue (); 
analysisDialogue. Execute (); 
analysisLogBox. AddString (analysisDialogue. GetMembers()); 
analysisListBox. AddString 
(analysisDialogue. GetMembers()); 
bloodGasAnalysis *pAnalysis = new BloodGasAnalysis; 
pAnalysis -> Assign (); 
pPatient -> bloodGases. Append (pAnalysis); 
pAnalysis -> Forget (); 

case BLOODGASDATAUPD: 
item = analysisListBox. Selectedltem (); 
bloodGasAnalysisDialogue analysisDialogue (); 
bloodGasAnalysis *pAnalysis; 
pPatient -> bloodGases. Seek (item, PtSTART ); 
pPatient -> bloodGases. Get (pAnalysis); 
analysisDialogue. SetMembers (pAnalysis -> GetMembers()); 
analysisDialogue. Execute (); 
analysisLogBox. 

ChangeString (analysisDialogue. GetMembers()); 
analysisListBox. 

ChangeString (analysisDialogue. GetMembers()); 
*pAnalysis = analysisDialogue. dialogueAnalysis; 
pPatient -> bloodGases. Put (pAnalysis); 
pPatient -> bloodGases. Unget (pAnalysis); 

case BLOODGASDATA DEL: 
item = analysisLogBox. SelectedItem (); 
analysisLogBox. DeleteItem (item); 
analysisListBox. DeleteItem (item); 
pPatient -> bloodGases. Seek (item, PtSTART); 
pPatient -> bloodGases. Delete (); 

Listing 5-9. Implementation of the patient data management dialogue contained objects 
user command message processing method. 
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As discussed in Section 4.6, any modifications made using the OMS commands 

shown in Listing 5-9, will be stored automatically by the PCAS as shown in Figures 4- 

11 and 4-12, and further in Listing 5-5. 

bloodGasAnalysisDialogue :: Init() 
( 

accNumber. SetString (dialogueAnalysis. GetMember()); 
ph. SetString (dialogueAnalysis. GetMember()); 
pco2. SetString (dialogueAnalysis. GetMember()); 

} 

bloodGasAnalysisDialogue :: Commands() 
{ 

dialogueAnalysis. SetMember (accNumber. GetString()); 
dialogueAnalysis. SetMember (pH. GetString()); 

Listing 5-10. Implementation of the blood-gas analysis data management dialogue class 
methods. 

Finally, Listing 5-10 shows the relatively simple implementation of blood-gas analysis 
dialogues, specifically, the methods for dialogue initialisation, which involves 

displaying the currently selected blood-gas object, and command message processing, 

which as shown in Figure 5-4 refers to the OK and Cancel buttons. Cancel will not 

make any changes, whereas OK will result in setting the private members of the 

blood-gas analysis object, as shown in Listing 4-2, to the new values taken from the 

edit boxes shown in Figure 5-4. 

5.3.2.2. Disorder Knowledge Management Dialogue 

Figure 5-5 shows an example dialogue generated by the OMS to reflect the anatomy 

of the persistent disorder knowledge object structures contained in the ICIMS COB, 

and to thereby facilitate the review and update of the contents of such object 

structures, in a manner identical to that described in Section 5.3.2.1 above. The top of 

the acid-base balance disorder knowledge dialogue shown in Figure 5-5 displays the 

name of the disorder being reviewed and possibly updated, the a priori belief in the 

disorder, and the links to other disorders, required to form the belief network shown 
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in Figure 3-1. As shown in Listing 4-11 and Figure 4-12, the class of disorder 

dialogues makes use of the recognised aetiologies AllSet in order for the user to 

specify the patient's features, as in the case of patient dialogues. The operation, ie. 

implementation, of the buttons corresponding to the two list boxes for reviewing and 

updating the contents of the evidence and aetiological patient features, which are part 

of the disorder knowledge model shown in Figure 4-8, is the same as that described in 

Section 5.3.2.1 for the case of the blood-gas analysis objects contained in persistent 

COB patient object structures. 
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Figure 5-5. Disorder knowledge dialogue window. 

Figure 5-6 shows an example of the evidence parameter profile update and review 

dialogue window, which is created and displayed by the OMS via the instantiation of 

the class of persistent object management dialogues as shown in Figure 4-12 and 
further in Listing 5-4. Finally, Figure 5-7 shows an example of the recognised 

aetiologies dialogue, which is also instantiated via a persistent object management 
dialogue object as shown in Figure 4-12. In this case, the only difference from the 

implementation of the other persistent object management dialogue subclasses is the 
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implementation of the user control command message processing method, which for 

this reason is shown in Listing 5-11. 
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Figure 5-6. Evidence parameter profile dialogue window. 

recognisedAetiologiesDialogue :: Commands() 
{ 

case FEATURE DEL: 
item = featuresBox. SelectedItem (); 
featuresBox. DeleteItem ( item ); 
pSetOfAllRecognisedAetiologies -> Seek (item, PtSTART); 
pSetOfAllRecognisedAetiologies -> Get (pFeature); 
pFeature -> Delete(); 
pSetOfAllRecognisedAetiologies -> Unget (pFeature); 

case FEATURE ADD: 
feature. GetString (); 
featuresBox. AddString (); 
pFeature = new recognisedAetiology (); 
pFeature -> Assign (); 
pFeature--> SetMember (); 
pFeature -> Store (); 
delete pFeature; 

Listing 5-11. Implementation of the Commands method of the class of recognised 
aetiologies dialogues. 
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Figure 5-7. Recognised aetiologies dialogue window. 

5.3.3. Further Development 

As stated in Chapter 4, and further in Section 5.3.1, the OMS module layer of the 

ICIMS system was designed to support and facilitate the functional integration of the 

prototype knowledge-based clinical decision support system, within the clinical 

information processing activity observed in the process of monitoring and supporting 

the ICU patient. Thus, the patient data and disorder knowledge OMS module 

dialogues were designed to reflect the structure of the corresponding classes of COB 

objects, and to thereby be used to derive the underlying persistent object structures 

and to provide a visual representation of their contents for update and review. 

The implementation of the OMS module may be extended by appending further layers 

to the ICIMS system architecture shown in Figure 4-4, which will make use of the 

existing OMS layer in order to further the integration-development process and 

augment the functional, cognitive and ergonomic compatibility of the system with the 

clinical activity of the user, thereby providing further clinical information management 
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and decision support. For example, as shown in Figure 5-2, the disorder knowledge 

management OMS module may be extended to provide a graphical display of the 

corresponding COB object structures, thereby providing the users with a knowledge 

review and update environment which is ergonomically and cognitively closer to their 

understanding and internal representation of the clinical taxonomy of disease. This 

tool will be of greater utility in the construction and evaluation of aetiological 

pathways to the represented taxonomies as described in Section 2.4 and further in 

Section 5.4 below. 

With respect to the functional, cognitive and ergonomic compatibility of the patient 
(data) management option of the OMS module with the health care activity of the 

clinician user, further development should be geared toward providing any 
information management and decision support features required to satisfy the 

following two objectives (Groth and Collinson, 1993): 

1. Data must be complete, accurate, timely and easily accessible. 

2. Data must be displayed and transformed in a manner which converts it to 
information. 

The existing health care delivery system uses paper records for this purpose, that is, in 

order to summarise the medical history of the patient being treated, and to document 

the observations, diagnostic conclusions, and management plans made by health care 

personnel. However, logistical and practical limitations reduce the effectiveness of the 

existing medical record system for collating, storing, organising and displaying large 

numbers of diverse data, often leading to the misinterpretation of an observed clinical 

problem. As described in the introduction to this thesis and further in Section 4.2.2, 

this is particularly true in the critical care medical environment which can be regarded 

as an exemplar of what holds true for the wider health care system. 

Evaluation studies indicate that computer-based medical record systems (MRS) offer 

solutions to many of the medical decision support problems that arise from the 

limitations of the paper record system in dealing with the increasing volume of clinical 
information (Whiting-O'Keefe, 1985; McDonald and Barnett, 1990). MRS may 
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provide effective clinical decision support both in the sense that they can facilitate 

access to the information contained in the acquired patient data by performing 

elaborate data base queries, as well as in that they may function as surveillance or 

monitoring systems, using the knowledge-based techniques described in Chapter 2 in 

order to detect and flag patient conditions that need medical attention. 

Well known surveillance systems include the HELP system (Warner, 1979; Pryor et 

al, 1983; Pryor, 1988), MQL which runs under COSTAR (Barnett et al, 1979), and 

CARE (McDonald, 1981), which runs under the Regenstrief Medical Record System 

(McDonald et al, 1983,1988). The Regenstrief Medical Record System (RMRS) was 

developed by McDonald and his colleagues at the Indiana University Medical Centre 

and has been in operation at Wishard Memorial Hospital since 1974. By 1988, it 

maintained medical histories for over 250,000 patients, containing almost 25 million 

separate patient observations, all of which are encoded and fully retrievable. RMRS is 

part of a larger administrative support system that handles appointment scheduling 

and charge capture. The unique feature of the MRS component is a reminder system 

that actively reviews patient data and produces reminder notes for the physician based 

on 1400 encoded protocol rules. An evaluation study of the initial version of the 

system demonstrated that the reminders significantly improved the behaviour of 

physicians in remembering to order laboratory tests when appropriate, and in 

prescribing or modifying medication plans. For example, physicians given computer 

reminders quadrupled the use of certain vaccines in eligible patients, compared to 

those who did not receive reminders (McDonald et al, 1984). The system has since 
been extended to incorporate the HyperCritic critiquing task-specific KBS 

architecture (van der Lei et al, 1990; van der Lei and Musen, 1991). 

One of the ways in which the patient record OMS module may possibly be extended 

was described in Section 4.7 and is demonstrated in Section 5.4 below, in the context 

of appending the DIS layer onto the basic OMS layer for the knowledge-based 

manipulation of the COB contents in order to generate high-level patient summaries 

and alarms, and interpretative trend displays. Furthermore, as shown in Figure 5-2, in 

each class of persistent patient object management dialogue there are two possible 

selections: view (and update) the underlying persistent object structures and query the 
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structures. The second option provides access to a number of query methods provided 
by the PCAS, an example of which was given in Section 4.7.2, in order to perform 

more elaborate searches of the COB contents than those possible via the patient data 

dialogues. 

5.4. Contextual Interpretation of Acquired Patient Data 

5.4.1. User Requirements 

As stated in the last section, the functional, cognitive and ergonomic integration of 

computer-based clinical decision support tools within the information processing 

activity of the health care professional, should be geared toward making the patient 
data set recorded in routine clinical practice complete, accurate, timely and easily 

accessible. Furthermore, patient data must be displayed and transformed in a manner 

which converts it to information, thereby avoiding the misinterpretation and 

consequentially mismanagement of an observed clinical problem under conditions of 
information overload and contextual complexity. 

The first part has been addressed via the development of the automated OCS and 

comprehensive OMS modules described above. With respect to the second part, 

Figure 5-8 shows the range of interpretative abstraction reasoning against the range of 

temporal abstraction reasoning employed by KBS in the representation and 

application of the cognitive task-domain of intelligent ICU patient monitoring and 

control (Uckun, 1994), which was described in Section 4.2. Other orthogonal 

dimensions, such as classification or simulation reasoning and the method of 

abstraction, were described in Chapter 2. At one end of the interpretation spectrum 

shown in Figure 5-8, inference methods interpret values of simple parameters. If the 

system considers only single data points, the inference operation is called 

classification, which corresponds to a number-to-symbol transformation. If the system 
interprets sequences of data, the inference method is referred to as trend detection. 

The next level of abstraction in the interpretation of an observed clinical problem is 
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state-based abstraction or contextual parameter interpretation. This level is the 
domain of KBS, which synthesise interpretations of parameter values into qualitative 
interpretations of physiological and pathophysiological states. If the interpretation is 

extended into sequences of states in time, a state-space trajectory is obtained. The 

decomposition of an observed clinical problem into sequences of clinical events may 

subsequently be used to synthesise interpretations of complex problems which may 

not be recognised otherwise (for example, see Cohn et al, 1990). Finally, KBS may 

synthesise causally or taxonomicaly ordered collections of pathophysiological states 

into diseases and complications. 

Level of Interpretation and communication of an observed clinical problem 

Parameter Pathophysiobyieal state Disorder 

10 

contextual state contextual disorder 
Point classification interpretation Interpretation 

(diseases & compications) 

Temporal 
abstraction 

Sequence parameter atataspace disease histories 
trends trajectories 

Figure 5-8. Interpretative inferences in the task domain of intelligent monitoring and 
control (from Uckun, 1994). 

Existing ICU patient monitoring systems employ rudimentary inferencing strategies 
for the purpose of surveillance, in the form of what may be termed "smart" alarms, 

based on methods of algorithmic inference, such as high and low critical values, 

calculation-adjusted critical values, and the recognition of adverse critical trends 

independent of critical limits (Shabot et al, 1989,1990). However, normal value limits 

or reference ranges are extremely difficult to define due to both inter-individual as 

well as intra-individual variations in human physiology (Chelsom, 1990). Thus, the 

interpretation of a single variable in isolation often leads to false alarms, further 

confusion and pre-emption against such tools. By contrast, the term intelligent alarms 
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is. used to refer to the contextual, knowledge-based interpretation of monitored 

patient parameters, as described above. 

5.4.2. Integration Implementation 

Section 4.4 briefly described how, for each set of acquired patient data (in the case of 

the integration prototype, blood-gas data), the DIS module of the ICIMS system will 
instantiate a PSM class structure by applying the reasoning operators that comprise 

the represented TDM knowledge sources described in Sections 3.2.2.5 through to 

3.2.2.7. So, as shown in Figure 4-4 for patient [X], ICIMS will construct the patient- 

specific model [X. 1] of the patient's interpretative hypothesis space for disorders of 

acid-base metabolism, given the corresponding set of blood-gas measurements. 
Section 4.7 described the design of the interfaces to the classes of DIS dialogue 

generated in the process, and the mechanisms employed in the search and 

manipulation of the COB objects required for the application of the reasoning 

operators represented in each class of dialogues. As shown in Figure 5-3, the DIS is 

called to generate an interpretation of a set of blood-gas measurements by selecting 

the set from the list box and pressing the Evaluation button under the box. Listing 5- 

12 shows the implementation of the Commands method of the class of patient 
dialogues, which is omitted in Listing 5-9, for the instantiation of the interpretative 

dialogue classes. 

More specifically, following the selection of a blood-sample measurement to be 

interpreted as to the patient's acid-base status, the DIS module will construct dialogue 

objects from their class description and execute their implementation in the order in 

which they are presented in Section 4.7 and shown in Listing 5-12. Once the two 

topmost-ranking interpretative hypotheses have been selected by the select 
interpretation dialogue object, the DIS module, represented in the current 
implementation as the code shown in Listing 5-12, will set the corresponding member 

attributes of the selected blood-gas analysis object using the methods provided by the 

class of objects as shown in Listing 4-2. The dialogue windows generated by these 
interpretative method abstraction objects are shown in Figure 5-9. Finally, as shown in 
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the interpretation selection window, at this stage the user has two options: to either 

cancel the process and store the displayed interpretations, or to continue the 

interpretative process in order to either verify the hypotheses or to resolve complex 

hypotheses by means of causal-process classification as described in Section 3.3 and 

further in Section 5.4.6 below. The sections which follow also discuss the verification 

of the prototype KBS integration, the evaluation of the DIS against peer systems, and 

the high-level alarm and patient summary decision support functions provided by the 

system in the form of interpretative state trends. 

Figure 5-9. Data Interpretation System dialogue windows. 

case EVALUATE: 
{ 

item = analysisLogBox. SelectedItem (); 

InitDialog initialisationDialogue (); 
initialisationDialogue. Execute (); 

bloodGasAnalysis *pAnalysis; 
pPatient -> bloodGases. Seek (item); 
pPatient -> bloodGases. Get (pAnalysis); 
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loop for all data acquired 
pRawData = new rawData; 
pRawData -> Assign (); 
pRawData -> SetMembers (); 
pRawData -> Store (); 
delete pRawData; 

classificationDialogue classifyDialogue (); 
classifyDialogue. Execute(); 

evidenceDialogue processEvidenceDialogue (); 
processEvidenceDialogue. Execute (); 

sumHypothesesDialogue summationDialogue (); 
summationDialogue. Execute 0; 

while not complete 
rankDialogue = new rankHypothesesDialogue (); 
repeat = rankDialogue -> Execute (); 
delete rankDialogue; 

selectInterpretationDialogue selectionDialogue (); 
selectionDialogue. Execute 0; 

pAnalysis -> 
SetPrimaryDiagnosis (selectionDialogue. 

GetPrimaryDiagnosis()); 
pAnalysis -> 

SetSecondaryDiagnosis (selectionDialogue. 
GetSecondaryDiagnosis()); 

pPatient -> bloodGases. Unget (pAnalysis); 

Listing 5-12. Implementation of the Commands section of the patient record management 
OMS module for the instantiation of the interpretative dialogue classes. 

An example of the use of the PCAS methods for the implementation of the 

interpretative dialogue classes is given in Listing 5-13. 

classificationDialogue :: Init () 
{ 

classificationBox. DeleteContent (); 
pSetOfAllRawData = new rawDataAllSet (); 
pSetOfAllParameterProfiles = new parameterProfileAllSet (); 
Classify(); 

classificationDialogue :: -ClassificationDialogue () 
( 

delete pSetOfAllRawData; 
delete pSetOfAllParameterProfiles; 

classificationDialogue :: Classify () 
{ 

pSetOfAllRawData -> Seek (0, PtSTART ); 
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loop for all raw data in the AllSet 
pSetOfAllRawData -> Seek (1L, PtSTART); 
pSetOfAllRawData -> Get (pRawData); 

loop for all parameter profiles 
pSetOfAllParameterProfiles -> Seek (1L, PtSTART); 
pSetOfAllParameterProfiles -> Get (pProfile); 

if pRawData -> GetVariable(= pProfile -> 
GetVariable(); 

pProcessedData = new processedData; 
pProcessedData -> Assign (); 
pProcessedData -> Process 
pRawData -> GetVariable(), pRawData -> GetValue(), 
pProfile -> GetMean(), pProfile -> GetSdev()); 
classificationBox. AddString(pProcessedData -> 
DisplayObject()); 
pProcessedData -> Store(); 
delete pProcessedData ; 

pSetOfAllParameterProfiles-> Unget (pProfile); 

pSetOfAllRawData -> Unget (pRawData); 

Listing 5-13. Implementation of the class of classification dialogue objects. 

5.4.3. Integrated KBS module Verification 

Following the integration of the prototype KBS task-domain model within the clinical 
information management support system, the application of the acid-base balance 

disorder belief network processing model was verified using the knowledge contents 

with which the prototype. KBS was evaluated (Table 3-1), which are reviewed in 

Table 5-1, the parameter classification profiles shown in Tables 5-2,5-3 and 5-4, and 

two sets of patient data. The first set was obtained from textbook case studies 

(Walmsley and White, 1983), and the second from the original retrospective 

evaluation study (Chelsom, 1990). 
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Represented acid-base balance disorders a priori 
belief 

pCO2 [1HCO3'] pH 

respiratory alkalosis, uncompensated 0.0833 L N H 
respiratory alkalosis, partially compensated 0.0416 L L-N H 

metabolic alkalosis, uncompensated 0.0833 N H H 

metabolic alkalosis, partially compensated 0.0416 H-N H H 

respiratory acidosis, uncompensated 0.0833 H N L 

respiratory acidosis, partially compensated 0.0416 H H-N L 
metabolic acidosis, uncompensated 0.0833 N L L 
metabolic acidosis, partially compensated 0.0416 L-N L L 

respiratory alkalosis + metabolic alkalosis 0.0833 L H H 

respiratory acidosis + metabolic acidosis 0.0833 H L L 
respiratory acidosis + metabolic alkalosis 0.0277 H H N 

respiratory acidosis, compensated 0.0277 H H N 

metabolic alkalosis, compensated 0.0277 H H N 

respiratory alkalosis + metabolic acidosis 0.0277 L L N 

respiratory alkalosis, compensated 0.0277 L L N 

metabolic acidosis, compensated 0.0277 L L N 

Table 5-1. Acid-base balance disorders represented in the ICIMS knowledge base with 
respective definitional features. 

The results of the integrated system verification using the first data set are described 

in Appendix A. I. This data set is small and was used to test the interpretative 

dialogues and set the ground for the system verification using the original 

retrospective data set. With respect to the second data set, as expected, the integrated 

model behaved in the same way as in the prototype implementation, with a small 

deviation in borderline cases and a posteriori probability values, due to the modified 

parameter profiles. This deviation is discussed in Section 5.4.5. 

Evidence Units Reference Mean Standard Value when 
Parameter Range Value Deviation p(low)=I 

....... _ ... ». ... .. »» .».. ». »» ... JnOrnl0).. Mm 
. »» ...... ». .......... 

pH - 7.35 - 7.45 7.40 0.025 7.30 
pCO2 kPa 4.7-6.0 5.35 0.325 4.2 
[HCO3'] mmol/L 24 - 32 38 2.000 19 
K` mmol/L 3.2-4.8 
Na mmoUL 132 - 144 

Table 5-2. Parameter classification profiles (Walmsley and White, 1983). 
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Evidence Units Reference Mean Standard Value when 
Parameter Range Value Deviation p(low)=1 

p(normal) _ 
0.5 

pH - 7.36-7.45 7.40 0.020 7.31 
pCO2 kPa 4.5-6.1 5.3 0.400 4.0 
[HCO3l nunoUL 21.0-27.5 24.25 1.625 16.0 
K+ mmolfL 3.2-4.6 
Na mmol/L 132 -144 

Table 5-3. Parameter classification profiles (Whitby et a), 1984). 

As stated in the introduction to this thesis and explained in section 5.4.5 below, the 

interpretative behaviour of the overall integrated belief network KBS can also be 

tuned with respect to the a priori belief in each disorder, using prevalence rates 

obtained from statistical studies rather than the experts experiential belief in the 

occurrence of each disorder given no clinical information, as for example in the case 

of de Dombal's system (Aliferis and Miller, 1995). 

Evidence Units Reference Mean Standard Value when 
Parameter Range Value Deviation p(low)=1 

p(normal) _ 
0.5 

pH - 7.37 - 7.43 7.40 0.015 7.32 
pCO2 kPa 4.86-6.10 5.48 0.310 4.36 
[HCO3 ] mnmol/L 22.1- 28.2 25.15 1.525 17.1 

Table 5-4. Parameter classification profiles (Siggaard-Andersen, 1990). 

5.4.4. Evaluation against Peer Systems 

Following the verification of the integrated KBS, the performance of the DIS module 

was evaluated against the results obtained from the application of the Siggaard- 

Andersen (1990) oxygen status algorithm. The results of this evaluation are given in 

Appendix A. 2. Again the DIS was in agreement with the 10 cases used in the 

particular evaluation study. 
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5.4.5. Toward the Integration of the IMC Task Model 

In contrast to the undesirable consultation mode of KBS operation as a source of 

expert advise (Miller and Masarie, 1990), IMC systems, that is, systems designed with 

the long-term goal of providing integrated real-time intelligent clinical information 

management support in critical care medical environments, should be geared toward 

satisfying 1) the need for complete, accurate, timely and easily accessible patient data 

sets, and 2) the need to display and transform the data generated in the process of 

monitoring and supporting patients, in a manner which converts it to information, 

thereby assisting in avoiding the misinterpretation and consequentially 

mismanagement of an observed clinical problem under conditions of information 

overload and contextual complexity (Groth and Collinson, 1993). In doing so, as 
discussed in Section 4.2.3, IMC systems are called to perform the following decision 

support functions: 1) To summarise the patient's progress and condition for clinicians 

and physicians on rounds; 2) To alert clinicians to imminent problems before they 

might otherwise be noticed; 3) To suggest, critique and possibly execute alternative 

patient state control decisions. 

The development of integrated IMC systems is a long term prospect for applied AI 

research (Uclcun, 1994). However, in the ICIMS system, the OMS module may be 

extended to incorporate those parts of the IMC TDM which are required to provide 

the first two functions listed above, namely the high-level patient summary display and 
intelligent alarm facilities. As opposed to expert consultation KBS, these two 

integrated clinical information management and decision support functions augment 

the effective information yield of traditional trend displays and parameter-based alarm 
facilities provided by existing ICU monitors, by synthesising interpretations of 

parameter values into qualitative interpretations of physiological and 

pathophysiological states, and interpretations of causally and/or temporally ordered 

collections of pathophysiological states into disease progressions and complications. 

Figures 5-10 to 5-12 show examples of combined parameter-based and state-based 

trend display window, designed to augment the effective information yield generated 
by the patient record dialogues, and to provide the means for a preliminary assessment 

of the user's requirements for the integration of the BGAS TDM within the real-time 
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information processing activity supported by the ICIMS system. The data used to 

generate these interpretative-trend displays were acquired automatically by the ICIMS 

system following its pilot installation in the Mayday University Hospital ICU in 

Croydon, England, over a period of 6 months. The particular data set, which was 

selected from a total of approximately 1,800 blood-gas measurements taken from a 

total of 10 patients, corresponds to a ventilated patient with renal dysfunction during 

the period 12/2/96 to 7/3/96. The complete data set is given in Appendix A. 3. 

In combination, the two trend displays were designed to provide further valuable 

clinical information management and decision support, in that they can be used to 

detect changes in patient state, and to distinguish those which merit patient-state 

control attention from insignificant or erroneous indications, due to measurement, 

transcription or execution errors (Wright et al, 1991). For example, the measurement 

taken at 04: 23 on the 14th of February 1996 for the patient with acute renal failure, 

may either be the result of a mechanical ventilation execution error, a measurement or 

transcription error, or a secondary acid-base balance disorder. However, the 

measurement taken at 17: 50 on the 20th of February appears to be a misclassification 

error which, being part of an on-going interpretative state-space trajectory, and in 

conjunction with the superimposed parameter trend, does not affect the validity of the 

decision support generated by the system in as much as it does in the case of 

consultation systems, such as the BGAS prototype, which are required to give the 

`correct' answer to an interpretative problem (Miller and Masarie, 1990). 

Furthermore, the functional integration process may be extended to provide 

explanations of suspicious results such as those discussed above, in the following 

manner. Once the user has selected a particular "red-herring" parameter, or state 

interpretation, from the state-trend display which needs to be explained, the module 

opens an explanation window in which, using simple and knowledge-based queries, it 

attempts to causally explain the selected state. This may be done by the method of 

causal-process classification, involving the overall clinical picture, by temporal state- 

trajectory reasoning as described above, or simply by a simple statement of other 
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measurements and control settings. For example, the window might display ventilator 

settings which indicate that an execution error has taken place. 

In order to extend the integration process in this direction, the ICIMS system must be 

further developed so that the OCS module may function independently of other 

system operations. If so, the OCS module may monitor the execution of the various 

clinical information management support tasks, and interrupt any process upon the 

arrival of further data, in order to update the state of the system at any one time. 

However, such a clinical information processing behaviour would have to be co- 

ordinated with a blackboard module KBS task-scheduler, as in the case of the 

Guardian IMC system (Section 2.4.5), with real-time constraints on the application of 

the represented cognitive task-domain. Furthermore, since most operations performed 

by the ICIMS system involve accessing the COB, the OMS module would have to be 

further developed to introduce concurrency, transaction management and event 
handling, using the available advanced PCAS methods. 

5.5. Conclusion 

Instead of focusing onto the entity abstractions required to support and facilitate the 

integration-development process, as did the last chapter, this chapter proceeded to 

describe some of the ICIMS system implementation detail, and in particular the parts 

concerning those system features which were developed to make the integrated 

system functionally, cognitively and ergonomically compatible with the clinical 

information processing activity observed in ICU clinical practice. Thus, the chapter 

described the implementation of computer-user dialogues for the acquisition, display, 

update and review of the clinical information utilised in the process of monitoring and 

supporting the ICU patient with disturbed acid-base balance. These dialogues were 

designed via a process of constructive assessment, to function as ergonomic interfaces 

to the underlying patient data and disorder knowledge object structures, for the 

maintenance of such structures, and to enable the incremental development of further 

clinical information management and clinical decision making support functions, such 
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as the contextual interpretation of the acquired patient data in order to produce high- 

level patient summaries and state alarms. The chapter also described the directions in 

which further development effort should take in order to bring the integrated system 
functionally, ergonomically, and cognitively closer to the user's clinical information 

processing and decision making activity. 
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Conclusions 



6.1. Summary and Discussion 

In the introduction to this thesis, it was argued that due to the methodological 
difficulties encountered in the evaluation of medical KBS, and in particular regarding 

the method employed for representing an expert's ability to reason with partial belief 

and incomplete information, most systems have not been independently evaluated for 

performance in clinical environments, and thus lack the evidence required to prove 

that they are effective in improving measurable parameters of the patient care delivery 

system. Thus, by failing to observe and assess the systems concerned at work, 
developers have for long omitted many of the relevant criteria for effectiveness and 

acceptance in the clinical setting, the most important being, functional, cognitive and 

ergonomic compatibility with the real needs and activities of the clinical user. It was 

argued that in order to address these problems, KBS must be integrated within the 

information processing activity of the clinical user, for the development of systems 

geared toward satisfying the primary requirement to support the management of 

clinical information in the modern high-technology health care environment. 

Thus, the aim of the work described in this thesis was to overcome the 

aforementioned obstacles, which were also manifested in the development of the 

BGAS prototype, by designing a system that would support and facilitate the solution 

of the problems associated with the observation, interpretation, monitoring and 

management of complex clinical events, in the context of dealing with the wider 

problem of information management in the modern ICU. This was to be achieved by 

integrating an existing validated and retrospectively evaluated prototype belief 

network for the interpretation of blood-gas data within the information processing 

activity of the clinical user, and the development of a system designed to support the 

management of the clinical information generated in the process of monitoring the 

ICU patient with abnormalities of acid-base balance. Specific objectives were stated in 

section 1.2 as the following. 

1. To develop a system which would combine the computer-based clinical decision 

support tasks of the acquisition, organisation, storage, update and review of the 
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information generated in the process of monitoring the ICU patient, as well as 

of the domain knowledge-base required for the contextual interpretation of the 

acquired clinical information, within a singular system architecture. 

2. To use the clinical information management support system in order to develop 

and constructively assess the integration of the cognitive, clinical information 

processing tasks comprising the prototype KBS interpretative problem-solving 

task-domain into the ICIMS system, and consequentially into clinical practice, 
in order to incorporate the computational intelligence necessary for the 

interpretation of the patient data acquired in the process being supported. 

3. To provide the means to assess specific problems encountered in the integration 

process, and to develop effective and usable solutions, by employing an 

approach which would enable the active participation of a clinical advisor who 

would act as an assessor of the functional, cognitive and ergonomic 

effectiveness of the KBS integration process, and of the overall decision support 

provided by the ICIMS system during its development. 

As described in Chapter 4, these three objectives were pursued and accomplished via 

an incremental object-oriented design and implementation approach to the functional, 

cognitive and ergonomic integration of the validated KBS prototype. The integration- 

development process started with the design of the basic COB handling system, and 

proceeded upwards and closer to the user, guided by the constructive assessment of a 

clinical advisor, who was also involved in the construction of the integration 

prototype knowledge base, to include the validated task-domain model of the KBS 

prototype for interpretative evidence impact, aggregation and propagation in a 

hierarchical belief network of disorders of acid-base metabolism, and interfaces for the 

update and review of the information acquired and generated in the process of 

monitoring the ICU patient. 

The COB formed the heart of this process, by containing the persistent object 

structures required to support the management of the clinical information utilised in 

the process of monitoring the ICU patient. More specifically, the ICIMS system uses 
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three models for deriving the COB. These are the PRM which corresponds to a 

prototypical data base schema, the DKM which corresponds to a prototypical 
knowledge base schema, and the PSM which corresponds to the interpretative 

problem solution blackboard of the KBS prototype. The OMS module was 

subsequently designed to generate dialogues with the user in order to create the 

persistent data and knowledge object structures contained in the COB, by deriving 

such object structures from the patient record and domain knowledge models. 

Thus, the first layer of the incremental ICIMS system development, that is, the layer 

closer to the underlying machine, comprises the COB module, which uses the PCAS 

for handling the persistent object structures derived and maintained by means of the 

second layer, which comprises the object derivation models. Similarly, the OMS 

module is one level closer to the user since it provides the required functionality of 

patient data and domain knowledge acquisition, update and review, and a step closer 

to the integration of the KBS prototype, since it is at this stage that most of the 

clinical advisor's constructive assessment is translated into the evolutionary 

modifications pertaining to the KBS prototype integration process. Furthermore, since 

the COB level which was developed using the PCAS, is generic, and the model-based 

object derivation level comprises mostly basic entity abstractions, system 

modifications at the level of the OMS module can be made without affecting the 

underlying module levels. The final stage of the KBS integration process was the 

incorporation of the prototype cognitive task-domain for the interpretation of the 

acquired patient data. 

This decision to use the prototype KBS described in Chapter 3, as the integration 

prototype for the incorporation of the computational intelligence required in the 

development of the ICIMS system was based on an analysis of the problem of 

reasoning with partial belief and incomplete information in clinical decision making 

and methods for the acquisition, representation and manipulation of uncertain medical 
knowledge. More specifically, Chapter 2 discussed a number of formal and heuristic 

methods designed to replace probability theory for the task, due to misconceived 
limitations of the theory, and exposed that these methods promote errors in judgement 

and lead to interpretative decision making of poorer performance and accuracy. The 
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functional, cognitive and ergonomic characteristics of the pilot ICIMS system 
implementation and of the clinical information management and decision making 

support provided by the integrated system were described in Chapter 5, along with 

some recommendations for future development, which are summarised below. 

6.2. Contributions 

The development of the ICIMS system has contributed to both the field of medical 

informatics as well as to the field of clinical medicine. To the field of medical 
informatics the contribution of the integration of the prototype knowledge-based 

system for the contextual interpretation of patient data within the patient care activity 

of the clinical user is threefold. 

Firstly, the ICIMS system was developed to provide effective solutions to a number 

of essential medical decision support problems encountered in the data overloaded 

environment of modern clinical practice, rather than to function as a human expert 

consultation replacement. This is so, both in the sense of gearing the application of the 

underlying knowledge-based techniques toward this objective, as well as in the sense 

that ICINIS was designed to integrate, record, organise, and display the clinical 
information acquired and generated in the process, in a manner which provides further 

valuable clinical decision support. Secondly, by means of the provision of effective 
decision support in the latter sense, the integrated system reached a level of overall 

effectiveness which justifies its introduction into routine clinical practice, thereby 

being exposed to the clinical information processing environment and the amount and 

quality of data required for formatively and constructively assessing the evolution of 

the represented knowledge base and cognitive task-domain. Thirdly, by being able to 

maintain temporal records of the patient's progression and of the results of the 

application of the represented task-domain, ICIMS provides the framework for the 

development, representation, application and evaluation of advanced cognitive task- 

domains, as for example in the case of experimental closed-loop control IMC systems. 

To the field of clinical medicine the ICIMS system contributes an integrated tool-set 

which assists in the management and improved utilisation of the clinical information 
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generated in the process of monitoring ICU patients in intensive care hospital units. 
Overall, the work described in this thesis demonstrates that both the fields of artificial 
intelligence in medicine as well as that of medical information systems engineering 
have matured to the point where, in combination, can provide effective solutions to 

the medical decision support problems encountered in the increasingly complex high- 

technology health care delivery system. 

6.3. Further work 

Chapter 5 described the object-oriented ICIMS system architecture implementation 

details, and in particular those which pertain to system features that were designed to 

make the system functionally, ergonomically and cognitively compatible with the 

information processing activity of the clinician user in a critical care environment. 
Thus, the chapter described the implementation of computer-user dialogues for the 

acquisition, display, update and review of the clinical information utilised in the 

process of monitoring and supporting the ICU patient with disturbed acid-base 

balance. These dialogues were designed via a process of constructive assessment, to 

function as ergonomic interfaces to the underlying patient data and disorder 

knowledge object structures, for the maintenance of such structures, and to enable the 

incremental development of further clinical information management and clinical 
decision making support functions, such as the contextual interpretation of the 

acquired patient data in order to produce high-level patient summaries and state 

alarms. The chapter also described the directions in which further development effort 

should take in order to bring the integrated system functionally, ergonomically, and 

cognitively closer to the user's clinical information processing and decision making 

activity. 

Overall, further development effort should be directed toward the incorporation of a 

cognitive task model for causal-process classification and simulation reasoning in 

order to improve the system's interpretative performance with respect to complex 

disorders. It was stated that the presence of the ICIMS system in the ICU 

environment will support and facilitate the knowledge engineering and assessment 
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effort required in order to achieve this objective. This facility can be added to a 

repertory of explanatory functions as described in Chapter 2 and further in Sections 

5.4.5 and 5.4.6 in order to augment the system's cognitive capacity and compatibility. 
Finally, by incorporating a comprehensive task-scheduling system, as described in 

Section 5.2.3, the ICIMS system may be further developed to function in the mode of 
IMC systems without the need for any computer-user interaction. This development 

will be complemented by the use of advanced peripheral devices such as touch 

screens. 
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Appendix A. 

Verification of the Interpretative Task-Domain Model 

The ICIMS knowledge-base management system module of the OMS and the 

disorder knowledge model described in Chapter 4 were used to derive the COB 

objects which comprised the prototype knowledge-base. Following the construction 

of the knowledge-base using these tools, the integrated BGAS TDM described in 

Chapter 3 was applied to the textbook cases presented in this appendix in order to 

verify the TDM integration process. The parameter classification profiles are shown in 

Tables 5-2,5-3 and 5-4. Two data sets were used for this purpose. The first set was 

obtained from textbook case studies (Walmsley and White, 1983), and the second 

from the original retrospective evaluation study (Chelsom, 1990). The cases examined 

in this appendix also serve to illustrate the mechanisms of acid-base balance 

pathophysiology as encapsulated in the GDM. 

Case 1: Metabolic acidosis - diabetic ketoacidosis 

The patient concerned is a known insulin dependent diabetic, presenting in coma. The 

laboratory findings for this patient are presented in Table A-1. 

Measured Physiological Measurement Units Finding 

_Parameter -ý 
range value .................... ......... ................ ..... _ ................ .................... _.............. 

pH 7.35-7.45 7.09 acidaemia 
pCO2 4.7-6.0 2.7 kPa hypocapnia 

PO2 10.6 -13.3 14.8 kPa hyperocia 
[HCOj J 24 - 32 6 nunol/L hypobicarbonataemia 
Anion gap 8-17 30 mEq/L high anion gap 
Na 132 - 144 135 mmol/L Normonatraemia 
K4 3.2-4.8 5.7 mmol/L Hyperkalaemia 
Cl' 95 -110 101 nunol/L Normochloraemia 

Table A-1. Laboratory findings for case 1. 
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Case 1: Pathophysiology 

1. Increased production of non-volatile acids (acetoacetate, hydroxybutyrate) causes 

rapid consumption of buffer bicarbonate, and thus a decreased bicarbonate 

concentration. 

pH(") x [HCO3] (1') / pCO2 (N) 

2. The kidney is unable to rapidly (a) excrete hydrogen ion and regenerate 

bicarbonate, (b) excrete the endogenous acid anions, so the low bicarbonate 

concentration continues and the acid anions build up in the plasma, causing an 
increased anion gap. 

3. Respiratory compensation is attempted by increasing ventilation so as to lower the 

pCO2, but in this case the response is inadequate and the hydrogen ion concentration 

remains above normal (partial compensation). 

pH(1) oc [HC03 ] (44) / pC02 (4V) 

4. Hyperkalaemia is due to (a) increased release of K+ from cellular protein which, in 

the absence of insulin, is now being catabolised to fuel gluconeogenesis, (b) 

acidaemia. 

The main causes of metabolic acidosis are listed in Table A-2. Table A-3 lists the 

clinical classification of lactic acidosis. 

Case 1: ICIMS Interpretation = Partially compensated metabolic acidosis. 

These results are in agreement with the source interpretation. A partially compensated 

metabolic acidosis is characterised by a low pH, a low [HCO3], and a low to normal 

pCO2. However, full compensation does not occur in metabolic acid-base disorders 

and consequentially the low pCO2 is interpreted by the system as low to normal in the 

context of the low pH. In the context of a normal or low to normal pH, the clinical 

data would be interpreted as indicating a compensated metabolic acidosis. 
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Increased acid production (load) Reduced acid excretion 
Ketoacidosis Renal insufficiency (failure, acute, chronic) 

Diabetes Renal tubular acidosis 
Alcoholism (acute and chronic) Hypoaldosteronism 
Starvation 

Lactic acidosis Loss of bicarbonate (bases) 
Shock of any type (hypovolaemic, Gastrointestinal tract 

haemorrhagic, septic); Hypoxia Diarrhoea (intestinal fistula) 
(hypoxacmic, anoxic, circulatory, Pancreatic fistula 
histotoxic); Drugs (e. g. phenformin); Renal 
Toxic substances (methanol, salicylate, Proximal renal tubular acidosis 
ethylene glycol); Failure of enzymatic Ureterosigmoidostomy 
pyruvate utilisation Inhibitors of carbonic anhydrase 

Poisoning 
Methanol, salicylate, ethylene glycol, Excess acid intake 

paraldehyde Sodium and ammonium chloride 
Aminoacids 

Table A-2. Common causes of metabolic acidosis (source: WALMSLEY, R. N. and 
WHITE, G. H. (1983). A Guide To Diagnostic Clinical Chemistry. Melbourne, Australia: 
Blackwell Scientific Publications; Harrison's Principles of Internal Medicine, 11th Edition. 
New York, NY: McGraw-Hill). 

Type A Drugs/toxins 
Poor tissue oxygenation Biguanides 

Shock (any cause) Ethanol 
Profound anaemia Methanol 
Respiratory failure Fructose 
Cyanide poisoning Sorbitol 
Carbon monoxide poisoning Xylitol 

Streptozotocin 
Type B Salicylates 

Common disorders Isoniazid 
Diabetes mellitus Congenital enzyme defects 
Renal failure Type I Glycogen storage disease (glucose 
Hepatic failure 6-phosphatase deficiency) 
Severe infection Fructose-1,6-diphosphatase deficiency 
Malignancies (lymphoma, leukaemia, Pyruvate decarboxylase deficiency 

sarcoma) Pyruvate dehydrogenase deficiency 
Seizures Miscellaneous 
Alkaloses D-lactic acidosis 

Table A-3. Clinical classification of lactic acidosis (source: ARIEFF, A. I. and DcFRONZO, 
R. A. Fluid electrolyte and acid-base disorders, Vol. 1. New York, NY: Churchill Livingstone). 

Case 2: Metabolic acidosis - high anion gap (renal failure) 

Adult patient with chronic renal failure. The laboratory findings for this patient are 

presented in Table A-4. 
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Measured Physiological Measurement Units Finding 

-pararoeter 
range ___ - value 

pH 7.35-7.45 7.28 acidaemia 
pCO2 4.7-6.0 3.5 kPa hypocapnia 
PO2 10.6 -13.3 12.2 kPa normoxia 
[HCO31 24 - 32 12 mmol/L h}ypobicarbonataemia 
Anion gap 8-17 34 mEq/L high anion gap 
Na 132 -144 135 mmol/L Normonatraemia 
K+ 3.2-4.8 5.6 mmol/L Hyperkalaemia 
Cl, 95 -110 96 mmoUL Normochloraemia 

Table A-4. Laboratory findings for case 2. 

Case 2: Pathophysiology 

Renal failure and diabetic ketoacidosis are examples of a high anion gap acidosis. 

Major causes of this condition are: (1) ketoacidosis, (2) lactic acidosis, (3) renal 
failure, (4) ingestion (see Table A-2 and A-3). 

1 Nephron mass 

+I+ 

1 GFR 1 Renal H" excretion 

IF 

I 

Acid anion 
Respiratory '4- 3 

7 
1 Plasma HCO - 

retention compensation 

T Plasma anions pC02 

I T Anion gap 
metabolic 
acidosis 

Figure A-1. Mechanism of high anion gap metabolic acidosis in chronic renal failure 
(from Walmsley and White, 1983). 

The pathophysiological mechanism of high anion gap metabolic acidosis in chronic 

renal failure is depicted in Figure A-1. Table A-5 lists other manifestations of 

metabolic acidosis. 
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Electrolyte metabolism Renal effects 
Potassium Sodium, potassium wasting 
Calcium Uric acid retention 

Metabolic effects 
Protein -wasting 
Altered organic acid synthesis 
Catecholamine secretion and 

action altered 
Aldosterone stimulation 
Parathyroid hormone stimulation 
1,25-dihydroxy vitamin D synthesis 

inhibited 

Gastrointestinal effects 
Emesis (vomiting) 
GI transport inhibition 

Cardiovascular effects 
Cardiac 
Contraction defect 
Conduction defect 

Peripheral arteriolar vasodilation 
Pulmonary effects Venoconstriction 
Kussmaul respiration 
Pulmonary vasoconstriction 
Oxygen transport: enhanced tissue 

delivery 

Table A-5. Manifestations of metabolic acidosis (source: ARIEFF, A. I. and DeFRONZO, 
R. A. Fluid electrolyte and acid-base disorders, Vol.!. New York, NY: Churchill Livingstone). 

Case 2: ICIMS Interpretation = Partially compensated metabolic acidosis. 

These results are in agreement with the source interpretation (see case 1). 

Case 3: Metabolic acidosis - hyperchloraemic, RTA 

Infant with chronic acidosis and failure to thrive (distal RTA). The laboratory findings 

for this patient are presented in Table A-6. 

Measured 
parameter 

Physiological 
range 

Measurement 
value 

Units Finding 

pH 7.35-7.45 7.24 acidaemia 
pCO2 4.7-6.0 3.2 kPa hypocapnia 
PO2 10.6 -13.3 10.7 kPa normoxia 
[HCO3 ] 24 - 32 10 mmol/L hypobicarbonataemia 
Anion gap 8-17 15 mEq/L normal anion gap 
Na 132 - 144 139 mmol/L Normonatraemia 
K4 3.2-4.8 2.9 mmol/L Hypokalaemia 
C1' 95 - 110 116 mmol/L H rchloraemia 

Table A-6. Laboratory findings for case 3. 
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Case 3: Pathophysiology 

Renal tubular acidosis (RTA) results from ineffective tubular secretion of hydrogen 

ion, and depending on the location of the defect it may result in HC03 wasting 

(proximal RTA, Type II) or failure to excrete the daily metabolic load of acid (distal 

RTA, Type 1). In the proximal form, the HCO3 wasting is usually associated with 

other proximal tubular defects (phosphaturia, glycosuria, aminoaciduria). The distal 

H+ secretory mechanism is intact and these patients are capable, during severe 

acidosis, of producing a urine of low pH (<5.3). Subjects with the distal defect are 

able to reabsorb HCO3- in the proximal tubule, but cannot under any circumstances 

acidify the urine, i. e. urine pH is always greater than 5.3, even during severe systemic 

acidosis. The pathophysiological mechanism of hyperchloraemic metabolic acidosis in 

renal tubular acidosis is depicted in Figure A-2. Table A-7 lists the differential 

diagnosis of normal anion gap metabolic acidosis. 

l Renal H; excretion 

Na' - H' exchange 
Respiratory 

. ý. _ Plasma [HCO3 ] 
compensation 

1 pCO2 

T Na' excretion as Distal tubule NaA or NaHCO3 flow rate TRenal K 
excretion 

1 IW -ý T Aldosterone 4 

Hypokalaemia 

1 Proximal Hyperchloraemlc 
reabsorption -ý T Plasma [CI-] metabolic 

of NaCI acidosis 

Figure A-2. Mechanism of hyperchloraemic metabolic acidosis in renal tubular acidosis. 
NaA = sodium salt of acid anions (A). (from Walmsley and White, 1983). 
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Case 3: ICIMS Interpretation = Partially compensated metabolic acidosis. 

These results are in agreement with the source interpretation. The pH value is still 

considered as pathophysiological (see Cases I and 2). 

Normal-Hi Serum Potassium Low Serum Potassium 
Hyperalimination Gastrointestinal disorders 
Posthypocapnia Diarrhoea 
Rapid hydration (dilutional acidosis) Pancreatic, biliary fistula 
Hypoaldosteronism Ureteral diversions 
Hyporeninism Ureterosigmoidostomy 
Selective or diffuse adrenal damage Heal bladder (obstructed) 
Failure of tubular response to aldosterone Renal tubular acidosis 
NH. 4CI, Cad 2 (oral), lysine or arginine Proximal RTA 

hydrochloride therapy Distal RTA 
Early `uraemic' acidosis Lack of buffer 

Table A-7. Differential diagnosis of normal anion gap metabolic acidosis (source: 
ARIEFF, A. I. and DeFRONZO, R. A. Fluid electrolyte and acid-base disorders, Vol. 1. New 
York, NY: Churchill Livingstone). 

Case 4: Metabolic acidosis - loss of bicarbonate (diarrhoea) 

A 22 year-old man admitted with a history of several days diarrhoea. The laboratory 

findings for this patient are presented in Table A-8. 

Measured Physiological Measurement Units Finding 

-. 
Rammeter range 

...... .. 
value 

................ ......................... .... 
pH 7.35-7.45 7.29 acidaemia 
pCO2 4.7-6.0 3.45 kPa hypocapnia 
PO2 10.6 -13.3 11.0 kPa normoxia 
[HCO3] 24 - 32 12 mmol/L hypobicarbonataemia 
Anion gap 8-17 16 mEq/L normal anion gap 
Na 132 -144 138 mmoIL Normonatraemia 
K+ 3.2-4.8 3.1 mmol/L Hypokalaemia 
Cl" 95 - 110 114 mmol/L Hyperchloraemia 

Table A-8. Laboratory findings for case 4. 

Case 4: Pathophysiology 

Diarrhoea -4 loss of NaHCO3 (small intestinal fluid) Na' and HC03 depletion -3 

(1) 44 [HC03 ], (2) renal retention of Na' (as NaCl) -+ 1' plasma [Cl"] (also any 
NaCI taken orally will be retained). 
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14 [HCO3 ] --+ pH(I. ) oc [HCO3] / pCO2 (N) - (metabolic acidosis) 

acidosis stimulates respiration -* increased excretion of CO2 -4 " pCO2, 

i. e. pH (1) oc [HC03 ] (14) / pCO2 (". ) - (partially compensated metabolic acidosis). 

Case 4: ICIMS Interpretation = Partially compensated metabolic acidosis. 

These results are in agreement with the source interpretation. The pH value is still 

considered as pathophysiological (see Cases 1,2 and 3). 

Case 5: Respiratory alkalosis 

Patient with gram-negative septicaemia and hyperventilation (mechanical ventilation). 

The laboratory findings for this patient are presented in Table A-9. The clinical 

classification of respiratory alkalosis is listed in Table A-10. 

Measured Physiological Measurement Units Finding 

_parameter 
range. 

_ ............. _. ... _value ..... .................. ..................... _.. ............................................................ 
pH 7.35-7.45 7.44 euphaemia 
pCO2 4.7-6.0 4.0 kPa hypocapnia 
PO2 10.6-13.3 14.0 kPa hyperoaia 
[HCO3] 24 - 32 20 mmol/L hypobicarbonataemia 
Anion gap 8-17 mEq/L 
Na 132 -144 144 mmol/L Normonatraemia 
K+ 3.2-4.8 3.5 mmol/L Normokalaemia 
Cl- 95 - 110 111 mmol/L Hyperchloraemia 

Table A-9. Laboratory findings for case 5. 

Hypoxia Hypermetabolic states 
Lung diseases: pneumonia, asthma Fever 
atelectasis, fibrosis, etc. Thyrotoxicosis 

Pulmonary oedema Anaemia 
Cyanotic heart disease 
High altitude Salicylate poisoning 

Septicaemia 
Central nervous system disorders Liver cirrhosis 
Cerebral diseases: tumour, encephalities, Pregnancy 
meningities Physical exercise 

Subarachnoid haemorrhage Pain 
Psychogenic hyperventilation, anxiety 

Table A-10. Causes of respiratory alkalosis (source: ARIEFF, A. I. and DeFRONZO, R. A 
Fluid electrolyte and acid-base disorders, Vol. 1. New York, NY: Churchill Livingstone). 
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Case 5: Pathophysiology 

? Ventilation 

1pCOz TpH 

lTubule 
H' pH-aN 

secretion ` 
T 

Compensation Compensation 
4Tubule I 
HCO3 1Plasma [HCO3 

reabsorption 

? Plasma [CI-] 

4 1Proximal 
NaCl 

reabsorption 

lidfl v3 

loss » Na+ depletion IN. 4 ivv 

Figure A-3. Mechanism of a compensated respiratory alkalosis (from Walmsley and 
White, 1983). 

Case 5: ICIMS Interpretation = Fully compensated respiratory acidosis. 

The result is in agreement with the source interpretation. 

Case 6: Metabolic alkalosis 

Infant with projectile vomiting (pyloric stenosis). The laboratory findings for this 

patient are presented in Table A-11. The clinical classification of metabolic alkalosis 

is listed in Table A-12. 

Measured 
parameter 

Physiological 
range 

Measurement 
value 

Units Finding 

pH 7.35-7.45 7.58 alkalaemia 
pCO2 4.7-6.0 6.0 kPa normocapnia 
PO2 10.6 -13.3 6.8 kPa hypoxia 
[HCO3 J 24 - 32 41 mmol/L hyperbicarbonataemia 
Anion gap 8-17 mEq/L, 
Na 132 -144 131 mmol/L hyponatraemia 
K+ 3.2-4.8 2.1 mmol/L hypokalaemia 
Cl- 95 -110 76 mmol/L H hloraemia 

Table A-1l. Laboratory findings for case 6. 
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Case 6: Pathophysiology 

Vomiting 

K* loss HCI loss Na* & water loss 

Metabolic Hypokalaemia 
is CI-depletion 

alkalos 

Tproximal tubule 
HCO3 reabsorption 

TNaHCO3 
to d1VV 

distal tubule 

TUrine TAldosterone 
NaHCO3 TDlstal tubule 

flow rate tProximal NaCl 
reabsorption 

TUrine Na* TD(stal tubule 
K* secretion 

? Urine K* 
lUrine C1' 

Figure A-4. Mechanism of hypokalaemic alkalosis due to vomiting from above the 
pylorus (from Walmsley and White, 1983). 

Associated with H' depletion Severe potassium depletion 
Prolonged vomiting Diarrhea 
Diuretic therapy Cirrhosis 
Post-hypercapnic metabolic alkalosis 
Hypoparathyroidism Excess alkali intake 

Excess NaHCO3 administration 
Associated Hith mineralcorticoid hyperactivity Excess administration of some antacids 
Cushing's syndrome 
Primary h}peraldosteronism 
Banter's syndrome 

Table A-12. Causes of metabolic alkalosis (source: ARIEFF, A. I. and DeFRONZO, R. A. 
Fluid electrolyte and acid-base disorders, Vol. 1. New York, NY: Churchill Livingstone). 

Case 6: ICIMS Interpretation = Metabolic alkalosis. 

The result was in agreement with the source interpretation. 
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Case 7: Respiratory acidosis 

Patient with emphysema. The laboratory findings for this patient are presented in 

Table A-13. The clinical classification of respiratory acidosis is presented in Table A- 

14. 

Measured Physiological Measurement Units Finding 

-. 
parameter range value ___.. _.......... . _... ..... ........... ... ... ....... _.......... .......... ......... 
pH 7.35-7.45 7.36 euphaemia 
pCO2 4.7-6.0 8.4 kPa hypercapnia 

PO2 10.6 -13.3 7.0 kPa hypoxia 
[HCO3 ] 24 - 32 35 mmol/L hyperbicarbonataemia 
Anion gap 8-17 mEq/L 
Na 132 - 144 135 mmol/L Normonatraemia 
K+ 3.2-4.8 3.8 mmol/L Normokalaemia 
Cl" 95 -110 88 mmoUL HWpochloraemia 

Table A-13. Laboratory findings for case 7. 

Case 7: Pathphysiology 

4Respiratory exchange 

IJpoi ? pc02 -ý KPH 

TTubutar H 
secretion pH -> N 1P1asma [cri 

THca; gyration 
and reabsorptlon --O' TPlasma (HCQf] 

Na' reabsorption i TRenal 
fiw -1 NaCI 

reabsorption 

Figure A-5. Mechanism of respiratory acidosis with partial compensation (from 
Walmsley and White, 1983). 
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Alterations of alveolocapillary diffusion and Inhibition of bulbar respiratory centers 
perfusion Drugs: opioids, anaesthetics, sedatives 
Chronic bronchities Excess 02 therapy in chronic hypercapnia 
Emphysema Lesions of the central nervous system (rare) 
Severe asthma Cardiac arrest 
Chronic obstructive lung disease 
Acute pulmonary oedema (rare) 

Diseases or alterations of repsiratory muscles 
or the rib cage 
Muscular insufficiency 
Kyphoscoliosis 
Se%tre obesity (Pickwickian syndrome) 

Table A-14. Causes of respiratory acidosis (source: ARIEFF, A. I. and DeFRONZO, R. A. 
Fluid electrolyte and acid-base disorders, Vol.!. New York, NY: Churchill Livingstone). 

Case 7: ICIMS Interpretation = Fully compensated respiratory acidosis. 

The source interpretation was partial compensation. 

Case 8: Mixed respiratory and metabolic acidosis 

Patient with cardio-pulmonary arrest. The laboratory findings for this patient are 

presented in Table A-15. 

Measured Physiological Measurement Units Finding 

_parameter 
range value ... ........... .... ........ _......... .............. 

pH 7.35-7.45 7.01 acidaemia 
pCO2 4.7-6.0 8.8 kPa hypercapnia 
PO2 10.6-13.3 6.8 kPa hypoxia 
[HCO3 ] 24 - 32 16 mmol/L hypobicarbonataemia 
Anion gap 8-17 mEq/L 
Na 132 - 14 3 mmoUL 
K` 3.2-4.8 mmol/L 
Cl. 95 -110 mmol/L 

Table A-15. Laboratory findings for case 8. 
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Case 8: Pathophysiology 

Respiratory arrest 

4 pO, CO2 retention Anoxia 

f"O 

Anaerobic TLactic acid 
glycolysis -10 production -10 

TpCOZ 

ýpH 

T 
1 HCO3 

respiratory 
acidosis 

metabolic 
acidosis 

Figure A-6. Mechanism of mixed respiratory and metabolic acidosis in respiratory arrest 
(from Walmsley and White, 1983). 

Case 8: 1CIMS Interpretation = Respiratory and metabolic acidosis. 

The result was in agreement with the source interpretation. 

Case 9: Mixed respiratory and metabolic alkalosis 

Male patient, aged 70 years, with respiratory failure due to chronic obstructive airway 

disease. He was admitted to ICU and mechanically ventilated. The laboratory findings 

listed in Table A-16 refer to 5 hours after ventilation was initiated. 

Measured 
parameter 

Physiological 
range 

Measurement 
value 

Units Finding 

pH 7.35-7.45 7.66 alkalaemia 
pCO2 4.7-6.0 4.2 kPa hypocapnia 

p02 10.6-13.3 9.9 kPa hypoxia 
IHCO; ] 24 - 32 35 mmol/L hyperbicarhonataemia 
Anion gap 8-17 mEq/L 
Na 132 -144 mmolL 
K` 3.2-4.8 nunol/L 
Cl' 95 - 110 mmol/L 

Table A-16. Laboratory findings for case 9. 
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Case 9: ICIMS Interpretation = Respiratory and metabolic alkalosis. 

Result in agreement with source interpretation. 

Case 10: Mixed respiratory acidosis and metabolic alkalosis 

Male aged 82 years, with chronic obstructive airway disease and congestive cardiac 

failure, who has been on long term thiazide therapy. The laboratory findings for this 

patient are presented in Table A-17. 

Measured 
parameter 

Physiological 
ran Le 

Measurement 
value 

Units Finding 

_ pH 7.35-7.45 7.43 euphaemia 
pCO2 4.7-6.0 9.9 kPa hypercapnia 
PO2 10.6-13.3 8.1 kPa hypoxia 
[HC03 ] 24 - 32 48 mmol/L hyperbicarbonataemia 
Anion gap 8-17 mEq/L 
Na 132 - 144 131 mmol/L hyponatraemia 
K+ 3.2-4.8 2.2 mmoUL hypokalaemia 
Cl- 95 -110 72 mmol/L h hloraemia 

Table A-17. Laboratory findings for case 10. 

Case 10: ICIl1IS Interpretation = Respiratory acidosis and metabolic 
alkalosis. 

The result is in agreement with the source interpretation. The complex disorder was 

recognised by superimposing the pathophysiological PSM (hyperdynamic 

compensation) on the clinical picture of the patient. Thiazide therapy indicates 

primary metabolic alkalosis due to potassium deficiency consequent to the diuretic 

therapy. Airway disease indicates a primary respiratory acidosis superimposed on the 

metabolic alkalosis. 

Case 11: Mixed respiratory alkalosis and metabolic acidosis 

45 year-old female patient who attempted suicide by consuming large amounts of 

aspirin (appro)dmately 100g, 12 hours prior to admission). On presentation she was 

comatose and had peripheral cyanosis. The laboratory findings for this patient are 

presented in Table A-17. 
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Measured 
parameter 

Physiological 
range 

Measurement 
value 

Units Finding 

pH 7.35-7.45 7.38 euphaemia 
pCO2 4.7-6.0 3.5 kPa hypocapnia 
P02 10.6 -13.3 8.0 kPa hypoxia 
IHCO31 24 - 32 15 mmoUL hypobicarbonataemia 
Anion gap 8-17 mEq/L 
Na 132 -144 142 mmol/L normonatraemia 
K+ 3.2-4.8 5.5 mmol/L hypcrkalaemia 
Cl" 95 - 110 98 mmol/L normochloraemia 

Table A-18. Laboratory findings for case 11. 

Case 11: ICIMS Interpretation = Respiratory alkalosis and metabolic 
acidosis. 

The result is in agreement with the source interpretation. The complex disorder was 

recognised by superimposing the pathophysiological PSM (hypodynamic 

compensation) on the clinical picture of the patient. Salicylate poisoning affects both 

the central nervous system and thus respiration as well as certain metabolic pathways 

causing overproduction of organic acids, including lactic acid. Thus, salicylate 

poisoning indicates the presence of two primary disorders: respiratory alkalosis and 

metabolic acidosis. 
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Appendix B 

Results of a retrospective evaluation against the Siggaard- 
Andersen Nomogram as a 'Gold data-interpretation 

Standard' 

Case 1: Chronic obstructive pulmonary disease and pickwick 
syndrome in a 61 year-old man 

During air travel the patient developed acute respiratory insufficiency and was 

admitted to the ICU. He was mechanically ventilated with an oxygen fraction of 0.8 

(so%). 

1.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) = 7.491 (7.373 - 7.433) 

2. Arterial C02 tension (at 37°C) = 5.69 (4.86 - 6.10) kPa 

3. Plasma [HCO3-] = 32.2 (22.1 - 28.2) mmol/L 

1.2. Gold standard 

NORMOCAPNIA, moderate ALKALAEMIA, moderate metabolic alkalosis. 

1.3. ICIMS 

1. Uncompensated metabolic alkalosis (0.715) 

2. Partially compensated metabolic alkalosis (0.285) 

Agreement. Metabolic alkalosis is the only primary disorder. The qualifier ̀ moderate' 

refers to lack of compensation or perhaps slight compensation. Normocapnia excludes 

the presence of a ̀ respiratory component'. 
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Case 2: Case 1- second sample, spontaneous ventilation 

2.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) = 7.346 (7.373 - 7.433) 

2. Arterial CO2 tension (at 37°C) = 8.92 (4.86 - 6.10) kPa 

3. Plasma [HC03 ]= 36.1 (22.1 - 28.2) mmolIL 

2.2. Gold standard 

HYPERCAPNIA, slight ACIDAEMIA, MARKED metabolic alkalosis. 

2.3.1CIMS 

1. Respiratory acidosis and metabolic alkalosis (0.804) 

2. Partially compensated respiratory acidosis (0.196) 

Agreement. Complex disorder comprises a marked (uncompensated) metabolic 

alkalosis and a slight acidaemia caused by a partially compensated respiratory acidosis 
(hypercapnia). 

Case 3: Terminal chronic obstructive pulmonary disease in a 72 year- 
old woman 

The patient is in a steady state and breathing spontaneously without supplementary 

oxygen. She is awake and conscious, she can speak, and is mobile in a wheel chair. 

3.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) = 7.316 (7.373 - 7.433) 

2. Arterial CO2 tension (at 37°C) = 10.94 (4.86 - 6.10) kPa 

3. Plasma [HCO3] = 41.4 (22.1 - 28.2) mmoL/L 

3.2. Gold standard 

EXTREME HYPERCAPNIA, moderate ACIDAEMIA, MARKED metabolic 

alkalosis. 
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3.3. ICIMS 

1. Respiratory acidosis and metabolic alkalosis (0.511) 

2. Partially compensated respiratory acidosis (0.489) 

Comment: Agreement. The change in belief value for the two components of the 

interpretation signifies the increased acidaemia compared with the previous case. In 

this case, the distribution of evidence over the pathophysiological network is more 

uniformly spread between the metabolic and respiratory components. 

Case 4: Extreme arterial hypoxia in a 25 year-old man (R. Messner) 
at the top of Mt. Everest without supplementary oxygen 

The example shows the limits of tolerance of a normal healthy adult. An arterial blood 

sample was not drawn at the summit but the oxygen status was reconstructed on the 

basis of data from the literature recorded at high altitude (8848m). 

4.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) = 7.743 (7.373 - 7.433) 

2. Arterial CO2 tension (at 37°C) = 1.50 (4.86 - 6.10) kPa 

3. Plasma [HCOfl = 15.2 (22.1 - 28.2) mmol/L 

4.2. Gold standard 

EXTREME HYPOCAPNIA, EXTREME ALKALAEMIA, slight metabolic acidosis. 

4.3. ICIMS 

1. Partially compensated respiratory alkalosis (0.554) 

2. Uncompensated respiratory alkalosis (0.446) 

Comment: Agreement. The alkalaemia is due to the extreme hypocapnia. A slight 

metabolic acidosis is manifested in slight compensation as indicated in the narrow 

belief margin. However, this is a physiological response and does not represent a 

second primary disorder. Cases such as this (very high pH with partial compensation) 

will be further refined by observing state-trajectories (Section 5.4.5). 
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Case 5: Cardiac incompensation and plural excusation in a 54 year- 
old man 

5.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) _ 

2. Arterial CO2 tension (at 37°C) _ 

3. Plasma [HC03 ]_ 

5.2. Gold standard 

7.564 (7.373 - 7.433) 

4.49 (4.86 - 6.10) kPa 

30.1 (22.1 - 28.2) mmol/L 

slight HYPOCAPNIA, MARKED ALKALAEMIA, moderate metabolic alkalosis. 

5.3. ICIMS 

1. Respiratory and metabolic alkalosis (0.883) 

2. Uncompensated metabolic alkalosis (0.117) 

Comment: Agreement. The marked alkalaemia is caused by a moderate metabolic 

alkalosis and a slight hypocapnia, i. e. metabolic and respiratory alkalosis. 

Case 6: Case 5- second sample, after eliminating 3000 mL of fluid 

6.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) = 7.480 (7.373 - 7.433) 

2. Arterial CO2 tension (at 37°C) = 6.14 (4.86 - 6.10) kPa 

3. Plasma [HC03 ]= 33.9 (22.1 - 28.2) mmol/L 

6.2. Gold standard 

slight HYPERCAPNIA, moderate ALKALAEMIA, moderate metabolic alkalosis. 

6.3. ICIMS 

1. Partially compensated metabolic alkalosis (0.585) 

2. Compensated metabolic alkalosis (0.415) 

219 



Comment: Agreement. Slight hypercapnia compensates the alkalaemia which is now 

moderate (partially compensated metabolic alkalosis). 

Case 7: Severe haemorrhagic anaemia in a 25 year-old woman 

The patient was injured in a traffic accident necessitating a splenectomy. She suffered 

a great deal of blood loss. The haemoglobin concentration fell to 2.2 mmol/L but she 

refused blood transfusion for religious reasons (Jehove witness). She was breathing 

spontaneously. An arterial blood sample was drawn after 20 minutes without 

supplementary oxygen. Patient is hyperventilating. Since blood transfusion was 

refused, the only way to improve the oxygen status was by administering pure 

oxygen. 

7.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) = 7.403 (7.373 - 7.433) 

2. Arterial CO2 tension (at 37°C) = 2.50 (4.86 - 6.10) kPa 

3. Plasma [HC03 ]= 11.6 (22.1 - 28.2) mmol/L 

7.2. Gold standard 

EXTREME HYPOCAPNIA, NEUTRALAEMIA, MARKED metabolic acidosis. 

7.3. ICIMS 

1. Respiratory alkalosis and metabolic acidosis (0.705) 

2. Normal blood gases (0.295) 

Comment: Agreement. Extreme hypocapnia causes respiratory alkalosis. A 

superimposed marked metabolic acidosis causes neutralaemia. 

Case 8: Accidental hypothermia and carbon monoxide poisoning in a 
79 year-old woman 

The patient had turned on the gas in her kitchen but forgot to light the burner. She 

was poisoned by carbon monoxide and lost consciousness and had been lying on the 
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floor for about 24 hours at an ambient temperature of about 23°C when found. Her 

body temperature had fallen to 30.4°C. 

8.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) _ 

2. Arterial CO2 tension (at 37°C) _ 

3. Plasma [HCO3] = 

7.004 (7.373 - 7.433) 

4.73 (4.86-6.10)kPa 

8.7 (22.1 - 28.2) mmol/L 

8.2. Gold standard 

moderate HYPOCAPNIA, MARKED ACIDAEMIA, MARKED metabolic acidosis. 

8.3. ICIMS 

1. Uncompensated metabolic acidosis (0.607) 

2. Partially compensated metabolic acidosis (0.333) 

Comment: Agreement. The moderate hypocapnia is a physiological response to 

compensate for the acidosis. However, the compensation is not enough because of the 

hypothermia (uncompensated metabolic acidosis). 

Case 9: Coronary artery bypass grafting in a 63 year-old man 

The operation was performed during cardiopulmonary bypass with haemodilution and 
hypothermia. The postoperative course was uncomplicated, the patient was breathing 

spontaneously and cardiac function was stable. Samples of arterial and mixed venous 

blood were drawn 24 hours after surgery. 

9.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) _ 

2. Arterial CO2 tension (at 37°C) _ 
3. Plasma [HCO3] _ 

7.398 (7.373 - 7.433) 

5.58 (4.86 - 6.10) kPa 

25.5 (22.1 - 28.2) mmol/L 
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9.2. Gold standard 

NORMOCAPNIA, NEUTRALAEMIA. 

9.3. ICIMS 

1. NORMAL BLOOD GASES (0.973) 

2. Measurement error (0.0268) 

Comment: Agreement. 

Case 10: Coronary artery bypass grafting in a 47 year-old man 

The operation was performed during cardiopulmonary bypass with haemodilution and 

hypothermia. The postoperative course was uncomplicated, the patient was breathing 

spontaneously and cardiac function was stable. Samples of arterial and mixed venous 
blood were drawn 24 hours after surgery. 

10.1. Laboratory data abstract 

1. Arterial blood pH (at 37°C) _ 
2. Arterial CO2 tension (at 37°C) 

3. Plasma [HCO3] = 

7.368 (7.373 - 7.433) 

5.93 (4.86-6.10)kPa 

25.3 (22.1 - 28.2) mmoVL 

10.2. Gold standard 

NORMOCAPNIA, slight ACIDAEMIA. 

10.3. ICIMS 

1. NORMAL BLOOD GASES (0.949) 

2. Partially compensated respiratory acidosis (0.0512) 

Comment: Agreement. The slight acidaemia appears as of a respiratory origin due to 

the slightly elevated pCO2 compared with the [HCO3 ] value. 
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Appendix C 

High-level Patient Summary 
Interpretative Trend Display Data 



AccNo Date Time p02 
(kPa) 

Be(B) pH pCO2 
(kPa) 

[HCO3lact 
(rrrriol/L) 

15673 12/2/96 19: 47 13.3 -6.6 7.260 6.25 206 
15677 12/2/96 21: 00 14.3 -6.5 7.275 5.95 20.3 
15680 12/2'96 22: 44 11.1 -6.8 7.301 5.27 19.1 
15687 1312. /96 03: 27 8.49 -7.4 7.305 5.00 18.2 
15692 13/2/96 06: 16 8.52 -7.3 7.277 5.61 19.2 
15694 13/2/96 08: 49 9.64 -6.1 7.290 5.74 20.2 
15697 13/2/96 10: 26 10.4 -6.5 7.288 5.64 19.8 
15705 1312/96 11: 49 9.13 -6.2 7.300 5.50 19.8 
15711 13/2/96 14: 34 8.08 -7.3 7.285 5.44 19.0 
15716 1312/96 16: 00 11.1 -8.7 7.262 5.37 17.8 
15721 1312/96 18: 50 12.8 -7.7 7.278 5.44 18.7 
15728 13/2/96 23: 13 11.3 -8.6 7.234 6.04 18.7 
15734 1412/96 04: 23 10.7 -8.5 7.207 6.76 19.7 
15743 14/2/96 10: 48 13.1 -7.9 7.273 5.46 18.5 
15748 1412/96 11: 47 12.5 -8.1 7.272 5.42 18.3 
15755 error 16: 58 18.1 -2.7 7.204 9.36 27.1 
15756 1412/96 17: 00 11.8 -8.6 7.253 5.63 18.2 
15761 1412/96 20: 00 9.60 -7.7 7.266 569 19.0 
15764 142/96 23: 25 10.2 -7.7 7.281 5.36 18.5 
15771 15/2/96 05: 32 10.6 -7.9 7.306 4.81 17.6 
15777 15/2/96 11: 30 9.58 -7.6 7.291 5.20 18.4 
15788 15/2/96 18: 01 13.8 -6.5 7.354 4.38 17.9 
15789 15/2/96 20: 11 12.3 -83 7.313 4.53 16.8 
15793 1512/96 22: 49 13.5 -86 7.341 3.93 15.6 
15796 16/2/96 02: 34 12.7 -7.4 7.340 4.33 17.1 
15801 16/2/96 06: 10 12.7 . 7.4 7.351 4.17 16.9 
15803 16/2/96 07: 08 13.3 -8.0 7.343 4.11 16.4 
15807 16/2/96 10: 55 11.6 -6.5 7.368 4.14 17.5 
15814 16/2/96 14: 04 11.3 -6.4 7.313 5.17 19.2 
15820 1612/96 16: 54 12.2 -6.4 7.334 4.77 18.6 
15828 17/2/96 00: 01 12.0 -6.3 7.314 5.19 19.3 
15834 1712196 03: 32 11.1 -6.2 7.317 5.15 19.3 
15838 17/2196 06: 01 15.4 -6.5 7.319 5.07 189 
15842 error 10: 20 14.6 -6.5 7.315 5.11 19.1 
15845 17/2196 11: 30 20.1 -6.5 7.326 4.88 18.7 
15846 error 11: 50 9.74 7.28 8.83 30.4 
15850 17/2/96 12: 50 17.8 -6.6 7.332 4.73 18.4 
15857 17/2/96 16: 45 10.2 -6.9 7.304 5.17 18.8 
15862 1712/96 20: 00 18.0 -7.2 7.315 4.86 18.2 
15865 17/2196 22: 20 8.72 -6.6 7.317 5.04 18.9 
15873 18/2/96 03: 37 10.5 -6.5 7.328 4.86 18.7 
15876 1812/96 05: 38 10.2 -6.8 7.323 4.85 18.4 
15881 18/2/96 08: 47 11.0 -7.5 7.308 4.90 18.0 
15889 18/2/96 13: 36 13.9 -8.3 7.28 5.18 17.8 
15892 18/2196 16: 50 14.0 -7.7 7.298 5.01 18 
15897 18/2/96 20: 50 14.0 -6.9 7.308 5.11 18.8 
15903 19/2/96 00: 59 11.8 -6.1 7.333 4.88 19.0 
15908 1912/96 05: 23 11.7 -5.4 7.334 5.1 19.9 
15916 1912/96 08: 55 12.6 -6.6 7.324 4.88 18.6 
15921 19/2/96 12: 10 10.8 -7.5 7.307 5.02 18.2 
15927 19/2/96 15: 01 16.7 -8.0 7.301 4.85 17.5 
15934 19/2/96 18: 07 9.18 -5.9 7.313 5.36 19.9 
15940 19/2/96 19: 39 13.1 -5.8 7.323 5.19 19.7 
15949 19096 23: 04 10.4 -5.2 7.330 5.24 20.3 
15958 20/2/96 03: 00 9.52 -5.4 7.328 5.20 20.0 
15961 20/2/96 04: 30 11.0 -5.0 7.334 5.22 20.4 
15965 20/2/96 09: 48 11.4 -7.1 7.281 5.59 19.3 
15970 20/2/96 11: 44 10.9 -6.8 7.294 5.41 19.3 
15977 20/2/96 15: 52 9.03 -6.9 7.291 5.46 19.3 

224 



AccNo Date Tune p02 
(kPa) 

Be(B) pH pCO2 
(kPa) 

[HC03jact 
(mmoUL) 

15983 20/2196 17: 50 11.4 -6.1 7.281 5.96 20.6 
15990 20/2! 96 22: 33 10.9 -5.8 7.303 5.58 20.3 
15994 21/2/96 01: 49 9.78 -6.0 7.329 5.00 19.3 
16001 21/2/96 05: 49 10.4 -4.6 7.348 5.08 20.5 
16004 21 /2196 08: 28 10.4 -3.9 7.354 5.18 21.2 

21/2/96 11: 40 9.7 7.29 6.0 21.4 
2112196 15: 22 11.5 7.30 5.99 21.9 
21/2/96 18: 00 10.09 7.27 6.56 22.2 
21/2/96 19: 15 12.13 7.29 6.09 21.9 
22/2/96 00: 20 11.4 7.27 5.7 19.8 
22/2/96 02: 41 12.20 7.28 5.75 20.1 
2212/96 05: 27 10.96 7.32 5.50 20.9 
22/2/96 10: 20 11.79 7.30 5.20 19.0 
22/2/96 11: 33 13.03 7.32 5.07 19.4 
22! 2/96 15: 29 8.47 7.307 5.18 19.0 
22/2/96 17: 49 8.91 7.348 5.16 208 
22/2/96 21: 18 11.29 7.349 5.18 20.9 
23/2/96 00: 12 9.39 7.341 5.41 21.5 
23/2/96 03: 16 9.87 7.362 5.06 21.1 
2312/96 05: 52 10.65 7.35 5.16 20.9 
23/2/96 09: 13 10.45 7.339 5,17 20.4 
23/2/96 18: 21 12.67 7.39 4.50 20.1 
23/2/96 22: 36 13.09 7.38 4.76 20.9 
24/2/96 02: 31 12.61 7.34 5.22 21.0 
24/2196 06: 04 15.15 7.34 5.15 204 
2412196 09: 27 14.41 7.370 4.85 20.6 
24/2)96 12: 20 14.7 7.38 4.91 21.3 
24/2/96 16: 56 15.76 7.36 5.05 21.3 
2412/96 20: 59 14.97 7.34 5.42 21.7 
2412/96 23: 17 14.61 7.38 5.06 22.3 
25/2196 03: 06 17.91 7.36 5.25 21.9 
25/2/96 06: 49 16.29 7.36 5.23 21.9 
25/2/96 09: 15 15.46 7.36 5.28 22.1 
25%2%36 11: 21 13.39 7.331 5.44 21.1 
25/2/96 13: 25 14.04 7.295 6.04 21.5 
25/2/96 16: 14 16.93 7.31 5.27 19.5 
25/2/96 18: 29 12.9 7.31 4.91 18.1 
25/2/96 21: 42 13.49 7.35 4.42 18.2 
25/2/96 23: 02 8.91 7.33 5.10 20.5 
26/2/96 00: 48 8.85 7.32 5.25 20.5 
26/2/96 01: 52 11.8 7.3 5.7 21.1 
26096 04: 53 12.9 7.3 5.6 20.6 
26! 2/96 11: 32 14.7 7.29 5.36 19.2 
26/2196 13: 59 15.25 7.31 4.97 18.3 
26/2/96 17: 01 14.43 7.282 5.23 18.1 
26/2/96 19: 53 16.1 7.292 5.62 19.9 
26/2/96 21: 31 14.62 7.299 5.59 20.1 
27/2/96 00: 45 16.69 7.32 5.29 20.3 
27/2/96 03: 38 13.94 7.33 5.21 20.2 
27/2/96 07: 03 16.86 7.32 5.30 20.6 
27/2/96 08: 30 13.4 7.3 5.3 20 
27/2196 10: 40 9.6 7.32 5.7 20.1 
27/2/96 12: 08 11.4 7.32 5.4 20.6 
27/2/96 16: 15 7.33 7.31 5.61 21.0 
27/2/96 18: 34 14.4 7.3 5.83 21.3 
27/2/96 20: 55 12.89 7.31 5.92 21.2 
28/2/96 06: 28 21.05 7.32 5.64 21.05 
2812196 08: 57 16.62 7.37 5.18 21.9 
28/196 12: 07 15.77 7.33 5.56 21.6 
2812/96 17: 28 15.26 7.32 4.97 18.8 
28/2/96 20: 37 14.14 7.26 5.24 17.3 
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AccNo Date Time p02 
(kPa) 

Be(B) pH pCO2 
(kPa) 

[HCO3jact 
(mmol/L) 

29/2196 02: 52 13.39 7.30 5.86 21.4 
29! 2! 96 07: 09 12.99 7.33 5.34 20.9 
2912196 11: 35 14.6 7.30 5.4 19.8 
2912196 14: 03 15.5 7.30 5.4 19.7 
29/2/96 15: 57 14.20 7.30 5.54 20.3 
2912/96 19: 31 13.64 7.28 5.80 20.4 
2912/96 21: 09 14.69 7.32 5.60 21.4 
0113/96 00: 02 14.59 7.312 5.45 20.2 
01/3/96 02: 00 14.51 7.293 544 193 
01ßl96 05: 50 17.57 7.284 5.39 19.8 
01! 3196 08: 15 16.78 7.27 6.09 20.8 
01 /3196 09: 39 12.83 7.31 5.67 21.4 
01! 3196 12: 12 12.72 7.28 6.07 21.3 
01/3/96 14: 08 12.26 7.33 5.62 21.8 
01! 3! 96 17: 11 13.1 7.26 5.99 19.8 
01/3/96 19: 49 11.6 7.27 6.24 21.2 
02/3/96 00: 16 15.26 7.25 6.5 21.5 
0213/96 05: 59 12.8 7.31 6.1 22.6 
0213/96 13: 12 14.57 7.29 6.07 21.7 
02/3196 17: 40 13.82 7.28 6.26 21.6 
02! 3! 96 21: 40 11.04 7.331 5.96 23.1 
03! 3! 96 00: 13 11.23 7.32 5.84 22.1 
03/3/96 04: 00 11.4 7.3 6.04 22 
03/3/96 07: 06 11.27 7.31 5.6 21.1 
03/3196 11.34 10.35 7.29 6,03 21.1 
0313196 16.53 10.94 7.31 5.72 21.4 
04/3196 00: 28 9.69 7.31 5.08 19.1 
04/3196 06: 04 11.72 7.33 5.21 20.4 
04/3/96 09: 22 14.08 7.305 5.36 19.6 
04/3/96 11: 49 12.15 7.301 5.65 20.4 
04/3/96 15: 10 11.18 7.35 4.58 18.5 
04/3/96 19: 49 11.78 7.42 4.23 20.3 
0413/96 23: 45 14.9 7.4 3.9 20.1 
0513196 04.45 17.6 7.4 3.7 20.5 
05/3/96 06: 48 17.1 7.4 3.9 21.1 
05/3/96 11: 16 17.71 7.47 3.69 21 
05/3/96 14: 06 10.38 7.49 4.32 24.5 
05/3/96 17: 35 14.69 7.48 4.24 23.3 
05/3/96 21: 18 14.3 7.46 4.4 23.4 
0513l96 23: 50 12.61 7.425 4.92 23.7 
06/3/96 03: 05 15.4 7.411 4.97 23.2 
06ßl96 06: 25 17.25 7.463 4.37 22.9 
06/3/96 09: 21 16.14 7.46 4.26 22.2 
06/3/96 10'48 13.10 7.45 4.09 21.1 
06! 3/96 12: 41 11.96 7.48 4.12 22.7 
06/3/96 14.21 15.1 7.48 4.05 22.1 
06/3/96 16: 18 15.54 7.454 4.06 20.9 
06ß/96 19: 48 17.58 7.481 3.91 21.4 
06/3! 96 21: 41 18.93 7.471 3.79 20.3 
0713/96 01: 42 13.03 7.49 3.50 20 
07/3/96 06: 48 Il tl 

7.48 3.57 19.5 
0713196 17: 41 10.96 7.5 3.65 21.2 

226 


